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DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.
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THE CROSSWELL ELECTROMAGNETIC RESPONSE
OF LAYERED MEDIA

Maria Deszcz-Pan
ABSTRACT

Crosswell electromagnetic measurements are a promising new geophysical
technique for mapping subsurface electrical conductivity. Because the conductivity of
sedimentary rocks depends on the conductivity of the fluid that fills the rock pores, the
variations in conductivity can provide information about the subsurfaic_e distribution of
water, oil or steam. )

In this work the fields from a low frequency vertical magnetic dipole have been
examined from the specific point of view of their application to the determination of the
conductivity of a layered medium. Since it was established that the sensitivity of the
fields to the conductivity distribution is higher when the source and the receiver are
located inside the medium they were placed inside two separate boreholes. )

' The range of penetration of such a crosswell system for typical earth resistivities
and for currently available transmitter and receiver technologies was found to be up to
.1000 meters so problems in ground water and petroleum reservoir characteristics can be
practically examined. The parameters that affect the conductivity estimates have been
assessed using a whole-space approximation to simulate the conditions around the
boreholes. It was established that the sensitivity of the fields to the variations in
conductivity depends on the transmitter-receiver geometry and that the regions where
fields change sign or vary rapidly with distance are subject to large errors caused by the
possible misplacement of the transmitter with respect to the receiver.

An analysis of the behavior of the magnetic fields at the boundary between two
half-spaces showed that the horizontal magnetic field component, Hp, and the vertical
derivative of a vertical component, 8H,/8z, are more sensitive to conductivity variations
than H,. The analysis of derivatives led to the concept of measuring the conductivity
directly using a second vertical derivative of H,. Conductivity profiles interpreted from
field data using this technique reproduced accurately the electrical logs for a test site near
Devine, Texas.



Inversion of crosswell data using least squares techniques for multilayered
models showed a high sensitivity of crosswell measurements to the layer parameters.
An analysis of error patterns between the field and numerical data revealed the possibility
of using the patterns as an aid in detecting problems with the measuring system such as
calibration errors or position errors between transmitter and receiver. Inversion resuits
also underscored the fact that the repeatability of the measurements within a given error
margin does not necessarily guarantee that the accuracy of the whole experiment satisfies
the same limits.

It was found in this study that the inversion techniques are more stable when the
first vertical derivative of H, is used rather than H; itself. Using data from a salt water
injection experiment at the Richmond Field test site in Berkeley it was also found that
these robust layer inversions were successful in identifying the preferential flow direction
of the injected brine to four boreholes surrounding the injection well.
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Chapter 1
Introduction

The use of low frequency electromagnetic (EM) fields to determine electrical
conductivity between boreholes is an emerging new technique in geophysics. Its
development has been stimulated by recent interest in the monitoring of hazardous waste
| plumes and remobilized petroleum. These applications demand an accurate estimate of
conductivity over distances of several hundred meters. The use of high resolution
induction logs is not suitable for this purpose because of the associated short range of
penetration which extends at most few meters into the medium around the borehole.
While low frequency electromagnetic measurements on the surface of the earth have been
used in geophysics for many decades to locate conductive targets, they lack the resolution
required for monitoring of small conductivity changes in the medium. By lowering the
transmitter or receiver, or both, down the borehole, the sensors come closer to the target
and at the same time further away from distorting surface effects and noise, so a greater
sensitivity to the conductivity and structure of the medium is obtained.

- The objective of this work is to understand the behavior and characteristics of EM
fields in the ground, and how measurements in boreholes differ from surface
measurements in providing information about the conductivity of a one-dimensional,
layered medium. Here, the layered medium response is important, because it determines
the strength of the signal that should be used in a particular experiment. Estimates of the
layer response that has to be removed from data used in EM tomography to image
inhomogeneities are equally important. Layer conductivities derived from cross-hole
measurements correspond to the bulk conductivity of the medium that is not affected by
the presence of the drill-fluid and the nonuniform walls of the borehole.

1.1 Range of conductivity variations

Electromagnetic methods in geophysics have been used for many decades to
determine the electrical conductivity distribution in the earth. The conductivity can be
related to physical parameters of the medium and thus provide information about the
procesSes that occur below the surface of the earth. For example by monitoring the
changes in conductivity with time it is possible to trace the movement of conductive fluids
(Asch and Morrison, 1989; Bevc and Morrison, 1991, Wilt et al., 1992), steam fronts in
the earth (Ranganayaki et al., 1992; Wilt and Schenkel, 1992), or combustion zones



(Bartel and Ranganayaki, 1989), because these processes are known to locally alter the
ambient conductivity values. |

The relationship between the physical properties of rocks and the conductivity has
been a subject of studies for many years. It was shown that although the materials that
build rocks can vary by several orders of magnitude in conductivity (Parkhomenko,
1967), the rock matrix does not play a significant role in conductivity if the rock is
porous and filled with fluid. In general, in sedimentary, porous rocks, where the current
conduction is mostly electrolytic, the conductivity depends on pore fluid conductivity,
porosity, saturation, temperature, pressure, pore geometry, wettability, and clay content
(Ward and Fraser, 1967). Inside clear, fully saturated sands widely used Archie's Law
(Archie, 1942) relates the overall conductivity of the medium, Gy, to the conductivity of
the pore fluid, Gy, and porosity, ¢, via:

n

The exponent n and can take values between 1.8 and 2.2 depending on the rock
matrix.

If the clay particles are prcsent inside the rock matrix then the process of
conductivity complicates significantly because of the presence of éxchange cations on the
boundary between clay and water (Ward and Fraser, 1967). The conductive properties
of clay-contaminated shaly sands were described by Waxman-Smits model (1968) which
assumed that the conductance of the shaly sand formations can by represented by two
resistors in parallel: one resistor'representing the matrix, the other the fluid filling the
pores. Bussian (1983) proposed a model that relates the formation conductivity to the
matrix and fluid conductivities at any frequency. Sen and Goode (1988) developed the

‘mathematical model of conductivity in shaly sands for low and high water salinity.

Recently temperature dependence of rock conductivity has been extensively
studied in connection with the monitoring of the enhanced oil recovery processes and
with the application to geothermal exploration. It has been established that at low
temperatures up to about 200 degrees the resistivities of rocks and saturating fluid have
similar temperature dependence: the increase in conductivity with increasing temperature
up to about 200°C (Llera et al., 1990). This is caused by an increased mobility of jons
with the increase of temperature (Sen and Goode, 1992). Above 200°C the chemical
reactions and development of microcracks become more important (Llera et al. 1990).



The significance of pore fluid conductivity in overall conductivity is an important
factor in determining the success of electromagnetic methods in monitoring movements of
fluid. Because the conductivity of a pore fluid can vary over several orders of magnitude
the conductivity of a formation will also vary significantly. For example, Hearst and
Nelson (1985) show that the conductivity of water alone can vary' by seven orders of

~magnitude (Figure 1.1-1) between resistive pure water and a conductive brine.
Therefore, according to Archie's Law the overall conductivity of high porosity (¢=.3)
_sandstone can also vary by seven orders of magnitude depending on the salinity of pore
water. By monitoring the variation in conductivity with time it may be possible to map
the movement of the boundary between a fresh water and brine.

Similarly, it may be possible to monitor the movement of oil-water boundary in
the water-flooding process. In this case the contrast between water and oil saturated rock
is expected to reach four orders of magnitude as suggested by laboratory measurements
of the conductivity of oil-shale rocks by Duba (1982). His results present the variation of
conductivity with temperature and oil-water saturation (Figure 1.1.2). At room
tempefature the three samples had widely varying conductivities that depended on their
oil-water saturation: from 10-2 S/m for sample with oil saturation of 3 gal/ton to 10-6 S/m
for sample with 56 gal/ton oil saturation.

In an enhanced oil recovery process the monitoring of the steam front is of crucial
importance. The pumping of steam into an oil bearing formation is a complicated, not
well understood process. But a recent studies (Mansure, 1990; Spies and Greaves,
1991), indicate that the conductivity of the steaming zone can increase by a factor
between 5 to 8 from its presteaming values. This increase is caused by the fact that,

~ although the steam itself is resistive, only between of 60% to 80% of the steam actually
enters the medium. The rest is distributed as a hot water. The high temperature
significantly increases the solubility of minerals and as a result increases the conductivity
of the water as it passes through rocks. Mansure and Meldau (1990) estimated this
change in conductivity using the Archie's law. They considered the magnitude of the
change in the resistivity of a formation caused by the change in salinity (Figure 1.1-3a),
temperature (Figure 1.1-3b) and saturation (Figure 1.1-3c). As can be observed salinity
variations have the largest effect on the variations in resistivity, followed by the effect of
change in saturation. The change in temperature had the smallest effect, but nevertheless
is very significant since it can cause a factor of five increase of resistivity during the
steam flooding process.



The conductivity variations caused by the change in the porosity, saturation and
temperature are significantly larger than the similar variations in velocity. This can be
observed in Figure 1.1-4 that compares the two quantities for the case of an
unconsolidated sandstone. Figure is based on the Schlumberger logging charts and
shows that the use of electrical methods in the monitoring of the processes that involve
the changes in the pore fluid properties might be better than the use of the seismic
methods.

1.2 Frequency of operation :

Traditional electromagnetic measurements inside boreholes are performed with an
induction logging tool that employs high frequencies (10-100 Hz) and short transmitter-
receiver separations (1-10 m) which limits the depth of investigation to several meters
around the borehole. If the region of interest extends from several meters to several
hundred meters as in monitoring of contaminants, or enhanced oil recovery processes,
then an increase in transmitter-receiver separation and use of lower frequencies is
necessary. The frequency of operation is determined by the desired depth of penetration,
source strength and the sensitivity of the receiver. Figure 1.2-1 shows how the
conductivity and frequency are related to the depth of penetration that is given in terms of

skin depth, &:
= [ 2 .500
8 ool  Yof

The dashed line shows the boundary between regions where displacement or
conductive currents dominate. In regions where conductive currents dominate, i.e.

where,

WE<KCO

the diffusion process is more important than wave propagation. Because the most typical
conductivities of the sedimentary rocks vary between 1.0 S/m and 0.001 S/m, and the
distance of penetration we are interested in is between 5.0 m and 1000.0 m, most of our
work will deal with relatively low frequencies between 1 Hz and 100 Hz. In this region
the conduction currents dominate the displacement currents.



1.3 Sources of electromagnetic noise inside boreholes

The electromagnetic fields that exist inside boreholes, not created by a given
controlled source, are considered to be electromagnetic noise. There are numerous man-
made sources of electromagnetic noise, but the sources of natural EM fields in the 1.0 Hz
to 100.0 Hz band are lightnihg discharges in the earth ionosphere cavity. |

An example of the spectrum of natural horizontal, H; component field (on the
surface of the earth), measured by Labson (1985) is given in Figure 1.3-1. Figure 1.3-2
shows how this noise in the Hy field will diminish inside a conductive half-space. This
figure is based on the assumption that the fields attenuate exponentiaily as they propagate
through a conductive medium according to the relation:

SA®) = € 20 S utacd )

where S,(w) is a spectral density of magnetic field measured at depth z, Squrface(®) is a
spectral density of magnetic field measured at a surface and J is the skin depth defined
above. The curve parameter is Y6z Inside boreholes the vertical component of magnetic
field is usually measured, and since the vertical component H; of natural electromagnetic
fields is zero in a one-dimensional medium (Vozoff, 1972), then there is no natural noise
in borehole measurements of H,.

The man-made noise depends strongly on the location and has to be estimated
individually for each particular site. This noise is centered around 60 Hz and its
harmonics. Scungheé Lee (personal communication) measured this noise in one of the
worst possible cases inside an active oil producing field, with a high concentration of
conductive pipes, oil pumps and during the steam flooding operation. His measurements
of H, component at 60 Hz were at a level of 0.02 nT/(Hz)!/2 at depth of 90.0 m. Our
own measurements in Richmond Field Station in May of 1992, indicate that the noise
level at a depth of 5.0 m and at frequency 18500 Hz is around 0.001 nT/(Hz)!/2.

1.4 Borehole systems

In traditional surface systems the transmitter and receiver are located at the same
level and the frequency of operation or the transmitter-receiver separation is varied. With
the availability of the boreholes, one more dimension is open for exploration and this
creates new options for different transmitter-receiver combinations.

Different combinations of transmitter and receiver positions are sensitive to
different features of the medium. To illustrate some typical responses and different



configurations we considered how different systems respond to the same model. The
examples show typical curves obtained by the traditional, well proven techniques:
measurements on the surface of the earth and induction logs in boreholes. For simplicity
we presented only the H, quadrature response of each system. The model chosen is a 30
m thick conductive layer located at depth of 300 m inside a more resistive half space. The
conductivity of the layer is 0.1 S/m, and the conductivity of half space is 0.001 S/m. The
frequency used is 1000 Hz.

Figure 1.4-1 presents the simulation of the surface EM techniques: the geometric
sounding where the separation between the transmitter and receiver increases and the
frequency is kept constant. The transmitter and receiver are both located on the surface.
The two curves represent the quadrature H, response with and without a layer for
comparison. The field strehgth is given on vertical axis in nT. The solid black line
shows the half-space response without layer, the gray line shows the response with a
layer. To make comparison easier, all values of H, quadrature are presented on a
logarithmic scale (except in Figure 1.4-6) that spans seven orders of magnitude. _

Figure 1.4-2 shows a typical induction logging response where the transmitter
and receiver are moving together vertically along the borehole. The spacing between the
transmitter and receiver is 2 m and is much shorter than the layer thickness. In this case it
is possible to recover the conductivity of the layer directly from the measurements, and
the thickness of the layer can be correctly estimated.

If the transmitter is kept at the surface and coaxial with the borehole and the
receiver is allowed to move inside the borehole then one simulates surface-to-borehole
electromagnetic logging, and as the transmitter-receiver separation is increased, a larger
area around the borehole is examined. The typical response in this case is shown in
Figure 1.4-3.

' Another version of surface to borehole EM is obtained if transmitter is located on
the surface and the receiver moves down the hole off the axis of the transmitter (Fig. 1.4-
4). This system can be useful if only one borehole is available or when a strong magnetic
source is needed. Such a strong source can only be provided with a large loop of current
carrying wire laying on the surface of the earth.

By separating the transmitter and receiver horizontally and putting them in two
different boreholes a new version of the technique is created: crosshole EM. An example
of the response when the transmitter and receiver are located at the same depth and move
simultaneously down two boreholes is given in Figure 1.4-5.



Finally the most complete set of data in the crosshole measurements is the so-
called tomographic survey. In this method the transmitter is placed in one borehole and
the receiver moves along a profile in the second borehole. Then the transmitter is moved
to another position in the first borehole and the receiver travels along the same profile.

“The process is repeated until all required combinations of transmitter-receiver positions
are covered. Since tomographic surveys involve a large number of data sets, a new form
of data presentation is given in Figure 1.4.6. In this form the position of the transmitter
coil is on the horizontal axis and the vertical axis represents the receiver location.

As can be observed from the above figures, there is a significant change in
response for all the systems considered, for models with and without a layer in. This is
also true for the measurements on the surface and that may suggest that there is no
significant advantage for measurements in boreholes. Measurements on the surface
however can only resolve the conductivity-thickness product of the layer, while
measurements in boreholes can provide an exact location of boundaries. Measurements
of the second vertical derivative (Chapter 3) can be used for this purpose.

1.5 Previous work , ‘

There are few reports of surface-to-borehole or crosshole electromagnetic
measurements at low frequencies and large transmitter-receiver separations. Since 1989
measurements have been made in boreholes at several sites by a National Laboratories
and Engineering Geoscience team. The measurements were performed with different
field configurations and in various geologic settings. The interpretation of some of these
measurements is included in Chapters 5 and 6. Prior to these experiments the only large
scale borehole measurements were conducted in mineral exploration primarily to detect
conductors that were missed by the borehole. An early review of these methods was
given by Dyck (1975). Model studies in the frequency domain measurements in
boreholes with a surface transmitter (Hohmann et al., 1978) confirmed, that downhole
receivers are very sensitive to the deep conductors that could not be detected from the
surface. A variation of the method with a downhole electrode as the source and a surface
magnetic field receiver also showed good diagnostic possibilities.

Since then the use of downhole receivers and surface transmitters has become a
standard procedure in mining geophysics to detect highly conductive sulphides in a
relatively resistive medium that were missed by a drillhole. Work has been conducted
especially by Australian and Canadian researchers in time-domain with a large surface
loop as a source. The results of the research in Australia were summarized in a



- published special issue of Exploration Geophysics, (1987) dedicated to downhole
methods. This review shows that the work emphasizes on the search for sulphides in a
typical Australian geological conditions: highly resistive medium with a conductive
overburden. The field experiments proved that downhole receivers help to detect and
localize conductive zones otherwise undetectable from the surface. This conclusion was
reached by Raiche and Bennett, (1987) who considered the response of the layered earth
model. By comparing the responses of two models with and without the conductive
layer, they showed that the downhole receiver significantly enhanced the detection of the
conductive layer in comparison with the surface receiver. However the same calculations
for the resistive layer showed that resistive layer can be a difficult target even with a
downhole receiver. _

A variation of the downhole measurements in which the receiver was fixed and
transmitter was moved élong the surface of the earth was considered by Coggon and
Clarke (1987). The method was used to detect a finite conductor which had a dipolar
type magnetic field anomaly which could be interpreted with simple loop model.

Dyck and West (1984) describe several field measurements with the wide-band
time domain systems. Their results show that it is possible to detect large bodies that are
off the axis of the borehole and interpret them using simple models based on current
filaments whose location provides information on the shape of the conductor. They also
suggest introducing asymmetry to the problem (for example by moving the transmitter
loop off the axis of the borehole) to resolve the ambiguity in the location of the conductor
and to use the multicomponent receiver.

The problems encountered in the interpretation of downhole time domain
measurements were examined by Macnae and Staltari, (1987). They describe different
causes of the sign reversal of the recorded signal along the downhole profile. Eaton and
Hohmann (1984) worked in the time domain and showed that the conductive overburden
delays and attenuates the hmplitudes of the anomalies measured inside boreholes, but
does not change the shape of the anomaly at late times. The time constant obtained from
decay curves in conductive terrains can be grossly overestimated giving conductivity-
thickness products that are too high. They also showed that there exists optimum time
window for target detection.

Several authors examined other options in performing measurements inside
boreholes. For example the use of a multicomponent receiver was reported-by Cull and
Cobcroft, (1986), who also suggest the use of ellipticity which is invariant to the probe
orientation. Because ellipticity is based on a three component sensor, at least one of the



components will be well coupled with the secondary fields from conductor. The authors
also suggested that the ellipticity is more sensitive to conductors off the axis of the
borehole then the vertical component. |

Measurements of the horizontal component, Hy, were performed by Worthington
et al., (1981). They point out that this component of the magnetic field, when measured
on the axis of the vertical magnetic dipole transmitter, should be sensitive to the lateral
inhomogeneities because in a one-dimensional medium Hy vanishes.

The possibility of measuring the magnetic field inside a cased borehole was
examined by Augustine et al., (1989) who showed that the use of very low frequencies
(below 10 Hz) allows the measurement of fields inside cased boreholes. This is very
important, because once the borehole is cased, the higher frequency electromagnetic
fields can not be used to monitor the medium outside the casing, due to the strong
attenuation from iron casing.

Because borehole electromagnetic measurements are performed inside a
conductive medium, many results for borehole measurements can be obtained from a vast
body of research in the area of electromagnetic wave propagation in dissipative media. At
lower frequencies which are needed for propagation through the earth the pioneering
derivations by J. Wait (1970, 1972, 1981) form the basis on which many later
developments were founded.

Some theoretical results from other applications can also be adopted to borehole
conditions, in particular let us cite the development of methods to measure ocean floor
conductivity. The propagation of elcctromagnetic waves near the ocean bottom-earth
interface can approximate the conditions that exist in cross-hole measurements when the
transmitter and receiver are crossing the boundary. Mahmound et al. (1979), Bubenik
‘and Fraser-Smith (1978), King et al. (1979), Kauffman and Keller (1983) examined EM
modes of propagation inside such medium. Coggon and Morrison (1970) considered the
possibilities of measuring the conductivity of the sea floor by using the EM fields around
the vertical magnetic dipole located on the sea floor. Recently this subject was examined
by Edwards and Chave (1986), Cheesman at al. (1987), Edwards and Cheesman (1987)
and Chave et al. (1990) who consider different transmitter-receiver configurations and
give a set of analytic solutions for frequency and time domain responses on the boundary
between the two conductive media. Their research points to several important aspects of
measurements inside conductive media in contrast to measurements on the surface. For
example, the conductive environment permits a vertical current flow through the
horizontal boundary for all the electromagnetic dipole sources except the vertical magnetic



dipole source (VMD). Because of this, fields created by a horizontal magnetic dipole
(HMD) and horizontal electric dipole (HED) are sensitive even to resistive regions
(Cheesman, 1987). The same author concludes, that with increased separation and
frequencies the possibility of detecting resistive layers also increases and that the best
configurations for this purpose are coaxial magnetic dipole (HRHR) and coaxial electric
dipole-dipole (ERER) sources. In time domain, the results show that early times are
indicative of resistive zones, late times of conductive. Furthermore Cheesman at al.
(1987) showed that if a conductive outcropping dyke is located between the transmitter
and receiver at the ocean-subflor interface, then the response is insensitive to the
particular location of the dyke, but the delay time is linearly proportional to the
conductance (conductivity-thickness product) of the dike.

Many of the previously mentioned papers point out the difficulties encountered
during the interpretation of the field results. Interpretation based on simple models
represented by current filaments was frequently sufficient in search for the sulphides in a
resistive medium. However in monitoring the movements of fluids this is not the case.
Here the conductivity contrasts are small, the anomalous zone shape is frequently highly
irregular and the only option that yields reliable conductivity distributions is a
tomographic picture of the medium. Every possibility of obtaining additional information
around the boreholes should be utilized to create that tomographic picture. Crosshole
measurements offer this possibility wherever there is more than one drillhole.

One of the first experiments in which electromagnetic methods were used to
monitor movements of fluids was conducted by Lytle et al. (1981) of the Lawrence
Livermore Laboratory, as part of a coal gasification experiment. The experiment was
conducted at high frequency (10 MHz) which limited the separation between boreholes to
just 4.6 m but allowed to use the optic ray approximation to construct the tomographic
image of conductivity.

The possibilities of using the measurements inside boreholes for reservoir
monitoring were explored by Spies and Greaves (1991), Spies (1992), and Greaves at et
al. (1991) who argued that borehole measurements are capable to detect the changes in
the reservoir. Asch and Morrison (1989) and Bevc and Morrison (1991) presented the
results of field experiments using DC resistivity methods. The use of EM induction for
steam-flooding monitoring in boreholes was reported by Wilt and Schenkel (1992) and
the use of the EM induction for tracing the salt-water plume was described by Wilt et al.
(1991).
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The first low frequency diffusion tomography algorithm to create a conductivity
image with a specific purpose of detecting small conductivity variations in the medium
was developed by Zhou (1989). The first interpretation of actual field data using an
extension of this work for axisymmetric geometry was performed by Alumbaugh (1993).

1.6 The objective of this work.

This work has two objéctives: 1) to examine some of the characteristics of the
electromagnetic fields in a borehole environment that contains a vertical magnetic dipole
in a one-dimensional medium, and 2) to interpret crosshole EM measurements in a one-
dimensional layered medium.

In Chapter 2 we examine the electromagnetic fields in a conductive unbounded
whole spacé. This chapter explains certain relations between the EM field components,

"examines the sensitivity of the response to the conductivity of the medium, and evaluates
the accuracy in position needed for particular measurements.

Chapter 3 deals with the boundary between two conductive half-spaces. It shows
that the approximate relations obtained from asymptotic expansions for large induction
numbers are consistent with numerical results. Then the vertical magnetic field is
examined as a function of transmitter-receiver separation and distances to the boundary.
The results are then compared to the conclusions reached by King et al. (1979). Next the
fields near a layer that separates two half-spaces are considered to find out how the layer
thickness and transmitter-receiver separation affect the detectability of the layer.

Chapter 4 opens the second part of the work that deals mostly with the
interpretation of electromagnetic measurements in a borehole. It examines the
possibilities of utilizing the second vertical derivatives of H, to determine the conductivity
profile directly from the measurements. _ ‘

Chapter S describes the results of least squares inversion of field data in layered
medium. It also shows the inversion results in which the first vertical derivative of H,
was used as an input to the inversion routine.

11
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GEOMETRIC SOUNDING ON THE SURFACE
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Fig. 1.4-1 Simulation of the geometric sounding for transmitter and receiver on the
surface. Source frequency is 1000 Hz. The model consists of the 30.0. m thick layer that

has a conductivity of 0.1 S/m. The layer is inside a half-space of conductivity 0.001
S/m. '
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LOGGING GEOMETRY
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Fig. 1.4-2 Simulation of the induction logging: the transmitter and the receiver
move simultaneously in one borehole and the transmitter is placed 2.0 m above the
receiver. Source frequency is 1000 Hz. The model consists of the 30.0 m thick layer
that has a conductivity of 0.1 S/m. The layer is inside a half-space of conductivity
0.001 S/m. ‘
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SURFACE-TO-BOREHOLE RESPONSE
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Fig. 1.4-3 Simulation of the surface-to-borehole electromagnetic response for
transmitter on the surface and receiver moving down the borehole below the
transmitter. Source frequency is 1000 Hz. The model consists of the 30.0 m thick
~ layer that has a conductivity of 0.1 S/m. The layer is inside a half-space of
conductivity 0.001 S/m.
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SURFACE-TO-BOREHOLE RESPONSE
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Fig. 1.4-4 Simulation of the surface-to-borehole electromagnetic respdnsc where
transmitter is on the surface and receiver is moving down a borehole. The horizontal
transmitter-receiver separation is 100 m. The model consists of the 30.0 m thick layer
that has a conductivity of 0.1 S/m. The layer is inside a half-space of conductivity
0.001 S/m.
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CROSSHOLE RESPONSE
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Fig. 1.4-5 Simulation of the crosshole electromagnetic response for transmitter and
receiver moving down two boreholes at the same depth. The transmitter-receiver
separation is 100 m. The model consists_of the 30.0 m thick layer that has a conductivity
of 0.1 S/m. The layer is inside a half-space of conductivity 0.001 S/m.
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Fig. 1.4-6 Simulation of crosshole electromagnetic tomography where transmitter

is in one borehole and a receiver is moving down another borehole. The horizontal
transmitter-receiver separation is 100 m. The model consists of the 30.0 m thick layer
that has a conductivity of 0.1 S/m. The layer is inside a half-space of conductivity
0.001 S/m. The horizontal axes describes the locations of the transmitter inside one

borehole, the vertical axes describes the location of a receiver inside the second
borehole.
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, Chapter 2
Whole space response characteristics.

The uniform, homogeneous, whole space plays the same role in downhole
electromagnetic measurements as the half-space model in the surface geophysics. This
whole space model is the crudest approximation of the medium that exists around the
borehole, but it can be used to estimate the effects of conductivity, frequency and
geometry on the observed magnetic field values and to establish the basic required
parameters of a given experiment. In this chapter we will consider the radial (H,) and
vertical (H;) components of magnetic field produced by a vertical magnetic dipole source.
In particular we will examine the range of penetration, the sensitivity to whole space
conductivity changes and the errors in measurement caused by misplacement of the
receiver with respect to the transmitter. We will illustrate our analysis with field data
collected in Richmond, California.

2.1 Vertical magnetic dipole fields
The magnetic fields around the vertical magnetic dipole in a uniform
homogeneous whole space are given by (Kauffman and Keller, 1983):

Hyks,R) =% QTI:S—R {(1 +ikR)[-p2 + 2Az-zP] +(ikRP (-p2)}, (2.1-1)

HolkoR) = M €352 0 (2:2) [3(1 +ikR)+ (kRP], 2.1-2)

where M is the magnetic dipole moment, z, is source depth, z is the depth of the
observation, p is a horizontal separation, R = [p2+(z-z:)2]1/2 is the total separation
between the transmitter and the receiver, k; is the propagation constant. The subscript
"s" refers to the medium in which the magnetic dipole source is placed. Assuming an
e+ time dependence, k; is given as: '

,ks=‘V0)E'imuo.s’ . ) | | (2.1'3) l

‘where o5 describes the conductivity of the mcdmm, o is angular frequency of the sourcé,
£ dielectric constant and | magnetic permeability.
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To visualize these fields we plotted the magnetic fields inside a conductive whole
space in several different ways as presented in Figures (2.1-1) and (2.1-2) for the H, and
the Hp components respectively. We started with a case of a specific whole space
conductvity and source frequency, then considered more general case for varying of
. products and finally we examined the general case of normalized fields.

First we considered the fields in a whole space of conductivity 0.043 S/m excited
by a magnetic dipole source oscillating at 18.5 kHz. These parameters are representative
of an actual experiment conducted in Richmond, CA, in the spring of 1992. In this
experiment cross hole measurements were performed before and after injection of a salt
water plume. The central injection borehole and four other boreholes (NW, NE, SE and
SW) were separated by 20.0 or 25.0 m. The transmitter frequency was 18,500 Hz. The
initial estimate of the background conductivity in Richmond was 0.043 S/m (Alumbaugh,
1993). We used this source frequency and medium conductivity to plot the magnetic
fields around the magnetic dipole inside a conductive whole space. The in-phase,
quadrature, amplitude and phase of H, and Hy components are presented in Figures (2.1-
1a) and (2.1-2a) respectively. These figures are constructed for a specific conductivity
and frequency, but equations (2.1-1) and (2.1-2) suggest that when the displacement
currents can be neglected (i.e. we << o) one would obtain an identical set of plots for
different conductivity and frequency as long as the same Gf (= 795.5) product is
retained. The two vertical lines on the Figure 2.1-1a show the location of the profiles
where the field data for the H, component were collected in Richmond.

Lets consider the H, component first. As can be observed the character of the
curves is different in each region of space. Close to the transmitter fields vary rapidly
with distance because when R is small, even a small variation in R causes a large change
in fields. For example the H, component diminishes from 100 nT to 0.46 nT when the
horizontal separation p increases from 1 to 6 m (and Iz-z}=0), i.e. the field decays more
than two orders of magnitude. But the fields drop from 1.25%10-2 nT to 6.4*10-3 nT

" over the same 5.0 m, distance, i.e. less than 50 % when measured 20 and 25 m away
from the transmitter. Further away from the transmitter the fields vary more slowly with
distance except in regions where the in-phase and quadrature change sign.

Notice, that both in-phase and quadrature components of H; field change sign,
‘but this sign change occurs at different locations for each component. As a result the H,

_ field does not vanish at any point inside a whole space as long as the propagation constant
in this medium is finite (and the quadrature component does not vanish). Only in the DC
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limit, where the propagation constant is zero, does the H, component vanish along lines
where p = V2 (z-z).

~ To confirm this behavior we present two of the more than 50 profiles collected in
Richmond in June of 1993 superimposed on the numerical whole-space profiles in Figure
2.1-1b. The transmitter was moved inside a vertical borehole from 4.0 to 60.0 m below
the surface. The receiver was stationary and placed at a depth of 30.0 m (marked by-a

thick horizontal line on the plots). The profiles below the thick line are further away from

the surface and are less affected by the earth-air interface, therefore numerical and field
profiles agree better. In a uniform whole space the profiles would be symmetric around
this line. As can be observed the maximum H, field is measured at a closest transmitter-
receiver separation i.e. when both tools are at a depth of 30.0 m. From this point the
field diminishes but the variation with distance is greater for the closer (20 m) profile.
Notice also that the quadrature component changes sign. The sign change occurs deeper
for larger transmitter-receiver-horizontal separations. This behavior closely corresponds
to the quadrature field in Figure 2.1-1a. : _

Next we considered similar characteristics of the Hp component but without the
examples of field data since in the Richmond experiment only the H, component was
measured. As can be observed from these figures the H, and H, components behave
quite differently in the region considered. The Hy component inside the whole space
presented in Figure 2.1-2a is different because the in-phase and quadrature components
of this field vanish where either p or (z-z;) is zero. As a result the H; field in a whole
space also vanishes at these points independently of the value of the propagation constant.

In surface geophysics the fields are plotted on the surface of a half-space as a
function of separation or, more generally, of the half-space induction number (wpc)12p.
By analogy we plotted the H, and Hy, components inside a conductive whole space as a
function of separation in the following cases: for the H, component when the transmitter
is at the same depth as receiver and when it is 100.0 m above the receiver in Figures 2.1-
Ic and 2.1-1d respectively; for the H, component we considered the transmitter 1.0 m
above the receiver and 100.0 m above the receiver in Figures 2.1-2b and 2.1-2¢
respectively. In all the figures the curve parameter is the of product where f is the
frequency of the current in a transmitter and o; is the conductivity of a whole space. The
vertical axis presents the field values in nT (or degrees for phase) for a dipole moment of
1.0 Am2. Notice that the minimum value on the vertical axis is 10-12 nT. This is an
extreme limit of measurable fields assuming the maximum sensitivity of the receiver coil
to be 10-8 nT and the maximum source strength of 104 Am2. For borehole sources the
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current maximum moment is less than 103 Am? and the best sensors have sensitivity of
10-7 nT. This figure proves, that it is possible to obtain a measurable signal inside
boreholes separated by more than 1000 m if the 6f product is sufficiently low (below
10).

Figures 2.1-1c and 2.1-2b also illustrate different zones that are characterized by
varying decay rates of the fields which are determined by the terms that dominate the
response in equations (2.1-1) and (2.1-2) (Kaufman and Keller,1983). In the near field
zone the induction number ik;R << 1 and the fields are proportional to 1/R®? (because the
e-ksR ~1). In particular the in phase and amplitude components of H, are proportional to
1/R3, and quadrature is proportional to 1/R, the in phase and amplitude components of
H,, are proportional to 1/R#4, and quadrature is proportional to 1/R2 as can be seen from
the figures. These observations can be verified by comparing the in-phase and quadrature
of the fields at small induction numbers (Kaufman and Keller, 1983). At small induction
numbers we assume that ik;R << 1.0 which corresponds to (osf)1/2R << 503. If we
neglect the displacement currents, then at small induction number the real and imaginary
parts are given by:

Hyks,R) =
%4[— L { [(-R2 + 3(zzp) - %(mucss):’/2 R + %(wucsF R“(3R2-(z-zs)2)] +

RS
i [%mucst (R + (z-z,p) - %(wucs)m Rs] }
ez (2.1-4)
- M P\ZZH 21 4+ il 2
HplksR) = ar RS { 3 g (opoyf? R. + iz opoR } 2.1-5)

The extent of the near field zone from the transmitter depends on the induction
number iksR and corresponds to the straight part of the decay curves. In the near field
only the quadrature component is proportional to the ¢,f product, the in-phase component
consists mainly of the free-space field. The Richmond experiment was conducted almost
in the near field since the o,f product was 795.5 and the maximum separation was 25.0 m
which resulted in ik;R = 1.4. A true near field condition would exist for separation R <<
17.8 m.

In the far field zone ik;R >> 1 and the e-ksR term dominates the decay; the fields
decay exponentially with increasing induction number.

The plots in Figures (2.1-1a,c,d) and (2.1-2a,b,c) describe the fields for a
specific of product. For the general case consider fields normalized by R3 (where R is a
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total transmitter-receiver distance). If we neglect the displacement currents, then the
normalized fields for all transmitter-receiver combinations and o,f products can be
presented on a single plot. To see this multiply H, and Hy by R3, and rearrange the
variables in equations (2.1-1) and (2.1-2) by multiplying and dividing H, and H,, by k2.
The resulting expressions are (Kauffman and Keller, 1983): '

HfkoR) K= M €5 1 4 iR (1p? + 26(z-2 ) + (R (2071,

4n k2 2
( : - 2.1-6)
- M giksR 12 ]
Hylks,R) R* = -2 szz &8 120(z-2,) [ 3 (1 +1ksR)+(xksR)2], @.1-7)

- The right hand side of the above equations depends only on the kp and kg(z-z).
If the displacement currents are neglected at low frequencies where @2t << WLC;, then
ks = (-iopos)12 and each component can be presented on the single plot with the z-axis
~ scaled by (osf)1/2(z-z5) and x-axis scaled by (6sf)}/2p. The examples of such plots are
given in Figures (2.1-1e) and (2.1-2d) for H; and H,, respectively. A detailed contour
section for the last two plots is given in Figures (2.1-1f) and (2.1-2e) These plots of
normalized values can be used to estimate field strengths anywhere in the whole space
medium. However we can use these figures to delineate the regions that are the most
sensitive to the variations in induction parameters and to estimate the location of sign
reversal inside a whole space. _

We observe that the most rapid variations in fields occur at induction parameters,
(05)1/2(2-z5) or (0sf)1/2p, above 1000 (i.e. induction numbers (©Opos)l/2p or
(coucs)”?(z-zs) above 1) and these are the regions that are the most sensitive to
conductivity variations. In the Richmond experiment we measured the H, component at
the horizontal separation p = 25.0 m which gives the (6f)12p = 705 (i.e. induction
number (0WHLG)12p = 0.8). The measurements extended to 50.0 m below the transmitter,
which gives (05f)1/2z = 1410 (i.e. induction number (0po;)!/2p = 1.6). So these
measurements barely reached the regions where the fields were the most sensitive to
conductivity. o

From Figures 2.1-1a,c,d,e.f to 2.1 2a,b c,d,e it can be observed that the regions
where DC fields dominate are not sensitive to the variation of conductivity-frequency
product. As a result the regions of high sensitivity to the conductivity for in-phase,
amplitude and phase components occur where the curves depart from the lines that



describe the primary DC fields. Only the quadrature component is strongly dependent on
of variations but at low values of (6f)1/2R it is very much smaller from the in-phase

component.

The phases and amplitudes of the H, and H, components are different at each
point of space. This means that the components do not achieve the maximum or
minimum values at the same time resulting in a total vector that does not have a fixed
direction in space but rotates with the frequency of the current in the transmitter
(Harrington, 1961). The tip of this total vector describes an ellipse and thus in a
conductive medium we have an elliptically polarized wave. The ellipse is characterized by
two parameters: ellipticity and tilt angle that are related to the field parameters by the
following relations:

2Rysind .
1+R%+V 4R cos5+1-Ry)

€ =

an20 = 2Rycosd
1Ry

where Ry = [H,!/ -alI, 3 is a phase shift between H; and H, components. The plots of
the ellipticity and tilt angle are given in Figures (2.1-3abc).

In particular Figure 2.1-3a shows the ellipticity and tilt angle inside a conductive
whole space where osf = 795.5. As can be observed the fields in a whole space are
elliptically polarized, except in the regions in where Hy component vanishes. The
ellipticity is small where H, component is also small. For a large depth and a big
conductivity-frequency product the H, component is large and ellipticity approaches 0.5.
Furthermore close to the transmitter axis the H, component dominates, resulting in a
polarization ellipse with an almost vertical principal axis. The H; field also dominates in
regions coplanar with transmitter which results in small ellipticity and tilt angle close to
90.0 degrees. As the induction number increases the ellipticity goes back toward zero.
The fields at this point are becoming planar with no component in the direction of the
advancing "wave front". However because of the very great amplitude attenuation that
has taken place it is unlikely that fields in this asymptotic regime could be measured with
practical equipment.
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2.2 Sensitivity of H; and Hp to the conductivity variations in a whole
space. |

As we observed before in Figures (2.1-1) and (2.1-2), the sensitivity to
conductivity of the medium depends on the transmitter-receiver geometry and on the
induction parameter. To quantify this observation we considered the change in the fields
inside a whole space medium caused by the change in conductivity. We considered the
percent change caused by a 10% increase in the conductivity. We used the same
parameters as in the Richmond experiment and compared how an increase in conductivity
from 0.043 S/m to 0.0473 S/m changed the response. The percent difference in
measurements are given in Figures (2.2-1) and (2.2-2) for H, and H,, fields respectively.
The above plots represent the change caused by 10% change in conductivity, but the same
set of curves would be obtained for the same percent increase in frequency as long as
'displacement currents can be neglected. As can be observed it is not easy to determine
which component is the most sensitive to conductivity changes in a whole space. The
sensitivity of the H, component at low induction numbers is very strongly influenced by
the location of transmitter with respect to receiver. In contrast the sensitivity of Hy
component depends on the total transmitter-receiver separation as can be seen in a circular
péttcm in Figure (2.2-2). These observations can be verified by comparing the in-phase
and quadrature of the fields at small induction numbers (Kaufman et al., 1983) given in
equations (2.1-4) and (2.1-5). '

We immediately see that for the H, component at low induction number the
conductivity enters only as a factor in a product with R i.e. with total transmitter-receiver
separation which is consistent with Figure (2.2-2). The H, component however shows
that the sensitivity to conductivity is strongly dependent on the geometrical configuration
between transmitter and receiver. As can be observed the leading terms of the real
components for H,, and H,, are the free-space fields that do not provide any information
about the medium conductivity. In general both components exhibit larger percent change
at larger separations which is intuitively obvious since larger volumes of the medium are
affected.

At large induction numbers where ik;R >> 1, or (osf)1/2R >> 503 all components
decrease exponentially with induction numbers and show a strong dependence on
conductivity. |
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2.3 Sensitivity of H, and H, measurements to position errors.

The whole space fields can also provide information about the sensitivity of the
measurements to the misplacement of the receiver with respect to the transmitter position.
To estimate of the absolute differences in field quantities we calculated the vertical and
horizontal derivatives for H, and Hy, components and plotted them in Figures (2.3-1a) to
(2.3-4a). And thus Figure (2.3-1a) represents the in-phase and quadrature of 8H,/8z, as
well as 8]H,}/dz and Sphase(H,)/dz. Figure (2.3-2a) represents the in-phase and
quadrature of &H,/8p, as well as 3|H,|/dp and Sphase(H,)/dp. Figures (2.3-3a) and
(2.3-4a) give similar quantities for H, component. To obtain an actual value of the
difference in fields, the required value must be multiplied by the appropriate shift in
horizontal or vertical direction.

Since in Richmond experiment we measured the H; fields along the vertical
profile in 0.5 m intervals we calculated the finite differences: A(ReH,)(/Az), A(OImH,)/Az,
AlH,l/Az and A(phaseH;)/Az and plotted them in Figure 2.3-1b superimposed on the
corresponding whole sI;ace derivatives. We used the same data set as before with the
receiver placed 30 m below surface. As can be seen from the theoretical whole space
figures and the field examples for boreholes separated by 25 m around 10 m below and
above the receiver the fields vary rapidly with vertical distance and for this reason can be
susceptible to errors caused by misplacement of-receiver with respect to the transmitter.
However the plots of percent difference in Figures 2.3-1c, 2.3-2b, 2.3-3b and 2.3-4b
show that the most important factor that determines the size of any positioning error for
the in-phase and the quadrature is caused by the sign change of the fields. The phase is
not sensitive to position errors. This can be seen in the field example presented in Figure
2.3-5 that shows the percent error in measurements along the same profiles but taken over
a period of several days. As can be seen the accuracy in measuring the quadrature fields
is very bad in areas where the quadrature changes sign. The in phase component
worsens significantly below 40 m (10 m below the receiver) possibly because this is the
region where in-phase component approaches the sign-change region as can be seen in
Figure 2.1-1a.

In Figures (2.3-1c), (2.3-2b),(2.3-3b) and (2.3-4b) we plotted the percent
differences in the H; and the Hy components caused by 0.1 m change in the receiver
positons. Figure (2.3-1c) presents the percent change in the H, component where the
receiver is misplaced in the vertical direction, Figure (2.3-2b) presents the situation where
the receiver is mispiaced in the horizontal directipn also by 0.1 m. Figures (2.3-3b) and
(2.3-4b) show similar errors for the H, component. These figures show that in the
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Richmond experiment the shift of the transmitter by 0.1 m with respect to the receiver in
either vertical or horizontal direction (for example by moving the transmitter from one
side to the another side of the 8" well) could cause up to 2 % errors in amplitude
measurements and significantly larger errors for the in-phase and quadrature
measurements. The phase however was not sensitive to the position errors.

Since in later chapters we will use the vertical derivatives to calculate the
conductivity of the medium we also considered how the error in the H, measurements
propagates into the measurements of the first vertical derivative. We used the first vertical
derivative that was shown in Figure 2.3-1b and compared it with the one measured
several days later. We calculated the percent error in (ReH,)(/Az), A(ImH,)/Az, AlH,l/Az
and A(phaseH,)/Az and plotted the differences in Figure 2.3-6. As can be seen the error
that was in the range of 2 % for in-phase and amplitude (see Figure 2.3-5) translates to
the +- 10% error in vertical derivatives (except just below and above the receiver) i.e. 5 -
10 fold increase in the error. _

We will estimate these errors quantitatively at low induction numbers at first for
the in-hole geometry and then in the crosshole geometry.

For in-hole measurements, where p = .0, and R = z-z; and where ik R << 1, we
have:

%Hz(ks,R) = 4M { -6 + 2(muos)2 (z-z)- i~ couo's(z zs)2} (2.3- 1)

(z-z)

So the absolute error in measurements in the in-phase component caused by the
misplacement of receiver by Az is as follows:

In phase AH, = 4M [-6 + —(muosY(z-zs)‘*] 2.3-2)

Z-zs)4

The corresponding error in the quadrature component is given by:

Quadrafure AH, =M _Az (g0, (2.3-3)
A (zz.f

It can be observed that both errors decrease rapidly with increasing transmitter-
- receiver separation, but the quadrature component is smaller since ik, R << 1. The
quadrature component depends also on the of product and is less susceptible to errors in a
less conductive medium. To obtain the relative error, divide the above expressions by the
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in-phase and quadrature components osf whole space fields at low induction numbers.
We obtain:

In phase AH, -3Az (2.3-4)
In phase H, (z-zs)

Quadrature AH, _ Az
Quadrature H, (z-z5)

(2.3-5)

From these expressions we see that the relative error in measuring the in-phase
component is three times bigger then in quadrature component.

Similar analysis can be performed for crosshole measurements where z-z; = 0.0
and R = p and where ik, R << 1. We have: '

Oy - M (z2z) 1 4 il 2 -
asz ~ > {6 + 8(m;,uss)zp i3 oucp } (2.3-6)

So the absolute error in measurements of the in-phase component when the
receiver is misplaced by Az from the horizontal position is given by:

Inphase AH, =~ M ZZ)¢p, (2.3-7)
4r ps
and similarly:
- M (zz) 1 ]
Quadrare AH, ~ M > ( 5co,ucss)Az (2.3-8)

In this case when the transmitter and the receiver are moved down two boreholes
simultaneously, the ideal situation occurs when z - zg = 0; any other values of Z-Zg
represent the error in vertical position, i.e. z-z; = Az

The relative errors for in-phase and quadrature components when z-z; —» 0 are
given by:

Inphasc AH, _ Az
In phase H; p2

(2.3-9)



Quadrature AH, ALz.

(2.3-10)

So the in-phase component is more susceptible to errors in position than the
quadrature component but in the geometry where the transmitter and receiver are located
at the same depth the error is much smaller than in a coaxial geometry.

2.4 Conditions for simplified relationships between magnetic field
components ' ,

- Maxwell's equations describe the rclationshipsvbetwcen components that involve
various derivative combinations. By measuring all of the derivatives prescribed by
Maxwell's equations we could determine the conductivity of the medium. However
usually only the vertical component is measured inside boreholes. So we poscd' a
question: under what conditions it is possible to approximate H, by 8H,/3z derivative?

To obtain some understanding, let's consider the ratio of whole space fields
around a magnetic dipole source: S |

iH (ikR ﬁ
oz - 1l i3.522,_ _  RZ
Ho  p R, (kRP
1 + (ik;R) (2.4-1)

where R = [p2+ (z-z5)2]1/2. This ratio can be examined for several cases:
if p2 << 22, thenR =z and

0 p?
< H, kRP P
oz = L1 | _24 _(_ﬂi)z_L = ()2,
Hp P 3 4 (KR P
| 1 +(ikR) | (2.4-2)
if p2 >> z2,then R=p and
0
. .—-Hz .
0z _ 1 + (ikR)
Ho »p 3+ &R |7 |
_1+(ikR) | (2.4-3)

which leads to
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9y
oz * 3 . .
- if (kRP << 1,
H, p ( (2.4-4)
if p = z, then
d ,
a—ZHz =~ .l. 2 4+ __(%i__ .
Hp P | 5, _(kRP
1 +(ikR) _ (2.4-5)

This simple analysis show that 8H,/3z is indeed proportional to -2/p H,, as long’
as p2 << z2 i.e. the receiver remains close to the axis of the dipole. This relation is
independent of induction number of the medium and because of this the presence of the
layered medium does not disturb the proportionality. When p2 >> z2, 8H,/dz is
proportional to 3/p Hy if lik;RIZ << 1 is satisfied.
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Chapter 3
Characteristics of the response near the boundary.

The flat infinite boundary is the simplest case of inhomogeneity within a
dissipative medium, but even such simple case does not have a general analytic solution
and integrals must be calculated numerically or various approximations implemented to
obtain the analytic solution.

In general the pertainent expressions reveal a complicated pattern of
interdependence between conductivities, frequencies separations and distances to the
boundary. Only in few special cases can one obtain exact, analytic expressions.

In this chapter I will consider the special case when both the transmitter and the
receiver are located on the boundary. I will show that the H, component depends on the
average conductivity of the two half-spaces, whereas Hy and 8H,/8z depend on the
difference in conductivities. This is important, since it suggests that Hy or 8H,/dz are
more sensitive to the conductivi'ty variations inside a one-dimensional medium. Then I
will examine the exact expressions involving the infinite integrals and their asymptotic
approximations. ‘These approximate solutions will be further simplified by applying
restrictions on conductivity or geometry. From these expressions I will extract some
response characteristics that can be used in interpretation and experiment design.

Finally I will consider the layer between two conductive half-spaces. I will
develop the expressions for the transmitter located inside the layer and outside of the layer
to gain the insight about the parameters that dictate the response from the layer.

This chapter follows the works of Kauffman and Keller (1983), Bannister
(1968), Kraichman (1970) and King et al. (1979) to mention just a few authors that
worked with the dipoles submerged inside the conductive medium.

3.1 Transmitter and receiver on the interface. _

This is an important case in the analysis of the reéponses near the boundary. First
of all, in this geometry, exact analytic solutions exist. Secondly, this is a limiting case for
sensing the medium without actually entering it, and provides an estimate for the limits of
resolution in other cases, where transmitter and receiver are off the boundary.

Some fundamental properties of fields and their derivatives on the interface,
outside of sources, can be obtained from boundary conditions and Maxwell’s equations.
The boundary conditions in non magnetic media assure the continuity of Ey, Hy and H,
on the interface. Because fields are continuous, then all p-derivatives: SH,/8p, SHy/5p
and 8Ey/0p are also continuous across interface if there is no variation in conductivity in
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the horizontal direction For the same reason the higher order p derivatives are also

continuous.
If there is no discontinuity in magnetic permeability, then because H, is

continuous’, 8E¢/82 must also be continuous as deducted from Maxwell's equation (see
equation (A.1-7) in Appendix A):

p) )
~E, = iopH, .
oz ¢ (3.1-D

OH,/0z is discontinuous across the boundary by the amount A(c+iwe)Ey because
in another Maxwell's equation (see equation (A.1-9) in Appendix A):

d 0 .
a—sz - 'a?Hz = (6‘*’1(12) Eq, . (3°1'2)

E, and 6H,/3p are continuous and 6 is discontinuous.
The continuity of 8H,/3z on a boundary is assured from:

_ 0.9 1 0
VH =0 =3 H + 1 H + ~H (3.1-3)

oz

and the fact, that H,, and 8H,/6p are continuous on the boundary if p = po.
The second z-derivative of H, is discontinuous by Ak2H, because in the diffusion
equation:
R L 9 3 2 |
VA __HZ + —"'Hz + k Hz = 0. (3.1‘4)
op? P ap 072

H, and its radial derivatives are continuous across the boundary. The derivative
82Ey/dpdz is continuous on the boundary because taking the z - derivative of Maxwell's

equation (equation (A.1-8), Appendix A) results in :

9
3z

92

92 .19
S20p H,

> 5z B . (3.1-5)

E, = -iop

and as we showed before 8H,/dz and 8Ey/8z are continuous.
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82Ey/0z2 is discontinuous by Ak2E, because after taking the z-derivative of
equation (3.1-1) and using equation (3.1-2) to substitute for 8Hy/dz we have:

2 a .
aazz o =+ iOp — 3 H, - (0?ue - iopo) Eq. (3.1-6)

&?H,/3p2 is continuous because SH,/3p is continuous and conductivity is constant
in horizontal direction.

3.1.1 H;component
The magnetic field near the interface when both transmitter and receiver are above

the interface is given by the following equation derived in Appendix A:
HZO‘O = Hz(ks,R) - Hz(ks,Rl)

2 ) ,
K 2k.. aa? Hyks,R1) - _I 2> (ise1) e¥2 TolAp) di G.1.1-1)

where, z is the receiver depth, z; is the transmitter depth, R is the total transmitter-receiver
separation given by R = (p2 + (z-z5)2)1/72, Ry = (p? + z12)}/2 is the separation between
the receiver and the "image" source (see Figure A.3-1 in Appendix A), M is the
transmitter moment and H,(ks,R) and H,(ks,R1) are whole space fields as given by
appendix C.3-a. Furthemore:

2
Ys = VkZ -4 (3.1.1-2)

Yorr = V& -2 1 (3.1.1-3)

When the transmitter and the receiver are both located on the boundary, than the
first two terms in equation (3.1.1-1) for H, cancel out because then R = R;. The last
integral can be written as (equation (C.2-4) in Appendix C):

I= {Mafx etz J{Ap) di

a2
4n a Iz’- = _a—za H2(k3+17R) IZ‘=0 )

(3.1.1-4)



where H,(ks+1,R) is a whole space field in a medium with a propagation constant kg.;.
This term at z = 0 has a form (equation (C.3-3) in Appendix C):

.
- H, (k301.R) o =
0z - v (3.1.1-5)

% ‘-)15— e-iks;-lp [9 + 9ikgqp + 4(iks+lp)2 + (ik5+1p)3]'

Similarly the 82H,(k,,R)/822 derivative is given by:

2y, (ks.R) oo =
322 (3.1.1-6)
M 15 e-iksP [9 + 91ksp + 4(ik,pf + (lksp)3]

41tp

The exact, analytic equation for H, field on the interface between two dissipative
half-spaces is given by (Kaufman and Keller, 1983):

.M _2 1 [
Hoo = M2 {eiispo + 9ikgp + 4(ikspf + (iksp)’]

- ‘c'iksi-lp [9 + 9ikgp + 4 (iksip)f + (iks+1p)3] }

. : (3.1.1-7)
After multiplying the above equation by p* we have:
3 ..M __ 2 -ik . P .
He,.p° = an 22 - ka2 {° #[9 + 9iksp + 4(ikspP + (ikgp)’]
- kP [9 + 9ikeap + 4(ikenpl + (iksnpf] },
(3.1.1-8)

It can be seen, that thc right hand side depends only on ksp and ks+1p Thus,
lkspl and Iks41pl are the two induction numbers for this particular geometry and the H,
field on the boundary, normalized by p3, depends only on the products of conductivity,
frequency and distance p -(undcr the assumption that the displacement currents are
‘neglected). '

It is then possible to present all cases of this specific geometry on a single plot
which is realized in Figure 3.1.1-1. The plot shows the normalized in phase, quadrature,
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amplitude and phase of H, component. The horizontal axis describes the lower medium,
the vertical axis describes the upper medium. The numbers on the axis are the induction
parameters: (0sf)1/2p of the upper medium and (G;41f)12p of the lower medium. The
axis on the top and on the right are in terms of the skin depth in the upper and lower
medium: p/&;4; and p/8;. The skin depth in the upper medium is §; = 500/(cf)1/2.
Similarly the skin depth in the lower medium is 841 = 500/(Cs+1£)1/2.

The plots can be interpreted in two ways. If the conductivities of both media are
known, than by following the lines parallel to the diagonal the normalized H, response
can be observed with the changing frequency or horizontal distance. The diagonal line
represents the zero conductivity contrast between the two media, and the numbers read
from it give the normalized fields inside a whole space for the transmitter located at the
same height as the receiver. Lines above or below the diagonal on Figure (3.1.1-1)

represent media with different conductivities, where the difference in conductivities

increases with increasing distance from the diagonal. Each line parallel to diagonal
represents different conductivity contrast between the two media.

This can be seen by comparing the values on the diagonal of Figure (3.1.1.1-1)
with values in Figure 2.1-9. For example from Figure 3.1.1-1c we see that the
normalized amplitude H, does not change significatly unless the induction parameter

reaches (of)2p = 103 (i.e. induction number: (wuo)2p ~1). So in the whole space

medium of conductivity 0.1 S/m, examining boreholes separated by 100 m, we have to
use frequencies above 1000 Hz to reach this induction number which marks the region of
higher sensitivity to conductivity. At this point our normalized amplitude would be H,p3
= 102 which translates to the 10~ nT for the true value of the H, component. The same
result can be obtained from Figure 2.1-9 using p = 100 m and a curve with of product =
102. Another way to use the plots is as a tool in sensitivity analysis. The plots show what
range of induction parameters (frequencies or separations) must be used to detect changes
in conductivity of the upper or lower half space. Straight parts of the curves on the plot
correspond to the regions insensitive to the conductivity, because along this lines the
fields remain the same independently of the conductivities of the other medium.

Notice two most striking features of these plots. First, that with exception of
quadrature component all other components are insensitive to conductivity change in the
medium unless the induction parameter in this medium reaches 103. Secondly, all
components, including the quadrature, are not sensitive to conductivity of the more
resistive half-space unless the induction number in this resistive half-space is comparable
to the induction number in a conductive half -space.
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It can be observed that the response is dominated by the more conductive medium
and it is impossible to detect even the large changes in conductivity of the more resistive
medium if this medium has a conductivity that fells on the straight part of the curve.

The plots also show why this problem does not exist in surface electromagnetics:
in this case the lower medium (6;.1f)1/2p is always more conductive than the upper one:
(osf)12p = 0 and the changes in this conductive half-space are easily detected at all
induction numbers. v

To quantify the properties of the H, field on the boundary between two half-
spaces we will consider some special cases following the analysis from Kauffman and

Keller (1983).
_ If lkspl and lks41pl << 1, which occur at very low frequencies or small separation
(and are below (of)!2p = 5x102 on the plots), then the expansion of e-%P and e-ike.p

into a power series leads to:

e-ike1p [9 + 9ikg1p + 4(iks+1p)2 + (iks+ p)a] = 9- %(ikmp)z - -;—(iks+1p)4

(3.1.1-9)
and
eikp [9 + 9ikyp + 4(iksp)? + (iksp)] = 9 - —;—(iksp)z - %(iksp)“ (3.1.-10)
As a result we have:
M 1 [, ionp?
Hy,,= - 4+ X1+ 7 (os+ Os41)| - (3.1.1-11)

4x p3

In this equation the real part is independent of the conductivity of the medium to
the first order of approximation, whereas the imaginary part depends only on the average
of both conductivities. If one of the conductivities, say 04 for example, is much higher
than the other, then this conductivity dominates the imaginary response.

In case where lkspl >1 and 05 >> Oy,1, the term in equation (3.1.1-7) with a
smaller exponential attenuation dominates: e"k»® >> ek# and the expression takes

the form:

H,, = % L eks+1P[9 + Oikyy1p + 4(ikes1pf + (ikes1p)]. (3.1.1-12)

2
k2 p
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This equation shows, that most of the received signal propagates through the resistive
medium, although the exponential attenuation with distance in this resistive medium also
takes place. "

Notice, that by taking the ratio at two frequencies the conductivity of the more
resistive medium can be obtained by solving the following equation for Gs4;:

Hyseol®y) _ D2 o-i[Kerio - kootas] P [9 +9 iksp 1P + H iksn1enpf + ( iks+lonp)3]
Hyssoleg) O [9+9ikinwp + 4 iksipf + (iks+1aP)]
(3.1.1-13)
where k.1 and kg, denote the induction numbers of the more resistive medium at

frequency ; and ®, respectively.
A slightly different pattern emerges if the upper medium is non conductive (air).
Then kgp = 0, and from equation (3.1.1-8) we have:

5 {9 - e'lks+lp[9 + 9iksp + 4(i s+1P)2 + (1ks+1p)3] }

(3.1.1-14)
The last equation is a well known solution for surface electromagnetic techniques (Sinha

and Bhattaharya, 1966).
At high frequencies, where k,1p >> 1, the second term in the above expression

HMZMn—

K p

decays exponentially and:
~M 18 1 . M i 18
4n i2,, p 4T o5 OUCsn )

(3.1.1-15)
At these high frequencies H; is strongly dependent upon conductivity of the earth.
From the plots and from the analysis above, the following conclusions emerge: 1)

at low induction numbers where lkpl < 1 (which translates to (osf)12p < 5x102 in our

figures), it is possible to detect changes of conductivity in the more resistive medium but
only if the induction numbers in this resistive medium are not much smaller than in

conductive medium, and 2) changes in the more resistive medium are more casﬂy
detected if the induction number in this medium: kpl > 1.
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3.1.2 Hjpcomponent
To calculate H, on the boundary let's take the z-derivative of the Hertz potential

above the interface as derived in Appendix A (equation A.3-5):

i M 0 e-izZ) e-(2z - 2-2)
aZH s+0 4mi azf ( % * Rosra® % ))\. J({)"p) a,

3.1.2-1)

and evaluate it at z = z; = z.,;. The z-derivative of the first term is zero at z = z; and we

are left with:

%H: lz=1.=7..1 = %J' Rs.s+l A J({A'p)dl
s o (3.1.2-2)

The reflection coefficient can be written (Kauffman and Keller, 1983, p. 415) as:

2 - 2
Ryse1 = YY1 _ 1 ks -45.,.1 [1 | 'Ys+l):l

Ys+ V41 Vs¥s+1 Ys + Vs+1 (3.1.2-3)
which gives:
0~ M i 1 K k'z 1 [ ( - Vs+1 )Z]
2n =M + A Jo\Ap)dr
0z ‘0 T 4m YsVs+1 4 Y+ Vs 0( P)
(3.1.2-4)
and because (Kauffman and Keller, 1983, p.415):
A (Ys 'Ys+l)J({}\'p _ Iv(plks 1ks+1)Kv(p1k +1ks+1) |
, Ts¥s+l Ys + Ys+1 , (3.1.2-5)

under the condition that Re(iks) > Re(ks41) 2 1, we have:

2o = 3 Bt [ap iy e

- IJP ik - 21ks+1) Kip iks +21ks+1)] |

(3.1.2-6)
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To obtain Hy we need the p-derivatives of the products of modified Bessel
functions of different arguments:

a _ ‘ -
35 [4P ) Kdp ) = 1(p b) b Kdpa) - Idp ba Ki(pa) (3.1.2-7)

%pr b)Kdpa) = [Il(p b)-Zidp b)}bK:(pa) Ip b)a[ l(pa)+§—aKipa)]

(3.1.2-8)
where: )
a= ik + iksey '
2 (3.1.2-9)
and ]
b = iks - ks
2 . (3.1.2-10)

Using the recurrence relation (9.6.26) from Abramovitz and Stegun (1970) we
finally obtain the exact, analytic expression for Hy when the transmitter and receiver are

located on the boundary between two dissipative half-spaces (Kauffman and Keller ,
1983):

H--ME -l_<§+, [ 1fp BBt e fp Bt )

4n
K+ +1 ik, - 1k ik + 1ks
I p s ~ W8s4] K p +1

K- ]( ) 1( )] (3.1.2-11)

If we multiply both sides of equation (3.1.2-11) by r3, then we have:
ik - i i ik,
pr3 = - (k p2 k?+1p2 Iz(p S 1ks+1)K2(p lks +2 S+1)
(3.1.2-11a)

k2+k§+l I(pgs 1ks+l) (pkg‘*’lksﬂ)]

Notice that the normalized pr3 on a boundary is a function of ksp and ksr1p
only, as we already observed for a normalized H,p3 component. It is then possible to
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plot these normalized values on the bdundary for all combinations of induction numbers
on the single plot, which is given in Figure 3.1.2-1. ’

As can be observed by comparing the Figure 3.1.2-1 with 3.1.1-1, the H,, field is
very different from the H, field. First of all notice, that the Hy, component vanishes on
the diagonals of the plots where the conductivities of the upper and lower half-spaces are
identical, i.e. the two conductive half-spaces become a uniform whole space. We
already observed this before in Figures 2.1-16. Secondly, all H, components (except the
phase) increase rapidly with increasing induction numbers, reaching the maximum around
(of)12p ~ 103, proving that the H, field is sensitive to the conductive medium at all
induction numbers. Finally, the Hy, can detect conductivity changes in the less conductive
medium, but only if the contrast in conductivity between the two half-spaces is not large.

To quantify our observations we need to evaluate the H, field on the boundary.

In general, the evaluation of the values for H, component (equation 3.1.2-11) has
to be performed numeﬁcally even in this case, where the analytic solution exists. The
- approximate values can be obtained by expanding the modified Bessel functions in series
- for large and small arguments. | |

At small induction numbers where the argument z ~ 0, the mod1ﬁed Bessel
funcuons are given by (Abramovitz and Stegun, 1970, relations (9.6.7) and (9.6.9)).

Il(z) = %Z

Substituting these values into equation (3.1.2-11) we get:

. Mab ='_M_l_imp(os‘cs+1)
4t p  4mp 4

i

So at low induction numbers the quadrature H, component is proportional to the
difference in conductivities between the two media. This is in contrast to the quadrature
H, component that was proportional to the average conducﬁvity between the two media.
This is an important observation, that explams why the profiles of H; field are smooth

and without much of a character when observed on both sides of the boundary.
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The above approximation involves only terms that are of the second order. The in
phase H, component is smaller, and thus does not enter the asymptotic expression.
However the comparison of figures for real H, and imaginary Hy, components on the
boundary shows that the real H is indeed smaller, but more sensitive to the conductivity
than imaginary Hp, and is proportional to:

Hp = [op(os -»0'5.,.1)]2

To evaluate H, on the boundary for large values of the argument, at least a three-
term expansions are needed, otherwise the contradictory results occur. - Furthermore, all
of the expansions of modified Bessel functions have to be performed with the assumption
that ks > ks+1, because this condition was imposed on the integral leading to the analytic
solution on the boundary (equation (3.1.2-5)).

Expanding the modified Bessel functions in series for large arguments
(Abramovitz and Stegun, 1970) leads to:

5%3 15x7
Ii{pb)=—&> _J1--3_ _ - +..} (3.12-12)
ob) ﬁan{ 8pb  2x82p2%2  2x83p3b3

5%3 15x7
Ki(pa)=epa, [-E_{1+-3 . + +..) (3.1.2-13)
Ha) 2pa { 8pa  2x82p22 2x83p3a3 } (

(3.1.2-14)

(L5, 19T 510 }

I(pb) = £ {1 - + ...
AeP) VEKPS{ 8pb  2x82p2p2  2x83p3p3

_ 15x7 5x7x9
Kylpa)=eps, [-E- {1 +15 - +..% (3.1.2-15

The products of modified Bessel functions are given by:

' 2
I;{pb) K ~ ePla-b) 1- 3 (@b 35 (a2+b?) .9 1
l(p ) I(Pa) pms { 8p ab 2X82p2 a2b2 82p2 ab

_ 5x7x3 (a3-b3) _ 3x15 (a-b)+ }
2x83p3 a3b®  2x83p3 aZb?

(3.1.2-16)
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ofa- - 15x7 (a2+b%)  15x15
L{ob) Ko(pa) = €228 [ 1 15(ab) | ] 1
2Apb) 2pa) pV4ab v 8p ab 2X82p2 a2b? 82p2 ab

, 15x1x3 (a3-69) | 15x15X7 (a-b) }
2x83p3 a3p3 2x83p3 a?b?

(3.1.2-17)

Finally, the estimate for H, on the boundary for the case where ks > ks+1, and

both:
Ipe| = I*ﬁﬁ*{ 4 bl = jplete .-(3.1.2-18)

are large is given by:

an & 2,

-0 (25 4 ypen) - k()
16 s,s+1) 164 p}(kg_ k§+1)2

Hp M i e-::P [z(iks+lp)2 - % iks+1p ('5 + r;.si'l) - % Ts,s+1 (7 + rs-s*’l)

('7k%+1 + 3k§) (3 + I's.s+1)

3x15 (ik
+ ( 2““’) (35 + Tx0)|
16x4 pAK? - K2,)
' (3.1.2-19)
where
Iss+1 = _____k% + Ky
. K2 - k2, (3.1.2-20)

The conditions from equation (3.1.2-18) are quite restrictive, because they imply
the large contrast between ks and k., in order to satisfy the requirements for large
argument of I(pb) and I;(pb).

An example of the medium that satisfies the above conditions is an air - earth
interface where ks41 = 0. In this case equation (3.1.2-19) takes a form:

M _6_ M_ i1 6 -
47 k, p* 4n V'Z—_cs (3.1.2-21)

H, =
which agrees with the analogous expression in Kauffman and Keller (1983).
For ks >> ks41, but with k4 finite the coefficient rss41 ~ 1, k52 - ks+12 = k2 and
after neglecting the term with k2 in denominator of equation (3.1.2-19) we obtain:
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Hy ~ M2 ehePla 3 0 + (ks p)] (3.1.2-22)

As can be observed this expression has a similar appearance as H,. Similar
results, easier to analyze, can be obtained by using an asymptotic evaluation of the
integrals. In order to do so, lets take the z-derivative of the Hertz potential (equation
(A.3-12) in Appendix A):

Q. * M O eikR M O eikR;

250 = 43, R 4n 52 R

9 ek 3 [ 4 i
a—zg R, 52—[, A (ivs+1) 12 JO(A'P)‘D”

(3.1.2-23)
2 M
-1, 4n

and evaluate it at the interface where R =R and z; = 0. In this case the first three terms
in above equation are zero and we are left with:

3 s ‘ DN
'a—z'ns+0 = 2 2 '41—\41? j A (is+1) (ivs) J(b"p)dl
kf-k&, A

(3.1.2-24)

Using integral Is and relations (B-4) and (B-7) from the Appendix B we have:

O = 2 |iEaZ Sekh VI 92 ekeaR
a—zns-ﬂ) = k?-k?., [1 kser-ks E%}h:o + iYkg-kse1 5;2' R |2=0
(3.1.2-25)
Taking the derivative with respect to p and using:
0% ekRi _ Hy(ksR1)
0z10p R, (3.1.2-26)

and
0% e-kaR '
=== = Hy(ks+1,R)
5z0p R P (3.1.2-27)
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where H(k;,R;) and H(ks.1,R) are whole space fields (Appendix C.3.b), we obtain:

Hp = k2 -k2
(3.1.2-28)

The final, expression for the H,, on the boundary between two half-spaces under
- conditions that the horizontal separation is large is given by:

M ik
47‘WP {e sP[3+31ksp+»1ksp)2]

+ie-iks+1P [3 + 3ikep +(iksr1p)] }

-
°
u

(3.1.2-29)
- This expression is somewhat similar to the H, component on the boundary as
~ given by_cquation (3.1.1-7). Once more we see that the term describing propagation in

' thevmorc resistive medium will dominate; if kgpl > 1, and if kg >> ks+1, then the first term

in brackets is negligible in comparison with the second term and gives:

M
Hp =

P Zk—.— —lz 'lks+lp[3 + 31ks+1P +(1ks+1p)2] (3.1.2-30)

that has the same form as the equation (3.1.2-22) obtained from analytic solution.
In the limiting case where one of the media is frec; space, say kg4 for example,

then:
HooM16 _M_(1) 6
PT 4k ¢ 4n VIopo, p

(3.1.2-31)
and we obtain the same expression as equation (3 1.2-21) that was developed from the
analytic solution. So at this high induction numbers the H,, component is less sensitive to

the conductivity of the medium that the H; component.

3.1.3 The vértical -gradient of H,.
- 8H,/dz can be calculated easily from the Hy, using equation (3.1-3):.

“k§+1 a (kS’Rl)Izl—O + iVks s+1 a Hp(ks+1,R) l—0| -
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2 =-(J—Hp+ Hp) (3.1.3-1)

The computations can be simplified if we notice that Hp, field on a boundary can
be written in a following form:

H,=1
P PHP) (3.1.3-2)

in which the F(p) function is given by equation (3.1.2-11) with the 1/p term factored out.
Then we can rewrite equation (3.1.3-1) as:

0
=H;= -+=—F
5= ) ap (°) (3.1.3-3)
As a result of taking the derivative of equation (3.1.2-11) we get:
d
sz = 3 KR {andot) Kdpa) - Tiob) Kdpa)(pbl+ Hpt) Kfps) oo
+ kE +

_E—l [Ic(pb Ki(pa)(pb) - Ii(pb) Ko(pa)(pa) - 2 Ii(pb) Kl(pa)] }

(3.1.3-4)
The evaluation of this expression with all the functions involved can be

accomplished only if the arguments of modified Bessel functions are large or small, as
was the case with H, component.

At small induction numbers the evaluation of the 8H,/6z component follows the
procedure described for H,, with a help of two additional expressions:

Idz) =
| Kdz) ~ n (3] (3.1.3-5)
In this case
2
et 3 b (et oo
M (oup(o?- o2 260 . [P /— ]
an 8 b (os+ °s+l) l.n( (Y0, + 76 )+ oy

(3.1.3-6)



with a and b given by equations (3.1.2-9) and (3.1.2-10), respecu'w)ely.

So both real and imaginary 6H,/dz components are very sensitive to conductivity
contrast. Comparing the real H, component with both real and imaginary 8H,/3z
‘component (Figure 3.1.3-1) we can see that real H is as sensitive to conductivity as both
- 8H,/6z derivative components.

The computations for large induction numbers are very involved and face the
same limitations as encountered in Hy component.

Simpler and more meaningful results are obtained by differentiating the
expression for asymptotic Hy, on the boundary, equation (3.1.2-29), with the help of
equation (3.1;3-3). As a result we obtain:

9, _ M 2 1 -ik o . )
é;Hz = In ———m 03 {e sP[9 + 9ikgp + 4 (ikep)® + (iksp)]
+ieKs+1P[9 + 9ikgp + 4 (ikep1p)P+ (ikse1p)] }

(3.1.3-7)

3.1.4 Evaluation of 82H./5z2 on the interface.
The evaluation of 82H,/322 on a boundary can be made easy if we use the wave

equation in c;ylindrical coordinates:

2
—H, + Eﬁﬁz +k%H, = (3.1.4-1)

to express of 82H,/822 in terms of of SH,/8p:

, _
‘Q—Hz:’szz' 19

CRT 3.1.4-2
az2 paplap* ( )

The value of the H; on the boundary is given by equation (3.1.1-7). After taking
the prescribed derivatives we have:
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02, _ M_2 1
-BEHZ - -lé'SHHz-'- 4n kZ-k2, P7

{eiksp [ 225 + 225ik,p + 108 (ik;p)
+ 33 (iksp) + 7 (ikpl + (iksp)’] (3.1.4-3)
- e'ikstp [ 225 + 225 ke p + 108 (ikyip)
+ 33 (iks 1P + 7 (isurp) +(iksn1p)] }

In the above equation the symbol k; ;,; represents the propagation constant in the
medium below or above boundary depending on the direction from which the boundary is
approached. As can be observed, this is the only term in equation (3.1.4-3) that is
discontinuous on a boundary. It shows, that while crossing the boundary the
discontinuity in second vertical derivative is proportional to the difference in of product
multiplied by H,. ‘

The above analysis and plots show that Hp and 8H,/8z show similar pattern of
behavior near the boundary. Since it was frequently suggested to measure Hy component
as more sensitive to conductivity variations, we propose to use 8H,/0z in cases where H,
is not available.
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3.2 Properties of the solution when transmitter and. receiver are both
above the interface.

When transmitter and receiver are located away from the boundary, then its effect
diminishes with increasing distance from the boundary. We will now estimate how far
the influence of the boundary extends into a conductive medium as‘a function of the of
product, and the transmitter-receiver separation, p. We will prove that this effect extends
roughly to the dépth of p/2 from the boundary if transmitter and receiver are located at the
same depth. |

If source and receiver are both located above the interface, the exact expressions
for H,, Hy, and 8H,/8z (derived in Appendix A.3) have the form:

H,., = Hiks,R) - Hfks,R))

-k.k..az

Hp,., = Hp(ks,R) + Hplks,Ry)

2 |02 M T .
‘e [QH"“‘S’R" * 4n3p f A (itert) 11) e Telp) dx}

(3.2-2)

9, _ 0 9
S-Hio = SHA{k:R) - —HilkR1)

+ 2 21:,, [aa? Hiko,R;) + M f 2> (lys,,l) (i) e%a Jo(Ap) J
' (3.2-3)

In the above equations the H,(ks,R), H.(ks,R), Ho(ks,R1), Hp(ks,R1) are whole |
space ﬁ_elds, z is receiver depth, z; is the source (transmitter) depth, and R = (p? + (z-
z)2)12, Ry = (p2 + 2;2)1/2, Here z; represents the sum of separations between the
transmitter and the boundary and between the receiver and the boundary: z; = (zg41-z5) +
(zs+1 - 2), (Figure A.3-1a in Appendix A).

Observe that the first term in the equations for fields above the interface represents
the direct wave between transmitter and receiver. The second term can be interpreted as
the contribution from the source placed at the distance Izs4i - z5| below the boundary.
This kind of contribution is often referred to as an image source. This "image" term and
the terms in square brackets constitute the reflected wave. Notice, that in the reflected

wave the distance to the boundary is included in the z, parameter only. Thus the

2 [—H,(ks,no - —] A (iyss1) et Jo(lp)dl} 3.2-1) -
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exponential vertical attenuation of reflected wave does not depend on how close
transmitter (or receiver) is to boundary, but on the sum of their distances to the boundary.
It is possible then, to write (Brekhowskikh, 1960):

H fl
W(kg ke 1,0,.R,R;) =¥ (Ks,p,R) + ¥ (ks,Ks41.P5R1) (3.2-4)

where ¥ can represent IT*, H,, Hy, 6H,/0z, or 82H,/8z2, with WH being a whole space
field and Prfl representing the ‘reflected wave'.

This property has important implications. It states, that if the transmitter is moved
away from the boundary and the receiver is moved towards the boundary by the same
distance, Az, then the total distance of transmitter and receiver to the boundary remains
the same and the reflected field does not change (Figure 3.2-1). The total field changes
however, since it includes the primary whole space field that varies with the transmitter -

receiver separation.

Fig. 3.2-1 Reflected field in this two configurations is the same. The primary filed changes

because the transmitter - receiver separations are different in both cases.



This property can be useful in obtaining the conductivity of the medium in which
the source and receiver are located. The conductivity of the medium can be obtained by
subtracting the measurements taken at two positions: A and B under the condition that the
z) parameter is constant (Figure 3.2-1). Then:

H, a- HyB = Hy(kRa) - Hy(ksRp), (3.2-5)

where: Ha and Hp are fields measured at positions A and B, H,(ks,Ra) and H,(ks,Rg)
are whole space primary fields, Ra and Rp are total transmitter-receiver separations at
positions A and B respectively and k; is the induction parameter: 0?pue—ioucs. The
only unknown in the above equation is o, that can obtained by solving the above equation
numerically. | v

Furthermore, by writing the whole space fields in an explicit form (see Appendix
C, equations (C.3-1), (C.3-2), (C.3-3), (C.3-6) and (C.3-8) with k; or ks, in place of k
and z; in place of z) it can be obS_erved that the distance to the boundary, Z3, is included
within a product ksz;. So the influence of the boundary depends on the product of ks and
~ the sum of distances: transmitter to the boundary and receiver to the boundary.

Let’s consider some properties of these solutions. The first important observation
is that all these expressions depend on the of product, but not separately on conductivity
and frequency. This property is true as long as the displacement currents can be
neglected, i.e. as long as we << ©. |

3.2.1 Asymptotic analytic expressions when transmitter and receiver are
both above the interface valid for kp >> 1.

The integrals in the exact expressions must be calculated numerically or
approximated by analytical methods. The approximations depend on the problem. In
most surface geophysical methods it is frequently assumed that the propagation parameter
in the air is zero. With this approximatiori the exponent in the integrand becomes a real
number: ¥s = Vk2- A2 = £id and many analytic solutions exist. This quasi static
condition was used by Sinha and Bhattaharya (1966) Wait, Kraichman (1970), Bannister
(1977) and Banos (1966) to mention just the few authors that worked with dipoles
~ embeded in conductive medium. In crosshole electromagnetic measurements we can not
apply this condition because both media are conductive.
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 In this case some useful results can be obtained in the far field region where kp >>
1 (Kaufman et al., 1983). The derivation of asymptotic forms for this condition is
accomplished with the help of integrals given in Appendix B: I; for integral from equation
(3.2-1), Is for equations (3.2-2) and (3.2-3). These asymptotic solutions for transmitter
and receiver off the boundary converge to the analytic ones on the bdundary and are as
follows:

- ] )
H,,, = HiksR) - Hfke,R;) oy {az2 H/k¢,R;)

. 2 -
- e'”k'z'k‘z“z’%Hz(ksH,R)lz:O - inozol-k-z-a-z—l-Hz(ks’Rl)]}

(3.2.1-1)

Hpuo = Hp(ks’R) + Hp(kSle) + 2 { az Hp(ks,Rl)

k2-x2, 9z )
+iVkg - k2, efiV"'z"‘z*’z‘gz—Hp(ks+1,R) =0 + iVidu-K a_z"‘Hp(ks’Rl) }
1

(3.2.1-2)

3., _ d 2 , g

Sy 20 = gz'Hz(ks,R) - é‘ZHz(ks»Rl) + 2K {323 Hks,R1)

+ [ ivk? eiVk-Kaz —Hz(ks+1,R)| =0 + ka..x ———Hz(ks,Rl)] }

(3.2.1-3)

where H,(ks,R), Hz(ks+1,R1), Hp(ks,R), Hp(ks+1,R1) are whole space fields.

3.2.2 Transmitter and receiver approach boundary at the same height.
In this case the depth variables take the values: z = z, z; = 2(z541-Z5), R = p, and when

implemented in equations from Section 3.2.1 give:



~ _ - 2
Hz, = Hz(ks,R) Hz(ks,Rl) 2. 21 azz Hz(ks,Rl)
- e-in.z-k.zﬂZl a—z; Hz(ks-f-l’R) heo- IV kg_,_l - k% 8871 Hz(ks’Rl)j' }

(3.2.2-1)

Writing the above expression in the explicit form we have:

. Hzsvo =
-ik . .
Me=5P ()1 + ikep + (ikspP]
P _
- MR + ki) (0 + 24 + (ksRo P
1 |

_2__ g:.l_kS_L 4 _ ' 2.2
2.2, 4% { [(1 + iksR1)3(3p* - 24p%2} + 82})

+(ikRy)? (4 p* - 31p22 + loz%) HiksRifY( p* - 7p%2} + 2824+ (iksRu) (-p223) ]
- e-inZ-k§+1 Z; Ls e-iks+1pP [9 + 9ikgip + 4 (iks1p)f + (iks+1p)3]

p
Rl

[(1 +ikR;) 3 (3p2 - 223) + (ikgRy P 2(2p2 - 23) + (iksRPp?] }

(2.2.2-2)

This expression is still complicated, although it can provide some insight into the
behavior of fields when transmitter and receiver move simultaneously towards the
boundary. It can be observed that since the R; variable is a function of distance to the
boundary, than and as long as z; << p, the R; variable is dominated by p. In this case
exponents e-iksR1 = e-iksp do not change with z, for the fixed transmitter-receiver
separation as long as z; << p. When z; >> p (and p >> 1), the e-iksR1 = ¢-iksz1 3l terms

“ with large z; in exponent can be neglected leaving only primary field that is not affected
by the distance to the boundary. So we can assume that at high induction numbers, the
boundary affects the response roughly up to the depth p/2 because when p = z; = 2(zg4 -

- Zg), R; starts to be dominated by z; which introduces an exponential decay into the
reflected wave with increasing separation to the boundary.
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To prove that indeed the effect of the boundary extends roughly to the depth of h
= p/2 we constructed Figure 3.2-2a which shows the % differences in amplitude H,
measured inside a conductive earth with and without the air-earth interface. The
horizontal axis is an induction parameter for the conductive earth, (6f)12p. The vertical
axis is the z/p ratio where h is the depth of transmitter (receiver) to the boundary. The
transmitter and receiver are located at the same depth i.e. z=z;,. The curve parameter is the
percent difference between half-space and whole space response: (H,half-space - H,
whole space)/H; whole space*100%. As can be observed the difference between whole
space amplitudes and half-space amplitudes increases for induction parameter value above
1000. However this increase occurs ohly for the z/p < 0.5, beyond which it rapidly
decreases to zero. At this point the amplitude measured inside conductive earth (half-
space) can not be distinguished from the whole space field.

When transmitter (or receiver) is located on the surface of the earth (as in the
surface to borehole geometry) then zg4) = zs and z; = ( z54) - z) and the effect of the
boundary extends deeper into the earth (see Figure 3.2-2b). In this case . difference
between whole space amplitudes and half-space amplitudes also increases for induction
parameter value above 1000. However in this case the increase occurs to the depth zp =
1, beyond which the effect of the boundary diminishes but is not smaller that 1 %.

To obtain an more quantitative descriptions of fields near the boundary consider
some even more restrictive cases.

A significant simplification occurs if the horizontal separation is much greater than
the distance from the boundary:
if p >> z,, then:

{ el ViK1 2050179 eiksetP[9 + Oikeyyp + 4 (iker1p) + (ksa1pf]  (3.2.2-3)

-v(l + VK2, - k2 2(zs+1-zs)) ek [9 + 9ikyp + 4 (ikp) + (iksp)] }

and we have an expression that resembles equation (3.1.1-7) for the H, field on a
boundary between two dissipative half-spaces, with the exception of the terms are
influenced by the distance to the boundary.
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If in addition to p >> z;, the conductivity of the source layer: kg >> k.1 then e
-iksp << e -iks+1P and:
= 2 M 1
. . ) . . (3.2.2-4)
eiks2(z541-25) el ks+IP[9 + 9ikgpp + 4 (iksu1pf + (1ks+1p)3]

and the H, increases exponentially (for a fixed k,;1p) with the transmitter and receiver
approaching the boundary, i.e. when z; = (z54) - zs) decreases. '
On the other hand if the conductivity of the source layer: ks << kg1 then e -ksP >>
e -iks+1P and: '
= 2 M1
k2, 4z p3
(1 + ikgy12 (zon1-29) ) ep [9 + 9ikyp + 4(ikspP + (iksp).

Zos0
(3.2.2-5)

and the H, decreases linearly as ks4+12(zs4+1 - Z;) when the system apprpachcs the
boundary. '
- Let's summarize the above observations. If the medium in which the source is
located is much more conductive then the other half-space, then the response increases
exponentially as e -ikmore conductive2(zs+1-2s) with diminishing distance to the boundary, i.e.
when (zs+1-z5) becomes smaller. In the lateral direction, the more resistive medium
dominates with an exponential attenuation as e -danoreresistive p_ If the source medium is
less conductive than the other half-space, the fields decrease while approaching the
boundary, proportional to (1+iks+i2(zs+1-zs)) and the lateral attenuation is still governed
by the e-ikmore resistive . So the lateral attenuation when transmitter and receiver are near
the boundary is governed by e -ikmore resistive p factor independently whether the
transmitter is in the resistive medium or not. Another way to look at this problem is to
observe that lateral propagation is through the resistive layer. The same conclusions were
reached in the paper by King et al. (1979) for a horizontal electric dipole. For the
- magnetic dipole the conclusions are the same because the magnetic dipole at a distance " is
equivalent to four electric dipoles arranged in square ... and although the superimposed
fields suffer great reduction, their modal structure is not changed".

| Thus we observe the same pattern that took place for the transmitter and receiver
located at the interface: the field is dominated by the propagation in the more resistive
medium. For transmitter and receiver located off the boundary the exponential attenuation
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with distance to the boundary depends on the total transmitter-boundary and receiver-
boundary distance.

Examples of how the H; field changes when the transmitter and receiver approach
the air-earth boundary at the same height are given in Figure 3.2-3 for in-phase,
quadrature, amplitudse and phase of H, component. The transmitter-receiver horizontal
separation is 20 m. The conductivity of the lower half-space is 0.043 S/m, transmitter-
receiver horizontal separation is 20.0 m. The vertical axis gives the distance from the
boundary. The three curves show the effect of frequency: curve A is for frequancy
18,5000 Hz (to simulate the Richmond experiment), curve B is for a lower frequency
1,850 Hz, curve C for a higher frequency 180,500 Hz. As can be seen from these
figures the distance at which the boundary starts to be noticeable is of the order of p/2 at
large induction numbers. It is not so for small induction parameters, where the effect of
the boundary can be observed over depths that are larger then the horizontal transmitter-

receiver separation.

3.3 Expressions when transmitter is above and receiver is below the
interface.

For sources and receivers on opposite side of the boundary, the exact, analytical
expression for H;, Hy and dH,/dz are given by the following:

3,. . : .
Moo = 5z o f A (it - o) e G-z et -D Tfhp) Ak (33-)
o |

2l TP . .
Hpgy1 = E.Z_-ZE % 'éB‘Io A [(rYs) (i¥s+1) - (1'Ys+l)2] e Thet (Z-Zn) -1 (Zon1 - 20) JO("'p) da

(3.3-2)

) P . .
oz Herr = L?.Z_Z—; -4% A’ [(IYS) (t¥s+1) - ((¥s41)? ] €1t (2-Zon1) €% (2ort - 22) JO()"p) d

[}

(3.3-3)

In this case the response is influenced separately by the distance of transmitter to
the boundary and by the distance of the receiver to the boundary on the opposite side.
Thus in this case the effect of the boundary depends on the products: ks(zs41 - zs) and
ks+1(z - Z541). The symbols used in the above equations are given in Figure a.3-1b.



3.3.1 Asymptotic expressions when transmitter is above and receiver is
below the interface.

The asymptotic evaluation of integrals in this case is performed with the help of
integral I and I3 from the Appendix B (equation (b-12). Using different combinations of
values for z; and z3, all combinations of radicals and exponents encountered in the
equations (3.3-1) to (3.3-3) that describe fields for this situation are covered. The z; =
Zs+1 - Zs variable describes the vertical distance between boundary and the source above,
and z3 = z, - z5, describes the vertical distance between the receiver and the boundary.

We then have: '

- - _ 2
H,, = 2 eiVki Kz [i k- £— Hyks+1,R3) + .aézz Hz(ks+1,R3)]
. 3

3 (3.3.1-1)

- e-iVk& - Kz ;¥ 2, - _a_.. a_2 :
e-i¥ 3|: K2 k.2322 Hiks.R2) + az% Hyks,R2)

- 2 GV V212 _3_
‘Hp,,, = TR {c Zz[ K-k % Hp(ks+1.R3)

NCIEE S92
+ ( Vk3+l + p2 HP(ks+lvR3) apz Hp(ks+1’R3)].

' 2
iV R [v—k..hai Holks,R7) + ( 2, +l2) Hp(ks,R2) - E_Hp(ks,Rz)] }
z; p op?
(3.3.1-2)
—a—Hz“l =—2  { eiVi-lun [in.’-k-’uin(ksn,Rs) + —ain(ks+1,R3)]
dz K2- k2, 973 g
Vi | iViZ T O Hofk, Ry) + O Lk, Ry) + (¢ -13) O HL(K.R }
+e 3[ 7 z(sa2)+az;2 Aks,R2) + 52 Aks,R2)

2 _
(3.3.1-3)

where z; and z3 variables were described before.
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3.4 Characteristics of the response near a layer.

In this part we will write explicit equations for the layer sandwiched between two
half-spaces to examine which parameters determine the layer response inside the
conductive medium.

3.4.1 Transmitter located outside layer

When the transmitter and receiver are below the layer then the H; component is
given by equation (A.4-13), Appendix A. By rewriting this equation in a slightly
different form we obtain: '

Hx.o = Hik,zc2)

M ‘-[Rs'l'ﬁ.iy‘(a'z’m(z'z"» + Ry 25 £ 2Woi(%1-22)e (% - 1)+ (z- 221))] LVHP(p) a1
4mi - (Z'Ys)[l + Rs_l'sRs_z's_p‘z‘%-l(Ll'Lz)} 0 p

(3.4.1-1)
/ 2 "/ 3 J 2
where: ¥s =VkZ-17, ¥o.1 =VkZ1-1", Y2 =VK22-1" and Rs.12 and Rsp5.1 are

reflection coefficients from lower and upper boundary given in Appendix A. Figure 3.4-
1 shows the geometry of the problem and symbols used.

%2

%)

Fig. 3.4-1 Contributions from different boundaries when transmitter and receiver are
below the interface: 1 - direct, whole space field, 2 - reflection from lower boundary, 3-
reflection from upper boundary and transmission through the layer

It can be observed that below the layer the received signal consists of two parts:
primary whole-space field and secondary signal (expressed by the integral term), that is
caused by the presence of the layer.



The secondary response consists of two terms: the first term under the integral
represents the reflection from the lower boundary, the second term describes the
reflection from the upper boundary.

In particular the H,(ks,R) term is a whole space primary field that depends on k;
and R. The second contribution is characterized by the exponential attenuation ef%(z - )
of signal in vertical direction and depends on the sum of distances: transmitter to the
lower boundary and receiver to the lower boundary. The amplitude of this term is
modified by the reflection coefficient from the lower boundary. The contribution from
third term is characterized by the two-way attenuation in the layer (between z¢1 and z, p)
combined with the attenuation in the medium below the layer. The amplitude of this term
depends on the reflection coefficient from the upper boundary. The denominator of all
terms is modified by the signal “trapped” in the layer. The figure below shows how each
term contributes to the total signal at receiver. : _

When the transmitter is below the layer, but the receiver moves inside the layer,
then the response consists of the following contributions (see equation A.4-2 in Appendix
A)

H _ M R s2.5-1 e (Z-2e1) e-i%1((ze1 - 202) +(2-2Z2))
zs-1

' 2ni - (¥s-0. + ¥s-1) [1 + Ry.1,sRs.2,5.18 21011 - Z"z-)]
0

+ e W(ZrZe1) e-1Yo1(Ze1 - 2) l3 J l d
(Ys-0 + ¥s-1) [1 + Rs-l.sRs-2.slC'Ziy"‘(z”'z’z)] ] O( p)

(3.4.1-2)

The Figure 3.4-1 below suggest how each term can be visualized.

Fig. 3.4-2 Contributions from different boundaries when transmitter is below
and receiver is inside a layer.
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~ The first term describes the signal at receiver that is reflected from the upper

boundary. The second term is attenuated in lower medium over the distance (z; - z.1),
then passes through the layer over the distance (z,.; - z) to reach the receiver.

When transmitter and receiver are on the opposite sides of the layer than the one-

way vertical attenuation depends on the sum of the distances over each portion of the path

between transmitter and receiver. This can be seen from (see equation (A.4-1) and A.4-5

in appendix A):
) Ye_1 €2 B1) e Ni(Zo1-22) @ N A22-2) '
Hn, = M A TR T A T 23 1dap) i
2mi o (Vs + ¥s-1) (Ys-2+ 'Ys-lIl + Rs.1,Rs2,5-£° 1y..1(z.1-z..2)]

(3.4.1-3)

The intuitive interpretation of this expression is given in the Figure 3.4-3.

Fig. 3.4-3 Contributions from different boundaries when transmitter is below the layer

3.4.2 Transmitter located inside the layer

When the transmitter and receiver are inside the layer then the response consists of
the following contributions (see equations (A.5-2), (A.5-6) and (A.5-7) from Appendix
A):



Rs-l.s e-{(%-21) +(z1- 2))
Hxo = 4— [ - :
o Ys [1 + Rg,s41R5.1,5 € 2% (21 -201)]

0
| RS,S+1 RS-I,S e- iYl(2 (7"1 - 2‘) + ( z- Z,))

¥s [1 + Rs.s+_le-1.s(3'?‘i‘y'(z"l - z01)]
+ e-(z-2) .
Ys [1 + Rs s+1Rs-1,5€ 2% (zen -z.;)]
Rgge1€- 0 (zee1- 2) + (zee1- 2))
Ys [1 + Rs.s+1Rs-1,sve 2i% (Zen -Z-l)]

] 23 J({?»p) dA A,

o (3.4.2-1)
and we assumed that the receiver is above the transmitter just for illustrative purposes.
The geometry of the problem is shown below.

Ys+1

Fig. 3.4-4 Three main contributions to the signal when transmitter and receiver are
inside the layer. The term that represents the interaction between layers is not shown.

Each term in the above equation is modified by the same expression in the
denominator as in the case when transmitter was located outside layer. If the reflection
coefficients are large, then a wave guide mode can be created. However in the case when

" the reflection coefficients are small, then their products are also small and we can
visualize the signal contribution at the receiver as shown in Figure (3.4.2-1).

The first term in the equation (3.4.2-1) can be interpreted as a reflection from
upper boundary, the last term as a reflection from lower boundary, the third term is a

“direct primary field between transmitter and receiver. The second term repres'cnts the
interaction between the boundaries. : |
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Plaay p/Bust

(o’.f)l/Zp

(Gas1f)12p

Fig. 3.1.1-1 Normalized response for H,p3: a) in-phase, b) quadrature, c) .amplitude
and d) phase for transmitter and receiver on the boundary. The curve parameters are the
logarithms of normalized field strength in (nTm3). The axes on the left and bottom of
each figure are upper and lower half space induction parameters: (osf)!/2p and
(0s+10172p, respectively. The axes on top and right are in terms of skin depth: p/&s+1
and p/ds respectively. The parallel lines represent constant conductivity contrasts

between the two half-spaces, with no contrast on the diagonal.



(o‘f)lllp

p/8e

(G.f)l/ZP

(Gs+1f)llzp

Fig. 3.1.2-1 Normalized response for Hpp3: a) in-phase, b) quadrature, ¢) amplitude
and d) phase Hyp3 for transmitter and receiver on the boundary. The curve parameters
are the logarithms of normalized field strength in (nTm3). The axes on the left and
bottom of each figure are upper and lower half space induction parameters: (os)12p and
(0s+15)12p, respectively. The axes on top and right are in terms of skin depth: p/ds41
and p/ds respectively. The parallel lines represent constant conductivity contrasts

between the two half-spaces, with no contrast on the diagonal.
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(o.f)l/Zp

(oaf)172p

Fig. 3.1.3-1 Normalized response for (8H,/3z)p*: a) in-phase, b) quadrature, c)
amplitude and d) phase for transmitter and receiver on the boundary. The curve
parameters are the logarithms of normalized field strength in (nTm3). The axes on the
left and bottom of each figure are upper and lower half space induction parameters:
(6sH)12p and (0s41f)1/2p, respectively. The axes on top and right are in terms of skin
depth: p/ds¢1 and p/ds respectively. The parallel lines represent constant conductivity
contrasts between the two half-spaces, with no contrast on the diagonal.
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Fig. 3.2-2 The depth extent of the air-earth interface in crosshole geometry when the
transrnitte_r is at the same depth as the receiver (a), and in ‘surface to borehole
B geometry,(b). The curve parameter is the percent difference in H, amplitude between the
whole space and a half-space. The vertical axis is z/p i.e. distance from the boundary
over scparatioh. The horizontal axis on a bottom in an induction parameter: (of)1/2p,
the horizontal axis on the top is givén in terms of skin depth: p/d.
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~ Fig. 3.2-3 The in-phase, quadrature, amplitude and phase H, field near the interface
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~ Chapter 4
Direct methods to obtain apparent conductivity proﬁles in a one-
dimensional medium.

In this chapter we analyze simple techniques that give estimates of the conductivity
directly, without the need for inversion. We will show that by using the vertical
derivatives of the vertical fields we can recover the apparent conductivity of a one-
dimensional medium directly from the borehole measurements of electromagnetic fields.
We will start with the method suggested by Ki Ha Lee (Lee et al., 1992) that utilizes the
second vertical derivative of the vertical magnetic field component measured on the axis:
of the transmitter. Then we will develop a method to estimate the conductivity in the
cross-hole environment. Finally, using the field data we will show how the conductivity
obtained from the cross-hole measurements corresponds to the conductivity obtained with
conventional induction logs.

4.1 Surface to borehole conductivity profiles
Inside a one-dimensional medium the diffusion equation can be easily converted
to provide the conductivity of the medium:

’H, PH, OH,
o=l ox2 dy? 922

=T H, 4.1-1)

It is evident that if all vertical and horizontal derivatives of the field components
were known, then the conductivity of the medium at the measurement point could be
calculated from equation (4.1-1). However in the narrow dimensions of the boreholes
the horizontal derivatives cannot be measured, and Ki Ha Lee (1992) suggested
approximating the horizontal derivatives in the following way.

In general, we can always write:

om, _oH, R
dx OoR ox

(4.1-2)

where H; = Hx(x,y,z) = Hy(R,z) and R = x2 + y2 + 22 = p2 + 22 is the total transmitter-
receiver separation (shown in the sketch on the next page). Taking the second horizontal
derivative we have: '
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PH, _ 9 [9H, R x\0H; , 9 oH, aR) “4.1-3)

ox2  ox ﬁ—ax) (R R2} OR TR R

Transmitter X

Receiver

On the axis of the transmitter where x = 0 and 8R/dx = 0 the second horizontal

- -derivative reduces to:

d%H, _ 194,
ox2 R dR

4.1-4)

Similarly the derivative in the y direction has the form:

o%H, _ 19H,
dy? R OoR °

(4.1-5)

As a result, equation (4.1-1) can be written as:

R
s=L R 9 dz2 (4.1-6)

This expression indicates that if we could measure both derivatives of the vertical
magnetic field, then the conductivity would be determined. However, inside boreholes it
is not possible to measure the 8H,/3R derivative, and for this reason we express this

derivative in terms of the 8Hz/82 derivative by applying the chain rule.
We have:
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dH,R,z) _dH,/R,z) dH4R,z) 0R
oz oz R+ oR oz @17

where IR denotes the barﬁal derivative at a constant R. Rearranging the terms in the
above equation leads to:

L

aHs(ll:,z) _ [aHza(f,z) ) aHB(;{,z) IR] gl% ( 4.1-8)
which provides the 8Hz/8R derivative in terms of 3Hz/dz derivative.

| Up to this moment we were dealing with a general one-dimensional medium. But
in order to use equation (4.1-9) we need a specific expression for the H, field. Since
inside a uniform whole space the H, component has a simple analytic form we will use it
to express the 8H,/0R derivative in terms of 8H,/dz. The whole space fields are given in
equations (C.3-1) and (C.3-2) in Appendix C. After substituting p2 = R2- z2 they

assume the following form:

H,R,2) = ZME%E[(H&R)(-W +322) + (ikRP (-R2+ 22)]]  (4.19)

OH{R,7) _ M eiR v 2_5.)
S = A z [(1+ikR) 3 (3R? - 522)

+(ikR) 2 (2R2- 322) (4.1-10)
+(ikR) (R2- zz)]

Calculating 8H,/6zIg from equation (4.1-9) we obtain:

OH/R,z), _ M e-ikR . .
S = ZEgR_s 2 z[3 (14ikR) + (ikR)?] (4.1-11)

After substituting equations (4.1-10) and (4.1-11) into equation (4.1-8), on the
axis of the transmitter where p = 0 and R = z, we obtain:

dH/R,z) _ ,JH/R,z) . i
SR - Z_az 4.1-12)

The final expression for the conductivity on the axis of the borehole is given by:



49H,  ¥H,
1 Z 9z o0z2

1-
o T, (4.1-13)

The above expression gives the whole - space conductivity from the measurement
of the vertical derivative of the vertical field on the axis of a borehole. For more complex
conductivity distributions it provides an apparent conductivity.

To test the method we used a numerical code to calculate the conductivity for three
models: half-space, layered half-space and a layered half-space. The conductivity of the
whole space and half-space was 0.043 S/m (the same as in Chapter 2), the conductivities
of the layered half space were obtained from a one-dimensional least - squares inversion
of the field data collected in Richmond and described in Chapter 5. The vertical profiles
of the H, component were collected at depths of 4.0 to 60.0 m. The transmitter was

_placed on the surface, except in one case when it was traveling with receiver as in the
logging geometry (described later).

Our first model was a half-space to test how the calculated conductivity is affected
by the presence of a free space - earth boundary. Figure 4.1-1 shows the resulting
conductivity at two frequencies: 100 Hz and 18500 Hz respectively. As can be observed
the recovered conductivity is very strongly affected by a presence of a boundary
especially at low frequencies, where the effect of the free space extends deep into the
medium and causes over 25 % errors in the estimate of conductivity. The skin depth at
the lower frequency was 242. m and was three times larger than our depth of
observation. The skin depth for the high frequency was 18. m and was smaller than the
depth of observation. We thus prove, that using the whole space model to approximate
the effect of horizontal derivatives provides only a rough estimate of the conductivity for a

" half-space. |

Next we applied the method to the layered half-space. As can be observed in
Figure 4.1-2 the method provided a very accurate location of the boundaries between
layers, however the layer conductivities were only approximate, although the ratio of

*successive layer conductivities is correct. Figure 4.1-2 also shows that the higher
frequency recovered the conductivity better than the lower frequency.

Finally we examined how the method would work deep inside boreholes where
the effect of the air - earth interface would be smaller and the conditions closer to the
whole space model. Our model was the same as before with an exception of the upper
half-space that assumed the conductivity of 0.1 S/m. The results for frequency 100 Hz
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and 18500 Hz are given in Figure 4.1-3. As can be observed deep inside a conductive
earth the conductivity of a layered medium is also biased especially at larger vertical
transmitter-receiver separations and lower frequency, but close to the transmitter the
results improved significantly, and at low frequency are also satisfactory. The fact that at
low frequency the conductivity of the layered medium can be recovered in a limited region
close to the transmitter has an important practical application, since it promises a correct
recovery of conductivity inside cased boreholes. Measurements inside cased boreholes
are possible, as shown in Augustine et. al (1987) but only at low frequencies.

To test these possibilities we used the same layered earth model and applied our
method to a situation that simulated the induction log geometry: transmitter was placed
2.6 m above the three receiver coils separated by 0.1m. The measurements were taken
- every 0.5 m with transmitter and receiver traveling simultaneously down the borehole.
The results for two frequencies are given in Figure 4.1-4. As can be observed the
apparent conductivity although not exact, follows the true conductivity quite accurately.

This layered half-space model showed that it is possible to use the derivatives to
obtain an approximate conductivity distribution of a one dimensional medium. This
estimate however deteriorates in the surface to borehole situation when transmitter is fixed
on the surface. To improve the agreement between true and calculated conductivities in
this situation we calculated the conductivity in two steps. First we obtained a rough
estimate of conductivity by matching the in-phase and quadrature of H; profiles with the
whole-space conductivity, then we averaged the results and used the averaged value to
-calculate numerically the contributions from the horizontal derivatives using a half-space
model of averaged conductivity. As a result we obtained an apparent conductivity of a
half-space that closely resembles a true one as can be seen in Figure 4.1-5 for frequencies
100 and 18500 Hz respectively. '

For the layered model the apparent conductivity is presented in Figure 4.1-6. The
conductivity was also calculated in two steps: first we obtained a rough estimate of
conductivity (the same as in Figure 4.1-2), then we averaged the results and used the
averaged value to calculate numericaly the contributions from the horizontal derivatives.
As can be observed the results are better at high frequencies where the recovered
conductivity closely follows a true model. At low frequency the difference between
calculated and true model increases with increasing transmitter-receiver separation.

In conclusion we observe that the second derivative is very accurate in locating the
layer boundary. It also predicts the correct trend in conductivity, i.e. whether the
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conductivity increases or decreases with distance. However the estimate of the layer
conductivities itself is not always accurate. In general the conductivities are recovered
better at close transmitter-receiver vertical separation. At larger transmitter-receiver
separations the recovered conductivity is biased, especially at low frequencies. The error
is especially large in surface to borehole geometry (where the transmitter is located on the
surface of the earth) and when the operating frequencies are low.

4.2 Crosshole conductivity profiles

When the measurements are performed in a crosshole environment, not on the
axis of the transmitter, equation (4.1-6) is no longer valid. In this case equation (4.1-1)
can still provide the conductivity estimate, but one must find another method to evaluate
the contribution from the second horizontal derivatives. We propose to approximate these
contributions numerically using the conductivity of a half-space that produces the smallest
least-squares error in amplitude fit between numerical half-space data and measured data.

We start by examining several parameters that are crucial for the success of the
method, such as the choice of background conductivity, effect of frequency, and the use
of multiple transmitters. To reach the conclusions we use numerical data obtained with
the half-space model of conductivity 0.043 S/m. Horizontal spacing between transmitter
and receiver is 20.0 m, the depth of measurements is between 4.0 and 60.0 m. The
frequency was 100 and 18500 Hz.

We found that to recover the conductivity profile that corresponds to the induction
logs, several factors had to be considered. A

At first we considered the effect of the error in estimating the background
conductivity of a half-space at two frequencies: 100 Hz and 18500 Hz. Using numerical

data obtained with a half-space model of conductivity 0.043 S/m we changed the

reference half space conductivity to 0.040 S/m. As can be observed in Figure 4.2-1a,b
for frequencies 100 and 18500 Hz, respccu'vely; the conductivity of the half-space was
recovered best at 18500 Hz and when the vertical distance between the transmitter and the
receiver was small. With increasing separation, the difference between the true and
calculated conductivity also increased. This observation proved that using only one
transmitter we could recover the conductivity but only for the limited vertical transmitter-
receiver separation. At low frequency the conductivity was recovered correctly only in
close proximity to the transmitter.

To solve this problem we considered several (eleven) transmitters and averaged
the results from different transmitters but only if the vertical separation between particular
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transmitter and receiver was not greater than 5.0 m i.e. not greater than the vertical
spacing of transmitter locations. Using this technique we recovered the conductivity of
the half-space perfectly and the results for the layered half-space seemed satisfactory.
The results for the layered half-space can be observed in Figure 4.2-2 which shows the
true model and the recovered one at frequency 100 Hz. In particular Figure 4.2-2b
" shows how the reconstructed conductivity of the layered half-space behaves when
transmitters located at different depth from the source were used. Figure 4.2-2a presents
the final results, in which the conductivities obtained from different transmitters were
averaged, but only for points which had vertical transmitter-receiver separations less than
5.0 m. Figure 4.3-3 shows the same results bout for the frequency of 18500 Hz.

In both cases the layer boundaries are found correctly, but conductivities were
biased especially at low frequencies.

So in principle we proved that it is possible to obtain the layer boundaries and
estimate the conductivity of the one-dimensional model in cross-hole environment
without the need of an inversion.

The final test was to apply our method to the field data. We used field data from
Devine and from Richmond. The Devine data were collected in a strictly one-dimensional
environment at two frequencies: 512 and 2048 Hz, the Richmond data were collected in a
complicated, three-dimensional medium at frequency 18500 Hz. Figure 4.2-4a,b
presents the induction log and the calculated conductivity for Devine data at 100 and 2048
Hz, respectively. Figures 4.2-5 to 4.2-8 present the results for the Richmond data.

The conductivities were calculated in the same manner as described above. Each
figure presents the recovered conductivity (curve B) and the induction log (curve A)
collected at the same well in which the cross-hole measurements were taken. Curve C
represents the background conductivity of a half-space that was obtained by matching the
measured in-phase and quadrature with numerical values from a half-space over a certain
depth interval below and above the fixed receiver. That interval was 20.0 m for
Richmond data and 50.0 m for Devine data. The choice of the depth inteval was dictated
by frequency and separation. We wanted the conductivity of a half-space that represents
the averaged conductivities the best in the region of receiver location. We did not use a
whole length of a profile to fit conductivity because the data at largér vertical-transmitter
separations have more error.  We considered using just one point at maximum
amplitude, but this method would be very sensitive to errors in location and
measurements errors. As a compromise we decided to fit values over a distance which
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was larger at lower frequencies such as in Devine and smaller at higher frequencies as in
Richmond.

In addition for Richmond data we plotted the difference in conductivities
measured before and after the injection of salt water plume (Figures 4.2-5b to 4.2-8b). In
particular curve A shows the conductivity difference as measured by induction logs
before and after the injection, curve B shows the difference calculated from the crosshole
data. |

As can be observed there exist a strong correlation between the induction logs and
the conductivity calculated from the derivatives. The best results we obtained were for
the Devine data collected at 2048 Hz, despite the fact that we considered this data more
noisy than at 512 Hz. This confirms our observation that high frequencies produce fields
that vary faster with distance making the derivative calculations more accurate. We also
observe that although the results in Richmond produce the conductivity variations that
correlate with the induction logs, the recovered conductivity shows an offset in the lower
part of the profile that is not present in Devine data. We assumed that this offset is caused
by the calibration of the logging tool - it was not calibrated properly when the
conductivities were very low - and also by the errors in the estimate of the background
conductivity of the half-space. This background error is especially evident in the data
collected in wells SW and SE where we observe a sudden jump in conductivity that can
not be justified by induction logs. Furthermore, by comparing the differences in
conductivities calculated using second vertical derivatives (curve B in figures 4.2-5b to
4.2-8b), before and after injection of salt water we notice that wells NW and NE show a
strong positive anomaly at a depth of 30.0 m that is not present in data from SE and SW
wells. This agrees with the conclusions reached by D. Alumbaugh et al. (1993)_that
places the salt water plume in the NW direction from the injection well.

We proved, that by taking data along vertical profiles at closely space intervals we
can recover the layer boundaries very accurately. We also showed that the conductivities
correlate with induction logs providing another method of conductivity estimate.
Furthermore by comparing the difference in conductivities measured before and after
injection from different observation wells, one can get a preliminary estimate of the
direction of plume propagation. The process gives better results at higher frequcnciés
because fast variations in field strength with distance allow to obtain more accurate
derivative calculations.
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Fig. 4.1-1 The true and recovered conductivity 6f a half-space at 100 Hz (curve B) and
18500 Hz (curve C). The thick line (curve A) is the true half-space conductivity equal to
0.043 S/m.
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Fig. 4.1-2 The true and recovered conductivity of a layered half-space at 100 Hz (curve B),
and 18500 Hz (curve C). The thick line is the true conductivity (curve A).
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Fig. 4.1-3 The true and recovered conductivity of a layered half-space under a conductive
overburden at 100 Hz (curve B), and 18500 Hz (curve C). The thick line is the true model
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Fig. 4.1-4 The true and recovered conductivity of a layered half-space at 100 Hz (curve B),
and 18500 Hz (curve C) in a simulated induction log geometry. The thick line is the true
conductivity (curve A). The transmitter is located 2.6 m above the three receivers separated
by 0.1 m. The measurements are taken every 0.5 m along the vertical profile.
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Fig. 4.1-5 The true and recovered conductivity of a half-space at 100 Hz (curve B) and
18500 Hz (curve C), using numerical estimate of horizontal derivative contributions. The
thick line (curve C) is the true conductivity of a half-space equal to 0.43 S/m.
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Fig. 4.1-6 The true and recovered conductivity of a layered half-space at 100 Hz (curve B)
and 18500 Hz (curve C), using numerical estimate of horizontal derivative contributions.
The thick line (curve A) is the true conductivity of a layered half-space
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Fig. 4.2-1 The effect of error in the backgroﬁnd conductivity estimate on the recovered
conductivity of the half-space using the background conductivity of 0.040 S/m at
frequencies 100 Hz (curve B) and 18500 Hz (curve C). The thick line (curve A) is the true
conductivity of a half-space equal to 0.043-S/m.
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Fig. 4.2-2 The true and recovered conductivity of the layered half-space at 100 Hz. In

particular panel a) shows the conductivity profile obtained by averaging the conductivities
from two adjoining transmitters over 5.0 m interval; panel b) shows a sample of
conductivities recovered using only single transmitter located at 5.0, 30.0 and 55.0 m.
Curve A represents true model, curve B shows calculated conductivity, curve C represents

the estimated background conductivity of a half-space.
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Fig. 4.2-3 The true and recovered conductivity of the layered half-space at 18500 Hz. In
particular panel a) shows the conductivity profile obtained by averaging the conductivities
from two adjoining transmitters over 5.0 m interval; panel b) shows a sample of
conductivities recovered using only single transmitter located at 5.0, 30.0 and 55.0 m.
Curve A represents true model, curve B shows calculated conductivity, curve C represents

the estimated background conductivity of a half-space.
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Chapter §
One-dimensional least-squares inversion of field data.

The objective of least-squares inversion of crosshole data is to provide an estimate
of the overall, background, layered conductivity of the medium. It does not attempt to
substitute for induction logging which provides a detailed conductivity structure close to
the borehole or for crosshole tdmography that resolves structures between boreholes.
However the results from crosshole inversion can help in tomographic inversion which
needs an accurate estimate of background conductivities. This in turn can indicate
inhomogeneities between boreholes that are not visible on induction logs.

In this chapter I outline the basic principles behind the NLSEMID inversion
program and discuss its practical application in three experiments. The simplest case
involved the conductivity estimate of the water in a model tank experirhcnt from the
measurements of the vertical magnetic field component. In the second case inversion was
used to obtain the background conductivity from cross-hole measurements in a site that
had a simple, one-dimensional conductivity distribution. Finally the inversion was
applied to crosshole measurements for determining the direction of the propagation of a
conductive salt water plume in a complicated conductivity structure.

We will also show that using the first vertical derivative, AHz/Az, instead of the
measured H, field improves inversion process because it then converges faster and is less
dependent on the initial model.

5.1 NLSEMI1D inversion program.

To obtain an estimate of the conductivity of a one-dimensional medium from
measurements performed inside boreholes a nonlinear least-squares inversion program
called NLSEMI1D was developed. It is based on double precision versions of three
algorithms called NL2SNO, NLSOL and EM1D.

The subroutine NL2SNO solves the adaptive, unconstrained, nonlinear inverse
problem using a finite difference Jacobian. The routine provides a flexible,
unconstrained least squares algorithm that "is more reliable than the Gauss-Newton or the

Levenberg-Marquardt method and is more efficient than the secant or variable metric
-algorithms"” (Dennis et. al, 1981).

A subroutine, NLSOL, written by W. Anderson (1982) extends this original
unconstrained version to include constrained and fixed parameters as well as different
options for data normalization.
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The forward problem is calculated with the program EM1D written by Ki Ha Lee.
Because of the flexibility of the forward routine many different combinations of
frequency and geometrical soundings are available. The program can take any
component of an EM field radiated by either electric or magnetic dipoles and invert on real
and imaginary components together, or separately. The same can be done with amplitude
and phase. The dipole sources can be oriented horizontally or vertically and can be
placed anywhere inside or above the conductive medium. The receivers can also be
placed in arbitrary locations. _

Although the program is flexible and can take any number of model parameters
and data points, practical considerations limited the number of data points to about 700
and number of parameters to about 15. If the number of parameters is much higher, the
program still converges but frequently not to a realistic model.

Since in practice the calibration constants of the field equipment may be unknown
or uncertain, we added the option to invert for the amplitude and phase calibration
constants. We found this feature to be useful in testing the calibration of the field
systems (Wilt et al., 1992; Alumbaugh, 1993).

5.2 Least-squares inversion of model tank data

The first practical application of least-squares inversion was related to a the model
tank experiment conducted by David Alumbaugh in Richmond (Alumbaugh and Becker,
1990). The objective of the experiment was to simulate the crosshole EM response of a
conductive body in a uniform background to provide a set of reliable data that could be
used in a new scheme of tomographic inversion described by Zhou (1989).

“The crucial part of the experiment was to obtain accurate measurements of the
primary fields, i.e. the fields measured in the conductive medium without the conductive
body. These primary fields were then subtracted from total fields (i.e. fields measured
with the conductive body) to obtain the secondary fields (i.e. fields due only to the
conductive body).  The secondary fields were used in the tomographic inversion. We
used the primary fields to obtain an independent estimate of the water conductivity in the
tank. This conductivity was needed as a background conductivity for the tomography
and also to check the accuracy of measurements with existing three-dimensional
numerical codes. ' ‘

The measurements were performed with the experimental set-up shown in Figure
5.2-1. The medium was energized by a vertical magnetic dipole source moving along a
vertical line simulating one borehole and the vertical magnetic field was measured by a
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stationary receiver on another vertical line simulating the other borehole. Then the
receiver was moved to the next position and the whole process was repeated to obtain a
complete coverage for all transmitter and receiver positions along the two boreholes. The
operating frequency was 98.6 kHz. The repeatability of the measurements was within
1%. -

All the measured values of the H, component along the downhole profiles were
normalized by the response on the surface, so the absolute values of the amplitude and
" phase of the magnetic field were not known. On the surface the quadrature component
was zeroed, and in-phase component provided the normalization. ‘

Laboratory measurements gave 14.45 S/m for the conductivity of the waterina

tank. We wanted to compare the laboratory measurements of conductivity with the
conductivity obtained from the measurements of the H, component.

The first trial and error fit of experimental data to the EM1D half-space results
showed a reasonable agreement for a half-space of conduétivity 12.0 S/m for the first
data set collected. We then used the inversion to help in a more accurate determination of
the conductivity of the water. Our objéctive was to find the conductivity of a half-space
that would fit the data within the repeatability error, i.e. below the 1% error. Since the
absolute value of fields and the phase shift were not known, the inversion had to be
performed not only for the conductivity, but also for the calibration constants in
amplitude and phase.

The inversion was performed on two data sets collected within a period of two
months, during' summer of 1990. Both data sets had repeatability below 1.0 %.
However the first set of measurements was performed with a receiver that fenched to
stick on the measuring rod at the same location. We will show how a small mechanical
malfunction of equipment affects the estimated conductivity of the water in the tank and
how in this case the repeatability of measurements did not guarantee that the absolute
accuracy of the experiment was indeed within 1%.

The inversion on first data set was performed using amplitude and phase
compbnents for three downhole profiles recorded with the receiver on the surface, and at

0.1 m and 0.5 m below the surface of the water. The examples of measured amplitude
and phase at each of these locations are given in Figure 5.2-2. Data were inverted for

~conductivity (assuming a half-space model) and for the amplitude and phase calibration
i.e. amplitude and phase of the magnetic field on the surface which were unknown.

At these three receiver positions the inversions of the amplitudé and phase of Hz
gave the conducﬁvity of the half-space to be 12.35 +0.005 S/m, 12.30 + 0.003 S/m and
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12.90 + 0.06 S/m respectively. The results, although close to each other did not produce
a least-squares fit to the measured data below 1 % for the first two receiver positions
(Figure 5.2-3). The attempts to account for possible differences in the conductivity of the
water at different depths by using a three layer model gave much worse results. D.
Alumbaugh (personal communication) suggested the use of two layer model to fit the
data: the top layer representing the water in the tank and the bottom layer representing the
air below the tank (see sketch below).

€ - — — — — — )A
| Tank I 2m
Y
Air 1 m

o

With this model, the inversion gave conductivities of: 12.43, 12.40, 12.90 S/m
for three receiver positions with a least-squares fit of experimental and numerical data
within 1% (with the exception of three points for the surface receiver). The fit between
measured and calculated values is given in Figure 5.2-4 and shows a significant
improvement compared to the half-space result. This improvement is especially
pronounced in the upper profiles. But the error in the least-squares fit for two receiver
positions: at 0.1 and 0.5 m displays a sudden jump around a depth of 0.5 m. This kind
of misfit can not be caused by a sudden change in model parameters because the Hz
response is continuous across a boundary. Since the fit to the data for the receiver on the
surface does not show this abrupt change in least-squares error, we suspect that between
the surface measurements and the two later ones something changed in the measurement

conditions when the transmitter reached the depth of 0.2 m.. D. Alumbaugh (personal
' communication) explained this pattern of error by a problem with the transmitter sticking
on the guiding rod at this depth. This example shows that sometimes it is possible to
detect problems in the experiment (that otherwise might not be detected) by analyzing the
error pattern. A small linear trend in the error pattern that remains after applying the
corrections can be caused by several reasons: a slightly different distances between
transmitter and receiver than assumed in the experiment (discussed later) or possible
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response from the conductive ground over which a whole tank model is placed (see
sketch above).

The inversion for the second data set was performed not only on amplitude and
phase but on in-phase and quadrature components as well. In this case the receiver was
located at four positions: at the surface, and at 0.2, 0.4 and 0.575 m below the surface.
The inversion was performed on three parameters: the conductivity of the water and the
quantities used to normalize the data i.e. the amplitude and phase of the Hz component at
the surface. The initial guess for the conductivity of the water in a tank was 12.8 S/m
(i.e. the conductivity of the layer that gave the best trial and error fit to in phase and
quadrature measured cdmponents obtained by D. Alumbaugh, 1990). The initial guess
for the amplitude was usually set at 0.1. This value is close to the amplitude of Hz field
in A/m measured on the surface of a half-space of conductivity 12.8 S/m at 1.0 m
separation assuming a unit dipole moment for the transmitter. The initial guess for phase
shift varied, but usually was set to 16009, i.e. the expected phase on the half-space.

The results of the inversion are given in Tables 1 and 2. In Table 1 we present

' the results of the inversion for the half-space model, i.e. without taking into consideration -

the finite depth to the tank bottom. In Table 2 the inversion results are given for the
model in which the water layer is sandwiched between two nonconductive half-spaces.
In the tables the lower number represents the variance in parameter estimates.

In-phase and quadrature inversion Amplitude and phase inversion

Depth | Cond.  Amp.  Phase Ave | Cond. Amp. Phase  Ave
(m) (S/m) (A/m) (deg) %err | (S/m) (A/m) (deg) %emr

0.0 1278 0.102 15743 1.41 12.51 0.1024 158.58 0.83

0.0088 0.049  0.008 0.0013 0.0003 0.0004
20.0 12.55 0.1042 158.6 0.57 1247 0.1043 15898 0.31
0.0098 0.0026 0.0015 0.0012 0.0001 0.002
40.0 11.68 0.1062 162.34 042 11.85 0.106 161.60 0.25
0.021 0.0035 0.0034 0.0081 0.0036 0.0014
60.0 13.08 0.1045 156.60 0.78 13.52 0.1037 154.50 0.35
0.29 0.0184 0.0088 0.04 0.0018 0.0096

Avrg. [12.59 0.1042 158.80 @ 12.52  0.1041 15848
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Table 1 Results for least-squares inversion for half-space model.

In-phase and quadrature inversion Amplitude and phase inversion

Depth |Cond. Amp. Phase Awe Cond. Amp. Phase Awve

(m) Sm) (A/m) (deg) %err |(S/m) (A/m) (deg) %err

0.0 12.77 0.1022 157.43 0.93 12.59 0.1025 158.19 0.49
0.006 0.0034 0.0005 0.01 0.002  0.0002

20.0 1264 0.1044 158.2 0.21 12.65 0.1044 158.14 0.14
0.0048 0.0013 0.0007 0.0014 0.0016 0.0003

40.0 12.24 0.1058 160.06 0.32 12.38  0.1055 15942 0.21
0.015 0.0031 0.0025 0.0089 0.0045 0.0015

60.0 1324 0.1047 155.88 0.39 13.38 0.1044 15522 0.17
0.029 0.0068 0.0045 0.031  0.0099 0.0048

Avrg. [12.72 0.1042 157.90 12.75 0.1042 157.75

Table 2 Results for the least squares inversion for layer sandwiched between two
nonconductve half-spaces.

As can be observed the averaged cumulative least-squares error given by:

n
-1 (Hobs-Healc)
Ave %err = Hz "'—Hc;c— 100%

i=1
is always smaller for the layer than for the corresponding half-space model. Thus the
" uncertainty in the parameter estimate is lower for a layer than a half-space. Furthermore
the estimated conductivity of the half-space is always (with one exception) lower than the
estimated conductivity of the layer.

The above analysis shows that the measured data in the tank are affected by the
finite dimensions of the tank. From Chapter 3, Figure 3.2-2 we estimate that the
amplitude H, with transmitter and receiver at the same depth would be affected by less
then 1% by the air-water interface if the system is more than 0.7 m away from the
interface (1% difference in amplitude for induction parameter of the scale model: (of)!12p
= 1120 is at h/p ~ 0.7). The smallest distance between the tank bottom and the lowest
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point on the profile is 0.5 m. At this depth, by the same reasoning, the amplitude can be
affected by the interface up to few percent. The effects of the side walls should be much
smaller than the effect of a bottom, because the tank is 3.0 m wide and 5.0 m long, and
the measuring set-up is in the middle: the closest side wall is about 1.5 m from the
transmitter or receiver.

Taking the averaged conductivity estimated from the four receiver positions we
obtained 12.52 S/m for the conductivity of a half-space and 12.74 S/m for the
conductivity of the layer, which is very close to 12.8 S/m, the trial and error fit obtained
by D. Alumbaugh. To see how this layer of conductivity 12.74 S/m fits the measured
profiles, we kept the conductivity of the layer constant and inverted for amplitude and
phase using amplitude and phase as well as in-phase and quadrature components.

The inversion resulted in an amplitude of between 0.1022 and 0.1057 A/m
depehding on the receiver location, and phase between 158.24 and 157.46 degrees. The
average amplitude for all measurements is 0.1043 A/m and the averaged phase is 157.79
degrees. Figure 5.2-5 gives the % error in'amplitude and phase shift in least-squares fit
between the measured and calculated data obtained using a layer of constant conductivity
fixed at 12.74 S/m. Figure 5.2.-6 gives the % error for in-phase and quadrature. The
~ amplitude percent error in least squares fit is less than 1% for all receiver positions except
when the receiver is located on the surface. Comparing the error plots for all receiver

positions we observe that with the exception of the receiver on the surface, all curves.

show patterns of errors as the transmitter moves down a profile. We tried to find out
what (besides an inadequate model) could cause this kind of error. One possibility was
- that the experimental set-up was not p;;fféctly vertical or horizontal, but slightly twisted,
resulting in the data that repeated to within 1%, but which involved measurement points
which were not exactly at the assumed locations. The sketch below explains the problem:

To estimate the errors we calculétéd the differences between the "perfect"
alignment and profiles shifted horizontally by Ax or vertically by Az. Figure 5.2-7
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shows the results for amplitude and phase when A equals 0.002 m, 0.005 m and 0.01 m,
Figure 5.2-8 shows the % differences for in-phase and quadrature components. The
upper panels are for the transmitter on the surface, the lower panels are for the receiver
located 0.6 m below the surface. The numbers on the curves describe the horizontal or
vertical shift of an entire profile in meters. As can be observed even a 2 mm difference
between the true and assumed separation can cause errors close to 1%.

To check whether the error observed in Figures 5.2-5 and 5.2-6 could be caused
by slightly different geoinetry of the experimental set-up than that assumed, we calculated
the error in least-squares fit when the receiver was moved from the surface to 0.007 m
below the surface, from 0.2 to 0.202 m and from 0.4 to 0.402 below the surface.
Figures 5.2-9 presents a new misfit for amplitude and phase data, Figure 5.2-10 shows
the misfit for in-phase and quadrature data. The fit improvéd significantly for all
components, except quadrature which was worse. It thus seems possible that at least part
of the systematic error can be caused by slight differences in geometry between
transmitter and receiver than these that were assumed.

This inversion study provided some additional information besides the
conductivity of the water in a tank and helped to assess the problems that might be
encountered in other experiments. In passing we notice that the higher conductivity of
the water in a tank obtained from laboratory measurements may have been caused by
increased temperature of the water samples when they reached the laboratory several
hours later on a very hot day (D. Alumbaugh, personal communication).

5.3 The crosshole experiment and inversion of data collected at Devine,
Texas.

The first successful crosshole low frequency electromagnetic measurements were
performed in Devine, Texas in September, 1990. The project was conducted by LLNL
and Engineering Geoscience. The objective of the experiment was to obtain highly
accurate measurements of the vertical magnetic field component between boreholes that
were repeatable to within 1% for amplitude and 1 degree for phase. This accuracy was
required for crosshole low frequency electromagnetic tomography as described by Zhou
(1989). The experimental site is shown in Figure 5.3.1. The two wells that were
chosen for the crosshole experiment are marked #2 and #4 on the plan. They have
fiberglass casing and are separated by 100.6 m. The receiver was placed in well #2, the
transmitter moved along well #4. Transmitter frequencies of 128 Hz, 512 Hz and 2048
Hz were used. The measurements were taken every 0.95 m (3 ft).
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The Devine site was chosen for several reasons, but one of the most important
was that the geology in Devine is strictly one-dimensional and thus provides a perfect
environment for testing the field equipment and theoretical calculations. The one-
dimensionality of the region was evident from a comparison of three induction logs
measured in three different experimental wells. These logs matched perfectly over the
whole depth. Figure 5.3.2 shows an example of an induction log together with a
geologic cross-section. h '
| The detailed crosshole measurements were performed at two different sections of

the well. These sections were chosen because of their induction log characteristics

(Figure 5.3.2). The upper section extending from 213.36 m to 335.28 m (700.0-1100.0
ft) was chosen because it was assumed that the conductivity of this region could be
approximated by a uniform 0.3 S/m layer. The lower section between 548.64 m and
670.56 m (1800.0-2200.0 ft), was chosen to examine how well the contrasts in
conductivity around 600 m could be resolved with crosshole measurements.

Figure 5.3.2a shows the simplified, initial model of conductivity based on the
induction logs. This model waé used for preliminary studies to estimate the required
transmitter moment and operating frequency. However when we applied this model to
calculate the forward solution and compared the calculated and measured data they
differed significantly and the need for inversion became obvious.

, -An ideal one-dimensional inversion in a one-dimensional medium should produce

a model that fits all frequencies and transmitter-receiver combinations within the
measurement error. If our data were exact, then by assuming a model consisting of the

- same number of layers as the number of data points we should be able to obtain a
conductivity disuibuu'dn that fits all data combinations. However, in reality this is never
the case. We were faced with the practical limitations that our data were not perfect and
furthermore putting over 100 layers into the inversion program would produce a highly
unstable solution and would tie-up the computer until the next millennium. For this

reason we had to limit the number of layers and data points and we had to try many -

different combinations of models and data arrangements.
~ The inversion proceeded in two stages. At the beginning we performed a few
“initial inversions on raw data collected over the upper section of the profile - these
inversions helped to calibrate the system and proved that the data gathering system was
working correctly. Later on we concentrated on the lower section and tried to obtain the
conductivity model for this section 'using different combinations of data and model
parameters. '
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During all inversions we were constantly faced with the old dilemma of
uncertainty vs. resolution. At first our objective was to fit the data within 1% in
amplitude and 1 degree in phase between the observed and calculated values, since these
were the estimates of the measurement accuracy. But we were faced with a predictable
set of problems: different data sets (amplitude, phase, in-phase and quadrature) at
different frequencies and receiver locations produced different models that looked
reasonable when compared with the induction conductivity log, but did not produce a
close fit to the data obtained at other frequencies or receiver location. We were able to fit
individual profiles collected with a single receiver to within 1.0 % for amplitude and 1.0
degrees for phase data. However since the solution is not unique the inversions of the
data for different receiver positions were different from each other even in this simple,
strictly one-dimensional medium. Similarly the inversions of the amplitude data did not
produce the same model as the phase data inversion. For these reasons we tried to invert
jointly all profiles, for practical reasons using only every fifth point along each vertical
profile (52 points for each of the 13 receiver locations). We started with an inversion of
data collected at lower frequencies (128 and 512 Hz). The resulting model was then used
as an initial guess at higher frequencies. Using this procedure we were not able to fit the
2048 Hz data within 1% in amplitude and 1 degrees in ph'ase, but within 15% for the
amplitude and +-5 degrees for the phase data. The 512 Hz fit was within 2% for the
amplitude and within 1 degrees for the phase data. We tested how this model changes if
data collected at 512 Hz and at 2048 were inverted jointly for a particular receiver location
and using every amplitude and phase data point. Then we tested how this model changes
if we simultaneously invert profiles collected at 2048 Hz at two receiver locations: 566.88
m (1850.0 ft) and 655.32 m (2150.0 ft). And finally we used the first vertical
derivatives, AH,/Az as an input to the inversion instead of our usual H, fields and we
discovered that this is the easiest method to obtain a one-dimensional conductivity
profiles from the least-squares inversion because it is not sensitive to the conductivities of
the inital model. We also showed that assigning slightly different amplitude and phase
corrections to each profile improves the fit between observed and calculated data. Below
we will detail some of the inversion results.

5.3.1 Inversion of data from upper level survey between 213.36 and
335.28 m (700 and 1100 ft).

128 Hz. The first data set collected at Devine was obtained at 128 Hz for the
upper section with a receiver located at a depth of 243.84 m (800 ft). At this frequency
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' the system was not calibrated and the true amplitude and phase of the data were
unknown. For this reason the data had to be inverted not only for parameters of the
medium, but also for the phase shift calibration and amplitude calibration.

At first we approximated the conductivity of this section by a uniform half-space
because the induction logs of this section did not show significant contrasts in
conductivity. The least-squares inversion of phase data resulted in a half-space of
conducﬁvity 0.28 S/m. The phase shift was calculated to be -15.09. Since phase is more
sensitive to the conductivity of the medium than the amplitude (because at low induction
numbers it strongly depends on quadrature, see Chapter 2) we fixed the conductivity of
the half-space to 0.28 S/m and inverted the field data for the amplitude calibration. The
amplitude calibration was 0.00254 (to convert measured values in mV to nT). The
results of this preliminary inversion are shown in Figure 5.3.1-1 which presents the
comparison between the amplitude and phase of field data with numerical data obtained
using inversion model. Figure also presents the percent error in amplitude and phase
difference between observed and calculated values. The percent error in amplitude
between the calculated and observed data is given by:

observed data - analytic data

100.
analytic data x100.0

% Error =

The random errors in the amplitude and phase fit are superimposed on a general
trend that in the upper portion of the profile reaches close to 4.0 % for amplitude and 2
degrees for phase. These inversion results prové that a simple half-space model is not
adequate to produce the response that matches the values obtained from crosshole
measurements even in this simple one-dimensional geology and using low frequency
data. ' , , '

Since the higher frequencies are more sensitive to the conductivity variations in
the model, the inversion of data collected at higher frequencies should produce models
that would fit lower frequencies as well. With this in mind we concentrated on the
inversion of data collected at 512 Hz (described later in this section) that resulted in a five
layer model. To check whether this five layer model is consistent with the data obtained
at 128 Hz we constructed Figure 5.3.1-2 which gives the amplitude and phase fit
between measured and calculated data at 128 Hz. As can be observed this new, five
layer, model lowers significantly the systematic error in amplitude and phase roughly by
a factor of two with phase fit being well below the 1 degree limit. With the new model
the amplitude calibration at 128 Hz was 2.48 *10-3 and phase shift was -11.960.
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512 Hz. The inversion of data collected over the same section of the profile but
at 512 Hz showed much more sensitivity to conductivity and needed a five layer model to
fit the data within the measurement error. We reached this conclusion after trying to fit
the data with simpler models but we failed. We started with the inversion of the phase
data assuming a half-space model. The inversion produced a half-space of conductivity
0.26 S/m but the misfit between the observed and calculated phase data reached 7.0°.
This error was significantly larger that the expected error in measurements. We added a
second layer and performed the inversion on two data sets with the receiver located at

240.79 m (790.0 ft) and 289.56 (950.0 ft). The fit to the data improved significantly and
was close to 1% for amplitude and 1 degrees for phase. Both data sets produced similar -

models when phase data were inverted. Similarly, both data sets produced almost the
same model when amplitude data were inverted. However the two models, one obtained
from phase inversions, another obtained from amplitude inversions, were not quite the
same: phase inversions produced a model of conductivities 0.24/0.31 S/m, whereas
amplitude inversions produced model close to 0.18/0.41 S/m. A possible reason for this
inconsistency could be a’ difference in sensitivity of amplitude and phase to the
-conductivity of the medium and to the misplacement of the transmitter and receiver:
amplitude is more sensitive to misplacement errors and less sensitive to the conductivity

(see Figures 2.3-1c and 2.3-2b). The inversion for phase shift calibration was negligible |

which confirmed the calibration results for the system at 512 Hz (M. Wilt et al., 1991).

To reconcile the differences we jointly inverted amplitude and phase for the
proﬁlé recorded with the receiver placed at depth 289.5 m (950.0 ft). The inversion
resulted in the conductivity of the upper layer of 0.23 S/m and gave 0.31 S/m for the
lower layer. The boundary between layers was located at 289.5. As can be observed in
Figure 5.3.1-3 the errors in amplitude and phase show a systematic trend (straight line
for amplitude and sinusoidal pattern for phase) that exceed the largest experimental errors
especially for amplitude inversion. Hoping that these systematic errors are caused by a
model that is not sufficiently detailed we added additional layers to the profile.

Since the calibration of the system showed a negligible phase shift for 512 Hz,
the initial guess at this frequency for the phase shift was always set to zero. The initial
guess for amplitude calibration was usually set at 0.002 to obtain the Hz field in nT for
unit source dipole moment. '

After several attempts by trial and error with different numbers of layers we chose
a five layer model. The inversion of data for this five layer model fitted the phase of field
data within 1 degree. The phase shift was negligible for both data sets which confirmed
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the results of system calibration. To check the model for consistency with other data sets
we performed an inversion of phase data assuming a five layer model but using data from
a receiver placed at 240.79 m (790.0 ft). The inversion produced an almost identical
~model. An inversion of amplitude data for the same model produced a fit between the
field data and analytic data that exceeded 1% . This error was reduced significantly to
- below 1% when we assumed that the location of transmitter with respect to receiver is not
 exactly correct and inverted amplitude data for the correction in vertical distance between
transmitter with respect to receiver. The two inversions on data sets where receiver was
placed at 240.8 m (790.0 ft) and 289.6 m (950.0 ft) produced the following amplitude
calibrations: 2.165%103 from the first data set and 2.201*10-3 from the second set.
Similarly the correction for transmitter position produced -1.52 m for the first, and -1.84
m for the second data set. The final inversion results for the upper data set are plotted in
Figures 5.3.1-4. The five layer model for the upper section of the Devine experiment is
plotted in Figure 5.3.1-5. ‘

As can be observed this model is different from our initial assumption of a
uniform layer of a fixed conductivity and prove that the crosshole measurements are more
sensitive to conductivity variations than was originally assumed. With this in mind we
turn our attention to the data collected over the region with high conductivity contrasts.

5.3.2 Inversion of data from lower section between 548.64 and 670.56 m
(1800 and 2200 ft).

512 Hz. The detailed inversion for the lower part of the profile was performed
at two frequencies: 512 Hz and 2048 Hz. We started with a data set at 512 Hz in which
the receiver was located at a depth of 594.5 m (1950 ft). As before we started an
inversion by assuming a simple half-space model. The first least-squares inversion of
phase data produced the half-space' model of conductivity 0.28 S/m with a large RMS
error, and proved that a more detailed model was needed. A six layer model based on the
resistivity logs was then used as an initial guess for inversions. Figure 5.3.2-1 shows
the results of the inversion of phase data. This result was obtained in several steps in
which some of the parameters, such as thickness or conductivities were kept fixed and
the results from the best fits were used as initial guess for subsequent trials. The final six
layer model was obtained by letting all depths and conductivities ( except the top layer
below the surface) vary.

As can be observed in Figure 5.3.2-1 the fit to the data is almost within 1°© and
the model could be accepted if not for two observations: first from the calibration of the
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system at 512 Hz and from the results of the upper level inversion, we know that the
instrumental phase shift should be close to zero at this frequency. This is not a case here
- the results presented in Figure 5.3.2-1 are obtained with -6.30 phase shift.
Furthermore, in the upper part of the section we observe a sinusoidal pattern suggesting
that the model is more complicated than just six layers. Inserting one more layer into the
upper part into a region with the largest sinusoidal variations in misfit error, dramatically
reduces the RMS error and decreases the phase shift to zero. Figure 5.3.2-2 presents the
results of amplitude and phase inversion for an eight layer model The amplitude data
were obtained with all model parameters fixed to the ones obtained from phase inversion.
The misfit error in phase does not show the sinusoidal pattern and confirms that the phase
shift is equal to zero. The amplitude calibration for this case is 2.23*10-3. However the
error in amplitude exceeds the measurement error and as before, we assumed it is caused
by the misplacement of receiver with respect to transmitter location. Moving the receiver
0.47 m decreased the amplitude error to within 1.0%. The new amplitude fit with
percentage error is given in Figure 5.3.2-3. Figure 5.3.2-4 presents the resulting 8 layer
conductivity model. The model is based on a phase inversion with all conductivities and
depths (except the last one) varying. This model was used to calibrate the data collected
at Devine. '

To check how different data sets obtained with receivers placed at different depths
confirm the 8 layer section we inverted the phase data for each individual profile
separately and we allowed all parameters i.e. conductivities and layer depths to vary. The
results were plotted by M. Wilt et al. (1991) in Figure 5.3.2-5. As can be observed the
separate inversions produced models that were clearly one dimensional, and fitted the
phase within 1 degree.

In conclusion: the inversions of data at 512 Hz produced eight layer models that
fitted individual profiles within 1 degree. The models for different receiver locations did
not vary significantly, however the same models needed corrections for absolute
transmitter-receiver separations to fit the amplitude data within 1 %.

2048 Hz. Fitting the data at higher frequencies was much more difficult. Our
inversions proved once more that higher frequencies need a model that is more detailed
than the model that fits the data at lower frequencies.

This can be observed in Figure 5.3.2-6. The figure represents the fit between
field and analytic data at 2048 Hz for the model interpreted using data at 512 Hz (see
Figure 5.3.2-4). As can be observed the error in amplitude fit exceeds 3%, the phase
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difference reaches 2.5 degrees. The amplitude calibration was 1.653 and phase
calibration was -22.88. '

The misfit error in Figure 5.3.2-6 shows a certain pattern: a large general trend in
both amplitude and phase over which are supen’mposéd smaller errors that show a
mixture of random and sinusiodal errors. To examine the possible causes of these types
of errors we constructed a set of numerical data at frequency 512 and 2048 Hz and
considered three cases: 1) when inversion model is less detailed than the true one, 2)
when the boundary of one layer is moved from the true position and 3) when the vertical
location of the receiver with respect to the transmitter profile is in error.

In the first case we checked how frequency affects the misfit error and we
examined two numerically generated data sets in which the inversion model did not
correspond to the model for which the data were calculated. For this purpose we
constructed phase data at 512 and 2048 Hz using a ten layer model. The ten layer model
was based on the 8 layer inversion model (Figure 5.3.2-4) with an extra layer inserted at
a depth of 650 m. We inverted this data set assuming an eight layer model. The results
are given in Figure 5.3.2-7 and show that the phase difference exhibits the sinusoidal
pattern of misfit error at both frequencies but at the higher frequency the error was close
to 1 degree whereas at lower frequency the phase difference was less than 0.25 degrees.
In conclusion: by using the smaller number of layers in inversion one observes the
sinusoidal misfit error around the faulty model and also the averaging of the layer
conductivities in the region where the true model is more detailed than the inversion
model. The errors are larger at higher frequencies.

To examine how sensitive the measurements are to changes in the medium
parameters we varied the thicknesses of one layer in our previously described eight-layer
model (shown in Figure 5.3.2-4). The variation in sensitivity can be seen in Figure
5.3.2-8 which presents the percent change in amplitude and phase difference at 512 and
2048 Hz. The model boundaries and conductivities are superimposed on the lower left
panel describing the percent error in amplitude. A variation in layer thickness as small as
1.0 m can cause a 2% change in amplitude and up to 1.0 © shift in phase at 2048 Hz.

Finally we examined the size of the error expected when the assumed location of
the receiver with respect to the transmitter profile is not correct. Figure 5.3.2-8b shows
that even a two foot error in the mutual distance between transmitter and receiver can
cause up to 5% error in amplitude.

This short study shows that the misfit observed in Figure 5.3.2-6 can be caused
by a combination of the above reasons.
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To check our model and procedure we then examined how it fits the data collected
at other receiver locations and were quite disappointed: even in this one-dimensional
medium the model interpreted from a single receiver location did not fit the data collected
at other locations within measurement accuracy.

After many attempts to reconcile the differences we decided to jointly invert the
amplitude and phase data for all receiver positions, but for practical reasons (computer
time) using only every fifth point along the transmitter profile. This gave us a total of
676 data points: 52 data points of amplitude and phase data for each of the 13 receiver
profiles. In the figures that follow each of the thirteen segments has 52 points and
represents a profile recorded with receiver placed at different depth inside borehole. The
receiver depth for which the profile was recorded is given on the right hand side of each
panel.

The subsequent inversions were performed on calibrated data and for this reason
we will talk about eventual corrections to the provided amplitudes and phase values
whenever they were calculated. :

We tried several options for weighting data however the best cdnvergence was
obtained when amplitude and phase data were not weighted even if their values differed
by several orders of magnitude. Not weighting the amplitude and phase data put more
significance on phase data that were more sensitive to conductivity and less sensitive to
position errors (especially at higher frequencies). Furthermore, amplitude decreases with
separation, providing an automatic weighting factor for amplitude data because it gives
less significance to noisier data collected at larger separations. When the convergence
failed we weighted the amplitude and phase data by the square root of their values. This
operation put more weight on the smaller numbers (amplitude) and decreased the
influence of the larger values (phase) and frequently resulted in a better convergence.
Assigning equal importance to amplitude and phase data by normalizing each data point
by its value frequently produced models that were not physically feasible. Figure 5.3.2-
8c shows the pattern of misfit errors obtained from numerical data using different
weighting options. The true model that provided the numerical data had 14 layers, the
inversion was performed assuming 8 layers. As can be observed from the error pattern
of misfit between observed and numerical data only the first two weighting options
resulted in the same model (shown in Figure 5.3.2-12). The model obtained in the third
case was not realistic and produced a different misfit error pattern.
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We also tried many models with different numbers of layers of varying
conductivity and thicknesses, but using the layers of fixed thicknesses and varying only
the conductivities provided the fastest convergence and more consistent models.

Our final model for Devine consisted of 14 layers, each 10.0 m thick. The joint
inversion of amplitude and phase at 512.0 Hz for all receiver positions provided a good
fit to the data: amplitude was fit within 2.0 %, phase was fit within 1.0 deg as can be
observed in Figurc 5.3.2-9. At 2048.0 Hz (Figure 5.3.2-10) the same model did not fit
. the data as well: phase fit was within 6.0 degrees and amplitude within 15.0%. Figure

5.3.2-11 shows the model. v v
A glance at the error pattern in amplitude and phase reveals a systematic trend at
. both frequencies. To test whether this error pattern can be caused by a model that is not
sufficiently detailed we constructed two analytic data sets at both frequencies for a
fourteen layer model obtained from the joint inversion. These numerical data were then
" inverted assuming an eight layer model. The fit to the data and the misfit errors for 512
and 2048 Hz are given in Figures 5.3.2-12 and 5.3.2-13 respectively. As can be
observed by comparing Figures 5.3.2-9 and 5.3.2-10, the error pattern, although not the

same, looks similar and shows a systematic trend proving that a more detailed, made with-

more than fourteen layers model could fit the data better. However, a model with many
layers takes a lot of computational time and poses a danger of fitting the noise. This
experiment also proved (see Figure 5.3.2-14) that inversion gives an averaged
conductivity of the adjacent layers that closely approximate the true conductivity
distribution. v |

At this point we could to continue to increase the number of layers to fit both
_ frequencies within the measurement errors, however we decided against it for two
reasons: first of all we did not know how accurate were the measurements of the
absolute distances between the transmitter and receiver positions - we only knew (from
the 1 % repeatability of the measurements) that the distance between the successive
measurements did not change by more than few centimeters. But the absolute
measurements of distances between transmitter and receivers were not independently
checked, so we did not know whether stretching a cable or possible tilt of the borehole
from the vertical affected our distances. If this was the case, then our model obtained at
512 Hz assuming a perfect knowledge of the geometry would be biased. Our suspicion
about the absolute geometry between transmitter and receiver increased when (as
described in Chapter 4) we had to shift the position of our data by 5 m in order to
correlate the induction logs with the second-vertical derivative results. To check how the
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change in the geometry affects the fit of the data we fixed the model obtained from the
512 Hz inversion and inverted the data at 2048 Hz for the errors in distance between the
receiver and the location of the all transmitter profiles. The fit improved and gave us an
error of -0.74 m for horizontal transmitter receiver separation and 0.34 m for vertical
transmitter-receiver separation, but increased the error when we applied this position
correction to the 512 Hz data. This is understandable since the model was obtained at
512 Hz assuming a perfect measurements of transmitter location with respect to the
receiver. This location need not to be the same for both frequencies, furthermore the
sensitivity of the system to errors in location and conductivity variations in the medium
varies with frequency (Figure 5.3.2-8). A

Secondly a model consisting of 14 layers takes a lot of computer time to invert for
all transmitter - receiver combinations.

From the above analysis it is evident that we were not able to obtain a model that
would fit all data within 1% and 1 degree however we were able to fit individual profiles
within these limits relatively easily and the models did not differ significantly.

5.3.3 One-dimensional inversion using the first vertical derivative
AHgz/Az

In Chapter 3 we observed that the first vertical derivative of the vertical magnetic
field is as sensitive to the location of the boundary as the horizontal component. Since
our measurements were taken along vertical profiles, and the spacing between the
measurements was small (0.95 m) it was easy to approximate the vertical derivative by a
finite central difference and use this data as an input in the least-squares inversion.
Because by taking the derivatives we increase the noise roughly by a factor of ten (see
Figures 2.3-5 and 2.3-6) we accepted 2 20 % error in amplitude and 10 degrees error in
phase as a good fit to the derivative data. ' "

Figures 5.3.3-1 to 5.3.3-4 present the results of the least-squares inversions

using first vertical derivative as an input to the inversion routine at two frequencies (512
and 2048 Hz). In all figures the model had fourteen layers. The receiver was placed at
609.6 m (2000 ft) in the middle of the section for all profiles. The inversions were
performed jointly on amplitude and phase of the vertical derivative (not on the derivative
of the amplitude and phase) or on the in-phase and quadrature derivative. All inversions
produced similar models (shown in Figure 5.3.3-5) but we found that joint inversion of
in-phase and quadrature components was the most stable and the least-sensitive to the
choice of the initial model. Although the initial model for in-phase and quadrature
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inversions was totally arbitrary (intermediate layers of 0.1 and 0.2 S/m) it produced
similar model at both frequencies as can be seen in Figure 5.3.3-5. The initial model
using amplitude and phase of the vertical derivative had to be closer to reality to produce
the required convergence.

To check how the model obtained from the single profile but using the vertical
derivatives fits the data collected at other receiver locations we constructed Figures 5.3.3-
6 and 5.3.3-7 for frequencies 512 and 2048 Hz respectively. These figures represent the
misfit error between observed and numerical data for a fixed fourteen layer model
obtained at 512 Hz from the in-phase and quadrature inversion of AHz/Az data. The
error pattern shows a systematic bias at both frequencies. The most probable cause of the
error is that our model is not the best, because it is based on the single profile. If the data
were perfect, then in a one-dimensional medium the data should be consistent with the
model. - Since we can not be sure that there is no systematic error in the data we
considered what happens if we fix that model and invert the data for each receiver
location for amplitude and phase correction. The results are given in Figure 5.3.3-8 for
data at 512 Hz. Table 5.3-1 shows the values of the amplitude and phase corrections and
compares them with the corrections obtained by D. Alumbaugh (1993). As can be
observed assigning slightly different corrections to the data lowers the systematic error in
both amplitude and phase and produces the fit that is almost within the prescribed

measurement accuracy.
Least-squares corrections D. Alumbaugh's corrections
Receiver Amplitude Phase Amplitude Phase
depth (m). correction correction correction correction
564 1.03 3.44 1.06 5.7
571 1.01 2.72 1.05 5.2
579 1.01 2.28 1.04 4.3
586 1.01 1.60 1.04 3.2
594 1.01 1.12 1.05 3.6
602 1.01 1.02 1.04 1.6
609 1.01 1.41 1.03 1.5
617 1.00 1.59 1.02 1.6
625 1.00 : 1.65 1.01 1.3
632 0.99 1.50 1.00 0.8
640 0.99 1.43 1.00 0.3
647 1.00 1.61 1.00 0.4
655 1.00 1.04 1.00 -0.6

Table 5.3-1 The amplitude and phase corrections obtained by least-squares for a fixed
model that was obtained from the inversion of the first vertical derivatives at 512 Hz and
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compared to the corrections obtained by D. Alumbaugh (1993) using an eight layer
model.

A summary of our inversion efforts is given in Figure 5.3.3-9 for the lower
section of the crosshole measurements in Devine. We found, that different inversions
produced similar models (except joint inversions at 512 and 2048 Hz using single profile)
that fit the data within reasonable limits especially at lower frequency of 512 Hz.
However the data were not fit within 1% and degree for phase because this would require
a larger number of layers and also the introduction of additional corrections for amplitude
and phase data different for each of the separate profiles.

5.4 The Richmond Field Station Experiment

In this section we present the one-dimensional interpretation of data from the
Richmond Field Station (RFS), California. The experiment in RFS was conducted as a
joint project between LLNL, LBL and Engineering Geoscience in the spring of 1992.
The objective of the experiment was to prove that the movement of fluids between
boreholes can be monitored using electromagnetic measurements between them. To
accomplish this, we collected two sets of measurements: one set of measurements was
performed in May of 1992 to establish the baseline values. The second set of
measurements was conducted in June 1992 after the 250,000 liters of conductive salt
water were injected into the ground. The water was pumped into the central injection
well (Figure 5.4.1). Measurements were made between the injection well and four
observation wells around it: NW, NE, SE, and SW. Wells NW and SE were placed 20
m away from the injection well, wells NE and SW were 25 m away. The stationary
receivers were placed in observation wells and were moved in 5.0 m intervals starting
form 5.0 m below the surface to 55 m below the surface. The transmitter traversed the
injection well taking measurements every 0.5 m from 4.0 m to 60.0 m below the surface.
The operating frequency was 18.5 kHz.

The geology of the Richmond Field Station is presented in Figure 5.4.2. The
upper section is 35 to 40 m thick and is a mixture of unconsolidated sands, gravel and
sills. The basement in the lower section consists of sandstones or shales. The upper
section is more conductive, about 0.075 S/m, the basement conductivity is around 0.02
S/m. The injected salt had conductivity 1 S/m. |

Our goal in this interpretation was not to recover the conductivity distribution in
Richmond (which is quite complicated and-definitely not one-dimensional), but to find an
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equivalent conductivity model which would show the conductivity variations before and
after salt water injection. We also hoped that the conductivity variations between
boreholes would indicate the possible direction of the subsurface water propagation. We
accomplished this task, but only after many trials using different number of layers,
weighting options and combinations of data used for inversion.

5.4.1 One-dimensional inversion of data collected in Richmond,
California. :

The geology of RFS is not one dimensional as can be seen by comparing the
induction logs from different boreholes presented in Figure 5.4-2.

The inversion was further complicated by the fact that at the initial stage of
interpretation the inversion was performed on raw, field data for which the true amplitude
and phase were not known, introducing two additional unknown parameters. The
inversibn in this case produced an independent estimate of the calibration parameters and
was used to check the system calibration. |

| Based- on our previous experience we abandoned the separate inversions of
amplitude and phase data and concentrated instead on joint amplitude and phase
inversions. . '

The first attempt involved the joint inversion of amplitude and phase data but for
each individual receiver position. After many different attempts we settled for a five layer
model where each layer had a constant 10.0 m thickness. We hoped that the 10.0 m
interval would produce sufficiently detailed conductivity distribution to fit the data within
reasonable accuracy and at the same time correspond to the conductivities obtained from
the induction logs. The inversion results for all four wells before and after injection of
salt water are summarized in Tables 5.4-1 to 5.4-4. In these tables the first column
describes the name of the inverted profile where the last digits describe the receiver depth.
The inversions of the data collected in May from the NW borehole produced a good fit
between observed and calculated data for receiver positions of 10.0, 15.0, 20.0, 25.0
and 30.0 m, however the fit at other receiver positions was significantly worse. By the
‘good' fit in this case we understand the fit within 10% in amplitude and within 10 deg in
phase. This very poor fit between measured and calculated data in comparison with
Devine data can be caused not only by a complicated geometry, but also by the frequency
of transmitter current: the frequency in Richmond was 18.5 kHz whereas the frequencies
in Devine were 512 and 2048 Hz making the Richmond system far more sensitive to
conductivity but at the same time much more difficult to match to a layered model. Even
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this "good" fits produced models that roughly fit within the conductivities obtained from
induction logs, but that were not the same for each inversion. The inversion of data from
the other wells produced similar pattern where the best fits were obtained for the same
depths (10.0, 15.0, 20.0, 25.0 30.0 m) of the receiver. This result may be
understandable if we realize that the conductivities in the upper part of the profile (up to
the depth of roughly 40 m) are much higher than in the deeper regions and therefore are
better resolved that in the lower part. Nevertheless this form of inversion did not produce
a consistent estimate of conductivity. Furthermore, the inversion of June data was also
inconsistent with the inversion of May data. In Figure 5.4-3 we showed the variations in
conductivity profiles obtained for individual receiver locations.

To obtain a more stable conductivity estimate and better calibrations for amplitude
and phase we took the averages of the best fitting results (that had the misfit error below
2.5 %) and models that looked reasonable when compared with induction logs and
summarized the results in Table 5.4-5. As can be observed the amplitude and phase
calibrations in May are less stable than the same calibrations obtained for the June data.

To eliminate the confusion resulting from different results obtained for different
receiver positions we decided to jointly invert amplitude and phase data for all receiver
positions. To shorten the time needed for inversion we picked up every fifth point along
profiles for each receiver position. So instead of inverting on all 113 data points
measured every 0.5 m for each receiver position, we inverted 23 data points spaced 2.5
m apart. This gave us total of 506 data points of amplitude and phase data. Our initial
model consisted of the five layers of equal 10.0 m thicknesses but the misfit error was
large and we had to increase the number of layers to 11 and decrease the thickness of
each layer to 5.0 m.

We inverted for the layer conductivities and for amplitude and phase calibrations. ~

In Table 5.4-6 we compared the calibration values obtained from inversions with
calibrations based on the system analysis described by D. Alumbaugh (1993). As can be
observed the biggest difference between calibration values occurs for the SE well where it
reaches 8.3% for amplitude and 8.6 degrees for phase.

Our final fit to the data was worse then that for individual profiles: the misfit error
reached 40.0 - 50.0 % in amplitude for some of the receiver locations (usually at 5.0,
45.0, 50.0 and 55.0 m depth) , but usually was within 10 % for the remaining receiver
locations. We used the model obtained with data collected in May as an initial guess for
the June data inversions. To illustrate the fit between measured and numerical data we
plotted the observed and calculated phase in Figure 5.4-4 for each of the observation
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wells obtained from the pre injection data. As can be observed the best phase fit was
obtained in the middle of the section for receivers located at depth 15,20, 25 and 30 m.

The conductivity models for each observation were based on the joint inversion of
amplitude and phase data for all receiver locations are given in Figure 5.4-5. The curves
on the plot represent the induction logs before injection and the model obtained from data
before injection and model obtained from data after injection. It can be seen that the
numerical model traces the conductivities obtained from the induction logs reasonably
well except for the 5-10 m section for the NW well where the model fails. The
differences in conductivity obtained by subtracting the inversion results from before and
after the injection of salt water are given in Figure 5.4-6. It can be seen that the largest
variations in conductivity between May and June occurred around the area where the salt
water was injected in the NW and NE wells. ,

Next based on our experience with the Devine data we decided to perform
" inversions not on the Hy field itself, but on the vertical space derivative of Hz
component. The data points were collected every 0.5 m and this was the spacing of our
data points in taking the derivatives. At first we started by inverting the amplitude and
phase data of the AHz/Az (using as an initial guess the best model obtained from Hz
inversion), but after few trials we realized that inversion of in-phase and quadrature of
AHZz/Az was much faster (the convergence usually occurred after 4-10 iterations) that we
abandoned the first amplitude and phase attempts and settled for the in-phase and
~ quadrature inversion. | '
At first we inverted just a single profile from the receiver placed 30.0 m below the
 surface for all four wells surveyed. This produced model that agreed with induction logs

“in three cases, but was not realistic for one well. When we added the second data set

~ collected with receiver located 15 m below the surface, and used as an initial guess an
uniform half-space of conductivity 0.043 S/m, we obtained results presented in Figures
5.4-7, 5.4-8, 5.4-9 and 5.4-10 for NW, NE, SE and SW wells respectively. These
figures show: a) the models obtained using the data collected before and after the salt
. water injection superimposed on the induction log from the injection well, b)
-conductivity difference in models before and after the injection, c) and d) in-phase and
quadrature of observed and calculated derivatives together with the misfit error for data
collected before and after injection, respectively. The top 224 points on panels ¢ and d
- represent profiles collected with the receiver placed at 15 m from the surface, points
below were collected using the receiver placed at 30 m below the surface. These results
were obtained without changing the initial guess, or putting any restrictions on

141



conductivities (except our usual constraints that conductivity had to be between 0 and 1
S/m). The convergence was usually accomplished in less than 5 iterations. As can be
observed the largest conductivity contrast occurs in NW and NE wells suggesting that
this is a direction of fluid propagation. The variations in southern wells are much
smaller. These results support the conclusions reached by D. Alumbaugh (1993) about
the direction of fluid propagation. However, the conductivity contrast obtained by D.
Alumbaugh was much larger: 0.15 S/m. This is understandable, since his model is two-
dimensional and therefore more closely resembles the actual conductivity distribution. In
a one-dimensional model the conductivity variations had to be distributed over the whole
layer (not just inside a smaller disk) resulting in a lower overall conductivity. In passing
we notice that the second vertical derivative method (Chapter 4) produced conductivity
variations of the order of 0.2 S/m, i.e. even higher than D. Alumbaugh (1993) estimate
but closer to the conductivity measurements of borehole fluid obtained by O. Tseng
(personal communication) which was 1.0 S/m. This result can be explained by the fact
that the second derivative method is most sensitive to the medium in the vicinity of
measurement point.

5.5 Summary

The inversion results from the three very different experiments revealed several
important aspects of electromagnetic measurements in conductive media. The inversion
of the data showed that the sensitivity of the measurements to the conductivity of the
medium is higher that we anticipated and that derived calibration factors for the system
are strongly dependent on the model and on the geometry of the transmitter with respect
to the receiver. _

The inversion results also indicated that the repeatability measurements do not
necessarily guarantee the accuracy of the measurements. If the measurements are
repeatable, but other parameters (like frequency or separations) are measured incbrrectly,
then even in the simple one dimensional geology it is impossible to obtain a model that
fits all data within a repeatability error and is consistent with other data sets. However in
the monitoring of movements of fluids we are mostly interested in detection of the fluid
propagation and the absolute values of conductiviiy are of a lesser importance. Our
inversion shows, that even a very rough model that fits the data only in the least-squares
sense and is not even close to the true conductivity distribution is capable of detecting the
direction of fluid propagation. The inversions proved that even in a complicated geology
it is possible to detect changes in the apparent conductivity that are indicative of the
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S
direction of the propagation of fluids. We found, that at low frequencies it is much easier

to obtain a good fit to the data, but that the resolution of the model is worse.

The separate inversions of amplitude and phase data produced different models
for in phase and quadrature as well as amplitude and phase data. Furthermore the in
phase and quadrature data are more susceptible to position errors and therefore an
accurate fit of a one-dimensional model and calculated data (if possible at all) would pose
a danger of fitting the model to the noise. For this reason we looked at the joint inversion
of amplitude and phase data. We found out that amplitude is sensitive to position errors,
but not very sensitive to the model parameters. Phase data show's. opposite
characteristics: it is more sensitive to layer conductivities, but not as sensitive to position
errors. We tried to use the sensitivity of the amplitude data to position errors to find out
the corrections in distances of transmitter with respect to receiver, but this approach only
proved the necessity of having a very accurate locations of transmitter and receiver. If we
tried to invert for position errors the results proved to be confusing and the models were
not consistent. The joint inversion of amplitude and phase data for all receiver locations
is important in providing the consistent model of conductivity even if there is larger misfit
between calculated and field observations. Furthermore the accurate knowledge of
transmitter location with respect to receiver is crucial especially at higher frequencies and
smaller transmitter-receiver separations.

Positioning is very important. During the inversion procedure we observed that
different results were obtained with depth and separation corrections fixed or when
treated as an unknown. Frequently even 0.3 m shift in vertical or horizontal position
meant the difference between good convergence and failure of inversion. It is also very
important to keep a record of changing transmitter-receiver geometry i.c. whether the
vertical and horizontal separations are indeed what we are assuming. For example a cable
that lengthens with depth or a tilted well can produce high quality data with very good
repeatability because the conditions of the experiment are kept constant, but can introduce
a lot of uncertainty and frustration during the inversion since the final model depends on
the assumed geometry of transmitter with respect to the receiver.

It is' very important to weight the data properly. In our 1-D least squares
inversion we tried different ways to weight the data. The data have to be weighted with
respect to their measurement accuracy and sensitivity to conductivity. Since the
amplitude is not very sensitive to conductivity and has a larger error associated with the
transmitter - receiver distance, amplitude must have less importance than phase in
determining the inversion model. Since our final results were based on joint amplitude
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and phase inversions that varied by several orders of magnitude we tried three weighting
procedures: not weighting the data, weighting them by the square root of their value and
finally assigning an equal importance to all data points. The first approach left the
amplitude and phase of the field data unchanged and since the phase is two to four orders
of magnitude greater then amplitude this method resulted in placing a large emphasis on
phase, and much less importance on the amplitude. Phase data are more sensitive to
conductivity and at the same time less sensitive to position errors than the amplitude.
Furthermore not weighting the amplitude data puts more importance on data measured at
the closest transmitter-receiver separation where amplitude is the largest and the least
sensitive to the position errors. In the second approach weighting the data by the square
root of the data value decreased the ratio between the small and large values giving more
importance to amplitude and less importance to phase data, but still kept the phase data
larger. We used this second weighting procedure when the inversion without weighting
the data failed. The third weighting option considered was to divide amplitude and phase
data by their absolute values. This approach assigned the same significance to amplitude
and phase data and also to the data collected at large transmitter receiver separations. We
found out, that the fastest convergence in most cases was when the amplitude and phase
data were not weighted at all, despite the large difference in their absolute values. We
assumed that this fast convergence was caused by the properties of the data themselves:
the decrease in amplitude with distance and at the same time increase of noise put less
emphasis on amplitude data collected far away from the transmitter. The phase data had
the same "importance” far away and close to the transmitter as long as the phase did not
go through zero. In situations where we had problems with convergence we weighted
the amplitude and phase data by the square root of their value. This approach increases
the importance of amplitude with respect to the phase data and in several cases allowed
the inversion to converge.

The most important conclusion of our inversion work is that the inversion based
on the first vertical derivative is a valuable tool in recovering the conductivity even in a
complicated conductivity structure. It also appears that the type of inversion works better
on in-phase and quadrature data because it is less dependent on the initial guess model.
Furthermore using the first vertical derivative produced consistent models at higher and
lower frequencies which was not always the case when we used the H; field alone.

Below we will highlight some other conclusions that were the result of our
inversion work:
1. Repeatability is not a replacement for the accuracy of the measurements
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10.

11

In-phase and quadrature H, field components are noisy in regions where they
change sign and for this reason were more difficult to invert on.

Amplitude and phase data should be inverted simultaneously to get consistent
inversion results because the sensitivity to model and noise is different in these
two quantities.

Weighting of the data should correspond to the noise in the data, i.e. do not
weight amplitude and phase data used in joint inversion.

The layers that are not detailed enough show a sinusoidal error pattern around the
:missing layer" '

The conductivity provided by the least-squares inversion gives the averaged
conductivity distribution over the neighboring layers.

The error in position shows-up as a general trend in the error pattern

A sudden jump in the measurement conditions (such as a change in geometry or
range switch on the lock-in amplifier) shows as a sudden jump that "levels off"
after a certain distance.

Derivative inversion of in-phase and quadrature is not sensitive to the initial guess
and converges very fast to the reasonable models that are consistent with other

data sets and with other frequencies. _
Use of in-phase and quadrature of AHz/Az works better possibly because they are

‘the same order of magnitude and converge better than IAHz/Azl and phase

|AHz/Azl.
The error in derivatives is ten times larger than in the H, component.
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Well o1 c1 o1 o1 O1 Ampl. | Phase| % RMS
*10-04 (deg)

55CINWS |13 095 065 .039 013 124 |414 |36 |47
55CINW10 |.083 .11 .09 067 007 [122 |[s532 |16 |11
55CINW1S | .068 .1 08 073 015 |118 [s69 |16 |4
55CINwW20 |.085 .095 059 .056 - 022 |119 |s67 |13 |.9
sscINw2s | 096 091 072 031 .03 J|116 |ses |11 |a
ssciNw3o [0 .11 08 016 .031 |110 |se4 |19 |86
S6CINW35 | .073 113 085 .041 016 |105 |ss1 |s2 |39
56CINW40 | .075 .095 096 .055 0092 |104 |[5375 |73 |43
56CINW45 | .1 06 .09 07 .05 [105 |539 |83 [sa12
56CINW50[.12 068 .061 .090 .009 [108 |s580 |82 |55

S56C2NW55 | .1 1 .03 08 017 1.10 594 5.2 4.4
AVERAGE | .084 .1 064 056 0212 |1.13 54.66
Well o1 o1 o1 o1 o1 Ampl. | Phase | % RMS

*10-4 | (deg)

65CINWS | .12 a1 06 04 005 |1.34 j492 |32 25
65CINW10 | 085  .087  .089 .043 009 |134 |548 |14 91

65CINW15 | .1 068 084 046 018 131 [S89 |15 1.0
68CINW20 | .1 07 091 027 024 |129 [554 |15 12
68CINW2S | .1 073 086 01 031 125 |575 1.6 1.6

68CINW30 | 088 094 082 016 027 |1.19 |s88 |27 |.a9
68CINW35 | 072 .11 085 0390 017 |114 |s547 |49 |38
68CINW40 [ 071 092 098 056 01 |115 |512 |s6 |37
68CINW45 | 096 067 093 08 006 |115 |s08 |eo |43
68CINWS0 [.11 07 063 099 008 |117 |527 |56 |44
68CINWss [.097 087 o042 082 019 l122 |s26 143 |36

AVERAGE 1.095 078 - 08 .029 022 129 |566

Table 5.4-1 The results of the joint amplitude and phase least-squares
inversion of individual profiles from EMNW well for data before injection
(top) and after injection (bottom). The model consists of five 10 m thick
‘layers. Amplitude calibration unit is (A/m)/V per unit moment. ;
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o1 ley) o3 G4 G5 Ampl. | Phase | % RMS
*104 | (deg)
S4CINES |.41 077 066 076 015 |116 |773 |26 |12
54CINE10 [.087 .11 061 057 016 |[1.17 [537 |22 |.69
54CINE1S [.098 .14 074 056 .01 |115 417 |20 |.74
54CINE20 |.08 .13 .078 060 .003 118 [451 |21 |10
54CINE25 |02 .16 055 071 -.003 |121 |514 |26 |19
S4CINE30 {.021 .16  .044 067 127 5712 |30 {22
54CINE35 |.027 .18 .21 06 0 126 615 |36 |28
54CINE40 |.156 .04 124 0 008 |116 |647 |32 |32
S4CINE4S |.083 .14 026 0083 .0 126 |557 |32 |20
54C1INESO '
sacoNEss |11 .08 059 007 018 li115 faso |5 |28
AVERAGE .03 121 061 046 .008 |1.19 |s57
31 o2 o3 o4 o5 Ampl. | Phase | % RMS
*10-4 | (deg)
63CINES |02 068 08 078 016 |123 830 |25 |15
63CINEIS |.084 089 083 051 .013 [128 |576 |17 |11
63CINE1S |.108 117 .03 046 005 |125 [436 |18 |14
63CINE20 [.094 099 094 051 O 131 |s503 |22 |us
63CINE2s | 065 .11 063 061 0001 |134 |577 |26 |15
63CINE30 |.015 .15 048 054 O 137 |633 |37 |26
63CINE3S | 0076 .17 041 045 005 [134 683 |34 |33
64ACINE40 |.16 .0 240 020 006 |128 |e08 |37 |39
6ACINEAS [.14 005 .50 046 O 131 {s62 |37 |25
648CINESO|.11 07 080 096 .002 [126 |s521 |27 |16
64CINESS |.098 071  .062 080 017 123 499 |38 |27
AVERAGE | 093 086 086 057 006 |129 |s8.5

Table 5.4-2 The results of the joint amplitude and phase least-squares
inversion of individual profiles from EMNE well for data before injection
(top) and after injection (bottom). The model consists of five 10 m thick
layers. Amplitude calibration unit is (A/m)/V per unit moment.
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o1 o2 o3 o4 o5 Ampl. | Phase | % RMS
*10-4 | (deg)

58C1SES
58C1SE10 | .07 12 02 081 .018 |125 581 |24 2
58C1SE15 | .089 08 .09 009 027 130 |59.7 19 19
S8CISE20 |.077 086 .07 |

58C1SE25 | .089 .085 .065 038 .024 121 612 1.8 20
S58CISE30 [.088 .088 .09  .029 .018 |[1.17 |[593 |21 (1.7
58C1SE35 |.091 .1 .09 035 011 |113 |5765 |2 25
58C1SE40 | .102 1 097 029 007 1.10 |57.06 |36 30
58C1SE45 | .098 .083 097 .058 .001 1.12 |544 |38 50
58CISES0 | .095 095  .053 095 .003 1.10 |545 |39 29
511CISESS | .095 .089 .012 02 1.11 55.2 1.8 1.2

AVERAGE | .089  .093 041 016 {1.17 |57.8

ol o)) o3 o4 o5 Ampl. | Phase | % RMS

*104 | (deg)

64C1SES 028 08 .1 085 016 |L15 [692 |26 23
64C1SE15 | .081 094 079 047 .024. |126 |555 |1 5
645C1SE1S | .075 1 079 032 023 |126 |555 14 13
64C1SE20 | .059 1 074 031 023 |124 ]553 15 1.6
64C1SE25

65C1SE30

65C1SE35 | .093 092 1 037 009 115 |528 |26 23
65C1SE40 |.1 g a2 021 006 |1.11 534 |34 34
65C1SE45 | .11 .06 Jd 07 004 113 488 |53 58

658C1SES0 | .23 083 052 094 026 |111 |5S05 |32 5.1
65CI1SES5 |.098 .13 051 072 078 1107 |516 (32 3

AVERAGE | 097 095 084 054 023 |112 |547

Table 5.4-3 The results of the joint amplitude and phase least-squares
inversion of individual profiles from EMSE well for data before injection
(top) and after injection (bottom). The model consists of five 10 m thick
layers. Amplitude calibration unit is (A/m)/V per unit moment.
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o1 02 o3 04 o5 Ampl Phase| % RMS
*10-4 | (deg)
511C1SW5 |.1 09 08 00 0038 |132 |559 |37 |24
511C1SW10 | .1 078 .11 007 011 |125 |562 |30 |20
511C1SW15| .11 075 073 056 012 [128 |614 {19 |11
511C1sw20[.003 075 .073 056 .012 |128 |614 |19 1.1
511C1swW25|.085 079 .073 067 .012 |127 |61 1.7 12
511C1sW30|.86 078 .071 057 015 |126 (664 |11 |15
512C1sw35|.087 .08t .08 067 .017 |126 |575 |12 12
512C1swW40|.082 .084 .083 078 017 |126 |54 18 97
512C1sw4as{.074 09  .078 068 017 |125 |565 |26 1.7
512C1sWs50{.086 .09 .11 041 008 {116 |619 [32 |25
512C25W55 | .1 08 14 052 000 J108 [619 |29 |25
AVERAGE | .1 08 09 057 013 125 |599
o} o2 c3 4 o5 Ampl. | Phase | % RMS
' *104 | (deg)
65CINW5 |.124 09 116 .00  .0037 |126 [427 |15 12
65CINWI0 {.119  .102 .11 024 0081 |117 |416 |19 89
65CINWIS |.127 102 133 022 006 122 |402 |23 1.9
68CINW20 | 098 087 .098 059 .007 |121 {474 |21 1.5
68CINW25 | 085 084 086 076 .007%6 |132 |514 |17 15
ssCINw30 {087 08 o084 o7 012 132 |se1 |15 |12
68CINW35 | 088 082 .087 061 .013 [129 |580 |18 1.1
68CINW40 | 079 083 .088 074 015 {129 |[523 |13 78
68CINW45 | 069 091 .083 069 .017 [129 |521 |19 12
68CINWS0
68CINWSS | .095 085 .1 070 003 1123 |s564 |11 1.9
AVERAGE |.088 09 .08 056 .01 126 1497

Table 5.4-4 The results of the jdint amplitude and phase least-squares
inversion of individual profiles from EMSW well for data before injection
(top) and after injection (bottom). The model consists of five 10 m thick
layers. Amplitude calibration unit is (A/m)/V per unit moment.
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WELL DATE Receiver depths | Amplitude Phase
for the best| calibration: calibration
fitting profiles | V->A/m (deg)
NW MAY 30 1.10*104 56.4
25 1.16*104 56.5
20 1.19*104 56.7
15 1.18*104 56.9
10 122+104 53.2
AVERAGE 1.17*104 5594
JUNE 25 125*104 575
20 1.29*104 554
15 1.31*104 58.9
10 127*104 54.8
AVERAGE 1.29*104 56.6
NE MAY 10 1.18 53.7
AVERAGE 1.17*104 53.7
JUNE 25 1.33*104 57.7
20 1.30%104 50.3
15 1.25*104 " 43,6
10 1.28*104 57.6
AVERAGE 1.31*104 52.3
SE MAY 35 1.14*104 57.7
30 1.17*104 593
25 1.21*104 61.2
20 1.26*104 1 60.8
AVERAGE 1.22*104 59.7
JUNE 20 1.24*104 55.3
15 1.26%104 51.2
10 1.26*104 55.5
AVERAGE 1.27*104 540
SW MAY 40 1.26%104 54.0
35 1.26*104 515
30 126*104 66.4
25 1 27*10-4 61.0 -
20 129%104 61.4
AVERAGE 1.27*104 60.6
JUNE 45 1.29*104 523
40 1.29*104 524
35 1.30*104 58.0
30 <x1n-4 56.1
5 135*104 14
20 1.34*10 474
1.23*104 .
AVERAGE 1.31*104 53.98

Table 5.4-5 The amplitude and phase calibrations obtained by averaging the
calibrations from the best fitting least-squares inversions of individual profiles

and assuming a unit dipole moment.
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Amplitude ]} Phase Amplitude | Phase Amplitude | Phase
calibration | calibrationf | calibration | calibration | calibration | calibration
Well | Date | for joint for joint V->A/m (deg) from D. (deg)
inversion | inversion | from Alumbaug
ofall (deg) individual h
profiles inversions
NW | May | 1.19*104 514 1.17*10-4 55.9 1.23*10-4 60
June | 1.27*10-4 50.0 1.29*10-4 56.6 1.30*104 58
NE | May | 1.23*104 544 1.17*10-4 53.7 1.23*10-4 59
June | 1.31*10-4 54.7 1.31*104 55.2 1.30*10-4 58
SE | May | 1.18*104 53.9 1.22*10-4 59.7 1.25%104 60
June | 1.20*104 49.4 1.25%104 54.0 1.30*10-4 58
SW | May | 1.24*104 61.9 1.27*10-4 60.6 1.27*10-4 63
June | 1.31*10-4 58.6 1.31*10-4 54.0 1.30*10-4 58

Tablé 5.4-6 The comparison of amplitude and phase éa]ibrations obtained by
inversions with the results obtained by D. Alumbaugh (1993). Amplitude
calibration unit is (A/m)/V per unit moment. -
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Fig. 5.2-1 The geometry of the model tank experiment (after D. Alumbaugh, 1990).
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depth 0.1 m, and (c) at depth 0.5 m below the surface. The plots illustrate how the
general trend in error decreased [in comparison with Figure (5.2.-3)] when the model
changed from a half-space to the finite conductive layer.



151

T 0e
- 3
g 04 E
£
£ a
,‘;‘ 08 3 os \

-1 a '
% Ampilituge error

RN NIRRT
° - (
NNV VT ]y
. Ampiwge error e R TS red
SN ] T IR
B , \\
" A ) [ le

-0. LX) (X 1.0
Phase siterence (deg)

T o \ [ \\
" £
i .. \ ;

) \
e > { d)

e Y T 1.0 -0.8 0.0 o8 1.0
1.0 0.5 0.0 0.6 10 Prase altterence (deg)

% Ampiiiuge errer

Fig. 5.2-5 The percent difference in amplitude and phase sh1ft between observed and
calculated data. The model is a layer of conductivity 12.74 S/m embedded in a
nonconductive whole-space. The receiver is located: (a) on a surface; (b) at dcpth 0.2m;
(c) at depth 0.4 m, and (d) 0.6 m below the surface.



152

00w

&
1S
Depih (m)

Depth (m)
&
L 3
N
™\
-3
L
g

03 /
1.0 : .0
3 .2 -1 0 1 2 -4 3 2 - 0 1 2
% In phase errer % Ouadssture ecror
(X
/—

Depth (m)
b
S
Depth [m)
&
'3

4
: N,
E-1) { < <8 /,
10 H ; 1.0 )
y y -1.0 0.6 0.0 0.6 (X
10 08 0.0 [X] to
“ -phase orrer .. 00 % quagrmure onu‘
) /j
- /
E £ 04
E €
3 -«
H 2 os : %
< e
15 Vo ‘ )
1.0 -0.6 0.0 s o
0o % _Ousarsiure error
[ (
<2 e

. pd

//'

1

Oepih {m)
Oepth (m}
&

-

o : .. J

d)

-10
1.0 -0.8 00 X7 1.0 1.0 ’
% n-phase errer -1.0 -0.6 0.0 0.8 1.0 1.8

% Guadrsiure errer

Fig. 5.2-6 The percent difference for in-phase and quadrature between observed and
calculated data. The model is a layer of conductvity 12.74 S/m embedded in a
nonconductive whole-space. The receiveris locatcd: (a) on a surface; (b) at depth 0.2 m;
(c) at depth 0.4 m, and (d) 0.6 m below the surface.




AZ

Zade]
pib {
£, D st s
it DB SR L pp ol

02
o1

. 5-0‘
X AX 508

2 3 . “0.0 0.6 1.0 1.5
Ampiitude eorrov Phase ditterence (deg) d

E 04 N % :"E_'o‘

e R i \

Ny Ly
- A;n‘pmuc. etror ’ o Phase ¢uh::u {deg)

Fig. 5.2-7 The errors in amplitude and phase data when the estimated vertical: Az or

horizontal: Ax distances are.not exact for receiver located at a surface (a); and at depth

0.6 m (d); below the surface. The model is a layer of conductivity 12.74 S/m embedded
in a nonconductive whole-space.

153



0.0
b}
.ot
02
P 002
b .
o .005
£ b b
c ] ] b
b 1 ] b
s 06
038 / J f
i i
10 +
6 -5 4« 3 -2 1o
% in-phase error
00
02 .
\\\\ o1
E 04
£ 002 008
Y E
o3 /
1.0 +
.05 00 0.5 1.0 1.5 20 26
% In-phase error
00
VN
0z
y
.002 o0s
5 04
r p
$ o
8 b 3
) y
]
08
4
’ ]
>
-1.0
o + 2 3 & § & 7
% in-phase efror
00 .
.ooéi g
Ay
R Y 662
- R X
E 04 =3
=
3
S s 1
o8 X\\
10
.4 2 3

-2 -t L] 1
% inphase error

AX

AZ

AX

AZ

Depth (m)

Oepth (m)

Oapth (m)

Depth (m)

154

r {0302

0 B}

2.0 d)

02 k
A k
08
01
R,
08
)
1 Koos \h
10
1.0 -0.5 0.0 0.5 1.0 1.5
% quedratisre error
“T 1 I 7
002 .01
02 8
&.005 \
oa 1%
08
<8 . i
BN
S
>
10
0 1 2 3 4 s
% quadrature error
02 \E ‘ ‘\\1‘
04 ™
PAPERY
o8 } 908, }
o8
AL
1.0
0.0 0.5 1.0 1.5
% Quadrature error
00 -
\ 006 Y i !
o2 L .002
M E
04
08
©8 i-\
1.0

-3

-2

-1 () 1
% quadrature . error

Fig. 5.2-8 The errors for in-phase and quadrature data when the estimated vertical: Az or
horizontal: Ax distances are not exact for receiver located at a surface (a); and at depth

0.6 m (d); below the surface. The model is a layer of conductivity 12.74 S/m embedded
in a nonconductive whole-space.



°
o
Ny

-3

Qo

s tg
&
N

.

-0.2 [
oa E 04
"; } Rx = 0.007 m & oo \
2 06
* \\
-0.8 ] .
' Q ’ : ° ™~ a )
BE
-1.0 -1.0 -0.5 0.0 0.5 1.0
.2 1 0 1 2 Phase ditterence (aeg)

% Ampiltude error

00
00 k
& 02
02
= 04
- 04 £
E
= £
£ J : o8
-3 [-]
2 086 Rx=0.202 m
: o8
084 b)
10 T
10 v 1.0 -0.6 0.0 0.6 1.0
1.0 0.6 0.0 0. 1.0 : . Phase ditlerence (deg)
% Amplitude error
oo < . 0.0
02 \ ' 02 (
- 04 - .
3 3 04
F3 =
S s
K3 08 ; Rx=0.402 m S o8 K
s : > o8 R
10 10
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.6 0.0 0.5 1.0
% Amplitude error Phase diterence (deQ)

| Fig. 5.2-9 The change in error patterns between observed and calculated amplitude and
phase data when the estimated vertical distances are changed: (a) for receiver located at a
surface by 0.007 m; (b) for receiver located at depth of 0.2 by 0.002 m; and (c) for
receiver located at depth 0.4 m also by 0.002 m. The model is a layer of conductivity
12.74 S/m embedded in a nonconductive whole-space.

155



0.0

00

P S

02 o2 \
E ™ g {
: £ /
E 06 Rx=0.007 m & o8 [

Y
3% ) 2
/ ’ 10 / a )
e - s T T 2 4 3 -z - ° 1 2
% in-phase error % quadesture error

Rx = 0.202 m

Deplh (m)

-

8 R ’ / | b)

Depih {(m)

$

/S ~—t
Ar7i \

4

10 -1.0 -0.§ 0.0 0.5 1.0
-1.0 -0.6 0.0 0.6 1.0 % Quadralure error
% In-phase error

T2 .
/. |

Rx = 0.402 m

Deplh (m)

Oeopth (m)

1.0 -0.6 0.0 0.6 1.0 1.6

% in-phase error -1.0 -0.6 9.0 0.5 1.0 1.5

% Quedrature error

Fig. 5.2-10 The change in error patterns between observed and calculated in-phase and
quadrature data when the estimated vertical distances are changed: (a) for receiver located
at a surface by 0.007 m; (b) for receiver located at depth of 0.2 by 0.002 m; and (c) for
receiver located at depth 0.4 m also by 0.002 m. The model is a layer of conductivity
12.74 S/m embedded in a nonconductive whole-space.

156



157

S {
\ San Antonio
Devine Test site - A
S AN /
N
\—/‘
300m 4
4
.well
100m
® well®2
200m 300m
well*9
Devine Test Site o
v
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Fig. 5.4-3 The illustration of conductivity variations obtained from individual inversions
of profiles on different receiver locations superimposed on the induction log. The
numbers on the right side represent the location of receiver. The best fitting profiles were
used for NE and SE wells.



NW | NE

. ]
0
c‘ ." 1 . I ‘3.\
b <
“ L + Ovservedphase (.' ¢+ Observed cata
Yoo o : o-._".k
92 e | . phase A \ «  Numerical data
< e
bl T YUY em, 138 * o0
b - \
-138
(' ® ee e 184 N.- ‘o o P
-y K
-184 ¥ S \\,
< - b
» 2% % e o - L < 230 e
- o E o
s Yol 2 ™. . o
o 276 Po® o lee .o * odlsa - 276 \.
- oo? | - \ .
- X P
5 qh-.. .« o 4 .o | o 322 tes m
322 by
. qP L o
{.., ® o a 358 S as
8 Bt 21N j
ek © k
414 t::.. A 414 ..:“'
T o e oty
) co & = Lol 460 C
460 ro.....““m ) 0. )
- é - A
506 adind . 506 0
i . 0 150 180 21
90 120 150 180 210 240 60 %0 12 s
Phase (deg)
Sw 0Tz .
° >
3 e 2
L4 o ol ces L
46 by TN .-..
52+ bie 1 +  Observed data
vie o o —t
-82 ' 0 e Yoo, ol *  Numerical cata
- (wm -y,
i. 138 X
SRR LI V- I LY o Numerical phase (.
-138 S 0 eee oo - aeud
oecee ¢ o . -184 -
184 5 2504 . - N..,." o oio
- IR PPN % 230 ‘:’.
230
z ﬂ a R T N
E el TP s 278 't
*» 04 o -
276 ¥ =]
s 1& S YT
a M.‘.. 322 TF
322 T—t 22t <'l
\r{- ik 3 SO )
® -368 gl V7 Yy
368 Ly . oo
' <
“~ 414 X TP
414 vy XA
._'o.o’..‘ oo ®
< 460 .q«:
Sdo o, Sea.
480 eV o ......ﬁ.\v
o P 506 2
-506 90 120 150 180 210 240
60 90 120 150 180
Phase (deg)
Phase (deg)

Fig. 5.4-4 The fit between observed and calculated phase based on the joint inversion of
amplitude and phase data using simultaneous inversions of eleven profiles from all
receiver locations for each of the observation wells: NW, NE, SE and SW. Each 46
point section represents one profile, starting from the profile collected with receiver
located 5.0 m below surface and ending with the receiver located 55.0 m below surface.

193



194

NW NE
0 = covomyy 1]
G JUEINE B
= . =
i ek, <, -y
10 . -1
= -10 T
4 3
He) s 1+,
. -1
———aan, -y
" fI—
-20 oy 3 20 o 4
! 17
0 (0 I 25 Peerssl N ]
£ st £ _,s‘”
= I S = by
£ Sy £ o~
- l £
& i3 — g 1 e
) [ein J nduction log a as pos
il — oyous
40 4f+ %0 log
i - Junecaa
——  May data
“v
4 1 - e Junedats
-50 -50
-55
. 1
-60 -60
0.00 0.05 0.10 0.15 0.20 0.00 0.05 . 0.10 015 ° 0.20
Conductivity (S/m) Conductivity (S/m)
sw SE
[} ) 0 S
| i i IR e e
S 273 s .l
f\_, il !
10 10 i
) jr— Eye "'-——.F:’
E.\_, T
15 1~ 15 .
! >
20 k- 20 .
1 S 5]
- = = ; 25 S
< ] 1 E S
= =30 A 30 \“
B > : P
S 35 s s——==s=— induction log & s - -
i - as - Juyne cOnd. ‘( | weessesssme=  |nduction 0g
40 é —  May cONd. A0 l —_— Mayocond.
“s 1P 45 - a=om. June cond.
2
50 50
55 &5
’ 1
& 40
0.0 0.1 0.2 000  0.05 0.10  0.15 0.20
Conductlvity  (3/m) Conductivity (S/m)

Fig. 5.4-5 Model of conductivity for NW, NE, SE and SW wells obtained from joint
inversion of amplitude and phase data using 11 profiles simultaneously of two sets of
data: one collected in May before injection of salt water, the second collected in June after

the injection of salt water.



Fig. 5.4-6 The difference in conductivities before and after the injection of salt water
for NW, NE, SE and SW wells obtained by subtracting the results presented in Figure

5.4-5.
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Chapter 6
Conclusions and recommendations for future research.

6.1 Conclusions

This work has examined some basic characteristics of electromagnetic
measurements inside and between boreholes. In Chapter 1 we summarized the evidence
of laboratory research and field experience which shows the importance of using
electrical conductivity maps for defining the distribution of subsurface fluids.
Furthermore we showed that the conductivity measurements seem to be more suited for
this purpose than the seismic methods, because the conductivity variations are larger than
the corresponding velocity variations when temperature, saturation or salinity vary.

In Chapter 2 we examined the fields in a conductive whole-space to evaluate the
range of penetration, sensitivity to conductivity and the influence of errors in the
transmitter and the receiver location. We showed that different components of the
magnetic fields respond differently to the properties of the medium and that the response
of a particular component depends on the geometry between the transmitter and the
receiver. For example close to the transmitter the fields vary rapidly with distance and for
this reason it is more important to have an accurate and stable measurements of positions
closer to the transmitter than far away from it.

In Chapter 3 we considered the boundary between two conductive whole-spaces,
and a layer sandwiched between two conductive half-spaces as well. Using analytic
expressions on the boundary between two conductive half-spaces we concluded that the

first vertical derivative of the fields is more sensitive to the layer boundaries than the’

vertical H; component itself, and is as sensitive as the horizontal field Hp. Using fields
on the boundary we showed that the more conductive half-space dominates the response
and it is necessary to use higher induction numbers to detect conductivity variations
inside the resistive half-space. Using the explicit expressions that describe the fields
above the boundary we showed that the response above the boundary depends, among
other parameters, on the total transmitter-boundary and receiver-boundary distances and
not on the particular distance of the transmitter or receiver from the boundary. We also
showed that when the transmitter and the receiver are placed on the opposite sides of the
layer, in a medium that has the same conductivity on both sides, then the response from
the layer is independent of its location.

In Chapter 4 we used the second vertical derivative to recover the conductivity
distribution on the axis of the transmitter and in a crosshole environment. We showed
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that the conductivity closely correlates with the induction log measurements and we used
this fact to correct for the depth difference between the induction log and our
measurements at the Devine. We showed that the conductivity distribution on the axis of
a transmitter is best recovered if the vertical transmitter-receiver separations are small.
However at close transmitter-receiver separations the fields vary rapidly with distance and
even a small error in position can cause large error in the calculations of the second
vertical derivative. This suggests that the measurements of the gradient rather than the
field itself would be more practical. Furthermore we observed that the calculation of the
second vertical derivative using finite differences is more accurate at higher frequencies
because the fields vary faster with distance and for this reason the measurements do not
require so many significant digits in order to calculate the difference accurately.

In Chapter S the inversion results show that the crosshole measurements are very
sensitive to the parameters of the medium. However they are also very sensitive to the
mutual geometry between the transmitter and the receiver. If the geometrical parameters
of the measurements are not known exactly, or are different from these assumed, than the
resulting model is biased. In such case it is difficult or impossible to obtain consistent
models for every profile or frequency combination inside a 1-D medium.

- The requirement of fitting the data within the measurement error is important
when the conductivity model in the inversion adequately represents the conductivity
distribution at the field site. The Devine test site is an example of excellent agreement
where the fit between the numerical data and field data was close to the measurement
error. If the model is highly complicated and not one-dimensional, as was the case in the
Richmond Field Station experiment, then it is still possible to obtain useful information
about the conductivity variations from the crosshole- measurements using the one-
dimensional inversion. In this case the apparent conductivity distribution shows the
largest variations in the direction of fluid propagation. The inversion tests also proved
that the higher frequencies are more sensitive to the model parameters than the lower
frequencies but at the same time it is more difficult to fit the model to the data. We also
found that the least-squares inversion of the H, fields works better if we use amplitude
and phase data rather than in-phase and quadrature data. The reason for this is that the in-
phase and quadrature data are very noisy in the regions where they change sign because
the fields are small in these regions. v ‘

The most important conclusion of our work using 1-D inversion is the discovery
that the use of the vertical derivative in place of Hz field results in a faster convergence to
the model that is consistent at high and low frequencies. The model is also almost
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independent on the initial guess if the inversion is performed on the in-phase and
quadrature derivatives jointly.

6.2 Recommendations for future research

In Chapter 4 we showed the possibility of using the second vertical derivative to
determine the conductivity of the medium in the immediate neighborhood of the borehole.
We showed that the method can work at frequencies as low as 100 Hz. Because these
low frequencies still show a good sensitivity to the conductivity of the medium, they
should be examined for application inside cased boreholes. The possibility of
measurements inside cased boreholes is currently examined by LLNL and the first
preliminary measurements inside cased boreholes (M. Wilt et al., 1990) showed that the
fields are attenuated, but still measurable.

We also showed that it is possible to recover the induction log information in the
crosshole configuration using the second derivative of the H, component. These results
were found to be sensitive to the amplitude and phase of the H; fields. For this reason
we feel that there is a possibility of using the crosshole measurements together with
induction logs to obtain an independent estimate of the amplitude and phase calibration of
the field system. Working with the second vertical derivative (and first vertical derivative
as well) we observed that profiles collected with different receiver locations are strongly
correlated. This fact can be used in data processing to get rid of the some of the random
noise that is not obvious in the H; fields themselves.

In Chapter 5 we presented the results of least-squares inversion for the Devine test
site. We feel that this site can be a perfect place to calibrate the crosshole-electromagnetic
field systems. For this purpose a set of very accurate crosshole measurements (more
accurate that our data set) should be completed, preferably at high and low frequency.
This 1s already a realistic task since the system used for collecting the Devine data was
very recently modified by O. Tseng and M. Wilt (October 1993) and is capable of
repeating the data within 0.2 % in amplitude and 0.1 degrees in phase. The absolute
measurements of depths and transmitter - receiver separations (including the corrections
for the possible change in geometry due to the cable stretching) within 0.1 m are as
important as the EM measurements themselves. The data should be inverted to produce
an equivalent conductivity distribution in the similar way as we attempted to do for our
data set, but without relaxing the requirements on the misfit errors.

We recommend that further work on crosshole measurements include a calibration
of the equipment at Devine and be extended to measurements through casing,.
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Appendix A
Mathematical derivations.

A.1 General solution.

Assume that the impressed source (transmitter) of electromagnetic waves is a
magnetic dipole located at (0,0,z;) and oriented along the z-axis. The observation point
(receiver) is placed at an arbitrary depth z (Figure A.1-1). |

Fig. A.1-1. Configuration for the magnetic dipole inside a conductive medium

This impressed source can be written as:
M=M3(R)z (A1-1)

where M is magnetic dipole moment density (A/m), M is magnetic dipole moment (A-
m?2), R is a vector from transmitter to receiver, and Z is a unit vector in the z-direction.
With p denoting the horizontal transmitter receiver separation, the total distance between
the transmitter and the receiveris given by:



211

R=+p2+(zzy (A.1-2)

The electromagnetic fields, source and the medium are related by Maxwell's
equations, that in a linear and isotropic medium are given by:

VXE =- % B | (A.1:3)
Vil = 7+ 2 | (Al
V.B - 0 | (A.1-5)
VD =p (A.1-6)

and consitiutive relations: B =p(H + M), D =¢€E, J = cE,where, H and B are
magnetic field vectors in (A/m) and (Wb/m2) respectively, E and D are electric field
vector in (V/m), J is conductive current density (A/m?), M is magnetic dipole moment
density (A/m) defined earlier. The constants €, K, ©, describe the medium where € is a
dielectric constant (F/m), p is the magnetic permeability (H/m), and o is the conductivity
(S/m). '

If the medium does not have discontinuities in horizontal direction, then H,, H,
and E are the only components of electromagnetic fields vectors produced by a vertical
magnetic dipole (VMD). It is then convenient to use cylindrical system of coordinates in
which the Maxwell's 'equations and source term have the following form:

OE,

~, = iouH, (A.1-7)
19 - _ . MAP) & ]
o 3p PEy = l“y{Hz"E_p &z zs)], (A.1-8)
o, 9H, , . A
= - (o+ie)E, (A.1-9)



where o is angular frequency (rad/s). In the regions without the source the second term in
square parenthesis in equation (A.1-8) vanishes. In the above equations we assumed
e+ time dependence. |
Maxwell's equations are conveniently solved with the help of the magnetic Hertz

vector IT*, that is derived using equation (A.1-6) which leads to the assumption that
E = - iouVxII'. This in turn provides: H = VV.II_ + k2IT. In solutions involving
the vertical magnetic dipole, Hertz vector has only z-component. The relations between
"Hertz vector and fields are given by:

H, = 92“22 + K210,
oz (A.1-10)
o, - L
dpdz ‘ (A.1-11)
. ol
E, = iop —=
¢ op (A.1-12)

If we eliminate H;, and H,, from the cylindrical Maxwell's equations and express
E, in terms of Hertz potential, then after integration with respect to p one obtains the

following relation:

2
* * 2 * *
9 I, + L_a._nz + _9_2.112 + kAL, = __M_S(_:la(z-zs) (A.1-13)
2%

apz P op 0z

where

k=~/oke-iono | (A.1-14)

is a propagation constant of the medium. The general solution of this equation is given
by:

I, = f [AQA) iV 22 4 B() e+iVEX2 2 Jy(hp)ah  (A1-15)
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The coefficients A(A) and B(A) are found by matching the source and boundary
conditions. The boundary conditions state that the tangential electric and magnetic fields
are continuous across the interface if no surface charges or surface currents are present.
The source condition tells that at the source the vertical derivative of electromagnetic fields
is discontinuous by the source strength. Furthermore the fields must satisfy the radiation
condition, i.e. they must vanish at infinity.

The boundary conditions on the Hertz potential are derived from the relations
between the Hertz potential and the electromagnetic fields. Assuming thet there is no
discontinuity in p, the boundary conditions at any given interface "i" located at depthz =

z; are given by:
I = IOy o | - (A.1-16)
0 * 0 *
O, = 211,
_asz 178z ™ (A.1-17)

where H;i-l is a Hertz vector in the medium above the boundary and I"I;i is a Hertz vector
below the boundary. The source conditions are given by:

M0 = Tgsi0 » v (A.1-18)
%U;sw - _-%H;s-o = - %g—;l &(z-z5) (A.1-19)

where subscript "s+0" and "s-0" indicate the regions below and above the source
respectively. ‘

A.2 Whole space.

In a whole space only the soﬁrce conditions and radiation conditions are needed to
obtain the coefficients of equation (A.1-15). Thus A(A) = O for z < z; and B(A) = O for
zs < z in order to satisfy the radiation condition. Matching the source condition the
solution for IT*, in a whole space is given by:

* Y - iV k2 A% ,
IL(k:.R) = M. _’“"i {k'_k"" Jo(hp) dh . (A2-1)
[+] - , .

213



214

In the above equation subscript "s" denotes the medium with the source.

In this thesis the whole-space fields are frequently involved in more complicated
expressions. To describe the whole space medium and geometry, we always indicate in
parenthesis the propagation constant and total transmitter-receiver separation.

The above solution is linked to the another form of solution through

Sommerfield's identity:
* -ik.R l e i k. -3. IZ' '
M(k,R) = MekrR _ ! Jo{rp) i . (A2-2)
s 4n R 47t V2

The whole space fields H,, Hp, 8H,/06z and 82H,/5z2 are obtained by

differentiating the Hertz vector according to equations (A.1-10), (A.1-11) and (A.1-12):

2 . - 3 . 2
Hyks,R) = _(a_ kg)s;_‘kﬁ = ZMEf 23 e-i Vi2 A2 iz Jo(lp) dx

0z2 R iYie
(A.2-3)
02 eikR ) -1Vk.2_-l|2-24 (2-2;)
Hlks,R) = 4R 5 R = 4 I Ae e (Ap) dn .
(A.2-4)

gaz-Hz(ks,R) =

3 : B 2 -
M(a__+k2_a_)e_-_ﬁlk-}_ Lﬁf 23 eildn »z.u%jljo(xp)dx

4r o0z3 saZ

(A.2-5)



82
gHAks,R) =
M([3* | 1207 |eikR M 23 aVizazeiVe e
4n (az4+ksazz)_ R 4n f 2 avida’e 24 Jo(ap) b .

(A.2-6)

Taking the prescribed derivatives ‘of ZME Eil:'—R , the whole space fields are given

by:

Hjk.R) = % %“;ﬁ [(1 +ikR) (-p2 + 2Az-zP) +({kRP (-p?)], (A2-7)

Ho(ksR) = M 9;“‘?— p(zz)[3(1 +ikR)+ (kRP ], (A2-8)

Sk R) = M 2R )( (1 +kR)3[3p2 - 2enf]

(A2-9)
+(ikR) 2 (2p? - 22) + (iksRP p2} ,-
2 .
a_Haz(zlzi‘l =M :%;5 { (1 +ikR) 3[3p4-24p2(z-zs)2+s(z-zs)4]
+(iksRP? [( 4p* - 31p¥z-zf? + 10{z-25)"))]
+(ikRP [ p*  -7pHzzP + Az-z))]
+ @&RY [(-p? (zzP)] ) |
.- . (A2-10)

The above relations are useful in developing the asymptotic expansions. A more

complete listing of these expansions is given in Appendix C.2.
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A.3 Single boundary

Let's consider a vertical magnetic dipole of moment M placed above the interface
located at depth z = z,. The interface is located at depth z = z,;. This boundary separates
two half-spaces: one with the source in it of conductivity s, and the other below with
conductivity Gs4+1. The subscript "s41" is used to indicate that it is the first boundary
below source. The first boundary above source will have subscript "s.;", the next one ";.
2" in later chapters. The horizontal separation between the transmitter and observation
point is p. The total distance between transmitter and receiver is R = [p2 + (z-z5)2]122.
The geometry of the problem is illustrated in Figure (A.3-1a). ‘

The solutions can be obtained by matching the source and boundary conditions in
three regions: above the source where z < z;, below the source but above the boundary
where z; £ z < zg, and below the interface, where z; < z < zg;. The solutions to
wave equation in this three regions have the forms:
forz < zg,

*

.0 = f BsoettzA J{Ap)di ,
]

(A3-1)
forzs € z < Zg4y,
0 = ] . (Asso 2 + Byygerz)d Jfhp)dh , (A32)
o
for zg41 < 2,
., = f Ase1 ez & JoAp) di . (A3-3)

where: ¥s = Vi - )"2 » You1 =Vkii - A? . The subscript "s.o" describes the medium
with the source, but above the transmitter, subscript "s4+0" describes the same source
medium but below the transmitter, subscript "s+1" describes the medium below the first
boundary.

After matching boundary and source conditions, the solutions for Hertz potential
are as follows:
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forz < z (above the interface),

T, __M (uﬁz_ +Rss Lfl'(iz-*l_’i)x Thp)dh,  (A3-4)

for z; £ z < zg, (below the source and above the interface),

L0 =£/Ici f (c-'rvt'bz‘) +Rs.s+19ﬁ(_2€§'_’_"'_z) A Jo(;\,p)dx . (A3-5)
[

for z;,1 £ z (below the source)

= f °"’”"”;:‘+’§:""“‘ 22 2, Jo{Ap) A (A.3-6)

where Rs s+ is a reflection coefficient given by:

Rs,s+1 Ys Ysrl :
Ts + Ys+1 ' (A3-7)
The equations for transmitter and receiver above the interface can be converted to
another form that is more suitable for analysis and is useful in the developmcnt of the
asymptotic solutions.
The first terms in the equations (A.3-4) and (A.3-5) can be written using the
Sommerfield's identity:

eik-R Mf ;'Y"Z ljo(lp) (A.3-8)

The coefficients in the second terms in equations (A.3-4) and (A 3-5) can be
written as (Kauffman and Keller, 1983): :

1 %Y =-L+_L_ .1, A %) (A.3-9)
Ts Vs + Vs+1 Ys VstV Vs k2 k3+1 ’
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As a result the expressions for the Hertz potentials above the interface can be written as:

IL,.0 -M—f e sdrp)an - M[ %2 Jfap) b
° (A.3-10)

M_ 2 . iy,
Ereny f (% - ool %21 1 Telhp) dt

where (2zg41 - Z5 - 2) = 2.
The above equation can be simplified further if one uses the relation obtained by
differentiating twice the Sommerfield's identity:

2 P B
58_2.% Q%"f_‘ = ZME[ ineitz ) Jo(lp) da . (A.3-11)
2] 0

where Ry = p2 + 212
. Finally the solution for Hertz vector when transmitter and receiver are both above
the interface is given by:

= M C'k'R _ M c'koRl
Ty 4n R T4m R

2 M| 9% kR . r

(A.3-12)

A.3-1 Exact expressions when transmitter and receiver are both above the

interface.
The fields H,, Hp, 8H,/06z and 82H,/8z2 on both sides of the interface are

calculated from the Hertz potential using relations (A.1-10), (A.1-11) and (A.1-12)
In the medium where the source and receiver are located the exact expressions for
H,, H; and dHz/dz have the form:

H,., = HyksR) - Hfk.R;) (A.3-13)

, -
K2 2k., aaz2 Hy(ks,R;) - =2 j 5 (iYs+1) etrea Jo(7~P)d7L
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Hp,,, = Hp(ks,R) - Hp(ks,Ry) . ' (A.3-14)
{‘a—' Hp(kS’Rl) aa] A (iyser) (iys) eten Jo(lp) d":l

d 0 0
5, Hro = Ak R) - —HlksRy) | (A.3-15)
2|9 g oR1) + M0 () () eiva Tolhp)dn| .
+ s [a 5 Hfks Ri) o (iYss1) (%) o -p)
a2
S;—Z—HM = —Hz(ks,R) —Hz(ks,Rl)

- 2 [a%; Hyfks,Rp) - - f 2> (i¥s1) Y2 e TolAp) dl} .

(A.3-16)
where z; = (2zg41 - Zs - z) and Ry=(p2 + z;2)172,

A.3-2 Exact integral expressions when transmitter is above and receiver
is below the interface.

'On the opposite side of the boundary, in the region without the source, the exact,
analytical expression for H,, H,, 8H,/0z and 8?H,/6z? are given by the following:

Hz,, = - '1;2-%2: % l 2> (iYs - 1¥s41) €220 e-1WlZon1-22) Jo(lp) dA (A.3-17)

Hpg, = &2 2k,2. };It apf Mivse) [(is) - (I'Ys+l)] € l'le(Z Zent) g 1VZen1-%) JO("'p)

(A3-18)

%st_,_l 2 ) o A’ A (s J(19) - ([ory)] @l ) @10 Jodrp)an
o i (A3-19)

3%2— e ™ (A.3-20)

" _21(31 - f (06 [0 - (par)] € i) il ) Jo(lp)fﬁ
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A.4 Transmitter below the layer

Let's consider a vertical magnetic dipole of moment M placed below the layer at
depth z = z,. The first interface above the transmitter is located at z = z,.;. The second
(upper) interface above the transmitter is located at depth z = z; ;. The layer thickness is:
Zs.1 - Zs.2. Figure A.4-1 shows the geometry of the problem.

Fig. A.4-1. Configuration for transmitter below a layer.

The solutions are obtained by matching the source and boundary conditions in
four regions: below the transmitter where z > z;, above the source but below the lower
interface where zs > z 2 z4 1, inside the layer where z,_; > z 2 z, 5, and above the source
where z;3 > z. The solutions to wave equation in this four regions have the forms:

forz;o > 2,

) H;s-Z = Bsae*hz} J({lp) da,
0 . (A4-1)

forz,.1>z2z,,,

L, = j (As.1etiz + Bgjermidd Ifdp)dr ,
0 (A4-2)
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forzg>z212z¢,,

*

Mo = I (Aso ez + Byge+inz) A Jo{dp)dr , (A.4-3)

forz=z,

H;s+0 = I Aswe'iY-z?\,J({Xp)‘d.l .
0 (A4-4)

\J 2 N 2 Jiz 12
where: ¥s = k-1, Y1 =Vk2i-A , Y27 kip-2 . The subscript "s.¢"

describes the medium with the source and above the transmitter, the subscript "si0"
describes the same source medium and below the transmitter, the subscript ;1" describes
the medium above the first boundary, and finaly the subscript "s;2" describes the medium
above the second boundary. After matching boundary and source conditions, the
coefficients inside the integrals are as follows: '

B M 2Ys.1 e z%-21) e-er(Z1-22) e-Ved%2)
2= " -
7T 2Wi (Yo o+ Y5)) (Ys2+ Yot 1+ Reot a5 g 22122)] (A.4-5)
A= - M Rg.2 5.1 Wz21) g-ihi(zer -.21.2)
2 (Y5 + ¥s-1)[1 + Ro1, Rs2,5. £ 2i2122)) (A.4-6)

B, = M e-itlaz) e-thi(z)

21;1 (vs + 'Ys-l)[l + Rs-l.sRs-Z.s-ﬁ'zt{"‘(z’"z'z)] (A.4-7)
Ag= - M ez -221]R, ) s + Ry.p.5 g 2ei(2123)]

s-0 = -~

21 (2991 + Re1 Rso2,5. g 2(z122)] (A4-8)

Bs 0= M e'iY‘L)

~ 2mi (2y) | (A.4-9)

Ao = M C'iY:(?-)[l + R_s-l.sRs-z_s-le'Z*’*l(’*“’“) - (Rs-l,s + Rs_z's_le-Zi[n(kl-Lz))e-Ziy.(z,-z,l)]
S 27ti (ZYS) [1 -+ Rs_l’sRs_z's_p-2.¥..1(2..1-z._2)]

(A4-10)
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where
Rs-l s 'Ys 1-Ys .
'Ys 1+% (A4-11)
and
Ys-2- ¥s-1
Rso6.1 = —————,
2T Y2+ (A4-12)

Let's consider the H; fields in the region above the source, but below the layer.
After substituting the A g and Bs g coefficients into the integral for this region and using
the Sommerfield's identity (Equation A.3-8) we obtain: '
( ) etz +2-2201) [Rs 15+ Rs.2s. p-2t{-1(lox-7oz) 3 H(z{), )

41t1

2 1 +R N -2¥s1(Ze-1-2-2)
(YS s-1,R5-2,5- € ] (A.4-13)

The expression under the mtegra.l sign can be further simplified by using the
relation:

[Rs.1,s + Reg,5. g 20(z122)] -1 (1- Rs-l.s)( 1- Rs_z's_p-zwu(kl-az))

[1 + Ro.y Rs.2,5. 2 2eir22)] 14 R Res g 2] (A4-14)

then,

Hxiwo = Hikszez) - Hikozst 2 - 2254)

+ M € -z +z- 22.-1)(1 Rs 1 s)(l Rs 2,5-€ 2?.-1(7.1-20-2) 3[{%2{}4))
(ivy) [1 + Rs.1,Rs2s. lc-2v.-1(z.1-z.z)

(A4-15)



A.5 Transmitter inside the layer

A vertical rnagnetib dipole of moment M placed inside a layer at depth z = z,. The
first interface above the transmitter is located at z = z;_.;. The first interface below the
transmitter is located at depth z = z,4;. The layer thickness is zg; - z5.;. Figure A.5-1

gives the geometry of the problem.

Fig. A.5-1. Configuration for transmitter inside a layer.

The solution is obtained by matching the source and boundary conditions in four
regions: below the layer where z 2 z;, inside the layer below the source where z; <z <
Z541, inside the layer above the transmitter where z; < z < z,, and above the layer where
Z..1 > z. The solutions to wave equation in this four regions have the forms:
for z;.1 > z,

H;s-l = Bs.1 e*itei2 J({lp) dr,
o (A.5-1)

forzs 1 <z <z,

0 = (Asoe™z + B.oe) A J{Ap) i,

[

(A5-2)

for z, <z <z,

L. = f (Assoe2 + Bogetitd A IAp)dr , |
o (A.5-3)
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for z 2 zg,,

H;S‘Fl = f AS+1 C'i\‘*lzl J({}.p)d;\. .
. o (A.5-4)

1/ 2 ‘/ 2 / 2 .
where: ¥s = k%-l > Ys-1 = k%-l'l , Y541 = k§+1'x . The subscript "s-0"

describes the medium in which the source is locted, and above the transmitter, subscript
"s+0" describes the same medium below the transmitter, subscript "s-1" describes the
medium above the first boundary above the transmitter , "s41" describes the medium

below the first boundary below the source.

Matching boundary and source conditions leads to the coefficients inside the
integrals that are as follow:.

B _ M [1 + Rs‘s+1e-2i‘Y-(2m -Z.)] e-i‘Y-(Z--ZﬂXI -Rois ) c-iti(ze1)
T i (A.5-5)
2m 275[1 + RS.S+le-1'sC'217‘zoﬂ '2.1)]

A = - M[1+RssuelMem 2R, eithe-2m) (A5-6)
’ 2mi 275[1 + Rs.s+1Rs-1,se'zi‘y'(z"l.zﬂ)] .

M 1 + R 4120z - 2)] eiW2)

Bso = on A5-7
s-0 2m 275{1 + Rs.s+le-1'se'2iY‘7ﬂl -7._1)] ( )
1 - R.1 € 21M(% - 21)| e+¥dz)
Ao = ML Retut e (A.5-8)
27 291 + Ry541R;.1 56 20021 21)]
1- R e2iz-21)] R. .y e Y221 -2)
Bsio = 24 [L-Rese ] 25+l & 77T (A5-9)
2mi 275[1 + Rs.s+le-l.se'2w‘(7"‘ -74-1)]
Ay = M (1 - Rs-l,se'zi{""z")) ez -2-)(1 + Rs.s+1) el (Zor1)
> 2m 2711 + Rs,s+1Rs-1.s@’zw'@"l '7”)]
(A.5-10)
where
Ry, e = 'Ys-l;'Ys i
Y1 * % (A.5-11)
and
_ Vs - Vs41
s,s+1 = ————

Ys + Yo+l | (AS5-12)



Appendix B
Evaluation of the integralsby the method of steepest descent.

This derivation follows the method given in Kauffman and Keller (1983).
However the integrals evaluated here are simpler because the integral

I - ;\,nc.' i'Y.Z ('YS- ‘YS+1) J x dA
jo ry (Ys + Ys+1) 0( P)

(B-1)
can be converted to:
MekRi 2 M|9% ekRi T .
T4m R;  K2-k2, 4m [62% R; 1 it o Hao) dx} (B-2)
| if n=1, orto:
) R)) - 2 .M :
HikﬁRI) k‘z-k.zﬂ 47t 4 Rl) f 1’ (I‘YS+1)CIY'Zl J({xp) J (B-3)

if n = 3 following derivations in Appendix A using equations (A.3-8), (A.3-9) and (A.3-
11). As a consequence of this simplification the expansion of the integrand into a power
series as described in Kauffman and Keller (1983) was unnecessary. Let's consider the

integral:
I = f A" iy €892 Jo (Ap) dA | (B-4)
0

The value of the integral will not change if we deform the path of integration into
the complex plane taking care of all branch points. The branch points of the integrand are
located at A = =k, and A = kg3, but the radiation condition implies that the Im(ks) <0
and Im(ks+1) <0, so only the points with negative imaginary parts have to be considered.

If we change the limits of integration from 0 to e to -eo t0 +oo by applying the
relations:
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IdAp) = -21-[H82)(7\-P) + H&n(lp)]’ (B-5)
and

Hhp) = - H§YAp), @
then this integral takes a form:

I = % f A" iy e %0 B (Ap) d. (B-7)

-The H&z)()»p) was chosen over Hﬁl)(l.p) because Hf)z)(lp) —0if Ilpl —oo in the sector
where -1 < arg Ap <O and this is implied by radiation condition (Abramovitz, 1980).
In the complex plane the deformed integration path is given in Figure B-1.

Im ) A

Re (A)

r=ks I I A =ks+1

Fig. B-1. Deformation of the contour of integration in the
complex plane

When the path of integration is as in Figure B.1, then the integral is given



1]

ket1

. |
L =3 f A" ifses e- 172 HY (Ap) dh + 1 f A iy € 1% B (Ap) dA (B-8)

and the integration takes place on both sides of the branch points.

Let's assume as in Kauffman and Keller (1983) that the main contribution to the
integral comes from the integrand near the branch points. This is true if all terms
involved decay exponentially with increasing distance of A to the branch points.

The term e-%2 indeed decreases exponentially when A # Xk, but in addition we
must ensure the exponential decay of Hp@X(Ar), which happens at large arguments Ap.
So our asymptotic expansions are valid in the far zone where the distance between the
transmitter and receiver is greater than the skin depth in the medium. With the change of
integration variable A, Ho®(Ar) is the largest where it's argument (Ap) is the smallest. So

- Hy®(Ap) should have a large contribution to the integral at small values of A. But from

Figure B.1 it can be seen, that the smallest A on the integration path around the branch
point from -iec to kg or kg4 is at A = k; and at A = kg41. So the largest contribution to the
integral occurs at branch points and decays exponentially away from this point.

In consequence, for integration around k;,; we have the following approximate
values: g = (k? - ks419)12  and ¥s4 is very small.

For integration around ks, we have: Ys41 = (ks+12 - ks2)1/2 and v, is very small.
The integral becomes:

Ko+l ‘ ke
n=~1 f A" e iV o 5 (Ap) dr+1 f AtiVie: e-iva HEP (Lp) d

(B-9)
After taking iVid: - and e iVk'-Ku zi outside the integrals and using the

relations C.2-4 and C.2-3 from the Appendix C for the first and second integrals
respectively, the final asymptotic value of the integral is given by: -

LM - e-i Vi m— Hy(Kg1,R) Lo - n/k§+1 3z; HelksRp) . (B-11)
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In the above final form we assumed that n=3. If n = 1, then the same relations
ekuR
hqld, but instead of H,(k;,R) whole space fields we have R  terms [from equations

(C.2-1) and (C.2-2) in Appendix CJ:

2 /
I = e¢iV-Khz 97 gk =0 - 1 k§+1 2 g
azz R azl Rl

(B-10)

The integrals given below are estimated by the same procedure. And thus:

? "—f A (itos1) (i) & oo e 112 HP (Ap) dA~
ke - .
% f A iVKE K2 (iy) e i Vida R e-iva HP (Ap) dA+

ket]
%j A (i¥s+1) inZ-kZ+1 e itz e- iRz B2 (Ap) dA =

iYkgirrks e iVkiu-Kz T ilﬁRz + IWel knzlfnba gioaRs
azQ aZ% R3 (B-12)

W

ke kes1
%.f e iVidiRa e-ivz HP (Ap) dl+%j Ae itz e iVikEE n HP (Ap) dA =
ViR () O et R | iV n () O ekeRs
© k()an R, ° h()a@, R;
(B-13)

ks ketl
%I Ae-i Y2 -z e-i%h2 ng) ()_p) dr + lf Ae-ivume-i Y2k 2 H.s)z) (xp) dir=

e-iVid Eza() giR: cﬂk.’l&.m()_a_z_@
022 Rz dzz Rj

(B-14a)
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gt = [ Remecmitli) o

ke ) kot
:12_[ A2 e iVidiRa e-ivae HP (Ap) di + .sz A% e itz i VidBaz HRDAp) d)=

-pw

e-iVki-Kz (-) —a— Hz(ks,Rz) + e iVKKiz () i Hz(ks+l,R3)
. azz aZ3

(B-14b)
Is =2 f A (i¥sn ) (i) e-i%2 HP (Ap) dh~

ks
%—f A iVk2, k2 (iys) e 1%a HSZ) (?\.p) dA+

koe1 ’
%‘f A (iYs+l) iYks-kg41 e_'i KK 2 H(Oz) (A'p) dA =

ioZ Lo T o 2
i kS+1-ks 2—9_& + i kS'ks+l e-i k.z-l&ﬂ z _a_g X1 R lz=0

(B-15)

If in the above cquationvs we have A3, instead of A, then instead of the Hertz

potentials in a whole space fields given by e-ksR/R terms we should use the whole space
fields H,(k,R).
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Appendix C

Summary of the expressions used in the derivations

C.1 General expressions

an+2 * an 2 an *
sl = 57 M KgzTh
z z z (Kaufman and Keller, 1983) A (C.1-1)

o%n 1 _ (~1)“[(2n-1)!!]2.
R ple for z=0

(Kaufman and Keller,_l983, p- 438) (C.1-2)

i A [ Ys- Yse1{Vs (4 - ik - ikeqq iks + iks4q
fo Ys¥s+1 (Ys + 'Ys+1) J({Xp) dr Iv(P 2 - )KV(P 2 )

(C.1-3)
with Re(ik;) > Re(iks41) 2 0
(Kaufman and Keller,1983, p. 415)
J (i 27 el map)an = 2 (-1)“% e
- (C.1-9)

where k; is a branch point for which Re[i(k2-A2)1/2] > 0, (Kaufman and Keller,1983,

p. 435)
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C.2 Integrals that can be reduced to whole space field values

n(k,R)_MglkR _Mfzclhczllzi J( )d}\,

R 4n iYi2a
- u [ 2B g
81:[ iVie-
(C2-1)
* . . 2 * * ’
H, (KR) = I (kR) | \2yg (kR) = (9 (k,R) 1 dIT (k,R)
922 2 P Op
x e- i sz-l Izi 7\’ dx
3 Rt —atill
=M exx® 2.9,2) + ( 02
i 55 &R [(1+ikR) (-p2+222) + (ikRP(-p2)]
(C.2-2)
) M| a3 ciVENE )
—H, (kR) = - M f 2e Jo(rp)dn (C.2-3)
aazH kR) = ZM-I 2 Ve)eiVe 2 1 (np)
Tl (C.2-4)
aa—st &R) = -M | 23(i sz AP e i Ve’ 3o (hp)dr (C.2-5)

-[kz aH’a(zk’R) + 33H5 <31<’R>} -M [ A eiVere plip)an  (C2-6)
Z



C.3a Explicit expréssions for whole space field: H,(k,R)

H{KR) = M eR [(1+ikR) (-p2+223 + KRY(-p3)]

(C.3-1)
AR M 2@ (1 +ikR) 3(3p2- 227
+(ikRP 2 (2p%- 2)
+ (kR (p?)] ~(C3-2)
aj% -M e—;‘}“ [(1 +kR) 3 (3p?- 24p222 + 829)
+(ikR)? ( 4p* - 31p%2 + 10z%
+(kRP ( p* -Tp%? + 279
+ (ikR)* (-p?2) ] (C.3-3)
@%’-R—) =M R.“ @) [(1 +ikR) 15(-15p* + 40p2z2 - 8z4)
+(ikR) 3 (-33p* + 89p%2 - 1824
+(ikRP ( -24p* + 67p%2 - 142%
+(ikRy* ( -3p* + 10p%2 - 229
+ (ikRY (+p%? ] (C.3-4)
aﬂaﬁ’m = ZM;{ ffl“[(l +ikR) 45(-5p8 + 90p%22 - 120p%* + 1626)
+(ikR)? 3(-33p+ 606p4z2 - 824p%* + 11226)
+(ikRP 12(-2p® + 39p422 - 56p%z* + 8z¢)
+(ikRY* 3(-p6+ 24p4i2- 30p24 + 626)
+(ikR) ‘( 6p4z2 - 13p%Z4 + 226)
+(&R)S (- p%*)]
Q_PQE& ™ L—( 2 | (C.3-5)
S i P [(1 +ikR) 3(p?- 422)
+HRE2 (p*-22%) (C.3-6)

+(ikR P (p?)]
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C.3b Explicit expressions for whole space field: H,(k,R)

Hy(k.R) = 2 €320 2[3(14+ikR) + (ikR]

(C.3-6)
oH,(k,R i .
—-%%—) =% %R(z)[(l +ikR) 3(z2- 4p?)
+ (ikRY ( 22 - 5p?) |
+(ikR} (-p3] (€3
M KR) , |
ToTD M R ) (1 +ikR) 3 (p7-42)
- +(ikRY (p?- 529 |
+(ikR ) (-23] | (C.3-8)
2 .
2 Hgg’R) ;21% 9;{—“;*‘ pz[(1 +ikR)15(-3p? + 422)
- - 2 2
+(ikR} 9 (- 2p? + 322 (C3.9)

+(ikRP (-3p? + 722)
+(ikR)* ( 22) ]
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C.4 Explicit expressions for whole space IT*,(k,R)/(M/4x)

0 e-ikR -ikR .
—¢€ = —6—3—(-2)[1+1kR]

iz R R | , (C.4-1)
9% iR _ iR 1) ey (024229 + (i -
ER 5 [(14ikR) (-p2+222) + (ikRYX(z2)] Ca2)

9> e-ikR 2
3 % -¢—(z)[(1 +ikR) 3(3p2- 229
+(ikRF 3 ( p?- 29)
+(ikRP (-29] | (C.4-3)

4 . .
é@z"?gleiR - %R [(1 +ikR) 3(3p*-24p22 + 829)

+(ikRP 3 ( p* - 10p%Z2 +4z%
+(ikRP 2 ( -3p%2 + 279

+ (ikRY* (2% ] (C.4-4)
0’ e-ikR  @-ikR .
a?g'i{_ = -°RT(z)[(1 +ikR) 15 (715p4+40p2z2- 824)

+(ikR) 30 (-3p* +9p%2 - 229
+(ikRP 5( -3p* + 14p%2 - 479
+(ikR}* 5( 2p%22 - 7%
+ (ikRP (-9 ] cas)
_aa—;% = %ﬁ[(l +ikR) 45 (-5p8 + 90p422 - 120p%* + 1625)
+(ikRY 45 (-205 + 39p42 - 56p%* + 826)
+(ikRP 15 (- p8+ 27p42- 48p%* + 826)
+(kRY 15(  +3p%2- 9p%t+ 226)
+(ikRP 3( -5p%Z*+ 2z5)
+(kR) 26)] C46)



-
TN L e

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA -
TECHNICAL INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

"
4





