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ABSTRACT OF THE THESIS 

 

Human electrocortical dynamics of unrestricted upright gait  

and spatial navigation in a square spiral track 

 

by 

 

Jason Daniel Trees 

 

Master of Science in Biology 

University of California, San Diego, 2015 

Professor Terrence Sejnowski, Chair 

 

 The study of human locomotion and spatial navigation in a naturalistic 

paradigm is vastly understudied.  It has recently been shown that electrocortical 

activity is coupled to steady-speed human gait.  Previous work has also shown a 

relation between delta/theta-band (2-8 Hz) activity over parietal cortex and a subject’s 

spatial location.  Our aim was to determine if the same electrocortical findings in 

steady-speed walking were present in unrestricted, self-initiated ambulation, and if 



 
 

xi 
 

similar spatial context related neural signals could be found in a different spatial task.  

We simultaneously recorded electroencephalography (EEG) and full body motion of 

twelve young healthy subjects walking at two self-directed speeds, slow and brisk, 

through a 4x4m square spiral track.  The EEG data were filtered and cleaned using 

semi-automated means and infomax Independent Component Analysis (ICA), 

allowing for removal of muscular, ocular, and other artifactual signals.  Gait 

normalized Event Related Spectral Perturbations (ERSP) were obtained, showing 

significant cyclical intra-stride changes in power of the delta/theta-band (3-8 Hz) in 

the ‘slow’ speed condition, and alpha/beta-band (9-25 Hz) in the ‘brisk’ condition 

only.  Significant delta/theta-band decreases in power were also observed near the 

center point of the swing phase of each leg in the ‘brisk’ condition.  Additionally, the 

data from parietal electrodes were filtered from 2-8 Hz, the analytic amplitudes were 

calculated and co-localized to the subject’s position in space.  Analysis of these data 

over each segment of the spiral showed significant activity in the same relative spatial 

location across segments.  Further examination using these techniques could lead to a 

better understanding of diseases with motor and spatial navigation deficits, like 

Parkinson’s and Alzheimer’s disease.   
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INTRODUCTION 

 

The study of neuroscience is one of the fastest growing fields, with widespread 

impact on many areas such as medicine, biology, computer science, and 

engineering.  Understanding how our brains work allows us to better understand how 

we interact with our bodies, environment, and other people.  Though it would be more 

straightforward to do all of this research directly on humans, ethical, legal, and 

logistical restrictions limit the type and methods of research that can be done on 

humans.  Given these restrictions, many turn to animal models with the ultimate goal 

of bringing understanding to processes, like spatial navigation (Wills et al., 2013; 

Buzsaki and Moser, 2013; Aronov and Tank, 2014; geva-Sagiv et al., 2015), memory 

(Leutgeb and Mizumori, 1999; Buzsaki and Moser, 2013; Vorhees and Williams, 

2014), and motor control (Petersen, 2014) that are shared with humans in an effort to 

better understand our own brains.  In order to do direct research on humans, these 

common roadblocks in neural research must be overcome.  One of the largest hurdles 

is how to get access to data from the brain in a non-invasive way.  The two primary 

non-invasive methods to obtain neural data are functional Magnetic Resonance 

Imaging (fMRI) and electroencephalography (EEG).  fMRI measures the blood-

oxygen-level dependent (BOLD) signal, an analogue for the change in metabolic 

activity of region specific neurons, whereas EEG records the direct electrical field 

produced by neural activity.  The advantage of fMRI is a high spatial resolution in 

recordings, but the tradeoff is the temporal accuracy as a result (Recording frequency: 

~ 0.5Hz).  EEG has the opposite advantage, trading low spatial resolution for high 
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temporal resolution (Recording frequency: ~1000Hz).  In addition to the restrictions of 

the data produced, fMRI constrains the subjects to be completely prone within the 

scanner and maintain an absolutely stationary head.  EEG, on the other hand, provides 

less physical constraints and can be portable, allowing subjects to physically move 

freely through an environment while data are recorded.   

 Due to the inherent restrictions and limitations of recording human subjects, 

there is a startling lack of empirical human neuroscience studies on topics that are 

relatively “well studied.”  One of these areas is the neural correlates of unrestricted 

walking and gait.  Most gait literature is traditionally neurobehavioral or biophysical 

(Cimolin and Galli, 2014; Hsu et al., 2014).  In addition, many gait related studies 

eschew the basic understanding and jump straight to disease related abnormalities in 

gait, such as Parkinson’s disease (Delva et al., 2014).  While these are valid topics of 

research, a more basic understanding of the neural correlates of gait in a naturalistic 

environment should be addressed. 

 There have been attempts at understanding the brain and gait in humans, but 

are restricted to steady-speed treadmill walking or gait-assisted leg movements.  These 

studies ultimately fail to create a naturalistic environment and paradigm that mirrors 

the way in which humans ambulate on a day to day basis.  Seeber and colleagues 

(2014) demonstrated that there is beta (18-30 Hz) frequency suppression over 

sensorimotor areas during upright walking when compared to simple upright 

standing.  In addition, during the actual walking times, they saw low gamma (24-40 

Hz) frequency had periods of suppression and activation that coincided cyclically with 

the gait cycle.  One key feature to note is that this experiment was conducted on 
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young, healthy adults in a robotic gait orthosis (Lokomat, Hocoma, Switzerland), used 

mainly for physical rehabilitation.  In addition, the robot was operated at 100% 

guidance force.  This essentially forced the subjects’ legs into a gait-like movement 

pattern, while not actually having the subjects ambulate.  While the sensorimotor 

feedback in this situation might be somewhat similar to actual walking, there is no 

initiation or control of movement on the subjects’ part, simply an entrainment to the 

rhythm of the robot orthosis’s movement.   

 Similarly, Gwin et al. (2010) aimed to elucidate the spectral properties of EEG 

tied to the gait cycle.  In this case, Gwin and colleagues had subjects walk at a steady 

speed on a treadmill while recording the neural electrical activity from EEG.  Through 

source localization of ICA cleaned EEG data, they found sources with significant 

changes in spectral power in the anterior cingulate, posterior parietal, and 

sensorimotor cortex areas.  Their findings included alpha- and beta-band power 

increases in both sensorimotor cortices and the frontally located, anterior cingulate 

area.  In addition, they showed evidence of lateralization of signal between the 

sensorimotor cortices, with a more pronounced increase in power for the contralateral 

limb “push-off” event.  These results were obtained from subjects moving their own 

legs at a steady speed on a treadmill.  This represents a significant step towards 

studying natural human ambulation, but the underlying task remains to align the gate 

with an external reference, the treadmill in this case.  On a treadmill, the gate related 

characteristics of motion are altered by the lack of natural gate speed modulation and 

subjects not actually propelling themselves.   
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 Taking a further step back from an upright walking paradigm and to increase 

the quality of EEG signal by restricting what is seen as auxiliary motor activity, 

experiments were conducted to limit the subjects to sitting still and moving only 

discrete limbs or none all (Heideman et al., 2014).  Electrocortical signals show 

modulation of specific frequency bands to movement of the lower limbs after 

entraining to experimental cues.  Like the previous experiments mentioned, beta-band 

power changes in response to a regular stimulus and movement.  The rhythmicity of 

the effect has been implicated in motor movements such as human gait.  Analysis of 

gait even extends into the analysis of humans observing others walking, eschewing 

any embodied motor movement recording.  Like the experiments before, the authors 

show significant spectral power changes in the EEG, though this is in response to 

observing gait in different orientations (normal, upside-down).  The findings do not 

attempt to demonstrate the neural signals of actually walking, but show a significant 

neural involvement in at least the perception of walking. 

Spatial navigation is another area that is well studied in animals (Wills et al., 

2013; Buzsaki and Moser, 2013; Aronov and Tank, 2014), but severely understudied 

in humans.  Spatial navigation is the process by which an animal receives input from 

its environment, processes the information, and then behaviorally navigates the 

physical space in response to that specific information.   

In order to function effectively in complex environments, mammals have 

developed unique brain structures and neural circuits to process external spatial 

information, such as the hippocampus (HC) and entorhinal cortex (EC) of the medial 

temporal lobe (Bush et al., 2014; Cabro et al., 2014), along with the parietal cortex 
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(Nitz, 2012; Svoboda et al., 2015).  It has been extensively shown in rats that the HC 

and EC, along with surrounding regions, are active and necessary for such animals to 

conduct a spatial navigation task (Derdikman and Moser, 2010; Wills et al., 2013; 

Buzsaki and Moser, 2013; Aronov and Tank, 2014; geva-Sagiv et al., 2015)).  To a 

lesser degree, this has also been shown in non-human primates (Etienne et al., 2014; 

Furuya et al., 2014), other non-human mammals (Geva-Sagiv et al., 2015), and 

humans (Lithfous et al., 2013; Watrous et al., 2013).  

 The vast majority of data available on spatial navigation comes from 

experiments conducted on rats (Rattus norvegicus).  Though rats and humans are 

different species, the overall neural architecture, circuitry, and biochemistry of their 

brains are similar.  The advantage of conducting experiments on rats is that you can 

obtain single unit recordings, from surgically implanted electrodes innervating the 

brain region of interest that can be processed to show an individual neuron’s action 

potential firing profile. There are two main systems, located primarily in the 

hippocampus (HC) and entorhinal cortex (EC) of the MTL, that have been found to be 

involved in the processing of the spatial environment.  The first neuronal type tied to 

spatial location of the rat was the so-called “place cell” (O’keefe, 1976).  Neurons 

recorded from the Cornu Ammonis 1 (CA1) region of the HC showed increased 

activity when the animal traversed a specific location in its environment while freely 

exploring.  The “place” at which these individual neurons fire is locked to the external 

environment, and a single neuron can have differential activation in different 

environments (Muller and Kubie, 1987).  The firing pattern of these cells provided the 
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first neural basis for the perception of allocentric location, which is the perception of 

where one is, within an environment with an external reference frame.   

 Another major spatially relevant neuronal type was recently discovered and 

named “grid cells,” because they responded in a tessellated triangle grid-like pattern, 

with a single neuron spiking at the intersection points of every triangle in the 

grid.  The Moser group (Edvard Moser and May-Britt Moser) found these fascinating 

neurons in the EC (Hafting et al., 2005).  Each of the cells can fire in different grid-

phase (the offset of the nodes in respect to an external x and y axes), orientation (the 

angle nodes successive nodes follow when compared to the external axes), and size 

(relative size of each node compared to the external environment).  All of this results 

in the population of grid cells fully covering a given environment.  From these cells, 

the start of a two-dimensional representation of the environment emerges.  It has been 

recently theorized that the summation of grid cell activity that overlaps at any given 

spot, can lead to the formation of a corresponding place cell (Fyhn et al. 2007).  A 

unique feature of both place and grid cells is that the rat has to be actively moving and 

navigating the environment to illicit activity (Richard et al., 2013).  The brain takes 

multimodal sensory input to create an accurate representation of the external 

environment.  In order for the most accurate “spatial maps” to be created, self-motion 

signals, including vestibular (balance and acceleration), proprioceptive (position of 

limbs in space relative to the rest of the body), and visual streams, among others, are 

essential (Terrazas et al. 2005; McNaughton et al., 2006).   

 While the hippocampus and related structures have been the primary regions 

implicated in spatial processing and navigation, other cortical areas, like the parietal 
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cortex, have been shown to have a function in spatial processing (Anderson, 1995).  In 

addition, individual cells in the rat parietal cortices respond to spatial features in the 

environment, similar to those found in the HC (Nitz, 2006; Nitz 2012).  Another type 

of cell, labeled “route cells”, respond to specific features of a spatial route in a scalable 

manner, irrespective of spatial location and direction (Nitz 2012).  It is known that 

there are extensive connections between the HC and parietal cortex, and as such, it is 

reasonable to conclude some processing and communication of mutual information 

(Clower et al., 2001).  Cortical processing of spatial information, specifically in 

parietal regions within rat models leads to the possibility of similar processing in those 

regions in larger mammals, like humans.  

 To help understand the details of spatial navigation in humans in realistic 

environments, an area where little is known, the Poizner lab has pioneered the study of 

freely moving human subjects in spatial navigation and memory experiments using 

EEG.  An EEG signal is a time series, and as such, can be broken down into its 

component frequencies.  It is common practice within the field to use standardized 

frequency ranges for time series and spectral power analysis.  Within the high 

delta/theta frequency band (2-8Hz), recorded from midline parietal electrodes, the 

EEG signal not only has a relation of power to speed similar to findings in rats, but 

also contains information for spatial maps (Snider et al., 2013).  Theta-band activity in 

rat hippocampus and entorhinal cortex has been shown to be important for processing 

of place and grid cell activity, and communication of that activity to other brain 

regions (Burgess and O’Keefe, 2011).  In addition, quantification of these maps has 

shown a positive correlation of strength between spatial maps of parietal theta activity 
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with unsupervised learning of objects within an environment (Snider et al., 2013).   In 

a separate experiment, initial results show a modulation of low frequency (2-5 Hz) 

power over central parietal electrodes locked to traversal of segments of a square 

spiral, regardless of segment length, orientation, or subject direction (Trees et al., 

2013).  These results indicate large involvement of cortical regions in gait and spatial 

navigation and warrant further study. 

There is no previously published experiment, which we are aware of, in which 

human subjects are able to freely move about physical space while recording full body 

position and scalp EEG.  To address this gap in understanding, we designed an 

experiment in which subjects walk through a 4x4 meter square spiral track while 

recording EEG and full body motion capture simultaneously.  Subjects were instructed 

to walk at ‘slow’ and ‘brisk’ speeds in two separate conditions.  From the limited 

published literature on gait related EEG, most notably from steady speed treadmill 

walking, we hypothesize that spectral characteristics of the EEG will show cyclical 

changes in power associated with the normalized gait cycle.  Specifically, intra-stride 

changes of power in the alpha-/beta-bands (~9-25 Hz) mainly happening within the 

swing phase of each leg, along with changes in theta-band (4-8 Hz) power, should 

decrease during the swing and increase during the stance phases where both legs are in 

contact with the floor.  In addition, from the gait orthosis assisted lower leg movement 

study, high beta/ low gamma-band (25-40 Hz) power also has been shown to change 

cyclically with the gait cycle.  As far as spatial related analysis of freely moving 

humans in a physical environment, to our knowledge there is only the previous work 

done within our own lab.  From that work, we hypothesize that we will see EEG signal 
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from parietal electrodes being associated in some way with the subjects’ navigation 

and location.  Additionally, preliminary results show a low frequency (2-5 Hz) 

modulation of the analytic amplitude from the midline parietal electrode (Pz) being 

locked to the traversal of each spatial segment of the spiral (Trees et al., 2013).  As 

such, we aim to see if similar frequency specific activity occurs across each of the 

spatial segments of the spiral. 
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 MATERIALS AND METHODS 

 

Subjects 

Twelve right-handed human subjects participated in the study.  The average 

subject age was 24.8 +/- 4.4 (mean +/- standard deviation) years.  Seven of the 

subjects were male and five were female.  They all had normal or corrected to normal 

vision (with contacts), and no history of neurological or psychological disorders.  All 

metal was removed from each subject’s face and head area.  Written, informed consent 

was obtained from all subjects, and the experiments were approved by the University 

of California, San Diego Institutional Review Board. 

 

Experimental Setup 

 A straight-edged square spiral pattern, with an outermost edge length of four 

meters, was taped out on the lab space floor (Figure 1a)  The edges of each turn 

became progressively smaller by 0.5 meters (the width of the track) as it spiraled 

inwards.  Subjects wore a full body motion-tracking suit with thirty infrared markers 

placed as described below (PhaseSpace Inc.).  In addition, they were required to wear 

a backpack to carry the EEG amplifier and battery.  A thin flexible fiber optic cable 

connected the amplifier, up through the roof, to the recording computer, allowing for 

maximum freedom of movement.  The experiment itself was programmed using the 

Vizard 4.0 virtual environment software (WorldViz, Inc.).  64 channel, high-density 

EEG (Biosemi ActiveTwo, Biosemi Inc.) data were recorded during the entire 

experiment.  Simultaneously, kinematic data from the motion tracking suit were 
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recorded.  Data streams were synchronized to a timing pulse after the experiment for 

analysis (Snider et al., 2013).   

 

Walking Task 

Subjects were instructed to walk in between the taped out spiral boundaries, 

starting at the outermost segment.  They were tasked with walking in towards the 

center of the spiral, and once reaching the center, turning around and walking back 

out.  Reaching the start of the spiral, they again turned around and headed back 

towards the center, repeating this for a total time of ten minutes (Figure 1A).  The 

experiment was broken up into two speed conditions, “slow” and “brisk”.  During the 

“slow” condition, each subject was instructed to walk at a “slow, leisurely pace, like 

you are not in a hurry to get anywhere.”  In the “brisk” condition, they were instructed 

to walk at a “quicker, brisk pace, like you are late to class, but not to run or jog.”  Each 

subject walked at their own self-directed speed for each condition.  No threshold 

physical speed was enforced, though subjects were monitored to make sure they were 

complying with the instructions.  The speed condition was counterbalanced across the 

subject population.   

 

Data Collection 

Motion capture  

 Kinematic data were recorded using the Phasespace (Inc.) Impulse X2 motion 

capture system.  Twenty-four optoelectronic cameras were arrayed around the lab to 

give full coverage of the square spiral space.  Thirty active infrared light emitting 

diodes (IRLEDs) were placed around the subject’s suit to capture the full body 
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kinematics during the experiment.  Each leg had three markers placed on the foot, one 

on the knee, and one on the front hip.  Each arm had three markers placed on the hand, 

one on the elbow, and one on the shoulder.  Markers were placed at the center of the 

chest and stomach, the center of the back between the scapulae, and one each to the 

left and right of the lower back.  Lastly, five markers were placed on the head in a 

diamond orientation, with one of the points centered on the forehead.  The IRLEDs 

were driven by the motion capture system’s controller, connecting wirelessly with the 

accompanying server.  The data were recorded at 120 Hz.  The motion capture system 

was previously shown to have an accuracy of about 1mm throughout the room (Snider 

et al., 2013) 

 

EEG data 

 Electrocortical data were recorded using a Biosemi high-density EEG electrode 

array with 64 scalp electrodes and 8 external electromyogram (EMG) 

electrodes.  Each electrode was individually preamplified at the recording site before 

the signal was sent to the EEG amplifier.  Four of the EMG electrodes were used as 

electrooculogram (EOG) channels, placed above and below the right eye, as well as 

lateral to the right and left eye.  Another two of the external electrodes were placed on 

the back of the left and right neck, at the height of the 7th cervical vertebra.  These 

electrodes were used to monitor the activity of the neck muscles, particularly the 

trapezius.  The last two EMG electrodes were placed behind the ears on the mastoid 

bones.  These were used as the reference for the scalp electrodes.  Electrode locations 
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were digitized in 3D space with the Fastrak system (Polhemus Inc.) in combination 

with the Locator software suite (SourceSignalImaging Inc.). 

 

Data Processing and Analysis 

Gait - Kinematics 

 The raw motion capture data from the toe and heel markers of each foot was 

used to extract gait related events.  Using Python 2.7 (www.python.org), we developed 

a program to manualy assign the location of the gait events into the motion capture 

data framework.  The vertical displacements for the toe and heel markers were 

displayed in individual plots.  Using manual visual inspection, the lift events and 

contact events for each of the markers were recorded by selecting the appropriate point 

from the kinematic marker trace.  The foot kinematics were rather regular and proved 

to be easily distinguished by eye (Figure 2).  A three-dimensional recreation of all the 

foot markers that scrolled with the data was used to confirm the appropriate kinematic 

behavior with each event. 

 

Gait - EEG 

 Signal processing of the EEG for the gait based analysis was done mainly 

using the EEGLAB toolbox (Delorme and Makeig, 2004) for Matlab (MathWorks 

Inc.).  The data were baselined to the average of the two mastoid electrodes, high pass 

filtered above 1 Hz, and low pass filtered below 55 Hz.  The relevant gait events were 

read into the EEG data structure.  The data were then epoched from the start of each 

gait cycle to the size of the maximum gait cycle per subject.  Epochs containing 

artifacts were rejected based on the automated algorithms built in to EEGLAB and 
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through manual visual inspection.  Independent component analysis (ICA) was 

conducted on the resulting epochs (Bell and Sejnowski, 1996).  Independent 

components (ICs) containing ocular, muscular, and other artifactual signals were 

removed.  An average of 8.7 +/- 3.8 (mean +/- standard deviation) ICs were kept per 

each subject.  The data were re-epoched to the same starting event but with an 

additional 1000 ms before and after the original epoch dimensions to allow for event 

related spectral analysis in the low frequency range (3+ Hz).  The remaining ICs were 

used to backproject the “cleaned” data to the original electrode space.  The final 

electrode signals were averaged to twelve anatomically relevant clusters for condensed 

analysis.  Those are left frontal (AF3, F1, F3, F5), midline frontal (AFz, Fz), right 

frontal (AF4, F2, F4, F6), left sensorimotor (FC1, FC3, FC5, C1, C3, C5), midline 

sensorimotor (FCz, Cz), right sensorimotor (FC2, FC4, FC6, C2, C4, C6), left parietal 

(CP1, CP3, CP5, P1, P3, P5), midline parietal (CPz, Pz), right parietal (CP2, CP4, 

CP6, P2, P4, P6), left occipital (PO3, PO7, O1), midline occipital (POz, Oz), and right 

occipital (PO4, PO8, O2).   

 The resulting data clusters were used in event related spectral analysis.  The 

power for each log scale frequency step was calculated from 3 to 45 Hz.  These data 

were then time warped to a normalized gait cycle using the EEGLAB ERSP 

algorithm’s built in time warp function.  The gait events used to normalize were the 

lift of the left toe (LOFF, 0%), contact of the left heel (LON, 40%), lift of the right toe 

(ROFF, 50%), contact of the right heel (RON, 90%), and lift of the left toe again 

(LOFF, 100%) (Figure 2).   
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Spatial - Kinematics 

Subjects’ two-dimensional position in space was calculated using the 

projection of the primary head marker (front, center of head) down into the plane of 

the spiral (floor).  The paths were further broken down into spatial segments by 

manual visual inspection of the path, marking where on the trajectory the point of the 

turn happened.  This was necessary due to the unrestricted nature and therefore 

variability of the subjects’ movement and path.  In addition, an ID was assigned to 

each spatial segment, ID 1 being the longest, outermost segment, ID 2 the next longest 

at a 90 degree orientation to the first, and so on towards the center.  The two 

dimensional trajectory was projected to a standardized straight line between the turn 

points allowing for the path to be normalized to a unit length.  There are a total of 14 

segments to the spiral, but due to the short length of the inner segments, the analysis 

was limited to only the longest 10 segments (ID 1-10). 

 

Spatial - EEG 

 A custom preprocessing procedure, developed by our lab, was used to prepare 

the EEG data for space related analysis.  Similar to the gait analysis, the data were first 

referenced to the average of the mastoid channels, high pass filtered at 1 Hz, and low 

pass filtered at 55 Hz.  Events were created at every 1 second, continuously for the 

moving stretches (speed > 0.1 m/s).  The data were then epoched from -500 ms to 500 

ms around each walking event.  This produced one-second epochs that were 

continuous in time.  The data were then run through the same procedures of semi-

automated and manual visual inspection of epochs for artifacts.  ICA was run on the 
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resulting epochs and all artifactual ICs were removed from the data set.  An average of 

7.8 +/- 3.9 (mean +/- standard deviation) ICs were kept per each subject.  The ICA 

weights were then applied on the continuous, non-epoched data, producing temporally 

continuous, clean data.  The data were then subsequently filtered with a Kaiser 

window (www.scipy.org, width = 0.1/Nyquist, Nyquist = 512Hz, and ripple = 10dB) 

over multiple frequency ranges (1-4; 2-5Hz; 2-8Hz; 9-12Hz; 10-15Hz; 15-25Hz; 20-

35Hz; 35-50Hz).  A Hilbert transform was then applied to each frequency band, 

resulting in the instantaneous analytic amplitude, an analogue of power, as well as the 

phase.   
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RESULTS 

Behavioral 

 Subjects each walked through the square spiral track at two different self-

directed speeds.  Each condition lasted for a total of ten minutes irrespective of 

individual variations in speed or path.  Subjects were not forced to walk at a specific 

speed nor given feedback as to a target speed, and as such, there was variability in 

individual subjects’ speeds.  Figure 1b shows a sample subject’s path with the 

instantaneous speed overlaid (colormap) for the ‘slow’ speed condition.  Table 1 lists 

the speed and gait cycle values for all of the subjects.  The first and third data columns 

detail the average speed and standard deviation of the distribution of speed values for 

each ten minute ‘slow’ and ‘brisk’ condition blocks, respectively.  The mean of the 

individual average condition speeds were 0.65 +/- 0.15 m/s and 0.99 +/- 0.10 m/s for 

the ‘slow’ and ‘brisk’ speed, respectively.  Paired t-test between the two conditions 

shows that the speed increased during the brisk condition, 0.3 +/- 0.1 (mean +/- 95% 

confidence) (t(11)=7.68, p=1e-5).  Gait events were determined through visual 

inspection of the motion capture markers located on the feet of subjects.  For 

subsequent gait event EEG analysis ‘good’ gait cycles were established in which all 5 

necessary events were present and in correct order (LOFF, LON, ROFF, RON, LOFF; 

Figure 2A).  These ‘good’ gait cycles were then tested for EEG artifacts, and any gait 

event that was determined to contain artifactual EEG was also removed.  The resulting 

number of gait events used for the final EEG analysis is presented in table 1.  Columns 

two and four contain the total amount of gait cycles that went into each individual 
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subject’s analysis for the ‘slow’ and ‘brisk’ conditions, respectively.  On the group 

scale, in the ‘slow’ speed condition, subjects had an average of 151 +/- 29 ‘good’ gait 

cycles, and in the ‘brisk’ condition, subjects had an average 153 +/- 36 gait cycles.  

Paired t-test between number of good gate cycles shows no difference between the 

conditions (t(11) = -0.276, p=0.78). 

Gait ERSP 

The EEG, after being cleaned through statistical, manual, and ICA methods 

were back projected to the original electrode space.  The data were then clustered into 

anatomically relevant groupings.  Event related spectral perturbations (ERSP) were 

calculated locked to the onset of the gait cycle, then normalized to each of the gait 

events.   

Figure 3 details the gait event related spectral characteristics of each subject 

(n=11; 1 subject was removed due to insufficient number of ICs) in both speed 

conditions and from the midline sensorimotor electrode cluster.  The first column 

(Figure 3A) shows the unmasked, gait normalized ERSP for each subject in the ‘slow’ 

walking condition, baselined to the average power in each frequency range.  The 

frequency ranges are plotted on a log scale.  Positive power is indicated by the warmer 

colors and decreases in power by cooler colors.  The power values range from -1.2 to 

1.2 dB.  From these plots we can begin to see structure in the activity.  Most notably, 

we see changes in power that show up in a consistent manner with the progression the 

gait cycle.  For example, Subject 5 (S5) shows cyclical changes in power in the low 

frequency range (3-5 Hz), initially decreasing in power for roughly the first 25% of the 

gait cycle, followed by an increase in power during the next 25% of the gait cycle.  
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This pattern of decrease then increase in power then repeats for the second half of the 

gait cycle.  This results in a full two cycles of increase and decrease in power over the 

entire gait cycle.  Similar patterns can be readily seen in some of the other subject’s 

ERSPs (Figure 3A: S4, S5, S7, S8, and S10).  Though there is clear consistency in 

some features, the overall ERSPs are considerably variable across subjects, as one 

would expect from an experiment that allows subjects to have the amount of freedom 

of action as this study does.  Figure 3B details the decomposition of each subject’s 

ERSP into single traces that are the average power over specific frequency ranges 

locked to the gait cycle (delta: 3-5 Hz, blue; theta: 5-8 Hz, red; alpha: 8-12 Hz, green; 

beta: 12-25 Hz, black).  From the same subjects that showed cyclic activity in their 

ERSP, we can see the same pattern of activity in the single frequency band traces.  

Figure 3B, S5 delta (blue line) frequency demonstrates the full two cycles of 

consistent decreases then increases in power locked to the normalized gait cycle.   

The third column (Figure 3C) details the same gait normalized ERSPs as in 

section A of the same figure but for the ‘brisk’ speed condition, baselined to the 

average power in each frequency band.  The first observation is that there is a large 

amount of variability between conditions within the same subject.  Most notably, 

within the ‘brisk’ condition there is a lack of the same cyclical activity in the delta 

frequency band.  There are a couple of subjects that do show consistent low frequency 

cyclic activity (Figure 3C: S6 and S7) but the activity is both different from the 

features in the ‘slow’ condition and substantially different from each other within the 

same condition.  Subjects’ ERSPs in the ‘brisk’ speed condition do show consistent 

cyclic activity in the beta-band (12-25 Hz), and to a lesser degree, alpha-band (8-12 
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Hz) frequency range.  Figure 3D, the mean activity in different frequency bands for 

the ‘brisk’ condition, shows this activity clearly.  The beta traces (black) show the two 

cycle pattern of decreased then increased power over each half of the gait cycle in 

multiple subjects (Figure 3D: S2, S6, S8, S10).   

 Figure 4 depicts the average ERSPs for the ‘slow’ speed condition over the 

whole scalp, broken up into anatomically relevant clusters arranged parallel to the 

physical scalp layout.  The bottom left figure depicts a top down view of the EEG 

electrode arrangements on the scalp.  The highlighted electrodes are the ones used to 

average into clusters and the specific clusters are circled.  The individual subject 

ERSP data were averaged across all the subjects (n=11) and plotted.  The error across 

subjects was also calculated.  From that, each point was determined to either be 

significant or not (95% confidence interval; p<0.05).  Any values below that threshold 

were masked out to a value of 0 (green).  The remaining significant points were 

plotted with their real power values, ranging from -0.5 to 0.5 dB for blue to red, 

respectively.  The first main feature is the presence of statistically significant cyclical 

changes in power in the low frequency range (delta: 3-5 Hz).  One complete cycle of 

decreased and increased power occurs during each half of the gait cycle, resulting in 

two full cycles for the length of the entire gait cycle.  This observation is in the same 

manner as what was seen in individual subject (Figure 3A).  Notably, the cyclic 

change in low frequency power only occurs significantly in the midline anterior 

clusters (midline sensorimotor and midline frontal, specifically).  In addition, there is a 

large decrease in power that occurs at the right foot lift event (50% gait cycle).  The 

effect is relatively widespread across electrode clusters, but is not uniform.  It can be 
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seen that the strength and size of the decrease in power is larger in right hemisphere 

clusters, ipsilateral to the limb initiating movement, when compared to left hemisphere 

clusters, contralateral to limb movement.   

For the ‘brisk’ speed condition the same average gait normalized ERSPs were 

calculated for each electrode cluster (Figure 5).  The point by point variance across all 

subjects’ ERSPs was calculated in the same way as in Figure 4.  Additionally, all 

points below a 95% percent confidence rating (p<0.05) were again masked out in 

green (0 dB).  The remaining data represents the average power across subjects of the 

particular frequency.  Like the average ERSPs from the ‘slow’ speed condition, the 

more anterior clusters show statistically significance, but with cyclical changes in 

alpha- (8-12 Hz) and beta-band (12-25 Hz) power locked to the normalized gait cycle.  

Unlike the ‘slow’ speed condition, the effect is seen more widespread across 

hemispheres, specifically, the three frontal and three sensorimotor clusters as opposed 

to being localized to the midline.  While the same two cycles of cyclic activity in the 

low frequencies is not seen during the ‘brisk’ condition, there is consistent significant 

decrease in power in the delta-/theta- band (3-8 Hz) during roughly the center of the 

swing phase of each leg.  The decrease in power for the left leg swing phase (0-40% 

gait cycle) is much larger, more sustained, and over a wider frequency band than the 

corresponding activity in the right leg swing phase (50-90% gait cycle).   

The power of specific frequency bands were separated for the midline frontal, 

left sensorimotor, right sensorimotor, and midline parietal clusters in the ‘brisk’ 

condition (Figure 6).  The beta-band, and to a lesser degree, the alpha band show 

activity that strongly coincides with the normalized gait cycle.  Having regions of 
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increased power and decreased power at the same intra-stride points of both legs. The 

other frequency bands do not show such a clean relation between power and percent 

along gait cycle.    

  

Space 

In addition to gait based analysis, each subjects’ EEG were analyzed in 

reference to spatial location and navigation.  The data were processed in a similar way 

as the gait analysis, though data from all the times in which a subject was walking 

(speed > 0.1 m/s) were used as opposed to just around the gait events.  The data were 

cleaned with manual visual inspection and ICA decomposition.  The resulting clean 

EEG data were back projected to the original electrode space.  These data were then 

band pass filtered at relevant frequency bands (1-4, 2-5, 2-8, 9-13, 10-15, 15-25, 20-

35, and 35-50 Hz).  The analytic amplitude was calculated using the Hilbert transform 

on the band pass filtered data.  This serves as an analogue to instantaneous power in 

the frequency band of interest.  The analytic amplitudes were clustered into the same 

twelve regions as in the gait analysis, and then co-localized with each subject’s path 

through the square spiral as calculated from their primary head marker.   

The subjects’ paths were then broken up into spatial segments (each straight 

side) of the square spiral.  The path along the each segment was calculated by 

projecting the real location down to a linear normalized path from start to finish of 

each segment.  These values were then divided by the real length producing a value 

for the progression along a normalized segment length (from 0 to 1).  From previous 

work in our lab, activity in the high delta/theta band (2-8 Hz) recorded over midline 
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parietal cortex has shown to be related to spatial navigation (Snider et al., 2013).  

Figure 7 shows the analysis of the subjects’ 2-8 Hz filtered analytic amplitude from 

the midline parietal cluster, plotted in reference to the normalized spatial segments.  

The first panel (Figure 7A) details the average amplitude of all the subjects (n=12) laid 

over the progression of each normalized spatial segment (10 segments total).  The 

values are baselined to the mean of each segment.  Red color represents a positive 

deviation from the mean activity and blue represents a decrease in activity.  The color 

scale ranges from -1.4 to 1.4 microvolts.  As can be seen, there are regions of 

increased amplitude consistently at specific locations along the normalized segment 

length across individual segments.  Most notably, there is consistently increased EEG 

amplitude at roughly the 0.1-0.2 segment length location in multiple spatial segments 

(1, 2, 5, 6, 7, and 9).   

Figure 7B presents the amplitude values averaged across all ten segments 

analyzed in Figure 7A.  This plot demonstrates the activity that is consistent across all 

ten spatial segments.  The dark blue line is the mean activity and the two light blue 

lines are the range indicating one standard deviation of the values across segments 

from the mean.  Because this is relative power we can see points along the normalized 

segment that deviate substantially from the mean activity of the population (mean = 

0).  Such regions of activity are highlighted in gray.  The most notable feature is the 

increase in amplitude at the same segment location noted above, roughly 0.1 to 0.2.  

The midline parietal electrode cluster signal appears to be increasing in amplitude 

within the 2-8 Hz range across all ten spiral segments at the same relative location.  
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This does not indicate a signal that is localizing with absolute space, but rather is a 

consistent signal at a specific relative spatial location.   

 Like the previous figure (Figure 7), Figure 8 shows the same analysis of 2-8 

Hz filtered analytic amplitude of the midline parietal cluster in reference to the 

normalized spatial segments but from the ‘slow’ speed condition.  The top panel 

(Figure 8A) shows definite structure across arms: consistent positivity near the 

beginning of many of the segments (1, 2, 3, 4, 8, and 10) and additional slight 

positivity at the end of almost all the segments.   Figure 8B, shows the average of all 

the top panel’s segments, giving a good representation of the overall analytic 

amplitude changes over the course of the normalized segment.  The mean is indicated 

by the bold blue line and the standard deviation range is indicated by the two light 

blue lines.  From these values, the regions highlighted in gray appear to be more 

positive than the mean activity across the segment.  There is a region of increased 

activity at around the 0 to 0.1 segment length and at the end, 0.9 to 1.0 segment length.  

The most notable difference when compared to the ‘brisk’ speed condition results is 

the presence of another large area of increased activity at the end of the segments.  

Both conditions have a region of positive activity toward the start of the normalized 

segment.   
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DISCUSSION 

 

   To the best of our knowledge, this is the first experiment conducted on freely 

locomoting humans looking at gait cycle related cortical activity, and the first follow-

up to previous work in our lab addressing the EEG of physical spatial navigation of 

humans.  We aimed to address these topics by creating a paradigm in which EEG and 

full body motion capture were recorded while subjects simultaneously walk through 

open space in a square spiral track at two different speeds. 

Gait events were obtained from inspection of the motion capture data from the 

markers located on each foot.  Artifact rejected and ICA cleaned EEG data were co-

localized to the gait events.  The data were further clustered into anatomically relevant 

regions.  Event related spectral perturbations (ERSP) were calculated and normalized 

to the gait events.  From previously published treadmill walking experiments (Gwin et 

al., 2011) we hypothesized we would see spectral characteristics of EEG show cyclical 

changes in power in the alpha and beta bands (9-14 Hz and 14-25 Hz, respectively) 

coinciding with the swing phase of each leg, and theta-band (4-8 Hz) power 

decreasing during the swing phase of each leg and increasing during the stance phase, 

in which both feet were on the ground. Our results show that in the ‘slow’ speed 

condition, significant cyclical changes in low frequency (3-5Hz) power was observed 

in coordination with the normalized gait cycle.  These findings were localized to the 

frontal and sensorimotor clusters along the midline.  However, the decrease and 

increase of power both occurred within the swing phase, having no significant activity 



26 

 

 
 

during the dual stance phase.  In addition, in the ‘brisk’ condition we see cyclical 

changes in power in the alpha (8-12Hz) and beta (12-25Hz) frequency bands 

coinciding mostly with the swing phases of each leg.  Also, low frequency (3-8 Hz) 

decreases in power were seen during the swing phase, but no significance was seen 

during the stance phase.  There were no significant findings in the low gamma (25-40 

Hz) range in contrast with findings from robot orthosis assisted gait (Seeber et al., 

2014).  While some of the details are different these findings are similar enough to the 

existing literature that they serve as support for specific EEG characteristics that are 

present during human gait.   

The alpha and beta band findings could be explained by motor control 

requirements involved in locomotion.  It has been shown that alpha and beta power 

decrease in response to lower limb motor control (Wieser et al. 2010, Heidemann et al. 

2014).  The motor movements involved in gait are not discrete but rather continuous 

and cyclical.  As such, a signal indexing cortical control of the lower limb muscles 

would presumably also be cyclical.  In the case of our results, there is decreasing 

power in alpha/beta range to the initial leg push off and movement, then an increase in 

power during the sustained swing phase, followed by alpha/beta power decreases at 

the other leg’s push off.  This cyclic modulation of power in the alpha/beta frequency 

bands then repeats.  Decrease in beta power over sensorimotor areas has been shown 

to correlate with the initiation of new actions (Meirovitch et al., 2015; Nakayashiki et 

al., 2014).  In addition, increase in beta has been attributed to maintaining the current 

motor state (Solis-Escalante et al., 2012; Sallard et al., 2014).  During natural gait, one 

would expect a decrease in beta around the push off/initiation of the swing phase of 



27 

 

 
 

one leg’s movement.  Following this, an increase in beta while the swing was 

maintained would coincide appropriately with the fact that cortex need not exhibit as 

much top down control, relying more on the leg’s biomechanical properties.  The lack 

of significant cyclical beta power in the ‘slow’ condition could be explained by the 

difference in biomechanical requirements to walk at such a slow pace (0.65 m/s).  In 

addition, changes in beta power before and during reaching movements are different 

for different peak speeds, enough to reasonably classify the movements from EEG 

alone (Yang et al. 2015).  Presumably, the same modulation in cortical involvement 

applies to the lower limb control involved in slow speed gait. 

Though Gwin and colleagues (2011) mentioned they found no significant 

differences in the spectral characteristics of EEG for their two speeds, 0.8 m/s and 1.2 

m/s, it has been shown variable speed in treadmill walking does have an effect on 

scalp EEG (Bulea et al., 2015).  Our results indicate a substantial difference in the 

frequency characteristics of EEG between the two conditions.  During the ‘slow’ and 

‘brisk’ condition, subjects walked at an average speed of 0.65 m/s and 0.99 m/s, 

respectively.  In addition, our experiment, by design forces subjects to modulate their 

speed and gait in response to the spiral track.  As such, the difference in event related 

spectral results may be due to the variability in gait and speed parameters within our 

experiment.  An experiment that could be used to test whether variability in walking 

mechanics alone would cause the difference, would be to design an paradigm in which 

subjects walk on a linear track at multiple speeds and for different lengths.  

 These findings serve as an initial exploration into the topic of complex motor 

control of humans in naturalistic paradigms and environments.  Further implications of 
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this research could be to objectively analyze the electrocortical effects certain diseases 

have on brain dynamics of motor control, such as Parkinson’s disease.  

 In animal models, it has been shown that single cells within the parietal cortex 

respond to aspects of a spatial route in a repeatable manner (Nitz, 2006; Nitz, 2012).  

Previous work from our lab has implicated EEG signals from parietal electrodes being 

correlated with the subject’s spatial location (Snider et al., 2013) in a similarly 

physically unrestricted paradigm.  Furthermore, preliminary work in the same 

experimental paradigm has shown that the power in low-theta (2-5 Hz) frequencies co-

localizes with the relative location in a spatial route (Trees et al., 2013).  We predicted 

that we would similarly find theta range activity to be locked to space.  We found that 

the analytic amplitude (analogue of instantaneous power) of 2-8Hz filtered EEG from 

the midline parietal cluster showed substantial spatial regularity in power along a 

relative path.  There appears to be a consistent pattern of low frequency power 

changes along a normalized segment of the square spiral irrespective of direction, 

orientation, or length.  At a ‘brisk’ speed, there was a consistent increase in power 

towards the beginning of each segment, whereas at the ‘slow’ speed there were both 

consistent activity at the beginning and at the end of all the segments.  While this 

signal does not index a subject’s absolute location, it is another finding of a spatial 

navigation related signal in humans physically navigating space.  A proposed follow 

up experiment would be to have subjects walk back and forth along a single linear 

path, of which the length could be changed by using a virtual environment.  This 

would restrict the subject to two directions and a single segment orientation, allowing 

for a finer resolution of control on the intended path. 
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 Study of physical human spatial navigation is still vastly underserved.  This 

experiment aims help fill the gap in our direct empirical understanding of how we 

navigate our environment.  It is well documented that diseases like Alzheimer’s have 

indicated relatively early by deficits in spatial navigation (Tangen et al., 2015).  

Understanding the neural correlates navigation in healthy individuals could lead to a 

better understanding of the differences in diseased populations.  This could ultimately 

lead to early detection of these diseases, even before symptoms appear.   
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TABLES 

Table 1:  Behavioral measures.  Included are the average speeds traveled of each 

subject in each condition along with the number of ‘good’ gait cycles used in 

subsequent analysis.  Paired t-test between number of good gate cycles shows no 

difference between the conditions (t(11) = -0.276, p=0.78). Paired t-test between the 

two conditions shows that the speed increased during the brisk condition (0.3 +/- 0.1 

(mean +/- 95% confidence ) t(11)=7.68, p=1e-5). 

 

 

Slow Brisk 

Subject Speed (m/s) # gait cycles Speed (m/s) # gait cycles 

1 0.52 +/- 0.22 167 1.13 +/- 0.33 164 

2 0.45 +/- 0.13 148 0.97 +/- 0.24 191 

3 0.69 +/- 0.24 123 0.90 +/- 0.27 145 

4 0.63 +/- 0.14 186 0.99 +/- 0.25 220 

5 0.95 +/- 0.19 200 1.23 +/- 0.40 167 

6 0.56 +/- 0.22 131 1.07 +/- 0.35 133 

7 0.82 +/- 0.32 113 0.91 +/- 0.51 78 

8 0.60 +/- 0.16 170 0.96 +/- 0.23 175 

9 0.75 +/- 0.17 166 0.99 +/- 0.28 183 

10 0.53 +/- 0.15 95 0.88 +/- 0.30 114 

11 0.79 +/- 0.15 164 0.96 +/- 0.22 140 

12 0.49 +/- 0.12 157 0.92 +/- 0.20 135 
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 FIGURES  

 

 

 

Figure 1:  Square spiral track and example path.  A Schematic of the 4m x 4m square 

spiral track. Tape was used to mark the spiral’s boundaries on the floor of the 

experimental space.  Subjects move from the outermost segment towards the center, 

turn around, move towards the start, and repeat for a total of ten minutes.  B Example 

of a single subject’s raw head trajectory (10 min. of data) from the “comfortable walk” 

condition projected onto the square spiral.  The colormap represents the instantaneous 

speed of the same head marker. 
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Figure 2:  Gait cycle phases and events.  A Gait cycle breakdown. Top, Illustration 

representing a subject’s gait. Middle, graph detailing the 5 relevant events (LOFF, 

LON, ROFF, RON, and LOFF) used in subsequent normalized analyses along with 

the corresponding assigned percentage of gait cycle. Bottom, Graphical representation 

of each leg’s independent gait cycle phases.  B Gait event interface.  Top, the vertical 

displacement of the left and right foot’s toe markers over time.  Black dots with dotted 

lines mark the relevant events of the gait cycle on the raw data.  Bottom, vertical 

displacement of the corresponding foot’s heel markers.  Events were assigned by 

visual inspection of the vertical displacement graphs and were confirmed with 3D 

point reconstruction of the foot marker trajectory.  
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Figure 3:  ERSP of each subject in each condition.  A Time normalized ERSPs of 

individual subjects in the “comfortable speed” condition.  Vertical black lines 

represent the relevant events and the points at which the data is normalized to.  

Frequencies are plotted in log spacing with increase and decrease in power represented 

by red and blue, respectively.  B ERSP results broken down into traces for the average 

activity in the given frequency bands over the normalized gait cycle (delta: 3-5Hz, 

theta: 5-8Hz, alpha: 8-12 Hz, beta: 12-25).  C,D The same results as A and B, 

respectively, but for the “brisk speed” condition. 
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Figure 4:  All clusters average ERSPs for ‘slow’ speed.  Results for the average gait 

normalized ERSP across all subjects from each electrode cluster in the ‘slow’ speed 

condition.  The plots show significant regions of activity that are consistent across the 

subject population. The data are masked at a 95% confidence interval across all 

subjects (p<0.5).  Bottom-left, figure showing the electrodes that were averaged for 

each cluster above.   
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Figure 5:  All clusters average ERSPs for ‘brisk’ speed.  Results for the average gait 

normalized ERSP across all subjects from each electrode cluster in the ‘brisk’ speed 

condition.  The plots show significant regions of activity that are consistent across the 

subject population. The data are masked at a 95% confidence interval across all 

subjects (p<0.5).  Bottom-left, figure showing the electrodes that were averaged for 

each cluster above.   
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Figure 6:  Frequency band traces over midline and sensorimotor clusters.  Changes in 

power of specific frequency bands normalized to the gait cycle.  The data are the 

average power in each of the frequency bands for the “brisk speed” condition (delta: 

3-5Hz, theta: 5-8Hz, alpha: 8-12 Hz, beta: 12-25).  Bottom right, figure shows the 

electrodes contributing to each cluster.  The beta frequency range (black), in 

particular, shows consistent changes in spectral power coinciding with the normalized 

gait cycle.   
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Figure 7:  Parietal cluster theta activity over normalized spatial segments in the 

‘brisk’ speed condition.  Analytic amplitude of 2-8 Hz filtered EEG from the midline 

parietal cluster.  A The analytic amplitude averaged across subjects for each of the 

spatial segments (1-10) locked to the progression along each normalized segment.  

Values are baselined to the mean of each segment, with positive values plotted in red 

and negative in blue.  B The overall mean activity across segments, from the across 

subject activity in (A).  Error range is one standard deviation of the across arms 

distribution. Regions that deviate significantly from zero are highlighted in gray.    
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Figure 8:  Parietal cluster theta activity over normalized spatial segments in the ‘slow’ 

speed condition.  Analytic amplitude of 2-8 Hz filtered EEG from the midline parietal 

cluster.  A The analytic amplitude averaged across subjects for each of the spatial 

segments (1-10) locked to the progression along each normalized segment.  Values are 

baselined to the mean of each segment, with positive values plotted in red and 

negative in blue.  B The overall mean activity across segments, from the across subject 

activity in (A).  Error range is one standard deviation of the across arms distribution.  

Regions that deviate significantly from zero are highlighted in gray.   
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