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(a) The geographic map of the West Coast. The elevation data are provided
by United States Geological Survey [53]. The four subdivisions, namely South-
ern California (SCA), Northern California (NCA), Western Oregon (OR), and
Western Washington State (WA), are outlined with colored polygons. (b)
Geoposition of the study area in a larger scale. (¢) The monthly mean precip-
itation rate for the four subdivisions, based on the CPC precipitation dataset.
The boreal winter (October to March) precipitation ratio are labeled.

Describing CRPS using a 6-ensemble member forecast case (1, xa, ..., Tg).
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Significance test result for regional average predictions in the four divisions
for Day 2, Day 7, Week 2, and Week 3-4. The rows represent the forecast
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tions. For day-to-day evaluation, the extension to which models have ROC
score > 0.6 is labeled. . . . . . . ... oo
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results. . .o
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the magnitude variation of the predictand in different evaluation experiments.

Definition and time series of ENSO. ENSO is quantified based on the SSTA of
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on extended range prediction skill, hindcasts for each model are clustered into
different groups based on the ENSO phase at model start time. Case counts
for each cluster are listed in the right table. . . . .. .. ... ... .. ...

vil

30

34



2.11

2.12

2.13

2.14

2.15

Distribution of weekly precipitation anomalies conditioned on ENSO phases.
The first column is for early winter season (October, November, and Decem-
ber, OND); the second column is for late winter season (January, February,
and March, JEM); the third row is for the entire winter season (October to
March, O-M). The rows represent results for different geographic divisions.
For each subfigure, I listed the mean and variance of the distribution condi-
tioned on ENSO phases. The comparison between two distributions is labeled
with asterisk if the Kolmogorov-Smirnov statistic lies out of the 90%(95% )
confidence interval, indicating the two distributions are statistically signifi-
cantly different. . . . . . .. ..
Week 2 (column 1) and Week 3—4 (column 2) precipitation prediction skills
for different ENSO phases. The rows represent results for the four geographic
divisions. For each sub-figure, 11 models are evaluated; each model is colored
depending on the phase in which model has highest score. Models with sig-
nificant r skill difference between El Nino and La Nina phase are framed :
Red (Blue) frame indicates that model shows significantly better r skill for El
Nino (La Nina) phase based on the z test. Light (Dark) frame indicates the
difference is statistically significant at 90% (95%) confidence level. . . . . . .
The top left figure shows the leading 2 Principal Components(PC) of the field
that combines average outgoing long wave radiation, zonal wind at 850 hPa
and 200 hPa from 15°S to 15°N. The phase and amplitude of MJO is defined
based on the position of (PC;,PCy) and its distance to origin. For instance, the
red arrowed line represents an MJO event that starts from September 7,1979,
goes counterclockwise (eastward when reprojected to geographic map), and
ends on October 24,1979. On most days, (PC;,PCy) lies out of the middle
circle, whose radius is 1, indicating a strong MJO event. The bottom figure
displays the time series of MJO amplitude, as represented by +/PC? + PC3.
Active MJO events are labeled with red lines. Hindcasts for 11 GCMs are
labeled as “MJO Active” and grouped into corresponding clusters if the start
time is within an active MJO period, as shown in the right table. . . . . ..
Mean value of weekly precipitation anomalies conditioned on active MJO
events’ phase and number of days after MJO phase onset. The four rows
represent results for four geographic divisions, and the columns represent re-
sults for different seasons. In each sub-figure, the grid color represents the
mean weekly precipitation anomalies for Day m after MJO phase n, here m
ranges from Day 1 to Day 21, as labeled on the X axis, n ranges from Phase
1 to Phase 8, as labeled on the Y axis. . . . . . .. .. ... ... ......
Row 1 (3) shows the Week 2 (Week 3-4) r skills for different MJO groups.
Row 2 (4) shows the Week 2 (Week 3-4) z statistics of differences between
r skills for MJO-active groups and MJO-quiescent group, the dashed (solid)
grid line indicates statistical difference at 90% (95%) confidence level. . . . .
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(a) The case study area of a 32kmx32km geogrid centered at (46°N, 122°W).
Its surrounding circulation field is delineated with the 800kmx800km red
polygon. (b) The geogrid’s daily precipitation time series from 1979 to 2017.
The red thick line represents the gauge-based precipitation records from the
NOAA Climate Prediction Center (CPC); the blue slim line represents the
model reanalysis records from the NCEP North American Regional Reanalysis
Project (NARR). Data details are given in the Section 5.1. (c) The every 3
hour snapshots of the circulation profile for the storm event that happened on
November 7" 2006. The geopotential height (GPH) at 1000hPa, 850hPa, and
500hPa, as well as the total column precipitable water (PW) are obtained form
NARR. Data are normalized by subtracting the field mean (u) and dividing
by the field standard deviation (o). . . . . . . ... ...
The CNN architecture for estimating precipitation using the numerical model
resolved geopotential height and moisture field. The data are obtained from
NARR dataset. The stacked frames on the left side show the PW, GPH
at 500hPa, 850hPa and 1000hPa for the delineated 800kmx800km region in
Figure 3.1. The blue lines indicate a convolution operation applied on the
circulation field. The red lines indicate the pooling operation that down-
samples the local features. Several stages of convolution and pooling layers
are stacked, followed by the fully connected dense layers (orange lines). The
dense layer applies all the extracted features to estimate precipitation for
the target geogrid, which is labeled on the precipitation map on the right
part. The convolution and dense layers are optionally followed by a non-linear
transformation f, which are represented with semi-translucent fonts. . . . . .
The sample grids used in the experiment. For each grid, the surrounding
800km x800km dynamical field is delineated. The color indicates the mean
daily precipitation rate, which is calculated by averaging the CPC daily precip-
itation records from 1979 to 2017. The table shows the samples’ coordinates,
mean precipitation rate, the r and Root Mean Square Error (RMSE) between
NARR and CPC precipitation for the grids. . . . . . .. ... ... ... ..
The network structure for precipitation estimation. Each 3h snapshot of the
dynamical field, which is represented by a 4x25x25 tensor, is sequentially
processes through the convolutional layers and pooling layers. The extracted
features are flattened and processes by two consecutive dense layers. The
dimension of each layer’s output is labeled out. Different layers/operators are
denoted with corresponding colors. Results for eight 3h snapshots are summed
as the total daily precipitation estimate. In total, this network consists of
2,4076 parameters to be trained. . . . . .. .. ..o
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The scatter plots compare the Poxy (red circles) /Pyagrg (blue circles) against
the CPC precipitation records (Popger) for the 14 sample points. Results are
for the test set only. The skill scores of » and RMSE for each point are given in
corresponding sub-figures. The bold and underlined value indicates the better
statistics of the two estimates. The bottom right geographic map shows the
geoposition of the 14 points. The point is labeled red /blue if both skill scores
indicate that Pcxn / Pxagrg performs better. It is labeled gray if the two skill
scores show disagreement. . . . . . . . . . .. .. ...
Layer activations for the December 16, 2017 light precipitation event (top)
and November 7, 2006 storm event (bottom). The dark color represents low
values and bright color represents high values. The left part shows the eight 3h
snapshots of the dynamical field (GPH1goonpa; GPHssonpa, GPHs00npa and PW)
through the day. Conv 1/2 shows the activated output for the first/second
convolutional layer. The Conv 1 result is composed of 8 x 15 sub-figures. 8
indicates that there are eight 3h dynamical field snapshots; 15 indicates that
the output is of 15 channels, which are labeled as from C; to (5. Similar
denotations for Conv 2. The Output panel shows the results by mapping the
CNN to each 3h snap shot of the dynamical field. The sum of them consists

the total daily precipitation estimate, which is compared against CPC records.

Perturbation sensitivity analysis for the December 16, 2017 light precipitation
event (top) and November 7, 2006 storm event (bottom). For each case,
Ivisualize the model output changes by systematically perturbing different
portions of the scene with a rescaling matrix that is of same dimension as the
first convolutional layer receptive field. The perturbation magnitude is set to
5%. The results are denoted as #fmm. Iprovide clear 2D projections of
these figures in the supplementary material. . . . . . . . ... .. ... ...
Perturbation sensitivity analysis for the December 16" 2017 light precipitation
event. . . .. L e e e e
Perturbation sensitivity analysis for the November 7" 2006 storm event.

The variance (in logarithmic scale) for the leading 256 PCs of the GPH;gponpa,
GPH850hpa, GPH500hpa, and PW field. . . . ... ... ... ... .......

Top: Distribution of precipitation gauges across North America. Gauges are
labeled with 10 km range rings. The red grids indicate the study regions.
Bottom: detailed gauge distribution for the 12 grids labeled with 10 km range
rings. The total gauge number and mean number of available observations per
hour within each grid box are denoted. Background color indicates elevation,
for which the data are obtained from United States Geological Survey [53].

Mean coverage of available mosaicked observations from Stage IV precipitation
product for the study area. Contours show the elevation. . . . . . . ... ..
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[lustration of the convolutional recurrent neural network model. The bottom
colored stacked frames show the predictors, which are composed of every-hour
geopotential height (GPH) field at 500, 850, and 1,000 hPa, as well as the total
column liquid water, ice water and water vapor field. The specific region I
consider here is the Grid 11 in Figure 4.1, which covers 40°N-52°N,115°W-
130°W. Data are normalized by subtracting mean and divided by standard
variance. Orange/blue indicates high/low values, as shown in the bottom-
right legend. The blue lines represent a convolution operation applied on the
dynamical /moisture field. The red lines represent the pooling operation that
down-samples the local features. Several stages of convolution and pooling
layers are stacked for extracting salient spatial features. The extracted feature
time series are combined with the hidden state variable through a LSTM RNN
for precipitation estimation. Information flow though the memory and hidden
state cells of LSTM is labeled with green arrows. The observed precipitation
distribution for the target geogrid is shown on the precipitation map at the
top of the figure. . . . . . . . ..
Column 1 and Column 2 show examples of precipitation process simulations
for Grid 1 to Grid 6. Column 3 and Column 4 compares the r and RMSE
score of PMERRAQ/PMERRAQC/ PCNN against PRCNN- ..............
Similar as Figure 4.4 but for Grid 7 to Grid 12. . . . . . .. ... ... ...
r and RMSE skill score evaluated at gauge-point and hourly scale for Grid
1-4. The contour lines show the elevation data. The skill scores are labeled
with colored disks. . . . . . . . ...
Similar as Figure 4.4 but for Grid 5to Grid 8. . . . . .. ... .. .. ....
Similar as Figure 4.6 and Figure 4.7 but for Grid 9 to Grid 12. . . . . . . ..
Two nested domains in the WRF configuration. The spatial coverage and
integral time step for each domain is labeled. The red circles along the coast
denote the positions of atmospheric sounding observations. . . . . . . . . ..
Integrated water vapor (IWV) and wind field forecast for Domain 2. Row
1-2 shows the case of 00:00 UTC 13 October 2016 — 23:00 UTC 17 October
2016; Row 3—4 shows the case of 00:00 UTC 19 October 2017 — 23:00 UTC 23
October 2017. Row 1 and Row 3 show results forced by GFS reanalysis; Row
2 and Row 4 show results forced by operational GFS forecasts that start at
the beginning of the event. Column 1-6 show the dynamical analysis/forecast
at forecast lead Day 0 to Day 5. The red circle along the coast denotes the
positions of the soundings that measure the vertical profile of the atmosphere.

126

The sounding data are applied for quantitative dynamical forecast verification. 129

Comparing predictions of GPH;ggonpa, GPHgsonpa, and GPHzoonpa at sound-
ing locations. The red line shows estimations from WRF simulations forced
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x1



4.12

4.13

Comparing predictions of TQI, TQL, and TQV at sounding locations. The
red line shows estimations from WREF simulations forced by GFS forecast
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ABSTRACT

Advancing Precipitation Prediction Using a Composite of Models and Data
By
Baoxiang Pan

University of California, Irvine, 2019

Advances in numerical weather forecasts have brought forward considerable societal benefits
and raised expectations for higher resolution, more accurate, and longer predictions. Despite
the consistent progresses achieved, the prediction of precipitation remains a less satisfyingly
tackled task, with skills falling far behind those of other atmospheric variables. This disser-
tation serves as an inspection of prediction capacity and an exploration of predictability for
the precipitation process, with a particular focus on the region of West Coast United States.

The sources of predictability, accuracy requirements, and optimal model configurations
are distinct regarding the considered forecasting scales and ranges. To identify the successes
and deficiencies in predictions and benchmark further advances, a seamless assessment of
precipitation prediction skill for short range up to subseasonal scale range is conducted.
The evaluation is based on the Subseasonal-to-Seasonal Prediction Project retrospective
forecast database. The prediction skill-lead time relationship is evaluated, using multiple
models, and measured by both deterministic and probabilistic skill scores. Results show
advantageous deterministic skills for the evaluated models at Week-1. The best-performing
models achieved r ~ 0.6 for Week-2 predictions.

The potential sources of predictability at extended range from some of the key climate
variations are investigated based on a composite of statistical evidences and numerical predic-
tions. Results show that periods of heavy precipitation associated with ENSO are more pre-
dictable at the extended range period. The excessive precipitation and improved extended-

range prediction skill during ENSO periods are attributed to the meridional shift of baroclinic
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systems as modulated by ENSO. Through examining precipitation anomalies conditioned on
the MJO, I verified that active MJO events systematically modulate the area’s precipita-
tion distribution. Most of the evaluated models are still struggling to represent the MJO or
its associated teleconnections, especially at phases 3—4. However, some models do exhibit
enhanced extended-range prediction skills under active MJO conditions.

The advantageous precipitation prediction skill for short to medium range originates from
a steady accumulation of scientific achievements in (1) inferring atmospheric initial states,
(2) resolving atmospheric fluid dynamics, and (3) approximating unresolved atmospheric
processes. Evaluation results suggest that we have not fully realized the potentials of these
advances in fostering a corresponding improvement in precipitation prediction. Here, the
old art of forecasting by reading weather chart and advances in deep learning for image
recognition are combined to shed light on the precipitation prediction task from a top-down,
data-driven viewpoint. A deep convolutional neural network (CNN) model is trained to learn
precipitation-related dynamical features from the surrounding dynamical and moisture fields
by optimizing a hierarchical set of spatial convolution kernels. The model applies an “end-to-
end” learning strategy to automatically search, synthesize, and extract salient spatial features
from the resolved high-dimensional atmospheric field for accurate precipitation estimation
at daily scale. Experiments for different regions across the contiguous United States show
that, provided with enough data, precipitation estimates from the CNN model outperform
the reanalysis precipitation products, as well as the statistical downscaling products using
linear regression, nearest neighbor, random forest, or fully-connected deep neural network.

The idea of “end-to-end” learning for inferring unresolved precipitation process based on
resolved atmospheric field is further explored for hourly scale quantitative precipitation fore-
cast. Hourly precipitation observations from various sources are collected, quality controlled,
and concatenated to compose a unique long-term (1980/1/1- 2018/12/31) high temporal res-
olution precipitation observation dataset. A general framework for statistically modeling of

spatiotemporal data and making use of inconsistently available observations is developed.
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Hourly precipitation predictions using the deep neural network model give r ~ 0.8 at 2°x 2.5°
spatial scale, while the baseline numerical model achieved r =~ 0.5. The best performance
at hourly, gauge-point scale reaches the order of r ~ 0.6 for some gauges. However, there is
high skill variance in estimating precipitation at such a stringent spatiotemporal resolution.
To further test the proposed model in practical forecasts, dynamical retrospective forecast
experiments for two atmospheric river land-falling events are carried out using the Weather
Research and Forecasting (WRF) model. The WRF dynamical simulations are used to force
the trained neural network model for alternative precipitation process predictions. Simu-
lation results verified the consistency and robustness of the proposed approach. It should
be noted that the methods here are not intended to replace precipitation-related parame-
terization schemes using a “black box” model, rather, the target is to set a benchmark for
precipitation prediction from a data-driven perspective, and offer directions for improving
precipitation related parameterizations.

Overall, this work conducted a systematical evaluation of precipitation prediction skills
across a spectrum of critical scales and ranges. Sources of predictability at subseasonal
scale are explored based on a composite of statistical analysis and numerical prediction.
The potential of deep learning for seeking evidences in improving precipitation prediction is

explored by combining high quality observation data with numerical dynamical predictions.
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Chapter 1

Introduction

1.1 Background

1.1.1 Numerical Weather Prediction

The steady accumulation in knowledge about the earth atmosphere dynamics starts from
the recognition that a particular set of partial differential equations provides deterministic
descriptions for the atmospheric dynamics [1, 18]. These equations, usually named as primi-
tive equations, apply conservation laws and thermodynamics laws on the continuous control
volume of the atmosphere to describe the evolution of the atmospheric status, as defined by
its pressure (P), temperature (T), density (p), humidity (¢), and the three components of
the flow velocity vector (u, v, w).

To integrate the primitive equations or their variations over space and time from an ini-
tial estimate of the atmosphere status forms the foundation of dynamical weather forecast.
This paradigm becomes practical with the establishment of earth observation networks and
development of numerical analysis and computation techniques. The explosively growing
computation power allows us to discretize these equations at increasingly finer computa-
tion grids, and approximate the weather evolution by integrating the discretized equations

forward. Some of the key achievements in the development of dynamical weather forecast
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Figure 1.1: Key achievements in the development of atmosphere observation and modeling
techniques. Blue denotations label the progresses in observation. Black denotations label
the progresses in theory and modeling.

systems are summarized in Figure 1.1.

Modern numerical weather forecast systems have evolved to incorporate separate mod-
els around the modeling of the atmosphere [161], which facilitates the simulation of ocean,
land/soil, cryosphere, and biogeochemical cycle, etc. Beside these modules, a data assimila-
tion system is employed to merge observations with model predictions for optimal estimate
of the system status. A suite of parameterization options are ready to be employed to
account for the overall effects of models’ unresolved processes, such as cumulus clouds, mi-
crophysics, radiation, planetary boundary layer, and land surface process. By integrating
the components mentioned above, forecasts are nowadays regularly conducted by many of
the operational forecast centers and research institutes across the world. The simulation
results provide updated prediction information for short range up to climate range.

Within this dynamical forecast paradigm, prediction skill has been recognized to diminish
along forecast lead time. This is because small status estimation errors would grow through
model’s iterative computations. For the sake of illustration, Figure 1.2 uses the Lorenz 1963
system to demonstrate the fact that two simulations from slightly pertubated initial states

can yield widely diverging outcomes in a “chaotic” dynamical system.
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Forecasting Range Coverage Source of Predictability Primary Forecast Approach
Nowecast 0-2 hours Initial State Statistical Extrapolation
Very Short Range Up to 12 hours Initial State Dynamical Model
Short Range 12-72 hours Initial State Dynamical Model
Medium Range 72 - 240 hours Initial State Dynamical Model
Extended Range 10-30 days Initial&Boundary State Dynamical Model
Long Range 30 days-2 years Boundary State Statistical Inference and Dynamical Model
Climate Range beyond 2 years Boundary State Statistical Inference and Dynamical Model

Table 1.1: Meteorological Forecasting Ranges defined by World Meteorological Organiza-
tion(WMO)

Results in Figure 1.2 highlight the crucial role of initial status estimation accuracy for
short range forecasts and the difficulty for long-term deterministic forecasts. In practi-
cal weather forecast, it is imperative to distinguish critical forecasting ranges, clarify their
sources of predictability, and figure out the optimal model configurations. Table 1.1 lists
the key forecasting ranges defined by the World Meteorological Organization (WMO). At
nowcast range, statistical extrapolation serves as the primary approach for inferring the evo-
lution of the target atmospheric variable, such as precipitation. This is due to the fact that
dynamical models typically takes certain spin-up time to include detailed observations in its
state estimates. For short up to extended range, dynamical models have become arguably
the only reliable tool for predictions. Forecasts beyond extended ranges generally show little
deterministic skills, although we would expect models to capture low frequency signals from

the boundary constraints to offer informative probabilistic forecasts. Statistical inferences



are often employed to seek evidences from observations, verifying model’s capacities, and
exploring prediction opportunities at long range to climate range.

The numerical dynamical forecasting paradigm introduced above have achieved consistent
progress in predicting day-to-day weather variations, providing extreme weather warnings,
informing climate variations, and supporting weather-related decisions. While progresses
are still not constrained by limits on predictability yet [2], it is reasonable to expect fur-
ther improvements to be achieved from advances in (1) inferring atmospheric initial states,
(2) resolving atmospheric fluid dynamics, and (3) approximating unresolved atmospheric

processes.

1.1.2 Precipitation Prediction using Numerical Weather Models

Precipitation plays fundamental role in the earth hydrological cycle. It is also crucial for
agriculture, water resources allocation, emergency management, aviation, and many other
aspects of human society. Despite its importance, precipitation remains to be less satisfyingly
simulated and predicted in numerical weather prediction models. Precipitation prediction
skills have been recognized to fall far behind those of other atmospheric variables, such as
pressure, temperature, moisture, and wind speed. Evaluation studies suggest that models
usually fail in revealing many critical aspects of precipitation, such as location, timing,
intensity, or total accumulation [179, 184].

Compared to other atmospheric variables, precipitation demonstrates particularly high
spatiotemporal variability. These irregular characteristics stem from the manifestation of
individual formation and growth of precipitating clouds, which exhibit complex coupling with
their surrounding atmospheric fluid dynamics [78]. To correctly simulate precipitation poses
a stringent challenge on model’s capacity to represent atmospheric dynamics and physics
across a wide spectrum of scales: the model should first make realistic predictions of the
atmospheric dynamics, so the air density, pressure, wind, and temperature are in the right

place at the precise moment [184]; thereafter, the model should realistically infer the onset
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Figure 1.3: Schematic plot of statistical extrapolation (blue dashed line) and numerical
prediction (red line) of precipitation at nowcast range.

and strength of the convections, approximate the evolution of cloud hydrometeors of different
phases, and estimate the falling of the resulting precipitates. Errors from each of these
aspects exhibit complex interactions through model’s iterative computations, with all aspects
quickly revealing themselves in model’s precipitation outputs [184]. It is a daunting task to
attribute, track, and rectify these error sources. Below I conduct a schematic analysis about
how different error sources impact model’s precipitation prediction at different prediction

ranges.

Very Short Range to Medium Range Prediction

For very short range prediction of precipitation (0—6 hours), statistical extrapolation of cur-
rent precipitation observations usually outperforms numerical precipitation predictions. A
schematic comparison of prediction skill-forecast lead time relationship at very short range is
drawn in Figure 1.3. The main reason that dynamical prediction skill falls behind statistical
extrapolation is attributed to the errors in estimating the initial state of cloud hydrometeor
distributions. In most prediction cases, we do not have direct and comprehensive observa-
tions for the initial field of cloud hydrometeors that come in liquid, solid, or mixed phases.

The poor initial estimate results in poor predictions. It is widely accepted that statistical ex-



trapolation outperforms numerical predicting within a forecast lead time of 6 hours. Remote
sensing for cloud and precipitation has shown promises in alleviating the initial estimation
uncertainty for numerical modeling of cloud and precipitation. However, many peculiar is-
sues should be tackled before fully realizing their potentials [172], such as the specification
of model and observation error statistics, the formulation of the control vector, etc. For
comprehensive reviews, see [43] and [107].

For short range up to medium range, numerical weather prediction models demonstrate
particular advantage due to its comprehensive representation of atmospheric dynamics. How-

ever, deficiencies are found in the following aspects.

e Models’ dynamical forcings are of limited resolution for making detailed representa-
tion of cloud dynamics and cloud microphysics. For instance, the overall effects of the
subgrid embedding convective cells should be accounted by a cloud cumulus parame-
terization scheme. Since this approximation takes place at the “gray zone” between
resolved and parameterized domain of the model, inevitable sampling variance error

would be introduced.

e We usually cannot afford the computation cost to make detailed representation of the
cloud microphysics. Cloud encapsulates particles of different phases, sizes, and physical
properties. For physical comprehensiveness, bin-based microphysics parameterization
schemes are preferred to bulk schemes, since the former explicitly represent the size
distribution for each cloud particle species, while the latter apply few momentum
parameters to approximate the size distribution based on predetermined distribution
types. However, considering computation efficiency, bulk schemes are still preferred to

bin-based schemes in most practices

e The equations and their related parameters in precipitation-related parameterization
schemes are of inherent uncertainty, reflecting our insufficient understandings for the

microscale phenomena [90], and the indeterministic nature of the parameterization task



[13].
The challenges above have been intensively investigated through:

e Increasing numerical model’s resolution to resolve the “gray-zone” processes in coarse

resolution models [139, 91].

e Updating our understanding and encoding for the unresolved processes based on tar-

geted observations and high-resolution simulations.

e Calibrating parameters to reduce the mismatch between specific observations and

model simulations [77].
e Shifting from deterministic to stochastic parameterization [13].

e Improving cloud and precipitation assimilation based on new observations and ad-

vanced algorithms.

These efforts are supposed to benefit from a clarification of how improvement from each
single aspect contributes to model’s QPF skill. Such a clarification offers insights into the

sources of limits on prediction, thus directs further progresses to mitigate these limitations.

Extended to Long Range Prediction

Precipitation predictions for extended range up to long range subject to the limitation of
the weather systems’ predictability. As we try to predict precipitation at long lead time,
the position, timing, and intensity of the precipitation forecasts start to diverge from what
takes place in nature. Meanwhile, recent developments in forecast practices, statistical explo-
rations, and theoretical analyses suggest the opportunity of predictability across a continuous
spectrum of prediction ranges. Some of the potential directions for informative long term

forecasts are highlighted below:



¢ Ensemble Forecast: Ensemble forecast gives indication of an envelope of possible
future states of the atmosphere by running multiple simulations starting from pertu-
bated initial estimations. The ensemble spread of forecasts can be applied to represent
the prediction uncertainties. For extended range, predictions of high spatiotemporal
resolutions generally hold little efficacy as influenced by the chaotic effect. However,
ensemble predictions might offer crucial information about the probability of the distri-
bution for the considered weather phenomenon. Ensembles involving multiple models

can also help remedy the models’ epistemic errors.

e Sources of Predictability The time and space discretization involved in numerical
weather prediction models provides a discrete representation of the atmosphere, while
in reality dynamical and physical processes operate on a continuous spectrum of spatial
and temporal scales. The low frequency atmospheric signals, such as those from the sea
and stratosphere, provide valuable sources of predictability at extended up to seasonal
range. For instance, teleconnections between extratropical cyclone activities and tropi-
cal disturbances offer the potential for extending forecast lead time in the mid-latitude:
Semi-periodic tropical variations, i.e., El Nino-Southern Oscillation (ENSO) and the
Madden-Julian Oscillation (MJO), often trigger quasi-stationary Rossby wave-trains
that propagate into mid-latitudes, which in turn influence the precipitation distribu-
tion [75, 158, 120, 74]. Such effects might exert different impacts for different regions.
While much research focuses on explaining teleconnections [210, 126, 115], it is also im-
perative to keep investigating how forecasts of opportunities are expressed in numerical
models. This is because statistical inference usually makes crude simplifications of the
predictor-predictand relationship, while models makes more comprehensive representa-
tions of atmospheric inner-variability and boundary forcing information. Advances are
more likely to be generated through going back and forth between statistical evidences

and dynamical modelling [54].



1.1.3 Learning from Data

As is reviewed, precipitation prediction suffer from multiple sources of errors, with all of
them entangling through iterative dynamical simulations. It is difficult to track, attribute,
and rectify these intricate errors following a process-based approach. When a large number
of variables are involved, the idea of learning from data offers a powerful alternative solution
for model diagnosis.

The past decades have witnessed a booming of machine learning (ML) techniques accom-
panied by a deluge of data availability and exponential increase of computing capacity. From
a nutshell viewpoint, a machine M is a statistical model. It is said to learn from experience
E with respect to some class of tasks T and performance measure P if its performance at
tasks in 7', as measured by P, improves with experience E [122]. The key components a ML

algorithm have been artfully summarized by Pedro Domingos [39]:

Learning = Representation + Evaluation 4+ Optimization (1.1)

Here the term Representation is applied to denote two aspects of meanings: the first aspect
refers to the parametric form of the learning algorithm, which should be well defined and
interpretable for a computer; the second aspect refers to the features we apply to quantify
the predictors and predictand. As will be illustrated, a good feature representation of the
predictors and predictands can very often alleviate the modeling difficulties and foster good
performance in a ML task. Fwvaluation is typically expressed as a loss function, which tells
the performance of the proposed learning algorithm. Optimization refers to the process
of applying data to train the model for an optimal performance as measured by the loss
function. To frame a ML problem requires a clear clarification of these three components
and a careful formulation of these components regarding the characteristics of the learning
task.

ML applications are preferred to offer evidences by combining data with prior knowledge



in order to generate novel knowledge [224]. In geoscience, where we have partially established
principled solutions for the modeling of geophysical processes, numerical simulations are
usually preferred to ML-based approaches. However, recent developments in the field of deep
neural networks suggest that statistical models are capable of handling the complexities of
the geophysical processes, and offering important implications for model improvements.
Deep neural networks (DNNs) are artificial neural network models (ANNs) with multiple
hidden layers. An ANN approximates complicated functions through composing simple
functions in hierarchical computing graphs. DNNs apply multiple hidden layers, with each
layer transforming data representation at one level into a representation at a higher, slightly
more abstract level [96]. Through the hierarchical transformation, DNNs can automatically
learn customized feature representations for specific tasks. Besides being deeper, modern
DNNs have developed efficient and effective architecture variations that scale well for high
dimensional structured data. For instance, deep convolutional networks have demonstrated
state-of-the-art performance in processing imagery data [93], deep networks with recurrent
[69], attention [31], and memory [57] modules have brought about breakthroughs in sequential
learning problems, such as natural language processing, speech and audio modeling [223].
A blending of the spatial/temporal modules have shown particular advantage in video and
motion prediction [202], which have been recognized to share striking similarities to the
modeling of geophysical processes [151]. While many recent research works have started to
explore the applicability of DNNs for modeling geophysical processes [105, 149], it remains
a question how DNN can translate the big data of observations and numerical simulations

into precipitation estimation improvements [142].

1.2 Research Questions and Dissertation Organization

The fast development of numerical weather prediction techniques, accumulation in high qual-

ity observations and forecast experiment records, and new generation of statistical modeling

10



approaches offer unique opportunities for investigating precipitation prediction capacity, ex-
ploring their success and deficiencies at critical scale and ranges, and seeking the potential
predictability that have not been realized by the modeling systems. To better understand
and take use of these opportunities, the following research questions are proposed and ad-

dressed in this dissertation:

1. What is the status quo of current numerical weather prediction models in predicting

precipitation at critical scales and ranges?

2. How do current numerical weather prediction systems capture the opportunity of pre-
dictability for precipitation prediction at extended ranges, compared to the evidences

from statistical analysis?

3. How can deep learning be applied to shed light on improving precipitation prediction

by combining data with our prior knowledge in dynamical atmospheric modeling?

To address these questions, the West Coast of United States is selected as the major
study area. Data from various sources of observations, numerical retrospective forecast
experiments, and numerical analysis are applied. Simple statistical analysis and complicated
deep neural networks are explored. Results are verified against observations and targeted
dynamical simulations.

The rest of this dissertation proceeds as follows: Chapter 2 conducts a seamless assess-
ment of precipitation prediction skills for the West Coast of the United States. The potential
sources of predictability at extended range from key climate variations are investigated, based
on a comparison of statistical evidences and numerical predictions. Chapter 3 introduces
the deep convolutional neural network to shed light on the old art of inferring precipitation
from weather charts. The idea is further explored for hourly scale quantitative precipitation
forecast in Chapter 4, where a general framework for statistically modeling of spatiotemporal
data and making use of inconsistently available observations is developed. Conclusions are

drawn in Chapter 5.
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Chapter 2

Seamless Assessment of Precipitation

Prediction Skills

2.1 Background

Precipitation is crucial for agriculture, water resources allocation, emergency management,
aviation, and many other aspects of the society. The accuracy and extension of precipitation
prediction is of consistent concern to many operational prediction and application commu-
nities. This chapter conducts an evaluation of precipitation prediction skills achieved by
a number of state-of-the-art numerical weather prediction systems. The evaluated models
have been extensively applied for operational forecasts by many forecast centers around the
world. The primary objective is to offer a comprehensive inspection of precipitation predic-
tion capacity at critical scales and ranges. Besides, the potential sources of predictability
at extended range from some of the key climate variations are investigated, based on a
comparison of statistical evidences and numerical predictions. Such an assessment helps to
identify successes and shortcomings in the models [195], and sets the benchmark for further
improvements.

The heavily populated West Coast of the United States is selected as the study area. This

12



region receives a majority of its precipitation during the cold season (October to March).
This precipitation supports the water requirements of approximately 15.7% of the nation’s
population [137], generates approximately 52.6% of the domestic hydroelectricity [118], and
waters approximately 21.7% of the country’s irrigated farm land [192]. Occasional extended
wet or dry periods, which are strongly linked to the presence or absence of winter storms,
threaten the area’s ecological and economic security. Additionally, extremes of droughts
and floods can end or occur abruptly, posing challenges to public safety and many other
aspects of the society. To better plan for and respond to the beneficial /destructive impacts
of the precipitation variations, it is imperative to understand the accuracy and extent of the
predictions.

There has been substantial progress in day-to-day precipitation predictions in the past
six decades [9]. The skill improvements are largely due to 1) more realistic estimations of
initial atmosphere conditions, and 2) improvements in the ability of numerical prediction
models to simulate the dynamics and physics of the weather systems. While these advances
have led to improved forecasts at longer lead time, it is also true that small-scale errors
roughly double in 1-2 days, leading to a rapid loss of useful skill within about 2 weeks [108].

Provided with loosened requirements on spatial temporal resolutions, deterministic and
ensemble-based forecasts occasionally provide useful prediction beyond the synoptic time
range [204], which has the potential for significant economic value. Generally, the skill
depends on 1) the existence of sources of predictability at corresponding temporal ranges, and
2) the model’s ability to represent the dynamics associated with these modes of variability
[130]. For regions with distinct dynamics and sources of predictability, the prediction skill
at the extended range has been recognized to be different [226, 209].

Most winter precipitation events along the West Coast are driven by moisture convergence
associated with passing extratropical cyclones [8, 33]. At short to medium ranges, due to the
coherent life cycle of cyclone events, cyclogenesis is highly predictable. At the extended range,

the prediction skill decreases rapidly [95, 226, 153], due to the chaotic nature of the baroclinic

13



systems. Teleconnections between extratropical cyclone activities and tropical disturbances
offer the potential for extending forecast lead time. For instance, semi-periodic tropical
variations, i.e., El Nifio-Southern Oscillation (ENSO) and the Madden-Julian Oscillation
(MJO), often trigger quasi-stationary Rossby wave-trains that propagate into mid-latitudes,
which in turn influence the precipitation distribution [75, 158, 120, 74]. Such effects are
expected to be more significant for the West Coast, given its proximity to the Pacific and
the associated sources of potential predictability [204, 7, 126].

While much research focuses on explaining teleconnections [210, 126, 115], it is important
to keep investigating how forecasts of opportunities are expressed in General Circulation
Models (GCMs), since GCMs remain the most important tool for testing potential sources of
predictability. Numerous studies have evaluated the ability of GCMs to predict intraseasonal
variability at global and regional scales [132, 194, 98, 186, 205]. However, a systematic
evaluation of the prediction skill for precipitation at short to extended range along the West
Coast has not been reported.

The target of this chapter is to investigate short to extended range precipitation prediction
skill for the West Coast during its rainy season. In particular, the impact of the leading modes
of intraseasonal to seasonal variability on the distribution and prediction skill of precipitation
is explored. The intention is to use the results as a baseline for follow-on investigations of
seamless weather-climate prediction.

The evaluation is based on extended-range retrospective forecasts (hereafter referred to
as hindcasts) experiments conducted by 11 operational centers and hosted by the World
Weather Research Programme (WWRP)/World Climate Research Programme (WCRP)
Subseasonal to Seasonal (S2S) Prediction Project science plan [195]. The abundance of
hindcast cases and model diversity offer an unprecedented opportunity for investigation of
the potential predictability and prediction skill of precipitation. The specific experiments

are as follows:

1. Evaluate the prediction skill for West Coast precipitation during the cold season in

14



each GCM on time scales from short range to extended range.

2. Investigate the influence of intraseasonal and seasonal variability on precipitation pre-

diction skill in the GCMs at extended range, with emphasis on ENSO and the MJO.

The rest of this chapter is organized as follows. Section 2 introduces the data used in this
study. Section 3 describes the methodology, including evaluation strategy and skill scores.
The evaluation results are presented in Section 4. Section 5 focuses on the impact of ENSO

and MJO. Discussion and conclusions are given in Section 6.

2.2 Data and Materials

2.2.1 Study Area

The study area is restricted to the heavily populated coastal region of the Western United
States, which includes California, Western Oregon, and Western Washington (to the west of
120°W as roughly divided by the Cascade Range). The west Cascade Range is considered
separately from the east range due its distinct synoptic and precipitation regimes [19]. The
proximity of this region to the neighboring Pacific Ocean suggests that it is likely to hold
considerable predictability for extended range. Considering the climate variation within
the study area, this region is further divided into four subdivisions for evaluation, namely
Southern California (SCA), Northern California (NCA), Western Oregon (OR) and Western
Washington State (WA). The study area is highlighted in Figure 2.1.

2.2.2 CPC Gauge based Daily Precipitation

The Climate Prediction Center (CPC) Unified Gauge-Based precipitation database [219] is
used as “ground truth” for assessing performance of the GCMs. This database is constructed
by merging various precipitation information sources, including gauge observations, satellite

estimates, and numerical model predictions. It provides solid daily precipitation records
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Figure 2.1: (a) The geographic map of the West Coast. The elevation data are provided
by United States Geological Survey [53]. The four subdivisions, namely Southern California
(SCA), Northern California (NCA), Western Oregon (OR), and Western Washington State
(WA), are outlined with colored polygons. (b) Geoposition of the study area in a larger
scale. (¢) The monthly mean precipitation rate for the four subdivisions, based on the CPC
precipitation dataset. The boreal winter (October to March) precipitation ratio are labeled.

covering the contiguous United States from 1948 to 2017 with spatial resolution of 0.25° x
0.25°. Data for the West Coast in cold season (October to March) are considered. The data
are spatially-averaged to (lat,lon) = 1.5° x 1.5° grid to match the resolution of the GCM

hindcast precipitation products.

2.2.3 Climate Indices

The leading patterns of intraseasonal to interannual variability considered in this study are
ENSO and the MJO. ENSO is measured by the Nifio 3.4 index [189], which is the mean
monthly sea surface temperature anomalies (SSTA) averaged from 5°S-5°N and 170°W-—
120°W. The MJO is quantified by the real-time multivariate MJO Index (RMM), which
consists of the two leading principal components (PCs) of the field that combines average

outgoing long wave radiation, zonal wind at 850 hPa and 200 hPa from 15°S to 15°N [208].
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2.2.4 Subseasonal to Seasonal (S2S) Hindcast Database

As a key component of the S2S Prediction Project, the S2S hindcast database offers a large
number of hindcast cases to investigate the forecast skill and potential predictability at the
extended time range. The database consists of extended-range hindcast cases implemented

by 11 operational centers, namely:
e The Australian Bureau of Meteorology (BOM; [3])
e The China Meteorological Administration (CMA; [217])
e The European Centre for Medium-Range Weather Forecasts (ECMWF; [196])
e The Environment and Climate Change Canada (ECCC; [48])

e The Institute of Atmospheric Sciences and Climate of the National Research Council

(ISAC-CNR; [114])
e The Hydrometeorological Centre of Russia (HMCR; [32])
e The Japan Meteorological Agency (JMA; [82])
e The Korea Meteorological Administration (KMA; [14])
e The Météo-France/Centre National de Recherche Meteorologiques (MétéoFrance; [199])
e The National Centers for Environmental Prediction (NCEP; [157])
e The U.K. Met Office (UKMO; [216])

Model configurations are listed in Table 2.1.

In each hindcast case, each model is initialized with realistic estimates of the atmosphere,
land surface, and ocean states. After initialization, the model predicts the global weather
evolution for a preset extent without any boundary constrains. It should be noted that there

are large differences between the evaluated models when one considers the initialization
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Table 2.1: Model configurations in the S2S hindcast database

Model Time range(day) Resolution Hindcast frequency Hindcast length Ensemble Size
BoM 0-62 T47L17 1981-2013 6/month 33
CMA 0-60 T106L40 1994-2014 daily 4
ECCC 0-32 0.45° x 0.45° L40 1995-2014 weekly 4
ECMWF 0-46 Tco639/319 191 past 20 years 2 /week 11
HMCR 0-61 1.1° x 1.4° L28 1985-2010 weekly 10
ISAC-CNR 0-32 0.75° x 0.56° L54 1981-2010 every 5 days 1
JMA 0-33 T1479/T13191.100 1981-2010 3/month 5
KMA 0-60 N216L85 1991-2010 4/month 3
MétéoFrance 0-32 T255L91 1993-2014 2/month 15
NCEP 0-44 T126L64 1999-2010 day 4
UKMO 0-60 N216L85 1993-2015 4/month 3

strategy, dynamics core, parameterization schemes, resolution, ensemble generation scheme,
hindcast extents, ocean and sea ice coupling, etc. This diversity may offer an opportunity
to determine best practices for subseasonal predictions [195, 211]. In this study, daily pre-
cipitation hindcasts for the West Coast during the cold season (October to March) are used

for the assessment.

2.3 Methodology

2.3.1 Evaluation Strategy

A basic fact in precipitation prediction is that the position, timing, and intensity of forecast
diverge from reality as forecast lead time increases. A grid scale, day-to-day deterministic
prediction generally holds little efficacy beyond the synoptic range, as state estimation errors
accumulate through model’s iterative computations. However, predictions might still have
skill if assessed at regional scales or over a range of lead times.

Given this fact, the evaluations implemented here are carried out at both stringent and
loosened spatiotemporal scales. The stringent scale evaluation refers to evaluating each
grid’s day-to-day prediction skill. In addition, the evaluation is also carried out for regional

average predictions and predictions that span specific windows of lead time. The regional
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average predictions are calculated by averaging predictions within the geographical divisions
shown in Figure 2.1. Small deviations in predicting cyclone trajectories and their associated
precipitation positions are likely to be averaged out in this way. Windows of lead time are
defined following [226]: For a lead time of n days, the subsequent n days average precipi-
tation prediction is evaluated. Thus, a ndnd evaluation refers to evaluating the prediction
of the mean precipitation rate from (n + 1)th day to 2nth day. This strategy offers a fair
comparison across a range of time scales from short range to extended range, since the de-
viation in predicting the timing of precipitation at longer lead time will be averaged out at
wider evaluation windows. Using different spatial and temporal scales, the following four

experiments are carried out:

1. Daily, grid-point scale evaluation: Evaluate the nth day prediction skill at each grid
point, n ranges for the entire period of forecast. The overall skill for each climate

division is calculated by averaging skill scores for all the grid points within this division.

2. Daily, regional scale evaluation: Evaluate daily regional average forecasts for each

geographical division.

3. Variable temporal windows, grid-point scale evaluation: Evaluation is carried out at

each grid point for various windows of lead time, following the strategy of [226].

4. Variable temporal windows, regional scale evaluation: For each geographical division,
the regional average precipitation forecasts are evaluated for variable windows of lead

time.

2.3.2 Skill Metrics
Deterministic Skill Metrics

Two deterministic skill metrics, namely the Pearson correlation coefficient () and the Nash-

Sutcliffe model Efficiency Coefficient (NSE; [129]), are used to assess the performance of the
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ensemble-mean forecasts. Their formulas are given as follows:

= E[(Pobser - Pobse?")(Psimu - Psimu)] (2.1)

O-Pobser O-Rsimu

Popser — Puiu)?
NSE -1 _ Z( obser szmu)
Z(Pobser - Pobser)2

(2.2)

Here P,,,., denotes mean value of the precipitation observations. Pi;,,, denotes the ensemble
mean prediction. Operator E denotes the expectation taken over all available samples, o
denotes standard deviation, r quantifies the linear correlation, NSE quantifies the relative

magnitude of the mean square error compared to the climatology variance.

Probabilistic Skill Metrics

In general, forecasts beyond 10 days should no longer be considered to be deterministic
[194]. Each ensemble member from the ensemble forecast system offers useful information
in predicting the real-world weather evolution. To account for the information provided by
each ensemble member, I also evaluate the probabilistic prediction skill based on all ensemble
members. Here, the relative operating characteristics (ROC) score and the continuous ranked
probability score (CRPS) are employed for probablistic evaluation.

The ROC score provides a complete summary of hit ratio and false alarm ratio for
different observation intervals. To calculate the ROC score for each model, I construct a
sample space that consists of all ensembles starting at different dates. For instance, for
ECMWEF, there are 1,482 hindcast starts; each start has 11 ensemble members, so together
there are 1,482 x 11 samples. For this sample space, the hit ratios and false alarm ratios
for observation intervals of (z,00) (here z is set as 10 deciles of observation range) are

calculated and scatter plotted (hit ratio on the vertical axis and false alarm ratio on the
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horizontal axis) [44]. The points construct the ROC curve, which should be above the 1:1
line if the model has positive skill. The ROC score is defined as the area under the ROC
curve. The closer the ROC score is to 1, the better. A no-skill forecast has an ROC score of
0.5 [193]. It should be noted that the ROC curve is constructed by sorting the elements of
the joint distribution of observations and predictions. Thus, the actual numerical values are
immaterial, and the final score is insensitive to prediction biases [214]. The score reflects the
potential performance that can be achieved if the forecasts were correctly calibrated or bias
corrected. It should be acknowledged that there are considerable biases that are introduce
by the precipitation-related parameterization schemes. However, since the objective here is
to investigate the potential precipitation prediction skills achieved by the dynamic modules
of models, I believe applying the ROC metric score is justified.

The CRPS measures the ensemble forecast skill by comparing the probability distribution
of the ensemble predictions and the observations [63]. As is shown in Figure 2.2, it is repre-
sented as the integrated squared difference between the cumulative probability distribution
function (c.d.f.) of the forecasts and the observation.

To evaluate the general performance of the ensemble forecast systems, I apply the mean

CRPS (CRPS). The formulas are given as follows:

_ 1 1
CRPS = ~CRPS = ~ / [Fopser (#) = Faima(z)]*dz
711 71L R (2.3)
~ —CRPS - — / [Fabser(x) - Fszmu(x)]de
n n R

Here n represents the ensemble forecast case count, Fipser/Fisima 1S the c.d.f. of the precip-
itation observation/simulation as shown in Figure 2.2. Fsimu could be easily estimated by

assigning equal probability to each ensemble member.
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Figure 2.2: Describing CRPS using a 6-ensemble member forecast case (1, 23, ..., 7). The
red/black line represents the theoretical /empirical c.d.f. of the precipitation forecast, which
is denoted as Fyjpu/ Fsimu; the blue line represents the c.d.f. of the observation, Fj ... Since
the observation is deterministic, F ., is in the Heaviside function form, i.e., if x < Z pser,
Fopser(z) = 0, otherwise Fipser(x) = 1. The CRPS is defined as the integrated squared
difference (shaded area) between the cumulative distribution functions of the forecasts and

observations.
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2.4 Evaluation Results

2.4.1 Deterministic Skills
Pearson Correlation Coefficient

The estimated Pearson correlation coefficient (r) between the ensemble mean predictions
and the observations for the four experiments is presented in Figure 2.3.

For day-to-day evaluation (first two columns in Figure 2.3), as is expected, each model
shows a rapid decrease of r skill with forecast lead time. The extent to which model’s r skill
is greater than 0.2 is labeled (this threshold is subjective and should be customized regarding
specific application purposes). Generally, due to the model performance differences, r falls
below 0.2 within 8 to 15 days (10 to 16 days) for Experiment 1 (Experiment 2). A comparison
between Column 1 and Column 2 shows that with a lead time of as much as 2 weeks, regional
average predictions generally have higher r skill compared to grid scale predictions. The skill
improvements through spatial averaging are most obvious for SCA, which is attributable to
the uneven precipitation distribution for this region.

For the temporal interval evaluation (Experiments 3 and 4 in the last two columns of
Figure 2.3), the statistics of best and mean performances at different windows of lead time
are given in Table 2.2. Within the synoptic range, the Day 2 (1d1d), Day 3—Day 4 (2d2d)
and Day 5—Day 8 (4d4d) r skills are generally of the same order of magnitude (above 0.6
at grid scale and 0.7 at regional scale). This indicates that the decrease of prediction skill
as lead time increases is compensated by the expanding of evaluation windows following
the ndnd temporal averaging strategy. JMA, KMA, ECCC, and ECMWF models have the
best performance at this temporal range. It is noteworthy that theses models are of higher
resolution compared to the others. For Week 2 (lwlw), there is large variability in the
models’ r skills. The best performing model (ECMWTF) achieves r skill of approximately
0.5 at grid scale and 0.6 at regional scales. The average performance for all models is of the

order of 0.4 for both grid and regional scales. Beyond 2 weeks, the models generally show
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Figure 2.3: The Pearson correlation coefficient between the ensemble mean of precipitation
predictions and the observations for the four experiments defined in Section 3. The evaluation
results for the four divisions are shown in rows 1- 4. The columns represents different
experiments. Column 1 shows the daily, grid-point scale evaluation results; column 2 shows
the daily, regional scale evaluation results; column 3 shows the variable temporal windows,
grid-point scale evaluation results; column 4 shows the variable temporal windows, regional
scale evaluation results. For column 1 and 2, the extensions to which » > 0.2 for different

models are labeled.
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little usable skill. However, it is noteworthy that some models exhibit unexpectedly good

performance at this time range, such as BoM for SCA and HMCR for WA.

Table 2.2: Correlation coefficient of precipitation predictions at temporal interval scales

Seale SCA NCA OR WA

Best Mean Best Mean Best Mean Best Mean

Day2 Grid 0.71(JMA) 0.62 0.7(KMA) 0.63 0.71(JMA) 0.59 0.73(JMA) 0.62
Day2 Regional 0.88(JMA) 0.76 0.83(KMA) 0.74 0.82(JMA) 0.71 0.85(JMA) 0.76
Day3~4 Grid 0.78(KMA) 0.69 0.78(JMA) 0.7 0.74(JMA) 0.66 0.78(JMA) 0.7
Day3~4 Regional 0.88(KMA) 0.81 0.86(JMA) 0.79 0.84(JMA) 0.76  0.89(ECCC)  0.81
Day5~8 Grid 0.72(MeteoFrance) 0.62 0.75(ECMWF)  0.63 0.7(ECMWF) 0.58 0.71(ECMWF) 0.6
Day5~8 Regional 0.82(ECMWF) 0.73 0.83(ECMWF) 0.7 0.79(ECMWF) 0.67 0.81(ECMWF) 0.69
Week2 Grid 0.52(ECMWF) 0.43 0.56(ECMWF) 0.42 0.5(ECMWF) 0.38  0.5(ECMWF) 0.38
Week2 Regional 0.62(ECMWF) 0.5 0.61(ECMWF) 047 0.58(ECMWF) 044 0.58(ECMWF) 0.45
Week3~4 Grid 0.3(BoM) 0.22  0.33(ECMWF) 0.22 0.29(MeteoFrance) 0.2 0.29(ECMWF) 0.22
Week3~4 Regional  0.35(ECMWF) 0.26 0.33(ECMWEF) 0.25 0.35(MeteoFrance) 0.24 0.32(ECMWF) 0.26
Week4~6 Grid 0.35(BoM 0.26  0.32(ECMWF) 0.2 0.25(ECMWF) 0.19 0.32(ECMWF) 0.26
Week4~6 Regional 0.38(BoM 0.29 0.37(ECMWF) 0.24 0.33(ECMWF) 0.24 0.38(BoM) 0.31

)
(BoM)
Weekp~8 Grid 0.41(BoM) 032 0.28(HMCR) 0.23 0.27(BoM) 0.18  0.42(HMCR)  0.29
Week5~8 Regional 0.45(BoM) 036  0.34(HMCR) 0.28 0.34(HMCR) 023  051(HMCR)  0.36

The results above suggest that models’ r skills are distinct regarding different regions and
forecast lead time. For a same region and lead time, the informative predictable range may
differ by up to 6—7 days due to the model performance differences. The huge sample size in
the S2S dataset offers opportunity to test the significance of model performance differences
at critical forecast lead time periods. The results would benefit model selections for practical
forecasts and multi-model ensemble predictions. Below I carry out the significance test on
models’ r skill differences for the Day 2, Day 7, Week 2, and Week 3—4 period. These
periods are selected since they represent critical lead time and scales in weather forecast. To
perform the test, I first applied the Fisher r-to-z transformation [45] on the r estimations.
Later, I applied significance test on the z statistics to assess the significance of the difference
between models’ r skills. Results are shown in Figure 2.4.

For the Day 2 forecast (row 1 in Figure 2.4), the ECCC, ECMWF, ISAC-CNR, JMA, and
KMA generally show significant advantages over the other models; while the BoM and CMA
model show significant lower skills. For the Day 7 forecast (row 2), the ECCC, ECMWF,

JMA and KMA still lead the performance, while ISAC-CNR loses its advantage over most
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Figure 2.4: Significance test result for regional average predictions in the four divisions for
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red if the r skill for the model at the row m is better than the model at the column n at
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models. This might due to the fact that the ISCA-CNR model is applying deterministic
rather than ensemble forecast here. For Week 2 forecast (row 3), the best performing models
are ECCC, ECMWF, and JMA. ECMWF shows significant advantage over all the other
models except for the WA prediction when compared against JMA. For Week 3—4 fore-
cast (row 4), although there is essentially no useful r skill, the ECMWEF model still shows

advantage over the rest models.

Nash Sutcliffe Model Efficiency

A large value of  generally results in a corresponding positive NSE, which indicates that the
model outperforms the baseline of climatology. However, evaluation of model’s precipitation
ensemble mean predictions shows negative NSE in most experiments, indicating that models
have skills in predicting precipitation variations but have difficulty in pinpointing the specific
precipitation amount. Given this fact, a simple linear bias correction is carried out for each
scale before evaluating with NSE. Results after the correction are shown in Figure 2.5. The
best and mean performance are given in Table 2.3.

Table 2.3: Nash-Sutcliffe model efficiency of precipitation predictions (linearly bias corrected)
at temporal interval scales

Seale SCA NCA OR WA

Best Mean Best Mean Best Mean Best Mean

Day2 Grid 0.51(JMA) 0.39 0.49(KMA) 0.41 0.5(JMA) 0.35 0.54(JMA) 0.4
Day2 Regional 0.77(JMA) 0.59 0.69(KMA) 0.54 0.67(JMA) 0.5 0.72(JMA) 0.58
Day3~4 Grid 0.61(KMA) 0.48 0.62(JMA) 0.5 0.55(JMA) 0.44 0.61(JMA) 0.49
Day3~4 Regional 0.77(KMA) 0.65 0.74(JMA) 0.63 0.7(JMA) 0.58 0.79(ECCC) 0.66
Day5~8 Grid 0.52(MeteoFrance) 0.4  0.57(ECMWF) 0.41 0.49(ECMWF) 0.35 0.51(ECMWF) 0.37
Day5~8 Regional 0.68(ECMWF) 0.54 0.69(ECMWF) 0.5 0.62(ECMWF) 0.45 0.65(ECMWF) 0.49
Week2 Grid 0.27(ECMWF) 0.19 0.31(ECMWF) 0.19 0.25(ECMWF) 0.15 0.25(ECMWF) 0.16
Week2 Regional 0.39(ECMWF) 0.25 0.38(ECMWF) 0.23 0.34(ECMWF) 0.2 0.33(ECMWF) 0.21
Week3~4 Grid 0.09(BoM) 0.05 0.11(ECMWF) 0.05 0.09(MeteoFrance) 0.05 0.09(ECMWF) 0.05
Week3~4 Regional 0.12(ECMWF) 0.07 0.14(ECMWF) 0.07 0.12(MeteoFrance) 0.06 0.11(ECMWF) 0.07
Week4d~6 Grid 0.13(BoM) 0.07  0.11(ECMWF) 0.05 0.07(ECMWF) 0.04 0.1(ECMWF) 0.08
Week4~6 Regional 0.15(BoM) 0.09 0.14(ECMWF) 0.06 0.11(ECMWF) 0.06 0.14(BoM) 0.1
Week5~8 Grid 0.18(KMA) 0.11 0.09(HMCR) 0.06 0.08(BoM) 0.05 0.19(HMCR) 0.1
Week5~8 Regional 0.2(BoM) 0.13 0.12(HMCR) 0.08 0.11(HMCR) 0.06 0.26(HMCR) 0.14

Overall, the NSE results offer similar indications as evaluation results based on r. Daily

scale NSE reaches 0.2 within approximately 5 to 10 days. Models lose their advantage over
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Figure 2.5: As in Figure 2.3, but using Nash-Sutcliffe Efficiency of ensemble mean predictions
(linear bias corrected). For day-to-day evaluation, the extension to which models have
NSE> 0.2 is labeled.
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climatology after approximately 2 weeks (NSE~ 0). Through spatial averaging, short range
NSE could be improved by 0.2, and range of NSE> 0.2 is extended by 1 day.

Considering evaluations at different windows of forecast lead time, for Day 2 and Day
3-4 predictions, JMA, KMA, and ECCC models still have the best performance. For the
medium range, ECMWF achieves the largest NSE. Week 2 predictions are of considerable
value, with NSE around 0.25 at grid scale and 0.35 at regional scale. Beyond two weeks,

skills rapidly decrease.

2.4.2 Probabilistic Skill
ROC Score

This section evaluates the models’ probabilistic skill using the ROC score. To illustrate the
idea of ROC, I draw the ROC curves for ECMWPF regional predictions in Figure 2.6. Each
labeled point represents the hit ratio (HR) and false alarm ratio (FAR) for a corresponding
interval of precipitation observations. For instance, the point labeled 0.9 represents the
(HR,FAR) of prediction for the (Pygy,00) interval, where Pygy, represents the 90% quantile
of observed precipitation. The further a point is above the 1:1 line, the more likely a P > Pyyg
forecast is true. As is shown, points in all sub-figures here are above the 1 : 1 line, showing
a larger HR than FAR at different evaluating thresholds for all scales. Small precipitation
cases generally appear on the top right part of the ROC curve (larger HR but also larger
FAR), while large precipitation cases appear on the bottom left part of the ROC curve
(smaller HR but also smaller FAR). For short to medium range, the ROC curves of Day
2 (1d1d), Day 3—Day 4 (2d2d) and Day 5—Day 8 (4d4d) show considerable overlap. The
ROC curve for Week 2 (lwlw) prediction falls below the previous three cases. For Week
3—Week 4 (2w2w) and Week 4—Week 6 (3w3w), again the curves overlap and they fall below
all the previous cases. The ROC score is defined as the area below the ROC curve, which
summarizes the probabilistic prediction skill for different evaluating intervals. The scores are

given at bottom right in each sub-figure. Day 3—Day 4 prediction achieves slightly better
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Figure 2.6: ROC curves for ECMWTF regional precipitation predictions for the four regions
at various windows of lead time. The points with labeled numbers show the hit ratio and
false alarm ratio of a corresponding threshold. The ROC scores for different intervals are

given in the tables.

ROC score compared to Day 2 and Day 5—Day 8. The Week 2 (1wlw) prediction achieves
ROC score above 0.7 in all divisions. For Week 3—Week 4 (2w2w) and Week 4—Week 6
(3w3w), the score is around 0.6, showing better performance than random guess.

Based on this same approach, I calculated the ROC scores for all models in different
evaluation experiments. Results are shown in Figure 2.7. For day-to-day evaluation (first
two columns), I labeled the extent to which the ROC score is larger than 0.6 (again, this
threshold is subjective and should be adjusted if necessary). Generally, the daily ROC scores
begin to fall below 0.6 in the second week. They reach 0.5 at approximately 20 days, which
means beyond 20 days, day-to-day estimations show no advantage over climatology.

Considering evaluations at different windows of lead time (last two columns in Figure
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Figure 2.7: As in Figure 2.3, but using the ROC score of ensemble precipitation predictions.
For day-to-day evaluation, the extension to which models have ROC score > 0.6 is labeled.
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2.7), for short to medium range, best-performing models achieve ROC scores above 0.85 for
Day 2 (1d1d), Day 3—Day 4 (2d2d) and Day 5—Day 8 (4d4d). For Week 2, the ROC score is
around 0.65 for grid scale and 0.7 for regional scale. Models still hold positive probabilistic

prediction skills beyond Week 2. The best and mean performance are summarized in Table

2.4.
Table 2.4: ROC score at temporal interval scales
Scale SCA NCA OR WA
Best Mean Best Mean Best Mean Best Mean
Day2 Grid 0.82(KMA) 0.77 0.81(NCEP) 0.8 0.81(UKMO) 0.79 0.83(JMA) 0.8
Day2 Regional 0.84(ECCC) 0.82 0.85(CMA) 0.83 0.84(JMA) 0.82  0.883(KMA) 0.86
Day3~4 Grid 086(KMA) 079 0.85(UKMO) 082  083(KMA) 0.8  0.85(KMA) 081

Day3~4 Regional ~ 0.83(KMA)  0.83  089(KMA) 086 0.86(ECMWF) 083  09(KMA) 087
Day5~8 Grid 083(KMA) 075 0.82(UKMO) 078 081(UKMO) 0.75 081(UKMO) 0.75
Day5~8 Regional ~ 0.86(KMA) 08 086(ECMWF) 081 085(UKMO) 0.79 0.86(UKMO) 0.8
Week2 Grid 071(KMA) 066 0.71(UKMO) 0.67 0.68(UKMO) 064 0.683(UKMO) 0.64
Week?2 Regional 0.74(KMA) 069 0.74(UKMO)  0.69 0.71(ECMWF) 0.67 0.72(KMA)  0.67
Week3~4 Grid  0.59(ISACCNR) 056 0.58(KMA) 056  0.57(UKMO) 055 0.58(NCEP)  0.56
Week3~4 Regional 0.61(ISACCNR) 057  0.61(KMA) 057  0.6(UKMO) 057  0.61(KMA)  0.58

Weekd~6 Grid 059(KMA) 057 057(ECMWE) 055 0.56(UKMO) 054 0.6(NCEP)  0.56
Weekd~6 Regional  0.6(KMA) 0.58 0.59(ECMWF) 057 0.59(UKMO) 056 0.63(NCEP) 0.58
Week5~8 Grid 0.63(KMA) 06 058(UKMO) 057 0.58(UKMO) 054 0.62(UKMO) 0.57
Week5~8 Regional ~ 0.64(KMA) 061  0.6(CMA) 058 0.61(UKMO)  0.55 0.66(UKMO) 0.6

Continuous Ranked Probability Score

Compared to the previous skill metrics of r, NSE, and ROC score, which are dimensionless
and roughly bounded within certain ranges, the CRPS is of the same dimension with the
predictand [63, 198]. It has a lower bound of 0, but is not restricted by an upper bound.
Due to these characteristics, evaluations using CRPS at different spatiotemporal scales are
sensitive to the distribution variation of the predictand. Thus, the results for difference
scales cannot be directly compared.

Figure 2.8 shows the CRPS evaluation results for the four experiments that are proposed

in the paper.
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Figure 2.8: The CRPS for the four experiments defined in Section 3 of the paper. The
evaluation results for the four divisions are shown in row 1- row 4. The columns represents
different experiments. Column 1 shows the daily, grid-point scale evaluation results; column
2 shows the daily, regional scale evaluation results; column 3 shows the variable temporal
windows, grid-point scale evaluation results; column 4 shows the variable temporal windows,
regional scale evaluation results.

Considering the CRPS evaluation results at different windows of lead time, larger CRPSs
are achieved for larger evaluation time windows. I argued that this relationship is due to the
fact that the CRPS shares the same dimension with the predictand and is scaled up as the
aggregated precipitation amount increases with time window width. To illustrate this point,
I re-scale the CRPS by the time window width, results are shown in Figure 2.9. I found no

apparent skill variation for different evaluation windows.
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Figure 2.9: Re-scaled CRPS for the temporal interval evaluation. T represents the evaluation
time window width. The CRPSs are re-scaled by T to roughly account for the magnitude
variation of the predictand in different evaluation experiments.

For the day-to-day evaluation, as can be expected, all models show increase of CRPS
with forecast lead time until CRPS becomes relatively steady after approximately 2 weeks.
Compared to the evaluation results using -, NSE, and ROC score, the CRPS-forecast lead day
curves show considerable oscillation. By examining the mean precipitation rate on different
forecast lead days, I confirmed that the oscillations can be attributed to the variation of
precipitation rates on these days. Considering the model performance differences, the BoM
model shows best (lowest) CRPS in most daily evaluation cases; also, for longer forecast
lead time, the CRPS for BoM does not increase as significantly as the other models. By
examining the model configuration, I found that the BoM precipitation product is of lower
spatial resolution compared to the rest models. Since evaluations using other skill scores
suggest no significant advantage of BoM, I believe the low CRPS for BoM is due to its low
spatial resolution rather than advantageous performance. On the other hand, the ISAC-CNR
model shows significant worse (higher) CRPS. This is because the ISAC-CNR model provides
deterministic forecast with single ensemble member, while the other models have multiple
ensemble members. Results here suggest the advantage of applying ensemble forecast rather

than deterministic forecast, especially for the extended range period. For the rest 9 models,
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whose precipitation products are of same spatial resolution, the CRPS-forecast lead day
curve show considerable overlap, with ECMWF model showing slightly better performance.

Considering the evaluation results at different windows of lead time, larger CRPSs are
achieved for larger evaluation time windows. This is because the CRPS shares the same
dimension with the predictand and is scaled up as the aggregated precipitation amount
increases with forecast time window width. In supplementary materials, I show the re-scaled
CRPS by dividing the CRPS with corresponding time window width. Results suggest no
apparent skill variation for different evaluation windows.

Overall, the CRPS evaluation results confirm the advantage of applying ensemble forecast
rather than deterministic forecast, especially for the extended range. On the other hand,
the scaling issue of the CRPS restricts us from comparing model performance differences at

different spatiotemporal scales.

2.5 Impacts of ENSO and MJO

The evaluation results in the previous section show a sharp drop in prediction skill after
Week 1. Beyond this time range, predictions rely heavily on the existence of sources of
predictability and the model’s ability to realize them for informative predictions. In this
section, I explore the impact of key sources of intraseasonal to seasonal predictability on
precipitation distribution and prediction skill at the extended range. The particular focus is

put on ENSO and the MJO.

2.5.1 ENSO

ENSO is a semi-periodic variation in winds and sea surface temperatures over the tropi-
cal eastern Pacific Ocean. Typically, ENSO is quantified by specific regionsa’s sea surface
temperature anomaly, as shown in Figure 2.10.

ENSO influences the seasonal variability across the tropical Pacific and in much of the
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Figure 2.10: Definition and time series of ENSO. ENSO is quantified based on the SSTA
of certain Pacific tropical regions, as delineated on the top right. The time series plot for
Nino indexes from 1978 to 2016 is shown. To investigate ENSO impact on extended range
prediction skill, hindcasts for each model are clustered into different groups based on the
ENSO phase at model start time. Case counts for each cluster are listed in the right table.

extratropics, including the North Pacific and North America. Precipitation anomalies in the
regions along the West Coast are frequently related to ENSO through its influence on the
Aleutian Low [17, 162] and subtropical jets [148, 188]. The connection has been investigated
extensively using observations [162, 85], models [200, 35], and composite approaches [164,
111]. However, results suggest that the connections, such as the magnitude and sign of
precipitation anomalies, are not robust [222].

Next I explore ENSO’s impact on the precipitation distribution and extended-range pre-
diction skill. I focus on evaluations at the weekly scale, as this is in accordance with the

rough time scale of the life cycle for cyclone events.

Influence on Precipitation Distribution

In order to investigate the weekly precipitation statistics conditioned on the ENSO phases, I
first constructed the winter time weekly precipitation time series by averaging precipitation
records for consecutive 7-day windows (Day 1 to Day 7, Day 2 to Day 8, etc.). Next, I re-

moved the impact of seasonal cycle by subtracting the leading two harmonics of the weekly
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series, using Fast Fourier Transform [206]. Finally, I constructed the empirical distribution
of weekly precipitation anomalies conditioned on different ENSO phases for early winter
season (October, November, and December, denoted as OND) | late winter season (January,
February, and March, denoted as JEM) , and the entire winter season (October to March, de-
noted as O—M). The distributions were estimated using the smooth kernel method, built on
5,000 bootstrap samples. Samples were randomly selected (with replacement) from weekly
precipitation anomaly time series for the corresponding season and ENSO phase. I applied
the Kolmogorov-Smirnov test to determine whether the distributions differ significantly due
to ENSO phase variations.

Figure 2.11 shows the empirical distributions of weekly precipitation anomalies. In early
winter (OND), the El Nifio phases tend to favor negative precipitation anomalies, while La
Nina phases tend to favor positive precipitation anomalies. This pattern is more obvious
for NCA, OR, and WA, as compared to SCA. SCA has a higher probability of receiving
abnormally high precipitation events during La Nina, as shown in the tail of the distribution.
For NCA, there tends to be more precipitation during neutral phases, on average. For OR
and WA, there tends to be more precipitation during La Nina.

In late winter (JEM), with the onset of the rainy season in SCA, the influence of ENSO
is flipped and strengthened. For El Nino (La Nina) phases, SCA receives 0.35 mm/day more
(0.3 mm/day less) precipitation than climatology. For NCA, El Nino phases also receive
more precipitation, but the negative influence of La Nina is not as obvious as it is for SCA.
For OR, and WA, like early winter, La Nina phases receive more precipitation compared to
climatology; however, El Nino is not accompanied by less precipitation on average.

The last column shows the weekly precipitation anomaly distribution for the entire winter
season. As a summary of the two cases analyzed above, it is noted that during El Nifio years,
SCA tends to receive more precipitation on average, while NCA, OR, and WA tend to receive
less precipitation. During La Nina years, SCA receives less precipitation while the others

receive more. However, the variances are considerably large, making climatology a less robust
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Figure 2.11: Distribution of weekly precipitation anomalies conditioned on ENSO phases.
The first column is for early winter season (October, November, and December, OND); the
second column is for late winter season (January, February, and March, JEM); the third
row is for the entire winter season (October to March, O-M). The rows represent results

for different geographic divisions.

For each subfigure, I listed the mean and variance of

the distribution conditioned on ENSO phases. The comparison between two distributions is
labeled with asterisk if the Kolmogorov-Smirnov statistic lies out of the 90%(95% ) confidence
interval, indicating the two distributions are statistically significantly different.
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reference for long-term prediction.

Influence on Precipitation Prediction Skills

The previous section discussed ENSO’s influence on weekly precipitation statistics. Ideally,
we would like to see these effects to be well simulated in the GCMs. If so, then realistic
representation of ENSO in models could facilitate useful boundary forcings in conditioning
the precipitation distribution, and predictions at the extended range could be improved.

To examine the influence of ENSO on extended-range prediction skill, T first clustered
the hindcast cases by the ENSO phase at the model’s start time. Next, I computed and
compared the prediction skills for the different clusters. Four clusters were adopted here,
namely the ENSO active phase (El Nino/La Nina), El Nifio phase, La nifia phase, and neutral
phase. Their union was also evaluated as a reference. Sample sizes are listed in Figure 2.10.
Using the Fisher r-to-z transformation [45], the correlation skills are transformed to the z
statistics, which are then applied to assess the significance of the difference between two r
skills.

I focus on the regional average predictions for Week 2 and Week 3—4. Figure 2.12 shows
the Week 2 and Week 3—4 r skills conditioned on different ENSO phases. The NSE skill
score and ROC score show similar results and are not presented here.

For Week 2 forecast (column 1 of Figure 2.12), in SCA, all 11 models show improved r
skill during El Nino phase compared to during La Nina or ENSO-neutral phase, with 8 of
them showing 90% level significant better skill during El Nino. Particularly, for the better-
performing models (i.e., ECCC and ECMWF), r could differ by up to 0.2 comparing El
Nino prediction and La Nina prediction. Correspondingly, for OR, most models show better
r skill during La Nina phase compared to during El Nifio phase, with 7 of them showing 90%
level significant better skill during La Nina. For ECCC and ECMWF, r could differ by up
to 0.2 comparing La Nina prediction and El Nino prediction. For NCA and WA, the results

for ENSO phase do not agree between the models, although for NCA, the better performing

39



1111]} ey e —— e
-~ onyin —s— ONYN —mm— OWMN —mm— ONN
..HIE = d3ON == d3ON —— d3ON
l 8oUeI{0818N\ Il gouRIJoo)a)\ | I 90UEIJ08]8|\ Il 80URI{0818|\ .
‘ = VI S VN — Wl VM =
il == vir = /A —=== vAr] N T
2 1 UNOOVSI 1 dNOOVSl - ==R[YNOOVSI] IJE B
g = HONH 2 HOWH 5= ¥onH S O WH
= EoE . o= I [FTIVE e EINGE]
—=[0057] W 0003 - &= 0003 =S 0003
/N O] j YIND == [vnd] .J YIND
ul Wog ~— |\ OF  /\og S o9 ]
SO SHNEO SHNTO SoaTo
OOOOO OO0 O OOOOO OO OOO
. ONYN EE ﬂg iinﬁ ONMN
i———PFEO 2= 430N === 430N = 30N
.I. Il 20UeR.I{08)8|\ Illll aouel{08)8 |\ .1 20UeBIJ08)0\ .
Y Ih VI ‘ |uj VINS s /N
o | - YA YIAP ...j<_>= j<_>;
Y| ———[ENOOVSI] lmzoo<w_ == ¥NOOVS| M uNOOVS
2| -=HYONH] Umo§I ‘ = ¥OWH 3 HONH
= | | e - \\ND T 4MINO3 e 1\\NOT] E——EIeE!
— 5001 === 0003 ~EE 5555 S 0003
T —=Rvio) e Ill6) o o
=S Wog] u nog 5= 1og = nog
NOW ™ N OO %{% n&t&&t%
OOOOO OO OOO efololole] OO OOO
VYOS VON d0 VM

All

La Nina Neutral

El Nifio

El Nifio/La Nifa
Figure 2.12: Week 2 (column 1) and Week 3—4 (column 2) precipitation prediction skills

for different ENSO phases. The rows represent results for the four geographic divisions. For

each sub-figure, 11 models are evaluated; each model is colored depending on the phase in
which model has highest score. Models with significant r skill difference between El Nino

and La Nina phase are framed : Red (Blue) frame indicates that model shows significantly
better r skill for El Nino (La Nina) phase based on the z test. Light (Dark) frame indicates

the difference is statistically significant at 90% (95%) confidence level.
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models generally have higher r skill scores during La Nina phase.

For Week 3—4 forecast (column 2 of Figure 2.12), in SCA, more of the models have
improved performance during El Nino than during La Nina, with 5 of them showing 90%
level significant better r skill during El Nino. For ECMWF, r is 0.42 for El Nino, while for La
Nina, r is 0.24. The advantage for ECMWF also occurs for NCA, with r being 0.46 during
El Nino phase. This indicates that the El Nino phase might allow better extended-range
prediction for California. For OR and WA, most of the models show improved r skill during
La Nina when compared to El Nino, with 5 of them showing 90% level significant better r

skill during La Nina.

2.5.2 MJO

The MJO is a traveling pattern characterized by a coherent eastward-propagating pertur-
bation over the tropical Indian and Pacific Oceans [112]. Previous studies have found that
MJO-related variability in the tropical Pacific convection modifies West Coast precipitation
regimes through the propagation of extratropical wave trains [124, 65, 19]. Provided with
realistic representation of the MJO and its teleconnections, this forecast opportunity could
be realized as improvements in model’s extended-range prediction skills. However, it is also
noted that poor representation of the MJO results in systematically worsened forecast during
the MJO active periods, as compared to predictions during quiescent periods [29, 62].

The prediction skill for the MJO and its teleconnections have been improved significantly
in recent decades, reaching a useful forecast range beyond 20 days [88, 201, 100] and pro-
ducing realistic teleconnections with large scale circulation [197]. Here, I make a dedicated
examination on how MJO modifies precipitation distribution and extended-range prediction
skills for the West Coast.

The RMM index is employed to quantify the MJO. As shown in Figure 2.13, the RMM
index is composed of the two leading principal components (PCs) of the field that combines

average outgoing long-wave radiation and zonal wind at 850 hPa and 200 hPa from 15°S to
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15°N [208]. Active MJO events are defined based on the criteria in [19]:

1. There should be at least 30 days during which the amplitude (\/PC? + PC3) exceeds
0.5 (for [19], the threshold is 0.7 for Ugsonp, field PCs).

2. The MJO phase (tanhfl[ﬁ—g;]) should move eastward for the entire period.

The detected active MJO events are displayed in Figure 2.13 as well. Based on the
detected MJO phases, I explore the MJO’s impact on precipitation distribution and extended

range prediction skill below.

Influence on Precipitation Distribution

To investigate the MJO’s influence on precipitation distribution, I follow the method in [126]
to examine the average weekly precipitation anomalies conditioned on the MJO status. The
methodology is briefly described as follows. First, the weekly precipitation anomalies are
derived using same approach in the previous section. Next, for the early/late winter season
and the entire winter season, I clustered the weekly precipitation anomalies based on the
MJO status. Both the MJO phase and the lag days after the MJO phase are considered
for constraining the distribution of precipitation anomalies, since it takes time for the MJO-
related variability to exert their influences. Finally, I computed the mean value of the clusters
and drew them in Figure 2.14.

The most obvious pattern in Figure 2.14 is the angled bands of precipitation anomalies,
which generally stretch from top-right to bottom-left, following the MJO phase transitions.
For instance, in late winter (JFM), abnormally high precipitation favors WA at Week 2 fol-
lowing onset of an active MJO event from Phase 1. The enhanced/suppressed precipitation
bands are more distinctly separated for NCA, OR, and WA, as compared to SCA. A com-
parison between results for early winter season (column 1) and late winter season (column

2) shows that the phases of the MJO that promote enhanced/suppressed precipitation are
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Figure 2.13: The top left figure shows the leading 2 Principal Components(PC) of the field
that combines average outgoing long wave radiation, zonal wind at 850 hPa and 200 hPa
from 15°S to 15°N. The phase and amplitude of MJO is defined based on the position of
(PC4,PCy) and its distance to origin. For instance, the red arrowed line represents an MJO
event that starts from September 7,1979, goes counterclockwise (eastward when reprojected
to geographic map), and ends on October 24,1979. On most days, (PC1,PCy) lies out of the
middle circle, whose radius is 1, indicating a strong MJO event. The bottom figure displays
the time series of MJO amplitude, as represented by+/PC? + PC3. Active MJO events are
labeled with red lines. Hindcasts for 11 GCMs are labeled as “MJO Active” and grouped
into corresponding clusters if the start time is within an active MJO period, as shown in the

right table.
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Figure 2.14: Mean value of weekly precipitation anomalies conditioned on active MJO events’
phase and number of days after MJO phase onset. The four rows represent results for four
geographic divisions, and the columns represent results for different seasons. In each sub-
figure, the grid color represents the mean weekly precipitation anomalies for Day m after
MJO phase n, here m ranges from Day 1 to Day 21, as labeled on the X axis, n ranges from
Phase 1 to Phase 8, as labeled on the Y axis.
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substantially different during these two seasons. This is in agreement with the findings of
[19].

Generally, results confirmed the impact of the MJO on modulating precipitation regimes
for the West Coast, especially for NCA, OR, and WA. The time lag for MJO to manifest its

effects provides valuable potential for extending the range of skillful predictions.

Influence on Precipitation Prediction Skills

To investigate the impact of the MJO on precipitation prediction skills, I first grouped
the hindcast cases for each GCM according to its start-time MJO status. Five groups are
adopted here following [84]: Phase 1—2, Phase 3—4, Phase 5—6, and Phase 7—8 for the
active MJO period, as well as the MJO-quiescent period. The sample size is listed in Figure
2.13. Next, I evaluated the Week 2 and Week 3—4 prediction skill for each group. The
statistical significance of r skill differences between MJO-active groups and MJO-quiescent
group were determined using the z test. Results for r skills and significant tests are shown
in Figure 2.15.

While results confirmed the former findings that the prediction skill varies for different
MJO groups and models [119], there are some common patterns here. Firstly, for hind-
casts initialized during active MJO in Phase 3—4, most models show lower extended-range
prediction skills as compared to MJO-quiescent cases, except for the Week 2 prediction in
SCA. This skill drop was also found in [84] when studying the impact of the MJO on in-
traseasonal predictability in the mid-latitudes of the Northern Hemisphere. The skill drop
might be attributed to the fact that many models can not represent well the propagation
of the MJO across the Maritime Continent [101, 197, 201]. If so, models cannot produce
the MJO-associated extratropical response revealed in Figure 2.14, resulting in systematic
forecast biases. Secondly, for hindcasts initialized during active MJO in Phase 1—2, Phase
5—6, and Phase 7—8, forecasts from the better performing models (i.e., ECCC, ECMWF,

MétéoFrance, and UKMO) are generally more skillful compared to MJO-quiescent cases. For
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instance, for SCA and NCA, the prediction skill during active MJO in Phase 1—2 and Phase
7—8 is generally higher than in MJO-quiescent days; for OR and WA, the prediction skill
during active MJO in Phase 5—6 and Phase 7—8 is generally higher than in MJO-quiescent

days.

2.6 Discussion and Conclusions

This chapter evaluates the precipitation prediction skills at short to extended range for the
West Coast, where precipitation variation significantly influences the local ecology and econ-
omy. The evaluation is based on the extended range hindcast dataset of the WWRP/WCRP
S2S project. For the 11 models used here, the hindcast sample size ranges from 240 to 3, 822
across more than 20 winters, covering various climate circumstances categorized by intrasea-
sonal to seasonal variability. This guarantees that the evaluation is less prone to biases from
limited sample size or model diversity.

Since there is inevitable deviation of prediction along forecast lead time, I implemented
the evaluation at both stringent and loosened spatial and temporal scales, measured by
both deterministic scores (r and NSE) and probabilistic score (ROC and CRPS). I further
examined the impact of extended-range predictability sources, focusing on ENSO and the

MJO. The key findings are listed as follows:

1. The S2S models’ prediction skill-forecast lead time relationship is quantified for the

four divisions in the West Coast.

e For Week 1, the S2S models show advantageous precipitation prediction skills.
The r/NSE/ROC score is approximately of the order of 0.8,/0.7/0.8 for this period.

By spatial averaging, the skill score can be further improved.

e For Week 2, models show large variations regarding their performances. The
Week-2 mean precipitation forecast from the best-performing model (i.e., ECMWF)
is of considerable value, with » > 0.6, NSE> 0.35, and ROC score > 0.7.
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e Beyond Week 2, predictions generally provide little deterministic skill. For this
range period, probabilistic evaluation of ensemble forecasts using the CRPS shows

significant advantage of ensemble forecast over deterministic forecast.

e Considering the performance difference of the S2S models, the informative pre-
dictable range may differ by up to 6—7 days across different models. For the short
range, models with higher resolution tend to have better performances (JMA,
KMA, ECCC, and ECMWF). For medium to extended range, ensemble mean
predictions show significant better performance compared to deterministic predic-
tions. The best performing models for this range period are the ECCC, ECMWF,
and JMA. For Week 3—4 forecast, although there is essentially no useful determin-
istic forecast skill, the ECMWF model still shows advantage over the rest models.
Results here can benefit model selections for practical forecasts and multi-model

ensemble predictions.

2. Through investigating the impact of ENSO on the West Coast precipitation distribu-
tion and models’ prediction skill, I found a spatial see-saw effect for ENSO to modulate

precipitation distribution and prediction skill:

e During El Nino years, Southern California receives more precipitation in late

winter on average, and most models show better extended-range prediction skills.

e During La Nina years, Oregon receives more precipitation in winter season, with

most models showing better extended-range prediction skills.

For Northern California or Washington, ENSO influences the precipitation distribution,
but specific models may either have higher or lower prediction skills depending on
the ENSO phases. I assume the excessive precipitation and improved extended-range
prediction skills accompany the meridional shift of baroclinic systems as modulated by
ENSO. This predictability difference related to ENSO phase will be useful for extended-

range prediction applications.
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3. The impact of MJO on the West Coast precipitation distribution and models’ predic-

tion skill is explored.

e To assess the impact of MJO on precipitation distribution, I examined the aver-
age precipitation anomalies conditioned on the MJO phases and days after MJO
phases. Our results show that MJO systematically modulates the region’s precip-
itation distribution. The time lag (here, up to three weeks) for MJO to manifest

its effects provides valuable potential for skillful predictions at the extended range.

e Regarding the impact of the MJO on GCM’s extended-range precipitation predic-
tion skills, I verified that for certain MJO phases (especially, Phases 5-6 and 7-8),
some S2S models can well capture the MJO-associated teleconnections, improv-
ing Week 3-4 prediction skills. However, for hindcasts initialized during active
MJO in Phase 3-4, most models show lower extended-range prediction skills as
compared to MJO-quiescent cases, suggesting that the forecast opportunity may
also be a curse if models have deficiencies in capturing the MJO or the related

teleconnections.

Results here suggest the potential for predictability across a range of time scales [74, 226].
It is hopefully that the baseline provided here can foster practical subseasonal prediction ap-
plications and facilitate further research on improving mid-latitude subseasonal precipitation

forecasts.
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Chapter 3

Improving Precipitation Estimation

with Convolutional Neural Network

3.1 Introduction

Evaluation results from the previous chapter show high r skill score for predictions at short
to extended range. The considerable correlation indicates models’ capacity in capturing
the temporal variability of the precipitation processes. The skill is considered to be inher-
ited from models’ skills in predicting the underlying synoptic weather systems. On the other
hand, a negative NSE score using GCMs’ raw precipitation predictions indicates that models
struggle in representing precipitation process at the right order of magnitudes. Here, ideas
from the recent advances of deep learning techniques are applied for developing a statisti-
cal downscaling model that helps to alleviate the poor status of representing precipitation
processes in numerical weather/climate models.

As has been discussed in the Introduction, the atmospheric primitive equations, which
are derived by applying the conservation laws and thermodynamic laws on the continuous
“control volume” of the atmosphere [18, 70|, form the basic of numerical prediction of the

atmosphere. With the rapid growth of computing power, we can discretize and resolve
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these equations on increasingly finer computing grids. However, there remains many critical
sub-grid scale processes that are not explicitly resolved.

Precipitation results from complex processes that remain mostly unresolved in current
atmospheric models [184]. The modeling of precipitation involves explicit and implicit rep-
resentations of the cloud physics, such as the water vapor convection, phase change, par-
ticle coalescence, etc. These processes take place at millimeter to molecule scales, which
far surpass the resolution of current numerical models (O(1km)/O(10km) — O(100km) for
weather/climate models). Also, the assumptions of thermodynamic equilibrium and con-
tinuity lose their validity in describing some of the microscopic processes [178], making it
necessary to adopt supplementary equations for physically solid simulations.

In numerical models, such unresolved processes are inferred from the resolved dynamics
on the computational grid [87]. This process is known as parameterization. Specific to pre-
cipitation, the directly related parameterization schemes are cloud microphysics and subgrid
convection. Given the intrinsic complexity of the cloud and precipitation process, the equa-
tions and their associated parameters in these parameterization schemes are generally of high
structural and parametric uncertainties [40]. As a result, models’ precipitation products are
usually considered less reliable compared to the directly resolved variables, such as pressure
and temperature [64, 15, 193, 24, 186].

Statistical Downscaling (SD) methods are also used for the purpose of inferring the
poorly represented processes from the resolved dynamics and other data sources. However,
SD has distinct objectives compared to the parameterization schemes. The main purpose of
parameterization is to depict the sub-grid scale processes for realistic atmosphere modeling.
The primary concern for SD, as indicated by the name, is to resolve the scale discrepancy
between the existing model simulations and application requirements [116]. Accordingly, the
model input/output, resolution, usage, and complexity of parameterization schemes and SD
are different.

Besides the scaling issue, another aspect of SD is noted in practices: Compared to raw
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outputs or the dynamically downscaled outputs from numerical models, SD occasionally
provides more accurate estimates of the unresolved processes. This is because SD is cus-
tomized for specific objective, region, and climate condition. The data-driven model with
carefully designed model architecture and calibrated parameters may outperform the default
parameterization schemes in relating the unresolved processes to resolved circulation. This
phenomenon offers valuable implications for improving the relevant parameterization schemes
and opportunities for enhancing the prediction of the parameterized processes [161, 149].

Here I focus on fostering this aspect of SD for weather scale precipitation forecast. Specif-
ically, I propose to improve the accuracy of daily precipitation estimates through relating the
precipitation process with the circulation data that are explicitly resolved in the atmospheric
primitive equations. Compared to conventional SD applications, the task here poses much
higher requirements on model resolution and accuracy. Recent developments in Machine
Learning (ML) techniques, especially the branch of Deep Neural Networks (DNNs), offer
an opportunity for describing and predicting such complicated physical processes using a
compose of big data and advanced model architectures. Here I illustrate how a particular
form of DNN, named Convolutional Neural Network (CNN) [97], can be adapted to address
the precipitation estimation problem.

The rest of this chapter is organized as follows: I start with a brief review of relevant
works. Then, I formulate the problem and illustrate the model requirements for this appli-
cation. The model is described and tested thereafter. I show the model results and provide
methods for analyzing and interpreting the models. I compare the model performance with

some of the widely-adopted SD approaches. Conclusions are drawn at last.

3.2 Related Works

Many studies have been conducted on improving precipitation prediction accuracy with

statistical approaches. Many of them share similar objectives and ideas compared to this
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work. The relevant SD methods are reviewed. Also, I briefly review the basic concepts of

DNNs, with a special emphasis on their applications in physical processes.

3.2.1 Statistical Downscaling

Following the survey in [116], SD approaches are classified into Perfect Prognosis (PP), Model
Output Statistics (MOS), and Weather Generators (WGs). Since the objective for our study
is deterministic precipitation prediction, I focus on SD approaches that make deterministic
estimates of precipitation or its estimation biases. This includes PP and MOS. The WG
models are not reviewed here.

PP models construct statistical relations between the large scale predictors and local scale
predictands [46, 116]. Both the predictors and predictands are considered to be realistically
simulated or observed, hence the name of “perfect”. Along with the advancement of General
Circulation Models (GCMs), many precipitation PP methods have been developed. The
simplest form is linear regression, which estimates precipitation using an optimized linear
combination of the local circulation features [128, 59, 99, 83]. The predictors usually consist
of the raw variables or the leading Principal Components (PCs) of the moisture, pressure
and wind field [213]. Besides the linear models, there are also approaches that utilize the
non-linear features of relevant circulation field, such as Self-Organizing Map (SOM) [73],
Support Vector Machine (SVM) [190], Nearest Neighbor [50], Random Forest [79], Artificial
Neural Network (ANN) [163], etc.

MOS stands for the practice of using statistical approaches to enhance the model’s pre-
diction accuracy [55]. Compared to PP, MOS is more frequently used in Regional Circulation
Models (RCMs) than in GCMs [116]. Also, the predictors of MOS are numerical models’
raw outputs, which are not assumed to be perfectly estimated. For instance, a typical appli-
cation of MOS is to correct the biases of the numerical model’s raw precipitation estimates
[81]. It should be noted that the validity and universality of precipitation MOS rely on

the consistency of precipitation estimation biases, which is usually not guaranteed given the
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continuous improvements of numerical models.

The performances of the above-mentioned SD approaches have been compared with dy-
namical downscaling results [127, 61, 160, 58, 5, 182]. For instance, an intercomparison of six
SD models and five RCMs for Europe indicated that PP and MOS models achieved higher
skill scores in estimating certain aspects of precipitation, such as the occurrence and inten-
sity [5]. On the other hand, another comparison study showed clear advantage of RCMs for
estimating precipitation over complex terrain [160]. Overall, the performance of SD depends
on many factors, including the selection of predictors, the model and its implementation,

the available data and the climate condition, etc.

3.2.2 Deep Neural Networks and their Applications for Physical

Processes

Deep Neural Networks (DNNs) belong to the domain of Machine Learning (ML), which
covers a general scope of computer aided statistical modeling. DNNs differ from traditional
ML approaches in their modeling workflow. In a canonical ML modeling process, the raw-
form data, which quantify certain attributes of the study object, should be transformed into
a suitable feature vector before being effectively processed for the learning objective [96, 56].
The feature extraction process is typically performed in separation with the modeling process.
Despite the expert knowledge and engineering works required for the feature extraction
process, a pre-defined feature extractor captures little useful information beyond our prior
knowledge. This issue is particularly severe for high dimensional problems, where it is
difficult to have foresight in the intricate but important data structures. On the other
hand, DNNs, together with a broader family of Representation Learning (RL) approaches
[11], offer an “end-to-end” modeling workflow: the feature extraction process is integrated
into the modeling process, which allows the model to learn customized features rather than
subject to the pre-engineered features.

DNNs learn to customize features through building multiple levels of representation of
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the data, which are achieved by composing simple but non-linear modules (named as neu-
rons) that each transform the representation at one level into a representation at a higher,
slightly more abstract level [96]. The differentiability of the hierarchical model allows ap-
plying the gradient descent algorithm to tune the neurons’ parameters in order to make the
model exhibit desired behavior. This process is widely known as backpropagation training
[207, 155]. In addition to these basic concepts, modern DNNs involve numerous network
architecture variations, training algorithms and tricks, regularization methods, etc. A com-
prehensive review is beyond the scope of this work and can be found in [96], [159], and [56].
A trans-disciplinary review of DNN relevant to water resources related research can be found
in [167] and [168].

DNNs have dramatically improved the state-of-art in applications that can not be ad-
equately solved with a deterministic rule-based solution, such as visual recognition [93],
speech recognition [4], video prediction [109] and natural language processing [176], etc. For
the modeling of the natural physical processes, where Ihave established principled solutions
through analytic descriptions of the scientist’s prior knowledge of the underlying processes
[34], dynamical simulations are preferred to ML-based approaches. However, recent devel-
opments showed that provided with 1) big amount of data and 2) well-designed network
architectures that encode the physical background knowledge, DNNs are competitive with
numerical methods in simulating complex natural processes.

Generally two motivations are found for adopting a data-driven model besides the classical
dynamical simulation. The first is computing efficiency. The computational demanding
components in numerical simulations can be replaced by data-driven model counterparts to
accelerate the simulation without significant loss of accuracy. Examples include using DNNs
to simulate the Eulerian Fluid [187], and to predict the pressure field evolution in fluid
flow [212]. The other concern is to represent the unresolved processes beyond the original
numerical simulation. For instance, [52] trained a neural network to represent the sub-grid

scale convection process in atmospheric modeling. The trained model was coupled in GCMs
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and skillfully predicted many of the convective heating, moistening, and radiative features.
[220] applied a a conditional Generative Adversarial Network to generate spatiotemporal
coherent high resolution fluid flow based on its low resolution estimates.

For the applications mentioned above, a particular DNN architecture named Convolu-
tional Neural Network (CNN) acts as a core building block. Compared to conventional
neural networks, CNNs have significantly enhanced our capacity in processing structured
high-dimensional data. This is achieved by utilizing the inner structure of the data to
reduce the model structural redundancy and foster effective information extraction. Geo-
physical data are intrinsically structured in space and time. The huge geophysical datasets
from remote sensing observations, numerical simulations, and their composite offer precious
deposits for the application of DNNs [183]. CNNs have found applications in detecting ex-
treme weather from the climate datasets [106] and precipitation nowcasting [221, 169]. More
related to our objective, [191] developed a Super Resolution Convolutional Neural Network
(SRCNN) for precipitation SD. The low resolution precipitation field (1°) and elevation field
data were fed into the SRCNN to produce the high resolution precipitation field (%O). Inoted
that many of these geophysical CNN applications took little use of the atmospheric dynam-
ical modeling products, which offer physically solid and comprehensive information of the
atmosphere. While many recent research works have started to explore the applicability of
DNN for parameterizing the unresolved processes in fluid and geofluid modeling [105, 149],
it remains a question how DNN can translate the big data of observations and numerical

simulations into precipitation estimation improvements [142].

3.3 Problem Formulation

To formulate the precipitation estimation problem, I first clarify the context by introducing
a real-world precipitation scenario. Figure 3.1 shows a winter storm that hit the windward

slope of the Cascade Range between Washington State and Oregon State of the U.S.A. The
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case is selected for two reasons. Firstly, we have well-developed conceptual and theoretical
models for describing such extratropical winter precipitation processes [154, 16]. The well
established models offer accessible concepts for describing the circulation-precipitation con-
nection. Secondly, the pronounced orographic effect [6] together with the lack of observations
for mountainous region highlight the necessity for accurate precipitation estimation. While
Ihave long-term observations for the target grid, Thope the proposed model can translate
the rich observations into new understandings for precipitation estimates in less-observed

complex terrain areas.
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Figure 3.1: (a) The case study area of a 32kmx32km geogrid centered at (46°N, 122°W).
Its surrounding circulation field is delineated with the 800km x800km red polygon. (b) The
geogrid’s daily precipitation time series from 1979 to 2017. The red thick line represents
the gauge-based precipitation records from the NOAA Climate Prediction Center (CPC);
the blue slim line represents the model reanalysis records from the NCEP North American
Regional Reanalysis Project (NARR). Data details are given in the Section 5.1. (¢) The every
3 hour snapshots of the circulation profile for the storm event that happened on November
7th 2006. The geopotential height (GPH) at 1000hPa, 850hPa, and 500hPa, as well as the
total column precipitable water (PW) are obtained form NARR. Data are normalized by
subtracting the field mean (1) and dividing by the field standard deviation (o).

Dynamically, the precipitation process in Figure 3.1 is associated with the extratropical
cyclone. The cyclone exists due to the baroclinic instability, which is caused by the strong

meridional temperature gradient during winter time [166]. Aroused by the baroclinic dis-
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turbances, the upper-level divergence leads the development of surface cyclone convergence
and its associated cold and warm fronts, which in turn drive the moisture convection and
precipitation formation [33].

The dynamical process exhibits characteristic synoptic appearances through the cyclogen-
esis process, and is accompanied by distinct precipitation distribution patterns. For instance,
following the description of the classical Norwegian Cyclone Model [16], the open wave and
seclusion stages for an idealized cyclone life cycle can be well distinguished in the circulation
profile snapshots in Figure 3.1. These phenomenological understandings supported empirical
precipitation forecast prior to the era of numerical weather prediction [131].

I follow the same phenomenological methodology but adopt statistical models rather
than weather forecasters’ expert knowledge for estimating precipitation from the resolved
atmospheric dynamics. This is achieved by constructing an empirical mapping from the

resolved circulation patterns to precipitation:

B(P|X,C) = fo(X.B) (3.1)

In Equation 3.1, E denotes the expected value, P denotes the precipitation estimates, X
denotes the predictors, C' denotes the local climate condition. fc denotes the empirical
function for the specific climate condition C, 5 denotes the parameters for fc.

Specific to the objective here, P is defined as the total daily precipitation amount for
the target grid. To estimate P with Equation 3.1, the predictor variables, their coverage
and spatiotemporal resolution, the form of fo and its training/validation process should be
clarified.

To make deterministic precipitation estimation using Equation 3.1, X are assumed to
be realistically simulated, which are often represented using reanalysis products that assim-

ilate observations of various sources. The model is trained and tested by relating X with
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realistically observed precipitation records.

Consider the 32km x 32km geogrid in Figure 3.1, the characteristic scale for the horizon-
tal velocity of the atmosphere is 10m/s [70]. For a single day time, the dynamics within the
coverage of 10m/s x 3600s/h x 24h ~ 800km may either exert direct dynamical influence
on the target geogrid, or provide important circulation context information. The circulation
and moisture profile within this range constitute a four-dimensional physics field (three spa-
tial dimensions and one temporal dimension). In typical SD applications, this field is firstly
transformed into a feature vector before being applied to estimate precipitation. Ipoint out
two common deficiencies when applying this conventional approach for weather-scale precip-
itation estimation. Firstly, the feature vector is often designed based on the characteristics
of the predictors rather than the physical connection between the predictors and predic-
tand. For instance, the leading Principal Components (PCs) of the circulation field are the
widely-adopted features for precipitation SD. They compose a coarse picture of the circu-
lation field at climate scale. For a specific cyclogenesis event, the precipitation is directly
related to its corresponding cyclone geometries, which are disparate from event to event,
not all of them could be well decomposed along the leading eigenvectors of the circulation
field. Thus, although the leading PCs represent the coarse structure of the predictors, they
may not provide comprehensive information for estimating precipitation. The second draw-
back is that the dominant factors which influence the precipitation distribution are not well
disintegrated and represented. While SD models are preferred to recognize key circulation
features of different appearances and locations, most existing statistical models make no
explicit consideration of the cyclone depression intensity, coverage and its distance to the
target geogrid.

To tackle these problems, I abide the “end-to-end” principle for extracting dynamical
features and estimating precipitation. Specifically, the fine-scale circulation field resolved by
numerical models is directly processed by the DNN to learn the representative features for

precipitation estimation. Also, to disintegrate the impact of the cyclone geometric shape
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and position, I adopt the convolution mechanism in the network modeling. The method is

explained in the following section.

3.4 Methodology

3.4.1 Convolutional Neural Network

CNNs share many similarities with regular neural networks. For a regular neural network, a
statistical connection between the inputs and the outputs is constructed through hierarchical
connected layers of neurons. Each neuron is a computing unit that receives some inputs,
performs a dot product and optionally follows a non-linear transformation. For supervised
learning problems (i.e., classification and regression), a loss function is defined by comparing
the network’s output estimations with observations. The network parameters are typically
trained through minimizing the loss function using gradient descent, which is known as
backpropagation training.

CNNs differ from regular neural networks in their connection manner for neurons within
and between layers. In regular neural networks, each neuron is fully connected to all neu-
rons in the previous layer, while neurons within a single layer do not share connections. For
data that come in the form of multiple arrays, such as images and videos, there is strong
correlation within neighboring patches and less considerable correlation between remote com-
ponents. The local patterns contribute to large-scale patterns when they are inspected from
a broader point of view. To extract and utilize the local features in neural network model-
ing, the full connection of neurons between successive layers becomes redundant and local
connection within a single layer becomes imperative. To tackle this, the CNN explicitly
encodes local connection and prohibits remote connection; also, the extracted local patterns
are down-sampled to compose large-scale patterns. These operations are achieved using the
convolution operator and pooling operator.

Below I use the precipitation estimation example to explain the idea of these operators.
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The storm event for the same geogrid in Figure 3.1 on 18:00 UTC, November 7" 2006 is
used as illustration here. In Figure 3.2, the circulation and moisture field (left part) are
fed into a CNN for extracting useful features and estimating the precipitation of the target
geogrid (right part). The blue color indicates low values, yellow indicates high values. A
clear frontal system can be depicted as an occluded front forms around the mature low
pressure area. This is accompanied by copious precipitation falling along the warm conveyor
belt, as shown in the precipitation map. These characteristic circulation patterns could
appear in different geometrical shapes and at different locations. I expect that an explicit
encoding of the local connectivity could enhance the extraction of the circulation geometries

for precipitation estimation.
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Figure 3.2: The CNN architecture for estimating precipitation using the numerical model
resolved geopotential height and moisture field. The data are obtained from NARR dataset.
The stacked frames on the left side show the PW, GPH at 500hPa, 850hPa and 1000hPa
for the delineated 800km x800km region in Figure 3.1. The blue lines indicate a convolution
operation applied on the circulation field. The red lines indicate the pooling operation that
down-samples the local features. Several stages of convolution and pooling layers are stacked,
followed by the fully connected dense layers (orange lines). The dense layer applies all the
extracted features to estimate precipitation for the target geogrid, which is labeled on the
precipitation map on the right part. The convolution and dense layers are optionally followed
by a non-linear transformation f, which are represented with semi-translucent fonts.

To extract the spatial salient features, the convolutional layer applies a ¢ X ¢ X m x n
tensor to go through the input with a pre-defined stride. Each convolution operation is
performed by computing the element-wise dot product between the tensor and different
patches of the input, which is represented as a ¢ X & x y array. Here c is the category of the
predictors. Following previous works [213], the predictors consist of the circulation constraint
and moisture constraint. The circulation constraint is represented by geopotential height
(GPH) at different pressure levels. The moisture constraint is represented by the total column

precipitable water (PW). The spatial coverage of the dynamical field is defined by z and y.
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The ¢ x ¢ X m x n tensor is named as kernel of the convolution layer, where ¢’ is the output
channel number, m X n represent the receptive field of kernel. Each multiplication result is
optionally followed by a non-linear transformation f, such as the ReLU function: f(z) =
max(0,z). The convolution operation can be interpreted as using ¢’ filters to transform the
input into a more representative form for the learning objective. Preferably, the network will
learn filters that activate when they see critical local dynamical patterns on the first layer.
Fostered by spatial down-sampling, which is achieved by the pooling operation, the network
may eventually learn a synoptic atmospheric pattern that promotes precipitation on higher
layers of the network.

The pooling layers act to coarsely grain local semantically similar features into one [97].
Through down-sampling, the higher layer convolutions work on extracted local features,
which enables learning higher level abstractions on the expanded receptive field [96]. A
typical pooling unit computes the maximum of a local patch of units in one feature map.
In Figure 3.1, I apply a 2 x 2 maximum pooling. For a typical CNN, several stages of
convolution, non-linearity and pooling layers are stacked, followed by dense layers that apply
all the extracted features for the learning target.

To estimate the total daily precipitation, we usually have several snapshots of its sur-
rounding dynamical field at different hours through the day. Conventionally, these snapshots
are averaged to reach a single picture of the general dynamical pattern for the daily pre-
cipitation estimation. Here, considering the fact that each circulation snapshot provides its
information for a specific time of the day, I map the same CNN model on each of the dy-
namical field snapshot. Results from all the network computations are summed as the total

daily precipitation estimation.
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3.4.2 Regularization, Loss Function and Training
Regularization

DNNs usually have much more complicated structures and more parameters than conven-
tional ML algorithms, which make it possible for models to perform exceptionally well on
the training data, but predict the test data poorly. This phenomenon is called overfitting.
Regularization refers to the strategies to avoid overfitting and make the model generalize
better to unseen data. The dropout [177] and batchnormalization [80] modules are adopted
to enhance the model’s performance.

The idea of dropout is to assign a probability of existence to the neurons and their asso-
ciated connections. Thus, to train a DNN with n neurons is equivalent to train an ensemble
of 2" “thinned” networks. During testing and applications, the weights are multiplied by
the same probability of existence to offset the dropout effect. This prevents neurons from
co-adapting and has shown significant improvements in reducing overfitting [177].

Batchnormalization addresses the problem of internal covariate shift in training DNNs.
Specifically, the distribution of each layer’s inputs changes during the training process, which
requires continuously adaption and hinders the training process. Batchnormalization per-
forms normalization of the output in the hidden layers [80]. It has shown good performance

in accelerating the training and regularizing the model in various DNN applications.

Loss Function and Skill Metrics

The Root Mean Square Error (RMSE) between the precipitation simulations and observa-

tions is used as loss function here:

1
RMSE = \/ﬁ Z(Pobser - Psimu)2 (32>

Here Pyper denotes the observed daily precipitation records and Py, denotes the simulated

daily precipitation records.
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The Pearson Correlation Coefficient (r) between simulated and observed daily precipita-

tion is also used as supplementary skill metric for measuring model performance:

. cov(Popser, Pesimu) (3.3)

op op

obser simu

Here cov denotes covariance and o denotes standard deviation.

Training

The backpropagation method is applied to train the network model. The method requires
estimating the partial derivative of the loss function with respect to each parameter in the
network, including those from both the convolutional layers and dense layers. The parameters
are then adjusted along the gradient descent direction by a predefined stride, which is named
“learning rate”. A detailed derivation for backpropagation in CNN can be found in [21].
Considering the fact that a same CNN is mapped to several snapshots of the dynamical
field in a single day time, and their outputs are summed up as the final estimate of the daily
precipitation, the gradient of the loss function is equally attributed to each snapshot before

applying the backpropagation training.

3.4.3 Model Implementation

I implement the network using the Wolfram Mathematica V11.3 Deep Learning Platform
[215]. T use the Nvidia Quadro P5000 GPU (Graphics Processing Unit) to accelerate model

training.
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3.5 Experiments

3.5.1 Data

The predictors used for building the network models are the GPH and PW field data from
the National Centers for Environmental Prediction (NCEP) North American Regional Re-
analysis (NARR) dataset [121]. The dataset is generated by regional downscaling of the
NCEP Global Reanalysis for the North America region, using the NCEP Eta Model and
the 3D Variational Data Assimilation System. Also, the updated Noah Land-surface model
and numerous datasets additional to the global reanalysis were applied to improve the data
quality. The dataset covers 1979 to near present and is provided every three hours, with
spatial resolution of 32km/45 vertical layers. The 3h total column PW, GPH at 500hPa,
850hPa and 1000hPa from 1979 to 2017 were downloaded for use.

Besides the pressure and moisture data, the precipitation product from the NARR is
used as baseline here. It should be noted that the NARR precipitation product is not raw
output from the numerical models but is achieved by assimilating precipitation observations
as latent heating profiles [103]. Thus, the data quality is superior to the raw numerical pre-
cipitation estimates or conventional reanalysis precipitation products that do not assimilate
precipitation [24, 10]. It poses a high challenge for the DNN model to provide comparable
precipitation estimates.

I use the gauge-based daily precipitation dataset from the National Oceanic and Atmo-
spheric Administration (NOAA) Climate Prediction Center (CPC) [218] as the “realistic”
precipitation records for training and test the CNN. The dataset provides high-quality uni-
fied precipitation records by combining different information sources. It covers 1948 to 2017
with resolution of 0.25° x 0.25°. The data are re-sampled to 32km using nearest neighbour

method to match the resolution of NARR.
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3.5.2 Experiments Design

To test the applicability of the model for different climate conditions, I selected 14 sample
grids that roughly cover the characteristic climate divisions of the contiguous United States.
The samples together with their associated circulation field domains are shown in Figure
3.3. The circulation field for each gird is composed of a 8 x 4 x 25 x 25 tensor. 8 indicates
that there are 8 3h circulation snapshots per day; 4 indicates the feature numbers, which
includes the PW, GPH1ggonpa, GPHgsonpa and GPHsgonpa; 25 X 25 represents that there are

25 x 25 32km grids within the considered dynamical field coverage.
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Figure 3.3: The sample grids used in the experiment. For each grid, the surrounding
800km x800km dynamical field is delineated. The color indicates the mean daily precipi-
tation rate, which is calculated by averaging the CPC daily precipitation records from 1979
to 2017. The table shows the samples’ coordinates, mean precipitation rate, the r and Root
Mean Square Error (RMSE) between NARR and CPC precipitation for the grids.

For each sample grid, I carry out the following steps to build the model:

1. Data Normalization. Each feature field is normalized by subtracting the mean ()
and dividing by the standard deviation (¢). Here p and o are scalar values that are

calculated based on the flattened circulation field for the entire dataset. The grids are
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not normalized individually in order to maintain the circulation structure.

. Divide the data into training, validation and test sets. To guarantee each set cov-
ers different climate conditions, for each of the twelve months, I randomly select 23
years of that particular months data into the training set, 6 years into validation set
and 10 years into test set. Thus, I have 23/6/10 years’ recomposed data in the train-
ing/validation/test set. The training and validation sets are used to calibrate the model
parameters and prevent overfitting. The test set is kept unseen through the training

process. It is used to provide an unbiased evaluation of the constructed model.

. Determine the network hyperparameters. Hyperparameters are the variables that de-
termine the network structure (i.e. layer type, neuron size) and the variables that
determine how the network is trained (i.e., the learning rate) [56]. I adapt the ar-
chitecture of a classical CNN implementation named LeNet [97] in determining the
hyperparameters. The specific network structure is shown in Figure 3.4. Based on this
basic model architecture, 1 focus on one sample grid and implement a series of archi-
tecture variations to figure out the best network structure configuration and attribute

the contribution to the adjusted modules.
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Figure 3.4: The network structure for precipitation estimation. Each 3h snapshot of the
dynamical field, which is represented by a 4x25x25 tensor, is sequentially processes through
the convolutional layers and pooling layers. The extracted features are flattened and pro-
cesses by two consecutive dense layers. The dimension of each layer’s output is labeled out.
Different layers/operators are denoted with corresponding colors. Results for eight 3h snap-
shots are summed as the total daily precipitation estimate. In total, this network consists
of 2,4076 parameters to be trained.

4. Train the network. The parameters in the network are firstly initialized based on stan-
dard normal distribution. To guarantee model’s robustness with respect to parameter
initialization, I carry out several implementations with different parameter initializa-
tions. After initialization, the parameters are further trained using Stochastic Gradient
Descent (SGD) [20] to minimize the MSE for precipitation estimate. The SGD method
applies a stochastic approximation of gradient descent approach to alleviate the high
computing cost in evaluating the derivatives for the global loss function. The con-
sidered learning rate are 1072, 107* and 107°. I adopt the early stopping strategy to
regularize the model: the training process is terminated when further training improves

performance only for the training set but not for the validation set.

5. Model evaluation. The network simulation results are evaluated against the CPC pre-
cipitation records, using skill metrics of RMSE and r. The performance are compared

against the original NARR precipitation products.
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3.6 Results

The CNN estimated precipitation (Pcnn) and the NARR estimated precipitation (Pxargr)
are compared against the CPC precipitation records. Figure 3.5 shows the comparison results
for the test set. Here Pony is the mean estimation from three CNN implementations with

different parameter initializations.
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Figure 3.5: The scatter plots compare the Ponx (red circles) /Pyarr (blue circles) against
the CPC precipitation records (Popser) for the 14 sample points. Results are for the test set
only. The skill scores of r and RMSE for each point are given in corresponding sub-figures.
The bold and underlined value indicates the better statistics of the two estimates. The
bottom right geographic map shows the geoposition of the 14 points. The point is labeled
red/blue if both skill scores indicate that Ponn / Pxarr performs better. It is labeled gray
if the two skill scores show disagreement. 77



Without a careful tuning of hyperparameters, the CNN models perform relatively well
compared to the NARR precipitation product. Considering the fact that the NARR precip-
itation product has already assimilated observations, the results are quite satisfactory.

As indicated by the two skill scores, Peny outperforms Pyagg for most sample points
from the west and east coast, where precipitation is more copious than the other areas.
The skill improvement is impressive for some of the sample points. For instance, for Point
5, r/RMSE improves from 0.64/6.63 to 0.80/5.04 comparing Pcxny with Pyagr. For the
rest sample points from the middle part of the continent, Ponn performs slightly worse
compared to Pyagrg. Particularly, the CNN models show systematic underestimation for the
large precipitation events.

Table 3.1 shows the skill scores of » and RMSE for the training, validation and test set for
each of the three CNN implementations carried out here. The skill scores of CNN ensemble

prediction and NARR precipitation product are also included for comparison purpose.
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Table 3.1:  Precipitation Estimation Skills of CNN and NARR for the Train-
ing/Validation/Test Set

Training Validation Test

CNNg; CNNg, CNNgz; CNNi NARR CNNg; CNNg, CNNgzy CNNi NARR CNNg; CNNg, CNNgzy CNNi NARR

) r 0.9 0.91 0.9 0.91 0.78 0.85 0.85 0.85 0.86 0.74 0.85 0.85 0.85 0.86 0.76
Foe 1 RMSE  5.39 5.1 5.47 5.15 8.17 5.97 6. 5.99 5.81 8.18 6.23 6.35 6.3 6.13 8.31
) r 0.79 0.82 0.79 0.82 0.74 0.63 0.64 0.65 0.66 0.71 0.67 0.7 0.68 0.71 0.73
Pome:2 RMSE 214 2.04 2.13 2.05 2.38 2.52 2.49 2.48 2.44 2.43 2.21 2.15 2.2 2.12 2.23
) r 0.78 0.78 0.8 0.8 0.76 0.68 0.66 0.68 0.69 0.71 0.67 0.68 0.67 0.69 0.74
Fome s RMSE  3.03 3.1 2.94 2.94 3.26 3.29 3.35 3.29 3.23 3.26 3.48 3.48 3.53 3.41 3.21
) r 0.78 0.77 0.78 0.79 0.72 0.73 0.71 0.68 0.72 0.76 0.68 0.66 0.66 0.69 0.71
fomed RMSE 323 3.25 3.26 3.14 3.61 3.72 3.81 3.97 3.73 3.55 3.89 3.98 3.96 3.84 3.81
L r 0.82 0.8 0.8 0.82 0.63 0.76 0.75 0.74 0.76 0.62 0.78 0.79 0.79 0.8 0.64
Fomes RMSE  4.74 4.92 5. 4.74 6.58 5.36 5.43 5.56 5.3 6.56 5.24 5.17 5.17 5.04 6.63
) r 0.91 0.92 0.93 0.93 0.82 0.82 0.82 0.83 0.83 0.82 0.84 0.84 0.82 0.84 0.83
fome o RMSE  3.76 3.64 3.29 3.41 5.47 4.88 4.89 4.78 4.7 5.24 4.96 4.89 5.19 4.83 5.29
) r 0.59 0.58 0.59 0.61 0.53 0.53 0.54 0.52 0.55 0.52 0.53 0.51 0.51 0.54 0.53
Fomne T RMSE  2.32 2.36 2.37 2.31 2.54 2.8 2.79 2.86 2.78 2.98 2.6 2.64 2.68 2.61 2.67
) r 0.79 0.75 0.75 0.78 0.77 0.71 0.71 0.71 0.73 0.86 0.67 0.66 0.66 0.68 0.73
fomes RMSE  3.77 3.99 4.01 3.82 3.89 4.66 4.56 4.57 4.51 3.31 4.12 4.18 4.16 4.05 3.9
) r 0.74 0.79 0.76 0.78 0.7 0.72 0.72 0.7 0.73 0.65 0.7 0.71 0.71 0.72 0.7
Fotnt9 RMSE 5.6 5.23 5.44 5.31 6.11 5.27 5.29 5.41 5.19 6. 5.65 5.64 5.61 5.52 5.91
) r 0.75 0.65 0.66 0.71 0.6 0.54 0.54 0.54 0.57 0.47 0.57 0.63 0.62 0.65 0.58
Fome 10 RMSE  7.79 711 7.23 7.12 7.56 8.95 8.13 8.24 8.27 8.76 7.52 6.47 6.67 6.67 6.97
) r 0.72 0.71 0.71 0.73 0.77 0.66 0.62 0.61 0.65 0.75 0.6 0.58 0.59 0.6 0.67
Pomett RMSE 2.2 2.25 2.25 2.18 2.04 2.74 2.86 2.88 2.77 2.4 2.7 2.79 2.74 2.69 2.51
) r 0.8 0.75 0.79 0.8 0.74 0.74 0.71 0.7 0.74 0.8 0.7 0.67 0.69 0.71 0.76
Fome 12 RMSE  3.76 4.2 3.9 3.8 4.36 5.07 5.29 5.32 5.07 4.49 5.37 5.58 5.45 5.26 4.85
) ) r 0.82 0.82 0.77 0.82 0.65 0.69 0.72 0.7 0.72 0.59 0.67 0.66 0.68 0.69 0.68
Fome 13 RMSE  6.52 6.5 7.17 6.44 8.77 8.15 7.8 7.98 7.76 9.39 8.68 8.86 8.69 8.46 8.69
) r 0.69 0.64 0.67 0.68 0.64 0.62 0.62 0.62 0.63 0.59 0.61 0.59 0.58 0.61 0.65
Pomme RMSE  6.08 6.48 6.29 6.15 6.68 6.97 7. 7.03 6.87 7.36 6.79 6.96 7.02 6.81 6.54

R1, R2 and R3 indicate 3 implementations of CNN with different parameterization initializations. R represents the mean estimation.

The bold and underlined values indicate the best statistics for corresponding dataset.

Compared to individual implementations of CNN, the ensemble estimation of CNN
(CNNg) improves the skill scores in most cases . However, the improvement is generally
not significant. Different implementations of CNN show similar skills. This indicates that
the parameter initialization carried out here does not significantly influence the modeling
performance, in other words, the model is robust with respect to different parameter initial-
izations.

Considering the performance difference for the training, validation and test sets, as can be

73



expected, all points show better performance of CNN models for the training set compared
to the validation and test sets. The overfitting phenomena are assumed to be responsible for
the relatively poorer performance for the CNN models in the middle part of the continent.
For instance, for Point 3, rg - is 0.80/0.69/0.69 for the training/validation/test set, while
TPypaa 18 0.76/0.71/0.74. The overfitting may due to the fact that for this sub-arid region,
there are much less samples of precipitation events compared to the rest areas. The limited
informative data can not effectively support the construction of a complicated deep neural
network model. Despite the overfitting, the CNN models have relatively similar performance
for the validation and test set, which guarantees the trained model can generalize well to the
unseen data.

Another important aspect Inoticed is that the CNN models frequently underestimate
large precipitation values. Ibelieve the underestimation might be caused by the following
reasons: first, Ido not have enough large precipitation samples due to the uneven distribution
of daily precipitation; second, the convective storms, which are common for the east and

southeast of the continent, might require finer dynamical field for accurate estimation.

3.7 Discussion

3.7.1 Network Architecture

The results above are achieved using a same default network architecture as presented in
Figure 3.4. To 1) attribute the credits to the introduced modules, 2) figure out their optimal
configurations, and 3) relate our models to the classical ANN SD approaches, limplement a
series of network architecture variations based on the default network structure.

Given the complexity of DNN structures and huge computing cost for model training, it
is impractical to enumerate all the possible network architecture compositions. Here Ifocus
on two dominant configurations in CNN design, namely the receptive field and the network

depth. For processing convenience, [use a single geogrid to carry out the experiments. The
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geogrid of Point 1 is selected since Thave made detailed descriptions for it.

Receptive Field: Extensive Or Exclusive?

The receptive field for a convolutional layer refers to the patch size on which the kernel
convolve with. In Figure 3.2, it is denoted as m x n. It constrains the spatial scale of the
features that Iexpect to extract through convolution. Large scale spatial features can be
achieved either by adopting a big receptive field on the initial layers or assembling local
features in deeper layers.

Consider the extreme condition of applying the most extensive receptive field, i.e. m =
x and n = y for the case in Figure 3.2, all the pixels in the input layer are thus fully
connected. The CNN degenerates to a regular fully connected neural network, which has
been extensively applied in ANN SD. Considering another extreme condition of applying the
most exclusive receptive field, i.e. m =1 and n = 1 , the one-by-one convolution performs a
coordinate-dependent transformation in the filter space, which has been used to modify the
dimensionality in the channel dimension [102, 181].

I carry out the experiments by modifying the receptive field for all the convolutional
layers. Imaintain the other network configurations the same as the default setting. As
is shown in Figure 3.4, originally, a 4 x 4 receptive field is adopted for all of the three
convolutional layers. Here, Iconsider the receptive field of 1 x 1, 3 x 3, 5 x 5, 6 x 6 and full
input size (25 x 25 for the first convolutional layer and 1 x 1 for the rest). The results are

shown in Table 3.2.
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Table 3.2: Model Performances for Different Receptive Fields and Convolution Depth

Receptive Field Convolution Depth

1x1 3x3 4x4* 5x5 6x6 Ful 1 3* 5 7

Training 0.869 0.885 0.902 0.922 0.939 0.864 0.837 0.902 0.921 0.887

r Validation 0.836 0.848 0.851 0.853 0.836 0.824 0.811 0.851 0.850 0.837
Test 0.832 0.847 0.851 0.854 0.847 0.822 0.808 0.851 0.853 0.838
Training 6.11 5.78 5.32 4.79 4.59 6.29 7.01  5.32 4.82 5.73

RMSE Validation 6.25 6.05 5.99 595 6.36 6.55 6.94 5.99 6.02 6.27
Test 6.6 6.37  6.29 6.25 6.49 6.85 732  6.29 6.27  6.58

*: The skill scores for the default settings (receptive field: 4 x 4, convolution depth: 3) are the averaged scores

for the three implementations in the previous section.

For Point 1, the best training set performance is achieved when using a receptive field of
6 x 6; while the best validation/test set performance is achieved when using a receptive field
of 5x 5. The two extreme condition experiments achieve poorer performance than the others.
The one-by-one convolution network works better than the full receptive field network, or
in other words, the fully connected neural network. It should be noted that the optimal
receptive field size might be different for areas with different precipitation mechanisms.

Physically, precipitation is highly variant in space. Its occurrence and intensity are
closely related to local circulation patterns. The above experiments verified that an explicit

encoding of local spatial circulation structures enhances the estimation of precipitation.

Network Depth: Shallow Or Deep?

The network depth can be roughly represented as how many layers there are in the neuron
network. These layers learn representations of the data with multiple levels of abstraction
[96]. Despite the simplicity of the transformation in each layer, the stacking of many layers
allows learning intricate structures for complicated applications.

Here Iapply a relatively shallower CNN model and two deeper CNNs to examine the

impact of network depth. The shallower CNN model is constructed by removing the latter
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two convolutional layers and the last pooling layer from the default network in Figure 3.4.
Thus, its convolution depth is 1. The deeper CNN models are constructed by adding two/four
extra convolutional layers before the first pooling layer for the default network architecture
in Figure 3.4. The kernel size of the included convolutional layers is set to 20 x ¢ x4 x4, where
¢ is the channel number of the previous layer. The deeper networks are thus of convolution
depth of 5/7. The performance of the models are also presented in Table 3.2.

Compared to the deeper network models, the model with single convolutional layer
achieves significant lower skill scores in estimating precipitation. The default network with
3 convolutional layers achieves optimal performance for the validation set. The model with
5 convolutional layers achieves optimal performance for the training and test set. Overall,
results indicate that the shallow network is not as effective as the deeper networks in ex-
tracting useful dynamical features for precipitation estimation. Ideally, the deeper networks
hold more potential in estimating the intricate features. However, results here show that
the network with 7 convolutional layers achieve lower skill score than the networks with 3/5
convolutional layers. This might due to inefficient backpropagation training for such a deep

network model.

3.7.2 Model Interpretations

The network models applied here involve much more complicated structures and more pa-
rameters compared to the existing SD approaches. It is imperative to explain what is learned
through adopting these network components, and how the network can learn better. In re-
sponse to this requirement, many approaches for understanding CNNs have been developed
in recent years [42, 173, 225]. Here Iapply two commonly used visualization and analysis

methods to interpret the models and their results.

7



Layer Activation

Layer Activation refers to setting break points in the middle layers of the network and
visualize the activated outputs at these break points. [225] offered an excellent example in
illustrating how layer activation can be used for interpreting and diagnosing CNNs. Ivisualize
the layer activations of the storm event in Figure 3.1 as well as a light rain event on December
16th, 2017. Results are shown in Figure 3.6.

The input fields for the two events in Figure 3.6 show different spatial structures. How-
ever, it is difficult to tell how these patterns are related to precipitation. The outputs from
the first convolutional layer (Conv 1) provide a sharper distinction for the heavy/light pre-
cipitation events: for certain channels, the outputs for one event are activated while the
outputs for the other event are not. For instance, the light precipitation event show high
spatial variance in the channels of C5, Cg, Cig and C}q; for the storm event, there are little
spatial variance in these channels; on the other hand, the light precipitation event show little
spatial variance in the channels of C5, C;, Cy, Cy3, C14 and C5; for the storm event, there are
high spatial variance in these channels. The results in Conv 1 are further processed through
deeper layers. Similar distinctions within same channel for two events can be depicted in
Conv 2. Overall, the results here provide supportive evidences that the CNN models enhance

the extraction of characteristic features by filtering the data with the learned kernels.
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Figure 3.6: Layer activations for the December 16, 2017 light precipitation event (top) and
November 7, 2006 storm event (bottom). The dark color represents low values and bright
The left part shows the eight 3h snapshots of the dynamical
field (GPHipoonpa; GPHssonpa, GPHsoonpa and PW) through the day. Conv 1/2 shows the
activated output for the first/second convolutional layer. The Conv 1 result is composed of
8 x 15 sub-figures. 8 indicates that there are eight 3h dynamical field snapshots; 15 indicates
that the output is of 15 channels, which are labeled as from C to (5. Similar denotations
for Conv 2. The Output panel shows the results by mapping the CNN to each 3h snap
shot of the dynamical field. The sum of them consists the total daily precipitation estimate,

color represents high values.

which is compared against CPC records.
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Perturbation Sensitivity

For image classification problems, the occlusion sensitivity analysis (OSA) tells the impact of
different portions of the image on the classification result. It is performed by systematically
occluding different portions of the input image with a grey square, and monitoring the output
of the classifier [225]. The results of OSA illustrate if the model is effectively localizing the
target object in the image, or just using the surrounding context.

For the problem here, I apply a similar method to quantify the precipitation-related
impact of different portions of the circulation field. Rather than applying a grey square
to occlude the input, Isystematically perturb the input field with a rescaling matrix. The
dimension of the rescaling matrix is set to be the same as the receptive field for the first
convolutional layer. All of its elements are set to 14¢€, where € is the perturbation magnitude.
The rescaling matrix is multiplied to different portions of the input. For each perturbation,
Imonitor the model output change. Mathematically, this operation is roughly equivalent
to estimating the partial derivatives of the precipitation estimate with respect to different
portions of the dynamical field. The relation between perturbation location and model
output change is visualized in Figure 3.7.

In Figure 3.7, as Islide the scaling matrix over different geolocations in different species
of the dynamical fields, the model estimated precipitation amount changes correspondingly.
For instance, for the 2007-11-7 storm event, the CNN model will produce larger precipitation
estimate if the 1000hPa GPH for the central region is lower and the 1000hPa GPH for the
surrounding area is higher. This is in accordance with our prior knowledge that heavy
precipitations are related to intensive surface depressions. It is interesting to note that the
perturbation sensitivity map occasionally present the characteristic appearances of cyclones.
Overall, the precipitation estimations are highly sensitive to the dynamics from the central
region of the field. This is the area where the target geogrid point lies. The surrounding

dynamics also provide important context for inferring precipitation.
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Figure 3.7: Perturbation sensitivity analysis for the December 16, 2017 light precipitation
event (top) and November 7, 2006 storm event (bottom). For each case, Ivisualize the
model output changes by systematically perturbing different portions of the scene with a
rescaling matrix that is of same dimension as the first convolutional layer receptive field.
The perturbation magnitude is set to 5%. The results are denoted as mem. Iprovide
clear 2D projections of these figures in the supplementary material.
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3.7.3 Comparison Experiments

Previous sections have compared the CNN precipitation estimates with 1) NARR precipi-
tation product, and 2) precipitation estimates using fully connected deep neural network.
Results show that the convolution module enhances deep neural networks for precipitation
estimate, achieving advanced performance compared to observation-adjusted numerical pre-
cipitation product.

In Section 3.3, I made a critical review on existing SD approaches, which motivates us
to turn to CNN for explicit encoding of precipitation-related circulation geometric patterns.
To justify the critics and the motivation, it is imperative to compare the CNN performance
with classical SD approaches. Here Icarry out a series of comparison experiments using some
of the widely-adopted SD methods.

The following SD models are selected as baselines : 1) linear regression, 2) nearest neigh-
bor, and 3) random forest, all of which have been extensively applied and verified for SD tasks
99, 50, 79]. For each of the model, I adopt same input variables as for CNN, with optional
feature extractions before feeding the input to the model. The data normalization, partition
of training/validation/test set are the same as in the CNN experiment. The optional feature
extraction is done using Principal Component Analysis (PCA). I carry out simulations using
input composed of the leading 2, 8, 16, 64, and 256 PCs of the circulation field data, as
well as simulations using the raw circulation field data. Details of the models and feature
extraction are given in the appendix at the end of this chapter [145, 171, 110, 22, 215]. The

precipitation estimation results for the test set are shown in Table 3.3.
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Table 3.3: Precipitation estimation performance for the test set using 1) linear regression,
2) nearest neighbor, and 3) random forest model. For each model, Icarry out simulations
using input composed of the leading 2, 8, 16, 64, and 256 principal components (PCs) of
the circulation field data, as well as simulations using the raw circulation field data. The
dimension for the input variable is labeled, for instance, 4 x 2 indicates that the leading 2
PCs for the GPH;pponpa; GPHgsonpa, GPHsoonpa, and PW field are used as input. The r and
RMSE score are used to measure model performance.

Input Skill Score Linear Regression Nearest Neighbor Random Forest
2 PCs r 0.74 0.80 0.80
(4 x2) RMSE 8.01 7.35 7.23
8 PCs r 0.79 0.81 0.81
(4 x8) RMSE 7.33 7.34 7.05
16 PCs r 0.81 0.81 0.81
(4 x 16) RMSE 6.98 7.50 7.09
64 PCs r 0.81 0.58 0.80
(4 x 64) RMSE 7.03 11.2 7.19
256 PCs r 0.76 0.67 0.80
(4 x 256) RMSE 8.86 12.47 7.19
Raw Input r 0.52 0.79 0.81
(4 x 25 x 25) RMSE 10.35 7.41 7.04

The best performance in the comparison experiments is achieved by the linear regression
model using input of the leading 16 PCs of the circulation field (r = 0.81, RMSE = 6.98).
The non-linear models outperform linear model when the input dimension is relatively low.
As linclude more PCs as input, the skills for the models decrease (linear regression and
nearest neighbor) or saturate (random forest).

The performance of the models here are comparable, or slightly better than the NARR
precipitation estimates (r = 0.76, RMSE = 8.31). DNN with fully connected computation
graph achieves better performance (r = 0.82, RMSE = 6.85). The skill can be further
improved if Tapply the convolution and pooling modules to explicitly extract the spatial
information from the high dimensional dynamical field (r = 0.86, RMSE = 6.13). To sum
up, the comparison experiments empirically suggest that CNN is competitive in making

precipitation estimations based on the resolved surrounding atmospheric dynamics.
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3.8 Conclusion

Precipitation estimation provides fundamental information to better understand the land-
atmosphere water budget, improve water resources management, and aid in preparation
for increasingly extreme hydrometeorological events. However, the precipitation process is
generally considered to be poorly represented in current numerical weather/climate models.

Statistical Downscaling (SD) approaches often provide more accurate precipitation es-
timates compared to the raw precipitation products in numerical models. However, Ipoint
out two common deficiencies in adopting the existing precipitation SD approaches for daily
precipitation estimation: Firstly, most existing SD approaches rely on human-engineered
features to extract information from the raw form high-dimensional predictors, such as the
principal components, however, the engineered features are often designed based on the
characteristics of the predictors rather than the connections between the predictors and
the precipitation process; secondly, the circulation geometries and positions that dominant
precipitation distribution are not well disintegrated and represented.

The Convolutional Neural Network (CNN) model is introduced to overcome these two
deficiencies in improving precipitation estimation. The CNN model stacks several convo-
lution and pooling operators to extract the intricate but important circulation features for
precipitation estimation. Instead of applying pre-engineered feature extractors, the model
applies “end-to-end” learning. Specifically, the kernels that are used to extract the salient
features from the resolved dynamical field are optimized by backpropagating the precip-
itation estimation error through the convolutional layers. Thus, the learned features are
determined based on the relation between the predictors and the predictand for the exact
learning target. Also, through hierarchical convolution, we can well disintegrate dominant
circulation features of different geometric properties and from different locations.

The model is tested for 14 geogrid points that roughly cover different characteristic
climate divisions of the contiguous United States. I use the every 3h geopotential height

(GPH) and precipitable water (PW) field from the NARR dataset to provide realistic and
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fine-scale dynamical forcing. The CNN models are implemented by connecting the dynamical
forcings with the CPC gauge-based daily precipitation records. Considering the fact that
each 3h snapshot of the dynamical field provides specific information for the particular time
of a day, I map the CNN network to each 3h snapshot and sum up the results as the
daily precipitation estimate. The parameters of the network are trained by minimizing the
estimation error using backpropagation.

Results show that the CNN model outperform original NARR precipitation estimates for
the west and east coast, where precipitation is more copious compared to the other areas.
For the middle part of the continent, the CNN model show slightly worse performance,
which can be attributed to model overfitting when there is limited precipitation samples for
training the model.

Focusing on a single geogrid point, the influence of the network architecture on model
performance is examined. Specifically, I focus on the receptive field and network depth. By
varying the receptive field of the convolutional layers, I verify that the CNN model out-
performs conventional fully connected ANN SD in estimating precipitation through explicit
encoding of local spatial circulation structures. By varying the network depth, I found that
deep networks generally have better performance compared to shallow networks. However,
I also noticed the difficulty for training very deep networks.

To interpret the model, I visualize the activation of the middle layers of the network
using a storm event and a light precipitation event. Results show that different channels are
activated for the two cases of different dynamical condition and precipitation amount. I also
implement the perturbation sensitivity analysis to quantify the precipitation-related impact
of different portions of the dynamical field.

The model performance is compared with some of the widely-adopted SD methods, in-
cluding linear regression, nearest neighbor, and random forest. Results show that the CNN
model outperforms the baseline SD approaches for accurate precipitation estimates.

Overall, the CNN model shows impressive performance in estimating precipitation. The
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CNN model applies hierarchical spatial convolution kernels to explicitly search the surround
circulation field for precipitation-dominant dynamical patterns, followed by dense layers that

relate the extracted dynamical patterns to the precipitation of a target grid.

Appendix

Perturbation Sensitivity Analysis

This section provides high resolution 2D figures of the perturbation sensitivity analysis results
in Figure 7. Specifically, I systematically perturb the input fields with a rescaling matrix.
The dimension of the rescaling matrix is set to be the same as the receptive field for the first
convolutional layer. All of its elements are set to 1+¢, where € is the perturbation magnitude
(set as 5% here). The rescaling matrix is multiplied to different portions of the input. For
each perturbation, Imonitor the model output change. Mathematically, this operation is
roughly equivalent to estimating the partial derivatives of the precipitation estimate with
respect to different portions of the dynamical field.

The rows in Figure 3.8 and 3.9 represent the hours of a day. The columns represent
the different dynamical field. As I slide the scaling matrix over different geolocations in
different species of the dynamical fields, the model estimated precipitation amount changes

correspondingly.
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Figure 3.8: Perturbation sensitivity analysis for the December 16'"" 2017 light precipitation
event.
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Figure 3.9: Perturbation sensitivity analysis for the November 7*" 2006 storm event.
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Baseline Models in Comparison Experiments
Principal Component Analysis

Principal Component Analysis (PCA) seeks a linear orthonormal transformation to “better”
re-express high dimensional data [145, 171]. The objective is to filter out the noise and
reveal the hidden dynamics based on a linear transformation. Specifically, let X be an m xn
matrix, where m x n indicates n measurements for an m-dimensional vector space. Itry to
propose an orthonormal transformation using an m x m matrix P, so that, for the resulting

m X n matrix PX:

1. The correlation between different rows is 0.

2. The first row has the largest variance, each succeeding row in turn has the highest

variance under the constraint that it is orthogonal to the preceding rows.

The row vectors are named Principal Components (PCs) of X. The name of “principal”
comes from the assumption that the directions with larger variances are considered to be
more important in representing the variability of X. Here I apply PCA to extract the leading
PCs of the high-dimensional dynamical field (25 x 25 for each predictor variable) as potential
input for precipitation estimation.

Consider the Precipitable Water (PW) field in the form of 25 x 25 x n, where n is the
sample size. Ifirst reshape the data into the form of (25 x 25) x n = 625 x n by flattening the
spatial grids. The reshaped data matrix is denoted as X. Itry to come up with a 625 x 625
transformation matrix P, so that, the first row of PX holds the greatest variance among all
625 rows, the second row holds the second greatest variance, and so on. Also, different rows
are linearly uncorrelated.

To estimate P, let {\1, Ao, ..., Aga5} denote the eigenvalues of the covariance matrix for
X, i.e., XXT, X is ordered from large value to small value. The corresponding orthonormal
eigenvectors are {ej, €y, ..., €g25}. It can be easily proved that, if each row p; for P equals to

e;”, then:
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e The empirical variance for the ith row for PX is %

e The rows for PX are linearly uncorrelated.

Thus, for PX, the first row holds the greatest variance, followed by the second row, and so
on; also, the rows are uncorrelated. The ith row of PX is the 7th PC for X.

To extract the leading PCs for the GPH and PW field, for each variable, Ifirst estimate
the transformation matrix of P based on the training set samples. Then, Imultiply P on
the training/validation/test predictors to estimate PCs. The leading PCs are used as model
input in corresponding comparison experiment. Figure 3.10 shows the variance of the leading

256 PCs for the GPHIOOOhPa» GPH850hpa, GPH500hpa, and PW field.
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Figure 3.10: The variance (in logarithmic scale) for the leading 256 PCs of the GPH;ggonpa,
GPH850hpa, GPHE)OOhPaa and PW field.

Linear Regression

Consider estimating y based on a linear combination of X:

y=X:-b+e¢
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Here y and € are n-dimensional vectors, X is a n X m matrix, b is m-dimensional vector; y
is the predictand, X is the predictor, b is the parameters that need to be calibrated, € is the
estimation error; n denotes that there are n observations, m indicates the dimension of the
input variable is m. Iapply the least square error criterion to estimate the optimal b. The

square error (E) is represented as follows:
E=ee=(y—-X-b)l (y-X-b)
To obtain optimal 13, Irequire g—g = 0, thus:

E R
0 — = 2XTy +2X"Xb =0
ob

which gives:

b= (X"X)"'X"y

Nearest Neighbor

Nearest Neighbor is among the simplest and most popular form of machine learning ap-
proaches. It predicts the output for an input using the average output value for the k closest
training examples in the feature space. Here Iset the k value as 4. 1 use Euclidean distance

to measure the distance between samples.

Random Forest

Random forests (RFs) are prediction models based on ensembles of decision trees (DTSs)
grown from a randomized variant of the tree induction algorithm [110]. Compared to DTs,
RFs usually make better predictions by alleviating the problem of overfitting. Regarding
the aspect of how random perturbations are introduced into the induction procedure for

building DTs, there are many RF variants. Here Iadopt the classical Breiman RF [22], which
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combines bagging and random variable selection for growing trees. To explain Breiman RF,
Ifirst introduce the basic building-blocks of DTs, bagging, random variable selection, then
[illustrate how these blocks are assembled to consist the RF algorithm. For comprehensive
description and explanation of RF, see [22] and [110].

Decision Tree: Decision trees apply directed acyclic graph to recursively partition the
input space into sub-spaces and assign same prediction value to each terminal subspace. To

fit a DT for a specific problem, Ishould clarify:

1. The computation strategy for splitting the tree nodes, starting from the root node of

the input data.

2. The criteria of when to stop splitting.

For the first aspect, we usually adopt a greedy searching strategy: we seek an optimal
partition that maximizes the “information gain” for current split step. For the precipitation
regression task here, I use the squared error loss as the “information gain” measurement.

For the second aspect, I pre-define a set of hyper-parameters to determine the stopping
criteria. The hyper-parameters include: 1) the minimum sample size for each node, 2) the
maximum depth for the DT, 3) the minimum decrease of squared error loss required for
adding a partition. To apply these stopping criteria, Ifirst fully develop all nodes by recur-
rently split the predictor space, then, I apply these criterion to prune the over-complicated
trees.
Bagging: The bagging technique, which is also known as bootstrap aggregating, refers to
the strategy of selecting bootstrap samples from the training examples. The samples are
drawn at random with replacement. We can build DTs based on each bootstrap sample.
The resulting DT's are averaged to reach the ensemble prediction.

Random Variable Selection

For problems with high dimensional predictors, to find the optimal split for each node

of a DT, we might consider making the partition based on many random subsets of the

92



predictor dimensions. The resulting trees are thus structurally different, since they make
predictions based on different aspects of the predictor. This strategy is known as random
variable selection.

The Breiman Random Forest Model: The Breiman RF model assembles the building-
blocks introduced above. The model combines many different DT into an ensemble, and
introduces random variation with bagging and random wvariable selection. The resulting
ensemble of trees is averaged to produce an overall prediction, which reduces overfitting
while allowing for complex individual learners. The specific steps for building the Breiman

RF model is listed as follows:

1. Pick random sample of size n with replacement from the data. Each of the n samples

construct a bootstrap sample space.

2. Build regression tree based on each subset of bootstrap samples. When picking the
best split for a node, a random subset of input dimensions is selected to be searched

over, rather than finding the best split across all input dimensions.
3. Make prediction using the mean of n trees’ predictions.

I use the Wolfram Mathematica machine learning toolbox to implement the PCA, linear

regression, nearest neighbor, and random forest algorithm [215].
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Chapter 4

Benchmarking Quantitative
Precipitation Forecast using a
Composite of Numerical Modeling

and Deep Neural Networks

4.1 Background

Empirical experiments in Chapter 3 suggest that, by learning from sufficient examples, a
deep convolutional neural network can effectively extract useful features from the resolved
dynamical field estimates for more accurate precipitation predictions [141]. This promising
result at daily, grid scale motivates a more ambitious exploration of deep neural network’s
potential for quantitative precipitation forecast (QPF), which informs the expected amount
of precipitation accumulated over a specified time period over a specified area [26], usually
at a much higher spatiotemporal resolution.

QPF is crucial for both practical applications as well as the modeling and understanding

of the climate system. From an application perspective, accurate QPF benefits various
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practices ranging from flash flood forecast to long-term ecological, agricultural, and water
resources management [94]. From a modeling viewpoint, QPF is widely considered as one of
the most stringent challenges for numerical weather /climate modeling, making it an ultimate
criterion for model evaluation and diagnosis [184]. Besides, accurate QPF consists a primary
requisite for modeling the land processes and land-atmosphere interactions in coupled general
circulation models (GCMs).

GCMs, together with numerical weather prediction models (NWPMs), are arguably the
only reliable tools for QPF at short to extended ranges. Boosted by 1) consistent growth
in computation capacity, 2) accumulation in understandings of atmospheric dynamics and
physics, and 3) development of modern observation networks and data assimilation tech-
niques, numerical models have demonstrated impressive skills in capturing the spatiotempo-
ral variation of precipitation at relatively coarse resolution [9, 143]. However, current models
usually fail in revealing many critical details of the precipitation processes, such as location,
timing, intensity, or total accumulation [179, 184].

As our focus shifts from coarse to fine scale, precipitation tends to be more patchy in
space, and more spiky in time. These irregular characteristics stem from the manifestation of
individual formation and growth of precipitating clouds, which exhibit complex coupling with
their embedding atmospheric fluid dynamics [78]. In current GCMs and NWPMs, the cloud
and precipitation processes can not be explicitly resolved, and are mostly parameterized
based on a mix of empirics, phenomenological laws, and closing assumptions. Deficiencies in
parameterizing the relevant unresolved processes contribute to a major source of uncertainty
in numerical modeling, and have attracted significant research interests from the modeling
community [178].

Efforts in improving precipitation related parameterizations are supposed to benefit from
a clarification of predictability limit under specific model configurations and at specific mea-
surement scopes. Predictability quantifies the extent to which it is possible to predict a

system within the constraints of uncertainties from input and model formulation [140]. To
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clarify what is possibly predictable offers insights into the sources of prediction limits, there-
fore directs further progresses to mitigate these deficiencies. Here, I focus on a particular
aspect toward understanding precipitation predictability: Given the atmospheric dynamics
that are realistically resolved at certain resolution, what is the predictability limit of the
precipitation process?

It is difficult to tackle the proposed problem based on a process-based approach. This is
because, the inevitable errors from 1) initial field estimations, 2) dynamical forcings, and 3)
parameterizations exhibit complex interactions through model’s iterative dynamical simula-
tions, with all sources of errors quickly revealing themselves in models’ precipitation outputs
[184]. Besides, at microphysical scale, precipitation is typically simulated as a diagnostic
variable that results from prognostic simulations of various hydrometeor development pro-
cesses, while we do not have direct observations to verify the estimates of the latent state
variables. Overall, to track, attribute and rectify the precipitation prediction errors has been
widely considered as an extremely daunting task.

Here, I bypass explicit considerations of complicated hydrometeor developments at cloud
microphysics scale, and focus only on the specific aspect of predicting the precipitation pro-
cess. | investigate precipitation predictability by seeking statistical connections between the
high resolution precipitation observations and their associated atmospheric dynamical and
moisture analysis. It should be noted that the objective is not to propose a “black-box”
statistical model to replace existing cloud microphysics and cloud cumulus parameteriza-
tion schemes. Instead, I try to clarify to what extend of accuracy QPF can be as viewed
from a data-driven perspective, thus offering directions for improving precipitation related
parameterizations. The strategy here basically follows what is proposed in Chapter 3, but
brings particular opportunities and challenges. Specifically, provided with consistently ob-
served high resolution precipitation and atmospheric analysis data, the amount of data for
model training and validation would be significantly increased. On the other hand, high

resolution precipitation data are more irregular in their spatiotemporal distribution, and the
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observations are not consistently available, which requires careful treatment in modeling.
The rest of this chapter proceeds as follows: Section 4.2 builds a unique long-range
hourly precipitation dataset by collecting, processing, and cleaning data from various sources.
Based on this dataset, Section 4.3 tests the applicability of a suite of deep neural network
architectures for estimating precipitation process at hourly, point scale. Section 4.4 uses
dynamical forecast experiments to further testify the model’s robustness and applicability

in real world QPF tasks. Conclusions are drawn in Section 4.6.

4.2 Study Area and Data

4.2.1 Study Area

The West Coast of the United States is selected as the study area. The spatial coverage and
elevation map are shown in Figure 4.1. As have been explained in Chapter 2, this region
receives a majority of its precipitation during the cool season. The precipitation system tend
to be strongly synoptically forced by extratropical cyclones. Strong precipitation forms as
the cyclone cold front sweeps up water vapor in the warm sector of the cyclone, causing a
narrow band of high water vapor content to form ahead of the cold front at the base of the
warm conveyor belt airflow [33]. Such a phenomenon is manifested as filaments of enhanced
water vapor in satellite imageries, and is termed “atmospheric river” (AR). ARs have been
recognized as the major storm sources [147] and drought busters [36] for the West Coast,
contributing to approximately 30%-50% to its annual precipitation accumulation [37]. The
spatiotemporal scale of this precipitation mechanism is explicitly considered in preparing the
data and designing the proposed model. Dynamical simulation of two typical AR events are
also carried out for detailed verification and analysis, which will be described in detail in

later sections.
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4.2.2 Data Sources and Dataset Construction
Hourly Precipitation Observations

High spatiotemporal resolution precipitation records are valuable for a wide range of appli-
cations, including hydraulic infrastructure design [138], climate monitoring and variability
assessment [146]. However, these data are usually not consistently available due to their high
cost. Here I compare hourly precipitation observations from various sources and concatenate
the quality controlled data to compose a peculiar long term (1980/1/1- 2018/12/31) hourly
precipitation observation dataset. The data are then applied for training and validating the
proposed models.

Ground-based gauges, satellite remote sensing, and radar are three of the major sources
for high resolution precipitation monitoring. Notable discrepancies may arise among their
estimates for specific observation areas and periods [175, 134], making quality control a
necessity. Here I use reanalysis precipitation products as reference to conduct the quality
control. The motivation is justified as follows: I admit the fact that precipitation estima-
tions from atmospheric reanalysis may have severe deficiencies due to parameterizations and
their associated uncertainties; in fact, to improve model’s precipitation products constitute
a major target for this research work. On the other hand, atmospheric reanalysis applies
an unchanging data assimilation scheme to systematically ingest available observations into
dynamical simulations, which hold fixed configuration as well. The disparities between re-
analysis precipitation and the “true” precipitation can thus be considered to fluctuate within
an unchanging envelope of variability. I infer this disparity based on simple skill metrics
(i.e., correlation coefficient (r) and root mean square error (RMSE)) between precipitation
reanalysis and a solid hourly precipitation observation dataset, namely the NOAA (Na-
tional Oceanic and Atmospheric Administration) CPC (Climate Prediction Center) Hourly
US Precipitation dataset [66] (referred as Pcpc thereafter). Similar measurements between

reanalysis precipitation and other sources of precipitation observations are calculated for
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periods beyond the coverage of Pcpc. The results are applied for determining the qualified
data. The specific data sources and quality control results are illustrated in the following
part.

As is clarified, the NOAA CPC Hourly US Precipitation dataset (Pcpc)[66] is employed
as referential precipitation observations for quality control, model training and verification.
The data are obtained by gridding quality-controlled hourly-scale station observations into
2° x 2.5° boxes. The data cover 140°W — 60°W , 20°N — 60°N, from 1948 to 2002.

For period from 2002 to 2018, I consider three candidate hourly precipitation datasets.
The first is gauge-based dataset (referred as Pgauge thereafter), which consists hourly pre-
cipitation observations from approximately 3000 automated rain gauges across Contiguous
United States and parts of other regions in North America. The data are collected and orga-
nized by the National Centers for Environmental Prediction (NCEP) in cooperation with the

Office of Hydrology (OH). I obtain data that cover 1995 to 2018 from the following website:
https://rda.ucar.edu/datasets/ds507.5/

For most gauges, there are unavoidable occasional discontinuities and anomalies, which have
been systematically labeled out. The gauge distribution and observation frequency are dis-

played in Figure 4.1.
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Figure 4.1: Top: Distribution of precipitation gauges across North America. Gauges are
labeled with 10 km range rings. The red grids indicate the study regions. Bottom: detailed
gauge distribution for the 12 grids labeled with 10 km range rings. The total gauge number
and mean number of available observations per hour within each grid box are denoted.
Background color indicates elevation, for which the data are obtained from United States
Geological Survey [53].
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The second dataset is the Stage IV gauge-adjusted precipitation product from National
Centers for Environmental Prediction (NCEP) Environmental Modeling Center (EMC) [104]
(referred as Pgiagerv thereafter). The data are based on the high-resolution Doppler Next
Generation Weather Radar (NEXRAD) network [47] and the National Weather Service
(NWS) River Forecast Center (RFC) precipitation processing system [165]. For the study
area, the RFC precipitation processing system adopts the Mountain Mapper approach [76,
134], which adjusts radar estimation for climatological variations due to topography and

wind directions. The data are obtained from the following website:
https://data.eol.ucar.edu/dataset/21.093

The hourly, 4 km resolution data from 2002/10/1 to 2018/12/31 are used here. The grid
data contain missing observations due to topographical blockings or operational issues. The

mean coverage of available mosaicked observations is shown in Figure 4.2.
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Figure 4.2: Mean coverage of available mosaicked observations from Stage IV precipitation
product for the study area. Contours show the elevation.

The third and last dataset is satellite remote sensing product from PERSIANN-CCS (Pre-
cipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks-
Cloud Classification System [72], referred as Pgatenite thereafter). PERSIANN-CCS extracts
local and regional cloud features from infrared (10.7 pum) geostationary satellite imagery in
estimating fine scale (0.04° x°0.04, every 30 min) rainfall distribution. The data are obtained
from the data portal built by Center for Hydrometeorology and Remote Sensing, University
of California, Irvine [135, 136]: http://chrsdata.eng.uci.edu.

I apply two precipitation reanalysis products from NASA (National Aeronautics and
Space Administration) MERRA-2 (Modern-Era Retrospective analysis for Research and Ap-
plications, Version 2) project as reference to benchmark the candidate precipitation products.

MERRA-2 is the latest atmospheric reanalysis produced by NASA GMAO (Global Modeling
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and Assimilation Office). Its main components are the GEOS (Goddard Earth Observing
System) atmospheric dynamical model [125] and the 3-D variational GSI (Gridpoint Statisti-
cal Interpolation) assimilation system [92]. The GSI assimilation system combines disparate
historical meteorological observations with underlying atmospheric dynamical simulations
in a physically consistent manner, enabling production of realistic, gridded dataset for past
climate [51]. The dataset covers the whole globe from 1980 to present, with spatial reso-
lution of 0.5° x 0.625°. There are two sets of hourly precipitation analysis products from
MERRA-2, namely the raw model’s precipitation estimation (referred as Pygrra2) and the
bias-corrected estimation (referred as Pygrrasy ). Pmerra2 is generated by the GEOS atmo-
spheric dynamical models within the cycling MERRA-2 system, while Pygrrag,. is generated
by merging and disaggregating quality-controlled daily-scale observations to Pygrraz. The
bias correction details can be found in [150].

To perform the quality control, I first upscale all the precipitation products to 2° x 2.5°
to match the spatial resolution of Pcpe. Then, Pepc, Pgauges Pstagerv, and Pgagenite are
compared against Pygrraz and Pyerraz.. The comparison is based on skill score of r and

RMSE. Results are summarized in Table 4.1.

Comparing with Pygrrras Comparing with Pymrrazs
r RMSE r RMSE
Pepc Poauge  Pstagerv Psateliite Pcpc Piauge  Pstagerv Psateliite Pcrc Pcange  Pstagerv Psateliite Pcrc Pcange  Pstagerv Psateliite
Grid1 054 049 0.26 0.03 0.22 025 0.26 0.52 059 0.78 0.37 0.04 019 0.14 0.18 0.48
Grid2 042  0.28 0.05 0.00 0.17 023 0.25 0.49 0.47  0.56 0.07 0.01 0.15  0.17 0.22 0.47
Grid 3  0.62 0.58 0.34 0.08 0.34  0.36 0.39 0.55 0.63  0.73 0.44 0.1 0.3 0.26 0.31 0.50
Grid4  0.66 0.7 0.13 0.11 0.51 0.5 0.73 0.74 0.64 0.76 0.14 0.11 031 0.24 0.5 0.53
Grid5 0.5 0.53 0.19 0.21 0.33 035 0.37 0.43 0.57  0.79 0.28 0.28 0.35  0.26 0.41 0.45
Grid 6 0.27 0.25 0.07 0.08 0.26 0.36 0.3 0.47 0.54 0.64 0.17 0.16 0.22 0.28 0.29 0.46
Grid 7 0.53  0.61 0.06 0.31 0.29 029 0.64 0.4 0.62 0.78 0.08 0.34 022  0.19 0.6 0.35
Grid 8 0.38 041 0.10 0.25 0.21 0.2 0.22 0.37 0.43  0.54 0.14 0.27 0.17  0.12 0.14 0.35
Grid 9  0.67  0.76 0.17 0.16 042 039 0.59 0.61 0.71  0.83 0.19 0.19 0.3 0.23 0.42 0.47
Grid 10 0.39  0.38 0.07 0.14 0.25  0.24 0.25 0.38 0.42 047 0.08 0.17 0.16  0.16 0.15 0.34
Grid 11 0.62 0.7 0.19 0.08 0.52  0.46 0.67 0.7 0.66  0.77 0.2 0.08 0.42  0.31 0.51 0.55
Grid 12 0.32  0.32 0.09 0.08 0.23  0.21 0.2 0.34 0.43 048 0.14 0.10 0.18 0.14 0.12 0.31

Table 4.1: Comparing MERRA2 precipitation products (raw/bias corrected, denoted by
Puerra2/Puerraz. ) with precipitation observations from (1)NOAA’s CPC Hourly US Pre-
cipitation dataset (Pcpc), (2) gauge precipitation product from NCEP and OH (Pgauge), (3)
NWS/NCEP stage IV precipitation product (Pgtagerv), and (4) Remote sensing precipitation
from the PERSIANN-CCS (Pgatenite). All data are of hourly scale. I select Pygrrao and
Pyerra2, that cover time period 1980-2018 with spatial resolution of 0.5° x 0.625°., Pcpc
covers period of 1980-2002 with spatial resolution of 2° x 2.5°. Pgagerv and Pgauge cover
period of 2002-2018. Resolution of Pgtagerv and Pgagenite are 4 km. Pgayge contains point-wise
observations. All data except Pcpc are spatial averaged to 2° x 2.5° for comparison.
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Among Pgauge, Pstagerv, and Psatenite, Pcauge sShows largest and most consistent agreement
with Pepe in comparison with Pygrraz/Puverraze. Also, Pepe and Pgayge have better r
and RMSE score, compared to remote sensing estimations from Pggagerv and Pgagenite. Pre-
vious works have highlighted that radar network scarcity and mountain blockage introduce
significant inaccuracy for radar precipitation estimation in the West Coast [113], which is
confirmed from the results here. Pg.ienite infers precipitation from indirect and limited data
sources (i.e., cloud top temperature), and generally shows little skill at our measurement
scope. However, it is noteworthy that the skill for Pg.ienite i promising for certain regions,
such as for Grid 7 and Grid 8. To sum up, results here demonstrate that Pgaugee is the most
consistent data with Pcpe. Thus, I concatenate Pepe (from 1980-2002) and Pgayge (from

2002—-2018) to compose the long term hourly precipitation dataset.

4.2.3 Precipitation Events Segmentation

Precipitation appears as impulse event in nature. The precipitating process typically lasts for
several hours up to multiple days once atmospheric water condenses and starts to precipitate.
In between of two precipitation events is a no-precipitation period. Only the data from
precipitation periods are considered to provide informative samples for learning QPF, while
data from no-precipitation periods provide little informative information. The inclusion
of non-informative data is believed to hinder efficient and effective model training. This
motivates me to construct a precipitation event dataset by extracting precipitation events
from consecutive historical climate series. A precipitation event segmentation algorithm is
carried out by filtering the long series of hourly precipitation records based on the following

two criteria:

1. The start and end of a precipitation event are featured by 24 consecutive hours with

precipitation rate less than 0.01 mm /hour.

2. The maximum precipitation rate for a precipitation event should be larger than 0.5
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mm /hour.

4.2.4 Atmospheric Dynamics

I use the realistically estimated atmospheric dynamical and moisture field data as predictors
for precipitation estimation. The data are obtained from NASA MERRA-2 project as well.
Details of the dataset has been introduced in Section 4.2.2.

I select the following variables from the MERRA-2 dataset to represent the dynamical
and moisture forcings: the geopotential height (GPH) at 1000 hPa, 850 hPa, and 500 hPa,
the total column water vapor (TQV), liquid water (TQL), and ice water (TQI). For each
2° x 2.5° grid box, I cut out the corresponding 3-D dynamical /moisture field that centers
around the target region and covers 25 x 25 0.5° x 0.625° grids. The resulting n x 6 x 25 x 25

tensor is applied to estimate the precipitation process for a n-hour precipitation event.

4.3 Deep Neural Network for Precipitation Estimation

4.3.1 Problem Formulation

The precipitation prediction problem is framed as a statistical regression task, i.e., estimating
precipitation at hourly, gauge-point scale based on the surrounding atmospheric dynamics
and moisture field estimates. Considering the fact that most precipitation events in the study
area are associated with synoptic scale extratropical cyclones [60], gauge observations within
each 2° x 2.5° geogrid box (delineated with red boxes in Figure 4.1) are estimated based on a
same regression model that relates synoptic circulation patterns to the spatial distribution of
precipitation. Considering the coherent life cycle of extratropical cyclongenesis processes, the
regression model takes input of a whole time sequence of the input field from a precipitation

event, and generates output of precipitation time series for corresponding period. The general
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form of the regression model is written as follows:

BP0, [Xey,) = f(Xey,50) (4.1)

Here E denotes probabilistic expectation, Py ., denotes the precipitation time series for a
precipitation event from Hour ¢; to ¢,. P, is the precipitation observation vector at t;.
Ideally, P, is preferred to include valid observations from all gauges within the considered
geogrid box at ¢;. f is the functional form of the model. X, ., is the atmospheric dynamical
field estimates from ¢; to t,,. Specifically, X;,,7 € [1,n] is a 6 x 25 x 25 tensor, which represents
6 channels of dynamical /moisture feature distributions over 25 x 25 0.5° x 0.625° geogrids.
0 are the parameters of f, which should be calibrated using data. The data are composed
of atmospheric analysis and precipitation record data pairs: {Xflztnk — Pflztnk k=1,2,..},
k indexes precipitation event. The learning process applies the data to optimize f and 6 in

order to make the model perform well for predicting future precipitation events.

4.3.2 Loss Function

A loss function, denoted by L, quantifies the difference between model predictions and
“oround-truth” observations of the predictand. L measures model performance and directs
the learning process. In our problem setting, observations are not consistently available.
For period from 1 January 1980 to 30 September 2002, we only have grid spatial average
precipitation record from NOAA CPC, for period from 1 October 2002 to 31 December 2018,
there are frequent missing records for most gauges. To make full use of the available data,
I customize our loss function based on a “masked” mean square error metric. Specifically,
I assign each precipitation observation vector Py, a mask vector My, = {mj.,mZ, ..., m{}"*.
Here G denotes the number of gauges within the considered 2° x 2.5° grid box; m{i =1

if observation is available for the jth gauge at time ¢;, otherwise m{i = (0. With the mask
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vector clarified, I define L that balances spatial distribution estimation error and spatial

mean estimation error:

K ng
1 Z 1 Z . .
"TE k=1 {n_k i=1 (Pti 'Mtz‘ - Pti ’ Mti)2 + )\(HPtz 'Mtz‘ 1= HPtz ’ MtiHl)Ql } (4.2)

K is the number of precipitation events, n, is the duration hour of the kth precipitation
event. P, /P, is n dimensional model’s precipitation estimation/observation vector at Hour
t;, n is number of gauges. M;, is the mask vector at ¢;. || - |1 is L1 norm operator that

1/||Ptz ' Mti

outputs sum of the absolute values of the input vector. Thus, ||P;, - My,
represents the spatial average estimation/observation at t;. The first term on the right
side represents spatial distribution estimation error, the second term represents the spatial

average estimation error. A is a weighting factor that balances these two error terms.

4.3.3 Deep Neural Network Models

Artificial neural networks (ANNSs) cover a continually-evolving family of machine learning
methods, which approximate complicated functions through composing simple functions in
hierarchical computing graphs. I use a simple example of multilayer perceptron (MLP)
to illustrate the basic concepts of ANN and introduce the proposed models. A MLP is
arguably the most popular class of ANN. Mathematically, a n-layer MLP is a chain of
matrix multiplications and element-wise non-linearities:

MLP,(X) = f{n}(. (B EB(X))) )

(4.3)
f{i}(*) = gt [W{i} Cx 4 b{i}]

X denotes the input vector; f{# is the ith layer operator that transforms the representation
of the data using a linear transformation (through matrix multiplication W), shifting

(through bias vector b{"}), followed by an element-wise non-linear function (through element-
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wise nonlinear activation function ¢g"}). Since the model is differentiable, we can apply
gradient descent method to minimize a pre-defined loss function in order to make the model
exhibit desired behavior. This process is widely known as backpropagation training [155].
Deep neural networks (DNNs) are ANNs with multiple hidden layers. By composing
many layers that each transforms data representation at one level into a representation at a
higher, slightly more abstract level [96], DNNs can automatically learn customized feature
representations for specific tasks. Besides being deeper, modern DNNs have developed ef-
ficient and effective architecture variations that scale well for high dimensional structured
data. For instance, deep convolutional networks have demonstrated state-of-the-art perfor-
mance in processing imagery data [93], deep networks with recurrent [69], attention [31],
and memory [57] modules have brought about breakthroughs in sequential learning prob-
lems, such as natural language processing, speech and audio modeling [223]. A blending
of the spatial/temporal modules have shown particular advantage in video and motion pre-
diction [202], which have been recognized to share striking similarities to many dynamic
geoscience problems [151]. Here I develop two sets of DNN architectures that input the
dynamical /moisture field time sequences and output hourly-scale spatial distribution as well
as spatial mean precipitation estimates. Each of them adopts and composes particular spa-

tial /temporal modules for the treatment of the predictor’s spatiotemporal structures.

1. Convolutional Neural Network

This section describes the convolutional neural network that searches, extracts, and synthe-
sizes spatial features from the dynamical/moisture field for precipitation estimation. The
model here makes explicit use of the data spatial structure but does not consider temporal
connections within a precipitation event. Details about model architecture are introduced
as follows.

The dynamical/moisture field time series is denoted with a n x ¢ X h X w tensor. Here

n is the duration hour of the considered precipitation event, ¢ = 6 represents 6 variables,
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h,w = 25 is the latitude/longitude span of the predictor field. The CNN model operates on
the 3-D dynamical/moisture field at each time step. As illustrated in Figure 4.3, the CNN
applies a set of convolution kernels to go through the ¢ x h x w input snapshot. The kernels
are ¢ X ¢ X a x b tensors composed of trainable parameters. Each convolution operation is
carried out by computing the dot product between the kernel and a particular input patch,

followed by shifting and element-wise non-linearity:
cd ' xexaxb cxaxb c
Y= fwe e 'anq '+ b%) (4.4)

Here the upper index labels the variable’s dimension, the lower index labels the geoposition.
ngq‘”b represents a ¢ X a X b dimensional input patch around location (p, ¢) in the h x w input
field. (p,q) shifts as we scan X%®® with W¢ X%t Ly a pre-defined stride. The scanning is
performed using element dot product between ngzaXb and the convolution kernel W€ x¢xaxb,
a X b is named the receptive field of the kernel. The result is further transformed by adding
a bias vector b’ followed by a non-linear transformation f. The final convolution result is a
¢ dimensional vector (Y;:q ) at location (p,q). Equation 4.4 can be interpreted as applying
¢’ learnable filters to seek salient features from the input field while maintaining the spatial
structure of the input. Preferably, the network will learn filters that activate when they
see critical local dynamical patterns on the first layer. Fostered by spatial down-sampling,
which is achieved by the pooling operation, the network may eventually learn a synoptic
atmospheric pattern that promotes precipitation on higher layers of the network.

The pooling layers act to coarsely grain local semantically similar features into one [97].
Through down-sampling, the higher layer convolutions work on extracted local features,
which enables learning higher level abstractions on the expanded receptive field [96]. T adopt
maximum pooling that computes the maximum of a local patch of units in one feature map.

I extract spatial salient features by stacking multiple stages of convolution, non-linearity,

and pooling layers. The extracted features are further processed by a MLP that outputs
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a GG dimensional vector, which represents precipitation estimates for G gauges within the
considered geogrid. By performing dot-product with the pre-defined mask vector M, I obtain
precipitation estimates at gauges with available observations. I apply off-hand tools from the
deep learning software library to analytically derive the derivative of the loss function with
respect to the parameters of the computing graph. The parameters are then optimized based
on backpropagation. Details about model implementation are introduced in the following

sections.

2. Recurrent Convolutional Neural Network

I explicitly consider the temporal connection within a precipitation event by including a
hidden state variable after spatial features extraction from CNN. This is achieved by stacking
a recurrent network module upon the CNN. Basics about recurrent neural network (RNN)
are briefly introduced below. The specific model architecture is explained thereafter.

RNNs are neural networks with hidden state variables:
ht = f(ht—17 Xt7 0) (45)

h; denotes the hidden state variable at time ¢, f is the transition function that updates
the hidden state h; based on previous state h;_; and t-step input X;. 0 denotes parameter
vector. For instance, in a vanilla RNN, the state transition function takes the following

parameteric form:

h, = tanh <Wh hey + Wy - X, + b) (4.6)
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We can unfold Equation 4.5 along time by iteratively applying Equation 4.5 on itself:

(f (hy_s, X, 1,0),)@,0) -
(f f ht—37Xt—279),Xt—1,0),Xt,0) .

(F(7(-0).X16)

Some key implications of Equation 4.7 are summarized as follows:

e The transition function f and its parameter 8 are shared at each computing time step

along the sequential modeling process.

e The hidden variable h; is preferred to serve as a summary of task-relevant aspects of

the past input sequence up to time ¢ [56].

e We can run the unfolded computational graph forward through entire sequence to
compute the loss, and run it backward through entire sequence to compute gradient.
This indicates that RNN can potentially be trained using backpropagation through

time.

For the last aspect above, gradient-based training of RNN has been recognized difficult for
basic recurrent architectures, such as for Equation 4.6. The difficulty originates from the
fact that, the partial derivatives of the loss function L with respect to the parameters tend to
vanish or blow up as error signals flow backwards in time [67, 12, 68]. Although it is possible
to clip the gradients as they blow up [144], a vanishing gradient prevents effective learning
of long-term dependencies. Here I adopt the Long Short-Term Memory (LSTM) recurrent
network [69] to mitigate the vanishing gradient problem. A LSTM architecture maintains
two hidden states in its computational graph, one is the conventional hidden state vector hy,

the other is a memory vector ¢;. LSTM adopts four interacting modules to read from, write
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to, or reset the memory vector c;:

i o
f o ht,1
= W (4.8)
(o] g Xt
g tanh

Here o /tanh is element-wise sigmoid /hyperbolic-tangent function that squashes each element
of a vector to (0,1)/(—1,1). Assume the input vector x of dimension p, and hidden state
vector h as well as memory vector ¢ of dimension ¢, W is thus a (4¢, p + ¢)-dimensional
transition matrix, i, f, o, and g are g-dimensional vectors. With these modules defined, the

memory vector ¢; and h; are updated based on the following equations:

c=fOc 1 +iog (4.9)

h; = 0 ® tanh(c;) (4.10)

Equation 4.9 and 4.10 tells how i/g, f, and o work as binary gates that control whether
memory cell ¢; is updated, whether it is reset to zero, and whether its local state is revealed in
the hidden vector, respectively [89]. The memory cell c; is updated based on two mechanisms
that cooperates in an additive manner. The first mechanism tells how c¢; maintains memory
from past state, which is described by f ® c¢;_1; the second mechanism tells how to update
c; based on input x; and past hidden state h,_;, which is described by i ® g. The additive
interaction of the two mechanisms allows error gradient on c; to be distributed through
time without suffering from vanishing/blowing up gradient, thus enabling learning long-term
dependencies [89).

I use LSTM to relate the extracted spatial feature sequence to the corresponding time’s
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precipitation distribution. Specifically, I start from mapping a CNN to the time series of
predictors. The extracted spatial feature time series are then used as input for the LSTM

RNN for precipitation estimation. The specific model architecture is illusrated in Figure 4.3.

3. Implementation Details

Data Preparation: The data are normalized before being applied for modeling. Each
class of the predictor is normalized by subtracting its mean value (u) and dividing by its
standard deviation (o). Here p and o are scalars that are calculated based on the flattened
predictor field for all precipitation event cases. After normalization, I divide the data into
non-overlapping training/validation/test sets. Data for 2014-2018 are used as test set for
model assessment. The rest of the precipitation events data are shuffled, 80%/20% used for
model training/validation. The training set is applied to directly optimize the model, while
the validation set is frequently evaluated along the training process for hyper-parameter
tuning and preventing from overfitting.

Model Architecture: I rely on empirical experiments to determine network architecture
and hyperparameters here. For implementation convenience, I only consider equal con-
volution kernels (same channel size and receptive field) for CNN. I try different network
architecture, learning rate, batch-size and training iterations to decide the optimal setting.
I admit that the result could be significantly different by adopting alternative architectures.
The specific network architecture and hyper-parameters options are listed in Table 4.2.
Training I use stochastic gradient descent (SGD) for model training [20]. SGD uses a
stochastic approximation of whole batch gradient in backpropogation to alleviate the high
computing cost in evaluating the derivatives for the global loss function. For training convo-
lutional recurrent net, I calculate stochastic gradient of loss function based on chunks of the
sequence instead of the whole sequence to alleviate computation burden. I adopt the early
stopping strategy to regularize the model: The training process is terminated when further

training improves performance only for the training set but not for the validation set.
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Figure 4.3: Tlustration of the convolutional recurrent neural network model. The bottom
colored stacked frames show the predictors, which are composed of every-hour geopotential
height (GPH) field at 500, 850, and 1,000 hPa, as well as the total column liquid water,
ice water and water vapor field. The specific region I consider here is the Grid 11 in Fig-
ure 4.1, which covers 40°N-52°N,115°W-130°W. Data are normalized by subtracting mean
and divided by standard variance. Orange/blue indicates high/low values, as shown in the
bottom-right legend. The blue lines represent a convolution operation applied on the dy-
namical /moisture field. The red lines represent the pooling operation that down-samples
the local features. Several stages of convolution and pooling layers are stacked for extracting
salient spatial features. The extracted feature time series are combined with the hidden
state variable through a LSTM RNN for precipitation estimation. Information flow though
the memory and hidden state cells of LSTM is labeled with green arrows. The observed
precipitation distribution for the target geogrid is shown on the precipitation map at the top
of the figure.
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Architecture/Hyperparameter Options

o x o
Mask ) Pgauge
MaskFilter
CNN Architecture
Predictors CNN Dense Layer Mean o
Pmean

Convagxzxg X 3 = Poolax1 — Convagxsxs X 3 = BN — FCypp9 — Drop — BN — FCy90 — BN — FCq
Convygxaxg X 3 = Poolax1 — Convygysxs X 3 = BN — FCypp9 — Drop — BN — FCs90 = BN — FCq
Conveaxsxg X 3 = Poolay1 = Convgaxsxs X 3 = BN — FCyp99 — Drop — BN — FCy99 - BN — FCg¢

o x )
Mask MéskFilter Pgauge
RCNN Architecture
Predictors CNN LST™M Dense Layer Mean o
Pmean

Convayxsxg X 3 = Poolax; = Convagygxs X 3 — BN — LSTMyp90 — Drop — BN — FCyg00 = BN — FCq
Convygxsxs X 3 = Poolay; — Convygysxs X 3 = BN — LSTMs90 — Drop — BN — FCyg90 = BN — FC¢
Convgaxsxs X 3 = Poolax; — Convegxsxs X 3 — BN — LSTMyg99p — Drop — BN — FCyg90 = BN — FCq

Learning Rate 0.01/0.001,/0.0001/0.00001
Mini Batch Size 32 for CNN and 4 for RCNN
Dropout Probability 0.2/0.5

Table 4.2: Model architectures and hyperparameters considered in the experiment. For
the model architecture, Conv.y,x, represents convolutional layer with channel size of ¢
and receptive field of a x b, followed by batchnormalization and ReLLU activation function
:ReLU(z) = max(0,z). Poolsy; is maximum pooling layer with receptive field of 2times2
and stride of 1. BN is batchnormalization, FC,, is fully connected layer with neuron size of
n, followed by ReLU. Drop is dropout layer.
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4.3.4 Evaluation Metrics

Two deterministic skill metrics, namely correlation coefficient score (r), root mean square
error (RMSE) are used to measure model’s performance at various measurement scopes. The

formula of r and RMSE are written as follows:

= 4.11

: Op0p ( )
1 o~ -

RMSE = | — P, — P)?2 4.12

- (P-P) (4.12)

P/ Pis precipitation estimation/observation at considered measurement scope, E denotes

expectation, o denotes standard variance.

4.4 Results

This section shows the results for hourly QPF using the proposed deep neural networks.
Models’ performances for the test set (2014-2018) are evaluated against gauge observations,
and compared with the skill of MERRA2 precipitation products (Pyerra2 and Pyrrraze)-
The evaluation is carried out at different spatial scales in correspondence to the resolutions
of different reference data. I consider 2° x 2.5° grid scale (following Pcpc) and gauge-point

scale for the evaluation here. The specific results are presented as follows.

4.4.1 Evaluation at 2° x 2.5° Spatial Scale

Column 1 and Column 2 of Figure 4.4 and 4.5 show examples of precipitation process simu-

lations at 2° x 2.5° spatial scale. The reference observation data are obtained by averaging
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Figure 4.4: Column 1 and Column 2 show examples of precipitation process simulations
for Grid 1 to Grid 6. Column 3 and Column 4 compares the r and RMSE score of

PMERRA2/ PMERRAQC / Penn against Prenn.

gauge observations within the considered grid-box. The configuration of the CNN and RCNN
models are determined based on their performances for the validation set. The MERRA2
precipitation products are used as baseline. A summary of r and RMSE score evaluated for
all the test set precipitation events are shown in Column 3 and Column 4, respectively. Since
RCNN generally shows optimal performance among the considered models, I use Prony to
benchmark the rest models: For scatter plots in Column 3, points below 1 : 1 line indicates
lower 7 score compared to Prenn; similarly, for scatter plots in Column 4, points above 1 : 1

line indicates higher RMSE compared to Prenn.
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Figure 4.5: Similar as Figure 4.4 but for Grid 7 to Grid 12.
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Deficiency Type Description Examples
Grid 3, 10:00 Dec 14, 2014
Overestimation Precipitation>>Observation Grid 4, 24:00 Jan 17, 2016
Grid 11, 01:00 Jan 17, 2018

Grid 1, 12:00 Mar 6, 2016
Underestimation Precipitation<<Observation Grid 2, 21:00 Dec 16, 2016
Grid 6, 02:00 Dec 10, 2014

Grid 1, 24:00 Dec 16, 2014
Precocious warning Predicting too early arrival of precipitation peaks. Grid 5, 23:00 Jan 3, 2017
Grid 10, 02:00 Dec 21, 2014

Grid 6, 24:00 Dec 10, 2014
Delayed warning Predicting too late arrival of precipitation peaks.  Grid 6, 20:00 Dec 10, 2016
Grid 10, 08:00 Nov 1, 2015

Table 4.3: Classification of deficiencies of MERRA2 precipitation products.

A detailed inspection of the precipitation process simulation examples shows that the
DNN models can fetch up various sources of deficiencies of Pygrra2, such as over/under
estimation, peaking shift. I summarize the analyses in Table 4.3.

Table 4.4 gives a quantitative recap of skills for the considered models. While Figure
4.4 and Figure 4.5 show evaluation results at event-wise scale, Table 4.4 calculate same skill
scores based on all the simulations from different events. Some of the key messages from

Table 4.4 are listed as follows:

L] PCNN/PRCNN V.S. PMERRA2: For all the 12 2° x 2.5° geogrids, PCNN and PRCNN
show better performance compared to Pygrra2. The average r and RMSE skills are

significantly improved.

e Pcnn/Pronn V.S, Purrraz.: Ponn shows better performance compared to Pygrraz.
for 8 out of the 12 geogrids as measured by » and RMSE; Prony shows better perfor-

mance compared to Pygrrag, for 11 out of the 12 geogrids.

e Pcnw V.S, Prenn: For all the 12 grid boxes, Prony shows better performance than

Ponn, with an average r/RMSE skill improvement of 0.036/0.025.

Overall, the results suggest a better performance of Pony and Prony compared to
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r RMSE

Pyerraz  Puverraz2e  Ponn Pronn Pyerraz  Pumerraze  Ponn Pronn
Grid 1 0.495 0.736 0.722 0.766 0.609 0.404 0.419 0.395
Grid 2 0.318 0.605 0.648 0.725 0.572 0.446 0.446 0.426
Grid 3 0.658 0.764 0.763 0.824 0.779 0.562 0.579 0.518
Grid 4 0.780 0.834 0.781 0.816 0.834 0.401 0.443 0.405
Grid 5 0.521 0.737 0.819 0.848 0.712 0.572 0.476 0.459
Grid 6 0.341 0.695 0.822 0.866 0.722 0.546 0.459 0.398
Grid 7 0.617 0.745 0.791 0.833 0.464 0.364 0.347 0.332
Grid 8 0.425 0.501 0.504 0.513 0.507 0.333 0.280 0.277
Grid 9 0.754 0.802 0.809 0.818 0.575 0.369 0.285 0.278
Grid 10 0.447 0.539 0.548 0.594 0.378 0.269 0.244 0.227
Grid 11 0.770 0.820 0.796 0.828 0.635 0.447 0.397 0.370
Grid 12 0.373 0.510 0.672 0.679 0.379 0.304 0.249 0.237
Average 0.542 0.691 0.723 0.759 0.597 0.418 0.385 0.360

Table 4.4: Comparing precipitation estimation performance based on r and RMSE score.
The precipitation estimates at hourly, 2° x 2.5° from original MERRA2 precipitation product
(Pyerra2), MERRA2 bias corrected precipitation product (Puygrrasz.), CNN estimation
(Penn), and RCNN estimation (Preny) are compared against gauge average observations
for period from 2015 to 2018. The average skill score are shown in the bottom row. The
best performance for each comparison group are labeled with bold typeface and underline.
Pyerra2 and Pygrraz, at a 2° x 2.5° spatial scale, with r improved from 0.55 to 0.75

on average. Various types of parameterization-related precipitation estimation errors are

highlighted by comparing the MERRA2 and DNN precipitation process estimations.

4.4.2 Evaluation at Gauge-point Scale

Figure 4.6 to Figure 4.8 shows the gauge-point, hourly QPF evaluation results using r and
RMSE score. The evaluation are based on all the solid observations from all the test set’s

precipitation events. Some of the key findings are listed as follows:

e The average r skill score measured at gauge-point, hourly scale are of the magnitude
order of 0.3-0.4. For the best-simulated gauges, the r skill scores can reach the mag-

nitude order of 0.6-0.7.

e Although RCNN outperforms CNN in estimating grid average precipitation, many grids

show better performance of CNN in estimating precipitation at gauge-point scale. This
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indicates that the recurrent module in RCNN might make over consideration of the

temporal interconnections of a precipitation process.

e Gauges that are close to each other may show distinct skill scores.

4.5 Dynamical Forecast Experiment

In order to test the model’s robustness and its applicability in real world precipitation fore-
cast, retrospective dynamical forecast experiments are carried out for two typical atmospheric
river land-falling events (00:00 UTC 13 October 2016 —23:00 UTC 17 October 2016 and 00:00
UTC 19 October 2017 — 23:00 UTC 23 October 2017). Both events are selected from the
test set in order to make objective evaluations.

The experiment employs a dynamical downscaling model (i.e., WRF-ARW Version 4)
that is forced by 1) historical operational forecasts from Global Forecast System (GFS),
and 2) corresponding periods’ atmosphere reanalysis from GFS. Then, the downscaled at-
mospheric dynamics and moisture fields are used as input for the neural network model to
make precipitation estimations. The models and data for this experiment are described as

follows.

4.5.1 Numerical Models

Global Forecast System

The Global Forecast System (GFS) is a global weather forecast model that serves as the
cornerstone for operational forecast in the National Centers for Environmental Prediction
(NCEP). The system includes four separate models that simulate the earth atmosphere,
ocean, land/soil, and sea ice, respectively. Model’s initial state estimation is produced by
the Global Data Assimilation System (GDAS) that merges satellite and conventional me-

teorological observations from various sources. GFS is run routinely four times per day at
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Figure 4.6: » and RMSE skill score evaluated at gauge-point and hourly scale for Grid 1-4.
The contour lines show the elevation data. The skill scores are labeled with colored disks.
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Figure 4.7: Similar as Figure 4.4 but for Grid 5 to Grid 8.
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Figure 4.8: Similar as Figure 4.6 and Figure 4.7 but for Grid 9 to Grid 12.
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00:00, 06:00, 12:00 and 18:00 UTC out to 192 hours. The base horizontal resolution is 28
km. Details about model dynamics, physical parameterization, analysis, and configuration
can be found in [156, 157]. Here the forecast and reanalysis data from GFS for the two
selected events are downloaded from the following website:
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs

The data are of 1° x 1° horizontal resolution and 3 hour temporal resolution.

Weather Research and Forecasting Model

In order to 1) obtain the input variables at required resolution for the neural network model,
and 2) fill in the spatiotemporal missing values in a physically sound manner, dynamical
downscaling is carried out with initial and boundary conditions constrained by the GFS
forecast /analysis. Here, I use the Advanced Research core of the Weather Research and
Forecasting Model Version 4 (WRF-ARW V4) for dynamical downscaling,.

WREF is a nonhydrostatic, mesoscale numerical weather prediction model. The ARW
dynamical solver performs numerical spatiotemporal integration of the atmospheric primitive
equations on terrain-following coordinates [174]. The unresolved processes are empirically
estimated as functions of the resolved variables based on multiple choices of parameterization
schemes. WRF-ARW has been intensively investigated for quantifying forecast errors and
exploring predictability limit for the West Coast [27, 117]. The existing works offer rich
legacy for guiding model configuration and parameterization selection. Following previous
settings [23, 27, 117], the WRF model is set as follows: two one-way nested domains are
applied (domains delineated in Figure 4.9), the outer domain comprises 100 x 100 30-km grid
points centered at (45°N,120°W), the inner domain comprises 180 x 180 10-km grid points
centered at (42°N,121°W). The vertical grids contain 40 o levels with the top pressure level
at 50 hPa. The integral time steps for the two domains are 108s and 36s. The subgrid-scale

parameterization options for each six of the major physical processes are listed in Table 4.5.
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Figure 4.9: Two nested domains in the WRF configuration. The spatial coverage and integral
time step for each domain is labeled. The red circles along the coast denote the positions of
atmospheric sounding observations.

Physical Process

Parameterization Option

Cumulus Cloud
Microphysics

Short-wave Radiation
Long-wave Radiation
Planetary Boundary Layer
Surface

Kain-Fritsch Scheme [86] (only for domain 1)
Purdue Lin Scheme [30]

Dudhia Shortwave Scheme [41]

RRTM Longwave Scheme [123]

Yonsei University Scheme (YSU) [71]
Unified Noah Land Surface Model [185]

Table 4.5: Parameterization options for WRF-ARW dynamical downscaling
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I use the Purdue Lin Scheme [30] to represent the cloud and precipitation processes in
the inner domain. The scheme parameterize the following forms of hydrometeors at a grid
point: vapor, cloud water, cloud ice, rain, snow, and hail. The total column ice water, liquid
water and water vapor are computed by integrating hydrometeors of different phases over
the pressure coordinate for the whole column.

Since the coordinate for WRF-ARW is terrain following, GPH at pressure levels above
terrain surface pressure are excluded. Besides, GPH at required pressure levels below terrain
surface pressure are not necessarily available in model’s output. I apply the barometric
formula to extrapolate/interpolate the GPH to obtain the neural network required pressure

heights:

Ty
- 413
Ty + Ly(h — hb)] ’ (4.13)

P="n-|

Here P, is static pressure measured in Pa, Tj is standard temperature measured in K, L, ~
—6.5 x 1073K/m is standard temperature lapse rate for troposphere, h is height above
sea level (m), hy is base height, gy &~ 9.81m/s? is gravitational acceleration, M =~ 2.9 x
1072kg/mol is the molar mass of the Earth’s air. R* ~ 8.31J/mol/K is universal gas
constant. Equation 4.13 can be readily derived by combining ideal gas law, atmospheric

hydrostatic equilibrium equation, and constant atmospheric lapse rate.

4.5.2 Atmospheric River Land-falling Events
Dynamical Field Verification

The integrated water vapor (IWV) is applied as a primary indicator for the verification of
the dynamical forecast. IWV represents the total atmospheric column’s moisture content,

which has been widely used for describing AR characteristics [133, 37]. IWV is calculated
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by integrating the mixing ratio along all pressure levels:

P q
WV = / qp (4.14)
p 9

P,/ P, is the base/top pressure of the considered column, ¢ is the mixing ratio of water vapor,
measured in kg/kg. g is gravitational constant 9.8m/s%. TWV is thus measured in kg/m?.
Figure 4.10 shows the IWV and wind field for the two dynamical forecast experiments.
Compared to reanalysis-forced simulation, forecasts in both cases show relatively satisfactory
performance for lead time from Day-0 up to Day-3 (Column 1 to Column 4). In Case 1 (00:00
UTC 13 October 2016 — 23:00 UTC 17 October 2016), the initial state estimate shows over-
estimation of water vapor concentration off the coastal region. The forecast model develops
too quick a cyclone center off British Columbia compared to reanalysis simulation. Case
2 (00:00 UTC 19 October 2017 — 23:00 UTC 23 October 2017) has more realistic initial

estimates, showing an informative forecast up to Day 4.

128



Initial Hour 24 Hour 48 Hour 72 Hour 96 Hour 120 Hour
00:00 UTC 13 Oct 2016 00:00 UTC 14 Oct 2016 00:00 UTC 15 Oct 2016 00:00 UTC 16 Oct 2016 00:00 UTC 17 Oct 2016 00:00 UTC 18 Oct 2016

F » D IRNAPY LI \; 7 &

Reanalysis Forcing

13 Oct 2016—17 Oct 2016

Forecast Forcing

48 Hour 72 Hour 96 Hour

00:00 UTC 21 Oct 2017 00:00 UTC 22 Oct 2017 00:00 UTC 23 Oct 2017

%

Reanalysis Forcing

19 Oct 2017-23 Oct 2017

Forecast Forcing

R

Total Column Integrated Water Vapor (kg/m?)

T

u ] u ] ] ] ] ] | u ] | u L ]
0-15 15-17 17-19 19-21 21-23 23-35 35-27 27-28 28-39 39-32 32-33 33-34 34-35 35-36 36-37 37-38 38-39 39-40 >40

Figure 4.10: Integrated water vapor (IWV) and wind field forecast for Domain 2. Row 1-2
shows the case of 00:00 UTC 13 October 2016 — 23:00 UTC 17 October 2016; Row 3-4 shows
the case of 00:00 UTC 19 October 2017 — 23:00 UTC 23 October 2017. Row 1 and Row 3
show results forced by GFS reanalysis; Row 2 and Row 4 show results forced by operational
GF'S forecasts that start at the beginning of the event. Column 1-6 show the dynamical
analysis/forecast at forecast lead Day 0 to Day 5. The red circle along the coast denotes the
positions of the soundings that measure the vertical profile of the atmosphere. The sounding
data are applied for quantitative dynamical forecast verification.

Figure 4.11 and Figure 4.12 shows the geopotential height and moisture predictions at
the selected sounding locations. Estimations from WREF simulations forced by GF'S forecast
(WRF porecast); WREF simulations forced by GFS reanalysis (WRF apalysis), and MERRA2 are
compared with sounding observations. Results here suggest satisfying matching between the
three products and observations. However, it is noteworthy that there are disagreements

between WREF simulation and MERRA2 for upper level (i.e, 500 hPa) GPH estimates.
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Figure 4.11: Comparing predictions of GPHigoonpa, GPHgsonpa, and GPHsgonpa at sounding
locations. The red line shows estimations from WREF simulations forced by GFS forecast
(WRFEorecast ), blue line shows estimations from WRF simulations forced by GFS reanalysis
(WRF pnalysis), green line shows MERRA2 estimation. Sounding observations at 00:00, 12:00
for each day are labeled with black points.
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Figure 4.12: Comparing predictions of TQI, TQL, and TQV at sounding locations. The red
line shows estimations from WRF simulations forced by GFS forecast (WRFpgorecast), blue
line shows estimations from WRF simulations forced by GFS reanalysis (WRF apalysis), green
line shows MERRA2 estimation.

Precipitation Verification

Figure 4.13 shows the precipitation time series for 00:00 UTC 19 October 2017 — 23:00 UTC
23 October 2017 at Grid 8 in the selected domain. The case is selected since the dynamical
verification in the previous section shows that the WRF model better captures the dynamical

evolution for this AR event.
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Figure 4.13: Precipitation time series for 00:00 UTC 19 October 2017 — 23:00 UTC 23 Octo-
ber 2017 at Grid 8 in the selected domain. The top figure shows precipitation observations,
precipitation estimates from MERRAZ2, precipitation estimates from WRF that are forced by
GFS reanalysis, as well as precipitation estimates from neural network models that are forced
by WRF products. Similar denotations for the bottom figure, but the WRF simulations are
forced by GFS forecast.

The key findings in Figure 4.13 are summarized as follows:
e Considering precipitation estimates forced by reanalysis dynamical field:
1. Compared to MERRAZ2 precipitation products (Pyerra2, PMERRA2. ), dynamical

downscaling using WRF (Pwgr,) significantly improves precipitation estimate

accuracy for the selected case.
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2. Precipitation estimates using deep neural network models (Pwgrr.cnn, Pwrr.RCNN)

capture the general evolution. However, the accuracy is not as good as Pwrry, -

e Considering precipitation estimates forced dynamical forecasts:

1. Dynamical forecast error is considerably revealed in WREF’s precipitation product,

as we compare Pwgrp,, in the top figure with Pwgp in the bottom figure.

2. Precipitation estimates from the deep neural network models (Pwrr.cnn, Pwrr-RONN)
are robust to their input errors from dynamical estimations for accurate precipi-

tation predictions in the selected case.

4.6 Conclusions

The idea of “end-to-end” learning for inferring unresolved precipitation process based on
resolved atmospheric field is further explored in this Chapter for hourly scale quantitative
precipitation forecast. Hourly precipitation observations from various sources are collected,
quality controlled, and concatenated to compose a peculiar long term (1980/1/1- 2018/12/31)
high temporal resolution precipitation observation dataset. A general framework for statisti-
cally modeling of spatiotemporal data and making use of inconsistently available observations
is developed.

Results show that hourly precipitation predictions using the deep neural network model
give r =~ 0.8 at 2° x 2.5° spatial scale, while the baseline numerical model achieved r ~ 0.5.
The best performance at hourly, gauge-point scale reaches the order of r ~ 0.6 for some
gauges. However, there is high variance for skills in estimating precipitation at such a strin-
gent scale. To further test the proposed model in practical forecasts, dynamical retrospective
forecast experiments for two atmospheric river land-falling events are carried out using the
Weather Research and Forecasting (WRF) model. The WRF dynamical simulations are used

to force the trained neural network model for alternative precipitation process estimations.
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Simulations verified the consistency and robustness of the proposed approach. It should be
noted that the methods here are not intended to replace precipitation-related parameteri-

’ model, rather, the objective is to give a benchmark for

zation schemes using a “black box’
precipitation prediction from a data-driven perspective, and offer directions for improving

precipitation related parameterizations.
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Chapter 5

Conclusions

5.1 Key Findings

This dissertation conducted an assessment of prediction skills and an exploration of pre-
dictability for the precipitation process. The West Coast of United States is selected as the
main study area. Data from various sources, including observations, numerical retrospective
forecasts, numerical analysis and predictions are employed. Simple statistical analysis and
complicated deep neural network modeling are explored to seek evidences for improving pre-
cipitation predicion using a composite of models and data. The key findings are listed as

follows.

5.1.1 Assessment of Precipitation Prediction Skills

A seamless assessment of precipitation prediction skill for daily range up to subseasonal
scale range is conducted. The evaluation is based on the Subseasonal-to-Seasonal Predic-
tion Project retrospective forecast database (S2S). The evaluated models are frequently
restarted through the past 20 more years, offering a unique opportunity for comprehensive
and less-biased evaluation. The prediction skill-lead time relationship is assessed using both

deterministic and probabilistic skill scores. The key findings in this assessment work are
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listed as follows:

1. For Week 1 forecast, the evaluated models show advantageous precipitation prediction
skills. The r/NSE/ROC score is approximately of the order of 0.8/0.7/0.8 for this

period. By spatial averaging, the skill score can be further improved.

2. For Week 2, models show large variations regarding their performances. The Week-
2 mean precipitation forecast from the best-performing model (i.e., ECMWF) is of
considerable value, with » > 0.6, NSE> 0.35, and ROC score > 0.7.

3. Beyond Week 2, predictions generally provide little deterministic skill. For this range
period, probabilistic evaluation of ensemble forecasts using the CRPS shows significant

advantage of ensemble forecast over deterministic forecast.

4. Considering the performance difference of the S2S models, the informative predictable
range may differ by up to 6—7 days across different models. For the short range, models
with higher resolution tend to have better performances (JMA, KMA, ECCC, and
ECMWF). For medium to extended range, ensemble mean predictions show significant
better performance compared to deterministic predictions. The best performing models
for this range period are the ECCC, ECMWEF, and JMA. For Week 3-4 forecast,
although there is essentially no useful deterministic forecast skill, the ECMWEF model
still shows advantage over the rest models. Results here can benefit model selections

for practical forecasts and multi-model ensemble predictions.

5.1.2 Opportunity of Predictability for Extended to Subseasonal
Range

The opportunity of predictability for extended to subseasonal range precipitation prediction
is explored based on statistical analysis and numerical modeling. The key findings are listed

as follows:
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1. Through investigating the impact of ENSO on the West Coast precipitation distribu-
tion and models’ prediction skill, I found a spatial see-saw effect for ENSO to modulate

precipitation distribution and prediction skill:

e During El Nino years, Southern California receives more precipitation in late

winter on average, and most models show better extended-range prediction skills.

e During La Nina years, Oregon receives more precipitation in winter season, with

most models showing better extended-range prediction skills.

For Northern California or Washington, ENSO influences the precipitation distribution,
but specific models may either have higher or lower prediction skills depending on the
ENSO phases. We assume the excessive precipitation and improved extended-range
prediction skills accompany the meridional shift of baroclinic systems as modulated by
ENSO. This predictability difference related to ENSO phase will be useful for extended-

range prediction applications.

2. The impact of MJO on the West Coast precipitation distribution and models’ predic-

tion skill is explored.

e To assess the impact of MJO on precipitation distribution, we examined the aver-
age precipitation anomalies conditioned on the MJO phases and days after MJO
phases. Our results show that MJO systematically modulates the region’s precip-
itation distribution. The time lag (here, up to three weeks) for MJO to manifest

its effects provides valuable potential for skillful predictions at the extended range.

e Regarding the impact of the MJO on GCM’s extended-range precipitation predic-
tion skills, we verified that for certain MJO phases (especially, Phases 5-6 and 7-8),
some S2S models can well capture the MJO-associated teleconnections, improv-
ing Week 3—4 prediction skills. However, for hindcasts initialized during active

MJO in Phase 3—4, most models show lower extended-range prediction skills as
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compared to MJO-quiescent cases, suggesting that the forecast opportunity may
also be a curse if models have deficiencies in capturing the MJO or the related

teleconnections.

5.1.3 Improving Precipitation Estimation with Convolutional Neu-

ral Network

The Convolutional Neural Network (CNN) model is introduced to the geo community to
improve precipitation estimation accuracy at daily, grid scale. The CNN model stacks several
convolution and pooling operators to extract the intricate spatial circulation features for
precipitation estimation. Instead of applying pre-engineered feature extractors, the model
applies “end-to-end” learning. Specifically, the kernels that are used to search and extract
the salient features from the resolved dynamical field are optimized by backpropagating the
precipitation estimation error through the convolutional layers. Thus, the learned features
are determined based on the relation between the predictors and the predictand for the exact
learning target. Also, through hierarchical convolution, we can well disintegrate dominant
circulation features of different geometric properties and from different locations.

The key findings from the experiments and analyses for this work are summarized as

follows

1. Through the case study of precipitation estimation, I demonstrate that the CNN is
a promising approach for climate downscaling. In this sense, the work here is closely

related to [191] and [28].

2. The CNN precipitation estimation problem is illustrated and formulated with realistic
precipitation event cases. I justify the motivation by relating the model to the classical
phenomenological understandings of precipitation mechanism (i.e., the Bergen school

cyclone model).

3. I restrict the predictors to the variables that are directly resolved by discretizing the
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atmospheric dynamics equations. The physically solid and comprehensive informa-
tion from atmospheric dynamical modeling has not been touched in previous CNN

downscaling applications.

4. The model can seamlessly be incorporated in numerical precipitation prediction. Com-
pared to the raw precipitation product from numerical models, the model here shows

enhanced precipitation estimation when trained with abundant data.

5. The performance improvement provides important implications for improving precipitation-
related parameterization schemes using a data-driven approach. In this sense, the work

here is closely related to [52] and [149].

6. I examine the impact of the network architectures on model performance. The results
demonstrate the advantage of deep CNN to conventional fully connected Artificial

Neural Networks for precipitation downscaling.

7. I provide simple visualization and analyzing approaches to interpret the models and

their results.

8. Through comparing the performance between CNN and fully connected neural net-
work, linear regression, nearest neighbor, and random forest, Iempirically verify the

effectiveness of CNN for precipitation estimation.

5.1.4 Benchmarking Quantitative Precipitation Forecast using a
Composite of Numerical Modeling and Deep Neural Net-

works

The idea of “end-to-end” learning for inferring unresolved precipitation process based on
resolved atmospheric field is further explored for hourly scale quantitative precipitation fore-

cast. Hourly precipitation observations from various sources are collected, quality controlled,
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and concatenated to compose a unique long term (1980/1/1- 2018/12/31) high temporal res-
olution precipitation observation dataset. A general framework for statistically modeling of
spatiotemporal data and making use of inconsistently available observations is developed.
Hourly precipitation predictions using the deep neural network model give r ~ 0.8 at 2°x 2.5°
spatial scale, while the baseline numerical model achieved r =~ 0.5. The best performance
at hourly, gauge-point scale reaches the order of r =~ 0.6 for some gauges. However, there is
high variance for skills in estimating precipitation at such a stringent scale. To further test
the proposed model in practical forecasts, dynamical retrospective forecast experiments for
two atmospheric river land-falling events are carried out using the Weather Research and
Forecasting (WRF) model. The WRF dynamical simulations are used to force the trained
neural network model for alternative precipitation process estimations. Simulations verified
the consistency and robustness of the proposed approach. It should be noted that the meth-
ods here are not intended to replace precipitation-related parameterization schemes using
a “black box” model, rather, the objective is to give a benchmark for precipitation predic-
tion from a data-driven perspective, and offer directions for improving precipitation related
parameterizations.

Overall, this work conducted a systematical evaluations of precipitation prediction skills
across a spectrum of critical scales and ranges. Sources of predictability at subseasonal
scale are explored based on a composite of statistical analysis and numerical prediction.
The potential of deep learning for seeking evidences in improving precipitation prediction is

explored by combining high quality observation data with numerical dynamical predictions.

5.2 Deficiencies and Future works

Results in this thesis suggest that, by combining numerical modeling with data from various
sources, it is possible to improve precipitation prediction by a large margin. Advances in deep

learning techniques offer powerful tools for seeking evidences and realizing these potential
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improvements. It should be admitted that the work here only touches limited part toward
this target. Some of the key deficiencies of this dissertation and promising directions for

future works are highlighted as follows:

e Making sufficient use of prior knowledge. Data-driven models are applied to com-
bine data with prior knowledge in order to generate new knowledge. Through the past
decades, the meteorology community has gained important theoretical understandings
of atmospheric dynamics and physics. Many of the findings are derived from math-
ematical analysis of the primitive equations, which offer insights into critical aspects
toward understanding the atmospheric processes. On the other hand, machine learning
models are very often criticized for ignoring these achievements and offering little ac-
cumulative progresses toward reliable predictions. Deep neural networks have flexible
structures that can be tailored to encode prior knowledge into the model settings. We

hope to leverage better modeling and predictions from the following directions:

— Predictor selection and design:. The geopotential height and total column
moisture contents are used as the predictors in the considered models here. The-
oretical analysis of the primitive equations shows that many critical aspects that
dominate the dynamical environment of precipitation can be extracted through
analytical simplification of the governing equations. For instance, the omega
equation relates vertical velocity with instantaneous geopotential field, and has
been widely employed to assess the development of vertical motions from synoptic
charts. To adopt the findings from such theoretical analysis for predictor selection
and design may alleviate the data amount requirement, enable the generalization

of model for different regions, and improve model accuracy.

— Network architecture: The inclusion of convolution structure in deep neural
network modeling significantly improves precipitation estimation accuracy in the

considered experiments. We can potentially make more accurate predictions by
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further optimizing the network architecture through explicitly considering the

critical scales and spatiotemporal coherence of atmospheric dynamics.

— Loss function and model regularization: A well-designed loss function makes
it easier for model training, and usually yields more satisfying results. Also, it is
important to regularize the models by adding physical constraints to the statistical

models.

e The distinct difficulty in predicting convective precipitation. While most
of the focus here is on stratiform precipitation, convective precipitation holds distinct
mechanisms, spatiotemporal scales and characteristics (more intense, shorter duration).
Also, it poses a more difficult challenge for most numerical weather prediction models.
It is important to make a dedicated verification and modification of the proposed

models for convective precipitation predictions.

e Key problems in precipitation prediction are not sufficiently touched. As
has been highlighted, the ever-accumulating advances in predicting the precipitation
process has been achieved due to (1) improvement in resolving atmospheric dynamics,
(2) improvement in inferring unresolved cloud and precipitation processes, and (3)
improvement in inferring the initial status of the hydrometeor distributions. Any
further advances are assumed to come from the above-mentioned aspects. It has been
pointed out that data-driven models offer insights about predictability limits that are
achievable with better modeling and statistical analysis techniques. However, it is still
not clear how we could realize these potentials. Below I briefly discuss some of the

potential directions in improving precipitation predictions.

— Assimilation of Cloud and Precipitation Data: The assimilation of cloud
and precipitation characteristics has been widely recognized to be crucial for im-
proving precipitation forecasts [43]. However, fundamental challenges remain be-

fore we could successfully infer the initial status of hydrometeor distribution from
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indirect and insufficient observations. The key challenges include the non-linearity
of the forward models, variable non-normality, etc. While some research works
have explored the potential of data-driven models in statistical data assimilation
tasks [152, 170], it still remains unclear how we can leverage the power of deep

learning for more efficient and effective inference of the atmospheric states.

— Better modeling of ocean-atmosphere interactions to better reveal tele-
connections: Results in Chapter 2 suggest the existence of opportunity of pre-
dictability provided by climate variance from tropical latent heating signals. On
the other hand, it is also found that many models have severe deficiencies in uti-
lizing these opportunities for enhanced predictions at extended to seasonal ranges
[38, 143]. It is reasonable to assume that provided with better simulation of
the ocean-atmosphere interactions at key tropical regions, models can make more

informative extended range predictions.

e Many powerful learning paradigms remain to be explored to bring further

advances.

— Reinforcement learning: The machine learning algorithms explored here be-
long mostly to the category of supervised learning methods, which learn from
examples to perform classification or regression tasks. Another powerful learning
paradigm, named reinforcement learning, learns from ezperiences to make the
agent take optimized actions in an environment, so as to maximize some notion
of cumulative reward [180]. The formulation of reinforcement learning problems
shares striking similarity with the statistical data assimilation task. With the
help of deep neural networks, reinforcement learning has achieved significant pro-
gresses in many applications, such as playing games and automatic driving. We
wish deep reinforcement learning can as well enhance better merging of models

and data for more reliable predictions of the earth system.
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— Transfer learning: Transfer learning refers to machine learning method where a
model developed for a task is reused as the starting point for a model on another
task [25]. While the models tested in this thesis work are built separately for each
study region, it is reasonable to assume that we could transfer what is learned
from one study area to another area. Improvements in this direction would sig-
nificantly alleviate the data requirement, leverage our understandings about what
is learned from the statistical model, and bring potentials for predictions in un-

gauged regions.

— Few-shot learning: There are many classical machine learning datasets for
benchmarking learning algorithms. Most of them are artificially balanced [203],
where objects of different classes of predictands are approximately evenly dis-
tributed. In the real world, the phenomena we focus on are mostly long-tail
distributed: we have many trivial examples, but much less samples of extreme
events. Existing studies have verified that a less-balanced training dataset results
in a corresponding poor modeling performance for rare events. Learning to model
the rare events consists a major objective of few-shot learning. In future works, it
is important to pay special attention to model’s performance in modeling the rare
and extreme events. Also, it is crucial to employ techniques that stress few-shot

learning for the modeling of geophysical processes.

— Bayesian neural networks: The prediction of subgrid scale processes in nu-
merical modeling of the atmosphere is of inherent limitation of predictability. It is
imperative to know the uncertainty of predictions. While most of the works here
focus on deterministic learning, many existing studies have also developed prac-
tical uncertainty estimates in deep learning modeling [49]. We wish future works
to apply these Bayesian neural networks to help determine model uncertainty

properties.
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