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Abstract 
 

Publicly Funded Renewable-Energy Innovation and Appropriate Methods of Analysis 
 

by 
 

Nathaniel Bush 
 

Doctor of Philosophy in Public Policy 
 

University of California, Berkeley 
 

Professor Michael O'Hare, Chair 
 
 
 In this dissertation, I will conduct a critical analysis of several methods typically used for 
modeling patent data, and then use insights gleaned from that analysis to explore four instances 
of public financing of innovation in the form of renewable-energy technology. 
 Chapter 1 introduces my overall research objectives, frames the research in terms of its 
policy relevance, and provides a brief preview of the major results. Chapter 2 provides 
background on innovation, causes and results thereof, with a particular focus on patent data, and 
thereby a framework for understanding the relevance of chapters 3 and 4. 
 The first main essay (chapter 3) addresses statistical regression techniques frequently 
used with patent-count time-series data, namely negative binomial regressions and log-log 
regressions. It reveals high rates of spurious correlation (false positives, also known as Type I 
errors) when using these techniques on patent data, investigates possible ways of addressing this 
problem, and creates a method for detecting it when using those and other regression techniques 
on similar data types. 
 Using lessons learned from the first essay, the second essay (chapter 4) examines public 
research and development (R&D) funding of four renewable-energy technologies – wind 
turbines, solar photovoltaics, solar thermal electric, and solar water heating. It employs several 
novel patent analysis techniques that allow patents to more closely represent the date of inventive 
activity. It finds that, contrary to popular narratives of public R&D funding driving increased 
invention (patenting), a diverse set of relationships exist in the renewable energy sector. These 
relationships range from changes in funding being correlated with future changes in invention 
rates, to changes in invention rates preceding changes in funding, to changes in funding and 
invention rates having no discernible relationship. 
 Taken together, these essays demonstrate the interdependent relationship between 
appropriate analytic techniques and accurate analysis when examining the sometimes subtle 
effects of complex policies. 
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 1  Introduction & Overview 
 
 1.1  Overall Research Objectives 
 
 Through this dissertation I intend to: (1) explore the efficacy of public funding policies 
designed to foster innovation in young or emerging technologies, specifically in four branches of 
renewable-energy technology; (2) utilize patent data as a primary metric of inventive activity in 
those technology areas; (3) critically examine statistical techniques typically applied to patent-
data analysis, and thereby bring to bear an improved set of methods in my own analyses; and, (4) 
elucidate previously undetected relationships between funding and invention to generate policy-
relevant information. 
 
 1.2  Policy Relevance 
 
 As a largely capitalist society, many people tend to take the perspective that firms should 
innovate as people’s demands change, as a function of their profit motive and desire to gain 
customers. From this perspective, with innovation as a method of gaining market share and 
profit, there is no obvious purpose for government intervention. However, when viewed from a 
societal level, the beneficial spillovers (i.e. positive externalities and technological 
complementarities) that innovation generates, to Gross Domestic Product (GDP) and other 
measures of wellbeing (Bresnahan and Trajtenberg 1995, Fagerberg and Verspagen 2002, 
Greiner and Semmler 2000, and Carlaw and Lipsey 2002), mean that we need to consider the 
fruits of innovation as being policy relevant. Moreover, as we are faced with the effects of 
negative externalities (e.g. climate change) that we hope innovation will ameliorate without the 
need to drastically alter our civilization, it is logical to ask whether current incentive structures 
will foster the needed technological development and diffusion. If we do not believe that purely 
free-market incentives will do so independently, then we need to cultivate policies that will 
generate the needed change. Innovation becomes an issue of concern to public policy when 
viewed from the proper altitude. 
 Young and emerging technologies are of particular interest to policy makers and analysts 
due to their capacity to disrupt existing modes of living, produce novel and/or outsized benefits 
compared to their costs, generate unforeseen consequences and damage, and create unpredictable 
spillover effects (Giersch 1982, Carlaw and Lipsey 2002). My dissertation will focus on four 
young renewable-energy technologies with particular interest to public policy: wind turbines, 
solar photovoltaics, solar thermal electric generation, and solar water heating. Researchers 
advancing all of these technology areas tout their potential to mitigate existing environmental 
externalities, while critics claim they have the capacity to generate a host of new problems. In 
order to inform applicable policy decision making, it will be useful to understand both the 
patterns of development of these technologies and how research activity has responded to 
existing incentives. 
 In addition to examining particular technologies, my dissertation will generate higher 
quality policy-relevant information by improving the set of methods used to conduct patent-data 
analysis. Not only will I employ better selection techniques for the inclusion of patents than prior 
research, and deal with issues of pendency and priority date more accurately than much of the 
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existing research, but I will test two statistical methods frequently applied to patent-data research 
for possible spurious results. In this manner, I hope to conduct higher quality policy-relevant 
research and help inform other researchers’ efforts to do the same. 
 Given that my methods-related findings inform the techniques I use on the renewable-
energy technology section, I will present the methods work in chapter 3 and the renewable-
energy patent analysis in chapter 4. 
 
 1.3  Results in Brief 
 
 Chapter 3 of this dissertation presents results from Monte Carlo simulations of negative 
binomial and log-log regressions using 10,000 synthetic data series that mimic the statistical 
properties of patent data. These simulations yielded rates of spurious correlations well in excess 
of the expected 5 percent level; both falling in the 60 to 80 percent range. This is due to non-
stationarity (i.e. no fixed mean, causing errors to accumulate) in patent data, and this indicates 
the need to test and account for this problem when dealing with patent data. Independent 
variables include ones commonly used in patent-data research, such as US Gross Domestic 
Product (USGDP) and a composite price series. 
 Scholars who analyze patent data frequently employ two non-traditional regression 
techniques – negative-binomial, which models the dependent variable as an integer count 
truncated at zero, and log-log, which log transforms both the independent and dependent 
variables before performing an ordinary least squares (OLS) regression – but the validity of these 
techniques is seriously called into question by the results presented. These techniques were 
intended to better represent the data generating process and avoid the problems associated with 
using OLS, but end up generating comparable levels of spurious correlation to OLS. This in turn 
calls into question the results of a substantial number of papers in the innovation literature. 
 The results also demonstrate the capacity to generate synthetic time-series to accurately 
mimic the behavior of patent-data, and use these to test the validity of statistical methods. With 
false positives likely in the range of 60 to 80 percent, the inability to rule out a “random walk” 
(where the errors from all prior time periods accumulate) as the data generating process means 
we cannot trust results from these regression methods when used with non-stationary 
independent variables on patent data. It also may explain the popularity of some of these 
techniques, since using them has a high probability of generating spurious “statistically 
significant” results.  
 Finally, these results demonstrate the potential for Monte Carlo simulations to be used as 
a validating method when concerns about the legitimacy of a more exotic statistical technique 
arise. 
 Using the lessons learned in chapter 3, chapter 4 of this dissertation examines the 
relationships between federal government R&D expenditure and renewable-energy technology 
patenting through 20 Vector Autoregression (VAR) models. Patenting rates for four renewable 
energy technologies (and a pooled patent series) are used, with models for all patenting and for 
government-interest-only patenting. 
 Diverse modeling outcomes result – from R&D spending being Granger-caused by 
patenting (this is a weak causal claim originally proposed by Clive Granger [1969], where past 
values of one variable are correlated to present values of another variable), to patents being 
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Granger-caused by R&D spending, to patents and R&D spending Granger-causing each other. 
These results indicate that policy design details are vitally important in the case of government 
funding for renewable energy R&D – merely “throwing money at the problem” does not 
guarantee the desired result. This is also suggested by the changes in modeling results between 
the all-patent models and the government-interest models – the isolation of government-interest 
patents reveals a more pervasive situation of patenting Granger-causing R&D funding than was 
seen in the all-patents models. Incentive structures, institutional relationships, geography, and 
methods of knowledge sharing within a given funding program may determine if public R&D 
funding is successful in actually promoting targeted invention, or merely responds to newly 
popular technology areas.  
 Scholarly articles noted in chapter 4 overlook complex policy details and nuances when 
discussing public research funding, and my analysis demonstrates the importance of attending to 
such details, since the relationships of patenting rates and public R&D funding differ widely 
depending on the technology and funding program. 
 For the purposes of motivating near-term affordability of functioning technologies – ones 
that already have some demonstrated capabilities, but are not yet cost competitive with 
conventional energy sources – different approaches are needed. Public funding for 
commercialization oriented renewable-energy invention seems to be a less certain method; at 
least with the types of funding programs that have existed so far. 
 In the next section, chapter 2, I will provide relevant background on innovation, and on 
patent-data research in particular. 
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 2  Background on Innovation 
 
 In this chapter, I will explore the study of innovation, looking at models and measures 
from economics, organizational/management theory, and public policy. I begin by defining 
innovation and looking at its origins as an area of academic study, starting with Schumpeter. I 
then describe identified categories of innovation, factors influencing innovation, and its 
theoretical outcomes. Next, I focus on proxies used to measure innovation, including production 
shifts, patents and citations, publications (i.e. academic research papers and reports), intra-firm 
measures of innovation (i.e. counting knowledge workers, research projects, research 
expenditures, and revenue from recent innovation), and other measures (e.g. impact on 
environmental externalities and technology balance of payments). Finally, I explore why 
innovation is an issue of concern to public policy, and discuss the various policy instruments 
used to influence innovation – as well as their shortcomings. 
 
 2.1  What Is Innovation, and How Do We Measure and Affect It? 
 

All equilibrium narratives end in the same place. In equilibrium. There’s no role 
for a hero, tragic or other. Even the true protagonist, the Walrasian Auctioneer, is 
hidden away, unexplained. Growth stories, in contrast, are more open-ended, 
uncertain, and path-dependent. In growth stories, history matters. Even tragedies, 
which also end predictably, must tell the beginning first. Thus do political 
economy’s best-known growth stories provide a hero. (Leonard 2009) 
 

 The ultimate hero of the modern world is innovation. Innovation has literally made the 
difference between humans wandering around naked, eating whatever we find, and living 
comfortably in modern industrial society. In that way, it is one of the ultimate generators of  
disequilibrium in the world, as well as path dependence, and a host of other factors that 
complicate simple economic analysis. 
 I will broadly define innovation as the creation and propagation of new ideas. While 
authors have created many definitions of innovation, creation and propagation are at the core of 
each. Importantly, innovation does not stop at creation. The distinction Schumpeter (1942) makes 
between invention and innovation is vital. “An invention is an idea, sketch, or model for a new 
device, process or system. It might be patented or not, it might lead to innovation or not” (Clarke 
and Riba 1998). Innovation requires something more: “adoption” according to Schumpeter, 
which is the initial use of an invention, and “diffusion,” which is broader commercialization due 
to operating information and user communication (Rogers 1995). Since inventions may be 
diffused very narrowly (e.g. an idiosyncratic change to a type of power-plant’s fuel mix) or more 
broadly (e.g. the integrated circuit), I consider adoption and diffusion together as elements of 
propagation. 
 Although innovation may be simple to define in general, highly varied patterns of it exist: 
it may occur radically or incrementally, it may create new systems or affect existing ones, it may 
have broad spillovers or highly specific impacts, and it may be geographically localized or global 
in reach. Innovation, and thereby change, was a basic driver of capitalism according to 
Schumpeter. He wrote, “[Capitalism] not only never is but never can be stationary . . .” also: 
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[I]n capitalist reality as distinguished from its textbook picture, it is not... 
[textbook]competition which counts but the competition from the new commodity, 
the new technology, the new source of supply, the new type of organization (the 
largest-scale unit of control for instance) – competition which commands a 
decisive cost or quality advantage and which strikes not at the margins of the 
profits and the outputs of the existing firms but at their foundations and their very 
lives. (Schumpeter 1942) 

 
 In order to study innovation (or anything else for that matter), it must be measured. More 
than just a practical problem, the question of what to measure when examining innovation is a 
philosophical issue: insofar as innovation induces change and evolution in systems, the measures 
that were developed to suit one incarnation of a system may not remain totally applicable to 
another; the definitions of progress and change in a system may themselves change, yielding 
non-comparability between past and present measures, results, and frames of reference. 
 Traditional measures of innovation, such as productivity growth and patents, have been 
augmented with additional measures, such as academic publications and citations, various firm-
level characteristics, international balance of payments, and environmental impacts as the 
economy has become more complicated, diverse, and global. 
 Policy instruments to influence innovation are similarly diverse, and include taxes, 
subsidies, permits, intellectual property laws, public research funding, and “command-and-
control” regulations, among others. Each instrument has a host of complexities: conditions under 
which it is counter-productive, problems for which it is and is not suitable, indirect and/or 
unpredictable impacts, and ways that it may be manipulated. 
 
 2.2  Innovation Inputs and Outputs 
 
 Economics and organizational/management theory have generated several models for 
thinking about innovation. These models pertain to various types of innovation that can occur, 
the sources and causes of innovation, and the results of innovation. In this section, I will examine 
several of these factors, with an eye to not only exploring how academics have viewed 
innovation, but also to building up a framework that can be used to understand how the measures 
of innovation succeed and fail. 
 
 2.2.1  Determinants of Innovation 
 
 Different forms of innovation may result from different social forces, but given their 
common framework, they are likely to have consistent themes. Product innovations, service 
innovations, and organizational innovations may also vary in their causal sources, however, 
insofar as they all relate to the desire to do something new or make an existing thing better, they 
also have common threads. I will consider various theoretical determinants of innovation, and 
what forms of innovation they relate to. 
 While the profit motive, or some incarnation of it (e.g. prestige or intellectual satisfaction 
in academic research), is the fundamental incentive to innovate, many other factors mold how 
that incentive is expressed in the world, and what causes the particular patterns of innovation that 
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occur. 
 The shaping of innovation is an area of study extremely rich in modeling work. Given 
social-science’s ultimate focus on prediction, this is to be expected. Various types of 
determinants have been examined, including intellectual property rights, government 
actions/regulation, knowledge stock, geography, management and organizational characteristics, 
and influences from and on academic research. 
 
 2.2.1.1  Intellectual Property Rights 
 
 Intellectual property (IP) rights are actually a subset of government actions; however, 
they are so vital to inducing innovation that I have broken them out into their own section here. 
Common forms of IP relevant to innovation are patents, copyrights, and trade secrets. Their 
existence enables individuals or firms to maintain profitable control over inventions, and society 
and markets to signal the value of various inventions and the entities that own them (by means of 
exchanging information for protection) (Long 2002). 
 Possibly the most important factor influencing the incentive to innovate, and thereby 
actual innovative activity, is an entity’s ability to benefit from that innovation. In this regard, the 
existence of IP rights is a central determinant of innovation. However, “some of the 
‘ineffectiveness’ of formal intellectual property protection is by design… it is not always true 
that stronger intellectual property rights are better. Intellectual property should be designed to 
achieve the right balance of protection for innovators, protection for consumers, and opportunity 
for rivals to make improvements” (Scotchmer 2004b). By providing protections strong enough to 
allow innovators to profit, but not so strong as to stifle competition, IP rights attempt to optimize 
creative incentives. 
 While the general existence (and strength) of IP rights is an input into innovation, 
individual pieces of IP are rightly viewed as products of innovative activity (e.g. patents are 
sought after an invention has been conceived of, and copyrights are taken out on existing works). 
Therefore, I discuss particular types of IP as measures of innovation in sub-sections of section 
2.2.3 below. 
 
 2.2.1.2  Government Actions/Regulation 
 
 A variety of government actions can stimulate technological innovation, including the 
provision of positive inducements, such as tax breaks, subsidies, contracts, and prizes; the 
facilitation of knowledge sharing; and the outright prohibition of certain behaviors, substances, 
or products. Insofar as government actions and laws represent the constraints and restrictions 
under which markets operate, they are also foundational to most other determinants of 
innovation, especially the above mentioned intellectual property rights. Since public academic 
research is discussed below, and positive government inducements to innovate constitute little 
more than a shift in the probability distribution of profits accruing to innovations, I will focus 
primarily on regulation here. 
 A study of multiple factors influencing environmental innovation found that “government 
regulation appears to be a greater stimulus to inventive activity than government-sponsored 
research support alone, and that the anticipation of regulation also spurs inventive activity.” 
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Firms, being strategic, will innovate in anticipation of new regulations in an attempt to not only 
be undamaged by the regulation, but also to gain market advantage over their competitors when 
the regulations are put in place, and thereby increase their profits. In addition, the strictness of 
the regulation induces concentration along particular technology paths, thereby not only 
influencing quantity but also type of innovation. Finally, significant impacts occur from 
government sponsored knowledge sharing activities, such as technical conferences (Taylor, 
Rubin, and Hounshell 2003). 
 Case studies have also provided an important method of assessing the innovation impacts 
of government regulation, and can often better explore the details specific to an individual 
instance; although lessons learned from one case are not always applicable to others. A consistent 
result can emerge however, when a large group of cases are in agreement with one another 
(Becker 2014). For example, a review of a group of 10 environmental regulation studies done 
from 1970 to 1985 concludes that, 1) “a relatively high degree of [regulatory] stringency appears 
to be a necessary condition” to induce vigorous innovation, 2) that, “excessive regulatory 
uncertainty may cause industry inaction,” and “too much certainty will stimulate only minimum 
compliance technology”, and 3) when government regulations are signaled in advance, the 
prospect of their imposition can itself stimulate innovation. Similar findings come from other 
individual case studies (Ashford, Ayers, and Stone 1985). 
 Regulation, especially in the environmental industry, acts to secure demand for 
innovations along particular technology paths, and thereby assure firms of market opportunities, 
which is a strong incentive to innovate (Mowery and Rosenberg 1982). In this way, regulation 
can be seen to play a somewhat similar role to positive government inducements to innovate, as 
it indirectly shifts firms’ profit probability distributions; however, wasteful effort is less likely 
than in the case of subsidies and tax incentives since unsuccessful innovations are not rewarded. 
 Certainly, not all inventions occur as a result of regulation – in fact, most probably don't. 
However, regulation can energize a search for new techniques in an industry and thereby spur an 
innovative burst. This is especially true with regard to environmental-quality related innovations, 
since there is little else (aside from a desire to reduce waste and materials costs) to motivate less 
environmentally damaging techniques. 
 
 2.2.1.3  Knowledge Stock 
 
 For both the world in aggregate and individual firms, cumulative knowledge or 
“knowledge stock” is a major determinate of innovation, as it directly affects the capacity to 
generate new knowledge, assimilate external knowledge, or even to understand the value of new 
knowledge (Cohen and Levinthal 1990). An analogy at the individual level exists, in that a 
person’s level of education influences his or her ability to understand and assimilate new 
information, and even generate further knowledge. 
 
 2.2.1.4  Geography 
 
 The importance of industry economic knowledge is the main factor driving the degree of 
geographical concentration of innovation. Even when controlling for concentration of 
production, in industries in which skilled labor and knowledge work is more important there is a 
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greater tendency for innovation to occur in clusters. This is an intuitive result if vital knowledge 
spillovers are occurring between firms and with universities. Such clustering in industries does 
not occur in lower levels of knowledge work (Audretsch and Feldman 1996). 
 Moreover, when looking at patents as a measure of innovation (the use of which I discuss 
below) diffusion of technology is geographically localized, as indicated by patent citation. 
“Controlling for other factors [including language], within-country citations are more numerous 
and come more quickly than those that cross country boundaries” (Jaffe and Trajtenberg 1996). 
 
 2.2.1.5  Organization and Management 
 
 The structure and management of organizations doing the innovating plays a role in their 
creative output. Many studies on individual firms or industry clusters have found a variety of 
influences of firm structure on innovation. A meta-analysis to examine innovation and its 
determinants within organizations inspected 13 factors using statistical models and found stable 
results for, “statistically significant associations for specialization, functional differentiation, 
professionalism, centralization, managerial attitude toward change, technical knowledge 
resources, administrative intensity, slack resources, and external and internal communication” 
(Damanpour 1991). 
 However, one complicating factor when studying innovation and making policy about 
innovation, is that it can be highly idiosyncratic, with processes and influential factors varying 
not only by the field in which the innovation is taking place, but also depending upon the type of 
innovation that an institution is engaged in. For example, a sustained major factor encouraging 
technical process innovation within a firm is employment of technical specialists; however, in 
the 1970 and 1980s, management practices and attitudes did not seem to matter, as they did with 
social or service related innovations (Dewar and Dutton 1986). More recent research suggests 
that certain staffing, performance appraisal, and company sponsored knowledge acquisition and 
sharing activities do have a positive impact on innovative activity (Chen and Huang 2009).  
 The size of firm can also matter, as larger firms are more likely to suffer communication 
problems and stagnation in habits that can inhibit innovation (Dougherty 1992). 
 
 2.2.1.6  Academic Research 
 
 Public research is an important determining factor in innovation broadly, since basic 
science is largely conducted by academic institutions and government labs. In particular 
industries however, public research is especially important. Pubic research is critical to R&D in 
the manufacturing and industrial sectors: not only does public research contribute new ideas to 
industry, but it also “contributes to the completion of existing projects in roughly equal measure 
overall.” (Cohen, Nelson, and Walsh 2002). Moreover, their work explored the channels of 
communication between industry and the university and discovered that various forms of 
research results influenced industrial R&D, including papers, conferences, formal meetings, 
informal channels, and paid consulting. Finally, firm size was important to the degree of impact 
from public R&D, with large and start-up firms benefiting the most. 
 Insofar as academic research generates increased innovation activity, factors influencing 
academic output are important as indirect determinants of innovation. A research project at Louis 
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Pasteur University using OLS and Tobit regressions found that increasing the size of a lab was a 
significant negative factor in individual researcher performance, while increasing the amount and 
quality of other affiliated researchers’ output was a significant positive factor affecting individual 
performance. Moreover, individual characteristics including age and junior status are negatively 
correlated with research performance, while full-time research status (i.e. no teaching) is 
positively correlated. The presence of foreign post-docs is correlated with higher publishing, 
while the presence of domestic post-docs is associated with increased patenting activity (Carayol 
and Matt 2006). Conversely, in the field of economics, active teaching commitments enhance 
research quality (Becker and Kennedy 2005). 
 These results may not be able to be fully generalized; however, many of their covariates 
provide evidence of the validity of anecdotal observations and research case-studies. 
 
 2.2.2  Innovation Outcomes 
 
 Various specific and idiosyncratic results are due to individual innovations, but the 
measures of overall social and organizational impact from innovation are much simpler and more 
generally applicable. Such outcomes include changes in GDP per capita at the national or 
international level, and changes in profitability, organizational direction, organizational 
absorptive capacity, and further innovation cycles at the firm/organization level. Cultural changes 
are obviously outcomes too, but they are beyond the scope of this work. 
 
 2.2.2.1  GDP Per Capita 
 
 Increases in productivity of the economy or GDP per capita is the broadest outcome of 
innovation, and represents an aggregation of all the individual ways that innovation positively 
impacts humanity. Methods of measuring the contribution of innovation to GDP is addressed in 
the “measures” section below, but I will address the degree of contribution of innovation to GDP 
here. 
 Estimated returns to R&D investment in the G7 and G15 nations' own-rates of return in 
1990 were 123 percent and 85 percent respectively, per year (Coe and Helpman 1995). This 
indicates major and immediate GDP increases from investments in knowledge stock via R&D, 
often paying back in less than a year. These rates of return are unusually high; however, other 
scholars have found domestic rates of return in excess of 40 percent, indicating that R&D 
investment is a highly effective growth strategy. 
 Moreover, “in 1990 the average worldwide rate of return from investment in R&D in the 
G7 countries was 155 percent… For the G7 countries the difference between the worldwide and 
the own rate of return is about 30 percent, which implies a large international R&D spillover; 
about one quarter of the total benefits of R&D investment in a G7 country accrue to its trade 
partners.” (Ibid.) These spillover gains were stronger in more open economies. “Case study 
evidence of individual research areas (such as satellites and civilian aircraft) supports the view 
that social returns to such R&D can be substantial, although extremely difficult to trace and 
measure... But, again, case studies and the history of individual technologies suggests that these 
returns are positive and could be substantial.” (Hall 1996). 
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 2.2.2.2  Profitability 
 
 The most obvious outcome of innovation at the firm level is an increase in net revenue, 
either from the creation and marketing of a new product or the improvement (both through cost 
reductions and quality increases) of an existing one. All of the types of innovation discussed 
above may result in gains to profit, provided there exists an intellectual property system that will 
allow a firm to maintain some amount of control over its innovations. Patenting is one such 
system, which I discuss below. 
 
 2.2.2.3  Organizational Direction 
 
 Another firm-level outcome of innovation is augmentation of the knowledge stock of the 
organization. “What a firm has done before tends to predict what it can do in the future. In this 
sense, the cumulative knowledge of the firm provides options to expand in new but uncertain 
markets in the future” (Kogut and Zander 1992). In that way, innovation broadens the set of 
options of firm behavior and may create new market opportunities for the firm or new 
organizational motifs. 
 
 2.2.2.4  Absorptive Capacity 
 
 Innovation in firms can also have one of the same outputs as public R&D in universities: 
education. In addition to commercial outputs, innovation in a firm, “develops the firm's ability to 
identify, assimilate, and exploit knowledge from the environment-what we call a firm's 'learning' 
or 'absorptive' capacity.” (Cohen and Levinthal 1989). Similar to organizational direction, 
absorptive capacity changes the behavior of the firm, but does so by enabling it to better 
assimilate information from outside, rather than creating only endogenous changes. Absorptive 
capacity applies to the full range of outside knowledge, from use of technology products to 
exploitation of basic scientific and engineering research. 
 
 2.2.2.5  Further Innovation 
 
 As befits the autocatalytic nature of research (i.e. answering questions typically generates 
more questions to be answered), innovation in an organization often leads to further innovation 
efforts. The phases of implementing new innovations in services yields a “reverse product cycle 
consist[ing] of a first stage in which the applications of the new technology are designed to 
increase the efficiency of delivery of existing services: a second stage in which the technology is 
applied to improving the quality of services: and a third stage in which the technology assists in 
generating wholly transformed or new services” (Barras 1984). Those wholly transformed or 
new services constitute innovations in and of themselves. 
 Not only do technological innovations inspire service innovations, but they open the 
doors for other technology as well. Without the harnessing of electricity, most modern 
conveniences would not be able to exist. It is fundamentally those new opportunities that serve as 
the engine of real per capita growth. 
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 2.2.3  Measures of Innovation 
 
 Researchers are fortunate to have multiple measures for the quantity and quality of 
innovation taking place, including: changes in firm, industry, or overall economic productivity; 
patenting activity and patent citations; academic publications; intra-firm measures such as 
percent of the organization engaged in knowledge-work, percent of the budget spent on R&D, 
and percent of the revenues coming from recent innovations; and, other measures such as direct 
impacts from a given class of innovations on the environment, and changes in balance of 
payments between nations. 
 Some of these measures are rough proxies for innovative activity, such as patents, 
publications, and the intra-firm effects, while others such as production growth, revenue shift, 
and various direct impacts come closer to measuring innovation outcome. 
 
 2.2.3.1  Production Changes 
 
 Both within industries and for economies as a whole, production changes are one of the 
most direct and easily observed measures of innovative activity. The classic econometric 
approach involves modeling the impact of the many inputs to GDP (GNP in some papers), with 
total current knowledge stock (defined as a lagged and depreciating function of prior investments 
in research) as one of the inputs, and examining how changing knowledge directly impacts GDP 
(i.e. the partial derivative), and how it impacts GDP both directly and indirectly (i.e. the total 
derivative – embodying the impacts to other factors as well). However, this approach presents 
several difficulties including the standard problems with measurement of quality changes and 
aggregation of dissimilar things (Griliches 1979). Measurement has deteriorated due to the 
relatively recent complexity of the economy – it used to be agricultural and a growing industrial 
manufacturing base rather than the highly varied service-driven economy of today – and 
increasing reticence by firms to answer questions, as well as the rapid rate of change that has 
made products become noncomparable with ones of the same name from a few years prior 
(Griliches 1994). Methods of quality adjustment are now employed in an attempt to account for 
this when calculating GDP growth and price changes; such efforts meet with varied success. 
 Within firms, endogenous production cost and quality shifts also provide readily observed 
measures of innovation, and can often be modeled using learning curves. “Quantitative modeling 
of experience curves has become an increasingly common method of representing endogenous 
technical change in long-term integrated assessment models used for energy and environmental 
policy analysis” (Yeh, Rubin, Hounshell, and Taylor 2007). This technique reveals incremental 
innovation that is difficult to detect using other measures, but suffers from sensitivity to 
modeling assumptions (ibid.). 
 
 2.2.3.2  Patents 
 
 Patents present one of the most convenient and transparent measures of innovation. They 
have received heavy emphasis due to the wealth of data that the patent system collects and the 
transparency of the information. Moreover, they are a good global measure because international 
markets generate incentives to harmonize intellectual property laws and patents in industrialized 
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nations. “Patent data are available for many countries, broken down for the country of origin of 
the invention for which the patent is requested and for the technological category of the 
invention. Patent statistics are available in almost all industrialized countries and in many 
developing countries, broken down for very detailed technological sectors. They probably 
represent the most precise and reliable classification of technological products… From the name 
of the body to which the patent is issued, it is possible to reconstruct the sectors of the bodies to 
which the producers of innovations belong…” (Archibugi 1988). 
 As with every measure, patents have strengths and weaknesses as an indicator of 
innovation. Strengths include: provision of a novelty filter, such that they prevent double 
counting of innovations; provision of a quality filter, such that only inventions that are likely to 
provide real benefits and therefore be propagated are counted; classification by technology area 
and sub-area, such that innovation in particular sectors and differential development (both by 
time and type) is analyzable; citations to prior and later art, such that threads of innovation are 
detectable and network analysis is possible; and public availability, which increases the 
transparency of the measure (Archibugi and Pianta 1996). 
 Weaknesses include: incomplete capture of truly novel inventions, as some are not 
patentable for various reasons (such as coverage by alternate laws – e.g. copyrights, simplicity, 
generality, and/or inability to detect infringement) or inventors choose to protect them with 
secrecy rather than with a patent; differing propensity to patent both by firm and industry creates 
a degree of non-comparability between patent analyses; differing propensity to patent by nation, 
and in foreign and domestic markets creates biased distributions when looking within a national 
patent data set; and idiosyncratic patent laws (despite harmonization efforts) creates a bias when 
aggregating nations’ patent data set (ibid.). 
 In addition, the value of individual patents is highly skewed, which is a relevant 
characteristic when there are small counts in an industry or sector (Swann 1993). Value has been 
assessed in a variety of ways, including: patent citations as indicative of depth and breadth of 
impact; nations applied in, to measure the geographic influence and generality of an invention; 
patent claims made, indicating the number and range of novelties; and paid renewal fees, 
providing a rough indicator of threshold values of particular patents (Archibugi and Pianta 1996). 
 While firms are most likely to use secrecy and lead time to protect their inventions 
(Cohen, Nelson, and Walsh 2001), survey work indicates a significant portion of inventions are 
patented, with 66 to 87 percent of US firms’ patentable inventions ultimately submitted 
(Mansfield 1986). That does not include all of the inventions that do not qualify as patentable, 
but will nonetheless result in innovation. Therefore, patents represent a good-quality but 
imperfect proxy for innovative activity in the absence of comprehensive R&D information, and 
they can be used as a measure for both innovative input and output (depending on the situation). 
However, given their skewed and highly variable values, patent counts are not a good gauge of 
R&D output changes in the short run, and should be used cautiously (Griliches 1990). 
 To complicate matters, the meaning of patents and patent counts has changed over time. 
The 1970s and early 1980s saw a decrease in US patenting activity despite growth in R&D 
spending. This was driven by administrative and legal changes which served to tighten the 
standards of what was patentable, yielding higher average quality of patents (as measured by 
economic value) (ibid.). Subsequently, starting in 1984, there was a large increase in domestic 
patenting along with foreign applications in the US patent system, with growth in all sectors, but 
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concentrated in high-tech industries, where there was a strong increase in profitability of 
patenting (Hall 2004). This may have  been due to the increasingly widespread use of 
information technology (IT) in two ways: a resulting pressure to protect high-value inventions 
from imitation or duplication by other firms, and an explosion of high-tech innovation in IT 
itself. Large firms in particular have shown an increased propensity to patent recently, with 
patents being used to block patenting by other firms and/or force competitors into negotiations 
(Cohen et al. 2001). 
 Other important recent changes to the patent system include: a major influx of foreign 
applications (Griliches 1994); the advent of a specialized patent court, resulting in improved 
legal review and higher expected patent values (ibid.); and changing rates of technological 
development in several sectors (e.g. the previously mentioned IT sector, computers broadly, 
biotechnology, and pharmaceuticals). 
 Despite complications and changes, patents remain extremely good “within industry” 
indicators of firms’ relative innovative activity. There are strong statistical correlations between 
patenting and R&D expenditure both between firms in the same industry and, more weakly, 
within individual firms over time (Griliches 1990). 
 
 2.2.3.3  Publications 
 
 Academic publications might serve as a proxy for measuring innovation because 
innovation relies on results generated by basic research. Similarly, publications, measured by 
field, can serve as an indicator of the direction of innovation. 
 The use of publications is supported by their congruence with another measure of 
innovation: patents. “The probability that the scientist applies for one or more patents during a 
five-year interval is significantly related to whether or not the scientist has published one or more 
articles during the five-year period” (Stephan, Gurmu, Sumell, and Black 2002). The number of 
articles published by a scholar is correlated with their receipt of federal funding, showing a 
relationship between publications and R&D expenditure (ibid.). 
 Mixed support exists for publications as a measure of innovation. One paper, “examines 
the available United States data on academic research and development (R&D) expenditures and 
the number of papers published and the number of citations to these papers as possible measures 
of ‘output’ of this enterprise… for science and engineering as a whole, for five selected major 
fields, and at the individual university field level,” (Adams and Griliches 1996). Using a 
production function analysis of the data at the field level, they found: 
 

…significant diminishing returns to ‘‘own’’ R&D, with the R&D coefficients 
hovering around 0.5 for estimates with paper numbers as the dependent variable 
and around 0.6 if total citations are used as the dependent variable. When we 
substitute scientists and engineers in place of R&D as the right-hand side 
variables, the coefficient on papers rises from 0.5 to 0.8, and the coefficient on 
citations rises from 0.6 to 0.9, indicating systematic measurement problems with 
R&D as the sole input into the production of scientific output. But allowing for 
individual university field effects drives these numbers down significantly below 
unity. 
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 Because in the aggregate both paper numbers and citations are growing 
as fast or faster than R&D, this finding can be interpreted as leaving a major, yet 
unmeasured, role for the contribution of spillovers from other fields, other 
universities, and other countries. (Ibid.) 

 
 Although imperfect due to unaccounted-for spillovers, publications seem to represent a 
useful measure of innovation, especially when used to investigate high-tech fields that may be 
more closely linked to basic science and engineering work, or industries with strong links to 
university research. A further challenge to using publications arises in fields where private 
organizations run large research laboratories (accounting for a sizable fraction of the research 
activity in the field) and have little incentive to public academic papers. Especially in these areas, 
within-firm (or intra-firm) measures become more important. 
 
 2.2.3.4  Intra-Firm Measures 
 
 Four frequently used intra-firm measures of innovation exist. They include, 1) the 
percentage of workers engaged in innovative activities, or sometimes just the percent of 
“knowledge-workers” in a firm, 2) the number – often relative to the size of the firm – of 
innovation-related projects that the firm has completed, is undertaking, and/or is planning, 3) the 
amount of the firm’s budget dedicated to innovation activities, and 4) the percentage of the firm’s 
revenue currently being obtained from products or services innovated within a given number of 
prior years (OECD 1995). 
 The first three measures constitute inputs to innovation within a firm, while the fourth is 
an outcome measure. Other possible outcome measures include: market share gain, profit 
growth, and/or the return on investment from new products and services. 
 
 2.2.3.5  Other Measures 
 
 Other measures of innovation tend to be highly individualized to given fields, issues, 
and/or research questions. 
 The term “eco-innovation” broadly covers innovations with environmental benefits 
(Arundel and Kemp 2009). As such, measuring direct impacts on environmental externalities is a 
legitimate method of measuring innovation in this aggregate field. Moreover, eco-innovations do 
not necessarily need to be intended to have environmental benefits, but include “all products, 
processes, or organizational innovations” that do, and therefore measuring environmental 
benefits not only creates a gauge of innovation but also helps define the field of interest. 
Specifically, “more effort should be devoted towards direct measurement of eco-innovation 
outputs using documentary and digital sources to complement the current emphasis on 
innovation inputs such as R&D or patents.” (Ibid.) Also, they state, “Innovation can also be 
measured indirectly from changes in resource efficiency and productivity.” (Ibid.) This is similar 
to a production-shift method of measuring innovation. 
 Technology balance of payments (TBP) is a measure of innovation that “measures 
transactions between firms and sectors of different countries” (Archibugi 1988). In doing so, 
TBP detects differing rates of innovation, by country and sector, as well as creates an imperfect 
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measure of technology spillovers. “Among the merits of the technology balance of payments is 
that of giving data in terms of currency and thus indicating economic relevance of each 
individual technology transaction.” (Ibid.) Weaknesses of the technique include a lack of 
measurement of input resources to the technology being transferred, an exclusion of non-
commercial technologies, and an inability to detect within-firm and within-country technology 
flows (ibid.) 
 
 2.3  Innovation Policy 
 
 In this section I will look at the effects of policy instruments on innovation, particularly 
with respect to environmental innovation because it is an area of importance to the intersection 
of innovation and policy, and also discuss some complications associated with policies affecting 
environmental innovation. 
 
 2.3.1  Policy Instruments and Innovation: the Pitfalls 
 
 Policy tools are regularly employed to incentivize and mold innovation, including: taxes, 
permits, subsidies, intellectual property laws, public R&D efforts and funding, and direct 
regulations. The last three will look familiar, as I discussed them in the “Determinants of 
Innovation” section above; however, here I will go beyond making a case that these mechanisms 
influence innovation and discuss subtleties and impediments to their fostering the type of 
innovation that is socially desirable. I will not discuss innovation waivers and technology 
transfer mechanisms. 
 
 2.3.1.1  Market-Based Mechanisms 
 
 Taxes, subsidies, and permits are typically referred to as market-based mechanisms and 
are contrasted with regulation – often favorably by economists – as allowing a more flexible 
response to mitigating negative externalities or promoting positive ones. Moreover, market-based 
mechanisms should produce innovations at the lowest cost if calibrated correctly, and thereby 
produce the optimal net social benefits. However, theoretical results are often ambiguous and 
depend on assumptions of uncertain validity. “[W]hich policy instruments are most effective in 
encouraging innovation and diffusion depends upon specific elements of instrument design 
and/or characteristics of affected firms” (Jaffe and Stavins 1995). 
 Unless the levels of each market-mechanism are set appropriately, they may not induce 
innovation at all, or may induce path-dependent innovation trajectories that will not ultimately 
yield the most socially desirable results. For example, if the marginal social cost is low enough, 
compared to the profits associated with production and costs of innovation, and the tax reflects 
the marginal social cost, it will be less costly for firms to pay them and continue production than 
innovate. This is true even if innovation would be cost effective for the industry as a whole, if 
there is insufficient coordination to create cooperative research agreements and the R&D costs 
are too high for individual firms to receive full compensatory benefits. The same result holds 
even when there is sufficient coordination within an industry, but external linkages are weak, 
while external spillovers are large. Subsidies suffer from a symmetric problem. Proper 



 

16 

calibration of taxes and subsidies therefore is vital to their efficacy, but as it is often an iterative 
and opaque process, it is subject to political manipulation and inconsistency. Further, permits 
(e.g. cap-and-trade systems) have their own problems, including (again) political manipulation 
by powerful industries, environmental justice issues, and price volatility that can impact 
incentives to innovate (Taylor 2008a, Taylor 2008b), not to mention complex characteristics such 
as “offsets” that may or may not be monitorable, verifiable, and/or effective. 
 Market mechanisms run into further difficulties when issues of path-dependence are 
considered. Considering the case of pollution: theoretically, if the long-term trends in price and 
quantity limits associated with pollution are clear, then firms should derive an accurate net-
present-value for abatement technology and arrive at an optimal set of investments; however, 
price trends are highly volatile in practice and are anything but sure when faced with the 
scientific uncertainty associated with acceptable levels of many pollutants. This is only 
complicated by political uncertainty and the practical impacts of exogenous events such as global 
business cycles. Therefore, given the extreme variance of future price estimates, it might be in 
the interest of firms to pursue short-term “patches” or explore methods to evade regulation (such 
as outsourcing polluting components of their business abroad), resulting in higher long-term 
costs to the firm and/or society. 
 
 2.3.1.2  Intellectual Property Rights 
 
 The design of intellectual property laws can have subtle impacts on incentives to innovate 
as well. Consider the relationship between “leading” patent breadth, defined as protecting a 
patent against being supplanted by a new invention, and patent life, defined as the time from 
application to termination due to expiration or displacement, on diffusion of products and R&D 
costs: shorter lived but broad patents improve diffusion of novel products, while longer lived and 
“narrow” patents decrease R&D costs (O’Donoghue, Scotchmer, and Thisse 1998). In addition to 
the life span and degree of protection provided by intellectual property laws being significant to 
innovation incentives, the degree of harmonization among different nations’ intellectual property 
laws is also important as it typically serves to strengthen protections overall (Scotchmer 2004a). 
 A further potential pitfall of intellectual property rights is described by the inversion of a 
classic economic principle: 
 

The “tragedy of the commons” metaphor helps explain why people overuse 
shared resources. However, the recent proliferation of intellectual property rights 
in biomedical research suggests a different tragedy, an “anticommons” in which 
people underuse scarce resources because too many owners can block each other. 
Privatization of biomedical research must be more carefully deployed to sustain 
both upstream research and downstream product development. Otherwise, more 
intellectual property rights may lead paradoxically to fewer useful products for 
improving human health. (Heller and Eisenberg 1998) 
 

 2.3.1.3  Public R&D Funding 
 
 Public R&D funding is another widely used policy tool to spur innovation, particularly 
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where technologies are expected to mitigate negative externalities. Public R&D is often more 
politically palatable than prohibitions and effective in generating beneficial and widely available 
knowledge spillovers. However, analyzing the impact of such funding becomes complex due to 
those very spillovers, such that the performance of entire industries, rather than impacts to a 
single firm, becomes relevant (Klette, Moen, and Griliches 2000). Disincentives to utilize public 
funding become apparent when international spillovers are examined. “There are not institutions 
to harmonize public spending, and there are no international mechanisms to repatriate the 
spillovers it generates. As a consequence, there may be too little public sponsorship and too 
much intellectual property.” (Scotchmer 2004a). 
 
 2.3.1.4  Regulation 
 
 Finally, direct “command-and-control” regulation is as fraught as the other options. “In 
the presence of weak or nonexistent environmental policies, investments in the development and 
diffusion of new environmentally beneficial technologies are very likely to be less than would be 
socially desirable. Positive knowledge and adoption spillovers and information problems can 
further weaken innovation incentives.” (Jaffe, Newell, and Stavins 2004). Parallel problems exist 
with excessively stringent regulation, as it stifles not only socially desirable levels of production 
but, perversely, also stifles innovation as the relevant firms simply go out of business or cease 
producing the impacted product. When regulation takes the form of standards, incomplete 
information can trap industries into less efficient technology yielding more path-dependencies 
(Farrell and Saloner 1985). Again, information transparency, predictability, and proper 
calibration become the issues with regulation, and those face the same impediments noted above. 
 Another information problem with regulation exists in the asymmetry of knowledge 
between regulator and regulated firm about the marginal cost of compliance. Firms will tend to 
make conservative, often exaggerated, estimates of the cost of compliance to try to protect their 
profits. Several examples of this come from the auto industry where emission controls, seat belts,  
and fuel economy standards have each been vigorously opposed on the grounds that they would 
destroy the industry. They did not. 
 Recent empirical work has highlighted the complexities of using government regulation 
to foster innovation by pointing out that government actions have both spurred and inhibited the 
development of three solar energy technologies (Taylor et al. 2007). 
 Collectively, the difficulties associated with these various policy instruments might 
inspire despair and complacency; however, policies need not be monolithic and a proper 
combination of instruments can mitigate the weaknesses of each one individually. Exploring a 
congruent combination of policy measures is now a major (and highly complex) task for policy 
scholars. 
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 3  Monte Carlo Simulations Reveal High False Positive Rates with Regression 
Techniques Typical of Patent Data Research 

 
 3.1  Introduction 
 
 This chapter will critically examine some of the most common time series methods 
currently used to analyze patent data, and will demonstrate their higher than expected propensity 
for generating false positives (i.e. Type I errors). These results will therefore call into question a 
large number of studies that use such methods and suggest that their conclusions are likely 
erroneous. Many such studies are used to advocate for policy alternatives, such as increasing or 
decreasing funding for a particular type of research and development (R&D), or to predict 
impacts of implementing given policies. Therefore, ensuring that false positive rates are 
appropriately low when conducting policy-relevant research is itself a policy-relevant issue. 
Improving the quality and accuracy of policy-relevant research will improve the quality and 
efficacy of policy making. 
 Specifically, this chapter will criticize the use of several count-data (non-negative, integer 
valued) regression techniques that have become popular for use with time-series in the last 20 
years, including negative binomial regression (and thereby implicitly Poisson regression) and 
log-log regressions (which are used to transform positive-valued variables so as to interpret their 
coefficients as elasticities). Section 3.2.2 will look at several patent-data models using these 
methods in prominent recent papers, and then discuss why those methods are likely flawed. After 
that discussion, I will develop a set of techniques for analyzing the reliability of those regression 
models applied to patent data, and then apply those techniques to regressions with my own patent 
data (which will be used further in chapter four). 
 In addition, this chapter will provide an empirical (simulation based) method for 
excluding forms of analysis from use on time-series1 patent data. This method may generalize to 
other types of time-series data, but examining that possibility is beyond the scope of this work. 
 
 3.2  Background 
 
 This section will provide background details on the differences between stationary and 
non-stationary time series, known issues with analyzing non-stationary data, and patent data as a 
type of non-stationary data – or at least data for which non-stationarity is likely and unable to be 
ruled out. 
 
 3.2.1  Non-stationary Data and Regression Modeling 
 
 As early as 1974, research indicated problems with using ordinary least squares 
regressions (OLS) on time series that could be modeled as random walks – specifically, OLS 
generated high rates of false positives, “spurious regressions,” when used on random walks 
(Granger and Newbold 1974). In a random walk, the prior time period is taken as the starting 
point for changes in data in the current period, rather than starting from some typical level. This 
                                                 
1 I extend the application of this analysis, in a limited manner, to panel data (a.k.a. Longitudinal, or cross-sectional 

time-series) in Appendix C. 
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causes them to “wander” (see Graph 3.2.1.2 below). Equation 1, below, is the classic formulation 
for the data generating function of a random walk. 
 
 
yi = yi-1 + e  (1) 
 
 
 In this way, errors persist in their impact over time, accumulating. If the coefficient on the 
prior period is less than 1 in the data generating function, the impact of the error term from that 
time period will tend to die out over time; however, if the coefficient equals one, the error's 
impact will persist permanently. A data generating process which includes the prior period and 
has a coefficient of 1 on that period is said to have a “unit-root”.  
 Technically speaking, if the characteristic equation of a stochastic process has 1 as one of 
its roots, that process is said to have a “unit-root,” and is also called a “non-stationary” process, 
since its statistical properties are not constant over time. The variance of a non-stationary time 
series blows up to infinity as time goes to infinity (Dickey, Bell, and Miller 1986). 
 “Stationary” processes either do not include the prior period's level in their data 
generating process (i.e. the data generated in each time period is truly independent of prior 
periods) or the impact of prior periods decreases with time. 
 Graphically, the differences between stationary and non-stationary processes are 
pronounced. Graph 3.2.1.1 (below) shows a randomly generated stationary process with a mean 
of 1000 and a standard deviation of 200. The line fluctuates and regularly crosses the mean line. 
Relatively few data points are temporally clustered, and the magnitude in variation of the values 
seems fairly consistent over time. The line never deviates by more than approximately 2.5 
standard deviations above or below the mean, which is reasonable for a 35 data point set. 
 A consistent data generating process that has no memory of prior level is just as likely to 
have an “error” above the average level as below in the next period, so it is unlikely to have 
values clustered above or below the mean for long periods. Without this property, the mean 
doesn't predict anything about future levels. A memoryless data generating process is also 
unlikely to produce large deviations from the mean, since each “error” is independently drawn 
from a normal distribution. 
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Graph 3.2.1.1: Stationary Series Tend to Fluctuate Around an Average Level 
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This graph of a stationary random process fluctuates around a mean level of 1000, with a standard deviation of 
200. This process shown has a P value of 0.0017 on the Phillips-Perron test, with a trend term, indicating that there 
is less than a 2 in 1000 chance that the data generating process is actually non-stationary. A OLS regression of this 
data series against time yields a constant term of 997 (SE: 67), and correctly determines the trend as not being 
significantly different from zero. 
 
 Conversely, graph 3.2.1.2 (below) shows a random-walk: a non-stationary process that I 
will use later in this essay to generate synthetic patent data for Monte Carlo simulations. The line 
of the non-stationary graph tends to meander rather than fluctuate, with temporally clustered 
values and relatively few crossings of the “mean” line. While a mean can technically be 
constructed for that line, and lies at approximately 77, it has no importance, since the best 
predictor of the next value of a non-stationary process is the current value (Beck and Katz 2009). 
While the starting point is 91, subsequent deviations are incrementally small (each error term 
only has a standard deviation of 12.86) but accumulate to generate large deviations from that 
constructed mean. The most extreme values of that graph are 120 on the high side, and 21 on the 
low side, which are 3.34 and 4.35 standard deviations from the mean, respectively. These values 
are far more extreme than what one would expect in a data set with only 35 points. 
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Graph 3.2.1.2: Non-Stationary Series Tend to Meander and Have Clustered Values 
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This graph of a non-stationary random process – the same process used in the Monte Carlo simulations below – 
shows how random-walks tend to meander over time. The first period is a normally distributed random variable with 
a mean of 60 and standard deviation of 30, yielding an intercept of 91 in this example. Subsequent data points are 
generated by accumulating error terms distributed as random Gaussian function with mean -0.68 and a standard 
deviation of 12.86. A Phillips-Perron test, with a trend term, correctly fails to reject the null hypothesis that this data 
is non-stationary (P=0.55), while an OLS regression of this data versus time produces spurious results: an constant 
estimate of  113 (SE: 8.5) and a trend coefficient of -2 (SE: 0.38). 
 
 The issue of unit-roots' impact on the statistical validity of simple regressions with 
“levels” data (i.e. raw measurement data, as opposed to “difference” data where the level of the 
prior year has been subtracted) was well understood by the mid-1980s (Sargan and Bhargava 
1983a and b). Authors used both analytical and simulation techniques to determine that OLS on 
non-stationary data returned very high rates of false positives and spuriously high R-squared 
values. 
 This problem with using OLS on non-stationary data became a serious concern for 
econometricians, since the great bulk of macro-economic data could not be definitively shown to 
not be non-stationary despite decades of scholarship (Nelson and Plosser 1982; Libanio 2005). In 
fact, while not explicitly non-stationary, many conventional macro-economic models imply non-
stationary processes from their results: the Hahn and Solow (1997) model does not yield a fixed 
or stable “natural rate” of unemployment, and aggregate demand shocks change the long-term 
path of the model. 
 Table 3.2.1.1 (below) shows the results of two unit-root tests on 35 years of observations 
of three classic macro-economic data series that are often included in statistical analyses as 
independent variables, including a composite of energy prices, US Gross Domestic Product 
(USGDP), and the price level of the S&P 500 composite stock index. Both tests strongly fail to 
reject the non-stationarity null hypothesis on all three series. However, in one sense, perfect non-
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stationarity cannot be strictly true for macro-economic data: we would never expect any of these 
series to actually meander astronomically high as time went toward infinity, nor would we expect 
their variances to grow to infinity (Beck and Katz 2009). Moreover, tests of non-stationarity have 
great difficulty distinguishing between actual and nearly non-stationary processes in a finite data 
set (West 1988). These tests can also be sensitive to the number of lags included, the inclusion or 
lack of intercept and trend terms2, and/or the existence of structural changes (Smith 1999).  
 
Table 3.2.1.1: Macro-Economic Data Often Appear Non-Stationary 

The two most commonly used tests for non-stationarity – the Augmented Dickey Fuller test and the Phillips-Perron 
test – fail to reject the null hypothesis of non-stationarity on frequently used macro-economic data, including 35 
years of energy prices (2000 dollars), USGDP (2005 dollars) and stock prices (S&P 500 Index price in 2008 dollars). 
*Energy prices here are a consumption weighted basket of real prices for fossil-fuels used in electricity production. 
 
 Nevertheless, a short-run model that accurately approximates the statistical behavior of 
these series may have unit-roots in its construction. A model that may be false in the asymptotic 
case may still be locally useful (e.g. Newtonian physics). The behavior of the energy price 
composite shown in Graph 3.2.1.3 (below) is remarkably similar to the graph of the non-
stationary synthetic data above. As with the non-stationary synthetic data, the standard deviation 
of the changes in energy prices (220) is far smaller than the standard deviation of the levels data 
(615), the values are temporally clustered, the series shows a meandering pattern, and – using the 
standard deviation of the changes – the extreme values fall very far from the mean value of 
$1,997. Therefore, concerns about the impact of non-stationarity on statistical validity are 
applicable to data series that show similar traits in the short run, even if the variance of the series 
will not actually grow to infinity. 
 
 

                                                 
2 Merely removing trends from data by controlling for time is often insufficient to correct for non-stationarity, and 

the imposition of a trend in “difference stationary” data can even generate spurious results itself (Raffalovich 
1994). 

Energy Prices* 0.99 0.99
USGDP 0.71 0.70
S&P 500 0.70 0.51

Augmented 
Dickey Fuller

Phillips-
Perron
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Graph 3.2.1.3: Energy Prices Exhibit Typical Non-Stationary Characteristics 
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A consumption-weighted basket of prices of fossil-fuels used in electricity production meanders in a manner typical 
of non-stationary data. Moreover, there is no reason to assume such data would be stationary since energy extraction 
technology, mix of fuels, and scarcity of resources changes with time, yielding no stable long term average. 
 
 Despite the well understood impact of non-stationary data on the validity of OLS results, 
little to no work has been done to explore similar issues with other regression equations such as 
Poisson or negative binomial. Unlike OLS, these models do not assume normality of the 
dependent variable and have therefore been useful for statistical exploration of count-data, which 
violate the normality assumption (Brandt, Williams, and Fordham 1998). Patent data is a 
prominent example of count-data. 
 
 3.2.2  Patent Data and Other Count-Data Models 
 
 Innovation scholars who use patent data regularly employ time-series or panel data in 
their analyses. The value of using such data is its capacity to control for within-firm effects – 
such as innovative productivity (Lerner and Seru 2015), reveal the impact of policy events or 
other treatment effects, and unique ability to chart the evolution of an industry's intellectual 
property or progress of a sector through the stages of some radical technological change (Katila 
2000). 
 Early researchers using regressions to analyze patent data were frustrated by the fact that 
count-data (non-negative, integer valued data) provided statistically unreliable results when 
using OLS (King 1988, 1989a, 1989b). From this discovery emerged an initial preference for 
using Poisson models with patent counts over time (Brandt et al. 1998), and eventually negative 
binomial regressions due to their lack of constraint by the assumption of an equal mean and 
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variance (Cameron and Trivedi 1990, Guo 1996). Also, in the case of mean and variance 
equality, negative binomial regressions return identical results to Poisson regressions (ibid.). 
 As a result, negative binomial regressions and related forms (such as zero-inflated 
negative binomial regressions) grew in frequency of use and popularity through the late 1990s 
and early 2000s. Macroeconomic and organizational-behavior researchers found negative 
binomial models particularly useful, since many of the data they used (such as GDP, capital 
investment, R&D investment, employment, patents, oil prices, etc.) were count-data (or could 
easily be treated as counts). These data were analyzable with the negative binomial form, and 
that form helped avoid OLS which had been so effectively criticized. 
 Many key and highly cited papers from this period (with hundreds, often thousands of 
citations by other research), including ones on innovation clusters (Baptista and Swann 1998), 
patent-data models (Blundell, Griffith, and Van Reenen 1995), industry process studies (Benner 
and Tushman 2002), inter-firm alliances (Stuart 2000), and environmental innovation 
(Brunnermeier and Cohen 2003) used negative binomial regression models to find new and 
highly significant correlations. 
 Many, more recent, prominent patent-data research papers (Lee 2006, Johnstone et al. 
2010, and Popp 2005) rely upon negative binomial models, or results from other papers using 
negative binomial models, to determine patenting-related relationships. These modeling efforts 
have been generally well regarded: Jaegul Lee won the 2006 Alfred P. Sloan Foundation 
Dissertation Award for his study of automotive emissions control technologies, which utilized 
negative binomial regressions on automotive patent data. 
 Other alternative specifications have been employed, such as log-log regressions, to avoid 
the problems with over-dispersion, and to allow for interpretation of coefficients as elasticities 
(Popp 2002). Log-log regressions use OLS, but take logs of both independent and dependent 
variables before doing the regression. This means that changes in the independent variables are 
interpreted as percentages, and their impacts on the dependent variables are also taken to be 
percentages: hence the elasticity interpretation. 
 Importantly, much of the current patent related research uses panel or time-series data to 
establish relationships with other series such as prices, research funding, political variables, 
and/or regulatory events ( Lee 2006, Blundell et al. 1995, Johnstone et al. 2010, Popp 2005, and 
Popp 2002). When using macro-economic data such as these, concerns about non-stationarity 
raised in the previous section become relevant again. 
 While working with data on patenting rates in renewable energy technologies, I first 
discovered that all of the data series I had compiled were non-stationary (see Graph 3.2.2.1 and 
Table 3.2.2.1, below), and therefore were likely yielding spurious results in my OLS regressions. 
As I read other patent-based papers, I encountered the regular use of negative binomial models 
and log-log models in preference over OLS due to their aforementioned relevance to count-data. 
My subsequent use of negative binomial models returned similarly high R-squared values and 
similarly significant coefficients to my earlier work, and I became suspicious. Taking first 
differences of the data resolved the non-stationarity problem but also dramatically reduced the 
number of significant results my models generated. 
 In retrospect, discovering non-stationarity in the data was unsurprising: there is no logical 
reason to believe that there is a “normal” level of patenting in a given technology that should be 
returned to over time; no mean level of patenting to revert to. A given technology may be in any 
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number of states, from early stages of discovery – aka breakthroughs, to initial development and 
popularization (where product innovations dominate), to later development and evolution into 
maturity (where process and application innovations dominate), to eventual decline and 
obsolescence (where few if any innovations occur) (Abernathy and Utterback 1978, Anderson 
and Tushman 1990, Tushman and Rosenkopf 1992). Insofar as patenting reflects innovative 
activity, patenting may similarly rise and fall based on the technology life-cycle. Given the 
eventual obsolescence of many or most technologies, the “long run” patenting rate for any 
particular one might be zero. Sectors also rise and fall with time (e.g. computers and sailing 
ships) even when their patenting rates never fall to zero; therefore, establishing a “mean” level of 
patenting for some technology or sector might not be possible. 
 
Graph 3.2.2.1: Patent-Data Series for Four Renewable Energy Technologies 
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Table 3.2.2.1: All Renewable Energy Technology Patent Series are Non-Stationary 

Augmented Dickey Fuller and Phillips-Perron tests, with a trend term, fail to reject the null hypothesis of non-
stationarity for any of four renewable-energy technology patent series, although they come close in the case of Solar 
Photovoltaics. 
 

Wind Turbines 0.76 0.82
Solar Photovoltaic 0.10 0.07
Solar Thermal Electric 0.31 0.21
Solar Water Heating 0.76 0.50

Augmented 
Dickey Fuller

Phillips 
Perron
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 In fact, patenting is deliberately not a memoryless process. Patents specifically refer to 
“prior art” in a technology field (or related field) in order to appropriately narrow their 
application (lest they be determined to be overly broad), provide context, and support their 
claims to novelty. Patent data can be thought of as intentionally non-stationary. The only 
remaining question then is if it can be appropriately thought of as a random walk. 
 Below, I'll describe my methods for generating random walks that mimic the statistical 
characteristics of my renewable-energy patent-data. I will then detail the results of using those 
synthetic data series in Monte Carlo simulations, and show how synthetic patent-data produces 
high rates of spurious regressions. 
 
 3.3  Hypotheses 
 
Null Hypothesis: Non-stationary count-data, and other data with statistically similar 
characteristics to patent series, are not producing higher than appropriate rates of spurious 
correlations with their time-series covariates when used in popular regression equations, 
including negative binomial and log-log.  
 
Alternative Hypothesis: Non-stationary count-data, with similar statistical characteristics to 
patent series, produce a higher than appropriate rate of spurious correlations when used in 
negative binomial and/or log-log regressions – as they are know to produce when used in OLS 
regressions. 
 
 3.4  Methods 
 
 The central question of this essay is: Do regression techniques typically applied to non-
stationary time-series patent data generate spurious results similar to those OLS is known to 
produce? Since Monte Carlo techniques have been successfully used in the past to test such 
issues (Granger and Newbold 1974), I decided to generate random walks as synthetic “patent-
data” (with similar statistical properties to the actual renewable energy patent-data I was using 
for the second essay of my dissertation) and test them using a variety of regression models 
against non-stationary macro-economic data (specifically, United States Gross Domestic Product 
[USGDP] – a frequently used co-variate in regression analysis – and a non-stationary price series 
I had generated for the renewable energy patent-data research – a consumption weighted basket 
of fossil-fuel prices as represented in electric power generation). If the synthetic patent-data 
based regressions produced more than the expected rate of false-positives (5 percent when using 
a standard 95 percent confidence interval for the coefficients of the covariates), then I would be 
able to reject my null hypothesis, and confirm that patent-data regressions using non-stationary 
covariates were vulnerable to higher than expected spurious correlation rates. I also generate 
stationary synthetic data as a control. 
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 3.4.1  Non-Stationary Synthetic Data Construction 
 
 The general form of the synthetic data used in the simulations is a random walk, 
described by the equations: 
 
 
 y1 = a, and for all t>1, yt = yt-1+ e or 1 if yt<1  (2) 
 
 
 The use of a non-zero centered first period “a” helps both align the synthetic data with the 
statistical properties of the renewable-energy patent-data and ensure that few of the simulations 
have synthetic “patent” series that immediately fall to zero and stay there. The “a” term is a 
normally distributed random variable with a mean of 60 and a standard deviation of 30. Using 
this random intercept generates synthetic series that span the range of intercepts of the 
renewable-energy patent-data the synthetic data is modeled on. 
 After the first period, the random-walk component of the synthetic data begins, with each 
period accumulating the error terms from prior periods. The error terms are normally distributed 
random variables with a mean of -0.68 and a standard deviation of 12.86. These values were 
selected to generate a set of synthetic series such that the statistical properties of the set of these 
series would span (within two standard deviations) the statistical properties of the four 
renewable-energy patent-data series. The statistical properties of both the synthetic series set and 
the renewable-energy data are presented in Table 2.5.1 in the next section. 
 Rounding up negative or zero values to 1 serves three purposes: first, it reflects the fact 
that it is not possible to have a negative patenting rate (count data is zero truncated); second, it 
generates similar patterns to the renewable-energy patent-data the synthetic data is designed to 
mimic (patenting in several of those series falls to low levels – 2 patents per year – but never 
fully to zero); and third, rounding up to one allows log transformation of the synthetic data for 
the log-log regression Monte Carlo simulations (the log of zero is undefined). Larger 
aggregations of patent data (the entire set of US patents, a given patent class, or even a sub-class) 
never fall to zero, but most patent-data research is conducted on narrowly defined technologies 
or technology areas that may experience large drops in patenting, especially in response to policy 
events or growing patenting in a competing technology. 
 Finally, rounding values to the nearest integer reflects the fact that patent data are count 
values, i.e. you cannot have a fraction of a patent. 
 
 3.4.2  Testing the Non-Stationary Synthetic Data and Comparing it to Real Data 
 
 I compute the average mean, average standard deviation, average minimums and average 
maximums of the set of 10,000 synthetic patent-data series, with standard deviations of each 
average statistic. These test statistics should be relatively close to the values of the renewable-
energy patent-data series, i.e. within two standard deviations. 
 Moreover, comparison between the results of various regression types should be similar 
for the non-stationary synthetic data and actual renewable-energy data. In other words, if OLS, 
negative binomial, and log-log regressions produce similar results for the actual data series, they 
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should also produce similar results for the synthetic data; if they produce markedly different 
results for the actual data, they should do likewise for the synthetic data. If this is not the case, it 
is likely that the synthetic data does not accurately mimic the behavior of actual patent data. 
 
 3.4.3  Generating Stationary Synthetic Data as a Control 
 
 In addition to the non-stationary synthetic data, I generate a stationary synthetic data set, 
with each period being a normally distributed random variable with mean of 1000 and standard 
deviation of 200 (so it will be unlikely to fall below zero). I then conduct Monte Carlo 
simulations regressing the stationary synthetic data against macro-economic data. These 
regressions should produce the expected rate of false-positives (approximately 5 percent), and 
should produce similar rates of false-positives to the first-differences of the non-stationary 
synthetic data. Failure to achieve these results will suggest problems with the synthetic data or 
other elements of my approach. 
 
 3.4.4  Selecting Regressions to Use with Synthetic Data 
 
 I include OLS – known to generate spurious results – as a test to show that high rates of 
false positives are indeed possible with these series. If false positives are close to the expected 
level of 5 percent, with OLS on the levels data, then a flaw in the construction of the series 
would be apparent. Moreover, I include OLS on the first differences of the data as an inverse of 
the previously mentioned test: the first differences of 98.5 percent of the synthetic data test as 
stationary, so high rates of false positives should not occur using first differences, and if they do 
it points to a flaw in the synthetic data construction. 
 Due to their previously detailed popularity in patent-data models, I also include negative 
binomial and log-log regression equations.3 If false-positive rates are similar to elevated false-
positive rates for the OLS models, problems with using negative binomial and log-log 
specifications with patent-data will become apparent. Conversely, if false-positive rates are close 
to 5 percent, and similar to levels seen with stationary synthetic data, then the appropriateness of 
those model specifications will be revealed. While I would like to also analyze first differences 
using negative binomial and log-log models, the presence of negative numbers in the first 
differences precludes use of the negative binomial distribution, and the presence of zeros 
precludes the taking of logs. 
 
 3.5  Results 
 
 3.5.1  Comparing Synthetic Data and Renewable-Energy Patents 
 
 The statistical characteristics of the non-stationary synthetic data sets compare well to the 

                                                 
3 Monte Carlo simulations for the negative binomial regressions required segmentation and use of multiple seeds 

for STATA's random number generator. Large numbers of simulated regressions (typically upwards of 500) 
tended to eventually generate one regression that would become “trapped” in a convexity or discontinuity during 
successive iterations and thereby foul the entire run. Segmentation allowed for smaller runs that avoided fouling, 
from which I then summed the results for a full total of 10,000 runs. 
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characteristics of the actual renewable-energy patent data: i.e. the actual means, standard 
deviations, minimums, and maximums all fall within a two standard deviation range of the 
synthetic data statistics. Moreover, the coefficients of variation (CV) for the actual data span the 
range from 0.42 to 1.16, with a mean value of 0.76. The mean CV for the synthetic data (0.83) 
falls close to the mean of the actual data CVs, and the standard deviation of the synthetic data 
CVs (also 0.83) indicates that CVs for all four actual data series fall comfortably within the 
range of simulated data series. See Table 3.5.1.1 below. 
 
Table 3.5.1.1: Statistical Characteristics of Energy Patent Data and Simulated Data 

  Mean 
Standard 
Deviation Minimum Maximum 

Coefficient 
of Variation 

Wind Turbines 14.77 9.53 3 37 0.65 
Solar Photovoltaic 79.68 33.26 24 163 0.42 
Solar Thermal Electric 11.77 9.69 2 37 0.82 
Solar Water Heating 34.74 40.33 2 163 1.16 
Simulated Data* 55.66 23.36 20.13 101.78 0.83 

(Standard Deviations)** (41.9) (10.43) (28.24) (49.52) (0.83) 
*Each value for the simulated data is the average of 10,000 simulated data sets, i.e. the “mean” reported here is the 
average of all 10,000 means, the “standard deviation” is the average of 10,000 standard deviations, etc. 
**Standard deviations shown here are for the averages of the simulated data above them. 
 
 The next point of comparison between the actual renewable-energy data and the synthetic 
data concerns the results of the OLS, negative binomial, and log-log regressions. Table 3.5.1.2 
(below) shows that each regression type generates a similar pattern of significant (or not) results 
when the actual data is regressed against USGDP (2005 dollars) and my consumption-weighted 
basket of fossil-fuel prices (2000 dollars). For example, when wind turbine patenting is regressed 
against USGDP it fails to generate significant coefficients with any of the three techniques. All 
other regressions generate significant results. Moreover, the p-values for each regression are of a 
similar magnitude. The non-stationary synthetic data portion of this comparison will be 
demonstrated in the next section as I present the results of the synthetic data Monte Carlo 
simulations. 
 
Table 3.5.1.2: Regressions for Energy Patent Data and Macro-Economic Variables 
  OLS Negative Binomial Log-Log 

  USGDP 
Energy 
Prices USGDP 

Energy 
Prices USGDP 

Energy 
Prices 

  P-Value P-Vale P-Value P-Vale P-Value P-Vale 
Wind 0.690 0.002 0.678 0.001 0.725 0.002 
PV 0.001 0.000 0.000 0.000 0.002 0.000 
STE 0.029 0.002 0.026 0.000 0.013 0.000 
SWH 0.000 0.000 0.000 0.000 0.000 0.000 
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 3.5.2  Monte Carlo Simulations using Synthetic Data 
 
 Table 3.5.2.1 shows the regression results for non-stationary synthetic data Monte Carlo 
simulations. In 10,000 simulations, negative binomial, log-log, and OLS all show very high 
false-positive rates when conducted on non-stationary synthetic dependent variables with non-
stationary actual independent variables. False-positive rates range from 59.7 percent to 78.9 
percent, depending on the technique and covariate. This range is consistent with data from 
Granger and Newbold (1974) for OLS. Moreover, the percentages of false positives for each 
independent variable are similar across all three regression types: this completes the comparison 
between actual renewable-energy data and the non-stationary synthetic data begun above – 
regression results are consistent between techniques on the non-stationary synthetic data, just as 
they were consistent between techniques with the actual data. 
 Negative binomial, log-log, and OLS regressions on the stationary synthetic dependent 
variable show false-positive rates  nearly in line with expectations in the case of both 
independent variables (see Table 3.5.2.1 below). False-positive rates range from 5.21 percent to 
5.83 percent, which are slightly elevated over the expected rate of 5 percent, but not egregiously 
so, and are likely due to forcing a lower bound on the synthetic data. Similarly, the first-
differences (labeled “Changes” in the table) on the non-stationary synthetic data – which creates 
stationary results – show false-positive rates of 5.61 and 5.67 percent for the two covariates in 
the OLS regressions. These are similar to the rates for the stationary synthetic data. 
 
Table 3.5.2.1: False-Positive* Rates for Synthetic Data and Macro-Economic Variables 

*False positives here are P values less than 0.05. 

OLS Neg. Binomial Log-Log

USGDP USGDP USGDP

78.90% 61.80% 78.84% 59.70% 78.39% 59.73%

5.71% 5.39% 5.83% 5.64% 5.55% 5.21%

5.61% 5.67%

Energy 
Prices

Energy 
Prices

Energy 
Prices

Non-Stationary 
Synthetic Data

Stationary 
Synthetic Data

Changes on Non-
Stat. Data
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 3.6  Conclusions: 
 
 Negative binomial and log-log regressions have become popular with scholars who 
analyze patent data, but the validity of their research is seriously called into question by the 
results presented above. When synthetic patent data is regressed in a Monte Carlo simulation 
against common covariates like USGDP and a price series (themselves non-stationary), 
exceptionally high false-positive rates are observed. This indicates a sizable fraction of the 
policy-relevant patent and innovation literature may rest on very shaky ground. 
 The results also demonstrate the capacity for synthetic random walks to accurately mimic 
the behavior of patent-data series. While some researchers have questioned the ability to detect 
true non-stationarity and/or the importance of non-stationarity in macro-economic data (West 
1988, Smith 1999), my results show that it isn’t necessary to prove that patent-data series (or any 
other data for that matter) are random walks, it is sufficient to show that they cannot be 
distinguished from random walks in order to call into question the results of papers that rely on 
these techniques. With false positives likely in the range of 60 to 80 percent, the inability to rule 
out a random walk as the data generating process means we cannot trust results from these 
regression methods when used with non-stationary covariates on patent data. It also may explain 
the popularity of some of these techniques, since using them has a high probability of generating 
spurious “statistically significant” results. 
 Finally, these results demonstrate the potential for Monte Carlo simulations to be used as 
a validating method when concerns about the legitimacy of a more exotic statistical technique 
arise.4 The question can be explored by generating a large number of synthetic data sets with 
similar statistical properties to the dependent variables and regressing them against relevant 
independent variables. When false positive rates are found to be appropriate, researchers can 
proceed with more confidence. 

                                                 
4 Some researchers claim that panel data (i.e. longitudinal) is the solution to the problems I present here. In the 

asymptote (i.e. as t [the time index] and i [the identification index] go to infinity) non-stationarity stops being a 
problem (Phillips and Moon 2007); however, given the typical size of panels used in statistical research, non-
stationarity continues to be an issue. See Appendix C for a demonstration of this. 
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 4  Public R&D Investment and Renewable Energy Invention 
 
 4.1  Introduction 
 
 Several highly regarded and highly cited papers have established a strong relationship 
between research and development (R&D) expenditures and invention (as measured by 
patenting), both between firms at a given point in time, and longitudinally within a firm (Hall, 
Griliches, and Hausman 1986; and Griliches 1990). Moreover, these relationships were 
documented to be highly explanatory, with R-squareds of 0.9 in the cross-sectional case and 0.3 
in the longitudinal case, and fairly contemporaneous with very small lag effects if any (ibid.). 
However, these results were for private R&D expenditures within the manufacturing sector, 
prompting the question: do these results extend to all sectors, technologies, and/or funding 
sources? 
 Margolis and Kammen (1999), claim that public R&D funding for renewable energy 
technologies and patenting in those sectors have been correlated, and that reduced public funding 
in those technologies is likely to inhibit innovation therein. This sentiment is echoed in Nemet 
and Kammen (2007). Popp, Newel, and Jaffe (2009) go further and claim that: 
 

As environmental economic research on technological change has grown, the 
importance of considering market failures for knowledge, as well as traditional 
environmental externalities, has been emphasized. In particular, calls for 
increased government support for environmentally friendly R&D are motivated 
by the need to overcome such market failures. 
 

 While these statements seem logical on their surface, there is no reason we should 
presume they are correct without supporting evidence. Also, while casual inspection of R&D 
funding for renewables graphed with patenting levels suggests a correlation, a slightly more 
detailed examination reveals that annual patent counts sometimes rise ahead of increases in 
funding. This is further complicated by the fact that total funding amounts are recorded in the 
first year of a multi-year grant since the money has been allocated by the Federal government 
even if it has not been dispersed, meaning that much or most of the money may not be 
distributed for several years after the funds are recorded as having been given (USDOE 1980). 
This compounds the observation that patenting levels may rise ahead of funding increases: those 
funding increases may not actually be fully experienced by the recipient organizations for several 
years after patenting levels are observed to rise. An empirical investigation of the relationship 
between federal R&D money and patenting in renewable-energy technology is therefore 
warranted. 
 Within each of these papers, as well as within countless popular articles discussing 
renewable energy and the role for government, there are explicit or implicit causal links claimed 
between government R&D spending and rates of invention within a given technology. A glace at 
graphs showing patenting rates and R&D expenditures seems to validate those links.5 
Nevertheless, these claims deserve further examination, especially given the growing importance 
of developing alternative energy sources in fighting climate change, oil dependency, and the 
                                                 
5 See the first chart in Nemet and Kammen (2007). 
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effects of resource scarcity.  
 While Hall, Griliches, and Hausman (1986) found that patenting success was not 
predictive of future R&D spending levels within a given firm, the relationship between public 
R&D funding and patenting is likely to be substantively different. In the within-firm case,  
decisions about patenting are primarily driven by expected profits from having exclusive rights 
to inventions (or protecting a stream of profits from competing intellectual property claims), and 
therefore one would not necessarily expect past inventiveness to affect future research spending. 
Conversely, patenting serves a broader set of purposes for public entities or public-private 
partnerships. Patents may serve as evidence of research success, help career advancement, 
inform grant review decisions, and form the basis for future grant applications and/or program 
development. In other words, patents may have a more complex relationship with R&D funding 
where public money is involved, and patents might therefore drive future R&D levels. 
 
 4.2  Background 
 
 In this section, I explore the origin of public interest in renewable-energy technologies, 
the growth and decline of federal R&D funding, and general development of four renewable 
energy technologies: wind turbines, solar photovoltaic cells, solar thermal electric systems, and 
solar water heating systems. 
 I then describe the results of four (lightly) structured interviews with experts in the area 
of renewable-energy technology and technology funding. I address issues of R&D investment 
decision making in renewable-energy technology firms, impressions of the role of intellectual 
property types, and specific motivations to generate patents. 
 
 4.2.1  Wind Power 
 
 The first federal research efforts for wind power focused on funding aerospace 
corporations to develop high-output horizontal axis wind turbines, building on existing airplane 
technologies (Sawin 2001). This approach originated with the Federal Wind Energy Program 
(FWEP), passed in 1973 in response to the oil crisis. In the decade prior to 1973, federal R&D 
investment in energy had been overwhelmingly directed at nuclear power – specifically the 
further development of fission reactors (Dooley 2008) – and renewables were a relatively low 
federal priority. 
 The FWEP was primarily concerned with developing commercial-grade wind turbines as 
fast as possible (Raytheon 1980), and to do so it aimed to promote innovation, bolster wind 
turbine manufacturing, and diminish other barriers such as negative public perceptions and 
environmental externalities (CEC 1981). In 1977 the United States Department of Energy 
(USDOE) took over administration of all wind-power funding and development programs 
(USDOE 1980). 
 In 1980, Congress passed the Wind Energy Systems Act, which set three primary goals to 
be achieved by the end of 1988: 1) to advance technologies that would make wind-power 
commercially competitive and widely available, 2) to lower the price of wind generated 
electricity to the level of conventionally generated electricity, and 3) to install at least 800 
megawatts of wind generated electrical capacity. The early years of funding were focused on 
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technology development and wind resource evaluation, with the build-out to occur toward the 
end of the program (WESA 1980). However, much of the money allocated was never actually 
distributed, due to the Reagan Administration cutting renewable-energy funding. By 1986, 
turbine failures and maintenance costs drove research efforts toward increasing reliability, longer 
component lifespan, and higher cost-effectiveness (SERI 1987). 
 During the early years, from 1974 to 1981, annual federal funding increased each year, 
peaking at $160 million per year; however, following the Reagan cuts, funding rapidly fell to 
under $65 million per year, where it stayed through 2008. Federal funds dipped as low as $17 
million per year during that period and never rose above $62 million. See Graph 4.2.1.1, below.  
 
Graph 4.2.1.1: Wind Turbine Patenting Rates and Federal R&D Spending 
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 4.2.2  Solar Power 
 
 In 1974, congress expanded the scope of the FWEP to include solar power. The initial 
expansion envisioned an aggressive program that would invest one billion dollars (4.9 billion 
2016 dollars) in new technologies (SERDDA 1974). That same year, the Energy Research and 
Development Administration (ERDA) was created by the Energy Reorganization Act of 1974, 
and solar technologies were explicitly made a main focus of the new agency (ERA 1974). In 
1977, ERDA solar projects and funding was folded into the USDOE as the Solar Energy 
Research Institute, which later changed its name to the National Renewable Energy Laboratory 
(NREL) (USDOE 1980).  
  Solar power consists of three dissimilar technologies: 1) solar photovoltaic cells (PV) 
that convert sunlight directly into electricity via photons acting to excite electrons in a material, 
and thereby induce a current; 2) solar thermal electricity (STE), which consists of reflective 
panels or troughs that concentrate sunlight on an vessel containing a liquid or gaseous material 
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(often molten salts) that will then use that heat to power a turbine; and, 3) solar water heating 
(SWH), the simplest of the three technologies, which typically consists of a tank or piping 
system, painted black, and mounted on a roof so as to heat water (or pre-heat water that will then 
flow into a conventional water heater, and thereby reduce energy required to fully heat it [Block 
and Harrison 1997]) as it is circulated. More detailed descriptions of the three solar technologies 
and their mechanisms of operation can be found in Taylor et al. (2007). 
 At the early stage of federal involvement, solar PV and solar thermal electric generation 
was far more expensive than wind or solar water heating, with costs frequently two orders of 
magnitude (or more) higher than those of coal fired generation. “The OTA [Office of Technology 
Assessment] analysis also suggested that the federal effort to develop photovoltaic technologies 
was misplaced given the nation’s urgent need for increased domestic energy production and 
recommended that the solar program focus instead on solar water and space heating which were 
technologically and economically “available now” (OTA 1978).” (Dooley 2008). 
 Despite the differences in readiness for commercialization, all three technologies received 
approximately equivalent levels of funding, and saw nearly identical patterns of  funding growth 
and decline during the early years: allocated dollars rose sharply and monotonically throughout 
the mid to late 1970s and peaked at approximately $350 million in either 1979 or 1980 
(depending on the technology). Funding for each solar technology declined precipitously 
thereafter. Renewed interest in solar technologies was accompanied by a small resurgence in 
funding for  PV and STE in the mid-1990s during the Clinton administration. See Graphs 4.2.2.1, 
4.2.2.2, and 4.2.2.3 below. 
 
Graph 4.2.2.1: Solar PV Patenting Rates and Federal R&D Spending 
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Graph 4.2.2.2: Solar Thermal Electric Patenting Rates and Federal R&D Spending 
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Graph 4.2.2.3: Solar Water Heating Patenting Rates and Federal R&D Spending 
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 Unlike PV and STE, SWH did not experience a noticeable uptick in funding in the 1990s, 
after federal money fell off to near zero levels in the late 1980s. With its low cost profile and 
simple designs, there was simply not much innovation to fund. 
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Inventors have different reasons for filing (or not filing) patents, depending on 
their perception of the economic value of patents in their industry. In any 
technology-based industry targeted for patent analysis, it is important to try to 
understand this perception in order to place the results of analysis in context. In 
the SWH industry, the experts interviewed for this analysis had divergent opinions 
about whether patents covered the major innovations, with three saying they 
covered some of the major innovations, two saying they were unsure, and two 
saying that patents did not cover the major innovations. One response was that 
the “technology is not that sophisticated, so there is not much to patent” and 
another that there was lots of patenting in the 1970s because “in the ‘70s, the 
weirder it looked, the better it sold." One who answered that patents did cover the 
major innovations qualified it by saying “yes, but there was almost no 
innovation.” (Taylor et al. 2007) 

 
 Neither funding nor patenting is likely to rise again for SWH: due to falling PV costs in 
recent years, it is now less costly to install a PV system and heat water with a heat pump (or even 
with resistance heat) than it is to install a SWH system (Holladay 2012, 2014). Moreover, with 
fewer moving parts and little to no freezing risk, PV will likely remain a more cost effective and 
less risky option for all but a few people in atypical circumstances. 
  
 4.2.3  Interviews 
 
 This section will detail four lightly structured interviews with experts in renewable-
energy technology and emerging-technology financing. I addressed two primary questions to 
each of my interviewees, and then allowed a more free-form conversation to evolve from their 
initial answers. I also asked specifically about the role of government funds to the first two 
interviewees; however, this was not a relevant question to the latter two. 
 In this chapter's conclusion, I will use the qualitative information gleaned from these 
interviews to contextualize my analysis (in the manner of Borgonovi and O'hare 2004) of 
patenting within the four renewable-energy technologies addressed, and suggest why federal 
R&D money may have affected innovation in each technology differently. 
 
Question 1: What does the R&D investment decision making process look like at your 
organization (or the organizations you work with)? 
 
Question 2: What roll does invention, and patenting of inventions particular, play at your 
organization (or those you work with)? What about other forms of intellectual property 
protection? 
 
Joseph Desmond – Senior VP of Marketing and Government Affairs, BrightSource Energy 
 
 Mr. Desmond has an extensive energy-related background, and I was particularly looking 
forward to the interview with him, since I imagined it would be highly informative and likely to 
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provide novel insights. He did not disappoint. Below is his biographical information from the 
BrightSource web site: 
 

Joseph Desmond is Senior Vice President of Marketing and Government Affairs 
for BrightSource Energy. Desmond brings nearly three decades of private and 
public energy sector experience to his role at BrightSource Energy, where he 
oversees communications, marketing, and government and regulatory affairs. 
Prior to joining BrightSource Energy, Desmond served as Executive Vice 
President and Chief Marketing & Business Development Officer at Ice Energy, 
Inc. and Senior Vice President of External Affairs at NorthernStar Natural Gas. 
Desmond served in numerous executive roles under California Governor Arnold 
Schwarzenegger including Deputy Secretary of Energy for the State Resources 
Agency, Chairman of the California Energy Commission and Undersecretary for 
Energy Affairs. Prior to public service, Desmond spent four years as President 
and Chief Executive Officer of Infotility, Inc. Previously, he served as President 
and Chief Executive Officer of Electronic Lighting, Inc., and Vice President of 
Parke Industries. He serves on the Board of Directors for the American Council 
On Renewable Energy (ACORE). Desmond earned a B.S. in Marketing, Finance 
and Management from Northeastern University where he graduated magna cum 
laude.(BrightSource Energy 2017) 
 

 Mr. Desmond stated that the vast majority of the innovation taking place at the utility 
level was process related, rather than more fundamental research. While many patents result 
from this type of research, most of them are on cost reduction techniques such as new installation 
methods, reducing number of components, improving assembly technique, use of alternative 
materials that decrease frequency of maintenance and replacement, and other process or design 
techniques that increase output. One example he gave was of the creation of a spacing techniques 
(using non-linear optimization algorithms) for the STE mirrors that increased energy output by 
between 7 and 12 percent. Another example was the application of wireless control technology to 
the mirrors to eliminate 85 percent of the cabling and related labor costs. Yet another was the 
development of a proprietary mirror coating that lasts four times as long as those of competitors. 
 He repeatedly emphasized that innovation at BrightSource and other firms like it was 
almost exclusively driven by cost considerations; however, decision about what R&D to invest in 
evolve as the company's business model evolves. He contrasted his business related experience 
with his time at the California Energy Commission: “I remember having to reorient myself to an 
R&D world where failure is an acceptable outcome. Failure is a research byproduct [in 
government] and that's okay.” He indicated that many mid-sized firms don't have the option to 
invest in research that might fail, since it could easily bankrupt them. He also indicated that firms 
looked to industry consortia and government for leadership on the next generation of energy 
technologies, so as to predict where they would need to invest next, and to do the fundamental 
research that would support the industry that the individual firms could not afford to do. 
 Regarding intellectual property, he said, “Normally, when you have innovation, people 
want a way of validating it... [patenting] plays a role for convincing investors that are looking for 
protection and want to see that there is some sort of 'secret sauce' there... They do look at that to 
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see what is innovative, what is novel. Patents are one part of that. The other part is the industry 
knowledge, the experience learning, let's call them 'trade secrets' that you've learned by virtue of 
doing. They might not be patentable, but they are still highly valuable.” 
 With regard to government funding, he said that while it did provide a resource, he had 
seen many companies engage in “hand wringing” about the prospect of needing to share revenue, 
pay royalties or fees, or share information with the government or public as a consequence of 
accepting public funds. In his experience, it was very rare for the funding agencies to actually 
exercise their right to payments, but it did provoke worry from businesses and served as a 
disincentive to accept government research money. Moreover, he said, “When you use public 
dollars, it's for the public good, and there is an expectation that you will disclose the results.” 
 
Daniel Purdy – Senior Technical Leader, Electric Power Research Institute (EPRI) 
 
 Mr. Purdy has been at EPRI for four years, and prior to that worked for GE, which 
provides him with varied perspectives on energy innovation. Our interview provided insights 
into the interface between the public and private sectors that EPRI creates, the role of EPRI in 
generating energy research in the public interest, and approaches to innovation unique to an 
organization like EPRI. 
 In discussing EPRI's role, he said, “We pool resources from the power generating 
industry and we work with [utilities] to solve communal problems. We prefer not to be a 
contracting engineering service to solve one particular plant's issue.” About one third of their 
members are international and two thirds are domestic. 
 He indicated there was some relatively small participation from research labs and 
government as well. EPRI gets a small portion of their funding from the US federal government, 
but it receives most of its money from member utilities, so government funds have little 
influence on the direction of EPRI's research efforts. When dealing with government funds, 
“Like any company, we protect what we make, but there are clauses that make raw data available 
to the public.” There are also typically medium-term exclusivity arrangements that protect 
intellectual property EPRI develops with government funds, but after approximately 5 years that 
IP is published by the government. He felt that patenting might not be a good metric of the kind 
of innovation that government funding promotes, given that much of it went to basic science. 
 To determine the focus of their research efforts, he said, “We examine the industry on the 
whole and ask a few questions: what's happening right now, what do we need to prepare for the 
future, and then what sort of grand trends – 20 year trends – can we help to predict?” To help 
gather this information, they hold meetings with members several times per year to understand 
what issues utilities are facing. Moreover, EPRI has a series of governing bodies, including the 
board of directors that is largely composed of CEOs of member utilities. “We get advice from a 
couple different levels about what our research should focus on, what our direction needs to be, 
what projects are important, down to what is important within a project and what our 
deliverables need to be.” 
 EPRI has to do more fundamental research and think outside of the short-term time-frame 
that operators are forced into. “Ultimately we have the responsibility to look forward more than 
most of our colleagues running plants can afford to.” About long-term or more basic research 
projects he said, “The plant's don't care. Most of those people aren't going to be in those jobs in 
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10 or 15 years, but the industry cares.” 
 Mr. Purdy repeatedly emphasized that EPRI's work is in the public interest, and that that 
fact is central to how they work with organizations and choose what to research. He also 
indicated that a major role of EPRI was to help make connections between people in the electric 
power industry and facilitate knowledge transfer so as to improve the industry. 
 
Pieter Mul – Principal Consultant, Global Energy & Utilities, PA Consulting Group 
 
 Mr. Mul analyzes energy markets, facilitates project finance and transactions for 
renewable installations (mainly wind) and advises clients on investments in energy firms. He 
noted an increased appetite for investment in renewables by his clients recently, and indicated 
that the growth of renewables into the mainstream was heavily influenced by both growing 
regulatory requirements (such as renewable portfolio standards) and the sharply falling costs of 
producing energy with the technology. Much of that he attributed to the ongoing investment tax 
credits. He sees the growth of distributed solar and utility scale solar as major trends in the near 
term electricity markets. 
 Much of the innovation funding that he sees in the market is coming from venture capital 
firms, and flowing to startups with an intriguing intellectual property. At the other end of the firm 
size scale, he noted R&D funding was also likely to come from large firms that can afford to 
invest in long-shot projects. 
  He also noted, “When most utilities build a power plant, it's in their interest for customers 
to use as much power as they can.” Aligning incentives for utilities to invest in energy efficiency 
and clean energy is critical to fostering research in those areas. 
 
Meghan Burton – Corporate Lawyer, Wilson Sonsini Goodrich & Rosati 
 
 While she had not been exposed to technology development and investment decision 
making processes at her clients' firms, Ms. Burton affirmed the central role that intellectual 
property plays for small firms seeking capital. She said, “Intellectual property is often the critical 
element in generating financing. The intellectual property is what is driving the value for the 
investors.” She also affirmed that patenting was one of the principal ways that clients and their 
firms attempted to demonstrate to investors the value of their intellectual property – not only 
because of the indicia of originality and quality that patents convey, but also because a patent is 
an asset that can help mitigate risk for investors (i.e. if the company fails, the investors may be 
able to be paid back from the sale of the patent to a competitor or law firm). It also ensures the 
exclusivity of a firm's technology and assures investors that the firm will not be shut down by 
escalating licensing fees. These insights are confirmed empirically – firm value is positively 
associated with ownership of quality patents (Lanjouw and Schankerman 2004). 
 
 4.3  Principal Hypotheses 
 
 Since it is currently generally assumed that there is a causal relationship between public 
R&D spending and renewable energy patenting, similar to the relationships established for 
private firms by Hall, Griliches, and Hausman (1986), and Griliches (1990), my null hypothesis 
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will be that a significant relationship exists and that R&D will Granger-cause patents. 
 Alternatively, if the presence of increased patenting rates in a renewable energy 
technology serves to attract the attention of public entities making R&D investments, I may find 
that there exists a significant relationship between R&D and patents, with patents Granger-
causing R&D spending. In this case, I might imagine that public R&D funding agencies end up 
lagging technology trends, only entering the field after the major burst of invention has already 
taken place. It is not hard to imagine why this might take place: instead of the fluid flow of 
information that takes place within a given firm, generating invention from research activity, 
government agencies may take some time to become aware of new technology trends and may 
also be reluctant to fund technology areas that have not shown some degree of prior inventive 
success.  
 Another possibility is that renewable energy patenting and public R&D are simply not 
significantly related. This could result from the type of research funded by public money being 
substantively different from inventive activity geared toward commercialization, where patenting 
is most relevant. Moreover, this could result from public R&D funding being indirectly causal of 
renewable energy patenting, such that necessary precursors to renewable energy inventions were 
generated by public R&D funding but in a remote enough way to obscure the modeled 
relationship. 
 
 4.4  Why This Matters / Is Interesting 
 
 In order to address issues of climate change, energy resource depletion, pollution, and 
other environmental and public health issues associated with the extraction and use of fossil 
fuels, commercially viable renewable energy technologies are necessary. In order to determine 
how to best support and expedite commercialization of renewable energy technologies, we need 
to know what policies have been successful at stimulating commercially directed invention in the 
past. 
 
 4.5  Data and Methods 
 
 To generate an empirical evaluation of the relationship between public R&D funding for 
renewable energy technologies and intensity of invention – as measured by patenting – I selected 
a statistical method that would allow for a variety of detectable relationships (vector auto-
regression, or VAR) and would allow tests for Granger causality in order to determine the 
temporal direction of those relationships. Due to the importance of price signals in driving 
commercial invention, I also included a consumption weighted basket of fossil fuel prices as a 
control variable in one set of regressions. Further details about my methods are below. 
 
 4.5.1  Variable Construction 
 
Patent Classes: Three of the four patent series were taken from data constructed by Taylor et al. 
(2007) for their report, including the solar PV, STE, and SWH patents. The solar PV patent series 
was constructed from a class-based search which was subsequently screened for irrelevant 
patents and coded. The STE and SWH patent series were constructed through abstract-based 
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keyword (Boolean) searches as described in Taylor et al. (2007) and subsequently screened and 
coded. The wind patent series was derived from a class-based search of patent class 290/55 
(prime mover dynamo plants: wind), which was then screened and coded by myself and another 
research assistant (Victoria Fleming), yielding approximately 900 relevant wind-power related 
patents. 
 
Public R&D expenditures: I used IEA national R&D expenditure data for the wind and three 
solar technologies, supplemented with material from Janet Sawin’s dissertation for the 1992 and 
1993 wind R&D data due to obvious errors in the IEA series. Note that although U.S. States are 
another source of public R&D support and aren’t part of the national tally, the level of funds 
contributed by the States is small when compared to the federal levels. For example, of all 50 
States, California is estimated to have provided by far the most significant level of public R&D 
money for solar technologies. California’s records on these expenditures are spotty, but Taylor 
(2008a) pieces together credible R&D expenditures for three years in the relevant time period: 
Fiscal Year (FY)1977-78 (~3 million 2007$), FY 1981-82 (~1 million 2007$), and FY 1982-83 
(~2 million 2007$). By contrast, federal solar R&D expenditures for similar years were much 
higher: 1977 (~435 million 2007$), 1981 (752 million 2007$), and 1982 (~343 million 2007$). 
 
Fossil fuel prices: My fossil fuel price series is a consumption-weighted average of oil, coal, and 
natural gas. The price is expressed in year 2000 dollars per billion BTUs of energy, and the 
consumption weights are based on the annual percentage of each fuel’s contribution to total fossil 
fuel fired electricity generation in the United States. Since the renewable energy technologies I 
consider generate electricity, I thought this would be the best weighting of fossil fuel prices to 
reflect incentives in the electricity generation market. Using total national fossil fuel 
consumption would overweight the contributions of oil and natural gas to prices. 
 
 4.5.2  Variable Testing 
 
 Given the propensity for time series data to have unit-roots, I first examined the data for 
non-stationarity, using Phillips-Perron tests with various lags (two through five, inclusive). I 
determined that the entire set of patent, R&D, and fossil fuel price series are non-stationary. 
Similar testing of the first differences of each series confirmed that each variable is I(1). 
Typically, cointegration and vector error correction models would be explored and developed 
when faced with a set of I(1) variables; however, for my purposes first differences are 
theoretically interesting. For example, modeling first differences of R&D and patents would 
explore the effect of changes in funding rates on changes in patenting rates, and/or vice versa. 
 
 4.5.3  Modeling Choice 
 
 In order to investigate these questions and test my hypotheses, I will employ various 
time-series methods including: tests of stationarity, selection order criteria tests, vector 
autoregression, various post-estimation tests (including tests of residual normality, complex 
eigenvector stability, and residual autocorrelation), and tests of Granger causality. To explore the 
potential for endogeneity in each of the patent and R&D variables, as well as the impacts of 
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multiple prior year changes on variables in the current year, I chose to use vector autoregression 
(VAR) modeling. VAR models treat each variable in turn as the dependent variable, regressing 
own-lags and other lagged variables in each model. 
 Due to the small number of years in my models, I use a small-sample size adjustment 
(resulting in reporting of small-sample t and F statistics for the models) as well as a small sample 
degrees-of-freedom adjustment (which includes a parameter adjustment when calculating the 
variance-covariance matrix of the errors). As shown in Table 3.3.4 below, I developed two sets of 
models. The first set uses first differences of patents and R&D for each of the technology classes 
(PV, STE, SWH, and Wind), as well as pooled patents and total federal renewable R&D funding. 
The second set also includes first differences of the consumption weighted basket of fossil fuel 
prices. 
 As shown in Tables 4.7.3.2.1 and 4.7.4.2.1, I developed two sets of models. The first set 
uses first differences of patents and R&D for each of the technology classes (PV, STE, SWH, and 
Wind), as well as pooled patents and total federal renewable R&D funding. The second set 
restricts the patents to those assigned to public entities or organizations working in collaboration 
with public entities. 
 
 4.5.4  Lag Structure Selection 
 
 Given the small sample size of the data and the degrees of freedom correction I make to 
the VAR models, the maximum possible lag structure eight years. When I tested the data using 
likelihood ratios, final prediction errors, and various information criteria (AIC, SBIC, and HQC) 
to determine the best lag structure, I found that the results were highly varying, indicating 
optimum maximum lags from zero to seven. I find the implication of zero to one lags 
implausible: in this case zero lags would imply no influence from prior years funding or 
patenting changes (as well as no ability to test for Granger causality), while only one lag would 
imply a very short-term impact from changes in patenting or R&D spending. These both seem 
highly unlikely since it often takes several years to generate research results (patents in this case) 
in any given technology, especially an emerging one. 
 Since I am not interested in conducting forecasting with the results of these models, but 
rather in exploring the historic relationship between R&D spending and patenting, I did not pre-
select only one given lag structure. Instead, I examined the results of each model with maximum 
lags from two to seven in order to explore the characteristics of the models and consistency of 
their results. In addition to the significance of the models, I used tests of Granger causality and 
post-estimation testing (to detect assumption violations) in order to select models for 
presentation. I describe these tests and their results immediately below and in the results section. 
 
 4.5.5  Granger Causality 
 
 While the significance of the F-tests and individual coefficients in a VAR model reveals 
correlations between variables, these indicators fail to adequately answer the question of which 
variable could plausibly have cased the other. In order to explore possible causal relationships 
between the variables, I use the Granger causality test on each of the VAR models. 
 Granger causality does not necessarily imply true causality, but instead implies a 
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temporal relationship between correlated variables. This is accomplished with the use of the 
lagged terms in the VAR model. If the dependent variable is sufficiently correlated with lags of 
particular other variables, they are said to “Granger cause” the dependent variable. Granger 
causality may be detected due to true causality – e.g. variable X actually causes variable Y – or 
may be detected because of the relationship between modeled variables and an omitted variable 
(or several omitted variables) – e.g. omitted variable Z causes both variable X and Y, but changes 
in X occur before changes in Y; variable X causes variable Z, which in turn causes variable Y; or, 
variable Z causes variables X and W, and W then causes Y; etc. In addition, Granger causality 
may occur in both directions simultaneously – e.g. X Granger causes Y and Y Granger causes X. 
In this case, the strength of each relationship, as revealed by the degrees of statistical 
significance and the size of the standardized coefficients may be useful to compare. 
 While Granger causality is clearly limited in its ability to prove that one variable truly 
causes another, it is useful in ruling out possible causal relationships. While the results will show 
multiple cases of significant Granger causality, the lack of causality they also show is perhaps 
more interesting, as it cuts against one standard theoretical model of the relationship between 
R&D investment and patenting. 
 
 4.5.6  Post-Estimation Testing 
 
 I conducted multiple post-estimation tests on the VAR models in order to determine if any 
of the underlying assumptions were being violated, thereby impeaching the validity of the 
results. These tests included the Jarque-Bera test for normality of the error terms (which includes 
statistics for skewness, kurtosis, and the overall Jarque-Bera statistic), a Lagrange-multiplier test 
for autocorrelation in the residuals, and a test of the eigenvalue stability condition (testing that all 
of the eigenvalues of the VAR exist inside the complex unit-circle). 
 Of particular interest to me were the tests for autocorrelation and the stability conditions. 
Failure of either of these two tests caused me to seriously suspect the validity of a given model’s 
results. While the Jarque-Bera test is also important, I am more liberal in consideration of models 
which have residuals that deviate slightly from normality (especially with regard to kurtosis). In 
several cases, mild but statistically significant kurtosis is present in a model’s residuals. Upon 
inspection of histograms of the residuals, along with an overlaid kernel density graph and a 
normal distribution curve (see Appendix A), it is evident that the kurtosis represents only a very 
minor (although statistically significant) deviation from normality. 
 
 4.6  Model Specification 
 
 I chose a fairly simple VAR specification for my model for several reasons. First, 
hypothetical relationships between public R&D funding and patenting should be reasonably 
straightforward – either the funding is generating invention (i.e. patenting), rises in patenting 
rates are attracting the attention of public funding bodies and thereby generating R&D spending, 
or there is no relationship between public R&D and patenting. 
 Second, the lag structure of my models, coupled with the fairly small number of years in 
my data do not allow for the inclusion of many covariates. For example, with between three and 
six lags included, my usable data falls to between 22 and 28 years. This is at the boundary of 
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what will reliably generate significant results, even in the presence of a moderately strong 
relationship. 
 Therefore, I estimate a reduced form VAR equation (Equation 3, below), where y is the 
vector of endogenous variables at time t, and p is the maximum lag used in the model. Elements 
of y include public R&D spending on a particular technology type (or pooled spending) and 
patenting within a corresponding renewable energy technology (or pooled patenting for all 
technology types). 
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 4.7  Results 
 
 4.7.1  Descriptive Statistics 
 
 Before presenting results from the VAR models, I will first explore some descriptive 
statistics regarding patents and public R&D for each technology. I will look at the distribution of 
government R&D funds, the distribution of patents with a government interest between 
technology classes, and the percentage of each set of technology class patents that has a 
government assignee or interest. 
 Comparing the relative levels of public R&D funding in each technology class and the 
relative distribution of patents with a government interest in each technology class reveals an 
interesting discrepancy: government R&D dollars are spread among technology classes much 
more evenly than patents with a government interest. See Table 4.7.1.1, below. 
 
Table 4.7.1.1: Distribution of Government R&D and Patents with a Government Interest 
between Technology Classes 

 Technology Classes 

 PV STE SWH Wind 

Percent of Gov. R&D in 
Each Tech. Class. 37.1% 26.6% 18.2% 18.2% 

Percent of Pooled Gov. Int. 
Patents in Each Class 82.1% 4.1% 9.3% 4.5% 

 
 While total public funding for PV is roughly twice the level as for SWH or wind 
technologies, with STE funding falling in between, the number of patents in PV is 9 to 20 times 
the levels in STE, SWH, or wind. This suggests several possibilities: loose or idiosyncratic 
relationships between public funding levels and patenting, nonlinear relationships between 
public funding levels and patenting, or differing propensities to patent in different technologies, 
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among others. The percent of each technology class that is made up of patents with a government 
interest also varies considerably between technologies, with over 20 percent of all PV patents 
having at least some government interest, while between 5.2 and 6.8 percent of SWH, Wind, and 
STE patents have some government interest. This may indicate technology areas in which 
government R&D funding has played a larger role generating invention geared toward 
commercialization. See Table 4.7.1.2, below. 
 
Table 4.7.1.2: Percent of Patents in Each Technology Class that have a Government Interest 

 Technology Classes 

 PV STE SWH Wind 

Percent of Each Tech. 
Class that is Gov. Int. 20.1% 6.8% 5.2% 5.9% 

 
 
 4.7.2  VAR Model Lag Structures 
 
 The results of my post-estimation testing revealed violations of the stability conditions of 
the VAR estimates, autocorrelation of the residuals, and violations of the residual normality 
assumptions for some lag structures. I considered residual autocorrelation and stability violations 
to be more serious indicators of model misspecification, and discarded any models in which 
these violations occurred. 
 In the case of the normality assumptions, models for SWH and Wind yielded statistically 
significant kurtosis in the residuals; however, upon inspection of the errors in a histogram with 
an overlaid normal distribution curve and kernel density plot for the residuals, it is apparent that 
while there are statistically significant departures from normality, the substantive deviation is 
minimal and may be due entirely to my small sample size (see Appendix D, Graphs D1-D5). 
Therefore, I will present the results from these models. For a list of the full set of models 
presented in the following sections, see Table 4.7.2.1 below. 
 
Table 4.7.2.1: VAR Models Selected with Lag Structure 

 Technology Classes 

 
Pooled 

Renewables PV STE SWH Wind 

Dependent 
Variable(s) R&D R&D Patents 

Both 
Patents* 

and R&D* 
Patents* 

Lags Used 4 3 3 6 5 
*Significant kurtosis was detected in the residuals of these models. 
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 4.7.3  VAR Model Results for All Patent Series 
 
 4.7.3.1  Models with R&D Spending as the Dependent Variable 
 
 In addition to different lag structures, each model has a distinct pattern of statistically 
significant coefficients. Three of the models with R&D dollars as the dependent variable – 
pooled, PV, and SWH – exhibited statistically significant F tests and Granger-causality tests. The 
pooled model contained significant coefficients (at the less than one percent level) on the third 
and fourth lags on changes in patenting, and a significant (at the less than five percent level) 
own-lag on the third lag. The significant patenting lags had positive coefficients, indicating that 
increases in patenting three and four years prior, correlated with a positive change in pooled 
renewable R&D funding. The significant own-lag for R&D had a negative coefficient, indicating 
that increases in R&D funding three years prior were associated with decreases in current year 
funding, and vice versa. The R-squared value for the pooled R&D model was high, at 0.77, 
indicating a very strong fit, and the Granger-causality test was significant at the less than one 
percent level, indicating that patenting Granger-causes public R&D expenditures for the pooled 
model. 
 The PV model, with R&D as the dependent variable showed similar results to the pooled 
model. Significant coefficients were exhibited on two and three year lagged patents. The signs of 
the coefficients were positive, similar to the pooled model. The PV R&D model also had a highly 
significant F test (significant at the less than one percent level), a high R-squared value (0.68), 
and a highly significant Granger-causality test (significant at the less than one percent level), 
with patenting Granger-causing R&D funding. Due to the relatively large number of PV patents 
in the pooled model, these two models may both be reflecting the same underlying dynamic. 
 The SWH model, with R&D as the dependent variable differed from the other two, 
showing no significant patenting lags, while showing three significant own-lags, at two, four, and 
six years. Despite the lack of significant patenting variables, the F test and Granger-causality test 
were both highly significant (at the less than one percent level), indicating that an increase in 
SWH R&D Granger-causes an increase in funding two and six years later, and a decrease four 
years later. These results are highly suspicious and are further called into question when the R-
squared value (0.99) is examined. Coupled with the kurtosis detected in the model, the extremely 
high R-squared value indicates overfitting of the model. This model should not be trusted and is 
likely due to omitted-variable bias and/or undetected autocorrelation. 
 
 4.7.3.2  Models with Patenting as the Dependent Variable 
 
 Two models with patenting of a renewable energy technology as the dependent variable 
(STE and SWH) exhibited significant Granger-causality tests, and two models (SWH and Wind) 
exhibited significant F tests. 
 The STE model, with patenting as the dependent variable, showed no significant own-
lags and two significant R&D lags at two and three years, with one positive and one negative, 
respectively. The F test for this model was not significant, only reaching 0.16, however, the 
Granger-causality test was significant at the less than five percent level. The R-squared value 



 

48 

was 0.37, indicating a reasonable quality fit. Results for this model may be complicated by the 
small sample size or noise from non-government related patenting activity. 
 The SWH model, with patenting as the dependent variable, showed a significant own-lag 
at two years, and five significant lagged R&D variables, at one, two, three, five, and six years. 
The own-lag had a negative coefficient, indicating a decline in patenting levels two years after an 
increase. This may reflect cyclic invention patterns. The R&D lag coefficients were all positive, 
indicating positive impacts to patenting levels for many years after public investments were 
made. Also, the coefficients on the significant R&D lags decline monotonically, indicating a 
decreasing impact from more temporally distant R&D expenditure. Both F and Granger-causality 
tests were significant for this model; however, the R-squared value was quite high (0.95), which 
again indicates the possibility of overfitting and/or effects of a small sample size. More targeted 
research on the history of solar water heating invention is needed before definitive judgments can 
be made. 
 The wind model, with patenting as the dependent variable, showed significant own lags at 
one and two years, with negative and positive coefficients, respectively. Again, these may be 
indicative of some cyclic pattern in wind turbine invention. No significant lags of public R&D 
spending existed. The F test was highly significant, and the R-squared value (0.75) indicated a 
good model fit. Kurtosis was again noted with this model. The Granger-causality test, with R&D 
Granger-causing patents, was not significant at the five percent level, although it very nearly 
was.  
 See Table 4.7.3.2.1 for these VAR model results, below.
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Table 4.7.3.2.1: VAR Models – Public R&D Expenditures and Renewable Energy Technology Patents 
 

 
 

Dep. Var.= 

Pooled 
Ren. 
R&D (SE) 

PV 
R&D (SE) 

SWH 
R&D (SE) 

STE 
Patents (SE) 

SWH 
Patents (SE) 

Wind 
Patents (SE) 

Regression 
Covariates  n=26   n=25   n=22   n=25   n=22    n=25  
Patents                       
Lag = 1 -0.37 0.88 -0.26 0.40 -0.06 0.40 0.12 0.20 -0.19 0.29 -0.64 0.26** 
Lag = 2 0.24 0.89 1.09 0.46** -0.39 0.39 -0.03 0.22 -0.76 0.28** 0.68 0.27** 
Lag = 3 4.18 0.81*** 1.82 0.47*** 0.64 0.37 -0.07 0.16 -0.27 0.27 0.60 0.31* 
Lag = 4 3.44 1.03*** -- -- 0.01 0.37 -- -- -0.42 0.27 0.08 0.29 
Lag = 5 -- -- -- -- -0.33 0.27 -- -- -0.40 0.20* -0.06 0.18 
Lag = 6 -- -- -- -- -0.26 0.22 -- -- -0.16 0.16 -- -- 

                        

R&D                       
Lag = 1 -0.15 0.19 0.18 0.17 0.12 0.21 -0.04 0.02 0.47 0.15*** 0.05 0.04 
Lag = 2 -0.12 0.15 -0.31 0.17* 0.55 0.21** 0.08 0.03** 0.44 0.15** 0.09 0.04* 
Lag = 3 -0.40 0.16** -0.13 0.16 0.03 0.10 -0.06 0.02** 0.16 0.07** -0.04 0.05 
Lag = 4 -0.22 0.16 -- -- -0.22 0.06*** -- -- 0.04 0.05 -0.10 0.05* 
Lag = 5 -- -- -- -- 0.10 0.08 -- -- 0.14 0.06** -0.05 0.06 
Lag = 6 -- -- -- -- 0.16 0.06** -- -- 0.13 0.04** -- -- 

                        

Constant -2.20 22.18 1.17 6.70 0.33 1.39 -0.28 0.98 -0.50 1.01 1.00 0.92 
                        

P>F 0.00*** 0.00*** 0.00*** 0.16 0.00*** 0.01*** 
R-Squared 0.77 0.68 0.99 0.37 0.95 0.75 
Granger-
Causality 0.00*** 0.00*** 0.00*** 0.04** 0.02** 0.05* 
             

*significant at the <10% level **sig. at the <5% level ***sig. at the <1% level     



 

50 

 4.7.4  VAR Model Results for Patents with a Government Interest 
 
 The relationship between public R&D and overall patenting may be complicated by the 
high prevalence of fully private patents in the renewable-energy-technology patent counts. One 
might offer an explanation of the idiosyncratic relationship between patenting and public R&D 
by hypothesizing that while private patents sometimes precede public funding, public funding 
will still generate public patenting; public R&D should Granger-cause government interest or 
assigned patents, and the reason I have not detected this is due to the “noise” from private 
patenting, and/or due to private patenting stimulating government R&D funding, which in turn 
stimulates government interest patenting. 
 Consequently, I have also run the same set of models using annual counts for government 
interest or assigned patents in each technology class. The selection order criteria indicated 
different optimal lag structure from the previous set of models, shown in Table 4.7.4.1, below. 
 
Table 4.7.4.1: VAR Models Selected with Lag Structure (Gov. Int. Patents) 

 Technology Classes 

 
Pooled 

Renewables PV STE SWH Wind 

Dependent 
Variable(s) R&D R&D* 

Both 
Patents** 
and R&D 

Both 
Patents 

and R&D* 
Patents 

Lags Used 2 5 2 4 2 
*Significant kurtosis was detected in the residuals of these models. 
**Significant skewness was detected in the residuals of this model. 
 
 4.7.4.1  Models with R&D Spending as the Dependent Variable 
 
 In addition to different lag structures, each model has a distinct pattern of statistically 
significant coefficients. Four of the models with R&D dollars as the dependent variable – pooled, 
PV, STE, and SWH – exhibited statistically significant F tests, while three – PV, STE, and SWH 
– had significant Granger-causality tests. The pooled model contained one significant 
coefficients (at the less than one percent level) on the first own lag. The significant R&D first lag 
had positive coefficient, indicating that a change in prior year pooled funding correlated with a 
change of similar direction in pooled current year funding. The R-squared value for the pooled 
R&D model was reasonably high, at 0.38, and the F test was significant at the less than 5 percent 
level; however, the Granger-causality test was not significant, reflecting the general weakness in 
the model. 
 The PV model, with R&D as the dependent variable showed highly significant patent lags 
and own lags. Significant coefficients were exhibited on three and five year lagged patents, both 
with large coefficients, indicating same direction changes in funding at those two intervals after 
changes in patenting rates. The own lags were significant at two and five years, with both 
coefficients being negative, indicating opposite direction changes at those intervals. The PV 
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R&D model also had a significant F test (significant at the less than five percent level), a high R-
squared value (0.76), and a highly significant Granger-causality test (significant at the less than 
one percent level). 
 The STE model, with R&D as the dependent variable showed a significant patenting first 
lag and a significant first own lag. Both were highly significant (at the less than one percent 
level) with positive coefficients. The F test was also highly significant, while the Granger-
causality test was significant at the less than 5 percent level. The R-squared value was 0.47, 
indicating a good model fit. 
 The SWH model, with R&D as the dependent variable showed significant patenting lags 
at two and four years (both with large and highly significant coefficients), and three significant 
own lags, at two, three, and four years. The two-year own lag had a positive coefficient, while 
the three and four-year lags had negative ones, all of which were highly significant. The F test 
and Granger-causality test were both highly significant (at the less than one percent level), 
indicating that both patenting and R&D funding changes Granger-cause SWH R&D. The R-
squared value was 0.84, indicating an excellent model fit; however, the presence of significant 
kurtosis in the model indicates possible over-fitting, which is consistent with the findings for the 
all SWH patents model presented in the prior set of regressions. It seems as though eliminating 
the purely private-interest patents from the SWH series reduced the possible problems with 
modeling SWH patents, but may not have fully eliminated them. 
 
 4.7.4.2  Models with Patenting as the Dependent Variable 
 
 Two models with patenting of a renewable energy technology as the dependent variable 
(STE and Wind) exhibited significant Granger-causality tests, and three models (STE, SWH, and 
Wind) exhibited significant F tests. 
 The STE model with government-interest patenting as the dependent variable, showed a 
highly significant first own lag, with a negative coefficient, and no significant lags on R&D 
funding. The F test for this model was highly significant, and the R-squared value was 0.55; 
however, the Granger-causality test was not even close to significant. These results are almost 
exactly opposite those of the all-patents STE model presented above. That, coupled with the 
skewness detected in the model indicates its weakness. 
 The SWH model with government-interest patenting as the dependent variable, showed a 
significant first own lag, and two significant lagged R&D variables, at one and two years. The 
own-lag had a negative coefficient, indicating a decline in patenting levels two years after an 
increase. This may reflect cyclic invention patterns. The R&D lag coefficients were both 
positive, indicating positive impacts to patenting levels for several years after public investments 
were made. Also, the coefficients on the significant R&D lags decline monotonically, indicating 
a decreasing impact from more temporally distant R&D expenditure. Both F and Granger-
causality tests were highly significant for this model; and, the R-squared value was quite high 
(0.82). The high R-squared value again indicates the possibility of over-fitting and/or effects of a 
small sample size, however it's not as egregious as in the all-patents SWH model presented 
above, indicating that eliminating the private-interest patents may have improved the model 
quality. No skewness or kurtosis was present in the residuals for this model, which is promising. 
 The wind model with government-interest patenting as the dependent variable, showed a 
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significant first own lag with a negative coefficient, and a significant first lag on R&D funding 
with a positive coefficient (the two year lag was nearly significant as well, and had a smaller 
positive coefficient). This is only the third model to what seems to be an impact from R&D 
funding changes to patenting, with that impact tapering off over time. The F test was highly 
significant, and the R-squared value (0.72) indicated a good model fit (and was similar to the all-
patents wind model presented above). Unlike the all-patents wind model, kurtosis was not 
present in model residuals, indicating that elimination of private-interest patents may have solved 
some problems. The Granger-causality test was highly significant.  
 See Table 4.7.4.2.1 for these VAR model results, below.
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Table 4.7.4.2.1: VAR Models – Public R&D Expenditures and Government Interest or Assigned Renewable Energy 
Technology Patents 
 

Dep. Var.= 

Pooled 
Ren. 
R&D (SE) 

PV 
R&D (SE) 

STE 
R&D (SE) 

SWH 
R&D (SE) 

STE 
Patents (SE) 

SWH 
Patents (SE) 

Wind 
Patents (SE) 

Regression 
Covariates n=28   n=22   n=26  n=24   n=26  n=24   n=28  
Patents                          
Lag = 1 6.50 4.62 3.45 1.93 14.43 4.98*** -3.38 3.27 -0.93 0.20*** -0.38 0.16** -1.15 0.24*** 
Lag = 2 -1.17 4.77 0.43 2.24 -2.43 8.379 14.72 3.66*** -0.20 0.33 -0.29 0.18 -0.33 0.20 
Lag = 3 -- -- 9.00 2.05*** -- -- 5.56 3.63 -- -- -0.01 0.18 -- -- 
Lag = 4 -- -- 0.25 2.18 -- -- 9.12 2.98*** -- -- 0.09 0.15 -- -- 
Lag = 5 -- -- 6.79 1.74** -- -- -- -- -- -- -- -- -- -- 

                           

R&D                          
Lag = 1 0.60 0.21*** 0.16 0.21 0.71 0.24*** 0.04 0.18 -0.01 0.01 0.03 0.01*** 0.04 0.01*** 
Lag = 2 -0.17 0.20 -0.70 0.22*** -0.26 0.23 0.40 0.11*** 0.01 0.01 0.01 0.005** 0.03 0.01* 
Lag = 3 -- -- -0.37 0.23 -- -- -0.55 0.11*** -- -- 0.00 0.01 -- -- 
Lag = 4 -- -- -0.15 0.22 -- -- -0.45 0.15*** -- -- 0.00 0.01 -- -- 
Lag = 5 -- -- -0.57 0.19*** -- -- -- -- -- -- -- -- -- -- 

                           

Constant 2.67 32.13 -2.51 6.99 -3.50 7.15 -5.07 4.81 0.03 0.28 0.01 0.24 0.15 0.23 
                           

P>F 0.02** 0.02** 0.01*** 0.00*** 0.00*** 0.00*** 0.00*** 
R-Squared 0.38 0.76 0.47 0.84 0.55 0.82 0.72 
Granger-
Causality 0.36 0.01*** 0.01** 0.00*** 0.49 0.00*** 0.00*** 
               

*significant at the <10% level **sig. at the <5% level ***sig. at the <1% level     
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 4.7.5  Fossil Fuel Price Models 
 
 I also used a consumption weighted basket of fossil fuel prices as an exogenous covariate 
in a set of VAR regressions, with contemporaneous prices as well as various lags included. Fossil 
fuels were not included as an endogenous variable as I deemed it unreasonable to expect 
renewable energy patenting or research funding to influence their prices in a meaningful way, 
especially given the small size of the renewable energy market.  
 The inclusion of lagged fossil fuel prices resulted in occasional significant coefficients; 
however, these results did not alter the relationships between R&D and patents, they did not alter 
the Granger-causality conclusions of my presented models, and they offered little in the way of 
meaningful insight (e.g. a small but significant negative coefficient on a three-year lag of fossil 
fuel prices, indicating that patenting or R&D would slightly decline three years after a rise in 
fossil fuel prices) while decreasing the power of my regressions. Therefore, I have not included 
these results here. 
 
 4.8  Conclusions 
 
 This paper examines the relationship between renewable energy invention, as indicated 
by patenting rates, and publicly funded R&D spending from 1974 to 2008 in the United States. It 
is an attempt to apply some methodological rigor to casual and frequent claims (both popular and 
scholarly) that there is a strong relationship between public research funding and innovation in 
renewable energy technologies. Complex policy details and nuances have typically been 
overlooked when discussing public research funding in broad terms, and my analysis here 
demonstrates the importance of attending to such details, since the relationships of patenting 
rates and public R&D funding differ widely depending on the technology and funding program. 
 The twenty models analyzed above (ten for all patents and ten for government interest 
patents only) describe a variety of relationships between R&D funding and patenting, 
relationships that may be indicative of fine grained policy detail differences within each funding 
program, and different incentive structures within each industry. To be clear, I do not believe that 
these models should be used to predict effects (or lack of effects) from public funding of various 
renewable energy R&D technologies. The kurtosis present in several of the models’ residuals 
alone would indicate caution in that regard. Instead, I think they are illustrative of the 
idiosyncratic historical relationship between public R&D expenditures and invention (as 
measured by patenting) in these different technologies, and indicative of the vital role for careful 
policy design when attempting to motivate invention with an eye toward commercialization. 
 In fact, my diverse modeling outcomes – from R&D spending being Granger-caused by 
patenting, to patents being Granger-caused by R&D spending, to patents and R&D spending 
Granger-causing each other – indicates that policy design details are vitally important in the case 
of government funding for renewable energy R&D. This is also suggested by the changes in 
modeling results between the all-patent models and the government-interest models – the 
isolation of government-interest patents reveals a more pervasive situation of patenting Granger-
causing R&D funding than was seen in the all-patents models. Incentive structures, institutional 
relationships, geography, and methods of knowledge sharing within a given funding program 
may determine if public R&D funding is successful in actually promoting targeted invention, or 
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merely acts as a response to newly popular technology areas. This result may be heartening to 
policy analysts, and implementation specialists. 
 Regardless of the causal directions, my results do not mean that we should end public 
R&D expenditures; it is quite possible that the non-patented R&D activities of public entities are 
extremely valuable in other ways. However, it means that we need to develop a more 
sophisticated understanding of the direct and indirect impacts of R&D funding. The monopoly 
rights of patents are granted to reward invention, but patents also exist to grow publicly available 
knowledge on new technical advances as quickly as possible. Public R&D expenditures might be 
better thought of as contributing to that knowledge stock in the long term, or contributing in 
other ways than through an influence on patents, ways that are less directly measurable. 
 Interviews with energy experts seem to confirm that public R&D expenditures are more 
valuable in generating fundamental science, exploring speculative technologies, and/or helping 
to predict and promote the long-term evolution of  the energy industry. The types of cost-
reducing innovations that are the focus of R&D by small and mid-sized firms are typically 
proprietary, and sometimes patented mainly to signal value to investors. Moreover, some firms 
actively engaged in commercializing renewable-energy are reluctant to accept public R&D 
funding for fear of having to disclose results to the public. 
 Therefore, given my results, using public R&D dollars to motivate increased 
commercialization of existing technologies may be misguided. Instead, given the role of public 
R&D in the creation of basic research, foundational technologies, and serendipitous discoveries 
(Popp 2006, Joint Economic Committee 2010), such funds might better be spent on long-shot 
technologies that are not currently commercially viable. Future research on the success of public 
R&D seeding such technologies would be valuable. 
 For the purposes of motivating near-term affordability of established technologies – ones 
that already have some demonstrated functionality, but are not yet cost competitive with 
conventional energy sources – different approaches are likely needed. Renewable portfolio 
standards, feed-in tariffs, and pollution fees are other policy options that have demonstrated 
success (J. Desmond, phone interview, April 25, 2017; Mitchell, Bauknecht, and Connor 2006; 
Butler and Neuhoff 2008; Johnstone, Hascic, and Popp 2010), are easily linked to growth in 
renewable technology implementation, and may thereby generate learning-effect benefits. 
 Alternatively, funds could be spent directly on the technologies themselves (e.g. purchase 
and installation of solar PV systems for government buildings) or on support for private entities 
purchasing the technologies (e.g. tax credits for installing renewable systems). Public funding for 
commercialization-oriented renewable-energy invention seems to be a less certain method. 
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 5  Overall Conclusions and Implications 
 
 Theory is cheap. 
 ― Unknown origin 
 
 5.1  Introduction 
 
 This chapter will review the major findings from the research done in the prior two 
chapters, discuss them in the context of the broader innovation literature from chapter 2, and then 
draw out implications for future policy making and policy research (specifically in the area of 
technology policy). 
 The previous two chapters share a unifying theme: together, they attempt to generate and 
then apply high-quality methods to questions of public funding of R&D activities in young 
technology sectors. As mentioned in the overview section, this theme has policy relevance not 
merely because it addresses programs receiving public funds, but also because of the potential 
for those technologies to generate public benefits and positive externalities. 
 This research contributes to the policy literature on innovation, specifically to the 
research on patents as a metric of invention, by challenging conventional and potentially 
spurious causal narratives and the methods used to affirm them. Moreover, it brings to bear 
improved methods on all aspects of patent data analysis, from the selection and coding of the 
data, to the statistical techniques used to draw inference. 
 
 5.2  Overall Findings 
 
 This dissertation has two major findings, which can be summarized as: 1) several of the 
statistical methods regularly used to analyze and draw inference from patent data are prone to 
extremely high rates of spurious correlations when used on non-stationary time-series, and since 
patent data appear to be difference-stationary series, these methods should be avoided; and, 2) 
when using differenced patent-data to analyze the (Granger-causal) relationships between federal 
R&D funding and renewable-energy patenting, a more complex set of interactions becomes 
evident than has been typically found using the aforementioned error-prone methods; these 
interactions imply that policy details matter when trying to incentivize innovation. We cannot 
accept the standard narrative that increased federal R&D spending will generate needed energy-
technology patenting (a proxy for invention) without better evidence. 
 Moreover, it's far from clear that federal R&D funding ought to be generating increased 
renewable-energy patenting. Energy experts I interviewed consistently emphasized the use of 
patents by private firms to signal value to investors and the market. Conversely, federal R&D 
money is intended to be used for advancing the public interest, often focuses on fundamental 
research rather than commercialization, and some firms are reluctant to accept federal money for 
fear of having to share their discoveries. All other things being equal, increased research funding 
should generate some amount of increased patenting, but it might be a weak enough signal so as 
to be lost in the noise. 
 Scholarly articles noted in chapter 4, and countless popular articles about renewable 
energy, overlook complex policy details and nuances when discussing public research funding, 
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and my analysis demonstrates the importance of attending to such details, since the relationships 
of patenting rates and public R&D funding differ widely depending on the technology and 
funding program. 
 For the purposes of motivating near-term affordability of functioning technologies – ones 
that already have some demonstrated capabilities, but are not yet cost competitive with 
conventional energy sources – different approaches are needed. Public funding for 
commercialization oriented renewable-energy invention seems to be a less certain method, at 
least with the types of funding programs that have existed so far. 
 As Janet Sawin noted in her exhaustive study of wind-power programs in the United 
States and Europe: 
 

The future of wind energy and other alternative technologies will rely primarily on 
government policy. Above all, the success of these technologies – the rate and 
level of their development and diffusion – is a matter of policy choice. In order to 
be adopted on a meaningful scale, they will require effective, appropriate and 
consistent policies that are flexible, forward looking, and legislated with a long-
term view toward advancing a technology and an industry. Simply throwing 
money at technologies – for research and development, for example – is not the 
answer. (Sawin 2001) 
 

 Finally, the capabilities of many of the policy instruments detailed in chapter 2 provide 
viable alternatives for supporting the development of renewable-energy. A variety of government 
actions can stimulate technological innovation, including the provision of positive inducements, 
such as tax breaks, contracts, and prizes; the facilitation of knowledge sharing; and regulation or 
outright prohibition of certain methods. 
 With regard to regulation, a study of multiple factors influencing environmental 
innovation found that “government regulation appears to be a greater stimulus to inventive 
activity than government-sponsored research support alone, and that the anticipation of 
regulation also spurs inventive activity.” Firms, being strategic, will innovate in anticipation of 
new regulations in an attempt to not only be undamaged by the regulation, but also to gain 
market advantage over their competitors when the regulations are put in place, and thereby 
increase their profits. In addition, the strictness of the regulation induces concentration along 
particular technology paths, thereby not only influencing quantity but also type of innovation. 
Finally, significant impacts occur from government sponsored knowledge sharing activities, such 
as technical conferences (Taylor et al. 2003). 
 Regulation, especially in the environmental industry, acts to secure demand for 
innovations along particular technology paths, and thereby assure firms of market opportunities, 
which is a strong incentive to innovate (Mowery and Rosenberg 1982). In this way, regulation 
can be seen to play a somewhat similar role to positive government inducements to innovate, as 
it indirectly shifts firms’ profit probability distributions; however, wasteful effort is less likely 
than in the case of subsidies and tax incentives since unsuccessful innovations are not rewarded. 
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 5.3  Implications for Policy Research 
 
 Taken together, my findings demonstrate the interdependent relationship between 
appropriate analytic techniques and accurate analysis when examining the sometimes subtle 
effects of complex policies. If social science research is to have any real value, if it is to do more 
than merely make us feel secure in our own knowledge, if it is to provide real guidance to policy 
making, it must generate predictions with a greater probability of being accurate than random 
guesses. Theory may be cheap (or more accurately, cheap theory is always available), but so too 
may be empirical analysis. The enormous problem of unreproducible results and questionable 
methods is slowly being confronted by the research community, and much of the patent-data 
research needs to be reexamined in light of the findings above. 
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Interviews 
 
Burton, Meghan (2017, April 27). Wilson Sonsini Goodrich & Rosati. Phone interview. 
 
Desmond, Joseph (2017, April 25). BrightSource Energy, Inc.. Phone interview. 
 
Mul, Pieter (2017, April 27). PA Consulting Group. Phone interview. 
 
Purdy, Daniel (2017, April 26). Electric Power Research Institute. Phone interview. 
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Appendix A: Stata Code and Notes for Chapter 3 

*Stationary Random Data for Graph, with Phillips-Perron Test and OLS Regression 
clear 
set seed 123456 
 
quietly set obs 35 
quietly gen t=_n 
quietly tsset t 
quietly gen K=rnormal(1000, 200) 
pperron K, trend 
reg K t, r 
 
*Non-Stationary Random Data for Graph, with Phillips-Perron Test and OLS Regression 
clear 
set seed 12345678 
 
quietly set obs 35 
quietly gen t=_n 
quietly tsset t 
quietly gen y=rnormal(60, 30) if _n==1 
quietly replace y=y[_n-1]+rnormal(-0.68, 12.86) if missing(y) 
quietly replace y=0 if y<0 
quietly replace y=round(y) 
pperron y, trend 
reg y t, r 
 
*Tests of Non-Stationarity of Macro-Economic Data for Table 3.2.1 
clear 
import excel "testdata.xls" 
quietly set obs 35 
quietly gen t=_n 
quietly tsset t 
pperron A, trend 
dfuller A, trend 
pperron B, trend 
dfuller B, trend 
pperron C, trend 
dfuller C, trend 
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*Tests of Non-Stationarity of Renewable-Energy Patent Data for Table 3.2.2 
clear 
use "R&D Paper Data.dta" 
pperron Wnd_CC, trend 
dfuller Wnd_CC, trend 
pperron PV_CC, trend 
dfuller PV_CC, trend 
pperron STE_CC, trend 
dfuller STE_CC, trend 
pperron SWH_CC, trend 
dfuller SWH_CC, trend 
 
*Statistical Properties of Renewable-Energy Patent Data 
clear 
use "R&D Paper Data.dta" 
sum Wnd_CC 
sum PV_CC 
sum STE_CC 
sum SWH_CC 
 
*OLS, Negative Binomial, and Log-Log Regressions for Renewable-Energy Patent Data 
and Macro-Economic Variables for Table  
clear 
use "R&D Paper Data.dta" 
reg Wnd_CC GDP_2005D, r 
reg PV_CC GDP_2005D, r 
reg STE_CC GDP_2005D, r 
reg SWH_CC GDP_2005D, r 
reg Wnd_CC CWEFP_2000D, r 
reg PV_CC CWEFP_2000D, r 
reg STE_CC CWEFP_2000D, r 
reg SWH_CC CWEFP_2000D, r 
nbreg Wnd_CC GDP_2005D, r 
nbreg PV_CC GDP_2005D, r 
nbreg STE_CC GDP_2005D, r 
nbreg SWH_CC GDP_2005D, r 
nbreg Wnd_CC CWEFP_2000D, r 
nbreg PV_CC CWEFP_2000D, r 
nbreg STE_CC CWEFP_2000D, r 
nbreg SWH_CC CWEFP_2000D, r 
reg lnWndCC lnGDP, r 
reg lnPVCC lnGDP, r 
reg lnSTECC lnGDP, r 
reg lnSWHCC lnGDP, r 
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reg lnWndCC lnCWEFP, r 
reg lnPVCC lnCWEFP, r 
reg lnSTECC lnCWEFP, r 
reg lnSWHCC lnCWEFP, r 
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*Synthetic Data Means, Standard Deviations, Minimums, and Maximums 
clear 
timer on 1 
set seed 52245 
 
postfile buffer Mean SD Min Max using mcs, replace 
 
forvalues i=1/10000 { 
quietly drop _all 
quietly set obs 35 
quietly gen t=_n 
quietly tsset t 
quietly gen y=rnormal(60, 30) if _n==1 
quietly replace y=y[_n-1]+rnormal(-0.68, 12.86) if missing(y) 
quietly replace y=0 if y<0 
quietly replace y=round(y) 
quietly count if y<0.1 
quietly sum y 
quietly gen SD = r(sd) 
quietly gen Mean = r(mean) 
quietly gen Min = r(min) 
quietly gen Max = r(max) 
post buffer (Mean) (SD) (Min) (Max) 
} 
 
postclose buffer 
 
use mcs, clear 
 
timer off 1 
summarize 
timer list 1 
timer clear 1 
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* OLS Regression on Levels Data Monte Carlo Simulation Code 
clear 
timer on 1 
set seed 123456 
 
postfile buffer tval using mcs, replace 
 
forvalues i=1/1000 { 
quietly drop _all 
import excel "testdata.xls" /*comment: This file contains GDP and Energy Price data found 
in Appendix B*/ 
quietly set obs 35 
quietly gen t=_n 
quietly tsset t 
quietly gen K=rnormal(1000, 200) 
quietly gen y=rnormal(60, 30) if _n==1 
quietly replace y=y[_n-1]+rnormal(-0.68, 12.86) if missing(y) 
quietly replace y=0 if y<0 
quietly replace y=round(y) 
quietly reg y A  /*comment: use 'A' in this line of code and the next for GDP, 'B' for 
Consumption Weighted Electricity Price Data, and 'K' substituted for 'y' for random 
stationary data*/ 
quietly gen tval=_b[A]/_se[A] 
post buffer (tval) 
} 
 
postclose buffer 
 
use mcs, clear 
 
timer off 1 
summarize 
count if tval<-1.96 
count if tval>1.96 
timer list 1 
timer clear 1 
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* Log-Log Regression on Levels Data Monte Carlo Simulation Code 
clear 
timer on 1 
set seed 123456 
 
postfile buffer tval using mcs, replace 
 
 
forvalues i=1/10000 { 
quietly drop _all 
import excel "testdata.xls" /*comment: This file contains GDP and Energy Price data*/ 
quietly set obs 35 
quietly gen t=_n 
quietly tsset t 
quietly gen K=rnormal(1000, 200) 
quietly gen y=rnormal(60, 30) if _n==1 
quietly replace y=y[_n-1]+rnormal(-0.68, 12.86) if missing(y) 
quietly replace y=1 if y<1 
quietly replace y=round(y) 
quietly gen lny = ln(y) 
quietly gen lnA = ln(A) 
quietly gen lnB = ln(B) 
quietly gen lnK = ln(K) 
quietly reg lny lnA /*comment: use 'lnA' in this line and the next for GDP, 'lnB' for 
Consumption Weighted Electricity Price Data, and 'lnK' instead of 'lny' for random 
stationary data*/ 
quietly gen tval=_b[lnA]/_se[lnA] 
post buffer (tval) 
} 
 
postclose buffer 
 
use mcs, clear 
 
timer off 1 
summarize 
count if tval<-1.96 
count if tval>1.96 
timer list 1 
timer clear 1 
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* Negative Binomial Regression on Levels Data Monte Carlo Simulation Code 
clear 
timer on 1 
set seed 123456 
 
postfile buffer tval using mcs, replace 
 
forvalues i=1/10000 { 
quietly drop _all 
import excel "testdata.xls" /*comment: This file contains GDP and Energy Price data found 
in Appendix B*/ 
quietly set obs 35 
quietly gen t=_n 
quietly tsset t 
quietly gen K=rnormal(1000, 200) 
quietly gen y=rnormal(60, 30) if _n==1 
quietly replace y=y[_n-1]+rnormal(-0.68, 12.86) if missing(y) 
quietly replace y=0 if y<0 
quietly replace y=round(y) 
quietly nbreg y A /*comment: use 'A' in this line and the next for GDP, 'B' for Consumption 
Weighted Electricity Price Data, and 'K' substituted for “y” for random stationary data*/ 
quietly gen tval=_b[A]/_se[A] 
post buffer (tval) 
} 
 
postclose buffer 
 
use mcs, clear 
 
timer off 1 
summarize 
count if tval<-1.96 
count if tval>1.96 
timer list 1 
timer clear 1 
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* OLS Regression on Changes Data Monte Carlo Simulation Code 
clear 
timer on 1 
set seed 12345 
 
postfile buffer tval using mcs, replace 
 
forvalues i=1/10000 { 
quietly drop _all 
import excel "testdata.xls" /*comment: This file contains GDP and Energy Price data found 
in Appendix B*/ 
quietly set obs 35 
quietly gen t=_n 
quietly tsset t 
quietly gen y=. if _n==1 
quietly replace y=rnormal(-.68,12.86) if missing(y) 
quietly replace y=. if _n==1 
quietly replace y=round(y) 
quietly reg y d.A, r /*comment: use 'A' in this line and the next for GDP, 'B' for 
Consumption Weighted Electricity Price Data*/ 
quietly gen tval=_b[d.A]/_se[d.A] 
post buffer (tval) 
} 
 
postclose buffer 
 
use mcs, clear 
 
timer off 1 
summarize 
count if tval<-1.96 
count if tval>1.96 
timer list 1 
timer clear 1 
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*Unit-Root Test on Synthetic Data – Levels and Changes 
clear 
timer on 1 
set seed 123456 
 
postfile buffer pval using mcs, replace 
 
forvalues i=1/10000 { 
quietly drop _all 
quietly set obs 35 
quietly gen t=_n 
quietly tsset t 
quietly gen y=rnormal(60, 30) if _n==1 
quietly replace y=y[_n-1]+rnormal(-0.68, 12.86) if missing(y) 
quietly replace y=0 if y<0 
quietly replace y=round(y) 
quietly pperron d.y, trend /*comment: this code runs Phillips Perron test on changes data - 
remove the 'd.' in this line to run on levels data*/ 
quietly gen pval=r(pval) 
post buffer (pval) 
} 
 
postclose buffer 
 
use mcs, clear 
 
timer off 1 
summarize 
count if pval<0.05 
timer list 1 
timer clear 1 
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Appendix B: Data for Models and Simulations in Chapter 3 
 
The first column is GDP, the second is the consumption weighted electricity fuel price data, and 
the third is the S&P 500 index for 1973 to 2008. All three series are inflation adjusted as 
described in chapter 3. 

 
 

4889.9 2196.889 356
4879.5 2439.051 349
5141.3 2464.743 389
5377.7 2484.708 346
5677.6 2532.353 315

5855 2743.216 306
5839 3053.842 312

5987.2 3276.768 303
5870.9 2994.444 268
6136.2 2737.478 347
6577.1 2555.369 332
6849.3 2334.119 378
7086.5 1917.724 469
7313.3 1807.182 542
7613.9 1663.812 488
7885.9 1663.626 567
8033.9 1623.696 548
8015.1 1492.751 603
8287.1 1432.219 640
8523.4 1386.533 676
8870.7 1304.445 669
9093.7 1194.03 773
9433.9 1276.347 926
9854.3 1271.367 1175

10283.5 1161.617 1437
10779.8 1191.432 1720

11226 1533.928 1775
11347.2 1586.005 1442

11553 1365.841 1183
11840.7 1693.864 1133
12263.8 1902.641 1292
12638.4 2418.021 1331
12976.2 2211.508 1408
13254.1 2262.738 1535
13312.2 2730.75 1215
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Appendix C: Methods Described in Chapter 3 Applied to Panel Data 

 Some researchers have claimed that panel data avoids spurious regressions (i.e. elevated 
false positives); however, while this is true in the asymptote (Phillips and Moon 2007), I see no 
reason to believe it is accurate in the relatively small panels frequently used in economic and 
organizational research. In an attempt to generalize the time-series findings from chapter 3, I ran 
a modified version of my Monte Carlo simulations (see the sample code below), designed to 
generate panel data composed of a variable number of random walks. For speed of analysis I 
limited myself to a panel with 35 years of data (as with my previous simulations), five “entities” 
(in typical panel-data research these would be firms, countries, regions, or some other well 
defined unit of analysis over which one could count outcomes of interest), and 1,000 simulations. 
 Findings are shown in Table C.1 below.6 OLS and negative binomial regressions both 
yielded high rates of spurious correlations. The number of entities compiled in the panel can be 
increased and will still generate similar results – I tested this with small numbers of runs, but did 
not feel compelled to do so in a thorough way, and so do not present the results here. An 
expanded version of this work may be worthwhile, as this demonstrates my findings from 
chapter 3 generalize to panel data. 
 
 
Table C1: False-Positive* Rates for Synthetic Panel Data and Macro-Economic Variables 

 
*False positives here are P values less than 0.05 – the expected rate of false positives is 5%. 
 
 
 

                                                 
6
 Monte Carlo simulations for the negative binomial regressions required segmentation and use of multiple seeds 

for STATA's random number generator. Large numbers of simulated regressions (typically upwards of 100 in the 
case of panel data runs) tended to eventually generate one regression that would become “trapped” in a 
convexity or discontinuity during successive iterations and thereby foul the entire run. Segmentation allowed for 
smaller runs that avoided fouling, from which I then summed the results for a full total of 1,000 runs. 

OLS Neg. Binomial

(n=1000) USGDP USGDP

67.8% 56.5% 72.3% 56.8%

4.9% 6.1%

Energy 
Prices

Energy 
Prices

Non-Stationary Synthetic 
Panel Data

Changes on Non-Stat. 
Panel Data
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Sample Stata Code for Monte Carlo Simulations of Panel Data 
 
clear 
timer on 1 
set seed 12345678 
 
postfile buffer tval using mcs, replace 
 
 
forvalues i=1/1000 { 
quietly drop _all 
import excel "testdata.xls" 
quietly set obs 35 
quietly gen t=_n 
forvalues j=1/5 { 
quietly gen y`j'=rnormal(60, 30) if _n==1 
quietly replace y`j'=y`j'[_n-1]+rnormal(-0.68, 12.86) if missing(y`j') 
quietly replace y`j'=1 if y`j'<1 
quietly replace y`j'=round(y`j') 
} 
quietly reshape long y, i(t) j(id) 
quietly xtset id t 
quietly xtreg y A 
quietly gen tval=_b[A]/_se[A] 
post buffer (tval) 
} 
 
postclose buffer 
 
use mcs, clear 
 
timer off 1 
summarize 
count if tval<-1.96 
count if tval>1.96 
timer list 1 
timer clear 1 
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Appendix D: Residuals Histograms for Selected Renewable Energy VAR Models in 
Chapter 4 
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Graph D2: 
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Graph D3: 
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Graph D4: 
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Graph D5: 
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