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Abstract

Objective—Brain Computer Interfaces (BCIs) can enable individuals with tetraplegia to 

communicate and control external devices. Though much progress has been made in improving 

the speed and robustness of neural control provided by intracortical BCIs, little research has been 

devoted to minimizing the amount of time spent on decoder calibration.

Approach—We investigated the amount of time users needed to calibrate decoders and achieve 

performance saturation using two markedly different decoding algorithms: the steady-state 

Kalman filter, and a novel technique using Gaussian process regression (GP-DKF).

Main Results—Three people with tetraplegia gained rapid closed-loop neural cursor control and 

peak, plateaued decoder performance within three minutes of initializing calibration. We also 

show that a BCI-naïve user (T5) was able to rapidly attain closed-loop neural cursor control with 

the GP-DKF using self-selected movement imagery on his first-ever day of closed-loop BCI use, 

acquiring a target 37 seconds after initiating calibration.

Significance—These results demonstrate the potential for an intracortical BCI to be used 

immediately after deployment by people with paralysis, without the need for user learning or 

extensive system calibration.
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1. Introduction

Brain Computer Interfaces (BCIs) use neural information recorded from the brain for the 

voluntary control of external devices [1–10]. Motor imagery or intention can be decoded 

using intracortical BCI (iBCI) systems, allowing people with paralysis to control computer 

cursors [11–18], robotic limbs [13,19–22] and functional electrical stimulation systems 

[23,24]. Though much progress has recently been made in further improving the speed and 

robustness of iBCIs in people with tetraplegia resulting from spinal cord injury (SCI), 

amyotropic sclerosis (ALS), and stroke [16–18], little research has been devoted to 

minimizing the amount of time it takes a user to gain adequate neural control.

Two approaches have been described to calibrate decoders for motor imagery-based BCIs 

[25]. The first approach has been to have the users adapt their behavior to a fixed BCI 

decoder, based on feedback (often visual). While this approach leads to BCI-based control 

[26–35], the process of developing reliable control requires days to weeks. The second 

approach has been to adapt the decoder to the user, wherein decoder parameters are 

computed during an explicit calibration process [3,11–17,19,21,22,36–42]. As part of this 

calibration process, a baseline statistical model provides the user with initial closed-loop 

control; we refer to this as decoder seeding. Several methods of seeding have been described 

that are relevant to users with mobility impairments. First, decoder parameters can be seeded 

with random or arbitrary values [37,43,44]. Second, in EEG-BCI systems, decoders can be 

seeded based on large databases of exemplar signals collected from multiple individuals 

[45–48]. Third, and most commonly applied with human research participants, decoders can 

be seeded from open-loop imagery [11–13,15–21,43,44,49–52], where users imagine or 

attempt movements for several minutes, after which their intentions are inferred without 

real-time external feedback.

In order to provide users with closed-loop control, iBCI decoders are calibrated by modeling 

a relationship between neural features (e.g. neuronal firing rates) and motor intentions that 

are inferred from training data (e.g. vectors from the instantaneous cursor position to the 

target position) [41]. Often, decoder calibration relies on seeding decoders during an open-

loop imagery task in which users are asked to attempt, or imagine, controlling a 

preprogrammed cursor that automatically moves to presented targets [11–18,20,21,24]. The 

resulting mapping from neural data to movement intention is then used to provide users with 

closed-loop neural control. Since the tuning of neurons during open-loop imagery doesn’t 

generalize perfectly to closed-loop contexts [15,37,53–55], parameters are typically re-

computed using closed-loop data [15,17,43,44,49,50,56]. Once users are provided with 

initial closed-loop control, iBCI systems can continue to adapt based on closed-loop data. 

Adaptation during ongoing use optimizes the quality of control during extended use 

[9,15,16,25,43,44,49,50,57,58] given signal nonstationarities [16,59]. Strategies for updating 

decoders during ongoing use include re-computing model parameters continuously [44,56–

58] or in short batches on the timescale of minutes [43,49,50].

There are several reasons why the current approach to decoder calibration should be 

shortened and streamlined. First, some iBCI users will have diseases such as ALS or 

brainstem stroke, which may impair their ability to remain alert and engaged long enough to 
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participate in prolonged calibration sequences. Second, by rapidly providing users with 

feedback that the device is working (i.e. by obviating the requirement for an explicit open-

loop imagery task), one could anticipate greatly increased user engagement and decreased 

time required for developing adequate neural control [43,44,60,61]. Third, in the current 

stage of research, where iBCI devices in humans require percutaneous connections, there is 

limited time available for data collection during research sessions. A reduction of calibration 

times on the order of minutes would dramatically streamline data collection, with further 

time savings gained across days. Finally, the immediate and intuitive calibration of a BCI 

decoder would make it possible in the future for a patient who has become acutely locked-in 

due to brainstem stroke to be provided with an immediately useful BCI.

Here, we demonstrate rapid calibration of iBCIs that allows users to achieve closed-loop 

neural control without an explicit open-loop imagery step [11–18,20,21,24] (Fig 1). Three 

iBCI users with paralysis developed accurate neural closed-loop cursor control with 

performance plateauing in under 3 minutes. We found that this approach could be used for 

two different decoding algorithms. Finally, a BCI-naïve individual with tetraplegia 

(participant T5) was able to gain continuous, unassisted, two-dimensional closed-loop cursor 

control when using an iBCI system for the first time.

2. Methods

2.1 Permissions

The Institutional Review Boards of Brown University, Case Western Reserve University, 

Partners HealthCare/Massachusetts General Hospital, Providence VA Medical Center, and 

Stanford Medical Center, as well as the US Food and Drug Administration granted 

permission for this study (Investigational Device Exemption). The participants in this study 

were enrolled in a pilot clinical trial of the BrainGate Neural Interface System 

(ClinicalTrials.gov Identifier: NCT00912041). (Caution: Investigational device. Limited by 

federal law to investigational use.)

2.2. Participants

The three participants in the study were: T5, a 63 year-old right-handed male with C4 AIS-C 

spinal cord injury; T8, a 55 year-old right-handed male with C4 AIS-A spinal cord injury; 

and, T10, a 34 year-old right-handed male with C4 AIS-A spinal cord injury. All three 

participants underwent surgical placement of two 96-channel intracortical silicon 

microelectrode arrays [62] (1.5-mm electrode length, Blackrock Microsystems, Salt Lake 

City, UT) as previously described [11,12]. In T5 and T8, both arrays were placed in the 

dominant precentral gyrus. In T10, one array was placed in the dominant precentral gyrus 

and a second was placed in the dominant caudal middle frontal gyrus. Data were used from 

trial (post-implant) days: 30 and 33 (T5); 660, 662, 665, 927, and 928 (T8); and 84, 112, 

187, 188, 194, 195, 203, 215, 216, 236, 355, and 361 (T10).

2.3 Signal acquisition

Raw neural signals for each channel (electrode) were sampled at 30kHz using the NeuroPort 

System (Blackrock Microsystems, Salt Lake City, UT). Further signal processing and neural 
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decoding were performed using the xPC target real-time operating system (Mathworks, 

Natick, MA). Raw signals were downsampled to 15kHz for decoding, and de-noised by 

subtracting an instantaneous common average reference [16,17] using 40 of the 96 channels 

on each array with the lowest root-mean-square value (selected based on their baseline 

activity during a one minute reference block run at the start of each session). The de-noised 

signal was band-pass filtered between 250 Hz and 5000 Hz using an 8th order non-causal 

Butterworth filter [63]. Spike events were triggered by crossing a threshold set at 3.5x the 

root-mean-square amplitude of each channel, as determined by data from the reference 

block. The neural features used were: (1) the rate of threshold crossings (not spike sorted) on 

each channel, and (2) the total power in the band-pass filtered signal [14–16]. Neural 

features were binned in 20ms non-overlapping increments for decoding with T5 and T10. 

For T8, the 20ms bins were causally smoothed over 60ms.

For closed loop decoding, the neural features, z, were split between threshold crossings and 

the band power filtered signal [14–16]. We used the top 40 features ranked by signal-to-

noise-ratio of neural modulation [64]. For all three participants, 35% (+/− 3%) of the 

features selected were threshold crossings, and 65% (+/− 3%) were band power. The number 

of features that were tuned for closed-loop neural cursor control was computed for each 

participant. A feature was considered tuned if there was a statistically significant 

relationship between the feature and the direction of movement grouped by octants 

(ANOVA, p < 0.001). The average fraction of features that were tuned for directional 

movement was 0.64 (T5, range: 0.53 – 0.70); 0.36 (T8, range: 0.17 – 0.51); and, 0.58 (T10, 

range: 0.23 – 0.84).

2.4 Calibration task

Task cueing was performed using custom built software running Matlab (Natick, MA). The 

participants used standard LCD monitors placed 55–60 cm distance from the participant, at a 

comfortable angle and orientation. Participants engaged in the Radial-8 Task as previously 

described [12,16]. Briefly, targets (size = 2.4 cm, visual angle = 2.5°) were presented 

sequentially in a pseudo-random order, alternating between one of eight radially distributed 

targets and a center target (radial target distance from center = 12.1 cm, visual angle = 

12.6°). Successful target acquisition required the user to place the cursor (size = 1.5cm, 

visual angle = 1.6°) within the target’s diameter for 300ms, before a pre-determined timeout. 

Target timeouts resulted in the cursor moving directly to the intended target, with immediate 

presentation of the next target. During the first 60 seconds of calibration with T8, we 

attenuated 80% of the component of the decoded vector perpendicular to the vector between 

the cursor and the target [15,39]. No error attenuation was used for T5 or T10.

2.5 Calibration procedure

Previous approaches to iBCI decoder calibration—Prior to the procedure described 

in this report, decoder calibration was a multi-step process requiring active intervention from 

a trained technician. We have previously reported two approaches. The first [17,18] used: (i) 

initial BCI setup, (ii) 5 minutes of open-loop motor imagery, (iii) a technician supervised 

decoder calibration stage, (iv) 5 minutes of closed-loop control, and finally, (v) a second 

supervised decoder calibration (Figure 1). Our team has also implemented protocols for 
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initial decoder calibration wherein users performed 2 minutes of open-loop imagined 

movements, followed by a series of batch-based calibration sequences over 6 minutes [12] or 

9 minutes [15,16] of gradually decreasing computer assistance [15,16,39]. Thus, our 

standard approach to calibration has been to seed decoders with open-loop imagery, and then 

to perform batch-based decoder updates, taking approximately 8–11 minutes of actual 

calibration time (excluding the additional time required for manual intervention by the 

technician between calibration epochs - approximately 0.5–1 minutes between blocks).

We sought to accelerate calibration with three modifications to our standard approach. First, 

we removed the explicit open loop calibration step. Second, rather than performing batch-

based calibration every 2–5 minutes, we updated decoder parameters every 2–5 seconds 

throughout the calibration phase. Third, we automated the remaining calibration steps 

normally performed by a technician.

We note that our new approach to calibration performs three processes simultaneously, 

which we briefly list here and then describe in detail in later sections. First, the decoding 

algorithm performs real-time predictions of the intended velocity based on the neural 

features, providing users with closed-loop neural control (Section 2.6). Second, during 

calibration, data consisting of (yt, zt) pairs are collected, where yt is the 2×1 unit vector 

pointing from the cursor’s current position to the known target [14–16], and zt is the 

corresponding 40×1 vector of neural features. Third, the (yt, zt) pairs are used to update the 

parameters used by the decoding algorithm every 2–5 seconds (Section 2.7).

At the start of the session, the decoder parameters are initialized to values that leave the 

cursor stationary regardless of the neural features. Nevertheless, training data can be 

collected since the user has been instructed to attempt to move the cursor to the target on the 

screen. After the first parameter update (2–5 seconds after the start of the session), the 

decoder began using neural features to provide users with closed loop neural control, 

although the user had poor control, as expected. As the calibration task continued, the 

decoder parameters were re-computed (based on growing amounts of training data, every 2–

5 seconds) and the quality of control improved. At the end of the calibration the parameters 

were locked before assessment with the Grid Task (see below).

2.6 Decoders: Basic models and algorithms

We tested our calibration procedure with two different decoding algorithms: the steady-state 

Kalman filter, and a novel technique combining Gaussian process regression with the 

discriminative Kalman filter (GP-DKF), described below. Both decoders are Bayesian 

sequential filters. Let xt denote the hidden state at time step t, namely, the unobserved 2×1 

vector of intended velocity of the cursor, and let zt denote the observation at time step t, 

namely, the 40×1 vector of neural features (Sections 2.3, 2.5). In Section 2.7 we discuss the 

distinction between xt and yt. The initial probability distribution function (PDF) of intended 

velocity at time 0 is denoted p(x0), the conditional PDF of intended velocity at time t given 

the intended velocity at time t-1 is denoted p(xt | xt-1), and the conditional PDF of neural 

features at time t given the intended velocity at time t is denoted p(zt | xt). The conditional 

PDFs p(xt | xt-1) and p(zt | xt) model, respectively, the temporal dynamics of intended 

velocity and the instantaneous mapping from intended velocity to neural features. Bayesian 
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sequential filters use these PDFs and the history of observed neural features (z1,…, zt) in 

order to compute the conditional PDF of the intended velocity given the complete history of 

observed data:

Both decoding algorithms used the mean of this conditional PDF as the prediction of the 

unknown intended velocity at time step t. This prediction was used to update the cursor 

position.

The two decoding algorithms are derived under differing assumptions for the observation 

model, p(zt | xt), but they share the same model for intended velocity:

where η(x | μ, Σ) denotes the multivariate Gaussian PDF with mean vector μ and covariance 

matrix Σ evaluated at x. This is the model for the hidden states underlying the well-known 

Kalman filter [11,65,66]. W and W0 are 2×2 covariance matrices and A is a 2×2 matrix. The 

parameters A, W, W0 were fixed at values that have historically worked well for closed-loop 

neural control [14–16]. Both A and W noticeably affect the dynamics of cursor control. 

Loosely speaking, A controls the smoothness of cursor dynamics, whereas W controls the 

extent to which decoded neural features are used to drive cursor control.

Kalman filter—The first decoder uses the linear, Gaussian observation model

where Q is a 40×40 covariance matrix and H is a 40×2 matrix relating intended velocity to 

brain activity. The parameters H and Q were learned from the training data collected during 

the calibration procedure (Sections 2.5 and 2.7). The classical Kalman-update equations use 

the observed neural features as well as A, W, W0, H, and Q, in order to compute the mean of 

p(xt | z1,…, zt), used for closed-loop neural control [11,65,66]. The version of the algorithm 

that we used is based on the steady-state update Kalman equation [14–16] and uses real-time 

bias correction [16,19]. During closed-loop calibration, the parameters H and Q were 

updated every 2–5 seconds. We do not go back to time step 0 and repeat the entire Kalman 

filtering algorithm with the updated parameters.

Discriminative Kalman filter—In contrast to the standard Kalman filter, the DKF places 

no constraints on the observation model: it may be nonlinear and non-Gaussian. Although 

relaxing this Gaussian assumption may better model the non-Gaussian features of neural 

data, it introduces two fundamental difficulties. First, the standard filtering algorithms 

become computationally intensive (unlike the fast Kalman-update equations). Second, 
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learning a generic observation model from training data is much more complicated than 

learning the parameters H and Q in the Kalman model [67,68].

We have recently shown how these two difficulties can be surmounted for our purposes 

using an approach that we call the discriminative Kalman filter (DKF) [67]. In brief, the 

DKF solves the problem of computationally intensive Bayesian filtering updates with 

judicious and theoretically motivated Gaussian approximations. Using these approximations 

does not require full knowledge of the observation model, but only requires knowing the 

conditional mean and covariance of the intended velocity given the current neural features. 

We denote the conditional mean and variance as the functions m(zt) and S(zt), respectively. 

The only requirement in using the DKF is to learn m(zt) and S(zt) during calibration (see 

Sections 2.5, 2.7). Even though m(z) and S(z) are arbitrary functions, we refer to them as 

parameters of the decoder.

Despite the highly non-linear nature of m(z) and S(z), the calculations needed to compute 

the predicted intended-velocity (given A, W, W0) may be performed in real time systems 

[67]. When the parameters m(z) and S(z) are updated (every 2–5 seconds during the 

calibration phase), we simply modify their values in the DKF update equations for future 

updates. We do not go back to time step 0 and repeat the entire DKF filtering algorithm with 

the updated parameters. We emphasize that the DKF is distinct from the extended Kalman 

filter, the unscented Kalman filter, and related algorithms, which are based on combining 

Gaussian approximations with the conditional mean and covariance of the neural features 
given the intended velocity; instead, the DKF approximates the intended velocity given the 
neural features. Loosely speaking, the DKF can be viewed as a principled way to do model-

based temporal smoothing of direct (nonlinear) regression predictions of intended velocity.

2.7 Decoders: Parameter learning and updating

Each decoder has parameters that relate the intended velocity of the cursor to the neural 

features, namely, H and Q for the Kalman filter and m(z) and S(z) for the DKF. In principle, 

parameters could be learned from observed (xt, zt) pairs, however, the true intended velocity 

(xt) is always unobservable. Instead, we learn the parameters using the (yt, zt) pairs that are 

collected throughout the calibration phase (Section 2.5). Recall that yt is the unit vector 

pointing from the cursor’s current position to the known target. Our calibration algorithms 

simply use yt as a direct surrogate for xt, the rationale being based on the assumption that the 

user intended to move directly to the target at time t. At time step r, say, we horizontally 

concatenate y1,…, yr into a 2×r matrix Y and, similarly, we concatenate z1,…, zr into a 40×r 

matrix Z. The matrices Y and Z comprise the training data at time step r. For certain values 

of r (every 2–5 seconds), these matrices are used to update the parameters of the decoding 

algorithm.

Given Y and Z, the calibration for the Kalman filter computes H and Q, and calibration for 

the DKF computes m(z) and S(z). In both cases, we use standard regression tools: linear 

regression for H and Q and nonlinear regression for m(z) and S(z). Since closed-loop 

parameter updates begin updating seconds after the start of calibration, regression methods 

were chosen that provided non-singular solutions given small amounts of data. In both cases, 

we used Bayesian regression methods. In a Bayesian approach, uncertainty about a 
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parameter is represented by a probability distribution. The Bayesian prior refers to the 

probability distribution before data has been collected. As new information becomes 

available, the parameter’s distribution is updated accordingly (referred to as the posterior 

distribution). Hence, Bayesian methods provide the experimenter a method for updating 

their belief of a parameter given evolving information. Note that the term Bayesian is used in 

two different contexts in this paper. Our decoding algorithms are based on Bayesian 

filtering, whereas our calibration algorithms incorporate new training data using Bayesian 

parameter updating. In principle, decoding and parameter learning could be combined into a 

unified Bayesian procedure, but this would necessitate more complicated decoding 

algorithms and would be too computationally demanding to perform real-time decoding.

Kalman filter with Bayesian linear regression—Given matrices Y and Z, the 

parameter H (relating motor intention to neural features) was updated via

where I is the 2×2 identity matrix and α was a regularization parameter (α = 10−3). This 

particular method of updating H can be viewed equivalently as ridge regression or as 

Bayesian linear regression [68]. We will describe the Bayesian derivation. Let vec(H) denote 

the vectorization of H, i.e., the 80×1 vector created by stacking the 40×2 columns of H on 

top of one another. We set the prior for vec(H) (given Y and Q) to be a multivariate Gaussian 

with mean zero and covariance α−1I⊗Q, where ⊗ denotes the Kronecker product, and we 

use the Kalman filter observation model (replacing xt with yt) which specifies that p(zt | Y, 

H, Q) = η(zt | Hyt, Q). Under this model (regardless of the prior on Q), the posterior mean of 

H is ZYT(YYT + αI)−1, and we use this as our estimate of H based on Y and Z. As more 

data were collected, the impact of the αI term decreased and our estimate for H approached 

the maximum likelihood estimate that is traditionally used for selecting parameters for the 

Kalman filter [66]. After H was updated, Q was updated using the covariance of the 

residuals Z – HY.

Gaussian process regression—Given matrices Y and Z, the nonlinear function m(z) 

(relating neural features to motor intention) was computed via

where α was a regularization parameter (set to α=0.6), I is the r×r identity matrix, K(z, z′) is 

the standard radial basis function kernel, K(Z, Z) is an r×r matrix with Kij(Z, Z)=K(zi, zj), 

and K(z, Z) is a 1×r vector with Kj(z, Z)=K(z, zj). Intuitively, the function m(z) returns a 2×1 

prediction of intended velocity by taking a weighted average of all of the intended velocities 

in Y (Supplementary Figure 1). The weights were determined by comparing the current 

vector z of neural features to the neural training data in Z using the radial basis kernel (i.e., a 

Gaussian kernel in 40 dimensions) as a measure of similarity (Supplementary Fig. 1.). In this 

case the prior on the function m(z) was a zero mean GP with covariance kernel K and we 
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update using the posterior mean. The function S(z) = S was taken to be constant and was 

estimated from the covariance of the residuals m(Z) – Y. To emphasize that m(z) is learned 

with GP regression, we call our second decoder the GP-DKF.

We found evaluating m(z) was slow when the number of training points in Y and Z was too 

large. We used up to 60 seconds (3000 datapoints) of data for decoding with T5 and T10. 

For T8, we increased this to 120 seconds (6000 datapoints). The number of datapoints was 

chosen based on early validation of the GP-DKF method. Early validation of the GP-DKF 

also suggested higher quality cursor control using only band power for zt, rather than both 

band power and threshold crossing counts. For the purposes of comparing performance to 

the Kalman decoder, we selected 40 features. Neural features were sorted into octants 

according to the direction of movement. Each octant contained a maximum number of 

datapoints (i.e. 3000/8 = 375), with corresponding buffer allocations. If the number of 

datapoints exceeded the buffer size per octant, the oldest data in that octant were replaced.

2.8 Performance measurement

After calibration, we quantified performance using a Grid Task after locking decoder 

parameters [13,18,52]. This task consisted of a grid of N square targets arranged in a square 

grid (N = 25, 36, 49, 64, 81 or 100, length of one side of square grid = 24.2cm, visual 

angle=24.8°). One of N targets was presented at a time in a pseudo-random order. Targets 

were acquired when the cursor was within the area of the square for 1 second. Incorrect 

selections occurred if the cursor dwelled on a non-target square for an entire hold period 

[69]. When comparing the GP-DKF decoder to the previously described standard Kalman 

calibration scheme [14–16], each comparison block was 3 minutes in length. When 

performing rapid decoder calibration comparisons with T10, each comparison block was 2 

minutes in length. Block lengths were selected based on the participant’s preference.

The Grid Task is designed as a generalized version of a single-channel communication task, 

designed to measure target selection speed. The achieved bit rate (BR) measures the 

effective throughput of the system [52]:

where N is the number of possible selections, Sc and Si are the number of correctly and 

incorrectly selected targets, respectively, and t is the elapsed time. The max function ensures 

that the bit rate remains non-negative.

Testing performance as a function of decoder and calibration times—We 

performed a series of comparisons between the GP-DKF and Kalman decoders with variable 

amounts of calibration time. Decoders were calibrated using the Radial 8 task, parameters 

were locked, and the performance was measured using the Grid Task. For instance, when 

comparing performance of the Kalman decoder at 3 minutes vs. 5 minutes, the Kalman 

decoder was first calibrated for 3 minutes and then immediately tested (representing 

condition A). Next, a new Kalman decoder was calibrated for 5 minutes before being tested 

Brandman et al. Page 10

J Neural Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with the Grid Task (B). Decoder/timing pairs were alternated, in an A-B-A-B format. Only 

data collected the same day were used for statistical comparisons.

Testing the new rapid calibration protocol vs. the previous standard—To test 

the performance of the new calibration protocol vs. the standard calibration protocol, we 

began by calibrating using the technician supervised, computer-assisted, batch-based 11-

minute calibration scheme (as previously used in[14–16]). Calibration began with 2 minutes 

of open loop imagery, which was used to seed a decoder. Next, three blocks (3 minutes each) 

of closed-loop neural cursor control were performed, while computer assistance was 

gradually removed. Performance was assessed using the Grid Task. Next, we performed 

three minutes of closed-loop decoder calibration using the GP-DKF decoder, locked decoder 

parameters, and then assessed performance with the Grid Task. We used block-based feature 

mean updates for the standard Kalman decoder[16]. Only data collected the same day were 

used for statistical comparisons.

Isolating the calibration protocol vs. the previous batch-based protocol—To 

test the performance effect from the rapid calibration protocol, we compared it to the 

standard batch-based method while controlling for calibration length. We began by having 

the participant attempt open loop motor imagery for one minute. The neural features and 

cursor kinematics were used to seed both the standard Kalman decoder (i.e. decoder 

parameters did not update for 2 minutes, condition A) and the rapidly updating Kalman 

decoder (i.e. decoder parameters updated every 3–5 seconds for 2 minutes, condition B). 

After locking parameters, we then tested performance using the Grid Task, balancing the 

comparisons by alternating whether A or B was tested first.

Mean angular error measurements—To investigate performance saturation, we 

performed offline simulations of decoder performance by training decoders with variable 

amounts of training data. We computed the angular error between the predicted decoder 

value without filtering (i.e. the Kz term of the Kalman filter) and the label modeled as the 

vector from cursor to target [14–16]. Data from a single experimental session were 

concatenated together. A decoder was trained using a random subsample without 

replacement and then used to predict the mean angular error for another subsample of the 

same size. Decoder predictions were bootstrapped 100 times.

Additional metrics—In addition to bit-rate and angular error, we also report two 

additional metrics. The first is time to target, which is the time between target presentation 

and acquisition by the user. The second is orthogonal direction changes, which is a measure 

of how consistently the cursor went towards the target[12].

2.9 Additional methods for participant T5’s first day of closed-loop neural control

Though participants often remain in the BrainGate and other BCI research for years 

[12,18,19,41], there can only be one “first day” of attempted neural control. There is also 

special interest in understanding how rapidly a BCI-naïve user with tetraplegia might gain 

useful neural control of a BCI. We had the opportunity to deploy GP-DKF on participant 

T5’s first day of neural control.
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Prior to T5’s first attempt at closed-loop neural control, the following text was read 

verbatim:

“As you know, we are recording from a part of the brain responsible for controlling 

movement. In this part of the brain, the nerve cells respond to you attempting to 

move part of your body. You’ll be presented with a cursor and a target. We’d like 

you to think about moving your hand/arm/finger towards the target. As you try and 

do so, the system will be recording from the nerve cells. It will learn that [sic] the 

pattern of brain activity associated with wanting to go to a direction.

“As you try to move the cursor to more targets, the system will learn a list of 

different responses. The cursor may not behave as you expect. For example, you 

may be trying to move the cursor to the right but the cursor moves to the left. This 

is OK. It’s not your fault. But no matter what the cursor is doing, keep trying to 

move it towards the target. The system will rapidly learn your brain signals and 

may start to correct within a few seconds. It’s important to stay consistent with 

what you’re attempting to do. For example, rather than repeatedly trying to move 

your hand to the left, you have to attempt to perform a continuous left-moving 

motion.

“We’re going to try a few different imageries today. Can you think of some motions 

that would be intuitive to control a computer cursor on a screen?”

We explored a total of six motor imageries with T5. “Joystick” refers to the control of an 

airplane using a joystick, where the dominant hand is resting comfortably on a surface and 

moving a joystick in a particular direction driving cursor movement. Left movement occurs 

through pronation, right through supination, upwards with ulnar deviation, and downwards 

with radial deviation. “Whole arm” refers to attempting to control the cursor by pointing 

using the index finger, where the shoulder and elbow are free to move with fixed wrist and 

finger positions. “Index finger” refers to imagery in which the wrist is resting comfortably 

on a surface, and the index finger is used to control a pointing stick mouse. “Stirring a pot” 

refers to the imagery of holding a wooden spoon over a saucepan. The shoulder is fixed, and 

movement occurs with a combination of arm protraction and retraction, as well as elbow 

internal and external rotation. The wrist and fingers are fixed. “Pointing at a target” refers to 

imagery wherein T5 is pointing at the screen where he wants the cursor to go with his arm 

fully extended, the elbow and wrist locked. Moving left, right, up and down refer to arm 

adduction, abduction, flexion and extension, respectively. “Mouse ball” refers to the control 

of a trackball mouse, requiring a combination of elbow and wrist movement, with a fixed 

wrist/finger orientation. T5 described the mouse ball imagery as being continuous as 

opposed to repetitive; that is, moving the cursor in a direction did not require repeatedly 

resetting his hand position. Importantly, due to T5’s injury, he was unable to actually 

perform these tasks. During all of the imageries, his hand and arm were comfortably at rest 

at his side. T5 decided to use the “joystick” imagery for the very first attempt at closed-loop 

control.

The research session began with a one-minute reference block for computing spike threshold 

values and choosing channels for common average referencing. Thereafter, T5 attempted 

neural cursor control with the GP-DKF decoder. On the first attempt, the block was stopped 
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after approximately one minute when T5 indicated that he did not understand he was 

supposed to have been attempting motor imagery (asking “when should I start?”). After 

being reminded that he should be using the “joystick” imagery, the calibration sequence was 

repeated and T5 gained closed-loop neural control of the cursor (see Results).

After the “joystick” imagery, T5 then achieved closed-loop control with each of the 

imageries in the order listed above. T5 was then asked to select the top three imageries that 

felt most intuitive. He selected “joystick”, “index finger”, and “mouse ball”. We repeated 

calibration with each of these imageries. We presented him with the results of target 

acquisition as a function of calibration time (similar in format to Fig. 4), and provided him 

with the opportunity to select a single motor imagery that felt intuitive to use for the rest of 

the sessions. He selected “mouse ball”. Thereafter, he was asked to only use “mouse ball” 

imagery for Radial-8 and Grid Task control.

3. Results

3.1 Rapid calibration with both GP-DKF and Kalman decoders

All three iBCI users with tetraplegia rapidly gained closed-loop cursor control during the 

initial calibration sequence using the GP-DKF decoder (Fig. 2A–D, Supplementary Fig. 2, 

3). At the start of calibration, neural control was poor as expected; as more data were 

collected, each user gained better control in all directions. To assess performance saturation, 

we fit the calibration performance with an exponential curve, computed the exponential 

time-constant, and then estimated the amount of calibration data required to achieve 95% 

maximal performance. We found the time to target performance saturated with the GP-DKF 

within 3 minutes for all three participants (participant T5: 43s +/− 4s, T8: 136s +/− 54s, T10: 

100s +/− 25s). Towards the end of calibration, the time to target acquisition was comparable 

to state-of-the-art Radial-8 task target acquisition times with fully calibrated decoders and 

locked parameters [17]. Note that GP-DKF calibration with T5 and T8 did not use computer 

assistance, whereas T8 used computer assistance for the first 60 seconds (see Methods, 

[15]).

We further evaluated performance saturation for all three participants with offline 

simulations using a different performance metric. By bootstrapping neural features and 

cursor kinematics within a single experimental session, we computed the predicted the 

angular error between the simulated decoded direction and the known vector from cursor to 

target (see methods). We found that offline predictions of decoder performance had an 

exponential behavior for all of the experimental sessions we tested (Fig. 3). We fit the 

angular error curves using a decaying exponential, computed the decay half-lives, and then 

estimated the amount of neural data required to achieve 95% saturation of the minimum 

angular error. We found that offline simulations of angular error saturated in under 3 minutes 

of calibration time (mean +/− standard deviation; participant T5: 41.6s +/− 4.6s; T8: 83.3s +/

− 9.9s; T10: 69.3s +/− 7.5s).

Next, we assessed neural closed loop decoder performance at various durations of decoder 

calibration. We calibrated decoders for 1, 3, and 5 minutes, locked decoder parameters, and 

then quantified performance using the Grid Task (Table 1, Supplementary Figs. 4, 5). Using 
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the Kalman decoder, we found a statistically significant difference between bit rate at 1 

minute and 3 minutes, but did not find a statistically significant difference in bit rate between 

3 minutes and 5 minutes (although there was a statistically significant difference in the 

number of orthogonal direction changes). Thus, we found that closed-loop neural control, as 

measured by communication bit-rate, saturated within 3 minutes of initializing calibration. 

For the GP-DKF decoder, we found a statistically significant difference between bit rate 

performance, time to target, and orthogonal direction changes at 1 minute and 3 minutes. 

When comparing performance between the Kalman and GP-DKF decoders, we did not find 

a statistically significant difference between bit rate at 1 minute and 3 minutes (although 

there was a statistically significant difference in the time to target and orthogonal direction 

changes).

3.2 Performance after rapid calibration

While closed-loop parameter updates provided users with closed-loop neural decoding that 

improved during calibration, we investigated whether there was any performance benefit that 

resulted from this rapid calibration protocol compared to the standard batch-based method 

(Supplementary Fig. 5). Since the standard calibration method requires parameter 

initialization in order to provide users with closed-loop control, we initialized both decoding 

methods using 1 minute of open loop imagery. We then calibrated both methods for 2 

minutes without computer assistance, locked decoder parameters, and then tested each 

resulting decoder using the Grid Task. While neural cursor control improved during 

calibration (Supplementary movies 1–3), we found no statistically significant difference in 

bit rate, time to target, or orthogonal direction changes between calibration methods.

Finally, we investigated whether the shortened calibration provided similar performance to 

our standard calibration method previously described. We calibrated a GP-DKF decoder for 

3 minutes and compared the performance against a batch base protocol using 2 minutes of 

open loop imagery and 9 minutes of closed loop data with gradually decreasing computer 

assistance [12,14–16]. For each of the three participants, the bit rate (Fig. 4), time to target 

acquisition, and number of orthogonal direction changes of the shortened calibration method 

was statistically comparable to the standard calibration method. When participant data was 

combined, there was no statistically significant difference between calibration methods 

(median = 1.1 bit/s for GP-DKF vs. 1.3 bit/s for standard Kalman, Wilcoxon Rank-test, p = 

0.58).

3.3 Rapid calibration in a BCI-naïve user’s first neural control session

We were interested in investigating the speed and accuracy with which a BCI-naïve user 

could acquire closed-loop cursor control. Prior to his first-ever BCI research session, we 

provided participant T5 with a high-level description of the BCI system (as had been 

discussed over months prior to enrollment) and detailed some principles of motor imagery 

(see Methods). T5 decided that he would use the imagery of his dominant hand controlling a 

joystick. On his first-ever BCI control session (Trial Day 30), after reporting that he 

understood the instructions and indicating that he was ready, T5 gained continuous, 

unassisted, two-dimensional closed-loop cursor control using the GP-DKF. He acquired his 

first target approximately 37 seconds after initializing calibration (Fig. 5, Supplementary 
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Video 1). After using the system for 120 seconds, cursor performance was comparable to the 

most recent state-of-the-art Radial-8 performance described in people [17].

Although T5 originally selected the “joystick” imagery as being intuitive, we were also 

interested in exploring whether other motor imageries would be more intuitive, or result in 

higher quality closed-loop cursor control. Thus, following this initial calibration, we 

investigated six distinct motor imageries of both the proximal and distal dominant arm, 

allowing T5 to attempt to gain control using each of them one by one, restarting the 

calibration task over each time. Consistent with the heterogeneous representation of upper 

extremity movements at the level of individual neurons in the motor cortex [70–74], T5 was 

able to achieve closed-loop control using all six imageries within ~60 seconds 

(Supplementary Figure 7). T5 then selected the imagery he found most intuitive: control of a 

mouse-ball with the dominant hand. After 3 minutes of calibration with the GP-DKF 

decoder using mouse ball imagery, the decoder parameters were locked, and performance 

was assessed in the Grid Task. T5 achieved a bit rate of 1.87 bits/sec on his very first attempt 

at the Grid Task.

4. Discussion

Three people with tetraplegia rapidly gained high-performance, two-dimensional closed-

loop neural control of a computer cursor using two markedly different approaches to neural 

decoding. Performance for all three participants saturated within three minutes of initiating 

calibration. Performance with each decoder was comparable to that obtained in previous 

studies using standard open-loop/closed-loop calibration routines that last ~10 minutes (see 

methods) [14–16]. In addition, a BCI-naïve man with high cervical spinal cord injury, gained 

closed-loop two-dimensional neural control on his very first attempt within 2 minutes. This 

study thus provides additional progress and opportunities toward the goal of providing rapid 

and intuitive BCIs for people with paralysis.

The rapid calibration protocol reported here improves upon the traditional calibration 

sequence. Rather than explicitly using an open-loop imagery step, we provided the user with 

closed-loop control immediately after the first target was presented. This reduced the open-

loop imagery phase from 2–5 minutes to ~3 seconds in length.

So as to focus entirely on the decoder calibration methods, the implementation of the Grid 

Task here relied on users dwelling over targets for a predetermined length of time to make 

correct (or incorrect) acquisitions. We have previously reported higher bit-rate performance 

by participants acquiring targets using an additional mouse-click imagery [18]; further 

research will combine the rapid two-dimensional decoder calibration described here with 

additional state (e.g., click) detection approaches.

4.1. Future directions for iBCI systems

The ideal iBCI should provide immediate, intuitive restoration of communication and/or 

mobility. Doing so would make it possible to immediately restore communication for 

someone who has become acutely locked-in due to brainstem stroke, where the current 

standard of care in intensive care units has been to rely upon patients’ (often unreliable) eye 
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blinks or vertical eye deviation for communication. Short of achieving this ideal, additional 

clinical and experimental imperatives include the following: minimizing the amount of user 

effort required to engage the system; enhancing user engagement during early use 

[43,44,60,61]; eliminating calibration procedures that provide no feedback (i.e. an explicit 

open-loop imagery step) for users with impaired levels of alertness; early confirmation to 

users and caregivers that the BCI is working; and, a dramatic increase in research efficiency. 

Each of these imperatives is supported by a rapid calibration protocol.

All three participants in this study used intracortical electrode arrays [62] requiring 

percutaneous connections. As fully implantable iBCI systems [75] are developed that work 

24 hours per day, the system should require less active intervention by trained technicians, 

relying instead on automated procedures to guide everyday use. For example, once the 

explicit target-based calibration procedure is complete, the user should be able to move on to 

general computer use, including communication tasks, where the cursor target is not 

explicitly known by the system.

To continue to calibrate the decoder during self-directed on-screen computer use, we have 

previously described retrospective target inference as a method of labeling neural data with 

the BCI users’ intended movement directions based on their own selections, during self-

directed on-screen keyboard use [16]. We did not investigate parameter updating during 

ongoing use; in future work, we hypothesize that combining retrospective target inference 

with the frequent decoder updates would continue to be an even more effective strategy for 

maintaining calibration over long periods of practical BCI use. For example, decoders could 

be updated more frequently - after every click or other action that denotes an intended target 

- rather than recalibrating only during self-timed pauses in BCI use [16]. We note that we 

did not explicitly examine long-term effects of learning on decoding performance. Future 

research would be able to disentangle performance improvements related to a user’s ability 

to learn a neuromotor (BCI) skill vs. the performance improvements that may result from 

adaptive decoder recalibration.

4.2 Future directions with Gaussian process regression

The described new strategy for Gaussian process regression neural decoding departs from 

standard linear methods described in the human iBCI literature [11–17,19–21]. Instead of 

relying on an explicit function to estimate intended movement from neural data [76], 

decoding is based on comparing incoming data to activity patterns associated with different 

intended movement directions. This GP-DKF decoder is computationally tractable using 

standard BCI hardware, and would be reducible to a fully embedded system [35,75].

As this is an early demonstration of GP-DKF, multiple modeling assumptions remain to be 

explored. For instance, we focused on the popular radial basis kernel [77]. Additional gains 

may be sought by learning highly expressive kernel functions or incorporating a fully 

Bayesian feature selection using automatic relevant determination [77–79]. The highly non-

linear nature (combined with multiple options for kernels) of the GP-DKF could provide a 

useful alternative to linear decoding algorithms for the control of end-effectors such as 

robotic arms [19–21] or functional electrical stimulation systems [23,24].
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5. Conclusions

Brain-computer interfaces have tremendous potential for improving the quality of life for 

individuals living with motor impairments. As the field looks towards developing BCI 

systems that can potentially work 24 hours per day, it will be critical to make the calibration 

process rapid and intuitive. The current study suggests that intracortical BCIs can provide 

two-dimensional cursor control with performance plateauing within 3 minutes of starting 

calibration. Such results demonstrate an important step toward a neural prosthetic device that 

could be used by people with paralysis immediately upon deployment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic representation of a typical iBCI calibration protocol in humans vs. the rapid 

calibration sequence. Each black arrow represents a step where a technician currently 

intervenes. Hexagonal and rounded steps refer to offline and online steps, respectively. The 

BCI user does not actively participate in offline steps. Red, yellow and green steps refer to 

the setup, calibration, and use of the BCI system, respectively. Top. Typical use of an 

intracortical BCI system has several steps. First, the user is connected to the computer and 

the software is initialized. The user then performs open-loop imagery; decoders are seeded 

using this initial data; and then closed-loop calibration proceeds, and may be repeated 

several times depending on the protocol being used. Bottom. No explicit open-loop imagery 

step is required, and the decoder calibration steps occur without the need for technician 

oversight or intervention.
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Fig. 2. 
Rapid calibration during the Radial-8 task. Participant T10 performed a three-minute 

calibration sequence with either the GP-DKF (A) or the Kalman (B) decoders. Targets were 

acquired when the cursor overlapped the target for 300ms, with a 15-second timeout. (C). 
Multiple calibration sequences from participants T5 (red), T8 (green) and T10 (blue) were 

done using the GP-DKF decoder, and with the Kalman decoder in T10 (grey). The thin dark 

lines are the average amount of time to acquire a target across all blocks (shaded area is +/

− 1 standard deviation). Averages are computed by binning data in 15-second increments, 

with a 5 second offset from calibration start. (D). Example cursor trajectories during 

calibration using the GP-DKF decoder (participant T5). The brightness goes from light to 

dark as time elapses during the 60 second interval of closed-loop neural cursor control. Data 

were used from trial days: 30 and 33 (T5); 662, 665, (T8); and 112, 203, 215, 236 (T10).
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Fig. 3. 
Bootstrapped angular error as a function of each participant’s neural features used to 

simulate decoding. (A) For each experimental session, a decoder was trained using a random 

subsample, without replacement, and then used to mean angular error for another subsample 

of the same size. Decoder predictions were bootstrapped 100 times. Intuitively, the decoding 

performance would approach 90 degrees as the amount of data approaches zero, since a 

poor-quality decoder (e.g. one with limited training data) would decode a random angular 

error between 0 (perfect) and 180 (opposite) degrees to the target. The average of a large 

number of random angles drawn between 0 and 180 degrees would average to be 90 degrees. 

(B) The angular error curves were fit using a decaying exponential, and the amount of data 

required to achieve 95% saturation of the peak angular error performance was computed. 

The bootstrapped mean angular error saturated in less than 3 minutes for all three users. 

(mean +/− standard deviation; participant T5: 41.6s +/− 4.6s; T8: 83.3s +/− 9.9s; T10: 69.3s 

+/− 7.5s).
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Fig. 4. 
Bit rate comparisons between decoder methods. After calibrating the GP-DKF decoder for 3 

(T5 - red, T10 - blue) or 4 (T8 - green) minutes, the decoder parameters were locked, and the 

participants selected targets using the Grid Task. Bit-rates were computed for the GP-DKF 

decoder and compared to the performance using a Kalman filter using ~10 minutes of 

calibration data with an explicit open-loop imagery step[16]. Bit rates were not statistically 

different when comparing decoders within participants (Wilcoxon-rank test). Data were used 

from trial days: 30 and 33 (T5); 660, 662, 665 (T8); and 84, 112 (T10).
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Fig. 5. 
Time to target acquisition as a function of time on T5’s first attempt at closed-loop neural 

control (Trial day 30, block 3).
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