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ABSTRACT OF THE DISSERTATION

Hierarchical Bayesian Modeling of Diploid Chromatin Contacts and Structures

by

Tiantian Ye

Doctor of Philosophy, Graduate Program in Genetics, Genomics & Bioinformatics
University of California, Riverside, December 2020

Dr. Wenxiu Ma, Chairperson

The recently developed Hi-C technique has been widely applied to map genome-

wide chromatin interactions. However, current methods for analyzing diploid Hi-C data

cannot fully distinguish between homologous chromosomes. Consequently, the existing

diploid Hi-C analyses are based on sparse and inaccurate allele-specific contact matrices,

which might lead to incorrect modeling of diploid genome architecture.

Here we present ASHIC (Allele-Specific diploid Hi-C modeling), a hierarchical

Bayesian framework to model allele-specific chromatin organizations in diploid genomes.

We developed two models under the Bayesian framework: the Poisson-multinomial (ASHIC-

PM) model and the zero-inflated Poisson-multinomial (ASHIC-ZIPM) model. The proposed

ASHIC methods impute allele-specific contact maps from diploid Hi-C data and simultane-

ously infer allelic 3D structures.

Through simulation studies, we demonstrated that ASHIC methods outperformed

existing approaches, especially under low coverage and low SNP density conditions. Addi-

tionally, in the analyses of diploid Hi-C datasets in mouse and human, our ASHIC-ZIPM
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method produced fine-resolution diploid chromatin maps and 3D structures and provided

insights into the allelic chromatin organizations and functions. To summarize, our work pro-

vides a statistically rigorous framework for investigating fine-scale allele-specific chromatin

conformations.

The ASHIC software is publicly available at https://github.com/wmalab/ASHIC.
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Chapter 1

Introduction

The three-dimensional (3D) organization of chromatin in the nucleus plays an

essential role in gene regulation [5]. The recently developed chromosome conformation

capture coupled with high-throughput sequencing (Hi-C) technique [6, 7, 8] and its vari-

ants [9, 10, 11] have been widely applied to map genome-wide chromatin interactions and

to elucidate the principles of spatial genome architecture. The Hi-C experiment yields a

genome-wide chromatin contact matrix; each entry (i, j) in the matrix represents the contact

frequency between two loci i and j in the genome. The mapping and subsequent analyses of

genome-wide Hi-C contact matrices in various organisms have demonstrated that the gene

expression is tightly regulated by chromatin interactions at multiple scales ranging from

active/inactive chromosomal compartments and sub-compartments [6, 10], to topologically

associating domains (TADs) [2], and fine-scale chromatin loops [10, 9].

One hindrance of current Hi-C data analysis is the lack of allele-specific modeling

for diploid genomes. Most mammalian genomes are diploid, in which the genome contains

1



two sets of each chromosome—a maternal and a paternal copy. Hence, a chromatin contact

observed between two genomic loci in the reference (haploid) genome may correspond to four

distinct yet indistinguishable chromatin interactions in the diploid genome. For example,

a chromatin contact mapped to a loci pair (i, j) on the same chromosome in the reference

genome could be either an intra-chromosomal contact (mi,mj) on the maternal allele, or

an intra-chromosomal contact (pi, pj) on the paternal allele, or inter-homologous contacts

(mi, pj) or (pi,mj). However, the majority of existing Hi-C analyses on diploid genomes do

not distinguish between homologous chromosomes. As a result, current analyses are based

on an aggregated contact matrix generated with mixed signals of maternal and paternal

chromatin contacts, which could result in the false identification of significant chromatin

interactions and an inaccurate understanding of the diploid genome architecture. Therefore,

statistical methods for rigorous and accurate modeling of diploid Hi-C data are needed to

facilitate elucidation of the mechanisms of chromatin organization and gene regulation.

Recently, several methods have been developed to obtain allele-specific chromatin

contact matrices and/or allelic 3D structures from diploid Hi-C data [12, 13, 10, 14, 15, 16,

17]. These methods use heterozygous single nucleotide polymorphisms (SNPs) to identify

the allele identity of chromatin interactions. Specifically, a Hi-C contact is a mate pair with

two read ends representing the two interacting chromatin fragments. If a read end overlaps

with SNPs for which the allele identity can be determined, we term it an allele-certain read.

For example, a read containing maternal-specific SNP(s) is assigned to the maternal allele;

similarly a read containing paternal-specific SNP(s) is assigned to the paternal allele. In

addition, reads without SNPs are allele-ambiguous reads. Based on the allele identity of
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the paired ends, we can then categorize diploid Hi-C contacts into three groups: both-end

allele-certain contacts, one-end allele-ambiguous contacts, and both-end allele-ambiguous

contacts.

Without a statistically rigorous allele inference method, many previous studies

applied either an “allele-certain” or a “mate-rescue” strategy to reconstruct the allele-

specific contact maps in diploid genomes. In the allele-certain approach, only both-end

allele-certain contacts are used [10, 14]. However, the both-end allele-certain contacts only

account for a small portion of the total chromatin contacts (Table 1.1). For example, in

the Patski (BL6×Spretus) cell line of which the SNP density is approximately 1 per 75 bp,

the proportion of both-end allele-certain contacts in a typical Hi-C dataset is about 35.6%.

Whereas, in the human GM12878 cell line of which the SNP density is approximately 1 per

1700 bp, the both-end allele-certain proportion drops to 0.14%. Consequently, the diploid

contact matrices obtained by such an allele-certain approach is often sparse and of low

resolution.

SNPs
SNP

density

Total

contacts

Both-end

allele-certain

One-end

allele-ambiguous

Both-end

allele-ambiguous

Bonora et al.

(BL6×Spretus)

35,441,735 1/75 365,294,454 35.62% 43.25% 21.14%

Rao et al.

(GM12878)

1,787,252 1/1700 8,178,930,507 0.14% 5.73% 94.14%

Table 1.1: Proportion of allele-specific reads in published diploid Hi-C datasets.
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To overcome the low-coverage issue of the allele-certain approach, several diploid

Hi-C studies adopted a straightforward mate-rescue strategy to infer the allele identity of

one-end allele-ambiguous contacts, i.e., the allele-ambiguous end of such contact is assigned

to the same allele as its mate-end [13, 15, 18]. This mate-rescue method attempts to recover

one-end allele-ambiguous contacts, which varies approximately from 5.7% (in the case of

GM12878 cells) to 43.3% (in the case of Patski cells) of the total contacts (Table 1.1). How-

ever, one-end allele-ambiguous contacts are all assumed to be intra-chromosomal contacts

in the results of the mate-rescue approach. Such false assumption would lead to inaccurate

contact maps, especially in the regions where inter-chromosomal interactions are observed

across chromosomal territories.

Since the mate-rescue method fails to infer inter-chromosomal interactions from

one-end allele-ambiguous contacts, Tan et al. [16] proposed an iterative two-stage imputa-

tion algorithm Dip-C for modeling single-cell diploid Hi-C data. In the first imputation

stage, one-end allele-ambiguous contacts are phased using an ad hoc voting procedure by

their neighborhood on the contact matrix. In the second imputation stage, the assignment

of allele-ambiguous contacts is refined by the 3D structures. The Dip-C method can be

viewed as an advanced mate-rescue method, as it leverages additional information from

both contact matrices and 3D structures to infer allele-ambiguous contacts. However, the

Dip-C method is specifically designed for single-cell Hi-C data therefore may not adapt

well to bulk Hi-C data. Moreover, Dip-C uses a deterministic voting strategy to assign

allele-ambiguous contacts, which does not provide a probabilistic model of all possible allele

origins.
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One common drawback of the allele-certain and mate-rescue methods is that they

do not utilize both-end allele-ambiguous contacts, which represent a substantial proportion

of the total diploid contacts, ranging from 21.1% (Patski) to 94.1% (GM12878) (Table 1.1).

Inferring the allele identity of both-end allele-ambiguous contacts remains a significant chal-

lenge. To date, few methods have been developed to address this problem. The Dip-C

method [16] attempts to impute only inter-chromosomal rather than intra-chromosomal

both-end allele-ambiguous contacts. Thus, it does not produce a fully imputed diploid con-

tact map. In addition, our previously proposed Poisson-Gamma model [12] imputes both

one-end and both-end allele-ambiguous contacts, and estimates the diploid contact matrices

by an iterative expectation-maximization (EM) algorithm. However, the Poisson-Gamma

method does not predict 3D structures nor use the structures to assist the assignment of

allele-ambiguous contacts. As a result, it might not work robustly in fine-resolution analy-

ses. Furthermore, Cauer et al. [17] developed diploid-PASTIS, an extension of the PASTIS

model [19], to infer the diploid chromatin structures. Diploid Hi-C contacts are modeled as

Poisson variables, and the optimal diploid structures are solved by maximizing the likelihood

function with additional structural constraints. The diploid-PASTIS method is specifically

designed to model diploid 3D structures, but does not infer allele-ambiguous contacts to

impute diploid contact matrices.

To tackle the aforementioned challenges, we developed a hierarchical Bayesian

framework for Allele-Specific diploid Hi-C modeling, named ASHIC. Briefly, allele-specific

contact counts are modeled as Poisson-multinomial random variables (referred as the ASHIC-

PM model) and diploid contact matrices and 3D structures are estimated via an EM algo-

5



rithm. In addition, to overcome the sparsity issue of diploid Hi-C contact maps, we pro-

posed a zero-inflated version of the ASHIC-PM method, namely the zero-inflated Poisson-

multinomial model (in short, ASHIC-ZIPM). Both ASHIC models can completely dissect

all diploid Hi-C contacts into allele-specific contact maps, while simultaneously reconstruct

3D homologous chromosomal structures. To the best of our knowledge, our ASHIC meth-

ods are the first methods that fully impute all allele-ambiguous contacts and infer both the

diploid contact matrices and allelic 3D structures.

We thoroughly evaluated our methods through a series of simulation studies and

demonstrated that our ASHIC methods outperformed the allele-certain and mate-rescue

approaches in various settings of sequencing coverage, SNP density and homologous struc-

tural similarity. We also applied the ASHIC-ZIPM method to two published diploid Hi-C

datasets [18, 10]. First, using the mouse Patski data [18], we successfully confirmed that

the predicted diploid contact maps and 3D structures of the homologous X chromosomes

exhibited distinct conformations, where the inactive X demonstrated the bipartite super-

domains [12]. Furthermore, we studied fine-scale chromatin organizations of the imprinted

H19/Igf2 region at 10 kb resolution and revealed distinct parental-specific chromatin in-

teractions anchored at H19 and Igf2. With the fully imputed diploid contact matrices, we

uncovered a maternal-specific sub-TAD at the H19/Igf2 region. Second, using the human

GM12878 data [10], we further confirmed the maternal-specific sub-TAD structure and

parental-specific chromatin interactions at the human H19/IGF2 imprinting locus. Our

ASHIC-imputed allele-specific contacts maps were consistent with the previously published

chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) results [4].
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Chapter 2

Hierarchical Bayesian Models

To model diploid Hi-C data, we propose a hierarchical Bayesian modeling frame-

work for imputing the allele-specific chromatin contacts and reconstructing the allelic 3D

structures. Specifically, we model the generation of allele-specific contacts with either a

Poisson-multinomial process (the ASHIC-PM model) or a zero-inflated Poisson-multinomial

process (the ASHIC-ZIPM model) for the inference of diploid contact matrices and 3D struc-

tures. The ASHIC-ZIPM model is a zero-inflated version of ASHIC-PM and it explicitly

accounts for the excessive zeros observed in Hi-C contact matrices.

2.1 Notations of Allele-Specific Chromatin Contacts

Let m and p denote a homologous chromosomal pair with same length n in a

diploid genome. To construct the diploid Hi-C contact frequency matrix, we partition the

chromosomes into fixed-size non-overlapping bins and count chromatin contacts observed

between each bin pair. In the diploid setting, chromatin contacts between the bins i and
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j can result from four distinct events: (mi, mj), (pi, pj), (mi, pj), or (pi, mj), where (mi,

mj) and (pi, pj) are intra-chromosomal contacts on chromosome m and p, respectively, and

(mi, pj) and (pi, mj) are inter-chromosomal contacts between the homologous chromosomes

(Figure 2.1A). Therefore, the aggregated contact frequency Tij between the bins i and j can

be calculated as follows: Tij =
∑

η

∑
θ Tηiθj , where Tηiθj is the unknown true allele-specific

contact frequency between ηi (bin i on chromosome η) and θj (bin j on chromosome θ) that

we aim to estimate, η, θ ∈ {m, p}, 1 ≤ i, j ≤ n (Figure 2.1B).

Using heterozygous SNPs, we can classify single-end reads into three categories:

reads containing allele-m-specific SNPs, reads containing allele-p-specific SNPs, and reads

containing no SNPs. We refer to the first two categories as allele-certain reads while the

last category as allele-ambiguous reads. Furthermore, since Hi-C contacts are paired-end

reads, each end of the mated pair can either be allele-certain or allele-ambiguous.

Let Cηiθj indicate the frequency of both-end allele-certain contacts between the

bins ηi and θj . In addition, we specify Cηiθ∗j to be the contact frequency between ηi and θj

where the allele identity of ηi is known but the allele identity of θj is unknown. In other

words, one end of the Hi-C contact is from θj ; however, the read does not overlap with

any SNPs. Therefore the allele identity of θj remains unknown. Similarly, we use Cη∗i θj

when the allele identity of ηi is unknown and Cη∗i θ∗j when the allele identity of both ends

are unknown.

Hence, the true allele-specific contact frequency Tηiθj equals to the sum of the

following four components:

Tηiθj = Cηiθj + Cηiθ∗j + Cη∗i θj + Cη∗i θ∗j (2.1)

8



intra-chromosomal 
inter-chromosomal 

A B

allele-specific 
contact matrices

aggregated diploid
contact matrix

i

<latexit sha1_base64="6oObo1zRijLeuvcXTpuBZokJekQ=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8YgeAozIqgnAx70mIBZIBlCT6cmadOz0N0jxCFP4MWDIl59AE8+iTePvomd5aCJPzR8/H8VXVVeLLjStv1lZRYWl5ZXsqu5tfWNza389k5NRYlkWGWRiGTDowoFD7GquRbYiCXSwBNY9/qXo7x+h1LxKLzRgxjdgHZD7nNGtbEqvJ0v2EV7LDIPzhQKFx/331fve2m5nf9sdSKWBBhqJqhSTceOtZtSqTkTOMy1EoUxZX3axabBkAao3HQ86JAcGqdD/EiaF2oydn93pDRQahB4pjKguqdms5H5X9ZMtH/mpjyME40hm3zkJ4LoiIy2Jh0ukWkxMECZ5GZWwnpUUqbNbXLmCM7syvNQOy46J8Xzil0o2TBRFvbhAI7AgVMowTWUoQoMEB7gCZ6tW+vRerFeJ6UZa9qzC39kvf0A8dSQtQ==</latexit>

i

<latexit sha1_base64="6oObo1zRijLeuvcXTpuBZokJekQ=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8YgeAozIqgnAx70mIBZIBlCT6cmadOz0N0jxCFP4MWDIl59AE8+iTePvomd5aCJPzR8/H8VXVVeLLjStv1lZRYWl5ZXsqu5tfWNza389k5NRYlkWGWRiGTDowoFD7GquRbYiCXSwBNY9/qXo7x+h1LxKLzRgxjdgHZD7nNGtbEqvJ0v2EV7LDIPzhQKFx/331fve2m5nf9sdSKWBBhqJqhSTceOtZtSqTkTOMy1EoUxZX3axabBkAao3HQ86JAcGqdD/EiaF2oydn93pDRQahB4pjKguqdms5H5X9ZMtH/mpjyME40hm3zkJ4LoiIy2Jh0ukWkxMECZ5GZWwnpUUqbNbXLmCM7syvNQOy46J8Xzil0o2TBRFvbhAI7AgVMowTWUoQoMEB7gCZ6tW+vRerFeJ6UZa9qzC39kvf0A8dSQtQ==</latexit>

j

<latexit sha1_base64="0dINJwJZCc1ujqqql3ZNH1A1QA0=">AAAB6HicbVA9SwNBEJ2LX0n8ilraHAbBQsKdCGoXsLFMwHxAEsLe3lyyyd7esbsnhCONjYWNhSK29v4ZO3+Nbj4KTXww8Hhvhpl5XsyZ0o7zZWVWVtfWN7K5/ObW9s5uYW+/rqJEUqzRiEey6RGFnAmsaaY5NmOJJPQ4Nrzh9cRv3KFULBK3ehRjJyQ9wQJGiTZSddAtFJ2SM4W9TNw5KZZzD/7H9/1ppVv4bPsRTUIUmnKiVMt1Yt1JidSMchzn24nCmNAh6WHLUEFCVJ10eujYPjaKbweRNCW0PVV/T6QkVGoUeqYzJLqvFr2J+J/XSnRw2UmZiBONgs4WBQm3dWRPvrZ9JpFqPjKEUMnMrTbtE0moNtnkTQju4svLpH5Wcs9LV1WThgMzZOEQjuAEXLiAMtxABWpAAeERnuHFGlhP1qv1NmvNWPOZA/gD6/0HlViQcg==</latexit>

j

<latexit sha1_base64="0dINJwJZCc1ujqqql3ZNH1A1QA0=">AAAB6HicbVA9SwNBEJ2LX0n8ilraHAbBQsKdCGoXsLFMwHxAEsLe3lyyyd7esbsnhCONjYWNhSK29v4ZO3+Nbj4KTXww8Hhvhpl5XsyZ0o7zZWVWVtfWN7K5/ObW9s5uYW+/rqJEUqzRiEey6RGFnAmsaaY5NmOJJPQ4Nrzh9cRv3KFULBK3ehRjJyQ9wQJGiTZSddAtFJ2SM4W9TNw5KZZzD/7H9/1ppVv4bPsRTUIUmnKiVMt1Yt1JidSMchzn24nCmNAh6WHLUEFCVJ10eujYPjaKbweRNCW0PVV/T6QkVGoUeqYzJLqvFr2J+J/XSnRw2UmZiBONgs4WBQm3dWRPvrZ9JpFqPjKEUMnMrTbtE0moNtnkTQju4svLpH5Wcs9LV1WThgMzZOEQjuAEXLiAMtxABWpAAeERnuHFGlhP1qv1NmvNWPOZA/gD6/0HlViQcg==</latexit>

(mi, mj)

<latexit sha1_base64="HOVb/HVu0GJzwQQXWzBLdBvEU5E=">AAAB8XicbVDLSgMxFM3UV62vUZdugkWoUMqMCCpuCm7ciBXsg7bDkMlk2tgkMyQZoQz9CzcuFHHr37hz5a+YPhbaeuDC4Zx7ufeeIGFUacf5snJLyyura/n1wsbm1vaOvbvXUHEqManjmMWyFSBFGBWkrqlmpJVIgnjASDMYXI395iORisbiXg8T4nHUEzSiGGkjtUvcp2XI/Ydj3y46FWcCuEjcGSlW7Zvb78uwXfPtz24Y45QToTFDSnVcJ9FehqSmmJFRoZsqkiA8QD3SMVQgTpSXTS4ewSOjhDCKpSmh4UT9PZEhrtSQB6aTI91X895Y/M/rpDo69zIqklQTgaeLopRBHcPx+zCkkmDNhoYgLKm5FeI+kghrE1LBhODOv7xIGicV97RycWfSKIMp8uAAHIIScMEZqIJrUAN1gIEAT+AFvFrKerberPdpa86azeyDP7A+fgDWYJKc</latexit>

(pi, pj)

<latexit sha1_base64="pzKioqW1YbQXdJa4VakXvTAd+A0=">AAAB8XicbVDLSgMxFM3UV62vUZdugkWoUMqMCCpuCm7ciBXsg7bDkMlk2thMJiQZoQz9CzcuFHHr37hz5a+YPhbaeuDC4Zx7ufeeQDCqtON8Wbml5ZXVtfx6YWNza3vH3t1rqCSVmNRxwhLZCpAijHJS11Qz0hKSoDhgpBkMrsZ+85FIRRN+r4eCeDHqcRpRjLSR2iXh0zIU/sOxbxedijMBXCTujBSr9s3t92XYrvn2ZzdMcBoTrjFDSnVcR2gvQ1JTzMio0E0VEQgPUI90DOUoJsrLJheP4JFRQhgl0hTXcKL+nshQrNQwDkxnjHRfzXtj8T+vk+ro3MsoF6kmHE8XRSmDOoHj92FIJcGaDQ1BWFJzK8R9JBHWJqSCCcGdf3mRNE4q7mnl4s6kUQZT5MEBOAQl4IIzUAXXoAbqAAMOnsALeLWU9Wy9We/T1pw1m9kHf2B9/ADfmZKi</latexit>

(mi, pj)

<latexit sha1_base64="E8GmKbqiWymqz3tgwrwrOddHTJo=">AAAB8XicbVDLSgMxFM3UV62vUZdugkWoUMqMCCpuCm7ciBXsg7bDkMlk2tgkMyQZoQz9CzcuFHHr37hz5a+YPhbaeuDC4Zx7ufeeIGFUacf5snJLyyura/n1wsbm1vaOvbvXUHEqManjmMWyFSBFGBWkrqlmpJVIgnjASDMYXI395iORisbiXg8T4nHUEzSiGGkjtUvcp2WY+A/Hvl10Ks4EcJG4M1Ks2je335dhu+bbn90wxiknQmOGlOq4TqK9DElNMSOjQjdVJEF4gHqkY6hAnCgvm1w8gkdGCWEUS1NCw4n6eyJDXKkhD0wnR7qv5r2x+J/XSXV07mVUJKkmAk8XRSmDOobj92FIJcGaDQ1BWFJzK8R9JBHWJqSCCcGdf3mRNE4q7mnl4s6kUQZT5MEBOAQl4IIzUAXXoAbqAAMBnsALeLWU9Wy9We/T1pw1m9kHf2B9/ADa9ZKf</latexit>

(pi, mj)

<latexit sha1_base64="SS2JZ9Rag/w8ko2YzYXB1pYYEr8=">AAAB8XicbVDLSgMxFM3UV62vUZdugkWoUMqMCCpuCm7ciBXsg7bDkMlk2tgkMyQZoQz9CzcuFHHr37hz5a+YPhbaeuDC4Zx7ufeeIGFUacf5snJLyyura/n1wsbm1vaOvbvXUHEqManjmMWyFSBFGBWkrqlmpJVIgnjASDMYXI395iORisbiXg8T4nHUEzSiGGkjtUuJT8uQ+w/Hvl10Ks4EcJG4M1Ks2je335dhu+bbn90wxiknQmOGlOq4TqK9DElNMSOjQjdVJEF4gHqkY6hAnCgvm1w8gkdGCWEUS1NCw4n6eyJDXKkhD0wnR7qv5r2x+J/XSXV07mVUJKkmAk8XRSmDOobj92FIJcGaDQ1BWFJzK8R9JBHWJqSCCcGdf3mRNE4q7mnl4s6kUQZT5MEBOAQl4IIzUAXXoAbqAAMBnsALeLWU9Wy9We/T1pw1m9kHf2B9/ADbBJKf</latexit>

m

<latexit sha1_base64="+SKGrodpKs0KTaAClp4Yr3sxIFg=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI20XZlwY3LFuwD2lAm00k7diYJMxOhhH6BGxeK1KV/4W+482+ctAoqeuDC4Zx7uedeP2ZUKst6N3Irq2vrG/nNwtb2zu5ecf+gLaNEYNLCEYtE10eSMBqSlqKKkW4sCOI+Ix1/cpn5nVsiJI3CazWNicfRKKQBxUhpqckHxZJlOm65UnGhZVpO2bWdjFRt96wGbdNaoHTxOs/w3BgU3/rDCCechAozJGXPtmLlpUgoihmZFfqJJDHCEzQiPU1DxIn00kXQGTzRyhAGkdAVKrhQv0+kiEs55b7u5EiN5W8vE//yeokKql5KwzhRJMTLRUHCoIpgdjUcUkGwYlNNEBZUZ4V4jATCSv+moJ/wdSn8n7TLpu2YtaZVqjtgiTw4AsfgFNjgHNTBFWiAFsCAgDvwAB6NG+PeeDLmy9ac8TlzCH7AePkAVn2RvQ==</latexit>

p

<latexit sha1_base64="3cxGk82jv1zi2ts0cSbVk4dd09M=">AAAB6HicdVDLSsNAFJ3UV42PVl26GSyCbkImBtquLIjgsgVrC20ok+mkHTt5MDMRSugXuHGhiFt/w79w5yf4F05aBRU9cOFwzr3ce4+fcCaVbb8ZhaXlldW14rq5sbm1XSrv7F7JOBWEtknMY9H1saScRbStmOK0mwiKQ5/Tjj85y/3ODRWSxdGlmibUC/EoYgEjWGmplQzKFdtCqF5FDswJqjknmrjIcZENkWXPUWmU3k+PzZfz5qD82h/GJA1ppAjHUvaQnSgvw0IxwunM7KeSJphM8Ij2NI1wSKWXzQ+dwUOtDGEQC12RgnP1+0SGQymnoa87Q6zG8reXi395vVQFNS9jUZIqGpHFoiDlUMUw/xoOmaBE8akmmAimb4VkjAUmSmdj6hC+PoX/kyvHQq5Vb+k0XLBAEeyDA3AEEKiCBrgATdAGBFBwC+7Bg3Ft3BmPxtOitWB8zuyBHzCePwC1V4/J</latexit>

i

<latexit sha1_base64="6oObo1zRijLeuvcXTpuBZokJekQ=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8YgeAozIqgnAx70mIBZIBlCT6cmadOz0N0jxCFP4MWDIl59AE8+iTePvomd5aCJPzR8/H8VXVVeLLjStv1lZRYWl5ZXsqu5tfWNza389k5NRYlkWGWRiGTDowoFD7GquRbYiCXSwBNY9/qXo7x+h1LxKLzRgxjdgHZD7nNGtbEqvJ0v2EV7LDIPzhQKFx/331fve2m5nf9sdSKWBBhqJqhSTceOtZtSqTkTOMy1EoUxZX3axabBkAao3HQ86JAcGqdD/EiaF2oydn93pDRQahB4pjKguqdms5H5X9ZMtH/mpjyME40hm3zkJ4LoiIy2Jh0ukWkxMECZ5GZWwnpUUqbNbXLmCM7syvNQOy46J8Xzil0o2TBRFvbhAI7AgVMowTWUoQoMEB7gCZ6tW+vRerFeJ6UZa9qzC39kvf0A8dSQtQ==</latexit>

i

<latexit sha1_base64="6oObo1zRijLeuvcXTpuBZokJekQ=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8YgeAozIqgnAx70mIBZIBlCT6cmadOz0N0jxCFP4MWDIl59AE8+iTePvomd5aCJPzR8/H8VXVVeLLjStv1lZRYWl5ZXsqu5tfWNza389k5NRYlkWGWRiGTDowoFD7GquRbYiCXSwBNY9/qXo7x+h1LxKLzRgxjdgHZD7nNGtbEqvJ0v2EV7LDIPzhQKFx/331fve2m5nf9sdSKWBBhqJqhSTceOtZtSqTkTOMy1EoUxZX3axabBkAao3HQ86JAcGqdD/EiaF2oydn93pDRQahB4pjKguqdms5H5X9ZMtH/mpjyME40hm3zkJ4LoiIy2Jh0ukWkxMECZ5GZWwnpUUqbNbXLmCM7syvNQOy46J8Xzil0o2TBRFvbhAI7AgVMowTWUoQoMEB7gCZ6tW+vRerFeJ6UZa9qzC39kvf0A8dSQtQ==</latexit>

j

<latexit sha1_base64="0dINJwJZCc1ujqqql3ZNH1A1QA0=">AAAB6HicbVA9SwNBEJ2LX0n8ilraHAbBQsKdCGoXsLFMwHxAEsLe3lyyyd7esbsnhCONjYWNhSK29v4ZO3+Nbj4KTXww8Hhvhpl5XsyZ0o7zZWVWVtfWN7K5/ObW9s5uYW+/rqJEUqzRiEey6RGFnAmsaaY5NmOJJPQ4Nrzh9cRv3KFULBK3ehRjJyQ9wQJGiTZSddAtFJ2SM4W9TNw5KZZzD/7H9/1ppVv4bPsRTUIUmnKiVMt1Yt1JidSMchzn24nCmNAh6WHLUEFCVJ10eujYPjaKbweRNCW0PVV/T6QkVGoUeqYzJLqvFr2J+J/XSnRw2UmZiBONgs4WBQm3dWRPvrZ9JpFqPjKEUMnMrTbtE0moNtnkTQju4svLpH5Wcs9LV1WThgMzZOEQjuAEXLiAMtxABWpAAeERnuHFGlhP1qv1NmvNWPOZA/gD6/0HlViQcg==</latexit>

j

<latexit sha1_base64="0dINJwJZCc1ujqqql3ZNH1A1QA0=">AAAB6HicbVA9SwNBEJ2LX0n8ilraHAbBQsKdCGoXsLFMwHxAEsLe3lyyyd7esbsnhCONjYWNhSK29v4ZO3+Nbj4KTXww8Hhvhpl5XsyZ0o7zZWVWVtfWN7K5/ObW9s5uYW+/rqJEUqzRiEey6RGFnAmsaaY5NmOJJPQ4Nrzh9cRv3KFULBK3ehRjJyQ9wQJGiTZSddAtFJ2SM4W9TNw5KZZzD/7H9/1ppVv4bPsRTUIUmnKiVMt1Yt1JidSMchzn24nCmNAh6WHLUEFCVJ10eujYPjaKbweRNCW0PVV/T6QkVGoUeqYzJLqvFr2J+J/XSnRw2UmZiBONgs4WBQm3dWRPvrZ9JpFqPjKEUMnMrTbtE0moNtnkTQju4svLpH5Wcs9LV1WThgMzZOEQjuAEXLiAMtxABWpAAeERnuHFGlhP1qv1NmvNWPOZA/gD6/0HlViQcg==</latexit>

m

<latexit sha1_base64="+SKGrodpKs0KTaAClp4Yr3sxIFg=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI20XZlwY3LFuwD2lAm00k7diYJMxOhhH6BGxeK1KV/4W+482+ctAoqeuDC4Zx7uedeP2ZUKst6N3Irq2vrG/nNwtb2zu5ecf+gLaNEYNLCEYtE10eSMBqSlqKKkW4sCOI+Ix1/cpn5nVsiJI3CazWNicfRKKQBxUhpqckHxZJlOm65UnGhZVpO2bWdjFRt96wGbdNaoHTxOs/w3BgU3/rDCCechAozJGXPtmLlpUgoihmZFfqJJDHCEzQiPU1DxIn00kXQGTzRyhAGkdAVKrhQv0+kiEs55b7u5EiN5W8vE//yeokKql5KwzhRJMTLRUHCoIpgdjUcUkGwYlNNEBZUZ4V4jATCSv+moJ/wdSn8n7TLpu2YtaZVqjtgiTw4AsfgFNjgHNTBFWiAFsCAgDvwAB6NG+PeeDLmy9ac8TlzCH7AePkAVn2RvQ==</latexit>

m

<latexit sha1_base64="+SKGrodpKs0KTaAClp4Yr3sxIFg=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI20XZlwY3LFuwD2lAm00k7diYJMxOhhH6BGxeK1KV/4W+482+ctAoqeuDC4Zx7uedeP2ZUKst6N3Irq2vrG/nNwtb2zu5ecf+gLaNEYNLCEYtE10eSMBqSlqKKkW4sCOI+Ix1/cpn5nVsiJI3CazWNicfRKKQBxUhpqckHxZJlOm65UnGhZVpO2bWdjFRt96wGbdNaoHTxOs/w3BgU3/rDCCechAozJGXPtmLlpUgoihmZFfqJJDHCEzQiPU1DxIn00kXQGTzRyhAGkdAVKrhQv0+kiEs55b7u5EiN5W8vE//yeokKql5KwzhRJMTLRUHCoIpgdjUcUkGwYlNNEBZUZ4V4jATCSv+moJ/wdSn8n7TLpu2YtaZVqjtgiTw4AsfgFNjgHNTBFWiAFsCAgDvwAB6NG+PeeDLmy9ac8TlzCH7AePkAVn2RvQ==</latexit>

p

<latexit sha1_base64="3cxGk82jv1zi2ts0cSbVk4dd09M=">AAAB6HicdVDLSsNAFJ3UV42PVl26GSyCbkImBtquLIjgsgVrC20ok+mkHTt5MDMRSugXuHGhiFt/w79w5yf4F05aBRU9cOFwzr3ce4+fcCaVbb8ZhaXlldW14rq5sbm1XSrv7F7JOBWEtknMY9H1saScRbStmOK0mwiKQ5/Tjj85y/3ODRWSxdGlmibUC/EoYgEjWGmplQzKFdtCqF5FDswJqjknmrjIcZENkWXPUWmU3k+PzZfz5qD82h/GJA1ppAjHUvaQnSgvw0IxwunM7KeSJphM8Ij2NI1wSKWXzQ+dwUOtDGEQC12RgnP1+0SGQymnoa87Q6zG8reXi395vVQFNS9jUZIqGpHFoiDlUMUw/xoOmaBE8akmmAimb4VkjAUmSmdj6hC+PoX/kyvHQq5Vb+k0XLBAEeyDA3AEEKiCBrgATdAGBFBwC+7Bg3Ft3BmPxtOitWB8zuyBHzCePwC1V4/J</latexit>

p

<latexit sha1_base64="3cxGk82jv1zi2ts0cSbVk4dd09M=">AAAB6HicdVDLSsNAFJ3UV42PVl26GSyCbkImBtquLIjgsgVrC20ok+mkHTt5MDMRSugXuHGhiFt/w79w5yf4F05aBRU9cOFwzr3ce4+fcCaVbb8ZhaXlldW14rq5sbm1XSrv7F7JOBWEtknMY9H1saScRbStmOK0mwiKQ5/Tjj85y/3ODRWSxdGlmibUC/EoYgEjWGmplQzKFdtCqF5FDswJqjknmrjIcZENkWXPUWmU3k+PzZfz5qD82h/GJA1ppAjHUvaQnSgvw0IxwunM7KeSJphM8Ij2NI1wSKWXzQ+dwUOtDGEQC12RgnP1+0SGQymnoa87Q6zG8reXi395vVQFNS9jUZIqGpHFoiDlUMUw/xoOmaBE8akmmAimb4VkjAUmSmdj6hC+PoX/kyvHQq5Vb+k0XLBAEeyDA3AEEKiCBrgATdAGBFBwC+7Bg3Ft3BmPxtOitWB8zuyBHzCePwC1V4/J</latexit>

Poisson statemissing state

D

C

read1 read2

observed contacts hidden contacts
allele-certain 

contacts
allele-ambiguous 

contacts
read1 read2

read1 read2

mj

<latexit sha1_base64="Hs4mHsGjxSbB4GyiTP7DvCgNkhE=">AAAB6nicdVDLSsNAFJ3UV62vqgsXbgaL4CokMWK6K7jRXUX7gBrqZDppx84kYWYilNBPcONCEbf+g//hzh9w6Tc4aRVU9MCFwzn3cu89QcKoVJb1ahRmZufmF4qLpaXlldW18vpGU8apwKSBYxaLdoAkYTQiDUUVI+1EEMQDRlrB8Cj3W9dESBpH52qUEJ+jfkRDipHS0hnvXnXLFct0DxzbdaBlWq7nVr2cePa+7UDbtCao1LZO3t6fC5f1bvnlohfjlJNIYYak7NhWovwMCUUxI+PSRSpJgvAQ9UlH0whxIv1scuoY7mqlB8NY6IoUnKjfJzLEpRzxQHdypAbyt5eLf3mdVIWen9EoSRWJ8HRRmDKoYpj/DXtUEKzYSBOEBdW3QjxAAmGl0ynpEL4+hf+TpmParlk91Wm4YIoi2AY7YA/Y4BDUwDGogwbAoA9uwB24N5hxazwYj9PWgvE5swl+wHj6AHXzkZc=</latexit>

mj

<latexit sha1_base64="Hs4mHsGjxSbB4GyiTP7DvCgNkhE=">AAAB6nicdVDLSsNAFJ3UV62vqgsXbgaL4CokMWK6K7jRXUX7gBrqZDppx84kYWYilNBPcONCEbf+g//hzh9w6Tc4aRVU9MCFwzn3cu89QcKoVJb1ahRmZufmF4qLpaXlldW18vpGU8apwKSBYxaLdoAkYTQiDUUVI+1EEMQDRlrB8Cj3W9dESBpH52qUEJ+jfkRDipHS0hnvXnXLFct0DxzbdaBlWq7nVr2cePa+7UDbtCao1LZO3t6fC5f1bvnlohfjlJNIYYak7NhWovwMCUUxI+PSRSpJgvAQ9UlH0whxIv1scuoY7mqlB8NY6IoUnKjfJzLEpRzxQHdypAbyt5eLf3mdVIWen9EoSRWJ8HRRmDKoYpj/DXtUEKzYSBOEBdW3QjxAAmGl0ynpEL4+hf+TpmParlk91Wm4YIoi2AY7YA/Y4BDUwDGogwbAoA9uwB24N5hxazwYj9PWgvE5swl+wHj6AHXzkZc=</latexit>

mj

<latexit sha1_base64="Hs4mHsGjxSbB4GyiTP7DvCgNkhE=">AAAB6nicdVDLSsNAFJ3UV62vqgsXbgaL4CokMWK6K7jRXUX7gBrqZDppx84kYWYilNBPcONCEbf+g//hzh9w6Tc4aRVU9MCFwzn3cu89QcKoVJb1ahRmZufmF4qLpaXlldW18vpGU8apwKSBYxaLdoAkYTQiDUUVI+1EEMQDRlrB8Cj3W9dESBpH52qUEJ+jfkRDipHS0hnvXnXLFct0DxzbdaBlWq7nVr2cePa+7UDbtCao1LZO3t6fC5f1bvnlohfjlJNIYYak7NhWovwMCUUxI+PSRSpJgvAQ9UlH0whxIv1scuoY7mqlB8NY6IoUnKjfJzLEpRzxQHdypAbyt5eLf3mdVIWen9EoSRWJ8HRRmDKoYpj/DXtUEKzYSBOEBdW3QjxAAmGl0ynpEL4+hf+TpmParlk91Wm4YIoi2AY7YA/Y4BDUwDGogwbAoA9uwB24N5hxazwYj9PWgvE5swl+wHj6AHXzkZc=</latexit>

read1 read2

mj

<latexit sha1_base64="Hs4mHsGjxSbB4GyiTP7DvCgNkhE=">AAAB6nicdVDLSsNAFJ3UV62vqgsXbgaL4CokMWK6K7jRXUX7gBrqZDppx84kYWYilNBPcONCEbf+g//hzh9w6Tc4aRVU9MCFwzn3cu89QcKoVJb1ahRmZufmF4qLpaXlldW18vpGU8apwKSBYxaLdoAkYTQiDUUVI+1EEMQDRlrB8Cj3W9dESBpH52qUEJ+jfkRDipHS0hnvXnXLFct0DxzbdaBlWq7nVr2cePa+7UDbtCao1LZO3t6fC5f1bvnlohfjlJNIYYak7NhWovwMCUUxI+PSRSpJgvAQ9UlH0whxIv1scuoY7mqlB8NY6IoUnKjfJzLEpRzxQHdypAbyt5eLf3mdVIWen9EoSRWJ8HRRmDKoYpj/DXtUEKzYSBOEBdW3QjxAAmGl0ynpEL4+hf+TpmParlk91Wm4YIoi2AY7YA/Y4BDUwDGogwbAoA9uwB24N5hxazwYj9PWgvE5swl+wHj6AHXzkZc=</latexit>

mj

<latexit sha1_base64="Hs4mHsGjxSbB4GyiTP7DvCgNkhE=">AAAB6nicdVDLSsNAFJ3UV62vqgsXbgaL4CokMWK6K7jRXUX7gBrqZDppx84kYWYilNBPcONCEbf+g//hzh9w6Tc4aRVU9MCFwzn3cu89QcKoVJb1ahRmZufmF4qLpaXlldW18vpGU8apwKSBYxaLdoAkYTQiDUUVI+1EEMQDRlrB8Cj3W9dESBpH52qUEJ+jfkRDipHS0hnvXnXLFct0DxzbdaBlWq7nVr2cePa+7UDbtCao1LZO3t6fC5f1bvnlohfjlJNIYYak7NhWovwMCUUxI+PSRSpJgvAQ9UlH0whxIv1scuoY7mqlB8NY6IoUnKjfJzLEpRzxQHdypAbyt5eLf3mdVIWen9EoSRWJ8HRRmDKoYpj/DXtUEKzYSBOEBdW3QjxAAmGl0ynpEL4+hf+TpmParlk91Wm4YIoi2AY7YA/Y4BDUwDGogwbAoA9uwB24N5hxazwYj9PWgvE5swl+wHj6AHXzkZc=</latexit>

x

<latexit sha1_base64="cyPOoQu5OTTvSLA8SMDYwg0itWg=">AAAB6HicbZDLSgNBEEVr4ivGV9Slm8YguAozElBXBty4TMA8IBlCT6cmadPzoLtHDEO+wI0LReLSv/A33Pk39iRZaPRCw+HeKrqqvFhwpW37y8qtrK6tb+Q3C1vbO7t7xf2DpooSybDBIhHJtkcVCh5iQ3MtsB1LpIEnsOWNrrO8dY9S8Si81eMY3YAOQu5zRrWx6g+9Ysku2zORv+AsoHT1Mc30VusVP7v9iCUBhpoJqlTHsWPtplRqzgROCt1EYUzZiA6wYzCkASo3nQ06ISfG6RM/kuaFmszcnx0pDZQaB56pDKgequUsM//LOon2L9yUh3GiMWTzj/xEEB2RbGvS5xKZFmMDlEluZiVsSCVl2tymYI7gLK/8F5pnZadSvqzbpWoF5srDERzDKThwDlW4gRo0gAHCIzzDi3VnPVmv1nRemrMWPYfwS9b7NwaNkYU=</latexit>

x

<latexit sha1_base64="cyPOoQu5OTTvSLA8SMDYwg0itWg=">AAAB6HicbZDLSgNBEEVr4ivGV9Slm8YguAozElBXBty4TMA8IBlCT6cmadPzoLtHDEO+wI0LReLSv/A33Pk39iRZaPRCw+HeKrqqvFhwpW37y8qtrK6tb+Q3C1vbO7t7xf2DpooSybDBIhHJtkcVCh5iQ3MtsB1LpIEnsOWNrrO8dY9S8Si81eMY3YAOQu5zRrWx6g+9Ysku2zORv+AsoHT1Mc30VusVP7v9iCUBhpoJqlTHsWPtplRqzgROCt1EYUzZiA6wYzCkASo3nQ06ISfG6RM/kuaFmszcnx0pDZQaB56pDKgequUsM//LOon2L9yUh3GiMWTzj/xEEB2RbGvS5xKZFmMDlEluZiVsSCVl2tymYI7gLK/8F5pnZadSvqzbpWoF5srDERzDKThwDlW4gRo0gAHCIzzDi3VnPVmv1nRemrMWPYfwS9b7NwaNkYU=</latexit>

Figure 2.1: Overview of allele-specific modeling of diploid Hi-C data. (A) Diploid contact
(i, j) is a combination of four distinct allele-specific contacts (mi,mj), (mi, pj), (pi,mj),
and (pi, pj). (B) Reconstruction of allele-specific diploid contact matrix. (C) Observed
allele-specific contacts between bins i and j can be decomposed into observed allele-certain
contacts COij , observed allele-ambiguous contacts CXij . We aim to decompose CXij and infer

the hidden contacts CHij , and impute the true allele-specific contacts Tij . (D) Illustration

of the hierarchical Bayesian ASHIC-ZIPM model.
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In diploid Hi-C data, we cannot directly observe Cηim∗j and Cηip∗j since the read

end mapped to the bin j is allele-ambiguous and hence, it cannot be distinguished between

mj and pj . As a result, the observed Hi-C contacts contain the following types of allele-

ambiguous contacts:

Cηixj = Cηim∗j + Cηip∗j

Cxiθj = Cm∗i θj + Cp∗i θj

Cxixj = Cm∗im∗j + Cm∗i p∗j + Cp∗im∗j + Cp∗i p∗j

(2.2)

where x indicates that the allele identity of a read end is unknown. We refer to Cηixj and

Cxiθj as one-end allele-ambiguous contacts and Cxixj as both-end allele-ambiguous contacts

(Figure 2.1C).

In summary, we define CO = {Cηiθj} as the observed allele-specific contact fre-

quencies, CX = {Cηixj , Cxiθj , Cxixj} as the observed allele-ambiguous contact frequencies

(LHS in eq. (2.2)), andCH = {Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j } as the unobserved (hidden) allele-specific

contact frequencies (RHS in eq. (2.2)). Our goal is to decompose CX and infer CH in order

to impute the true allele-specific frequencies T = {Tηiθj} by eq. (2.1) (Figure 2.1C).

2.2 Modeling True Allele-Specific Contact Frequencies

We adopt the coarse-grained polymer model [20] to represent the chromosomal

structures. Each bin in the genome is represented as a bead in the 3D space, and each

chromosome can be viewed as a chain of beads. Specifically, we denote Xm and Xp to be

the 3D coordinates of the homologous chromosomes m and p, respectively, whereXm,Xp ∈

R3×n. Let xηi and xθj to be the 3D coordinates of beads ηi and θj , respectively, where
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η, θ ∈ {m, p}. According to polymer physics [21, 19], the contact frequency Tηiθj between ηi

and θj is inversely correlated with their spatial distance dηiθj , following a power-law decay

function. That is, Tηiθj ∝ dαηiθj , where α < 0 is the exponent of the distance-decay function,

and dηiθj is the Euclidean distance between beads ηi and θj :

dηiθj = ‖xηi − xθj‖2 =
√

(xηi1 − xθj1)2 + (xηi2 − xθj2)2 + (xηi3 − xθj3)2 (2.3)

2.2.1 Poisson Model

Similar to the PASTIS method [19], we model the true allele-specific contact fre-

quency Tηiθj as a Poisson random variable:

Tηiθj ∼ Poisson(ληiθj = βdαηiθj ), (2.4)

where β is a scaling factor corresponding to the sequencing depth, dηiθj is the Euclidean

distance between beads ηi and θj , and α < 0 models the power-law decay rate.

2.2.2 Zero-Inflated Poisson Model

Definition 1 Suppose X ∼ Poisson(λ) and Z is a binary variable. X and Z are inde-

pendent. Let Y = ZX. Then, Y |Z follows a zero-inflated Poisson (ZIP) distribution:

Y |Z ∼ ZIP(λ, Z).

The probability mass function (pmf) of the conditional distribution Y given Z is

fZIP(Y | Z) = [1(Y = 0)]1−Z · [fP(Y ;λ)]Z ,
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where fP(·) denotes the Poisson pmf, and 1(A) is an indicator function defined as:

1(A) :=


1, if A is true;

0, otherwise.

Proposition 2 Assume Y |Z ∼ ZIP (λ, Z). Then the conditional expectation of Y |Z is

E(Y |Z) = Zλ.

Furthermore, to account for the excessive zeros in Hi-C contact matrices, we pro-

pose to use a zero-inflated Poisson (ZIP) distribution to model the contact counts (Fig-

ure 2.1D). We assume that Tηiθj follows a ZIP distribution:

Tηiθj | Zηiθj ∼ ZIP(ληiθj = βdαηiθj , Zηiθj ) (2.5)

Different from the Poisson model, here we introduce Zηiθj , a latent binary vari-

able to indicate whether Tηiθj is generated from the Poisson state (Zηiθj = 1, Tηiθj ∼

Poisson(ληiθj )) or the missing state (Zηiθj = 0, Tηiθj = 0). Furthermore, we assume that

Zηiθj follows a Bernoulli prior with a success probability γηiθj :

Zηiθj ∼ Bernoulli(γηiθj ) (2.6)

For intra-chromosomal contacts (where η = θ), γηiθj is a function of the corresponding

genomic distance. For inter-chromosomal contacts (η 6= θ), γηiθj is set to a constant:

γηiθj =


γ|i−j| = G(|i− j|), η = θ;

γinter, η 6= θ.

(2.7)

In other words, the true allele-specific contact frequency Tηiθj is a mixture of two

states. In the Poisson state (with probability γηiθj ), Tηiθj follows a Poisson distribution;
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whereas in the missing state (with probability 1 − γηiθj ), Tηiθj = 0. The γηiθj parameter

acts as a weight between the Poisson and missing states. Then, the pmf of the conditional

distribution Tηiθj given Zηiθj can be written as

f(Tηiθj | Zηiθj ) =
[
1
(
Tηiθj = 0

)]1−Zηiθj · [fP(Tηiθj ;ληiθj )
]Zηiθj , (2.8)

and the joint pmf of Tηiθj and Zηiθj is

f(Tηiθj , Zηiθj ) =
[
(1− γηiθj )1

(
Tηiθj = 0

)]1−Zηiθj [γηiθjfP(Tηiθj ;ληiθj )
]Zηiθj . (2.9)

2.3 Modeling Allele-Identifiable Probability

As discussed in Section 2.1, we cannot directly observe the allele identity of all

diploid Hi-C contacts. A higher SNP density results in a higher probability that our allele-

aware mapping pipeline will be able to identify the true allele source of a read. We use qi to

denote the allele-identifiable probability of bin i in the genome, i.e., if a single-end read is

mapped to bin i, the probability that the read overlaps with SNP(s) (and therefore can be

distinguished between alleles m and p) is qi. Consequently, assuming that bins i and j are

independent, the probabilities that a paired-end contact between the bins i and j is both-

ends allele-certain (qij), one-end allele-ambiguous at bin i (qīj), one-end allele-ambiguous

at bin j (qij̄), and both-end allele-ambiguous (qīj̄) can be calculated as follows:

qij = qiqj

qij̄ = qi(1− qj)

qīj = (1− qi)qj

qīj̄ = (1− qi)(1− qj)

(2.10)
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2.4 Modeling Hidden Allele-Specific Contact Frequencies

Recall in eq. (2.1), the true allele-specific contact frequency Tηiθj can be expressed

as the sum of one observed allele-certain contact frequency Cηiθj and three hidden allele-

specific contact frequencies Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j . We assume the generation of the decomposed

allele-specific contact frequencies from the true allele-specific contact frequency follows a

multinomial distribution in the ASHIC-PM model, and a zero-inflated multinomial (ZIM)

distribution in the ASHIC-ZIPM model.

2.4.1 ASHIC-PM Model

In the Poisson-multinomial model, we assume that the decomposed allele-specific

chromatin contact frequencies Cηiθj , Cηiθ∗j , Cη∗i θj , and Cη∗i θ∗j conditional on the true allele-

specific contact frequency Tηiθj follow a multinomial distribution with the probabilities

qij , qij̄ , qīj , and qīj̄ . That is,

Cηiθj , Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j | Tηiθj ∼ Multinomial
(
Tηiθj , {qij , qij̄ , qīj , qīj̄}

)
. (2.11)

Proposition 3 Given a multinomial experiment with X trials, where each possible outcome

can occur with probabilities p1, p2, · · · , pk, suppose X follows a Poisson distribution with

the parameter λ. Let Xi denote the number of occurrences of the i-th outcomes in X

trials. Then, X1, X2, · · · , Xk follow mutually independent Poisson distributions with the

parameters p1λ, p2λ, · · · , pkλ, respectively.
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Therefore, we can derive Cηiθj , Cηiθ∗j , Cη∗i θj , and Cη∗i θ∗j as mutually independent

Poisson random variables:

Cηiθj ∼ Poisson(qijληiθj ),

Cηiθ∗j ∼ Poisson(qij̄ληiθj ),

Cη∗i θj ∼ Poisson(qījληiθj ),

Cη∗i θ∗j ∼ Poisson(qīj̄ληiθj ).

(2.12)

Proposition 4 Let X1, X2 be independent Poisson random variables with

X1 ∼ Poisson(λ1),

X2 ∼ Poisson(λ2).

Then, X1 +X2 ∼ Poisson(λ1 + λ2).

By eq. (2.2), eq. (2.12), and Proposition 4, we have

Cηixj ∼ Poisson
(
qij̄(ληimj + ληipj )

)
,

Cxiθj ∼ Poisson
(
qīj(λmiθj + λpiθj )

)
,

Cxixj ∼ Poisson
(
qīj̄(λmimj + λmipj + λpimj + λpipj )

)
,

(2.13)

which implies that Cηixj , Cxiθj , and Cxixj are mutually independent.

Proposition 5 Let X1 and X2 be independent Poisson random variables with

X1 ∼ Poisson(λ1),

X2 ∼ Poisson(λ2).

Then, X1 | X1 +X2 ∼ Binomial
(
X1 +X2,

λ1
λ1+λ2

)
.
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Corollary 6 Let X1, X2, X3, and X4 be independent Poisson distribution with

Xi ∼ Poisson(λi). i = 1, 2, 3, 4

Then, X1 | (X1 +X2 +X3 +X4) ∼ Binomial
(
X1 +X2 +X3 +X4,

λ1
λ1+λ2+λ3+λ4

)
.

Therefore, we can derive the conditional distribution of the hidden allele-specific

contact frequenciesCH = {Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j }, given the observed allele-ambiguous contact

frequencies CX = {Cηixj , Cxiθj , Cxixj}, as follows:

Cηiθ∗j | Cηixj ∼ Binomial

(
Cηixj ,

ληiθj
ληimj + ληipj

)
,

Cη∗i θj | Cxiθj ∼ Binomial

(
Cxiθj ,

ληiθj
λmiθj + λpiθj

)
,

Cη∗i θ∗j | Cxixj ∼ Binomial

(
Cxixj ,

ληiθj
λmimj + λmipj + λpimj + λpipj

)
.

(2.14)

2.4.2 ASHIC-ZIPM Model

Definition 7 Suppose X = {X1, · · · , Xk, · · · , XK} follows a multinomial distribution with

the parameters n and q = {p1, · · · , pk, · · · , pK}. That is, X ∼ Multinomial (n, q). Further,

suppose that Z is a binary variable and that X and Z are independent. Let Y = ZX, that

is, Yk = ZXk, for all k. Then, Y |Z follows a zero-inflated multinomial (ZIM) distribution:

Y |Z ∼ ZIM(n, q, Z).

The pmf of the conditional distribution Y given Z is

fZIM(Y | Z) = [1(Y = 0)]1−Z · [fM(Y ;n, q)]Z , (2.15)

where fM(·) denotes the multinomial pmf.
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In the zero-inflated Poisson-multinomial model, we assume that conditional on

the true allele-specific contact frequency Tηiθj and the Poisson state latent variable Zηiθj ,

the decomposed allele-specific chromatin contact frequencies Cηiθj , Cηiθ∗j , Cη∗i θj , and Cη∗i θ∗j

follow a zero-inflated multinomial (ZIM) model:

Cηiθj , Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j | Tηiθj , Zηiθj ∼ ZIM
(
Tηiθj , {qij , qij̄ , qīj , qīj̄}, Zηiθj

)
. (2.16)

That is, Cηiθj , Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j | Tηiθj , Zηiθj has a mixture distribution. If Zηiθj = 1, it

reduces to the multinomial distribution as in eq. (2.11); otherwise, Cηiθj = Cηiθ∗j = Cη∗i θj =

Cη∗i θ∗j = 0. By Proposition 3, we can derive Cηiθj , Cηiθ∗j , Cη∗i θj , and Cη∗i θ∗j , conditional on

Zηiθj , as mutually independent ZIP random variables:

Cηiθj | Zηiθj ∼ ZIP(qijληiθj , Zηiθj ),

Cηiθ∗j | Zηiθj ∼ ZIP(qij̄ληiθj , Zηiθj ),

Cη∗i θj | Zηiθj ∼ ZIP(qījληiθj , Zηiθj ),

Cη∗i θ∗j | Zηiθj ∼ ZIP(qīj̄ληiθj , Zηiθj ).

(2.17)

Therefore, we can factorize the joint distribution as follows:

f(Cηiθj , Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j | Zηiθj )

=fZIP(Cηiθj ; qijληiθj , Zηiθj )fZIP(Cηiθ∗j ; qij̄ληiθj , Zηiθj )fZIP(Cη∗i θj ; qījληiθj , Zηiθj )·

fZIP(Cη∗i θ∗j ; qīj̄ληiθj , Zηiθj )

=
[
fP(Cηiθj ; qijληiθj )fP(Cηiθ∗j ; qij̄ληiθj )fP(Cη∗i θj ; qījληiθj )fP(Cη∗i θ∗j ; qīj̄ληiθj )

]Zηiθj ·[
1

(
Cηiθj = Cηiθ∗j = Cη∗i θj = Cη∗i θ∗j = 0

)]1−Zηiθj
.

(2.18)

Note that Cηiθj , Cηiθ∗j , Cη∗i θj , and Cη∗i θ∗j are mutually conditionally independent on

Zηiθj but not mutually independent. When Zηiθj = 1, eq. (2.17) reduces to the special case
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in eq. (2.12), where Cηiθj , Cηiθ∗j , Cη∗i θj , and Cη∗i θ∗j are mutually independent Poisson random

variables.

Recall that in eq. (2.2), the observed allele-ambiguous contact frequency is ex-

pressed as the sum of the corresponding hidden allele-specific contact frequencies. There-

fore, by Proposition 4, we can derive that the observed allele-ambiguous contact frequencies

Cηixj , Cxiθj , and Cxixj are ZIP random variables and mutually conditional independent

given Z:

Cηixj | Zηimj , Zηipj ∼ ZIP

(
qij̄
∑
θ′

Zηiθ′jληiθ′j , Zηixj

)
, (2.19)

where a new latent binary variable Zηixj is introduced and defined as Zηimj or Zηipj . That is,

when Zηimj = 1 or Zηipj = 1, Zηixj = 1 and Cηixj ∼ Poisson
(
qij̄(Zηimjληimj + Zηipjληipj )

)
;

otherwise, Zηixj = 0 and Cηixj = 0. Similarly, we have

Cxiθj | Zmiθj , Zpiθj ∼ ZIP

qīj∑
η′

Zη′iθjλη′iθj , Zxiθj

 , (2.20)

where Zxiθj := Zmiθjor Zpiθj , and

Cxixj | Zmimj , Zmipj , Zpimj , Zpipj ∼ ZIP

qīj̄∑
η′,θ′

Zη′iθ′jλη′iθ′j , Zxixj

 , (2.21)

where Zxixj := Zmimjor Zmipjor Zpimjor Zpipj .

Furthermore, by Corollary 6 and eq. (2.17), we can show that conditional on Z =

{Zηiθj} and the observed allele-ambiguous contact frequencies Cηixj , Cxi,θj , and Cxi,xj , the

hidden allele-specific contact frequencies Cηiθ∗j , Cη∗i θj , and Cη∗i θ∗j are mutually independent

zero-inflated binomial (ZIB) random variables:

Cηiθ∗j | Cηixj , Zηimj , Zηipj ∼ ZIB

(
Cηixj ,

ληiθj∑
θ′ Zηiθ′jληiθ′j

, Zηiθj

)
. (2.22)
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That is, Cηiθ∗j | Cηixj , Zηimj , Zηipj ∼ Binomial
(
Cηixj ,

ληiθj
Zηimjληimj+Zηipjληipj

)
if Zηiθj = 1;

otherwise, Cηiθ∗j = 0. Similarly, we have

Cη∗i θj | Cxiθj , Zmiθj , Zpiθj ∼ ZIB

(
Cxiθj ,

ληiθj∑
η′ Zη′iθjλη′iθj

, Zηiθj

)
, (2.23)

Cη∗i θ∗j | Cxixj , Zmimj , Zmipj , Zpimj , Zpipj ∼ ZIB

(
Cxixj ,

ληiθj∑
η′,θ′ Zη′iθ′jλη′iθ′j

, Zηiθj

)
. (2.24)

Definition 8 Suppose X ∼ Binomial(n, p) and Z is a binary variable where X and Z are

independent. Let Y = ZX. Then, Y |Z follows a zero-inflated binomial (ZIB) distribution:

Y |Z ∼ ZIB (n, p, Z) .

The pmf of the conditional distribution Y given Z is

fZIB(Y | Z) = [1(Y = 0)]1−Z · [fB(Y ;n, p)]Z , (2.25)

where fB(·) denotes the binomial pmf.

Proposition 9 Assume Y |Z ∼ ZIB(n, p, Z). Then, the conditional expectation of Y |Z is

E(Y |Z) = Znp.

Proposition 10 Assume Y |Z ∼ ZIB(n, p, Z). Then, we have

E(ZY |Z) = E(Y |Z) = Znp.
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2.5 Model Summary

n length of the structure

Xm R3×n maternal structure

Xp R3×n paternal structure

xmi R3 i-th bead in structure Xm

η {m, p} maternal or paternal indicator

θ {m, p} maternal or paternal indicator

Tηiθj true allele-specific contact frequency between ηi and θj

Cηiθj allele-specific contact frequency between ηi and θj where both ηi and θj are allele-

identifiable

Cη∗i θj allele-specific contact frequency between ηi and θj where only θj is allele-identifiable

Cηiθ∗j allele-specific contact frequency between ηi and θj where only ηi is allele-identifiable

Cη∗i θ∗j allele-specific contact frequency between ηi and θj where neither ηi or θj is allele-

identifiable

Cxiθj observed allele-ambiguous contact frequency between xi (either mi or pi) and θj

Cηixj observed allele-ambiguous contact frequency between ηi and xj (either mj or pj)

Cxixj observed allele-ambiguous contact frequency between xi (either mi or pi) and xj

(either mj or pj)

Zηiθj Poisson state indicator for contacts between ηi and θj

γηiθj Bernoulli prior for Zηiθj

dηiθj spatial distance between xηi and xθj

ληiθj Poisson parameter

α spatial distance decay exponent

β scaling factor

q Rn allele-identifiable probability

Table 2.1: Notation used in ASHIC models.
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2.5.1 ASHIC-PM Model

In the ASHIC-PM model, we have

Tηiθj ∼ Poisson(ληiθj = βdαηiθj ), (2.4)

Cηiθj , Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j | Tηiθj ∼ Multinomial
(
Tηiθj , {qij , qij̄ , qīj , qīj̄}

)
. (2.11)

Based on the ASHIC-PM model, we can derive

Cηiθj ∼ Poisson(qijληiθj ),

Cηiθ∗j ∼ Poisson(qij̄ληiθj ),

Cη∗i θj ∼ Poisson(qījληiθj ),

Cη∗i θ∗j ∼ Poisson(qīj̄ληiθj ),

(2.12)

Cηixj ∼ Poisson
(
qij̄(ληimj + ληipj )

)
,

Cxiθj ∼ Poisson
(
qīj(λmiθj + λpiθj )

)
,

Cxixj ∼ Poisson
(
qīj̄(λmimj + λmipj + λpimj + λpipj )

)
,

(2.13)

Cηiθ∗j | Cηixj ∼ Binomial

(
Cηixj ,

ληiθj
ληimj + ληipj

)
,

Cη∗i θj | Cxiθj ∼ Binomial

(
Cxiθj ,

ληiθj
λmiθj + λpiθj

)
,

Cη∗i θ∗j | Cxixj ∼ Binomial

(
Cxixj ,

ληiθj
λmimj + λmipj + λpimj + λpipj

)
.

(2.14)

2.5.2 ASHIC-ZIPM Model

In the ASHIC-ZIPM model, we have

Zηiθj ∼ Bernoulli(γηiθj ), (2.6)
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Tηiθj | Zηiθj ∼ ZIP(ληiθj = βdαηiθj , Zηiθj ), (2.5)

Cηiθj , Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j | Tηiθj , Zηiθj ∼ ZIM
(
Tηiθj , {qij , qij̄ , qīj , qīj̄}, Zηiθj

)
. (2.16)

Then, we can further derive

Cηiθj | Zηiθj ∼ ZIP(qijληiθj , Zηiθj ),

Cηiθ∗j | Zηiθj ∼ ZIP(qij̄ληiθj , Zηiθj ),

Cη∗i θj | Zηiθj ∼ ZIP(qījληiθj , Zηiθj ),

Cη∗i θ∗j | Zηiθj ∼ ZIP(qīj̄ληiθj , Zηiθj ),

(2.17)

Cηixj | Zηimj , Zηipj ∼ ZIP

(
qij̄
∑
θ′

Zηiθ′jληiθ′j , Zηixj

)
, (2.19)

Cxiθj | Zmiθj , Zpiθj ∼ ZIP

qīj∑
η′

Zη′iθjλη′iθj , Zxiθj

 , (2.20)

Cxixj | Zmimj , Zmipj , Zpimj , Zpipj ∼ ZIP

qīj̄∑
η′,θ′

Zη′iθ′jλη′iθ′j , Zxixj

 , (2.21)

Cηiθ∗j | Cηixj , Zηimj , Zηipj ∼ ZIB

(
Cηixj ,

ληiθj∑
θ′ Zηiθ′jληiθ′j

, Zηiθj

)
, (2.22)

Cη∗i θj | Cxiθj , Zmiθj , Zpiθj ∼ ZIB

(
Cxiθj ,

ληiθj∑
η′ Zη′iθjλη′iθj

, Zηiθj

)
, (2.23)

Cη∗i θ∗j | Cxixj , Zmimj , Zmipj , Zpimj , Zpipj ∼ ZIB

(
Cxixj ,

ληiθj∑
η′,θ′ Zη′iθ′jλη′iθ′j

, Zηiθj

)
. (2.24)

Note that when Z = 1 (that is, Zηiθj = 1, ∀η, θ ∈ {m, p}, ∀1 ≤ i, j ≤ n), the

ASHIC-ZIPM model reduces to the ASHIC-PM model. Hence, the ASHIC-PM model is a

special case of the ASHIC-ZIPM model.
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2.6 Incorporating Bias Factors

It has been shown that the raw contact frequencies obtained from a real Hi-C

experiment are affected by various types of systematic biases, including the length of re-

striction fragments, the GC content of ligation junctions, and the sequence uniqueness

(mappability) [22]. These types of biases depend on the DNA sequences, thus can be af-

fected by allelic sequence divergence such as SNPs, especially in high-SNP-density systems.

In addition, depending on the choice of read mapping strategies, there may exist a mapping

bias towards the reference allele. That is, reads containing the reference allele are more

likely to be mapped. Therefore, we consider the bias factors to be allele-specific.

2.6.1 ASHIC-PM Bias-Incorporated Model

According to Imakaev et al. [23], the bias of observing Hi-C contacts between two

chromatin loci ηi and θj can be factorized as the product of the bias factors bηi and bθj of

the contacting loci, respectively. Therefore, under the ASHIC-PM model, we have

Tηiθj ∼ Poisson(bηibθjληiθj ). (2.26)

Consequently, the observed allele-certain, hidden allele-specific, and the observed

allele-ambiguous contact frequencies follow the modified Poisson distributions:

Cηiθj ∼ Poisson(qijbηibθjληiθj ),

Cηiθ∗j ∼ Poisson(qij̄bηibθjληiθj ),

Cη∗i θj ∼ Poisson(qījbηibθjληiθj ),

Cη∗i θ∗j ∼ Poisson(qīj̄bηibθjληiθj ),

(2.27)
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Cηixj ∼ Poisson

(
qij̄
∑
θ′

bηibθ′jληiθ′j

)
,

Cxiθj ∼ Poisson

qīj∑
η′

bη′ibθjλη′iθj

 ,

Cxixj ∼ Poisson

qīj̄∑
η′,θ′

bη′ibθ′jλη′iθ′j

 .

(2.28)

The conditional distributions of the hidden allele-specific contact frequencies given

the observed allele-ambiguous contact frequencies follow:

Cηiθ∗j | Cηixj ∼ Binomial

(
Cηixj ,

bηibθjληiθj∑
θ′ bηibθ′jληiθ′j

)
,

Cη∗i θj | Cxiθj ∼ Binomial

(
Cxiθj ,

bηibθjληiθj∑
η′ bη′ibθjλη′iθj

)
,

Cη∗i θ∗j | Cxixj ∼ Binomial

(
Cxixj ,

bηibθjληiθj∑
η′,θ′ bη′ibθ′jλη′iθ′j

)
.

(2.29)

2.6.2 ASHIC-ZIPM Bias-Incorporated Model

Similarly, under the ASHIC-ZIPM model, we have

Tηiθj | Zηi,θj ∼ ZIP(bηibθjληiθj , Zηiθj ). (2.30)

Then, the observed allele-certain, hidden allele-specific, and the observed allele-

ambiguous contact frequencies follow the modified ZIP distributions:

Cηiθj | Zηiθj ∼ ZIP(qijbηibθjληiθj , Zηiθj ),

Cηiθ∗j | Zηiθj ∼ ZIP(qij̄bηibθjληiθj , Zηiθj ),

Cη∗i θj | Zηiθj ∼ ZIP(qījbηibθjληiθj , Zηiθj ),

Cη∗i θ∗j | Zηiθj ∼ ZIP(qīj̄bηibθjληiθj , Zηiθj ).

(2.31)
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Cηixj | Zηimj , Zηipj ∼ ZIP

(
qij̄
∑
θ′

Zηiθ′jbηibθ′jληiθ′j , Zηixj

)
,

Cxiθj | Zmiθj , Zpiθj ∼ ZIP

qīj∑
η′

Zη′iθjbη′ibθjλη′iθj , Zxiθj

 ,

Cxixj | Zmimj , Zmipj , Zpimj , Zpipj ∼ ZIP

qīj̄∑
η′,θ′

Zη′iθ′jbη′ibθ′jλη′iθ′j , Zxixj

 .

(2.32)

The conditional distributions of the hidden allele-specific contact frequencies given

the observed allele-ambiguous contact frequencies and Z follow:

Cηiθ∗j | Cηixj , Zηimj , Zηipj ∼ ZIB

(
Cηixj ,

bηibθjληiθj∑
θ′ Zηiθ′jbηibθ′jληiθ′j

, Zηiθj

)
,

Cη∗i θj | Cxiθj , Zmiθj , Zpiθj ∼ ZIB

(
Cxiθj ,

bηibθjληiθj∑
η′ Zη′iθjbη′ibθjλη′iθj

, Zηiθj

)
,

Cη∗i θ∗j | Cxixj , Zmimj , Zmipj , Zpimj , Zpipj ∼ ZIB

(
Cxixj ,

bηibθjληiθj∑
η′,θ′ Zη′iθ′jbη′ibθ′jλη′iθ′j

, Zηiθj

)
.

(2.33)
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Chapter 3

Inference via EM Algorithm

We design an EM algorithm to simultaneously infer 3D structures and estimate

model parameters. Below, we describe our EM algorithm separately for the ASHIC-PM

model and ASHIC-ZIPM model.

3.1 ASHIC-PM Model

In the ASHIC-PM model, the parameter space includes the homologous chromo-

some structures Xm ∈ R3×n and Xp ∈ R3×n, the distance-decay exponent α, the scaling

factor β, and the allele-identifiable probabilities q = {qk}, 1 ≤ k ≤ n.

Recall in eq. (2.4), the Poisson parameter ληiθj is a function of α, β, Xm, and

Xp. Here, we fix α and β to obtain a unique solution for Xm and Xp. Specifically, we use

true estimate of α in simulations and set α = −3 in real data. We set β = 1 in both cases.

Note that α = −3 is deduced from the following two relationships based on polymer physics

studies: 1) d ∼ sB1 between spatial distance d and genomic distance s, and 2) c ∼ sB2
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between contact count c and genomic distance s. As demonstrated by Lieberman-Aiden

et al. [6], chromatin architecture follows a “fractal globule” model, in which d ∼ s1/3 and

c ∼ s−1, hence c ∼ d−3. Also it has been shown that the fractal globule model is consistent

with the observations in Hi-C data [6] and 3D-FISH data [24]. The parameter β only affects

the scale of the estimated 3D structures. If we set β to a larger value, the estimated 3D

structures will scale up; on the other hand, if we set β to a smaller value, the structures

will shrink accordingly. Therefore, the choice of β does not affect the shape of the resulting

structures.

From the diploid Hi-C data, we can directly observe the allele-certain contacts

CO = {Cηiθj} and the allele-ambiguous contact frequencies CX = {Cηixj , Cxiθj , Cxixj}.

The unobserved latent variables are the hidden allele-specific contact frequencies CH =

{Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j } according to eq. (2.2).

The goal of the EM algorithm is to find the maximum likelihood estimate (MLE)

of the model parameters, reconstruct the allelic 3D structures Xm and Xp, and decompose

CX and infer CH to impute the true allele-specific contact frequencies T = {Tηiθj} from

eq. (2.1).

The complete likelihood of the observed data {CO, CX} and the unobserved

latent data CH is

Lc = L
(
Xm,Xp, q | CO,CX ,CH

)
= p

(
CO,CX ,CH |Xm,Xp, q

)
. (3.1)

The marginal likelihood of the observed data CO and CX is

L
(
Xm,Xp, q | CO,CX

)
= p

(
CO,CX |Xm,Xp, q

)
=
∑
CH

p
(
CO,CX ,CH |Xm,Xp, q

)
.

(3.2)
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To solve the MLE of the marginal likelihood of observed data {CO,CX}, we propose an

EM algorithm which applies the following two steps iteratively:

• Expectation step (E-step):

Q = Q
(
Xm,Xp, q;X

(t)
m ,X

(t)
p , q(t)

)
= E

CH |CO ,CX ,X(t)
m ,X

(t)
p ,q(t) (logLc) .

• Maximization step (M-step):

X
(t+1)
m ,X

(t+1)
p , q(t+1) = arg max

Xm,Xp,q
Q.

3.1.1 E-step

We can factorize the complete likelihood function in eq. (3.1) as

Lc =L
(
Xm,Xp, q | CO,CX ,CH

)
=p
(
CO |Xm,Xp, q

)
p
(
CH |Xm,Xp, q

)
p
(
CX | CH

)
=
∏
i<j

p
(
COij |Xm,Xp, q

)︸ ︷︷ ︸
LO

p
(
CHij |Xm,Xp, q

)︸ ︷︷ ︸
LH

p
(
CXij | CHij

)︸ ︷︷ ︸
LX

.

(3.3)

From eq. (2.12), we can write out

LO =p
(
COij |Xm,Xp, q

)
=
∏
η,θ

p
(
Cηiθj |Xm,Xp, q

)
=
∏
η,θ

fP(Cηiθj ; qijληiθj )

=
∏
η,θ

(qijληiθj )
Cηiθj e

−qijληiθj

Cηiθj !
,

(3.4)
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LH =p
(
CHij |Xm,Xp, q

)
=
∏
η,θ

p
(
Cηiθ∗j |Xm,Xp, q

)
p
(
Cη∗i θj |Xm,Xp, q

)
p
(
Cη∗i θ∗j |Xm,Xp, q

)

=
∏
η,θ

fP(Cηiθ∗j ; qij̄ληiθj )fP(Cη∗i θj ; qījληiθj )fP(Cη∗i θ∗j ; qīj̄ληiθj )

=
∏
η,θ

(qij̄ληiθj )
Cηiθ∗j e

−qij̄ληiθj

Cηiθ∗j !

(qījληiθj )
Cη∗

i
θj e
−qījληiθj

Cη∗i θj !

(qīj̄ληiθj )
Cη∗

i
θ∗
j e
−qīj̄ληiθj

Cη∗i θ∗j !
.

(3.5)

Furthermore from eq. (2.2), we have

LX =p
(
CXij | CHij

)
=

[∏
η

p
(
Cηixj | CHij

)] [∏
θ

p(Cxiθj | C
H
ij )

]
p(Cxixj | CHij )

=

[∏
η

1

(
Cηixj = Cηim∗j + Cηip∗j

)][∏
θ

1
(
Cxiθj = Cm∗i θj + Cp∗i θj

)]
·

1

(
Cxixj = Cm∗im∗j + Cm∗i p∗j + Cp∗im∗j + Cp∗i p∗j

)
.

(3.6)

Moreover, the complete log-likelihood function can be written as

logLc =
∑
i<j

(
logLO + logLH + logLX

)
. (3.7)

In the E-step, we need to calculate the conditional expectation of the complete log-

likelihood function given the observed data and the current parameter estimation, denoted

by E
CH |CO ,CX ,X(t)

m ,X
(t)
p ,q(t) (logLc).

In short, we use ECH |• () to replace E
CH |CO ,CX ,X(t)

m ,X
(t)
p ,q(t) (). We can show that

Q =Q
(
Xm,Xp, q;X

(t)
m ,X

(t)
p , q(t)

)
=ECH |• (logLc)

=
∑
i<j

(
logLO + ECH |•

(
logLH

)
+ ECH |•

(
logLX

))
.

(3.8)
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First, we can write

logLO =
∑
η,θ

(
Cηiθj log qij + Cηiθj log ληiθj − qijληiθj

)
+ c. (3.9)

Second, we have

logLH =
∑
η,θ

[(
Cηiθ∗j log qij̄ + Cηiθ∗j log ληiθj − qij̄ληiθj

)
+

(
Cη∗i θj log qīj + Cη∗i θj log ληiθj − qījληiθj

)
+(

Cη∗i θ∗j log qīj̄ + Cη∗i θ∗j log ληiθj − qīj̄ληiθj
)]

+ c.

(3.10)

Recall that in eq. (2.14), at the (t+1)-th iteration, we can compute the conditional

expectation of Cηiθ∗j , Cη∗i θj , and Cη∗i θ∗j given the observed data and the parameters estimated

from the t-th iteration. Specifically, we define

Cηiθ∗j := E
(
Cηiθ∗j | Cηixj ;λ

(t)
ηiθj

, λ
(t)

ηiθ̃j

)
=

λ
(t)
ηiθj

λ
(t)
ηiθj

+ λ
(t)

ηiθ̃j

Cηixj ,

Cη∗i θj := E
(
Cη∗i θj | Cxiθj ;λ

(t)
ηiθj

, λ
(t)
η̃iθj

)
=

λ
(t)
ηiθj

λ
(t)
ηiθj

+ λ
(t)
η̃iθj

Cxiθj ,

Cη∗i θ∗j := E
(
Cη∗i θ∗j | Cxixj ;λ

(t)
ηiθj

, λ
(t)

ηiθ̃j
, λ

(t)
η̃iθj

, λ
(t)

η̃iθ̃j

)
=

λ
(t)
ηiθj

λ
(t)
ηiθj

+ λ
(t)

ηiθ̃j
+ λ

(t)
η̃iθj

+ λ
(t)

η̃iθ̃j

Cxixj ,

(3.11)

where θ̃ is the opposite allele of θ ( θ̃ = m if θ = p ; θ̃ = p if θ = m), η̃ is the opposite allele

of η ( η̃ = m if η = p ; η̃ = p if η = m), and λ
(t)
ηiθj

= β
(
d

(t)
ηiθj

)α
.

Consequently, we have

Cηixj =Cηim∗j + Cηip∗j ,

Cxiθj =Cm∗i θj + Cp∗i θj ,

Cxixj =Cm∗im∗j + Cm∗i p∗j + Cp∗im∗j + Cp∗i p∗j ,

(3.12)
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From eq. (3.10) and eq. (3.11), we can show that

ECH |•
(
logLH

)
=
∑
η,θ

[(
Cηiθ∗j log qij̄ + Cηiθ∗j log ληiθj − qij̄ληiθj

)
+

(
Cη∗i θj log qīj + Cη∗i θj log ληiθj − qījληiθj

)
+(

Cη∗i θ∗j log qīj̄ + Cη∗i θ∗j log ληiθj − qīj̄ληiθj
)]

+ c.

(3.13)

Furthermore, from eq. (3.12), we have

ECH |•
(
logLX

)
= 0. (3.14)

Taken together, we have

Q =
∑
i<j

∑
η,θ

[
Cηiθj log qij + Cηiθ∗j log qij̄ + Cη∗i θj log qīj + Cη∗i θ∗j log qīj̄

+
(
Cηiθj + Cηiθ∗j + Cη∗i θj + Cη∗i θ∗j

)
log ληiθj − ληiθj

]
+ c

=
∑
i<j

∑
η,θ

[(
Cηiθj + Cηiθ∗j

)
log qi +

(
Cηiθj + Cη∗i θj

)
log qj

+
(
Cη∗i θj + Cη∗i θ∗j

)
log (1− qi) +

(
Cηiθ∗j + Cη∗i θ∗j

)
log (1− qj)

+
(
Cηiθj + Cηiθ∗j + Cη∗i θj + Cη∗i θ∗j

)
log ληiθj − ληiθj

]
+ c,

(3.15)

where ληiθj = β
(
dηiθj

)α
.

3.1.2 M-step

In the M-step, we aim to find the optimal solution of Xm,Xp, q that maximizes

the conditional expectation of the complete log-likelihood:

X
(t+1)
m ,X

(t+1)
p , q(t+1) = arg max

Xm,Xp,q
Q,
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where Q = Q
(
Xm,Xp, q;X

(t)
m ,X

(t)
p , q(t)

)
= ECH |•

(
logL

(
Xm,Xp, q | CO,CX ,CH

))
.

By setting the partial derivative of Q with respect to qk to 0 (i.e., ∂Q
∂qk

= 0) for k = 1, · · · , n,

we can obtain a closed-form solution of q:

q
(t+1)
k =

S1(k)

S1(k) + S2(k)
,

S1(k) =
∑
η,θ

∑
i<k

(
Cηiθk + Cη∗i θk

)
+
∑
j>k

(
Cηkθj + Cηkθ∗j

) ,
S2(k) =

∑
η,θ

∑
i<k

(
Cηiθ∗k + Cη∗i θ∗k

)
+
∑
j>k

(
Cη∗kθj + Cη∗kθ∗j

) .
(3.16)

Note that S1(k) can be regarded as the sum of the estimated allele-specific contact frequency

between bin k and other bins where the read end at bin k can be distinguished between alleles

m and p; S2(k) can be regarded as the sum of estimated allele-specific contact frequency

between bin k and other bins where the read end at bin k are not allele-identifiable. Based

on eq. (3.12), we can simplify eq. (3.16) as follows:

S1(k) =
∑
i<k

∑
η,θ

Cηiθk +
∑
θ

Cxiθk

+
∑
j>k

∑
η,θ

Cηkθj +
∑
η

Cηkxj

 ,

S2(k) =
∑
i<k

(∑
η

Cηixk + Cxixk

)
+
∑
j>k

(∑
θ

Cxkθj + Cxkxj

)
.

(3.17)

Note that S1(k) and S2(k) contain only observed values; therefore, we only need to estimate

q once at the beginning.

There is no closed-form solution for the 3D structures Xm and Xp. Therefore,

we use a nonlinear optimizer, the L-BFGS-B algorithm [25] (fmin l bfgs b from the SciPy

package), to iteratively update Xm and Xp. The L-BFGS-B algorithm only needs the

derivative of a function to determine the direction of steepest descent and obtain an estimate

of the Hessian matrix in each iteration.

32



For instance, the derivative of the expectation of log-likelihood with respect to

Xm is:

∂Q
∂Xm

=


∂Q

∂xm11
· · · ∂Q

∂xmn1

∂Q
∂xm12

· · · ∂Q
∂xmn2

∂Q
∂xm13

· · · ∂Q
∂xmn3

 . (3.18)

From eq. (3.15), we have

∂Q
∂xmk1

=
∑
i<j

∑
η,θ

α

(Tηiθj
dηiθj

− βdα−1
ηiθj

)
∂dηiθj
∂xmk1

. 1 ≤ k ≤ n (3.19)

Here, we define Tηiθj as the estimated allele-specific contact frequency between ηi

and θj :

Tηiθj := Cηiθj + Cηiθ∗j + Cη∗i θj + Cη∗i θ∗j . (3.20)

From eq. (2.3), we have

∂dηiθj
∂xmk1

=



xηi1−xθj1
dηiθj

, if η = m, i = k;

xθj1−xηi1
dηiθj

, if θ = m, j = k;

0, otherwise.

(3.21)

Therefore, we have

∂Q
∂xmk1

=
∑
j 6=k

∑
θ

α

(Tmkθj
dmkθj

− βdα−1
mkθj

)
xmk1

− xθj1
dmkθj

. (3.22)

Similarly, we can write out the partial derivatives with respect to xmk2
and xmk3

.
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Input: observed allele-certain contact counts CO and allele-ambiguous

contact counts CX .

Output: estimated total allele-specific contact matrix T, allelic structures

Xm and Xp, and allele-identifiable probabilities q.

1 Compute the allele-identifiable probabilities q with eq. (3.16);

2 Initialize the allelic structures Xm and Xp;

3 while not converge do

4 � E-step

5 for η, θ ∈ {m, p}, 1 ≤ i < j ≤ n do

6 Update hidden allele-specific counts Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j with eq. (3.11);

7 Update total allele-specific counts Tηiθj with eq. (3.20);

8 end

9 � M-step

10 Update allelic structures Xm and Xp by eq. (3.22) with current T;

11 end

12 return T,Xm,Xp, q

Algorithm 1: EM algorithm for the ASHIC-PM model
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3.2 ASHIC-ZIPM Model

In the ASHIC-ZIPM model, the parameter space contains the homologous chro-

mosome structures Xm ∈ R3×n and Xp ∈ R3×n, the distance-decay exponent α, the scaling

factor β, the hyper parameter γ = {γηiθj} (for the Bernoulli prior distribution of the Pois-

son state latent variables Z = {Zηiθj}), and the allele-identifiable probabilities q = {qk},

1 ≤ k ≤ n. Note that in eq. (2.5), the ZIP parameter ληiθj is a function of α, β, Xm and

Xp. Similar to the ASHIC-PM model, we fix α and β in order to obtain a unique solution

for Xm and Xp.

From the diploid Hi-C data, we can directly observe the allele-certain contacts

CO = {Cηiθj} and the allele-ambiguous contact frequencies CX = {Cηixj , Cxiθj , Cxixj}.

The unobserved latent variables include the hidden allele-specific contact frequencies CH =

{Cηiθ∗j , Cη∗i θj , Cη∗i θ∗j } as defined in eq. (2.2) and the Poisson state latent variables Z. The

goal of the EM algorithm is to find the MLE of the model parameters, reconstruct the

allelic 3D structures Xm and Xp, and decompose CX and infer CH to impute the true

allele-specific frequencies T = {Tηiθj} from eq. (2.1).

The complete likelihood of the observed data {CO, CX} and the unobserved

latent variables {CH , Z} is

Lc =L
(
Xm,Xp,γ, q | CO,CX ,CH ,Z

)
= p

(
CO,CX ,CH ,Z |Xm,Xp, γ, q

)
= p (Z | γ) p

(
CO | Z,Xm,Xp, q

)
p
(
CH | Z,Xm,Xp, q

)
p
(
CX | CH

)
.

(3.23)
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The marginal likelihood of the observed data CO and CX is:

L
(
Xm,Xp,γ, q | CO,CX

)
= P

(
CO,CX |Xm,Xp,γ, q

)
=
∑
CH

∑
Z

P
(
CO,CX ,CH ,Z |Xm,Xp,γ, q

)
.

(3.24)

To solve the MLE of the marginal likelihood of observed data {CO,CX}, we

propose the EM algorithm, which iteratively applies the following two steps:

• Expectation step (E-step):

Q = Q
(
Xm,Xp,γ, q;X

(t)
m ,X

(t)
p ,γ(t), q(t)

)
= E

CH ,Z|CO ,CX ,X(t)
m ,X

(t)
p ,γ(t),q(t) (logLc) .

• Maximization step (M-step):

X
(t+1)
m ,X

(t+1)
p ,γ(t+1), q(t+1) = arg max

Xm,Xp,γ,q
Q.

3.2.1 E-step

We can factorize the complete likelihood function in eq. (3.23) as

Lc =L
(
Xm,Xp,γ, q | CO,CX ,CH ,Z

)
=p (Z | γ) p

(
CO | Z,Xm,Xp, q

)
p
(
CH | Z,Xm,Xp, q

)
p
(
CX | CH

)
=
∏
i<j

p (Zij | γ)︸ ︷︷ ︸
LZ

p
(
COij | Z,Xm,Xp, q

)︸ ︷︷ ︸
LO

p
(
CHij | Z,Xm,Xp, q

)︸ ︷︷ ︸
LH

p
(
CXij | CHij

)︸ ︷︷ ︸
LX

,

(3.25)

where

LZ =p (Zij | γ)

=
∏
η,θ

p
(
Zηiθj | γηiθj

)
=
∏
η,θ

(γηiθj )
Zηiθj (1− γηiθj )

1−Zηiθj .

(3.26)
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From eq. (2.17), we can write out:

LO =p
(
COij | Z,Xm,Xp, q

)
=
∏
η,θ

p
(
Cηiθj | Z,Xm,Xp, q

)
=
∏
η,θ

fZIP(Cηiθj ; qijληiθj , Zηiθj )

=
∏
η,θ

[
fP(Cηiθj ; qijληiθj )

]Zηiθj [1(Cηiθj = 0
)]1−Zηiθj

(3.27)

and

LH =p
(
CHij | Z,Xm,Xp, q

)
=
∏
η,θ

p
(
Cηiθ∗j | Z,Xm,Xp, q

)
p
(
Cη∗i θj | Z,Xm,Xp, q

)
p
(
Cη∗i θ∗j | Z,Xm,Xp, q

)

=
∏
η,θ

fZIP(Cηiθ∗j ; qij̄ληiθj )fZIP(Cη∗i θj ; qījληiθj )fZIP(Cη∗i θ∗j ; qīj̄ληiθj ).

(3.28)

Furthermore, from eq. (2.2), we have the same expression of LX as in the ASHIC-PM model:

LX =p
(
CXij | CHij

)
=

[∏
η

p
(
Cηixj | CHij

)] [∏
θ

p(Cxiθj | C
H
ij )

]
p(Cxixj | CHij )

=

[∏
η

1

(
Cηixj = Cηim∗j + Cηip∗j

)][∏
θ

1
(
Cxiθj = Cm∗i θj + Cp∗i θj

)]
·

1

(
Cxixj = Cm∗im∗j + Cm∗i p∗j + Cp∗im∗j + Cp∗i p∗j

)
.

(3.29)

Moreover, the complete log-likelihood function can be written as

logLc =
∑
i<j

(
logLZ + logLO + logLH + logLX

)
. (3.30)

In the E-step, we need to calculate the conditional expectation of the complete

log-likelihood function given the observed data and the current parameter estimation, de-
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noted by E
CH ,Z|CO ,CX ,X(t)

m ,X
(t)
p ,γ(t),q(t) (logLc). In short, we use ECH ,Z|• () to replace

E
CH ,Z|CO ,CX ,X(t)

m ,X
(t)
p ,γ(t),q(t) (). We can show that:

Q =Q
(
Xm,Xp,γ, q;X

(t)
m ,X

(t)
p ,γ(t), q(t)

)
=ECH ,Z|• (logLc)

=
∑
i<j

[
EZ|•

(
logLZ

)
+ EZ|•

(
logLO

)
+ ECH ,Z|•

(
logLH

)
+ ECH |•

(
logLX

)]
.

(3.31)

In order to compute Q, we first need to calculate the conditional expectations of

Zηiθj , ZηiθjCηiθ∗j , ZηiθjCη∗i θj , and ZηiθjCη∗i θ∗j , given the observed data and current estimations

of parameters.

Conditional expectation of Zηiθj

First, we can compute the conditional expectation of Zηiθj , which is the same as the

posterior probability of Zηiθj , given the observed data observed = {Cηiθj , Cηixj , Cxiθj , Cxixj}

as shown below:

Zηiθj :=E
(
Zηiθj | observed

)
=P

(
Zηiθj = 1 | observed

)
=f
(
Zηiθj | observed

)
.

(3.32)

Take Zmimj as an example:

f
(
Zmimj | observed

)
=

∑
Zmipj ,Zpimj ,Zpipj

f
(
Zmimj , Zmipj , Zpimj , Zpipj | observed

)
. (3.33)

The posterior joint distribution of Z can be obtained using Bayes’ theorem:

f(Zmimj , Zmipj , Zpimj , Zpipj | observed)

=
f(observed | Zmimj , Zmipj , Zpimj , Zpipj )f(Zmimj , Zmipj , Zpimj , Zpipj )

f(observed)
,

(3.34)
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where f(Zmimj , Zmipj , Zpimj , Zpipj ) equals the product of the prior densities:

f(Zmimj , Zmipj , Zpimj , Zpipj )

=f(Zmimj )f(Zmipj )f(Zpimj )f(Zpipj )

=
∏
η,θ

(γηiθj )
Zηiθj (1− γηiθj )

1−Zηiθj

=
(
γ|i−j|

)Zmimj+Zpipj
(
1− γ|i−j|

)2−Zmimj−Zpipj · (γinter)
Zmipj+Zpimj (1− γinter)

2−Zmipj−Zpimj

(3.35)

Additionally, we have:

f (observed)

=
∑

Zmimj ,Zmipj ,Zpimj ,Zpipj

f
(
observed | Zmimj , Zmipj , Zpimj , Zpipj ) · f(Zmimj , Zmipj , Zpimj , Zpipj

)
(3.36)

For a given pair of loci (i, j), we have 9 observed values in total: Cmimj , Cmipj ,

Cpimj , Cpipj , Cmixj , Cpixj , Cximj , Cxipj , and Cxixj , which are conditionally independent

given Zmimj , Zmipj , Zpimj , and Zpipj . Therefore, we have:

f
(
observed | Zmimj , Zmipj , Zpimj , Zpipj

)
=f(Cmimj , Cmipj , Cpimj , Cpipj , Cmixj , Cpixj , Cximj , Cxipj , Cxixj | Zmimj , Zmipj , Zpimj , Zpipj )

=

∏
η,θ

f(Cηiθj | Zηiθj )

 · [∏
η

f(Cηixj | Zηimj , Zηipj )

]
·

[∏
θ

f(Cxiθj | Zmiθj , Zpiθj )

]
·

f(Cxixj | Zmimj , Zmipj , Zpimj , Zpipj ),

(3.37)

where the conditional densities are defined in eq. (2.17)-(2.21). By considering eqs. (3.32)-

(3.37) together, we compute the value of Zηiθj .
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Conditional expectations of ZηiθjCηiθ∗j , ZηiθjCη∗i θj ,and ZηiθjCη∗i θ∗j

From eq. (2.22) and Proposition 10, at the (t+1)-th iteration, we can compute the

conditional expectations of ZηiθjCηiθ∗j , ZηiθjCη∗i θj , and ZηiθjCη∗i θ∗j given the observed data

and the parameters estimated from the t-th iteration:

ZCηiθ∗j :=E
(
ZηiθjCηiθ∗j | observed;λ

(t)
ηiθj

, λ
(t)

ηiθ̃j

)
=E

[
E
(
ZηiθjCηiθ∗j | Zηiθj , Zηiθ̃j , observed;λ

(t)
ηiθj

, λ
(t)

ηiθ̃j

)
| observed

]
=E

[
E
(
Cηiθ∗j | Cηixj , Zηiθj , Zηiθ̃j , observed;λ

(t)
ηiθj

, λ
(t)

ηiθ̃j

)
| observed

]
=E

 Zηiθjλ
(t)
ηiθj

Zηiθjλ
(t)
ηiθj

+ Zηiθ̃jλ
(t)

ηiθ̃j

Cηixj | observed


=Cηixj

[
λ

(t)
ηiθj

λ
(t)
ηiθj

+ λ
(t)

ηiθ̃j

f
(
Zηiθj = 1, Zηiθ̃j = 1 | observed

)
+

f
(
Zηiθj = 1, Zηiθ̃j = 0 | observed

)]
,

(3.38)

where θ̃ is the opposite allele of θ ( θ̃ = m if θ = p ; θ̃ = p if θ = m), λ
(t)
ηiθj

= β
(
d

(t)
ηiθj

)α
,

and f
(
Zηiθj , Zηiθ̃j | observed

)
=
∑

Zη̃iθj ,Zη̃iθ̃j
f
(
Zηiθj , Zηiθ̃j , Zη̃iθj , Zη̃iθ̃j | observed

)
.

Similarly, we can show that:

ZCη∗i θj :=E
(
ZηiθjCη∗i θj | observed;λ

(t)
ηiθj

, λ
(t)
η̃iθj

)
=Cxiθj

[
λ

(t)
ηiθj

λ
(t)
ηiθj

+ λ
(t)
η̃iθj

f
(
Zηiθj = 1, Zη̃iθj = 1 | observed

)
+

f
(
Zηiθj = 1, Zη̃iθj = 0 | observed

)]
,

(3.39)

where η̃ is the opposite allele of η ( η̃ = m if η = p ; η̃ = p if η = m).
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Furthermore, we have:

ZCη∗i θ∗j :=E
(
ZηiθjCη∗i θ∗j | observed;λ

(t)
ηiθj

, λ
(t)

ηiθ̃j
, λ

(t)
η̃iθj

, λ
(t)

η̃iθ̃j

)
=Cxixj

[ ∑
Zηiθ̃j

,Zη̃iθj ,Zη̃iθ̃j

ληiθj
ληiθj + Zηiθ̃jληiθ̃j + Zη̃iθjλη̃iθj + Zη̃iθ̃jλη̃iθ̃j

·

f
(
Zηiθj = 1, Zηiθ̃j , Zη̃iθj , Zη̃iθ̃j | observed

)]
.

(3.40)

Consequently, we have

Cηixj =ZCηim∗j + ZCηip∗j ,

Cxiθj =ZCm∗i θj + ZCp∗i θj ,

Cxixj =ZCm∗im∗j + ZCm∗i p∗j + ZCp∗im∗j + ZCp∗i p∗j .

(3.41)

Furthermore, we have

Cηiθj = ZηiθjCηiθj . (3.42)

The above is true because of the following:

When Cηiθj > 0, Zηiθj = E(Zηiθj | observed) = 1. Therefore, ZηiθjCηiθj = Cηiθj .

When Cηiθj = 0, LHS = RHS = 0.

Conditional expectation of the complete log-likelihood

Recall eq. (3.31):

Q =
∑
i<j

[
EZ|•

(
logLZ

)
+ EZ|•

(
logLO

)
+ ECH ,Z|•

(
logLH

)
+ ECH |•

(
logLX

)]
. (3.31)

First, we have

logLZ =
∑
η,θ

[
Zηiθj log γηiθj + (1− Zηiθj ) log(1− γηiθj )

]
. (3.43)
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Using the conditional expectation Zηiθj , we can compute EZ|•
(
logLZ

)
as

EZ|•
(
logLZ

)
=
∑
η,θ

[
Zηiθj log γηiθj + (1− Zηiθj ) log(1− γηiθj )

]
. (3.44)

Second, we have

logLO =
∑
η,θ

Zηiθj
(
Cηiθj log qij + Cηiθj log ληiθj − qijληiθj

)
+ c, (3.45)

EZ|•
(
logLO

)
=
∑
η,θ

Zηiθj
(
Cηiθj log qij + Cηiθj log ληiθj − qijληiθj

)
+ c. (3.46)

Third, we have

logLH =
∑
η,θ

Zηiθj

[(
Cηiθ∗j log qij̄ + Cηiθ∗j log ληiθj − qij̄ληiθj

)
+

(
Cη∗i θj log qīj + Cη∗i θj log ληiθj − qījληiθj

)
+(

Cη∗i θ∗j log qīj̄ + Cη∗i θ∗j log ληiθj − qīj̄ληiθj
)]

+ c.

(3.47)

From eq. (3.47) and eqs. (3.38)-(3.40), we can show that

ECH ,Z|•
(
logLH

)
=
∑
η,θ

[(
ZCηiθ∗j log qij̄ + ZCηiθ∗j log ληiθj − Zηiθjqij̄ληiθj

)
+

(
ZCη∗i θj log qīj + ZCη∗i θj log ληiθj − Zηiθjqījληiθj

)
+(

ZCη∗i θ∗j log qīj̄ + ZCη∗i θ∗j log ληiθj − Zηiθjqīj̄ληiθj
)]

+ c.

(3.48)

Lastly, from eq. (3.41), we have

ECH ,Z|•
(
logLX

)
= 0. (3.49)

3.2.2 M-Step

Assume that at the t-th iteration, the current estimations of parameters are

X
(t)
m ,X

(t)
p ,γ(t), and q(t). In the M-step, we aim to find the optimal solutions of Xm,Xp,γ,
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and q that maximize the conditional expectation of the complete log-likelihood function:

X
(t+1)
m ,X

(t+1)
p ,γ(t+1), q(t+1) = arg max

Xm,Xp,γ,q
Q,

where

Q = Q
(
Xm,Xp,γ, q;X

(t)
m ,X

(t)
p ,γ(t), q(t)

)
= ECH ,Z|•

(
logL

(
Xm,Xp,γ, q | CO,CX ,CH ,Z

))
From eq. (3.31), we can divide Q into three parts:

Q = Q(Xm,Xp) +Q(q) +Q(γ) + c, (3.50)

where Q(Xm,Xp), Q(q), and Q(γ) can be expressed as follows.

Q(Xm,Xp) =
∑
i<j

∑
η,θ

[
(ZηiθjCηiθj + ZCηiθ∗j + ZCη∗i θj + ZCη∗i θ∗j ) log ληiθj − Zηiθjληiθj

]
.

(3.51)

Define ZTηiθj as the estimated total allele-specific contact frequency between ηi and θj :

ZTηiθj :=ZηiθjCηiθj + ZCηiθ∗j + ZCη∗i θj + ZCη∗i θ∗j

=Cηiθj + ZCηiθ∗j + ZCη∗i θj + ZCη∗i θ∗j .
(3.52)

Thus, we have

Q(Xm,Xp) =
∑
i<j

∑
η,θ

(
ZTηiθj log ληiθj − Zηiθjληiθj

)
, (3.53)

and

Q(q) =
∑
i<j

∑
η,θ

[
(ZηiθjCηiθj + ZCηiθ∗j ) log qi + (ZηiθjCηiθj + ZCη∗i θj ) log qj

+(ZCη∗i θj + ZCη∗i θ∗j ) log (1− qi) + (ZCηiθ∗j + ZCη∗i θ∗j ) log (1− qj)
]
,

(3.54)

and

Q(γ) =
∑
i<j

∑
η,θ

[
Zηiθj log γηiθj +

(
1− Zηiθj

)
log (1− γηiθj )

]
. (3.55)

Therefore, we can update X, q, and γ separately.
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Solve q

To update q, set

∂Q
∂qk

= 0 (3.56)

for all k = 1, · · · , n.

We can obtain a closed-form solution of q as follows:

q
(t+1)
k =

S1(k)

S1(k) + S2(k)
, (3.57)

where

S1(k) =
∑
η,θ

∑
i<k

(
ZηiθkCηiθk + ZCη∗i θk

)
+
∑
j>k

(
ZηkθjCηkθj + ZCηkθ∗j

) ,
S2(k) =

∑
η,θ

∑
i<k

(
ZCηiθ∗k + ZCη∗i θ∗k

)
+
∑
j>k

(
ZCη∗kθj + ZCη∗kθ∗j

) .
(3.58)

From eq. (3.41), S1(k) and S2(k) can be simplified as follows: note that the re-

sulting equations (eq. (3.59)) are exactly the same as eq. (3.16) in the ASHIC-PM case.

S1(k) =
∑
i<k

∑
η,θ

Cηiθk +
∑
θ

Cxiθk

+
∑
j>k

∑
η,θ

Cηkθj +
∑
η

Cηkxj

 ,

S2(k) =
∑
i<k

(∑
η

Cηixk + Cxixk

)
+
∑
j>k

(∑
θ

Cxkθj + Cxkxj

)
.

(3.59)

Because S1(k) and S2(k) contain only observed values, we only need to estimate q once at

the beginning.

Solve γ

From eq. (2.7), we assume that intra-chromosomal contact counts (Tηiθj , where

η = θ) with the same genomic distance k = |i − j| share the same hyper parameter γk.
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On the other hand, inter-chromosomal contact counts (i.e. η 6= θ) share the same hyper

parameter γinter.

To update γk, set

∂Q(γ)

∂γk
= 0 (3.60)

for all k = 1, · · · , n− 1.

Similarly for γinter, we set

∂Q(γ)

∂γinter
= 0. (3.61)

We can obtain a closed-form solution of γk and γinter as follows:

γ
(t+1)
k =

∑
j−i=k

∑
η=θ Zηiθj∑

j−i=k
∑

η=θ 1
, (3.62)

γ
(t+1)
inter =

∑
i<j

∑
η 6=θ Zηiθj∑

i<j

∑
η 6=θ 1

. (3.63)

Solve X

There is no closed-form solution for the 3D structures Xm and Xp. Therefore, we

use the L-BFGS-B algorithm [25] to find the optimal solution. To update Xm and Xp, we

take the gradients of Q(Xm,Xp) with respect to Xm and Xp and set them all to 0.

∂Q
∂Xm

=


∂Q

∂xm11
· · · ∂Q

∂xmn1

∂Q
∂xm12

· · · ∂Q
∂xmn2

∂Q
∂xm13

· · · ∂Q
∂xmn3

 (3.64)

Take the partial derivative with respect to xmk1
as an example:

∂Q(Xm,Xp)

∂xmk1

=
∑
i<j

∑
η,θ

α

(ZTηiθj
dηiθj

− Zηiθjβd
α−1
ηiθj

)
∂dηiθj
∂xmk1

, (3.65)
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where

∂dηiθj
∂xmk1

=



xηi1−xθj1
dηiθj

, if η = m, i = k;

xθj1−xηi1
dηiθj

, if θ = m, j = k;

0, otherwise.

(3.66)

Therefore, we have

∂Q(Xm,Xp)

∂xmk1

=
∑
i<k

∑
η

α

(
ZTηimk
dηimk

− Zηimkβd
α−1
ηimk

)
xmk1

− xηi1
dηimk

+

∑
j>k

∑
θ

α

(ZTmkθj
dmkθj

− Zmkθjβd
α−1
mkθj

)
xmk1

− xθj1
dmkθj

.

(3.67)

Similar to the process in the ASHIC-PM case, we update Xm and Xp using

the numerical optimizer fmin l bfgs b from SciPy. We initialize each iteration with the

current estimates of Xm and Xp, and we use the derivative to determine the direction of

steepest descent and step size in the line search.

The 3D coordinates of each initial structure were randomly sampled from a unit

cube. We first applied the multidimensional scaling (MDS) method [26, 19] to obtain a draft

structure, and then used the draft structure as the starting point for the ASHIC models.
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Input: observed allele-certain contact counts CO and allele-ambiguous

contact counts CX .

Output: estimated total allele-specific contact matrix ZT, Poisson state

latent variables Z, allelic structures Xm and Xp, allele-identifiable

probabilities q, and Bernoulli priors γ.

1 Compute the allele-identifiable probabilities q with eq. (3.59);

2 Initialize the Bernoulli priors γ;

3 Initialize the allelic structures Xm and Xp;

4 while not converge do

5 � E-step

6 for η, θ ∈ {m, p}, 1 ≤ i < j ≤ n do

7 Update the posteriors Zηiθj ,ZCηiθ∗j , ZCη∗i θj , and ZCη∗i θ∗j with

eqs. (3.32),(3.38)-(3.40);

8 Update the total alelle-specific contacts ZTηiθj with eq. (3.52);

9 end

10 � M-step

11 Update the Bernoulli priors γ with eq. (3.62) and (3.63) using current Z;

12 Update allelic structures Xm, Xp by eq. (3.67) with current ZT and Z;

13 end

14 return ZT,Z,Xm,Xp, q,γ

Algorithm 2: EM algorithm for the ASHIC-ZIPM model
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3.3 Bias-Incorporated Variant

In Section 2.6.1, we discussed the bias-incorporated variant of ASHIC models. In-

ference on the bias-incorporated models via EM algorithm is similar with a few modifications

on the E-step and M-step.

In the ASHIC-PM model, we can update the expectation of the marginal log-

likelihood (eq. (3.15)) as follows:

Q =
∑
i<j

∑
η,θ

[(
Cηiθj + Cηiθ∗j

)
log qi +

(
Cηiθj + Cη∗i θj

)
log qj

+
(
Cη∗i θj + Cη∗i θ∗j

)
log (1− qi) +

(
Cηiθ∗j + Cη∗i θ∗j

)
log (1− qj)

+
(
Cηiθj + Cηiθ∗j + Cη∗i θj + Cη∗i θ∗j

) (
log ληiθj + log bηi + log bθj

)
− bηibθjληiθj

]
+ c.

(3.68)

In the E-step, we need to update eq. (3.11) as

Cηiθ∗j =
bηibθjλ

(t)
ηiθj∑

θ′ bηibθ′jλ
(t)
ηiθ′j

Cηixj ,

Cη∗i θj =
bηibθjλ

(t)
ηiθj∑

η′ bη′ibθjλ
(t)
η′iθj

Cxiθj ,

Cη∗i θ∗j =
bηibθjλ

(t)
ηiθj∑

η′,θ′ bη′ibθ′jλ
(t)
η′iθ
′
j

Cxixj .

(3.69)

In the M-step, we need to plug the bias factors into eq. (3.22) as

∂Q
∂xmk1

=
∑
j 6=k

∑
θ

α

(Tmkθj
dmkθj

− bmkbθjβd
α−1
mkθj

)
xmk1

− xθj1
dmkθj

. (3.70)

Consequently, we can apply similar modifications to the log-likelihood function,

E-step, and M-step in the ASHIC-ZIPM model.

We can initialize the true allele-specific contact frequencies by treating observed

allele-certain contact frequencies CO as Poisson parameters, then initialize the bias factors
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bηi for 1 ≤ i ≤ n, η ∈ {m, p} using ICE [23]. Draft allele-specific contact matrices are then

obtained through EM iterations. The final bias factors are estimated on the draft matrices,

following which we refine the estimation of allele-specific contact matrices and structures

through another round of EM iteration with the bias-incorporated model, as described

above.

3.4 Inter-Homologous Optimization

Homologous chromosomes are often organized into separate chromosome territo-

ries [16, 17], which leads to an excessive number of zeros in inter-chromosomal contacts.

These zeros are indeed “true” zeros caused by the long distance of inter-chromosomal con-

tacts. However, such excessive sparsity could result in the underestimation of Poisson state

probability γinter; in such a case, fewer “true” zeros will be included in the Poisson like-

lihood (a lower constraint in the inter-chromosomal distance). After the iterations of the

EM algorithm, inter-chromosomal distances between homologous pair become progressively

shorter, and in the E-step, more ambiguous contacts will be assigned as inter-chromosomal,

leading to the inaccurate estimation of intra-chromosomal contacts.

To overcome the excessive sparsity problem in inter-chromosomal contacts, we

make the following modifications to our EM algorithm. Recall that in the M-step, we

optimize Xm and Xp jointly to maximize Q(Xm,Xp). Alternatively, we can divide the

likelihood function Q(Xm,Xp) into three parts: two intra-chromosomal parts Qintra(Xm)

and Qintra(Xp), as well as one inter-chromosomal part Qinter(Xm,Xp). Accordingly, we

can update the structures with respect to the three parts separately.
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Q(Xm,Xp)

=
∑
i<j

∑
η,θ

(
ZTηiθj log ληiθj − Zηiθjληiθj

)
=
∑
i<j

∑
η=θ=m

(
ZTηiθj log ληiθj − Zηiθjληiθj

)
︸ ︷︷ ︸

Qintra(Xm)

+
∑
i<j

∑
η=θ=p

(
ZTηiθj log ληiθj − Zηiθjληiθj

)
︸ ︷︷ ︸

Qintra(Xp)

+

∑
i<j

∑
η 6=θ

(
ZTηiθj log ληiθj − Zηiθjληiθj

)
︸ ︷︷ ︸

Qinter(Xm,Xp)

.

(3.71)

First, during the intra-chromosomal optimization, we consider only the intra-

chromosomal contacts and update the two homologous structures separately to maximize

their intra-chromosomal likelihood functions, Qintra(Xm) and Qintra(Xp):

X
(t+1)
m = arg max

Xm

Qintra(Xm),

X
(t+1)
p = arg max

Xp

Qintra(Xp).

(3.72)

To update the maternal structureXm, we calculate the gradient of theQintra(Xm)

part in eq. (3.71) with respect to Xm, following which we update Xm iteratively using the

L-BFGS-B algorithm [25] provided in the SciPy package [27]. Specifically, we calculate

∂Qintra(Xm)

∂xmk1

=
∑
i<j

α

(ZTmimj
dmimj

− Zmimjβd
α−1
mimj

)
∂dmimj
∂xmk1

. (3.73)

The paternal structure Xp can be updated in a similar manner.

After the individual homologous chromosomal structures are optimized, we update

the relative position of these two structures to maximize the inter-chromosomal likelihood

function. Instead of updating the coordinates of two structures directly with respect to the
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inter-chromosomal contacts, we solve a simplified problem of finding the optimal rotation

matrix R ∈ R3×3 and translation vector v ∈ R3 between the two structures Xm and Xp:

R,v = arg max
R,v

Qinter(Xm,Xp). (3.74)

Let xmi and xpi be the coordinates of the i-th bin on the maternal and paternal

chromosome, respectively. After applying rotation and translation transformations to the

paternal structure, the inter-chromosomal distance between the i-th bin on the maternal

chromosome and the j-th bin on the paternal chromosome becomes

dmipj =
∥∥xmi −R(xpj − v)

∥∥
2
,

while the intra-chromosomal distances remain invariant.

We find the optimal solution of R and v as described below. Specifically, we first

estimate the length of v (i.e., ‖v‖2, the distance between two homologs) through MLE on

a simplified inter-chromosomal likelihood function:

Qinter(Xm,Xp) =
∑
i<j

∑
η 6=θ

(
ZTηiθj log ληiθj − Zηiθjληiθj

)
=
∑
i,j

[
ZTmipjα log dmipj − Zmipjβ

(
dmipj

)α]
+ c

=
∑
i,j

[
ZTmipjα log dinter − Zmipjβd

α
inter

]
+ c.

(3.75)

The above simplification is performed by assuming that all inter-chromosomal bin

pairs share the same inter-chromosomal distance dinter instead of dmipj . Then, the length

of v is set to be the maximum likelihood estimate of dinter:

‖v‖2 = d̂MLE
inter =

(∑
i,j ZTmipj∑
i,j Zmipjβ

)1/α

. (3.76)
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We then find the optimized R and v with the constraint on ‖v‖2 to maximize the

inter-chromosomal likelihood function Qinter(Xm,Xp) via the L-BFGS-B algorithm [25].

Another benefit of splitting the intra-chromosomal and inter-chromosomal likeli-

hood is that it expedites the structure optimization process. The original optimization has

a problem size of 2n × 3 (n loci in three dimensions for each homologous chromosome).

We divide it into two (intra-chromosomal) subproblems, each with a size of n × 3, and a

trivial (inter-chromosomal) optimization with 6 unknowns (three Euler angles and a trans-

lation vector in three dimensions). Furthermore, we can run the two intra-chromosomal

subroutines parallelly to increase the optimization speed further.
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Chapter 4

Simulation Analyses

4.1 Simulation Settings

4.1.1 Homologous X Chromosome Structures

First, We considered the human homologous X chromosomes as the ground truth

and simulated diploid Hi-C datasets as described below. We assumed that the allele-specific

chromatin contact frequencies follow the ASHIC-ZIPM model. The true model parameters

αm, αp, β, γ, and q were estimated from two published datasets on human GM12878 cells:

the predicted X chromosome structures (Xm,Xp ∈ R3×n) from single-cell Hi-C data by

Tan et al. [16], and the allele-specific contact matrices Cm and Cp from in situ bulk Hi-C

data by Rao et al. [10], both at 100 kb resolution (Table 4.1).

At the default setting, we generated 10 simulated allele-specific Hi-C datasets

with the scale factor β = 100%β̂ and the average allele-identifiable probability q = 0.5.

Subsequently, we kept other parameters fixed and generated 10 additional datasets for each
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of the decreased β values (50%β̂, 20%β̂, and 10%β̂), and another 10 datasets for each of the

decreased q̄ values (0.25, 0.1, and 0.05). In total, 70 diploid Hi-C datasets were generated

in this simulation study. For each simulated dataset, we ran 10 random initializations and

chose the result with the highest observed log-likelihood for performance evaluation and

subsequent analyses.

Reference Type of data GEO accession Notes

Rao et al. (2014) in situ (bulk) Hi-C GSE63525 bulk diploid Hi-C data in human

lymphoblastoid GM12878 cells

Tan et al. (2018) single-cell structures GSE117876

GSM3271347

single-cell X chromosomes structure

(GM12878, Cell 1) predicted from

single-cell Hi-C datasets at 100-kb

resolution

Bonora et al. (2018) in situ (bulk) DNase Hi-C GSE107282

GSM2863686

bulk diploid Hi-C data on wild-type

(WT) patski (BL6×Spretus) cells

Bonora et al. (2018) CTCF ChIP-seq GSE107282

GSM2863715

CTCF ChIP-seq data in WT patski

(BL6×Spretus) cells

Tang et al. (2015) CTCF ChIA-PET GSE72816

GSM1872886

CTCF ChIA-PET data in human

lymphoblastoid GM12878 cells

Tang et al. (2015) RNA PolII ChIA-PET GSE72816

GSM1872887

RNA PolII ChIA-PET data in hu-

man lymphoblastoid GM12878 cells

Table 4.1: Published datasets used in this study.
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4.1.2 Identical Chromosome Structures

To study the effect of structural differences on the performance of our methods,

we deployed a challenging simulation setting where we simulated diploid Hi-C datasets

using two identical chromosome structures. Briefly, we duplicated the paternal (inactive)

X chromosome structure Xp predicted by Tan et al. [16] as the pseudo-maternal structure.

Then we used the two identical chromatin structures as the ground truth and simulated

diploid Hi-C datasets in a similar manner as previously described.

The relative position of these two identical structures was determined by a reversed

structural superposition procedure. Using the original homologous structures Xm and Xp,

we calculated the optimal translation vector v and rotation matrix R using the Kabsch

algorithm [28], such that the root-mean-square deviation (RMSD) between X̃m = R(Xm−

v) and Xp was minimized. Then we duplicated Xp and reversed the superposition of Xp

by X̃p = R−1Xp + v. The resulting identical structures X̃p and Xp was served as the

pseudo-homologous chromosome structures in which the relative position between X̃p and

Xp remained approximately the same as the original homologous pair Xm and Xp.

4.1.3 Simulation Parameter Estimation

We assumed that the maternal and paternal X chromosomes share the same Pois-

son state priors (γ) and scale factor (β), but might possess different exponents (αm and αp)

of the spatial distance decay effect. To estimate αm and αp, a two-step curve fitting proce-

dure was applied to the maternal and paternal data separately. Consider the example of the

maternal chromosome. First, we fit an exponential function for the relationship between
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spatial distance (d) and genomic distance (s) as d ∝ sBm1 . Specifically, the spatial distance

between the bins i and j was calculated as their Euclidean distance on the maternal struc-

ture Xm. For each genomic distance sl from 1 to n, we calculated the average maternal

spatial distance dl among all bin pairs with genomic distance sl. This resulted in n data

points: (s1, d1), . . . , (sn, dn). We applied the curve fit function from SciPy package [27]

in Python to fit the curve and estimate Bm1. Second, the relationship between the contact

frequency (Cm) and the genomic distance (s) was fitted in a similar way as Cm ∝ sBm2 .

From these two curve fitting steps, the relationship between the observed contact frequency

and the underlying spatial distance could be deduced as Cm ∝ dαm , where αm = Bm2
Bm1

.

The paternal parameter counterpart αp was estimated similarly. The empirically derived

exponents are αm = −3.02 and αp = −3.15; both are close to the theoretical value of −3.

We estimated the scale factor β as described below. Unlike the ASHIC-PM model,

the MLE of β does not have a closed-form solution under the ASHIC-ZIPM model. To sim-

plify the estimation, we approximated each contact frequency Cmimj or Cpipj as an indepen-

dent Poisson random variable with parameter in the form of β(dmimj )
αm or β(dpipj )

αp , and

calculated the β estimate as β̂ =
∑
i<j(Cmimj+Cpipj )∑

i<j((dmimj )αm+(dpipj )αp)
. To evaluate the performance

of our methods at lower sequencing coverage, we gradually decreased the value of β from

100%β̂ to 50%β̂, 20%β̂, and 10%β̂ to generate simulation datasets.

To estimate the Poisson state priors γ, we performed the following spline fitting

procedure. First, we assumed that the contact frequencies with the same genomic distance

were i.i.d. ZIP random variables, then obtained the maximum likelihood estimate (γ̂) at

each genomic distance using GenericLikelihoodMode from statsmodels package [29] in
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Python. Since the variability of γ̂ increases with an increase in the genomic distance, we

bin all γ̂ into K = 200 genomic distance intervals with equal space in the log scale (using

logspace function from NumPy [30]) to facilitate a smooth fitting. We calculated the average

genomic distance (s̄k), and the average γ estimate (γ̄k) for each interval k, followed by fitting

a cubic spline using the points (s̄1, γ̄1), . . . , (s̄K , γ̄K). Finally, we performed an anti-tonic

regression on the spline to ensure that the generated γ estimates decrease monotonically.

The allele-identifiable probabilities q depend on the SNP density and vary among

different cell systems. For example, in the mouse Patski cells, q is around 0.6, i.e., the

chance that a 70-bp read overlaps with any SNP is 60% on average. Whereas in human

GM12878 cells the q is around 0.04. To simulate the allele-identifiable probabilities, we first

generated q randomly from a Beta distribution: qi ∼ Beta(2, 2), where q = 0.5 that mimics

the mouse Patski cells.

To evaluate the performance of our methods at a lower SNP density, we gradually

decreased the average q value from 0.5 to 0.25, 0.1, and 0.05 by using positively skewed

Beta distributions. For instance, we used qi ∼ Beta(2, 38) such that q = 0.05 mimics the

SNP density in GM12878 cells.

4.2 Convergence and Running Time

The convergence of the EM algorithm is defined as the relative increase of log-

likelihood between two consecutive iterations is less than 10−4. We tested our ASHIC

software using a single core on an Intel E5-2683v4 processor with 8GB memory allocation.

In a typical simulation setting, two X chromosomes were partitioned into 3000+ bins at
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100 kb resolution. With the default sequencing coverage (β = 100%β̂) and SNP density

(q = 0.5) setting, both ASHIC-ZIPM and ASHIC-PM converged within 20 iterations (2 h).

Lower coverage or lower SNP density requires more iterations. For example, when q reduced

to 0.05, the EM algorithm of ASHIC-ZIPM took about 50 iterations (8 h) to converge. When

β decreased to 10%β̂, the EM algorithm of ASHIC-ZIPM underwent about 90 iterations

(20 h) to converge.

4.3 Evaluation Metrics

Recovery rate (RR): We used recovery rate (RR) to measure the proportion of allele-

specific contacts recovered by each method. For each method specifically, the recovery rate

is defined as follows: Theoretically, both ASHIC-PM and ASHIC-ZIPM can recover 100%

of allele-specific contacts. Recall Tηiθj and ZTηiθj are the imputed estimates of Tηiθj by

ASHIC-PM and ASHIC-ZIP, respectively.

RR(ASHIC-PM) =

∑
i<j

∑
η,θ Tηiθj∑

i<j

∑
η,θ Tηiθj

RR(ASHIC-ZIPM) =

∑
i<j

∑
η,θ ZTηiθj∑

i<j

∑
η,θ Tηiθj

RR(allele-certain) =

∑
i<j

∑
η,θ Cηiθj∑

i<j

∑
η,θ Tηiθj

RR(mate-rescue) =

∑
i<j

(∑
η,θ Cηiθj +

∑
η Cηixj +

∑
θ Cxiθj

)
∑

i<j

∑
η,θ Tηiθj

(4.1)

58



Imputation error rate (IER): Within the recovered intra-chromosomal contacts, we

further computed the imputation error rate (IER) for each method as defined below.

IER(ASHIC-PM) =

∑
i<j

∑
η

∣∣Tηiηj − Tηiηj ∣∣∑
i<j

∑
η Tηiηj

IER(ASHIC-ZIPM) =

∑
i<j

∑
η

∣∣ZTηiηj − Tηiηj ∣∣∑
i<j

∑
η Tηiηj

(4.2)

Note that the allele-certain method uses only both-end allele-certain contacts and does not

impute any allele-ambiguous contacts, resulting in a zero IER score.

Stratum adjusted correlation coefficient (SCC): To measure the similarity of the

imputed contact matrix and the true contact matrix, we computed the stratum adjusted

correlation coefficient (SCC) using HiCRep package [31]. The range of the genomic distance

was set to be 0–5 Mb, and the smoothing window size was set as h = 0. The SCC values

ranged from -1 to 1, where higher values indicate higher similarity between two Hi-C con-

tact matrices. In the original HiCRep paper [31], the authors reported typical SCC values of

pseudo-replicates, biological replicates and non-replicates. Pseudo-replicates have the high-

est SCC values from 0.96 to 0.98; biological replicates have a wider range of SCC values

from 0.87 to 0.98; whereas non-replicates have the lowest SCC values that are typically

smaller than 0.8.

Distance error rate (DER): Given the estimated chromosomal structures X̂m, X̂p from

our ASHIC-PM or ASHIC-ZIPM model, we measured their similarity with the ground

truth allelic structures Xm,Xp using the distance error rate (DER). Since the estimated

structure and the true structure might be at different scales, we first re-scaled each structure

by dividing the coordinates by the scale of the structure. The scale s of a 3D structure

X ∈ R3×n is defined as the root mean square distance from the points to the structure
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centroid, i.e., s =
√

1
n

∑
i ‖xi − x‖22, where x = 1

n

∑
i xi is the centroid. After re-scaling,

each structure resulted with the scale equaling 1.

We then calculated the intra-chromosomal Euclidean distance d̂ηiηj between loci i

and j on the re-scaled estimated structure X̂η (η ∈ {m, p}), and dηiηj between loci i and j

on the re-scaled ground truth structure Xη. The distance error rate is defined as

DER =

∑
i<j

∑
η

∣∣∣d̂ηiηj − dηiηj ∣∣∣∑
i<j

∑
η dηiηj

(4.3)

Homologous distance error rate (HDER): In the simulation experiments of two iden-

tical homologous structures, we calculated the homologous distance error rate (HDER) be-

tween the two homologous structures. Since the two estimated homologous structures are

generated with the same scaling factor β, there was no need for re-scaling. The homologous

distance error rate is calculated as

HDER =

∑
i<j

∣∣∣d̂mimj − d̂pipj ∣∣∣∑
i<j d̂pipj

(4.4)

Recall, Precision, and F1 score of significant chromatin interactions: To further

evaluate the imputed contact matrices, we called significant interactions on the imputed

chromatin contact matrices using Fit-Hi-C [1] and compared with significant interactions

called from the ground true matrices. We applied Fit-Hi-C to the allele-specific chromatin

contacts between genomic distance of 300 kb and 5 Mb, and filtered significant interactions

with q-value < 10−6.

Significant interactions called on the imputed maternal and paternal contact ma-

trices were denoted as ŜIm and ŜIp, and the significant interactions called on the ground

true maternal and paternal matrices were denoted as SIm and SIp, respectively.
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For each method, we calculated the recall, precision, and F1 score as follows:

Recall =

∣∣∣ŜI ∩ SI
∣∣∣

|SI|

Precision =

∣∣∣ŜI ∩ SI
∣∣∣∣∣∣ŜI

∣∣∣
F1 =

2

Recall−1 + Precision−1

(4.5)

Note that when the ground true maternal and paternal structures are different, we

define the true set to be the allele-specific interactions that are unique on the maternal or

paternal allele. That is, SI = SIm∪p − SIm∩p, where SIm∪p = SIm ∪ SIp, SIm∩p = SIm ∩ SIp.

Similarly, we have ŜI = ŜIm∪p − ŜIm∩p, where ŜIm∪p = ŜIm ∪ ŜIp, ŜIm∩p = ŜIm ∩ ŜIp

On the other hand, when the ground true maternal and paternal structures were

identical, we defined the true set as the common interactions shared between the maternal

and paternal interactions. That is, SI = SIm∩p = SIm ∩ SIp. Similarly, we have ŜI =

ŜIm∩p = ŜIm ∩ ŜIp.

4.4 Human Homologous X Chromosome Structures

4.4.1 Default Simulation Setting

We first evaluated the performance of the proposed ASHIC methods on simulated

diploid Hi-C datasets of the homologous X chromosomes in human GM12878 cells. Of the

two X chromosomes, the active X chromosome (denoted as Xa) is the maternal copy and

the inactive X chromosome (denoted as Xi) is the paternal copy. We considered the 3D

structures of Xa and Xi published by Tan et al. [16] as the ground truth and generated

10 simulated diploid Hi-C datasets at 100-kb resolution. Each simulated dataset contained
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two intra-chromosomal contact matrices, one for Xa and one for Xi, as well as one inter-

chromosomal contact matrix between Xa and Xi.

We compared our ASHIC-ZIPM and ASHIC-PM methods with two commonly

used approaches for analyzing diploid Hi-C data. The first approach is the allele-certain

method that uses only both-end allele-certain contacts [10, 14]. The second approach is

the mate-rescue method that combines both-end allele-certain contacts with one-end allele-

ambiguous contacts by assigning the allele-ambiguous read-end to the same allele as the

allele-certain mate-end [13, 15, 18].

To evaluate the imputation of diploid Hi-C contact maps, we first calculated the

proportion of allele-specific contacts recovered by each method (Tables 4.2,4.3). At the de-

fault sequencing coverage (β = 100%β̂) and SNP density (q = 0.5) setting, the allele-certain

and mate-rescue approaches recovered evidently smaller proportion of diploid chromatin

contacts (25.65% and 75.55%, respectively) compared to the ASHIC-ZIPM and ASHIC-

PM methods that were able to recover all one-end and both-end allele-ambiguous reads,

thereby achieving 100% full recovery rate.

Average allele-identifiable

probability q̄

Both-end

allele-certain

One-end

allele-ambiguous

Both-end

allele-ambiguous

0.05 0.25% 9.57% 90.18%

0.10 1.02% 18.14% 80.84%

0.25 6.50% 38.01% 55.49%

0.50 25.65% 49.89% 24.45%

Table 4.2: Proportion of allele-certain and allele-ambiguous contacts of simulated data.
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Average allele-identifiable

probability q̄

ASHIC-ZIPM ASHIC-PM Allele-certain Mate-rescue

0.05 100.00% 100.00% 0.25% 9.82%

0.10 100.00% 100.00% 1.02% 19.16%

0.25 100.00% 100.00% 6.50% 44.51%

0.50 100.00% 100.00% 25.65% 75.55%

Table 4.3: Recovery rate of diploid Hi-C methods of simulated data.

Next, we sought to assess the accuracy of the imputed allele-specific contact ma-

trices. Recent studies have demonstrated that the genomic distance dependence and se-

quencing depth have confounding effects on measuring the similarity between Hi-C contact

matrices [31]. To account for these confounding factors, we computed the stratum adjusted

correlation coefficient (SCC) using the HiCRep package [31] to measure the similarity be-

tween the imputed contact matrices and true matrices (Figure 4.1A). We observed that the

imputed diploid matrices obtained by ASHIC-ZIPM and ASHIC-PM had near-perfect SCC

values of 0.9997 and 0.9996, respectively; whereas mate-rescue and allele-certain meth-

ods demonstrated lower SCC values of 0.9733 and 0.8100, respectively. ASHIC-ZIPM

showed a significantly higher SCC values than ASHIC-PM (p-value = 2.53 × 10−3, one-

sided paired Wilcoxon signed-rank test). In addition, ASHIC-ZIPM performed significantly

better than the allele-certain and mate-rescue methods (p-values = 2.53 × 10−3, one-sided

paired Wilcoxon signed-rank tests). Note that p = 2.53 × 10−3 is the smallest possible

p-value given the sample size.
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Figure 4.1: Evaluation on simulated homologous X chromosome (Xa/Xi) data. (A)
Stratum-adjusted correlation coefficients (SCCs) and (B) and Pearson’s correlation coeffi-
cients (PCCs) between the imputed diploid contact matrices and the true contact matrices.
The PCC curves are smoothened using the locally weighted LOESS method. (C) Distance
error rates between the predicted allelic 3D structures and the true structures. (D) F1

scores of the identified allele-specific chromatin interactions.

The SCC statistic is a weighted average of the Pearson’s correlation coefficients

(PCCs) across different genomic distances [31]. To breakdown the effect of genomic dis-

tance, we computed the PCCs between the imputed contact matrices and the true matrices

at different genomic distances (Figure 4.1B). As expected, the PCC values decreased as

the genomic distance increased for all four methods. We observed that the ASHIC-ZIPM

and ASHIC-PM methods demonstrated similar PCC values across all genomic distances.
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In addition, the ASHIC-ZIPM and ASHIC-PM methods outperformed the allele-certain

and mate-rescue approaches by large margin, especially at large genomic distances. Taken

together, the SCC and PCC results showed that our ASHIC methods can accurately im-

pute allele-specific contact matrices. Moreover, the imputation accuracy outperformed the

allele-certain and mate-rescue approaches, especially for long-range contacts.

In addition to imputing diploid Hi-C contact matrices, the ASHIC-ZIPM and

ASHIC-PM methods also predict allele-specific 3D structures. To evaluate the accuracy of

the predicted allelic structures, we calculated the distance error rates between the predicted

structures and the ground truth (Figure 4.1C). We observed that ASHIC-ZIPM yielded

significantly lower distance error rates and thereby, more accurate allelic 3D structures

than those obtained by ASHIC-PM (p-value = 2.53 × 10−3, one-sided paired Wilcoxon

signed-rank test).

Furthermore, we investigated whether the imputed diploid contact matrices can

facilitate the detection of allele-specific chromatin interactions. First, we called significant

interactions using the Fit-Hi-C package [1] on the true diploid contact matrices. We subse-

quently defined the maternal-specific interactions as the interactions that were called only

from the true maternal matrix but not from the paternal matrix. The paternal-specific

interactions were defined accordingly. The final set of true allele-specific interactions was

defined as the union of both monoallelic sets, which contained 9061.5 interactions on av-

erage (Table 4.4, β = 100%β̂). Following the same procedure, we then identified the

allele-specific interactions from the imputed diploid contact matrices resulting from the

four methods, separately. We evaluated the identified allele-specific interactions from each
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method using three metrics: precision, recall, and their harmonic mean F1 score (Figure

4.1D, Figure 4.2A,B, β = 100%β̂). ASHIC-ZIPM and ASHIC-PM maintained the highest

F1 scores of 0.9867 and 0.9853, respectively. In addition, ASHIC-ZIPM significantly out-

performed mate-rescue (F1 = 0.8940) and allele-certain (F1 = 0.6024) in terms of the F1

scores (p-values = 2.53 × 10−3, one-sided paired Wilcoxon signed-rank tests). The low F1

scores of the mate-rescue and allele-certain methods were primarily contributed by their

low recall rates (Figure 4.2A,B, β = 100%β̂ ), which was a result of their low recovery rates

of allele-ambiguous contacts (Table 4.3, q̄ = 0.5).

Sequencing coverage β Bi-allelic Maternal-specific Paternal-specific True set

10% 24.1 1040.1 1096.3 2136.4

20% 69.2 1998.9 2003.0 4001.9

50% 226.9 3464.4 3412.5 6876.9

100% 424.1 4700.9 4360.6 9061.5

Table 4.4: Number of allele-specific interactions in homologous X chromosome (Xa/Xi)
simulations. Chromatin interactions are called using Fit-Hi-C [1] on true maternal (Xa)
and paternal (Xi) contact matrices separately. Maternal-specific interaction set contains
interactions called only from maternal contact matrix but not from paternal contact matrix.
Paternal-specific interaction set is defined in a similar way. The bi-allelic interaction set
contains common interactions called from both maternal and paternal contact matrices.
The true set is defined as the union of maternal-specific interaction set and paternal-specific
interaction set.

Collectively, our comparisons have demonstrated that the proposed ASHIC-ZIPM

and ASHIC-PM methods outperformed the existing mate-rescue and allele-certain ap-

proaches with respect to the recovery rate of allele-ambiguous contacts, the accuracy of

imputed diploid contact matrices and predicted allelic 3D structures, and the ability to
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Figure 4.2: ASHIC-ZIPM-imputed diploid contact maps show high recall and precision of
allele-specific chromatin interactions on the homologous X chromosome simulation data. (A)
Recall and (B) Precision of the identified allele-specific interactions at different sequencing
coverage levels. (C) Recall and (D) Precision of the identified allele-specific interactions at
different SNP density levels.

facilitate the detection of allele-specific chromatin loops. In addition, ASHIC-ZIPM demon-

strated a better performance overall than that of ASHIC-PM, especially in the prediction of

allelic 3D structures. To further evaluate the performance of these methods under different

circumstances, we conducted a series of additional simulation experiments by adjusting three

major factors: sequencing coverage, SNP density, and homologous structural similarity.
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4.4.2 Low Sequencing Coverage Data

The sequencing coverage of Hi-C contact matrices is a major factor that can affect

the performance of the diploid Hi-C methods. An observed zero entry in the Hi-C contact

matrix can be either a “true” zero as a result of no physical contact between the pair of

chromatin fragments, or a “missing” zero as a result of insufficient sequencing coverage.

Lower sequencing depth of Hi-C experiments yields lower-coverage and sparse contact ma-

trices that containing excessive “missing” zeros. As a result, it becomes more challenging

to distinguish the “true” zeros from the “missing” zeros.

While generating the simulation datasets, the scale factor β controls the coverage of

simulated contact matrices. We estimated β̂ from the published Hi-C data by Rao et al. [10]

(Section 4.1.3). At the default β = 100%β̂ setting, the simulated Hi-C map contained about

4.9 million contacts from the homologous X chromosomes. To evaluate the performance of

our methods on lower-coverage data, we fixed the SNP density q = 0.5 and gradually

decreased the value of β from 100%β̂ to 50%β̂, 20%β̂, and 10%β̂, resulting in 2.5 million,

1.0 million, and 0.5 million contacts, respectively. We then repeated the assessments of the

ASHIC-ZIPM, ASHIC-PM, mate-rescue, and allele-certain methods with these low-coverage

simulation datasets.

As shown in Figure 4.3A, ASHIC-ZIPM and ASHIC-PM maintained the highest

SCC values across all coverage levels. When the sequencing coverage decreased from 100%β̂

to 10%β̂, the SCC values for both methods only dropped by 0.28%. On the other hand,

when sequencing coverage lowered, the SCC values decreased evidently for mate-rescue

and allele-certain by 1.80% and 10.38%, respectively. These results suggested that our
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ASHIC methods can robustly and accurately infer allele-specific contact matrices under low

sequencing coverage conditions.
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Figure 4.3: ASHIC-ZIPM accurately imputes diploid contact maps and 3D structures on
low-coverage Xa/Xi simulation data. (A) SCCs between the imputed diploid contact ma-
trices and the true contact matrices, (B) Distance error rates between the predicted allelic
3D structures and the true structures, and (C) F1 scores of the identified allele-specific
chromatin interactions at different sequencing coverage β levels.

Additionally, we observed that ASHIC-ZIPM produced more accurate 3D struc-

tures with smaller distance error rates than those produced by ASHIC-PM across all se-

quencing coverage levels (Figure 4.3B). The improvements of the distance error rates were

significant at coverage levels 100%β̂, 50%β̂ and 20%β̂ (p-values = 2.53 × 10−3, 2.53 ×

10−3, 6.26× 10−3, respectively, one-sided paired Wilcoxon signed-rank tests).

When the sequencing coverage decreased from 100%β̂ to 10%β̂, the true set of

allele-specific interactions decreased from 9061.5 to 2136.4 interactions (Table 4.4). As

shown in Figure 4.3C, when the coverage decreased from 100%β̂ to 10%β̂, the ability of

the allele-certain method to detect allele-specific interactions was highly impacted as its F1

scores dropped by 35.17% from 0.6024 to 0.3906. The decrease of F1 score for mate-rescue

was less severe, about 8.90% from 0.8940 to 0.8144. The ASHIC methods consistently de-

livered robust results against coverage changes (ASHIC-ZIPM: ∆F1 = 1.26%, ASHIC-PM:
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∆F1 = 1.14%), and maintained high F1 score even at the lowest 10%β̂ level (ASHIC-ZIPM:

0.9743, ASHIC-PM: 0.9740). The decay in F1 scores for the allele-certain and mate-rescue

methods was primarily contributed by their low recall rates (Figure 4.2A,B).

Taken together, our results demonstrated that the ASHIC methods significantly

outperformed other methods in low sequencing coverage conditions, resulted in more accu-

rately imputed matrices and benefited the detection of allele-specific interactions on low-

coverage data.
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Figure 4.4: ASHIC-ZIPM adjusts estimated γ for low-coverage homologous X chromosome
simulation data to account for additional missing zeros. The estimated γ of each genomic
distance within 100 Mb are drawn for every 2 Mb interval. Each dot represents the median
value of γ estimated from the 10 simulated datasets. The bottom and top error bars
represent the first and third quartiles of estimated γ at that genomic distance.

In particular, we observed that ASHIC-ZIPM had better performance than ASHIC-

PM under low coverage conditions. This is owing to the fact that in our ASHIC-ZIPM
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model, the Poisson state probabilities γγγ act as weights between the “true” and “missing”

zeros. When the sequencing coverage lowered, the observed diploid matrices contained ad-

ditional “missing” zeros. The zero-inflated model explicitly adjusted the estimation of γγγ to

model these “missing” zeros, thereby achieving better model fitting results. Consistent with

our expectations, the estimated values of γγγ became smaller as coverage decreased, which

demonstrated its ability to account for the additional “missing” zeros (Figure 4.4).

4.4.3 Low SNP Density Data

In addition to the sequencing coverage, the SNP density is another major factor

affecting the performance of the diploid Hi-C methods. The SNP density varies across

different species and cell lines. For example, the F1 mouse cross (BL6×Spretus) has a

relatively high SNP density of approximately 1 SNP per 75 bp. On average, a 70-bp

sequence read has a 60% chance overlapping with SNP(s), thus being allele-identifiable.

Whereas the GM12878 cell line has a low SNP density about 1 for every 1700 bp, which is

corresponding to an average allele-identifiable probability of 0.04 (Table 1.1).

To evaluate the performance of our methods on low-SNP-density data, we fixed

the coverage level at 100%β̂ and then gradually decreased q, the average allele-identifiable

probability, from 0.5 which mimics the BL6×Spretus cross, to 0.25, 0.1, and 0.05, where

the smallest value mimics the GM12878 cells.

When the SNP density was low, fewer both-end allele-certain contacts but higher

number of one-end allele-ambiguous and both-end allele-ambiguous contacts were observed.

Consequently, as the average allele-identifiable probability q decreased from 0.5 to 0.05,

the recovery rates dropped dramatically from 25.65% to 0.25% for allele-certain and from
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75.55% to 9.82% for mate-rescue (Table 4.3). In contrast, our ASHIC methods were able

to recover all allele-ambiguous reads at the lowest q = 0.05 setting. Among the recovered

contacts, 15.95% for ASHIC-ZIPM and 17.60% for ASHIC-PM were incorrectly imputed

(Table 4.5, β = 100%β̂, q̄ = 0.05).

Sequencing coverage β
Average allele-identifiable

probability q̄

ASHIC-ZIPM ASHIC-PM

10% 0.50 7.88% 8.12%

20% 0.50 7.06% 7.42%

50% 0.50 5.88% 6.43%

100% 0.50 4.84% 5.48%

100% 0.25 9.55% 10.68%

100% 0.10 13.85% 15.50%

100% 0.05 15.95% 17.60%

Table 4.5: Imputation error rates in homologous X chromosome (Xa/Xi) simulations.

Consistent with the high recovery rates and low imputation error rates, the SCC

values also demonstrated robust and accurate imputation of diploid contact matrices by

the ASHIC methods at low SNP density settings (Figure 4.5A). When the average allele-

identifiable probability q decreased from 0.5 to 0.05, the SCC values dropped significantly

from 0.8100 to 0.3959 for allele-certain and from 0.9733 to 0.8719 for mate-rescue, respec-

tively. In contrast, the SCC values remained high at 0.9941 and 0.9922 for ASHIC-ZIPM

and ASHIC-PM, respectively, at the lowest q = 0.05 setting. Moreover, ASHIC-ZIPM sig-

nificantly outperformed ASHIC-PM at the lowest SNP density level (p-value = 8.30×10−3,

one-sided paired Wilcoxon signed-rank test). The difference between our ASHIC methods
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Figure 4.5: ASHIC-ZIPM accurately imputes diploid contact maps and 3D structures on
low-SNP-density Xa/Xi simulation data. (A) SCCs between the imputed diploid contact
matrices and the true contact matrices, (B) Distance error rates between the predicted
allelic 3D structures and the true structures, and (C) F1 scores of the identified allele-
specific chromatin interactions at different SNP density q levels.

and other methods was also observed on the PCC plot at the lowest SNP density, particu-

larly for long genomic distances (Figure 4.6A). Furthermore, when comparing the predicted

allelic 3D structures with the ground truth, ASHIC-ZIPM outperformed ASHIC-PM signifi-

cantly at all SNP density levels (p-values = 2.53×10−3, 4.67×10−3, 3.46×10−3, 2.53×10−3,

for q = 0.5, 0.25, 0.1, 0.05, respectively, one-sided paired Wilcoxon signed-rank tests) (Figure

4.5B).

Next, we questioned whether the ability to detect allele-specific chromatin inter-

actions was impacted by low SNP density levels. Adjusting the average allele-identifiable

probability did not affect the underlying true diploid contact matrices. As a result, the

true set of allele-specific interactions remained the same at different SNP density settings

(Table 4.4, β = 100%β̂). As shown in Figure 4.5C, low SNP density severely impacted the

allele-certain and mate-rescue methods. The F1 scores of allele-certain dropped from 0.6024

to 0.0039, recovering only 17.8 out of 9061.5 true allele-specific interactions. Similarly, the

F1 score of mate-rescue dropped from 0.8940 to 0.3666. In contrast, when SNP density
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Figure 4.6: ASHIC-ZIPM accurately imputes diploid contact maps on low-SNP-density
simulation data. Pearson’s correlation coefficients (PCCs) between the imputed diploid
contact matrices and the true contact matrices at the lowest SNP density (q = 0.05) for the
homologous X chromosome (A) and the identical-homolog (B) simulation data. The PCC
curves are smoothened using the locally weighted LOESS method.

lowered, the F1 score of our methods decreased only slightly—3.62% for ASHIC-ZIPM and

4.26% for ASHIC-PM. In addition, our ASHIC methods outperformed the other methods

by a notable margin. We observed that decreasing SNP density increased the margin be-

tween ASHIC-ZIPM and other methods. Taken together, our results demonstrated that

the ASHIC-ZIPM method significantly exceeded other methods with high robustness in low

SNP density situations.

4.5 Identical Homologous Chromosomal Structures

In the aforementioned simulation settings, we took the homologous X chromosomes

in GM12878 cells as the ground truth, where Xa and Xi have drastically dissimilar struc-

tures. Unlike the X chromosomes, homologous autosomes often have similar 3D shapes.

Imputing diploid Hi-C contact matrices and allelic structures from homologs with similar
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structures is a more challenging problem than the one from homologs with different struc-

tures. To evaluate our methods in such situation, we duplicated the paternal/Xi structure

as the pseudo-maternal structure to build an identical homologous structure pair (see Sec-

tion 4.1.2). We then generated simulation datasets and evaluated our methods at different

coverage and SNP density settings, similarly as previously described.

4.5.1 Low Sequencing Coverage Data

As demonstrated in previous homologous structure simulations, our ASHIC meth-

ods maintained high accuracy of imputed diploid contact matrices at low sequencing cov-

erage settings (Figure 4.7A). The SCC values were all above 0.9949 for ASHIC-ZIPM and

above 0.9938 for ASHIC-PM at various sequencing coverage levels. On the other hand, the

SCC values of mate-rescue demonstrated a minor decline from 0.9778 to 0.9664 when the

coverage decreased from 100%β̂ to 10%β̂. The allele-certain method was the most impacted,

as its SCC values declined by 7.46% from 0.8362 to 0.7738 when the coverage level dropped

from 100%β̂ to 10%β̂.

We then evaluated the accuracy of the allelic 3D structures predicted by our ASHIC

methods. Overall, ASHIC-ZIPM generated more accurate structures with smaller distance

error rates than the ones predicted by ASHIC-PM across all coverage levels (Figure 4.7B).

The improvements were significant at 100%β̂, 50%β̂, and 10%β̂ levels (p-values = 2.53 ×

10−3, 1.42× 10−2, 2.53× 10−3, one-sided paired Wilcoxon signed-rank tests).
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Figure 4.7: ASHIC-ZIPM accurately imputes diploid contact maps and 3D structures on
low-coverage identical-homolog simulation data. (A) SCCs between the imputed diploid
contact matrices and the true contact matrices, (B) Distance error rates between the pre-
dicted allelic 3D structures and the true structures, (C) Homologous distance error rates
between the predicted maternal and paternal 3D structures, and (D) F1 scores of the iden-
tified bi-allelic interactions at various sequencing coverage β levels.

In addition to comparing the predicted allelic structures against the ground truth

structures, we further calculated the homologous distance error rate between the predicted

maternal and paternal structures (Figure 4.7C). For both ASHIC-ZIPM and ASHIC-PM

methods, the average homologous distance error rates were smaller than 0.08, suggest-

ing that both models produced homologous structures with very similar shapes. Further-

more, the ASHIC-ZIPM model had significantly lower homologous distance error rates than
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ASHIC-PM, at sequencing coverage 100%β̂ and 10%β̂ levels (p-values = 2.53 × 10−3, one-

sided paired Wilcoxon signed-rank tests). These results further confirmed that ASHIC-

ZIPM predicted more accurate allelic 3D structures than the structures predicted by ASHIC-

PM.

Next, we investigated the effects of low sequencing coverage on the detection of

chromatin interactions when the homologous structures were identical. Similar to the case

of different homologous structures, we applied Fit-Hi-C [1] to call significant interactions

on the two allele-specific contact matrices separately. Given that the two ground truth

homologous structures were identical, we defined the true integration set as the bi-allelic

interactions shared by both maternal and paternal chromosomes (see Section 4.3).

Sequencing coverage β Bi-allelic (true set) Maternal-specific Paternal-specific

10% 759.9 365.7 356.5

20% 1559.8 517.7 520.3

50% 3020.6 601.2 592.9

100% 4103.1 679.1 657.5

Table 4.6: Number of allele-specific interactions in duplicate X chromosome (Xi/Xi) sim-
ulations. Chromatin interactions are called using Fit-Hi-C [1] on true maternal (Xi) and
paternal (Xi) contact matrices separately. Maternal-specific interaction set contains inter-
actions called only from maternal contact matrix but not from paternal contact matrix.
Paternal-specific interaction set is defined in a similar way. The bi-allelic interaction set
contains common interactions called from both maternal and paternal contact matrices.
The true set is defined as the bi-allelic set.

When the coverage dropped from 100%β̂ to 10%β̂, the number of interactions in

the true set decreased by 81.48% from 4103.1 to 759.9 (Table 4.6). As shown in Figure 4.7D,

the allele-certain method was the most impacted by the sequencing coverage changes, where
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its F1 scores decreased by 31.23% from 0.6127 to 0.4214 as the coverage dropped from 100%β̂

to 10%β̂. The F1 score of mate-rescue decreased to a less extend, by 7.37% from 0.9075 to

0.8406. Whereas our ASHIC-ZIPM and ASHIC-PM methods demonstrated consistent high

F1 scores of 0.9351 and 0.9296, respectively, even under the lowest coverage 10%β̂ setting.

4.5.2 Low SNP Density Data

When the SNP density lowered, we observed an overall decreasing trend in the SCC

values for all four methods (Figure 4.8A). The allele-certain and mate-rescue methods were

greatly impacted by the low SNP density. When the average allele-identifiable probability

q decreased from 0.5 to 0.05, the SCC values dropped significantly by 46.52% from 0.8362

to 0.4472 for allele-certain and by 9.16% from 0.9778 to 0.8883 for mate-rescue.

Again, our ASHIC methods maintained robustly high accuracy of the imputed

contact matrices; the SCC values decreased only by 0.45% from 0.9996 to 0.9950 for ASHIC-

ZIPM and by 2.38% from 0.9988 to 0.9750 for ASHIC-PM when q decreased from 0.5 to

0.05. The visible difference between ASHIC-ZIPM and ASHIC-PM at the lowest SNP

density level q = 0.05 was also supported by the PCC measures, where ASHIC-ZIPM

outperformed ASHIC-PM by an evidently large margin of PCCs within genomic distance

of 100 Mb (Figure 4.6B).

In terms of structural accuracy, ASHIC-ZIPM also outperformed ASHIC-PM with

significantly smaller distance error rates across all SNP density levels (p-values = 2.53×10−3,

one-sided paired Wilcoxon signed-rank tests) (Figure 4.8B). Furthermore, the allelic struc-

tures predicted by ASHIC-ZIPM demonstrated significantly smaller homologous distance
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Figure 4.8: ASHIC-ZIPM accurately imputes diploid contact maps and 3D structures on
low-SNP-density identical-homolog simulation data. (A) SCCs between the imputed diploid
contact matrices and the true contact matrices, (B) Distance error rates between the pre-
dicted allelic 3D structures and the true structures, (C) Homologous distance error rates
between the predicted maternal and paternal 3D structures, and (D) F1 scores of the iden-
tified bi-allelic interactions at different SNP density q levels.

error rates than the ones predicted by ASHIC-PM (p-values = 2.53 × 10−3, at all four q

levels, one-sided paired Wilcoxon signed-rank tests) (Figure 4.8C).

In addition to achieving the highest imputation accuracy of the diploid contact

matrices and 3D structures, ASHIC-ZIPM also demonstrated the best performance with

respect to the detection of biallelic chromatin interactions under low SNP density condi-

tions (Figure 4.8D). When the average allele-identifiable probability q decreased from 0.5
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to 0.05, the F1 values dropped by 99.43% for allele-certain, 62.49% for mate-rescue, and

8.32% for ASHIC-PM. The ASHIC-ZIPM model showed the smallest decline in F1 scores,

merely 1.70% from 0.9814 to 0.9647. Moreover, we observed that ASHIC-ZIPM signif-

icantly outperformed all other methods by a large margin across all SNP density levels

(p-values = 2.53× 10−3, one-sided paired Wilcoxon signed-rank tests)

Taken together, we demonstrated that our ASHIC methods significantly outper-

formed the allele-certain and mate-rescue methods under low SNP density conditions when

the homologous structures have identical shapes. In addition, ASHIC-ZIPM evidently out-

performed the ASHIC-PM model by a large margin, especially at the lowest SNP density

level.
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Chapter 5

Real Data Analyses

We used two diploid Hi-C datasets in our study (Table 4.1). First, allelic mapping

results of the wild-type Patski Hi-C dataset published by Bonora et al. [18] were downloaded

from GEO (GSE107282). Second, the raw sequencing reads of the GM12878 Hi-C dataset

published by Rao et al. [10] were downloaded from GEO (GSE63525) and the allele-specific

mapping was performed using HiC-Pro [32]. Briefly, HiC-Pro aligned reads to a masked

reference genome where all SNP sites are N-masked. Then reads overlap with SNP sites were

assigned to either maternal or paternal allele based on the nucleotide at the SNP position.

Reads that do not overlap with any SNPs were labeled as allele-ambiguous. Reads with

conflicting allele assignment or unexpected allele at SNP sites were discarded. For each

genomic region, we ran 20 random initializations with the ASHIC-ZIPM model and chose

the one with the highest likelihood for subsequent analyses.
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5.1 Bipartite Structure of Mouse Inactive X Chromosome

The X chromosomes in mammalian females is a representative example of homolo-

gous structural difference. In contrast to males having only one X chromosome, the females

have two X chromosomes. To compensate for the dosage imbalance of X-linked genes be-

tween females and males, one X chromosomes in female cells is randomly silenced through

the X chromosome inactivation (XCI) mechanism [33]. To study the structural differences

between the active X (Xa) and inactive X (Xi) chromosomes, we applied ASHIC-ZIPM to

a published diploid Hi-C data generated from wild-type Patski (BL6×Spretus) cells [18].

The Patski cell line has completely skewed XCI such that the maternal BL6 X is always in-

active while the paternal Spretus X is always active. Several Hi-C studies conducted on the

Patski cells have demonstrated that the maternal Xi and paternal Xa chromosomes exhibit

distinct morphology and chromatin contact profiles [12, 18]. Specifically, Xi shows a clear

bipartite structure, where the entire chromosome is densely packed into two superdomains.

The hinge region between the two superdomains contains the macrosatellite repeat locus

Dxz4 and represents a nucleolus-associated domain [12, 14, 18, 10].

To study the bipartite organization of Xi, we applied our ASHIC-ZIPM model to

the Patski Hi-C data and reconstructed the diploid contact maps and 3D structures of Xa

and Xi at various resolutions (500 kb, 100 kb and 50 kb). As shown in Figure 5.1A, the

contact map of Xa demonstrated a clear plaid pattern representing the alternating A/B

compartments. In contrast, Xi was clearly separated into two superdomains by a hinge

region containing Dxz4. We observed frequent intra-superdomain contacts but sparse inter-

superdomain contacts on Xi.
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Figure 5.1: Bipartite organization of the inactive X chromosome in mouse Patski cells.
(A) ASHIC-ZIPM-imputed allele-specific Hi-C contact matrices of Xi and Xa are shown at
500 kb resolution. The Xi shows a bipartite structure of two superdomains connected by a
hinge region (Dxz4 ), indicated by an arrow. Gray strips indicate low mappability regions.
(B) Chromosome-wise bipartite index (BI) values for Xi (brown) and Xa (blue) at 500 kb
(left), 100 kb (middle), and 50 kb (right) resolutions. The Xi curve shows an evident peak at
the hinge region (yellow). (C) The Xi structures predicted by ASHIC-ZIPM at 500 kb, 100
kb, and 50 kb resolutions. The first superdomain (centromeric region) is shown in orange,
and the second superdomain (distal region) is shown in brown. The hinge region (Dxz4 ) is
marked by a yellow ball. The 3D structures are interpolated and smoothed by the Akima
interpolator in SciPy. (D) Box plots of the radius of gyration for the Xi (brown) and Xa
(blue) structures at 500 kb, 100 kb, and 50 kb resolutions.

83



To measure how well the two superdomains are separated by the hinge region on

the inactive X (Xi) chromosome, we calculated the bipartite index (BI) score [12] for each

locus k on chromosomes η ∈ {Xi,Xa} for both X chromosomes (Figure 5.1B) using the

imputed contact matrices by ASHIC-ZIPM. A higher BI score of bin ηk indicated greater

bipartite separation at the particular hinge region.

BI(ηk) =

∑k
i=1

∑k
j=1 ZTηiηj
k2 +

∑n
i=k+1

∑n
j=k+1 ZTηiηj

(n−k)2

2
∑k
i=1

∑n
j=k+1 ZTηiηj
k(n−k)

(5.1)

At all three resolutions, we observed an evident BI peak at the hinge region (Dxz4 )

on Xi, confirming the existence of bipartite organization on Xi. In contrast, the BI values

were rather flat across the entire Xa, indicating the absence of bipartite structure. These ob-

servations demonstrated that our ASHIC-ZIPM method can produce robust and consistent

diploid contact maps across different resolutions.

In addition to the existence of two superdomains in the Xi contact map, we also

observed that the predicted Xi structures preserved the bipartite conformation across all

three resolutions (Figure 5.1C). The two superdomains were clearly separated in space, as

each superdomain occupied half of the sphere and there were minimal interactions between

them. In addition, the hinge region (Dxz4 ) connecting the two superdomains was located

towards the periphery of the Xi structure, which is consistent with previous DNA-FISH

results [12]. While the previously published Xa and Xi structures were at 1 Mb [12] and

500 kb [17] resolutions, our method produced chromosomal structures at 50 kb resolution

and successfully confirmed the bipartite organization of Xi.
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With regards to the overall morphology of the chromosomal structures, we ob-

served that Xi exhibited a more condensed structure than Xa, which is consistent with the

fact that Xi is almost entirely silenced.

In particular, to measure the compactness of the estimated X chromosome struc-

tures, we calculated the radius of gyration (Rg) [34] (Figure 5.1D), which is defined as the

root mean square distance of the points to the centroid, same as the scale of the structure.

A smaller Rg value indicates a more compact 3D structure. Across all three resolutions,

Xi consistently showed a significantly lower Rg value than Xa, indicating that Xi was more

tightly packed (p-values = 4.43× 10−5, one-sided paired Wilcoxon signed-rank tests).

To assess the reproducibility of the inferred allelic contact maps and 3D structures,

we randomly split the X chromosome data into two pseudo-replicates and performed ASHIC-

ZIPM analysis on each one separately. At 500 kb resolution, the imputed allelic contact

matrices were highly similar with SCC values of 0.9632 (Xi) and 0.9691 (Xa) between the

two pseudo-replicates (Figure 5.2). Additionally, the allelic 3D structures estimated from

the pseudo-replicates were well aligned with similar global architecture. Moreover, similar

results at 100 kb resolution further confirmed the reproducibility of the ASHIC method

(Figure 5.3).

Collectively, the results obtained on the Patski Hi-C data demonstrated that our

ASHIC-ZIPM method can accurately and robustly detect distinct allele-specific chromatin

organizations of Xa and Xi at fine resolution.
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Figure 5.2: Comparison of ASHIC-ZIPM-imputed allele-specific contact matrices and 3D
structures of Xi and Xa between two pseudo-replicates at 500 kb resolution. (A) Heatmaps
of imputed Xi contact matrices from pseudo-replicate 1 (left) and 2 (right). (B) Predicted 3D
structures of Xi from pseudo-replicate 1 (left) and 2 (right), and the optimal alignment be-
tween them (middle). (C) Heatmaps of imputed Xa contact matrices from pseudo-replicate
1 (left) and 2 (right). (D) Predicted 3D structures of Xa from pseudo-replicate 1 (left) and
2 (right), and the optimal alignment between them (middle).
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5.2 Mouse H19/Igf2 Imprinting Region

Imprinting is an epigenetic mechanism that causes a subset of genes to express

exclusively on one allele in diploid cells. The expression of imprinted genes is controlled

by parental-specific epigenetic modifications, such as DNA methylation, at the imprint-

ing control regions. One well-studied example is the H19/Igf2 imprinting region. In the

mouse genome, the paternally expressed Igf2 gene is located approximately 80 kb upstream

(telomeric side) from the long non-coding RNA H19 that is expressed only on the maternal

allele. These two genes demonstrate opposite allele-specific expression yet share a common

set of enhancers located downstream of H19 [35, 36, 37]. It has been shown that the parent-

specific expression pattern of H19 and Igf2 is controlled by the H19 differentially methylated

region (H19-DMR) located 2 kb upstream from H19 [38]. The H19-DMR is methylated only

on the paternal allele, and therefore exhibits methylation-sensitive CCCTC-binding factor

(CTCF) binding. On the maternal allele, the unmethylated H19-DMR recruits CTCF bind-

ings and therefore blocking the interactions between the enhancers and Igf2. As a result,

Igf2 remains unexpressed, while H19 can still access the enhancers and thus is activated.

Whereas on the paternal allele, the methylated H19-DMR inhibits CTCF bindings. Conse-

quently, Igf2 can access the enhancers and being activated; while the H19 silencing is likely

caused by spreading of methylation from H19-DMR [39].

It has been widely speculated that CTCF attains enhancer-blocking insulation

function via the formation of chromatin loops [40]. Using diploid Hi-C contact maps of hu-

man GM12878 cells at 25 kb resolution, Rao et al. [10] examined the H19/IGF2 imprinting

region and identified parental-specific chromatin loops between the H19/IGF2 cluster and
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a distal region which was referred to as the H19/Igf2 Distal Anchor Domain (HIDAD). The

HIDAD-H19 loop was present exclusively on maternal allele; in contrast, the HIDAD-IGF2

loop appeared only on the paternal allele. Additionally, Llères et al. [41] performed a diploid

4C-seq study on the mouse ESCs and showed that H19-DMR interacted significantly more

with the mouse homologue of HIDAD (mHIDAD) on maternal allele compared to the in-

teractions on the paternal allele. They subsequently performed 3D DNA-FISH experiments

and confirmed that the distances between mHIDAD and H19 were significantly shorter on

the maternal allele than the distances on the paternal allele.

Although the aforementioned 4C-seq study [41] and several other 3C studies [42,

43, 44] have been conducted in the H19/Igf2 imprinting region, diploid Hi-C studies are

still restricted to a rather coarse resolution due to the limitations of low SNP density and

insufficient sequencing coverage. To bridge this gap and provide a holistic view of chromatin

structures on the imprinted H19/Igf2 region, we applied our ASHIC-ZIPM method to the

published diploid Hi-C data in mouse Patski cells [18], and generated fine-scale allele-specific

contact maps and 3D structures of a 5-Mb region (chr7: 140–145 Mbp) around the H19/Igf2

imprinting region at 10 kb resolution.

First, we constructed a differential contact map using log-fold-change values be-

tween the imputed maternal and paternal contacts (Figure 5.4A). Along with the contact

map, we also visualized the allelic CTCF ChIP-seq data [18]. Consistent with previous

studies [45, 46], we observed a clear maternal-specific CTCF binding at the H19-DMR lo-

cus. Additionally, a few bi-allelic CTCF binding clusters were observed at mHIDAD, near

the Syt8 and Lsp1 genes, and at the telomeric side of Igf2. As shown in Figure 5.4A, the
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contacts between mHIDAD and H19 were enriched on the maternal allele (box 1), whereas

the contacts between mHIDAD and Igf2 were enriched on the paternal allele (box 2). In

addition to the contacts between mHIDAD and H19/Igf2, H19 and Igf2 demonstrated dif-

ferential contact preferences to the bi-allelic CTCF clusters near Syt8 and Lsp1 (boxes 3

and 4). To further characterize the parental-specific chromatin interactions, we identified

chromatin loops with genomic distance of 30–500 kb from the imputed allelic contact maps

using Fit-Hi-C [1] with a strict FDR threshold (q-value < 10−5). The identified chromatin

loops were mostly anchored to the CTCF binding clusters (Figure 5.4A). We further cate-

gorized these chromatin loops into bi-allelic loops that were shared between the two alleles,

or monoallelic loops that are either maternal-specific or paternal-specific. Consistent with

the differential contact map, chromatin loops anchored at H19 and Igf2 were primarily

parental-specific. We observed a distinct pattern of maternal-specific chromatin loops be-

tween mHIDAD and H19 and paternal-specific chromatin loops between mHIDAD and Igf2.

Besides mHIDAD, the region containing bi-allelic CTCF binding clusters near the Syt8 and

Lsp1 genes also demonstrated parental-specific chromatin interactions with H19 and Igf2.

Specifically, these CTCF clusters interacted preferentially with H19 on the maternal allele

and with Igf2 on the paternal allele. These observations are consistent with the previous

4C-seq results in mouse ESCs [41].

Besides the differential contact map, we also examined the allele-specific chromatin

conformations using the predicted allelic 3D structures (Figure 5.4B). The overall chromatin

organizations of the H19/Igf2 imprinting region appeared to be similar between the two

alleles. However, the relative spatial position among mHIDAD, H19, and Igf2 demon-
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strated parental-specific differences. From the 3D structures, we observed that mHIDAD

was spatially close to H19 on the maternal allele, presumably forming a chromatin loop. In

addition, we observed that Igf2 was much closer to mHIDAD on paternal structure than

on the maternal structure.

For the quantitative comparison, we calculated the pairwise Euclidean distances

of mHIDAD, H19, and Igf2 on the maternal and paternal structures predicted by ASHIC-

ZIPM from 20 random initializations. As shown in Figure 5.4C, the distance between

mHIDAD and H19 was significantly smaller on the maternal structure than that on the

paternal structure (p-value = 4.43 × 10−5, one-sided Wilcoxon paired signed-rank test),

which is consistent with the previous DNA-FISH data [41]. In contrast, the distance be-

tween mHIDAD and Igf2 was significantly larger on maternal allele (p-value = 4.43× 10−5,

one-sided Wilcoxon paired signed-rank test), which is consistent with the observation of

paternal-specific HIDAD-IGF2 loop in human GM12878 cells [10]. No significant difference

of the distance between H19 and Igf2 was detected on our predicted allelic structures. These

observations demonstrated that our method can stably predict fine-scale 3D structures that

reflect the distinct parental-specific chromatin conformations.
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Figure 5.4: Allele-specific chromatin organizations of the H19/Igf2 imprinting region in
mouse Patski cells. (A) Differential contact map between the ASHIC-ZIPM-imputed ma-
ternal and paternal contacts at 10 kb resolution. Contact counts are normalized separately
on each allele to account for the potential mapping bias towards the reference genome.
The red vs blue color key indicates maternal vs paternal enrichment. Four allelicly enriched
chromatin interacting regions are labeled in boxes 1–4. Maternal-specific CTCF peak (pink)
and bi-allelic CTCF binding clusters (yellow) are highlighted. Chromatin loops are called
using Fit-Hi-C [1] and categorized into maternal-specific (red), paternal-specific (blue), and
bi-allelic (gray). Only loops anchored at H19 or Igf2 are displayed. (B) Allelic 3D struc-
tures of the H19/Igf2 imprinting region predicted by ASHIC-ZIPM at 10 kb resolution. The
maternal (red) and paternal (blue) structures are overall similar, but the relative spatial
positions of mHIDAD (blue), H19 (yellow), and Igf2 (orange) are evidently different. (C)
Box plots of pairwise Euclidean distances between H19-Igf2 (left), mHIDAD-H19 (middle),
and mHIDAD-Igf2 (right). (D) Allelic Hi-C contact maps at 10 kb resolution (top panel:
maternal allele, red color key; bottom panel: paternal allele, blue color key). Maternal-
specific (red), paternal-specific (blue), and bi-allelic (gray) chromatin loops are called using
Fit-Hi-C [1]. A local minimum of the insulation score (IS) is marked by an asterisk. Positive
and negative directionality index (DI) values [2] are shown in red and blue, respectively.
(Sub-)TAD domains derived from IS and DI measures are labeled as triangles on the con-
tact maps, and dashed lines indicate (sub-)TAD boundaries. Panels (A) and (D) are drawn
using pyGenomeTracks [3].
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5.2.1 Maternal-Specific Sub-TAD at Mouse H19/Igf2 Locus

In addition to the formation of chromatin loops, CTCF also participates in the es-

tablishment of higher-order chromatin structures such as topologically-associating domains

(TADs). TADs are sub-megabase genomic regions containing frequent local chromatin in-

teractions, whereas TAD boundaries result in physical insulation between neighboring do-

mains [2]. It has been observed that CTCF bindings are often enriched at TAD boundaries

and play an important role in TAD formation [2, 10]. Since the genome is organized in a

hierarchical manner, smaller domains called sub-TADs are often observed within the large

TADs. Unlike TADs that are mostly invariant between cell types, sub-TADs are more vari-

able and play a pivotal role in mediating cell-type-specific gene regulation [47, 48]. Based

on the presence of monoallelic CTCF bindings at H19-DMR, Llères et al. [41] proposed a

novel parental-specific sub-TAD model for the regulation of imprinting at H19/Igf2 locus.

Supported by allelic 4C-seq and DNA-FISH data, they speculated that several bi-allelic

CTCF binding sites form a first layer of TAD on both alleles. In addition, the maternal-

specific CTCF binding around H19-DMR hijacks the first layer of TAD and consequently

creates an additional layer of sub-TAD on the maternal allele.

To verify this hypothesis, we calculated the insulation score (IS) [49] and direc-

tionality index (DI) [2] using TADtool [50] to search for possible (sub-)TAD boundaries

around the H19/Igf2 imprinting region. Overall we observed similar IS values on both al-

leles, except at the H19-DMR locus (Figure 5.4D, Figure 5.5). Specifically, we observed a

local minimum of IS values at H19-DMR only on the maternal allele indicating a potential

presence of a sub-TAD boundary at H19-DMR. Consistently, the DI values suggested simi-
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lar (sub-)TAD pattern (Figure 5.4D). We observed strong positive DIs at mHIDAD on both

alleles, indicating that mHIDAD is highly biased towards interacting with its downstream

loci and serves as a starting position of a TAD. On the other hand, the telomeric-side

flanking region of Igf2 demonstrated negative DIs on both alleles, indicating a likely ending

boundary of a TAD. Furthermore, a negative DI region around H19-DMR appeared only

on the maternal allele, suggesting H19-DMR has a higher tendency to interact with its

upstream loci, possibly indicating an ending position for a maternal-specific sub-TAD.

Both the IS and DI measurements suggested that H19/Igf2 is embedded within

a TAD demarcated by two main boundaries: one near mHIDAD and the other one at the

telomeric side of Igf2. The locations of the two boundaries were in good agreement between

both alleles. However, the (sub-)TAD organization within this TAD region undergoes dras-

tic parental-specific changes. Specifically, we observed a sub-TAD boundary at H19-DMR

locus exclusively on the maternal allele. The TAD and sub-TAD boundaries mentioned

above were all located at CTCF binding clusters. We further examined the allelic chro-

matin loops within this imprinting region (Figure 5.4D). On the maternal allele, chromatin

loops were mostly confined to the mHIDAD-H19 sub-TAD. Whereas on the paternal allele,

we observed several chromatin loops connecting the centromeric side of H19-DMR with Igf2,

indicating the absence of insulation at H19-DMR. These observations of allelic chromatin

loops are consistent with the parental-specific (sub-)TAD structures.

Taken together, these results supported the hypothesis that the maternal-specific

CTCF binding at H19-DMR forms a chromatin loop with the CTCF binding sites at mHI-

DAD. This mHIDAD-H19 loop creates an additional layer of sub-TAD inside the original
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Figure 5.5: Insulation scores of the H19/Igf2 imprinting region show potential sub-TAD
boundary at the H19-DMR locus on maternal chromosome. Insulation scores of chr7:140–
145 Mb on maternal chromosome (top) and paternal chromosome (middle). Green lines
are the identified (sub)TAD boundaries. Black dashed lines are at the H19-DMR locus.
Insulation scores of the maternal and paternal chromosome are drawn together in the bottom
panel for better visual comparison.

mHIDAD-Igf2 TAD. The maternal-specific mHIDAD-H19 sub-TAD organization mediates

the insulation between the centromeric side of H19-DMR and Igf2, and thereby leading to

the silencing of Igf2 on the maternal allele.
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5.3 Allelic Chromatin Contacts in Human GM12878 Cells

Besides Hi-C, ChIA-PET is another popular technique for detecting genome-wide

chromatin interactions [51]. ChIA-PET incorporates chromatin immunoprecipitation-based

enrichment and focuses on the mapping of chromatin interactions mediated by a specific

protein of interest. Applying an advanced long-read ChIA-PET strategy, Tang et al. [4]

comprehensively mapped the functional chromatin interactions mediated by CTCF and

RNA polymerase II (RNAPII) with haplotype specificity in human cell lines. To further

assess our method, we applied ASHIC-ZIPM to the published Hi-C data in human GM12878

cells [10], and compared the imputed allelic chromatin maps with the phased ChIA-PET

data published by Tang et al. [4].

We first looked at a 4-Mb region (chr11: 1–5 Mbp) around the H19/IGF2 imprint-

ing locus and generated allelic contact maps and structures at 10 kb resolution (Figure 5.6A).

Compared to the 25-kb-resolution mate-rescued Hi-C maps reported by Rao et al. [10], our

ASHIC-imputed allelic contact maps showed much higher coverage and finer interaction

patterns. Similar to the mouse H19/Igf2 region, the human H19/IGF2 imprinting region

also exhibited a maternal-specific sub-TAD organization. The sub-TAD boundary located

at H19-DMR and was enriched with maternal-specific CTCF bindings. In addition, we

observed maternal-specific chromatin contacts between H19-DMR and several loci (includ-

ing HIDAD) at the telomeric side (red boxes), which was in high correspondence with the

maternal-biased ChIA-PET loops mediated by CTCF. On the paternal allele, we observed

enriched chromatin contacts between IGF2 and the aforementioned telomeric-side loci (blue

boxes), which was consistent with our observations with the mouse Igf2 homolog. We did
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not observe the corresponding paternal-biased CTCF ChIA-PET loops, probably due to

the absence of SNPs at the IGF2 locus.

In addition to CTCF-mediated parental-specific chromatin loops, our approach

also revealed RNAPII-mediated allelic chromatin interactions. For example, we studied an-

other 4-Mb region (chr12: 8–12 Mbp) containing the LOC374443, CLEC2D, and CLECL1

multi-gene complex. Previously, Tang et al. [4] discovered paternally biased RNAPII-

mediated interactions between this paternally expressed multi-gene complex and its distal

enhancer (300 kb apart). Consistently, our ASHIC-imputed allelic contact maps showed

paternal-enriched long-range contacts (blue box) between the distal enhancer and the pro-

moters of the three genes, as shown in Figure 5.6B.

Collectively, these results demonstrated that our ASHIC method is capable of im-

puting diploid chromatin maps in low-SNP-density cells such as GM12878 and the ASHIC-

imputed allelic contacts are in high correspondence with the phased ChIA-PET data.
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Figure 5.6: Allele-specific Hi-C chromatin maps and ChIA-PET loops in human GM12878
cells. ASHIC-imputed allelic contact maps are shown at 10 kb resolution (top panel: mater-
nal allele, red color key; bottom panel: paternal allele, blue color key). Phased ChIA-PET
loops and SNPs with haplotype-biased ChIA-PET bindings are obtained from Tang et
al. [4]. (A) H19/IGF2 imprinting region. Maternal-enriched and paternal-enriched chro-
matin interacting regions are labeled in red and blue boxes, respectively. Vertical dashed
lines indicate (sub-)TAD boundaries. (B) Allelic long-range enhancer-promoter interac-
tions at LOC374443, CLEC2D, and CLECL1 genes. Blue box indicates the paternal-
enriched chromatin interacting region. The distal enhancer associated with paternal-biased
RNAPII-mediated ChIA-PET loops is highlighted in blue. Both panels are drawn using
pyGenomeTracks [3].
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Chapter 6

Conclusions

In this work, we proposed a hierarchical Bayesian framework for imputing allele-

specific contacts and reconstructing allelic 3D structures from diploid Hi-C data. We de-

veloped two models under this Bayesian framework: ASHIC-PM and ASHIC-ZIPM. To

the best of our knowledge, our ASHIC methods are the first methods that produce fully

decomposed diploid Hi-C contact matrices as well as the allelic 3D structures.

Unlike the existing allele-certain and mate-rescue approaches, our ASHIC meth-

ods utilize all diploid Hi-C contacts, including both-end allele-ambiguous contacts. As a

result, ASHIC methods exceeded the allele-certain and mate-rescue methods, in terms of

producing more accurate diploid matrices and structures as well as facilitating better de-

tection of allele-specific chromatin interactions. We also conducted a series of simulation

experiments and evaluated how the performance of our methods was impacted by various

factors, including sequencing coverage, SNP density, and homologous structural similar-

ity. Overall, our models significantly outperformed other methods, especially under low
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sequencing coverage and low SNP density conditions. The ability of the ASHIC methods

in inferring allele-ambiguous contacts at low-SNP-density setting is critical for analyses in

diploid human cells such as GM12878, where the existing mate-rescue method [10] was only

able to rescue 5.86% of total diploid contacts (Table 1.1).

In our simulation studies, we did not compare the ASHIC methods with the re-

cently published Dip-C method by Tan et al. [16] as their method was specifically designed

for single-cell Hi-C data. Another reason was that Dip-C does not impute intra-chromosomal

both-end allele-ambiguous contacts. Therefore we expect that its performance would be

close to the mate-rescue method. In addition, our earlier work of the Poisson-Gamma

model [12] imputes diploid contact counts based on genomic distances rather than spatial

distances, and therefore is not computationally stable on fine-resolution (such as 100 kb)

or low-coverage Hi-C data. Lastly, the newly developed diploid-PASTIS method by Cauer

et al. [17] predicts only the allelic 3D structures rather than the diploid contact matrices.

Therefore, we did not evaluate the diploid-PASTIS method in our simulations as most of

our evaluation metrics were based on imputed contact matrices.

The main advantage of the ASHIC-ZIPM model over the ASHIC-PM model is that

ASHIC-ZIPM explicitly accounts for the excessive zeros in Hi-C matrices, by modeling the

probabilities whether each observed zero count is a “true” zero or a “missing” zero. As a re-

sult, we observed that the ASHIC-ZIPM model consistently outperformed the ASHIC-PM

model in all simulation settings. While the performance of the two models were often

similar, the improvements of ASHIC-ZIPM over ASHIC-PM became more evident when

the SNP density decreased. In addition, the differences between the ASHIC-ZIPM and
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ASHIC-PM models were particularly noticeable under the more challenging simulation set-

ting of identical homologous structures. This is owing to the fact that when SNP density

was low, only few allele-certain contacts were observed. The ASHIC-PM model uses the

allele-certain contacts to initialize the EM algorithm and treats all zeros as “true” zeros,

thereby producing less optimal results. In contrast, ASHIC-ZIPM explicitly adjusts the

weights between “true” and “missing” zeros and thereby archiving more accurate models.

Hi-C contact counts could be over-dispersed, thus a Negative Binomial (NB) model

may provide a better fit than a Poisson model. However, our ASHIC models leverage on

two nice properties of the Poisson distribution: the outcomes from a Poisson-multinomial

hierarchical model are Poisson variables; and the sum of Poisson variables is also a Poisson

variable. If we adapt a NB model, we will no longer have such a neat and tractable hier-

archical model and as a result the model fitting will become computationally expensive. In

addition, we would like to point out that the ZIP model can account for over-dispersion to

some extent by fitting a mixture of Poisson state and the zero (missing) state. Furthermore,

the ASHIC methods use the spatial distance rather than the genomic distance between the

contacting pair as the Poisson or ZIP parameter, therefore could be less impacted by the

over-dispersion.

We demonstrated the applications of our ASHIC-ZIPM method in the mouse

Patski cells and in the human GM12878 cells. Previous studies predicted allelic X chromo-

some structures at 1 Mb [12] and 500 kb [17] resolutions. In contrast, our method utilized

all diploid contacts and produced finer-scale allelic structures of the entire X chromosomes

at 50-kb resolution. Our results further confirmed the existence of the bipartite struc-
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ture of Xi. The ability to impute all allele-ambiguous contacts is particularly important

when zooming into local imprinting regions. Since imprinting regions are often small, fine-

resolution allelic contact maps and 3D structures are required for an in-depth study. With

our ASHIC-ZIPM model, we produced the first 10-kb-resolution diploid Hi-C contact maps

of the mouse H19/Igf2 imprinting region, and revealed the existence of the maternal-specific

sub-TAD organization at H19-DMR. This sub-TAD formation creates an insulation between

H19 and Igf2 that likely prevents the activation of Igf2 on the maternal allele. Our study of

the human H19/IGF2 imprinting region further confirmed this parental-specific chromatin

organization. Furthermore, the ASHIC-imputed diploid Hi-C maps offered an informative

view of the (sub-)TAD organizations on the imprinting region, whereas the previous 4C-seq

study [41] was restricted to only few anchor regions.

Currently, only a few limitations can be attributed to our ASHIC methods. First,

our methods provide chromosome-wide modeling of diploid Hi-C data. One possible future

extension is to build a genome-wide model by incorporating an additional estimation step

in the EM algorithm to model the relative position of multiple homologous chromosomes.

We could further parallelize the optimization procedures for each homologous chromosome

pair to speed up the genome-wide modeling. Second, our model is specifically designed

for diploid genomes. Extending the model to polyploid or aneuploid genomes remains a

challenging problem. Third, the computational efficiency of our EM algorithm, especially

the structure estimation step, could be further improved. One possible solution is to adapt

an iterative modeling strategy similar to [16, 34], starting with coarse-resolution modeling

then through interpolation to gradually refine the structures to finer resolutions. Lastly, it
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is possible to incorporate biological replicates into our models to improve reproducibility.

For example, we can optimize either a single structure or an ensemble of structures to

simultaneously find the best fit for all supplied biological replicates.
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