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ARTICLE

Toxicology knowledge graph for structural birth
defects
John Erol Evangelista1,6, Daniel J. B. Clarke 1,6, Zhuorui Xie 1, Giacomo B. Marino1, Vivian Utti1,

Sherry L. Jenkins 1, Taha Mohseni Ahooyi2, Cristian G. Bologa 3, Jeremy J. Yang3, Jessica L. Binder3,

Praveen Kumar 3, Christophe G. Lambert 3, Jeffrey S. Grethe 4, Eric Wenger2, Deanne Taylor2,

Tudor I. Oprea 3, Bernard de Bono5 & Avi Ma’ayan 1✉

Abstract

Background Birth defects are functional and structural abnormalities that impact about 1 in

33 births in the United States. They have been attributed to genetic and other factors such

as drugs, cosmetics, food, and environmental pollutants during pregnancy, but for most birth

defects there are no known causes.

Methods To further characterize associations between small molecule compounds and their

potential to induce specific birth abnormalities, we gathered knowledge from multiple sources

to construct a reproductive toxicity Knowledge Graph (ReproTox-KG) with a focus on

associations between birth defects, drugs, and genes. Specifically, we gathered data from

drug/birth-defect associations from co-mentions in published abstracts, gene/birth-defect

associations from genetic studies, drug- and preclinical-compound-induced gene expression

changes in cell lines, known drug targets, genetic burden scores for human genes, and

placental crossing scores for small molecules.

Results Using ReproTox-KG and semi-supervised learning (SSL), we scored >30,000 pre-

clinical small molecules for their potential to cross the placenta and induce birth defects, and

identified >500 birth-defect/gene/drug cliques that can be used to explain molecular

mechanisms for drug-induced birth defects. The ReproTox-KG can be accessed via a web-

based user interface available at https://maayanlab.cloud/reprotox-kg. This site enables

users to explore the associations between birth defects, approved and preclinical drugs, and

all human genes.

Conclusions ReproTox-KG provides a resource for exploring knowledge about the molecular

mechanisms of birth defects with the potential of predicting the likelihood of genes and

preclinical small molecules to induce birth defects.
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Plain language summary
While birth defects are common, for

most birth defects there are no

known causes. During pregnancy,

developing babies are exposed to

drugs, cosmetics, food, and environ-

mental pollutants that may cause

birth defects. However, exactly how

these environmental factors are

involved in producing birth defects is

difficult to discern. Also, birth defects

can be a consequence of the genes

inherited from the parents. We

combined general data about human

genes and drugs with specific data

previously implicating genes and

drugs in inducing birth defects to

create a knowledge graph repre-

sentation that connects genes, drugs,

and birth defects. This knowledge

graph can be used to explore new

links that may explain why birth

defects occur, particularly those that

result from a combination of inherited

and environmental influences.
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The United States Department of Labor’s Occupational
Safety and Health Administration1 defines reproductive
toxicity as a characteristic of substances or agents that may

affect the reproductive health of women or men or the ability of
couples to have healthy children. These hazards may cause pro-
blems such as infertility, miscarriage, and birth defects. The
prevention and clinical management of reproductive toxicity
caused by chemical agents2 requires the combined expertise from
several medical fields, including public health and occupational
health to protect against environmental/occupational toxins that
lead to miscarriage3, food and drug regulatory medicine to avoid
drug teratogenicity or toxins in food that impact fertility, as well
as clinical genetics, obstetrics, gynecology, and pediatrics to
screen, prevent, monitor, and manage birth defects. This multi-
disciplinary nature of reproductive health is challenging. For
instance, prescribing drugs in pregnancy remains a complex and
controversial issue for both pregnant persons and physicians4.
Prescriptions given to to pregnant persons of drugs known to
potentially cause birth defects based on evidence from animal
models, human studies, and based on post-marketing evidence is
a frequent event. A cohort study of over a million pregnant
persons found that 42% had at least one prescription for such
medications5. A key challenge to prescribing for the gravid
patient is that recommendations are based on limited human
pharmacological data and conflicting cases of adverse outcomes,
given that pregnant persons are routinely excluded from rando-
mized controlled trials6. Combinatorial complexity challenges
and data availability limitations are also key considerations in the
prediction of drug–drug interactions7,8 that may impact repro-
ductive health9,10. It is likely that some birth defects may be
caused by a combination of factors that may include interactions
between genetics, drugs, and viral or bacterial infections, making
it difficult to identify a specific cause. As a result, the causes of
birth defects, which in the US account for an estimated 3% of
births1 and 20% of infant deaths11,12, are still mostly poorly
understood.

In recent years, knowledge graphs have gained popularity as a
productive approach to integrate data from multiple sources to
organize information and glean new knowledge13. Knowledge
graph databases store information about the semantic relation-
ships between objects and represent events as triples: subject-
>predicate->object, for example, chicken->lays->eggs. Once these
assertions are combined, they form a network made of nodes and
edges and this establishes the knowledge graph. Once data from
multiple sources are organized in a knowledge graph, it can be
queried to extract subgraphs that can illuminate unexpected
associations between entities. Integrated data organized into
knowledge graphs can also be used as input into graph embed-
ding algorithms14,15 that aim to predict missing associations not
present in the original knowledge graph. Such an approach is
increasingly applied in the domain of drug discovery16. For
example, there are efforts that combine drug reaction knowledge
encoded in a knowledge graph with side effects information from
databases such as the FDA Adverse Event Reporting System
(FAERS) to predict adverse events17,18 or encoding pharmaco-
genomics data that connect drugs, variants, and adverse events to
explain variant-adverse event associations19. In many cases, these
types of efforts are derivatives of comprehensive projects that aim
to abstract biomedical knowledge-bases into triples or gene-
attribute associations, and make such integrated data available for
search and knowledge imputation20. There are currently several
options for knowledge graph databases, including Neo4J21,
Stardog22, ArangoDB23, Amazon Neptune24, and OrientDB25. In
this study, we endeavored to combine knowledge about birth
defects with knowledge about genes and drugs to identify
potential molecular mechanisms for known birth defects and

predict birth defects for preclinical drugs and other small mole-
cules. We ranked genes based on their association with patho-
genicity; predicted the likelihood of small molecules to cross the
placental barrier and induce birth defects using semi-supervised
learning; assembled knowledge about known drug targets for
marked drugs;26 and abstracted knowledge about the effects of
drugs and preclinical small molecules on gene expression27. All
these data are serialized into a knowledge graph representation,
stored in a Neo4j database, and provided for access via an original
user-friendly web-based user interface. By combining general
information about genes, drugs, and preclinical small molecules
with knowledge about the association of genes and drugs with
birth defects, we were able to predict the likelihood that pre-
clinical compounds will induce birth defects, and whether these
compounds are likely to cross the placental barrier. In addition,
by analyzing the knowledge graph topological structure, we were
able to pinpoint previously unknown associations between drugs
and genes based on the birth defects these drugs and genes are
known to induce.

Methods
Curating phenotypic terms relevant to birth defects. The
manual curation of birth defects terms started from a list of
observed birth-defect cases from the Gabriella Miller Kids First
Pediatric Research Program (Kids First) cohort. This list of real
birth defects and their frequencies is provided as supporting
materials (Supplementary Data 1) and is available for download
from the ReproTox-KG website at the following URL: https://s3.
amazonaws.com/maayan-kg/reprotox/HPO_Freq.tsv. The list of
observed birth defects had to be pruned to exclude phenotypes
that are not specific to birth defects, for example, glioma. Speci-
fically, we focused on abnormal morphologies of the great vessels,
heart, and central nervous system (CNS) phenotypes. Using the
EMBL-EBI Ontology Lookup Service (OLS) human phenotype
ontology (HPO) v2021-10-10 28 we mapped terms from the table
of observed cases to HPO identifiers. To this end we considered
the parent terms HP:0030962 (Abnormal morphology of the great
vessels), HP:0001627 (Abnormal heart morphology) and
HP:0012639 (Abnormal nervous system morphology) and
extracted all the child nodes. In all, 166, 193, and 177 phenotype
terms were retained for great vessels, heart, and CNS, respectively
(Supplemental Data 2). The phenotype terms identified as rele-
vant to the heart, large vessels, and CNS were filtered for terms
that were not immediately relevant for structural birth defects.
Specifically, clinical experts filtered for including phenotypes that
could only have developed in utero. So, for example, a term under
Conotruncal defect (HP:0001710) would qualify for our list, but
not terms related to Cardiomyopathy (HP:0001638), Palpitations
(HP:0001962) or Congestive Heart Failure (HP:0001635), even
though the latter three phenotypes might also be a secondary
consequence of a structural birth defect. In addition, 36 major
birth-defect terms were separately extracted from the Centers for
Disease Control and Prevention (CDC) website29 on January 6,
2022, and manually mapped to HPO identifiers (Supplemental
Data 3).

To enhance the consistent representation of the above
phenotypic terms, and to link these birth defects with knowledge
about the appropriate anatomical entities involved with these
pathologies, we manually curated the HPO terms onto an
anatomy connectivity knowledge graph. The schema adopted by
this graph is based on the ApiNATOMY knowledge
representation30,31, which was developed as part of the Stimulat-
ing Peripheral Activity to Relieve Conditions (SPARC)32

connectivity mapping effort. The ApiNATOMY subgraph within
the ReproTox-KG provides links to knowledge about constituent
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anatomical structures such as cell types that may be involved in
the birth-defect mechanisms, as well as representations of
abnormal anatomical organizations that typify these pathological
phenotypes.

Curating small molecules associated with birth defects.
Manually curated teratogens and xenobiotics with potential to
cause birth defects were extracted from various sources. We relied
on existing resources such as those listed by DrugCentral33 and
Drugs.com34 as FDA D and X category drugs, a report by the
National Birth Defects Prevention Study (NBDPS)35, a list pro-
vided by the National Birth Defects Registry35, as well as drugs
listed in several other publications36–40 (Supplementary Fig. S1
and Supplemental Data 4). In addition, we used DrugShot41

which is an automated way to obtain a ranked list of drugs for any
search term using PubMed. We also extracted birth-defect/drug
associations from the FAERS database via over-representation
analysis (Supplemental Data 5). DrugCentral33, an online drug
information resource, was queried for FDA D and X category
drugs and their associated Simplified Molecular Input Line Entry
System (SMILES) with absorption, distribution, metabolism,
excretion, and toxicity (ADMET) properties. FDA-approved
drugs classified as X or D are drugs with evidence of inducing
birth defects in humans and animal models. D category drugs are
those that, despite potential risks shown in human studies and
postmarketing, may be used in pregnant persons as the potential
benefits outweigh the risks, while category X drugs are those that
should not be used in pregnant persons because studies in ani-
mals or humans have shown fetal abnormalities, and these risks
outweigh any potential benefits42. In addition, using DrugShot41,
we queried each CDC birth-defect term through PubMed to
extract Pubmed Identifiers (PMIDs) associated with each birth-
defect term. Abstracts associated with these PMIDs were mined
to extract drug PubChem IDs based on co-mentions of the birth
defect with a drug. The DrugShot41 method first queries PubMed
with drug names to collect PMIDs for each drug. Then we query
PubMed with birth-defect terms and counted the overlapping
PMIDs between the queries. To normalize for research focus
biases, we also include the number of PMIDs returned for the
drug and birth defect that do not overlap. The 30 most frequently
co-occurring drugs for each birth defect were retained as the drug
sets for each birth defect. The cutoff of 30 drugs was set to rea-
sonably ensure that each drug that we retained for the birth defect
has multiple publication co-mentions that serve as evidence for
such associations. Only the CDC birth defects were used in this
part of the analysis. Finally, the list of teratogens from FAERS
birth-defect terms were mapped to drugs with a likelihood ratio
(LLR) cutoff of LLR > 2 * (likelihood ratio test) LLRT. The for-
mula assumes an over-representation of the presence of the birth-
defect term and the drug without considering other factors that
may induce the birth defect.

Evidence implicating genes with birth defects. Given the cura-
ted phenotype lists described above, human phenotype–gene
associations were retrieved from multiple sources, including
Pharos43, Online Mendelian Inheritance in Man (OMIM)44,
Orphanet45, ClinVar46, DISEASES47, DatabasE of genomiC var-
Iation and Phenotype in Humans using Ensembl Resources
(DECIPHER)48, the American Heart Association (AHA)49, and
Geneshot50. From OMIM and Orphanet human phenotype–gene
associations were obtained from the Jackson Laboratory HPO
database (hpo.jax.org, October 2021 release), providing curated
links between HPO terms and human genes28. The OMIM and
Orphanet-based HPO-term gene associations were retrieved for
the human abnormal morphology of the great vessels, heart, and

CNS phenotypes. Gene-birth-defect associations were also
obtained from ClinVar human genetic variants-phenotype sub-
mission summary dataset (v2021-11-03)46. This dataset was uti-
lized to extract relationships between human genes harboring a
pathogenic variant and their associated phenotypes given the
birth-defect phenotypes described above. Only genes with
pathogenic variants and variants affecting a single gene were
considered: That is, variants affecting multiple genes were
excluded, due to the complexities in interpreting the relationships
between their affected subset of genes and associated human
diseases. The ClinVar-based HPO-gene associations were com-
piled for the human abnormal morphology of the great vessels,
heart, and CNS phenotypes. Literature-based human
disease–gene associations were obtained from the DISEASES
portal47. This dataset contains disease–gene associations text-
mined from literature and genome-wide association studies. The
disease ontology identifier (DOID) and ICD-10 codes listed in
this database were converted to HPO terms using mappings
directly taken from the Monarch initiative’s Mondo disease
ontology51. DECIPHER48 provided this study with a curated list
of genes reported to be associated with developmental disorders,
processed by expert clinicians as a part of the Deciphering
Developmental Disorders (DDD) study52 to facilitate clinical
feedback of likely causal variants. The DECIPHER-based HPO-
gene associations were compiled for the human abnormal mor-
phology of the heart, and CNS phenotypes. We included a dataset
of human congenital heart disease-associated genes associated
with syndromic, non-syndromic, and ciliopathic cardiac disorders
that was published by the AHA as general guidance for genetic
testing by practitioners in 201849. Finally, using the Geneshot
API50, we queried each one of the 36 CDC birth-defect terms
through PubMed to extract PMIDs associated with each term.
These PMIDs were then converted into genes using the AutoRIF
option of the Geneshot application. The top 50 most frequently
occurring genes were retained as gene sets for each birth defect. A
file containing all gene-birth-defect associations in JSON format
can be retrieved from the ReproTox-KG download page.

Linking small molecule and drugs to their known targets.
Drugs and small molecules that have known targets were
extracted from the TCRD database26 and converted into KG
assertions. Only compounds with a defined structure were
included because other substances do not have PubChem53

chemical IDs. In addition, only human targets were included, and
only single gene/protein targets were included excluding some
multi-component ion channels and transporters. Properties such
as SMILES, binding affinity, original source, PubChem IDs, and
common names are provided for each drug. These drug-target
associations are available in JSON format from the ReproTox-KG
download page.

Linking small molecules to genes based on changes in gene
expression. The ReproTox-KG holds knowledge about most
FDA-approved drugs and over 30,000 preclinical small molecules
profiled by the LINCS program for their effects on the tran-
scriptome of selected human cell lines27. To extract a set of genes
that are up- or downregulated by each drug and small molecule
profiled by the L1000 assay for LINCS, we computed the mean of
the Characteristic Direction54 gene expression vector for each
drug in the LINCS L1000 chemical perturbation signature dataset
downloaded from SigCom LINCS55. We then retained the top 25
up- and downregulated genes for each drug. This allows us to take
the top genes affected by the small molecule perturbation without
overwhelming the database with differential gene expression
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associations. All drug–gene associations can be downloaded from
the ReproTox-KG download page.

Drug–drug similarity based on gene expression and chemical
structure. To enable drug–drug similarity search across the
ReproTox-KG, and to perform the semi-supervised machine
learning predictions, we developed two drug–drug similarity
matrices, one based on structure and one based on gene expres-
sion similarity. The drug–drug similarity matrix based on gene
expression vector similarity was computed by transforming the
consensus signatures described above using cosine similarity,
comparing all pairs of consensus drug gene expression vectors to
produce a square matrix where the value at (i,j) is the gene
expression-based cosine similarity between the drugs at row i and
column j. The matrices that contain the consensus signatures for
all drugs and small molecules, and the drug–drug similarity
matrix are available for download from SigCom LINCS55 and the
ReproTox-KG download page. To create drug–drug similarity
based on chemical structure similarity, we first converted the
SMILES strings of each compound to a binary feature vector
using the Morgan fingerprint (2048 bits) method56 with radius
implemented in RDKit57. We also used RDKit Chem module’s
QED and Crippen functions for physiochemical properties. Other
chemical structure similarity methods such as MACCS, Avalon,
Atom Pair, RDKit with maxPath 2 and 4, and Topological fin-
gerprints using FingerprintMol were tested, confirming that the
method chosen is justified as superior or comparable. Next, we
computed the inverse document frequency (IDF) between all
pairs of drug vectors as the distance measure between each pair of
drugs. The resultant matrix of drug–drug similarity based on
chemical structure is available from the ReproTox-KG download
page. Chemical structure-based similarity search was also
implemented using a workflow which queries the KG for com-
pounds and generates fingerprints and similarity measures at
runtime, for additional flexibility and interoperability.

Computing frequency of genetic variants. Gene intolerance
scores were introduced to the knowledge graph from three main
sources: haploinsufficiency, triplo-sensitivity, and general intol-
erance. Probability of being loss-of-function-intolerant (pLI)
scores58 for 18,225 human genes were obtained from a large-scale
study conducted by the Exome Aggregation Consortium
(ExAC)59. Residual Variant Intolerance Score (RVIS)60 values of
16,956 human genes were adopted from a large-scale analysis that
processed 6503 human whole exome sequences made available by
the NHLBI Exome Sequencing Project (ESP)61. The resulting
scores were then compared with information on whether the gene
causes any known Mendelian diseases. In this sense, genes with
higher functional mutation to total variant site ratios are con-
sidered more tolerant60. Dosage sensitivity scores62 such as
haploinsufficiency and triplosensitivity for 17,263 human genes
were presented by meta-analyzing 753,994 individuals with
neurological disease phenotypes62. The provided scores are uti-
lized in gene prioritization by their potential loss-of-function or
gain-of-function through the introduction of de novo rare copy-
number variants (rCNVs) as opposed to the point mutations.

Gene–gene similarity based on co-expression. Gene–gene
similarity associations were obtained from the human gene–gene
correlation matrix provided by the ARCHS4 resource63. The
matrix stores the Pearson correlation coefficient between genes
across bulk RNA-seq expression samples uniformly processed by
the ARCHS4 pipeline. Genes were filtered to include only
protein-coding genes to keep the size of the graph manageable,
and for each of the 17,966 genes, the top five most positively and

most negatively correlated genes based on the correlation coef-
ficients were extracted for a total of 170,819 edges. Each edge was
weighted by the correlation coefficient between the two connected
genes. These gene–gene associations were then integrated into the
ReproTox-KG. From these associations, it may be possible to
identify genes that are potentially affected by known teratogens
and discover the role that different groups of genes may play in
inducing birth-defect phenotypes.

Placental crossing and D and X category predictions for small
molecules. Using a semi-supervised learning approach, we gen-
erated placental crossing scores and D and X category scores for
all FDA-approved and preclinical compounds profiled by LINCS
that are included in the ReproTox-KG. To obtain true positives
for placental crossing, we first extracted the list of 248 compounds
assembled by Di Filippo et al.64. Category D and X drugs were
obtained from DrugCentral33 and Drugs.com34, and drugs were
filtered by those which could be mapped to the LINCS L1000
compounds through the LINCS small molecule metadata,
including drug names and synonyms. Out of the 248 placental
crossing drugs, we were able to manually map 143 to the L1000
profiled compounds. Drugs associated with both categories were
considered category X.

Predictions were made with the two drug–drug similarity
matrices assembled based on gene–gene co-expression correla-
tions, and chemical structure similarity as described above.
Predictions were made using the same approach described in a
publication describing DrugShot41. Specifically, we computed the
average distance of each drug to the drugs labeled as positives,
and then rank the drugs by this average distance. Importantly, the
diagonal is removed to prevent contribution to the average
distance from the drug to itself. This approach was used to score
all LINCS compounds. The placental crossing scores and the
category D and X scores for all drugs and small molecules in the
ReproTox-KG are displayed as node properties for drugs and are
depicted as the hue level of the drug nodes in the ReproTox-KG
user interface. In addition, the predictions are provided as a
supplementary table (Supplemental Data 6). To assess the
reliability of the similarity scores, a Kolmogorov–Smirnoff-like
random walk statistic was applied. Half of the drugs were held-
out when constructing the prediction scores for the compounds,
and the other half of held-out set of drugs was used to construct a
bridge plot and compute a normalized enrichment score (NES).
The NES is the enrichment score (ES) divided by the average ES
of 10,000 label permutations of those scores.

Two methods were developed to combine the predictions made
by the gene expression and chemical structure similarity
predictions. Given two scoring vectors produced by the two
different similarity matrices, the Top Rank method takes the
highest ranking of the drugs across all predictions to be the
aggregated score. This score is then used for the bridge plot and
normalized enrichment score. Alternatively, given two similarity
score vectors, one based on expression and one based on
structure, we aggregated these predictions by assigning a weight
to each score coming from the two sources: expression and
structure. These weights were optimized on a pre-task involving
logistic classification of drugs into different mechanisms of action
(MOA) using the same gene expression and chemical structure
similarity prediction approach. More specifically, a dot product
was performed between the two features and a weight matrix, the
result is passed through a sigmoid function and the binary cross
entropy loss is measured between the output and the true class
where 1 means that the drug has the MOA, and 0 means that
the drug does not. This is optimized for performance using the
Adam optimizer65 on 60 different MOAs, for which there are at
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least 10 drugs, with 10 repeats shuffled randomly; class gradient
contributions are weighted to counter the inherent class
imbalance. The learned weights are then applied for combining
the L1000 and structural features in the FDA drug categorization
and placenta crossing sets into a singular score. This score is then
used for the bridge plots and the normalized Enrichment Scores.
This analysis is performed independently for predicting FDA
drug categorization, and for the placenta crossing predictions.

UMAP visualization of L1000 perturbations. Uniform Manifold
Approximation and Projection (UMAP)66 was applied to the
normalized L1000 count matrix of over 718,055 chemical per-
turbations performed with different drugs across different cell
lines, time points, and concentrations. Perturbations with FDA
drug categories D and X and drugs known to cross the placenta
were colored by category. To identify the top MOAs in the L1000
perturbation space, we first clustered L1000 perturbations directly
using Hierarchical Density-based Spatial Clustering of Applica-
tions with Noise (HDBSCAN)67 with a minimum cluster size of
40 which struck a qualitative balance between the number of
clusters and concordance with apparent clusters of FDA category
D and X drugs in the UMAP. We then selected the top 25 clusters
with highest concentration of drugs for each drug category, finally
we identified the top 5 MOAs for drugs in those clusters. We
colored the L1000 UMAP with those top MOAs.

ReproTox-KG backend KG database. The ReproTox-KG uses a
graph-structured data model to integrate data. The KG is
implemented using Neo4J21. The information in the ReproTox-
KG represents a network of nodes representing birth defects,
genes, and drugs, and edges representing their relationships. In
addition, attributes/properties of the nodes and edges are pro-
vided. The ReproTox-KG is made up of datasets from the various
sources listed above and listed in two tables (Tables 1 and 2) and
illustrated in the associated schematic (Fig. 1). The ReproTox-KG
uses a standardized JSON schema serialization to ingest data into
the KG. Queries to the Neo4J platform are constructed using the
Cypher query language68.

Original graphical user interface to interact with the
ReproTox-KG. Since Neo4j currently does not provide an open-
source, free, and customizable standalone web-based user inter-
face (UI) to visualize the results from Cypher queries, we devel-
oped an original UI with these features for this project.
Leveraging the Cytoscape.JS library69, the UI renders Cypher
query results in JSON format for network visualization. The UI
provides the ability to perform queries for finding neighbors of
single entities, finding shortest paths between pairs of entities,
displaying the networks using various layouts, expanding, and
shrinking the size of the displayed subnetwork, viewing properties
of nodes and links, and downloading the displayed associations in
tabular format.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Overall construction and composition of the ReproTox-KG.
The ReproTox-KG contains semantic assertions that connect
birth defects, genes, and drugs. In addition, drug–drug and
gene–gene similarity assertions are included (Fig. 1 and Tables 1
and 2). Each entity in the ReproTox-KG has a set of attributes
and properties. Some of these attributes are unique to the project.
For example, we rank the likelihood of all included compounds T
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and drugs to cross the placental barrier and to cause birth defects
using a semi-supervised machine learning approach based on
similarity matrices that were previously produced and some
labeled data. In semi-supervised learning (SSL) most of the data is
unlabeled, but some of the data is labeled. The subset of labeledT
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Drugs/Small 
Molecules

Birth 
Defects

Genes/Proteins

RDKit

DECIPHER
CDC

ApiNATOMY

HPO

Fig. 1 Overview of the ReproTox-KG sources and connections. The
ReproTox-KG is made of lists of birth defects extracted from HPO and the
CDC and birth-defect gene associations from HPO and Geneshot; HPO is a
resource that provides an ontology of human phenotype and the human
genes that have evidence to be associated with such phenotype; The CDC
website has a dedicated site for listing major birth-defect terms. Using
Geneshot birth-defect terms were connected to genes based on co-
mentions in abstracts. The ReproTox-KG also has drug/birth-defect
associations from DrugCentral, DrugShot, and other sources; To associate
birth-defect terms with drugs, DrugShot was used to query birth-defect
terms and drug-birth-defect association were determined based on co-
mentions in abstracts. In addition, drug–gene associations were taken from
the LINCS L1000 data and from drug-target knowledge. The LINCS L1000
data contain drug perturbation followed by expression for ~30,000 drugs
and small molecules applied to ten human core cell lines at different
concentrations and where gene expression was measured at different time
points. Gene–gene associations are based on co-expression from ARCHS4;
ARCHS4 contains uniformly aligned RNA-seq data from GEO and the
gene–gene co-expression correlations were computed by randomly
selecting thousands of RNA-seq sample and computing correlation with the
Pearson’s correlation coefficient formula. Drug–drug associations within the
knowledge graph are based on structural chemical similarity using RDKit, a
software library that contains functions to compute the similarity between
compounds based on different representations and algorithms.

Fig. 2 Overlap of drugs across categories. Supervenn diagram of drug
identifier overlap between FDA categories D and X, known placenta
crossing drugs, and unique drugs and small molecules within the L1000
LINCS perturbation datasets. Drugs and compounds not represented in the
L1000 perturbations are not included in the counts.
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data consists of a list of 248 drugs that are known to cross the
placenta64, and lists of FDA-approved drugs classified in the X
(n= 60) and D categories (n= 112). We then manually mapped
these drug names to small molecules profiled by the LINCS L1000
assay using terms, synonyms, and IDs derived from PubChem53

resulting in 143 mapped placenta crossing drugs, as well as 60 X
and 112 D category drugs (Fig. 2). Next, we constructed two
drug–drug similarity matrices, one based on drug structural
similarity, and one based on gene expression induced signature
similarity. These matrices are used to perform semi-supervised
machine learning to prioritize all drugs for the likelihood to cross
the placenta or to be categorized as D and/or X. Before per-
forming such predictions with these two matrices, we projected
the category D and X drugs (Fig. 3a) and the known placental

crossing drugs (Fig. 3b) onto the LINCS L1000 gene expression
space of 718,055 gene expression signatures induced by >30,000
small molecules using UMAP66. We observe that these drugs fall
into distinct regions within the L1000 gene expression space. By
comparing the UMAP visualization of the known placental
crossing drugs and the category D and X drugs to the same layout
with highlighted known mechanisms of actions (Fig. 3c), we
observe that dense clusters of D and X drugs involve estrogen
disruptors and topoisomerase inhibitors. Other clusters colored
by their unique MOAs also have many placental crossing drugs
and the category D and X drugs within them. The observed
punctate distribution strongly suggests that we can make pre-
dictions about the likelihood of preclinical drugs to induce birth
defects and cross the placenta. The clinical relevance of these

Fig. 3 Global visualization of gene expression signature similarity for LINCS drugs. UMAP of 718,055 L1000 perturbations, colored by a FDA D and X
category; b known placental crossing; c top MOAs across clusters. Clusters computed using HDBSCAN with a minimum cluster size of 40, top 25 clusters
for each category, and top five MOAs of those clusters are included.
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predictions needs to be qualified by considering additional fac-
tors, such as the impact of influx (solute carrier) proteins, efflux
(e.g., ABC) transporters, as well as in situ metabolism mediated
by, e.g., cytochrome P450 enzymes.

Next, we apply the semi-supervised learning approach to rank
all mapped approved drugs and preclinical compounds to
estimate their likelihood to cross the placental barrier, and to
induce a birth defect. We use the category D or X drugs and the
drugs known to cross the placenta as the true positives. The
predictions are based on how close the other drugs are to these
drugs in feature space. Such feature space is defined based on
chemical similarity, gene expression similarity, or a combination
of them. During benchmarking, we hold out a third of the drugs
for testing. We observe that with the L1000 signature similarity

matrix alone we achieve an NES of 1.94 for predicting D and X
category membership and 3.48 for placental crossing (Fig. 4). The
predictions that are based on chemical structural similarity alone
achieve NES of 3.76 and 3.14 for D and X category membership
and for placental crossing, respectively (Fig. 4). Combining the
predictions made by the gene expression data together with the
chemical structure data with the Top Rank or Mean Rank
methods improves such predictions to 5.85 for D and X category
membership, and 5.44 for the placental crossing predictions.
Overall, these are high-quality predictions for a semi-supervised
approach. Importantly, these predictions perform well at the
leading edge (Fig. 4a, b). It should be noted that predictions made
with structural similarity only perform well when we define the
similarity between compounds using IDF instead of Tanimoto.

a

b

Fig. 4 Drug category and placental crossing prediction performance. Bridge plots colored by prediction method for (a) predicting FDA D and X
categories; and (b) placenta crossing. The NES are shown in the legend. Leading edges of the same bridge plots are shown on the right of each complete
bridge plot.
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This is likely because there is a bias with the Tanimoto method
which emphasizes similarity between complex larger compounds
that share common features. The predictions made by the semi-
supervised method highly rank compounds that are known as
ACE inhibitors, antibiotics, and statins (Tables 3 and 4). This is
not surprising because such compounds are already common
among known category X & D drugs70 and drugs that are known
to cross the placenta. For example, the top ranked drug by
structural similarity to be categorized as X and D is enalaprilat.
Enalaprilat, an ACE inhibitor, is the active metabolite of the oral
drug, enalapril. Both are used to treat high blood pressure71. They
are listed as category C for the first trimester and as category D
for the second and third. ACE inhibitors also cause fetal renal
failure resulting in oligohydramnios. These birth defects are
deformations caused by uterine pressure on the fetus in the
second and third trimesters. Overall, such predictions can be used
to warn about the potential of newly approved drugs to cross the
placenta and induce birth defects, but it should be noted that
these predictions cannot be taken as a substitute for experimental
confirmation.

In addition, for each gene included in the KG, we computed
likelihood for deleterious mutations using three established

methods: (pLI) scores58, RVIS60, and dosage sensitivity scores
[20]. Each entity in the ReproTox-KG also includes links out to
databases based on entity ID resolution. In particular, 694 birth
defects are mapped to HPO identifiers28, 18,233 genes and
proteins are mapped to HGNC IDs, and 5403 drugs are mapped
to their PubChem identifiers53. Lists of birth-defect terms were
extracted from HPO28 and the CDC website29. The 127,023
associations between birth-defect terms and genes were extracted
from OMIM44, Orphanet45, ClinVar46, DISEASES33,
DECIPHER48, American Heart Association (AHA)49 and
Geneshot50. The 13,561 assertions between birth defects and
drugs were extracted from DrugCentral50, and DrugShot41. Two
types of assertions connect genes and drugs within the ReproTox-
KG: 1) genes that are differentially expressed after drug treatment
based on transcriptomics, and 2) known drug targets for the
drugs. Overall, 225,509 drug–gene associations were extracted
from the LINCS L1000 data55, and 7326 drug-target assertions
were extracted from Pharos26. Similarly, 9546 drug–drug
similarity assertions are identified based on chemical similarity
and 33,608 based on gene expression signature similarity. Finally,
gene–gene similarity included in the KG is based on gene–gene
co-expression63.

Table 3 Top predicted X and D category drugs and preclinical compounds.

Drug D & X L1000 D & X structure Weighted Top rank D known X known

Enalaprilat 1 1 1 0 0
TAK-715 1 1 0 0
Pitavastatin 2 11 2 0 0
BRD-K08703257 2 2 0 0
Ramipril 3 2 3 1 0
Pentoxifylline 3 3 0 0
Trandolapril 3 6 4 1 0
Troglitazone 4 4 0 0
Perindopril 4 3 5 1 0
FTI-276 5 5 0 0
BRD-K76846644 5 5 6 0 0
Gossypetin 7 6 0 0
Pravastatin 6 4 7 0 1
Phenothiazine 9 7 0 0
Evodiamine 7 7 8 0 0
Lorazepam 10 8 1 0
BRD-K40167599 8 9 0 0
Losartan 11 9 1 0
Lovastatin 9 10 0 1
Zebularine 13 10 0 0
CTPB 10 15 11 0 0
Risperidone 11 0 0
VX-765 11 8 12 0 0
BMS-191011 12 0 0
Methiopril 12 10 13 0 0
EX-527 13 0 0
Canrenone 13 12 14 0 0
BRD-K55591206 14 0 0
BRD-K80672993 15 0 0
Oxytetracycline 14 15 0 0
BRD-K63784565 9 0 0
Zofenopril-calcium 13 0 0
BRD-K93367411 14 0 0
BRD-K08533345 14 0 0
BRD-K27194553 12 0 0
BRD-K27889081 8 0 0
BRD-K37848780 15 0 0
BRD-K76551930 6 0 0
Imidapril 15 0 0

The top-15 ranked compounds predicted using semi-supervised learning with L1000 gene expression similarity or chemical structure similarity, or two by two methods that combine the predictions from
the two sources, namely, weighted, and top rank, are listed together with whether these were previously known to belong to the X or D categories.
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The processed data from these resources was created by
customized extract, transform, and load (ETL) scripts and stored
as a JSON schema data model. This processed data was ingested
into a Neo4J database, and it is made available for download on
the ReproTox-KG website at: https://maayanlab.cloud/reprotox-
kg/downloads. The ETL scripts are open-source and available
from: https://github.com/nih-cfde/ReproToxTables/. To provide
access to the processed data in a user-friendly manner, we
developed an original graphical user interface (Fig. 5). The
example shown provides possible links that connect valproic acid
and Spina Bifida, a known association72. The interface can be
accessed from https://maayanlab.cloud/reprotox-kg.

Extraction of birth-defect gene-small molecule cliques to
explain potential MOAs. To demonstrate the utility of the
ReproTox-KG to illuminate knowledge, we queried the graph to
identify all three-node cliques. That is, we extracted from the
ReproTox-KG all instances where a birth defect was connected to a
gene and a drug that are also connected. In total, 533 such cliques
are identified (Supplemental Data 7). From this collection of cliques,
there are cliques for six drugs and small molecules that were not
previously listed as crossing the placenta and have a placental
scoring rank of less than 3000 (out of 30,000) (Fig. 6). This sub-
network demonstrates how the ReproTox-KG can be used to sug-
gest MOA for how these drugs may induce specific birth defects by

affecting the gene expression of genes known to be associated with
the birth defect. For example, LINCS L1000 transcriptomics data
show that the approved drug methotrexate, a chemotherapeutic and
immunosuppressive drug, inhibits the expression of the mitotic
checkpoint serine/threonine-protein kinase BUB1. BUB1 is known
to cause microcephaly when mutated73, and methotrexate is known
to cause microcephaly and atrial defects74. Hence, this adverse effect
of methotrexate can be attributed to its direct influence on the
expression levels of BUB1. It should be noted that BUB1 is a critical
component of the cell cycle pathway75. Hence, it is likely that
methotrexate interferes with a specific stage of development that
requires cell proliferation via indirect downregulation of BUB1.
Similarly, the experimental drug LY-294002 which is a morpholine-
containing chemical compound that is a strong inhibitor of PI3K,
was previously shown to influence cell proliferation of epithelial
cells isolated from human fetal palatal shelves (hFPECs)76. Besides
inhibiting the activity of PI3K, LY-294002 increases the expression
of DUSP6, a dual specificity phosphatase that dephosphorylates
members of the PI3K pathway. There is evidence that PI3K phos-
phorylates DUSP6, and this phosphorylation induces DUSP6
degradation77. Such observation is consistent with the ReproTox
cliques’ subgraph.

The approved antidepressant drug sertraline is reported to induce
cardiac and vascular birth defects based on analysis of FAERS78.
The ReproTox-KG subnetwork of cliques suggests that such adverse
birth defects could be mediated via the activation of the

Table 4 Top predicted placental crossing drugs and preclinical compounds.

Drug L1000 Structure Weighted Top rank Known

Nafcillin 1 1 1 0
FTI-276 1 1 0
Piperacillin 2 4 2 0
Gossypetin 2 2 0
Cefotaxime 3 3 3 0
TAK-715 3 3 0
Ciclacillin 4 2 4 0
BRD-K08703257 4 4 0
7-aminocephalosporanic-acid 5 6 5 0
Temozolomide 5 5 0
Penicillin 6 5 6 0
CGS-21680 6 6 0
Ceforanide 7 9 7 0
Y-27632 7 7 0
Lorazepam 8 8 1
BRD-K43966364 8 8 9 0
Benzathine 8 9 0
Estradiol-cypionate 9 10 0
BRD-K50776152 10 11 0
Isoetharine 9 11 0
Enalaprilat 10 12 12 0
Rolipram 11 12 0
BRD-A66025870 11 13 0
PT-630 12 13 0
EMF-csc-9 13 14 0
Practolol 12 14 0
Cephalothin 13 15 15 1
DL-TBOA 14 15 0
Pravastatin 14 7 0
Cefoperazone 10 1
Orciprenaline 11 0
Ampicillin 13 1
Dicloxacillin 14 0
BRD-K55591206 15 0
Micropenin 15 0

The top-15 ranked compounds predicted using semi-supervised learning with L1000 gene expression similarity or chemical structure similarity, or two by two methods that combine the predictions from
the two sources, namely, weighted, and top rank, are listed together with whether these were previously known to cross the placenta.
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dehydrocholesterol reductase DHCR7 and DHCR2479. These two
enzymes are critical components of the cholesterol biosynthesis
pathway. Mutations in DHCR7 are known to cause
Smith–Lemli–Opitz syndrome, a disease of multiple congenital
abnormalities80, while mutations in DHCR24 can cause
desmosterolosis81. Hence, it is plausible that sertraline mediates
induction of cardiac and vascular birth defects via up-regulatory
effects on DHCR7 and DHCR24. Unlike methotrexate, sertraline is
currently not contraindicated in pregnancy and it is classified as a
category C drug. Taken together, ReproTox-KG evidence suggests
that pregnancy should be listed as a contraindication for sertraline.
Overall, these are just a few examples of how the ReproTox-KG can
illuminate knowledge about potential mechanisms of how drugs
and preclinical small molecules may induce birth defects.

Discussion
Currently, in the clinical genomic diagnostic research setting,
methods for prioritizing variants and genes for association with
birth defects are done by utilizing databases such as ClinVar82,
ClinGen83, as well as gene lists related to birth defects from other
annotated resources. In contrast, the ReproTox knowledge graph
links evidence about associations between chemicals, phenotypes,
and genes. This data integration effort offers hypotheses about
drugs and compounds that potentially could be involved in the
induction of birth defects. There are many cases where there
are no causative genetic variants that have been attributed to birth
defects. It is possible that exposure to certain teratogens could

either alone or via interaction with gene variants potentially cause
birth-defect phenotypes. Such interactions may be illuminated by
the ReproTox knowledge graph. In addition, the ReproTox
knowledge graph has the potential to make an impact on the field
of regulatory toxicology by identifying teratogenic potential for
preclinical compounds, including their potential MOA to induce
such birth defects. Currently, agencies such as the FDA and EPA
are faced with the pressures of an increase in applications and
a greater demand for making decisions without animal testing.

To characterize associations between small molecule com-
pounds and their potential to induce reproductive toxicity, we
gathered knowledge from multiple sources to construct a repro-
ductive toxicity knowledge graph with an initial focus on asso-
ciations between birth defects, drugs, and genes. The idea of
abstracting genes, drugs, and diseases into networks is not new.
We and others have pioneered the construction of networks to
represent functional and physical associations between genes/
proteins84–86, drugs and their targets87,88, and diseases based on
their gene set similarity89. The unique feature of the ReproTox-
KG is that it provides a flexible framework not only to connect
entities such as gene-drug, gene–gene, gene-birth defect,
drug–drug, and drug-birth defects, but also to query this network,
extend it, visualize it, and add attributes to different node types.

Similar efforts to ReproTx-KG have recently been published,
including studies that attempted to use graph embedding Deep
Learning algorithms to predict missing associations between
drugs and diseases90, drug repurposing opportunities91,92, pre-
dicting drug targets93,94, adverse events95, and drug–drug

Fig. 5 Screenshot from the ReproTox-KG user interface. A query to identify connections between the birth defect Spina Bifida and the drug valproic acid
with a limit of 25 nodes is provided as an example.
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interactions96. These are just a few studies in this domain. Here,
we did not attempt to make such graph-based predictions but
provided the needed building blocks to enable such future
applications. Hence, the ReproTox-KG was developed as a
resource for the community to explore and expand.

One of the limitations of knowledge graphs is their inability to
cover many associations between many entities. For example, we
decided to only consider the top 25 up and downregulated genes
for each drug. This leaves out many genes that may be affected by
drugs. These genes will be missed from queries and post-hoc
analyses. We also created consensus signatures for each drug
from the LINCS L1000 data. Computing such consensus masks
the effect of drugs in specific cellular contexts. To make the
ReproTox-KG project focused and manageable, we kept its scope
limited. However, tissue and cell type distribution of the affected
genes, and how drugs and small molecules induce such differ-
ential effects, are critical information for associating genes and
drugs with birth defects. Such information is partially available
and could be included in future releases of ReproTox-KG. The
L1000 transcriptomics dataset is not a mainstream assay, but the
data produced by this assay provides a glimpse to the effect of
many drugs and preclinical small molecules on human cells.
Before such data became available, it was mostly unknown
whether drugs that are labeled with the same known MOAs, or
having the same targets, will induce similar gene expression
patterns when applied to human cell lines. Our observation, that
in general, we can see that gene expression signature clusters by
the same known MOAs is profound. Another excellent resource
for gene expression during development is DESCARTES, a
human cell atlas for fetal tissues97. Such a dataset should be
considered in future studies because it provides gene expression
across tissues at different stages of development. Understanding

the time window of the expression of a gene in a specific tissue
during development is critical for better elucidating the molecular
mechanisms of many birth defects. It also should be noted that
the ReproTox-KG is preliminary and should not be used for
clinical applications and clinical decision support.

Data availability
All files needed to reconstruct the knowledge graph with instructions are available from
https://maayanlab.cloud/reprotox-kg/downloads. All additional processed data files used
for the analysis are available from https://maayanlab.cloud/reprotox-kg/downloads.
Initial versions of those files, scripts used to process the data, and links to the original
sources are available from https://github.com/nih-cfde/ReproToxTables. The interactive
web interface to access the knowledge graph is available at https://maayanlab.cloud/
reprotox-kg. All the data used in the study is processed from other primary sources. All
other data are available from the corresponding author on request.

Code availability
The scripts used to process the data are available from https://github.com/nih-cfde/
ReproToxTables. Code needed to reconstruct the knowledge graph locally is available from
https://maayanlab.cloud/reprotox-kg/downloads. Code needed to recreate the figures can be
found at https://github.com/MaayanLab/ReproToxPaper. An alternative method to
compute chemical similarity: https://github.com/unmtransinfo/CFChemDb. Snapshot of the
code and processed datasets are available from https://doi.org/10.5281/zenodo.804926198.
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