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Abstract

The majority of work in the field of human judgement and deci-
sion making under uncertainty is based on the use and develop-
ment of algebraic approaches, in which judgement is modelled
in terms of mathematical choice functions. Such approaches
provide no account of the mental processes underlying decision
making. In this paper we explore a cognitive model (imple-
mented within COGENT) of decision making developed in order
to account for subject performance on a simulated medical
diagnosis task. Our primary concern is with learning, and em-
pirical results on human leaming in the modelled task are also
reported. Learning in the computational model shares many
qualitative features with the human data. The results provide
further support for cognitive (i.e., non-algebraic) approaches to
decision making under uncertainty.

Introduction

Mainstream approaches to Judgement and Decision Making
(JDM) aim to predict how the decisions that people make are
affected by different conditions. Normative algebraic tech-
niques (e.g., Expected Utility Theory: Lindley, 1985) have
long been dominant in the field. These approaches gener-
ally describe decision making in terms of conditional prob-
abilities of outcomes and their associated expected utilities.
However, many features of real human decision making are
non-normative. Such features have been accounted for by the
introduction of a variety of heuristics and biases (e.g., Tver-
sky & Kahneman’s (1974) availability and representativeness
heuristics). The resultant approaches are (arguably) adequate
for predicting statistical regularities across human decision
making.

However, because algebraic techniques do not address deci-
sion making from an information processing perspective, they
cannot take account of situational factors (e.g., specific task
requirements) and cognitive factors (e.g., memory limitations
and specific subject strategies). Consequently, such theories
are restricted in their ability to account for the detailed struc-
ture of the decision making process. This situation is further
exacerbated by the reduction of individual subject knowledge
and experience to conditional probabilities.

In order to address these shortcomings several authors have
argued for the development of models and theories of the
processes underlying JDM (e.g., Fox, 1980; Beach, 1990;
Busemeyer, Hastie, & Medin, 1995; Fox & Cooper, 1997). In
addition to addressing the above difficulties, such approaches
are able to bring the results and techniques of research in
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other areas of cognitive psychology (e.g., memory, perception,
problem solving, etc.), where issues of process and represen-
tation are routinely considered, to bear on decision making,
thus bridging the gap which exists between JDM and much of
the rest of the discipline.

The account of JDM adopted here takes an information
processing perspective, and assumes that decision making
can be understood in terms of general purpose (knowledge-
lean) rules acting on domain-specific knowledge. Given this
view (support for which follows), one step in developing a
fully explicit account of JDM is to provide an account of
expert (i.e., knowledge-rich) performance. Such an account,
however, only addresses the question of what domain-specific
knowledge is acquired. It does not address the questions of
how and when that domain-specific knowledge is acquired.
For this, a processing account must include an account of
learning.

A concrete foundation for the current work is provided by
a simulated medical diagnosis task. In this task subjects are
required to diagnose a hypothetical patient. Subjects are pre-
sented with an initial symptom (e.g., the patient is vomiting)
and allowed to query the presence of certain other symptoms
before giving a diagnosis. Feedback is given on the final di-
agnosis allowing subjects to learn the task. Performance is
measured in terms of diagnostic accuracy (i.e., the percentage
of trials on which the diagnosis offered by a subject is the
disease used to generate the symptom pattern) and in terms
of the number and order of symptoms queried in coming to a
diagnosis. Learning is seen in both an increase in diagnostic
accuracy and a decrease in the number of symptoms queried
before a diagnosis is offered. The task, though considerably
simpler than real-world medical diagnosis, offers a number
of complexities not seen in many standard learning and rule
induction tasks (e.g., Wason's (1960) 2-4-6 task).

In the following section we summarise our previous empir-
ical and computational work using the above diagnosis task.
We then present empirical results on learning the task, fol-
lowed by a computational model of an idealised learner. The
idealised learner’s behaviour shares many qualitative features
with the subject data, providing strong support for both the
rule-based account of decision making and the symbolic ac-
count of learning. We conclude with a discussion of some
issues raised by the learning model and directions for future
research.
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Background

The diagnosis task used to carry the current work was first
introduced by Fox (1980) in an attempt to explore hypotheses
about the interaction of knowledge and memory processes in
decision making under uncertainty. The task is based loosely
on clinical diagnosis. On each trial the subject is presented
with one of five symptoms. This symptom is understood to be
the presenting symptom of a patient. The subject knows that
the patient is suffering from one of five diseases. After being
told about the presenting symptom, the subject can ask about
the presence or absence of any of the other symptoms, in any
order, and can offer a diagnosis at any point. The selection
of the presenting symptom, and the answers to any questions
asked, are determined by reference to a set of conditional
probabilities (cf. table 1).

In the experiment reported by Fox (1980), the subjects were
first-year medical students and the diseases were real medical
conditions. The conditional probabilities of symptoms given
diseases, however, were chosen for experimental convenience.
Subjects were able to learn the task surprisingly well, achiev-
ing a diagnostic accuracy of over 80% on the fourth block of
25 trials. (Chance performance on this task is 20% and perfect
accuracy is not reliably possible due to the inherently proba-
bilistic nature of the symptom/disease associations.) Subjects
achieved this accuracy by asking, on average, 2.12 (out of a
possible 4) questions. In addition, clear preferences for initial
question selection were found.

The primary aim of the study was to provide data with which
to compare a family of algebraic models of the subjects’ per-
formance with an information processing, knowledge-based
account. Within the information processing account, rules
are used to infer suspected diseases from presenting symp-
toms, and then to infer from suspected diseases what further
symptoms might be expected. The symptom to be queried
is determined from this set, according to either a discrim-
inating strategy (i.e., choose a symptom which one would
expect to be present given one suspected disease but absent
given another suspected disease) or a verifying strategy (i.e.,
focus on one disease and check that each of its typical symp-
toms are present). The order of recall of symptom/disease
associations (which is critical to the order of questioning
and hence the final diagnosis) was determined from a mem-
ory task which was interleaved with blocks of the diagnosis
task. Symptom/disease associations which were more quickly
confirmed/disconfirmed were assumed to be recalled before
symptom/disease associations which were less quickly con-
firmed.

Computer simulations of both the algebraic models and the
information processing model were performed. The algebraic
models provided a reasonable fit to the subject data, but the
fit between the information processing model and the sub-
ject data, on both diagnostic accuracy and patterns of initial
question selection, was found to be superior.

This work provides evidence for the sufficiency of quali-
tative reasoning in decision making under uncertainty. Al-
though probabilistic/frequentistic information is implicit in
the model via the availability of knowledge in memory, the
model differs from algebraic accounts in that it is purely de-
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terministic and it does not explicitly manipulate probabilities.

Despite the success of this work in modelling “expert” per-
formance on the diagnosis task, neither the empirical work nor
the modelling work address the issue of learning. From the
empirical side, the subjects, being medical students, were
clearly not learning the domain-knowledge from scratch.
From the modelling side, the computational tools available
when the work was originally performed lacked sufficient
power (o cnable additional progress.

Computational modelling tools and techniques have ad-
vanced considerably since the information processing model
of diagnosis was first developed, and Fox & Cooper (1997)
present a reconstruction of the model within the COGENT mod-
elling environment. COGENT is a tool designed for the devel-
opment of functionally modular models in the box and arrow
style (cf. Cooper & Fox, 1997). COGENT allows models to
be specified in terms of interacting processes and buffers, so
that, in the diagnosis model for example, working memory
can be modelled more clearly as a distinct information store
(see Fox & Cooper, 1997; Cooper, 1996; Cooper & Franks,
1996, for examples and further details).

Within the reconstruction, the features of memory retrieval
claimed to be critical by Fox (1980) (i.e., that more deter-
minate disease/symptom associations will be accessed before
less determinate disease/symptom associations) are captured
by buffer access functions provided by COGENT. Significantly,
manipulation of the retrieval functions supports the original
conclusion: the fit between model and subject performance
disappears with alternate retrieval assumptions.

Fox & Cooper (1997) present two further models based
on the COGENT reimplementation which demonstrate that as-
sumptions about the specific knowledge representation are
not critical. These models show that the same behaviour can
be obtained from a simple propositional rule system (as used
by Fox (1980)), a first-order diagnosis system, or a generic
decision procedure.

The first-order diagnosis system and generic decision pro-
cedure abstract the domain-specific knowledge of the diagno-
sis task from the rules employed in making specific decision.
An important residual issue remains, however. How do people
actually acquire domain-specific knowledge? Until an answer
can be given Lo this question, the first-order and generic mod-
els are caste into doubt.

A Learning Study

In order to investigate learning within the diagnosis task a
further previously unpublished study was performed by Fox
when the original model was developed. In contrast to the
original study, hypothetical diseases — deptinnitis, malengi-
tis, ritengitis, tepittitis and parontitis — were employed, thus
preventing any biases from subjects’ previous experience.
Two conditions were investigated. In the first condition the
relationship between diseases and symptoms was “‘sparse”, in
that relatively few symptoms were associated with each dis-
ease. In the second condition the relationship was “dense™™: on
average more symptoms were associated with each disease.
The matrices of the conditional probabilities for each condi-
tion are given in table 1. (Thus, from table la, it can be seen



Deptinnitis | Malengitis | Ritengitis | Tepittitis | Parontitis
Stiffness 1.00 1.00 0.00 0.00 0.00
Vomiting 0.00 000 0.50 1.00 0.00
Headache 1.00 0.25 1.00 0.00 0.25
Earache 0.00 0.00 0.50 0.00 1.00
Pyrexia 1.00 0.25 1.00 0.25 0.00

a) Probability of symptoms given a disease (sparse condition)

Deptinnitis | Malengitis | Ritengitis | Tepittitis | Parontitis
Stiffness 0.00 0.00 1.00 1.00 1.00
Vomiting 1.00 1.00 0.50 0.00 1.00
Headache 0.00 0.75 0.00 1.00 0.75
Earache 1.00 1.00 0.50 1.00 0.00
Pyrexia 0.00 0.75 0.00 0.75 1.00

b) Probability of symptoms given a disease (dense condition)

Table 1: The conditional probabilities of each symptom (given a disease) used to generate hypothetical cases.

that the probability of a “patient” having headache given that
the patient has malengitis is, in the sparse condition, 0.25.)
Note that the dense and sparse conditions are symmetrical in
that the conditional probability of a symptom given a disease
in one condition plus the corresponding conditional probabil-
ity in the other condition is always 1.00. The two conditions
are therefore logically equivalent: the probability of a patient
having disease D with symptoms V', W, and X, but not ¥
and 7 in the sparse condition is the same as the probability
of a patient having disease D without symptoms V', W, and
X, but with Y and Z in the dense condition. This manipula-
tion was performed in order to investigate the general finding
that people tend to focus on positive data. It was anticipated
that, despite the symmetry of the conditions, the manipulation
would affect the learning speed and accuracy.

The task consisted of three blocks each of twenty five trials,
On each trial, a disease was chosen at random (subject to the
constraint that each disease appear five times in each block).
Once a disease was selected for a particular trial, a present-
ing symptom was generated with reference to the conditional
probability matrix. The probability of a symptom being se-
lected as a presenting symptom for a disease was proportional
to probability of the symptom given the disease. Subjects
were then able to query the presence or absence of further
symptoms until offering a diagnosis.

Eight subjects took part in each condition. (16 subjects
in total.) Their diagnostic accuracy and mean number of
questions asked over each block were recorded. Summary
statistics are shown in table 2.

Looking first at the results of the sparse condition, it can be
seen that there is a substantial increase in diagnostic accuracy
between the first and second blocks, but no change between
the second and third blocks. The increase between blocks
1 and 2 is significant (Wilcoxon matched-pairs signed-rank
test, ' =4, n = 8, p < 0.05). In contrast, the number of
symptoms queried shows a continued decrease over all blocks.
The decrease between blocks | and 2 approaches significance
(Wilcoxon, T' = 6, n = 8, p =~ 0.055), while the decrease
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Block 1 Block 2 Block 3
Accuracy | 44% (16%) | 70% (28%) | 70% (16%)
Queries 3.18(0.40) | 248 (1.54) | 2.04 (0.86)
a) Subject Learning Data (sparse condition)
Block 1 Block 2 Block 3 |
Accuracy | 44% (20%) | 76% (28%) | 70% (20%)
Queries 3.66(0.72) | 3.36(0.60) | 2.82 (0.48)

b) Subject Learning Data (dense condition)

Table 2: Subject learning data in both conditions. Data is
given as median (interquartile range).

between blocks 2 and 3 is significant (Wilcoxon, T' = 3,
n=_8,p< 0.02).

Similar comments apply to the results from the dense con-
dition. Again diagnostic accuracy is significantly greater
on block 2 than on block 1 (Wilcoxon, T' = 0, n 7
p < 0.01), and the number of symptoms queried decreases
between blocks 1 and 2 and blocks 2 and 3 (though the de-
creases are not significant — more data would seem to be
required: Wilcoxon, T'= 3, n = 6, p < 0.08, and Wilcoxon,
T=1,n=4,p <0.10, respectively).

Interestingly, diagnostic accuracy is not affected by the
sparse/dense manipulation, but the number of symptoms
queried is, being significantly fewer in the sparse condi-
tion across corresponding blocks (Wilcoxon/Mann-Whitney:
Block I: w, = 36.5, ny = np, = 8, p < 0.001; Block 2:
we = 50.5, n; = ny = 8, p < 0.05; Block 3: w, = 48,
n =ny = 8, p <0.025)

A Model of Learning

The model of learning which we have developed builds addi-
tively on the existing COGENT model of “expert” performance
on the diagnosis task. It was developed in order to test both
the original model — Is it consistent with processes required



for learning? — and the COGENT modelling environment —
Does it provide sufficient additional modelling power, beyond
the tools available when the initial production system model
of the task was developed, to account for the learning data?

The Basic Model

Figure 1 shows the functional modules (as they appear in the
COGENT specification) of the diagnosis model with learning.
The diagrammatic representation of the model of expert per-
formance is the same except that it lacks Learning Mechanism
and its associated arrows.

Task

Environment

|

l

Decision

Waorking e —
Memory P—" Procedure
—:- Know fedge
Bare

Legend
A—= B = A sends/wnites to B

A— B = A reads from B

€D
(s

= buffer

= process

Figure 1: Box/Arrow diagram of the model with learning

The function of each of the boxes is as follows. Task Envi-
ronment (the detail of which is not shown) generates subject
data, presents it to the rest of the model, answers queries
concerning the presence/absence of symptoms, and records
all protocols. It is not part of the cognitive model but is
implemented within COGENT so as to automate the data pre-
sentation and analysis. Input/Output models the subject’s
perceptual/articulatory processes. Messages from Task Envi-
ronment trigger additions to Working Memory (e.g., adding
information about the presence of a symptom), and the ex-
istence of appropriate elements in Working Memory trigger
generation of articulatory output (e.g., a query about a symp-
tom). Working Memory is a passive data store in which in-
formation about the current case is stored and manipulated.
There is no decay of, or limit on, the information stored here.
Decision Procedure is a set of inference rules which modify
Working Memory, implementing the basic diagnostic strategy.
The rules are generic and first-order, but instantiated for the
particular task by the subject’s beliefs about symptoms and
diseases (which are stored in Knowledge Base). In the model
of “expert” performance, Knowledge Base is initialised with
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information of symptom/disease associations based on sub-
jects' responses to the interleaved memory task in the original
study (Fox, 1980), ordered according to response times, such
that symptom/disease associations which are more quickly
confirmed/disconfirmed are accessed before those which are
less quickly confirmed/disconfirmed.

Processing in the expert model is initiated when a presenting
symptom is received by Input/Output from Task Environment.
The corresponding information (e.g., told(vomiting,
present))is immediately added to Working Memory. This
triggers arule in Decision Procedure which augments Working
Memeory with the set of diseases which the presenting symp-
tom suggests (ordered according to accessibility in Knowledge
Store). The presence of suspected diseases in Working Mem-
ory prompts recall of their associated symptoms (through a
second Decision Procedure rule). At this stage of process-
ing Working Memory might contain the following elements
(where the left column shows the cycle number on which the
element appeared in the buffer):

pyrexia, present).
vomiting, present).
vomiting, present).

expected(tepittitis,
expected(tepittitis,
expected(ritengitis,
diseases (tepittitis, suspected).
diseases(ritengitis, suspected).
told(vomiting, present).

If at this (or any) stage, there exists a symptom which
is explicitly expected to be present given one disease but
absent given another, then a discrimination rule will trigger
aquery over that symptoms’ value (present/absent). This
is not the case in the situation shown above. Instead a more
general rule queries the first symptom (that has not previously
been queried) retrieved from the knowledge base, in this case
pyrexia. The prompt for Input/Output to ask the question
appears in Working Memory on cycle 6:

g K L

6: query(pyrexia, present).

Several cycles later the response to this query appears in Work-
ing Memory (via Input/Output):

9:
This counts against tepittitis, but, more importantly, the
subject has (incorrectly) inferred from previous experience
that the presence of vomiting and the absence of pyrexia
imply that the patient has ritengitis. This is thus the
diagnosis suggested:

told(pyrexia, absent).

10: diagnosis.is(ritengitis).

Adding Learning
One advantage of a first order model (over a purely proposi-
tional one) is that it separates task knowledge (of which sub-
Jjects start with none) from strategic knowledge. If we assume
that subjects’ strategic knowledge does not change throughout
the task (not in itself an unproblematic assumption), then the
improvement in subjects’ performance across blocks can be
attributed entirely to the accumulation/modification of task-
specific knowledge. The separation therefore makes clear
what the subject must learn during the task.

The first-order knowledge store contains information in
three forms:



suggests (Symptom, Disease): This is used to deter-
mine which diseases should be suspected given the presence
of a specific symptom. If Symptom is known to be present
then Disease will be suspected.

association(Disease, Symptom, Value): This is
used to determine which symptoms to expect when con-
sidering the possibility that the patient has a given disease.
value is either present or absent.

pattern(Disease, SymptomList): Thisisusedinac-
tually making a diagnosis. If Disease is suspected and
the symptom configuration specified in SymptomList is
known to hold then Disease will be offered as the diag-
nosis.

Learning Mechanism contains rules which specify how each
form of information is learnt.

Learning triggering symptoms The model uses two rules
to learn suggests clauses, both triggered by feedback on a
diagnosis appearing in Working Memory:

l. suggests clauses corresponding to symptoms known to

be present for the actual disease are added;
. suggests clauses corresponding to symptoms known to
be absent for the actual disease are deleted.

In order to force the model to initially consider all diseases, itis
initially assumed that all symptoms suggest all diseases. This
is reflected in the initial state of Knowledge Base. As learning
proceeds, many symptom/disease pairs are deleted from the
knowledge base, and the ones that remain are reordered such
that the most recently observed associations are retrieved first.
This reordering, which is performed automatically through
propertics specified on the COGENT buffer that implements
Knowledge Base, is consistent with the results of Fox (1980).

Learning expected symptoms When feedback on a diag-

nosis is received:

1. if the symptom is present a present association is
recorded;

2. ifthe symptomis absent an absent association is recorded;

. if the symptom is unknown then any existing association is
deleted.

These rules are naive in that they do not merge existing knowl-
edge with knowledge which may be inferred from the current
case. Logically, it might be more correct, for example, to infer
no association between a disease and a symptom only when
we have seen the disease both with and without the symptom.
However, it appears that such intelligent rules are not required
in order to simulate subject performance.

It is assumed initially that all diseases and symptoms are
positively associated. There is little motivation for this as-
sumption, except that some associations need to be present in
order for the model to function. An alternate approach would
be to include further special purpose rules. However, we be-
lieve that the assumption is not critical, as the above learning
rules ensure that it only has an effect on the first few trials.

Learning symptom configurations It is information about
disease/symptom configurations (i.e., pattern clauses) that
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has the largest effect on the model's performance (both in
terms of diagnostic accuracy and number of queries before a
diagnosis). Initially, there is no pattern information, and
diagnoses are based purely on a guessing strategy. On receiv-
ing feedback of the correct diagnosis, all known symptoms
are collected into a list which is merged with any existing
patterns for the disease. If no patterns are present, the list is
added as a possible symptom configuration for the disease.
Otherwise, if some other pattern exists for the disease, and
that pattern differs from the new pattern by just one symptom
(which is known to be present in one pattern and absent in
the other), then that symptom is removed from the existing
pattern, yielding a shorter, generalised, pattern. If the model
makes an incorrect diagnosis, and that diagnosis was based on
an existing pattern (i.e., it wasn’t a guess), then the incorrect
pattern is removed from Knowledge Base.

Results

As noted above, Task Environment simulated the generation
and presentation of stimuli and responses to the model, using
the same procedure as was used in the initial study. Us-
ing this, the model was run eight times for each condition
(sparse/dense). Each run consisted of 3 blocks of 25 trials (as
in the initial study) and on each block the mean number of
symptoms queried and diagnostic accuracy were recorded (as
in the initial study). Summary statistics are shown in table 3.

Block 1 Block 2 Block 3
Accuracy | 56% (0%) | 74% (12%) | 78% (8%)
Queries 292 (0.84) | 1.72(0.28) | 1.64(0.24)

a) Model Learning Data (sparse condition)

| Block 1 Block 2 Block 3
Accuracy | 68% (8%) | 96% (4%) | 96% (8%)
Queries 3.96 (0.08) | 3.88 (0.04) | 3.82(0.08)

b) Model Learning Data (dense condition)

Table 3: Model learning data in both conditions. Data is given
as median (interquartile range).

The data were analysed using the same non-parametric tests
as were used to analyse the subject data. In the sparse con-
dition, the increase in diagnostic accuracy between blocks 1
and 2 is significant (Wilcoxon matched-pairs signed-rank test,
T =1,n =6, p < 0.05), as is the decrease in symptoms
queried (Wilcoxon, T'= 0, n = 8, p < 0.005). This fits
with the subject data. However, unlike the subject data there
is no significant difference between diagnostic accuracy and
symptoms queried between blocks 2 and 3. In the dense con-
dition the pattern of significance follows exactly that of the
subject data. Diagnostic accuracy increases between blocks 1
and 2 (Wilcoxon, T = 0, n = 8, p < 0.005) but not between
blocks 2 and 3 (Wilcoxon, 7" = 105, n = 7, p > 0.05),
whereas symptoms queried decreases significantly across all
blocks (Blocks 1 and 2: Wilcoxon,T'=3,n =7, p < 0.05;
Blocks 2 and 3: Wilcoxon, T' = 4, n = 8, p < 0.05). Both
diagnostic accuracy and symptoms queried are significantly



less in the sparse condition than in the dense condition.

Discussion

Although the simulation data differs quantitatively from (he
subject data, the model exhibits a number of qualitative sim-
ilarities to the subjects. Firstly, both subjects and the model
are affected by the dense/sparse manipulation. Recall that the
there is no logical difference between the tasks. The diagnosis
model treats positively and negatively information differently,
however, and this has a very significant impact upon learning.

Data from the sparse condition closely reflect subject per-
formance, although the reduction in symptoms queried over
the second and third blocks was not significant. Learning
is, if anything, slightly too effective, with the model tending
to query fewer symptoms than the subjects. However, the
model’s fit with some subjects is impressive: subject 6, for
example, was 68% accurate in the final block, querying on
average 1.70 symptoms.

With regard to the dense condition, the number of symptoms
queried decreases across blocks, but not as sharply as in the
subject data, and diagnostic accuracy increases to ceiling by
the second block. By querying most symptoms the model
is able to perform almost perfectly. Closer inspection of the
subject data reveals that this pattern of performance did occur:
subject 4 was 92% accurate in the final block, querying on
average 3.24 symptoms.

There are many aspects of the model which raise further
questions. Alternatives exist for many of the learning rules,
for example. It remains to be seen how sensitive learning
is to modification of these rules. Could similar behaviour
result from different rules? If so, are there “critical” features
of the learning rules which lead to performance similar to
that of our subjects? There was considerable inter-subject
variability. Can individual differences be accounted for in
terms of different learning strategies?

In a first attempt to look at some of these issues we have
considered one variation on the pattern learning rule: this rule,
on receiving feedback, finds the largest subset of symptoms
shared between the current instance of the disease and any pre-
vious instance, and uses that as the basis for future diagnoses.
Although superficially sensible, this rule yields particularly
bad learning performance, with the model’s accuracy being
reduced to little more than chance, and with the number of
symptoms queried being reduced to near zero. Curiously, this
pattern of performance was also observed in several subjects.
Were such subjects adopting poor learning strategies, or were
motivational factors influencing their performance?

It may also be possible to account for more of the variance
in the subject data by the introduction of performance factors.
The model as it stands is a competence model. All buffers,
for example, are assumed to be perfect storage devices. In the
light of this fact it is not surprising that the model generally
does slightly better than subjects. (What is perhaps surprising
is how well some subjects are able to do the task.) How-
ever, a second line of current work is examining the effect of
decreasing the efficiency of learning (both by adding proba-
bilistic firing to the learning rules, such that not all rules fire
in all situations, and by adding decay to Knowledge Base).
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Although this appears promising in accounting for many of
the more average subjects, we are aware that such an approach
needs methodological care in order to avoid charges of data
fitting.

Conclusion

Our initial concern was with the development of cognitive,
rather than algebraic, models of decision making under un-
certainty. We have reported data on learning in a diagnosis
task and presented a model of learning in the domain (devel-
oped as an extension to an existing model of the task). The
resultant model is very encouraging, demonstrating many of
the learning effects seen in the subject data. The inclusion of
learning further supports the cognitive claims of the original
model, and strengthens our argument for the role of cognitive
models within the field of judgement and decision making. In
addition, the model provides a further demonsiration of the
power of the COGENT modelling environment, without which
the current work would have been vastly more difficult.
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