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Abstract:

We consider a spatial (line) model for invasion of a population by a single mutant with a stochastically

selectively neutral fitness landscape, independent from the fitness landscape for non-mutants. This model

is similar to those considered in [FSDN+17, FSDKK19]. We show that the probability of mutant fixation

in a population of size N , starting from a single mutant, is greater than 1/N , which would be the case if

there were no variation in fitness whatsoever. In the small variation regime, we recover precise asymptotics

for the success probability of the mutant. This demonstrates that the introduction of randomness provides

an advantage to minority mutations in this model, and shows that the advantage increases with the system

size. We further demonstrate that the mutants have an advantage in this setting only because they are

better at exploiting unusually favorable environments when they arise, and not because they are any better

at exploiting pockets of favorability in an environment that is selectively neutral overall.
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1 Introduction

Evolution in random environments has attracted attention of ecologists and mathematical biologists for a long

time. Consider direct competition dynamics between two types of organisms whose reproduction and death

rates may be different in different spatial locations. It is clear that organisms with larger reproduction rates

and lower death rates are more likely to rise from low numbers and eventually replace their slow reproducing,

rapidly dying counterparts. The situation becomes more complicated if the environment consists of different

patches, where different types enjoy evolutionary advantage while others are suppressed. Depending on the

properties of this patchy environment, the reproduction and death rates of the organisms, and the details of

the evolutionary process, a number of outcomes can be observed, see e.g. [CW81, Pul88, HCM94, HG04],

and also Modern Coexistence Theory [ESAH19].

From early works of Haldane [Hal27], Fisher [Fis30] and Wright [Wri31] almost 100 years ago, an important

focus of many theoretical studies of evolution has been the probability and timing of mutant fixation, see

also Kimura’s studies of neutral evolution [Kim68, Kim89]. The general setting assumes the coexistence of

different variants of an organism in a population, one of which is referred to as the “wild type” (or “normal”),

and the other(s) as “mutants” (or variants). Mutations may or may not confer selective advantage or

disadvantage to an organism. In general, the term “neutral’ in evolutionary theory refers to the type of

variants that, although different the wild type, is neither advantageous nor disadvantageous, that is, it does

not experience a positive or negative selection pressure.

Mutant evolution in random environments became a topic of mathematical investigation around 1960s. Many

early papers studied temporal fluctuations of the environment. For example, in [Gil77], it was assumed

that while the wild types had constant numbers of offspring, mutants’ numbers of offspring were randomly

changing every time step (but had the same mean as the wild types’ offspring numbers). It was found that

despite having the same mean number of offspring, the mutants behaved as if they were disadvantageous.

References [FS90, Fra11] studied a more general setting, where the division rates of both wild types and

mutants were affected by the environmental changes. It was found that, surprisingly, the mutants behaved

as if they were advantageous, despite having the same mean division rate, but only if the mutants were

initially a minority. A similar result was found by [MV15, CGJD15]. Many results have been obtained

in the framework of the Modern Coexistence Theory in ecology, e.g. regarding the instantaneous rate of

increase of a rare species [Che94, Che00b, AHL07]. It was shown analytically by [CW81, MS18, MS20] that

temporal randomness in division rates leads to a positive rate of increase of a minority mutant. Another set

of analytical results concerns extinction times [KSFS15, HSM17, DS18].

In contrast to temporal variations, spatial environmental variations are associated with fitness differences

that characterize different spatial locations (and do not change in time). For example, one can consider

a stylized model where light conditions differ in different locations, and therefore growth and reproduction

properties of plants may differ spot to spot. Let us suppose that the wild type plant needs high light to grow,

but a mutant prefers shade. Then spots characterized by strong lighting conditions will result in an increase

in wild type growth rate and a decrease in mutant growth rate. What can we say about the mutant fixation

probability if the “high light” and “low light” spots are distributed with equal likelihood? In this example,

the fitness values of wild type and mutant organisms are anti-correlated, that is, in a given spot, if a wild

type plant has an elevated fitness value, a mutant will have a reduced fitness value. Different scenarios are

possible, including the case where fitness values of wild type and mutant organisms are uncorrelated; this

would correspond to a situation where the growth properties of wild type and mutant plants are determined

by different and uncorrelated environmental factors, such as light and nutrients.
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Two important examples of biological systems where evolution takes place in the presence of spatial ran-

domness, are biofilms and tumors. Biofilms are collectives of microorganisms, such as bacteria or fungi, that

coexist on surfaces within a slimy extracellular matrix. Evolutionary dynamics of these microorganisms take

place in an environment characterized by significant heterogeneities, both in physical and chemical param-

eters, such as heterogeneities in the interstitial fluid velocity, gradients in the distribution of nutrients and

other metabolic substrates/products [SF08, JFNM14]. It has been suggested [BTS04] that different organ-

isms may respond differently to these diverse environmental stimuli, giving rise to evolutionary co-dynamics

that can be modeled by using models similar to those studied here. The second example is evolution in can-

cerous populations, where the presence of highly heterogeneous environments has been documented, see e.g.

[LCU+07, GML10]. Cancerous cells in different locations across a tumor are exposed to different concentra-

tions of oxygen, nutrients, immune signaling molecules, inflammatory mediators, and other non-malignant

cells that comprise the tumor microenvironment. Understanding tumor evolution under these spatially het-

erogeneous conditions is essential for understanding and combating long-standing challenges in oncology such

as drug resistance in tumors. It also presents opportunities for creating new therapeutic strategies [Yua16].

In the literature, several modeling approaches have been used to study spatial randomness. In one class of

models, agents are placed on a random network, where different vertices have different degrees; the nodes’

fitness values are based on their numbers of interactions, making some vertices more advantageous than

others. These types of settings have been used e.g. in the context of the game theory/cooperation (e.g.

[SP05, SRP06, SPL06, SSP08, TPL07, MFH14]). Another class of models is a finite island model, where

agents are placed in patches (characterized by environmental differences) and a certain degree of patch-to-

patch migration is assumed. Mutant fixation probability has been studied in the high migration rate [Nag80]

and the low migration rate [TI91] limit. Mutant fixation probability in the problem with two patches has

been solved analytically in [GG02], where it was assumed that the mutation is advantageous in one patch

and deleterious in the other patch. An extension to a multiple patch model was provided in [WG05], who

investigated the accuracy of various approximations for mutant fixation probability. The role of spatially

variable environments has been also addressed by the Modern Coexistence Theory, see e.g. studies of species

coexistence in [Che00a].

In the recent papers [FSDN+17, FSDKK19] we studied the dynamics of mutant fixation in a model that

is a generalization of the classical Moran model [Mor58] and includes spatial randomness. We assumed

that the population of organisms (or agents) remains constant and birth/death updates are performed with

rules governed by the organisms’ fitness parameters (birth and/or death rates). Interactions of replacing

dead organisms by offspring of others happen along edges of a network that defines “neighborhoods”. For

example, in a model characterized by agents on a complete graph, every agent is in the neighborhood of

everyone else, and therefore a dead organism can be replaced by offspring of any other agent. On the other

hand, on a circular graph, each agent has exactly two neighbors. It was assumed that, for each realization of

the evolutionary competition process, for each of the N sites, the birth and/or death rates of both types were

assigned by randomly drawing the same distributions of values. Then the probability of mutant fixation,

starting a given initial location of mutant agents among the N spots, was calculated. Finally, this probability

was averaged over all realizations of the fitness values. It was found that, somewhat surprisingly, the mutants

showed an advantage compared to the normal types, as long as their initial number was smaller than a half.

This result can be obtained for particular (relatively small) numbers of N , but no asymptotic results for

large values of N were obtained analytically. It was observed, however, that the effect of randomness to

“favor” minority mutant increased with the system size.

In this paper, we focus on the asymptotic behavior of the fixation probability of mutants in the presence
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of spatial randomness. We consider a spatial model similar to that used in [FSDN+17, FSDKK19]. It is a

spatial (1D) version of the Moran process (see e.g. [Kom06]) where spatial variations in the environment

are implemented by random fitness values of wild type and mutant individuals at different sites. Models of

this type (but without random fitness values) have been used previously to study cellular evolution in the

context of cancerous transformation ([MIR+04, Kom06]) and are relevant for describing e.g. colonic crypts.

To the best of our knowledge the results reported here are the first rigorous results for the problems of this

kind.

2 Model formulation and results

We consider the following model. The spatial environment consists of N sites, numbered 1, . . . , N arranged

in a line with nearest-neighbor edges. At each site there are two real parameters representing fitness values:

a mutant fitness and a normal fitness, each chosen IID 1 ± δ. These fitness values will remain fixed while

the state of each site will change. Site 1 begins with state “mutant” and all other sites begin with the state

“normal.” The evolution proceeds in discrete time as follows: replace each edge with two directed edges,

one in each direction; at each time-step choose a directed edge (j, k) with |j − k| = 1 uniformly at random,

and let νk and µk be the normal and mutant fitnesses of k; if j is mutant, then we set k to be mutant with

probability µk/(νk+µk) and leave k unchanged with the remaining probability; similarly, if j is normal then

we set k to be normal with probability νk/(νk + µk) and leave it unchanged otherwise.

This model may also be thought of as occurring in continuous time: Each directed edge is assigned an

exponential clock of rate 1. When the clock edge u to v rings, u attempts to replace the type of v with

its own type; if u is mutant, then the state of v is set to be mutant with µv

µv+νv
and is unchanged with the

remaining probability.

Since there are only finitely many sites and only two types, the process eventually fixates in one of two states:

all mutants or all normal. We are interested in the probability of the event G of fixating in the state where

all sites are mutants, and in particular how the probability that G occurs changes— after averaging over

the random environment—as δ varies. More concretely: should more or less randomness help the mutant

dominate?

If δ = 0, there is no differential fitness and the fitness environment is deterministic. After k replacements, the

mutants will always either be extinct or occupy some interval 1, . . . , Xk. The process {Xk} is a simple random

walk stopped when it hits 0 or N , hence the probability that it stops at N is precisely 1/N . Biologically this

means that in the absence of any fitness differences between the wild type and mutant cells, the probability

of any cell to fixate is the same and equals 1/N . Note that if fixation probability is greater (smaller) than

the initial share of the mutant, then this indicates the presence of positive (negative) selection acting in the

system.

In the model considered here, when δ > 0, the dynamics become more complicated. In fact they are the

dynamics of a birth-death process in a random environment; equivalently, the dynamics may be thought of

as a variant of the voter model where each site may be more or less susceptible to a given type. A similar

model, but with circular boundary conditions (1 and N are neighbors), was analyzed in [FSDN+17]. There,

it was proved for 4 ≤ N ≤ 8 and empirically observed for much larger values of N that the probability of

a mutant takeover is strictly greater than 1/N , indicating the presence of positive selection for the mutant,

although its fitness values are chosen the same distribution as those for the wild type cells. The goal of this
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paper is to establish the analogous result rigorously for the line model and to give precise asymptotics for

the annealed probability of a mutant takeover.

Let (ΩN ,FN ,PN ) be a probability space on which are defined independent Rademacher random variables

(that is±1 fair coin flips)B1, . . . , BN andB′1, . . . , B
′
N , as well as rate 1 Poisson processes ξ

(i,j)
t for 1 ≤ i, j ≤ N

and |i−j| = 1, independent of the Rademacher variables and of each other. For δ ∈ (0, 1), the normal fitness

at site k is the quantity µk := 1 + δBk and the mutant fitness at site k is the quantity νk := 1 + δB′k; in this

way, the model is defined simultaneously for all δ, although we will not do much to exploit this simultaneous

coupling.

The states of the process are configurations where each site has a mutant (one) or normal cell (zero). Since

we always consider the starting condition of having one mutant at site 1 and all others are normal, the

collection of mutant cells is always some segment of sites [1, k] and normal cells thereafter. Hence we can

identify the state space with {0, 1, . . . , N}, with 0 corresponding to mutant extinction. Since we need

only keep track of the right-most mutant to describe the state of the process, we first find the transition

probabilities for the evolution of this right-most point. Figure 1 shows an instance of the model along with

this identification.

1 2 3 4 5 6 · · · N

Wild type fitness:

Mutant type fitness:

1 + δ 1 − δ 1 + δ 1 + δ 1 − δ 1 − δ 1 + δ

1 − δ 1 + δ 1 + δ 1 − δ 1 − δ 1 + δ 1 − δ

Figure 1: An instance of the model with mutant sites in gray and normal sites in white and both mutant

and wild fitness types listed. The above state is identified with 4, since the mutant sites are {1, 2, 3, 4}.

At times corresponding to points of the Poisson process ξ(i,j), cell i tries to reproduce at site j. This only

matters if i = k or j = k, since otherwise sites i and j have the same state and no change in state can occur.

Sampling only when the configuration changes yields a discrete time birth and death chain, absorbed at 0

and N , whose transition probabilities are easily characterized. Define the random quantities

βk :=
µk

νk + µk
. (1)

From state k the only relevant directed edges are (k, k + 1) and (k + 1, k) since these corresponds to the

mutant site k making k + 1 mutant and normal site k + 1 making k normal. Both attempted at rate 1 and

succeeding with respective probabilities βk+1 and 1− βk. Letting pk denote the transition probability the

right-most mutant being k to being k + 1, we have

pk =
βk+1

βk+1 + (1− βk)
. (2)

We may now think of the evolution as occurring entirely on {0, 1, . . . , N} where state k moves to step k + 1

with probability pk and moves to k − 1 with probability 1− pk.

Let G = G(δ) denote the event that the absorbing state N is reached before the absorbing state 0, under

dynamics for the given δ. Our first result is an asymptotic expression for PN (G(δ)) in the regime where

N →∞ and δ
√
N → c.
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Theorem 1 (asymptotics when δ
√
N → c). Fix c > 0 and suppose N →∞ and δ

√
N → c. Then

NPN (G(δ))→ g(c) (3)

where

g(c) = E

[
1∫ 1

0
exp(
√

2cBs) ds

]
for a standard Brownian motion {Bs}. The function g is continuous and strictly increasing on (0,∞). It

satisfies

g(c)− 1 ∼ c2

6
as c ↓ 0 ; (4)

g(c) ∼ c√
π

as c→∞ . (5)

We note that continuity of g implies that for δ � N−1/2, then PN (G(δ)) ∼ 1/N as in the δ = 0 case. In the

regime where δ � N−1/2 but still δ � (logN)−ε, the asymptotic behavior of PN (G(δ)) is as follows.

Theorem 2. Assuming δ
√
N →∞, suppose that there is an ε > 0 such that δ(logN)ε → 0. Then

PN (G(δ)) ∼ δ√
πN

.

We do not expect this to hold if δ = Θ(1) as N →∞ because without scaling, the graininess of the random

walk may lead to a different constant than would be obtained by a Brownian approximation. Nevertheless,

we believe the condition δ = o(logN)−ε to be unnecessary and we conjecture the following.

Conjecture 3. If δ
√
N →∞ and δ → 0 then

PN (G(δ))

δN−1/2
→ 1√

π
.

In any case, as N →∞ and in the absence of the requirement δ → 0,

0 <
C1δ

N1/2
≤ PN (G(δ)) ≤ C2δ

N1/2
.

We interpret Theorems 1 and 2 as saying that the stochastic environment favors a minority invader. Indeed,

in the absence of any randomness (that is, δ = 0), the probability of neutral mutant fixation on a circle is

given by 1/N (a result that can be demonstrated e.g. by simple symmetry considerations). Mutant fixation

on a line model similar (but not identical) to the present one was studied by [Kom06] and it was shown that

it depends on initial the location of the mutant. It is the smallest for a mutant originally located at one

of the ends of a line and increases toward the middle initial location, but never exceeds the value 1/N . In

the present model, in the absence of randomness, mutant fixation probability is given by 1/N . Theorems 1

and 2 state that mutant fixation probability in the presence of randomness is greater than 1/N , and that

the quantity NPN (G(δ)) increases with the system size (N) and with the amount of randomness (δ). In

other words, despite having no explicit advantage, a mutant in the random environment gets fixated with a

probability that is significantly larger than in the case of a non-random environment.

The following result shows that this effect is due to the minority taking advantage of the cases where the

overall environment is more favorable, not environments where pockets favoring each type appear but are

balanced against each other.
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Theorem 4. Let N = 2k be an even integer and let QN denote PN conditioned on
∑
j Bj =

∑
j B
′
j. Then

NQN (G(δ)) = 1 for all N and all δ.

To rephrase in biological terms, we note that among different realizations of wild type and mutant fitness

values, there are cases where mutants experience an overall advantage (
∑
j Bj <

∑
j B
′
j), an overall disad-

vantage (
∑
j Bj >

∑
j B
′
j), or have a fitness configuration whose net sum is equal to that of the wild types,

although locally mutants may experience positive or negative selection pressure (the case
∑
j Bj =

∑
j B
′
j).

Theorem 4 states that if we only consider the latter type of environments, mutants will behave exactly as

expected in the absence of randomness. On the other hand, configurations with a net mutant advantage and

disadvantage do not balance each other out and result in a positive selection pressure experienced by the

mutant.

The outline of the remainder of the paper is as follows. In the next section we show how the computation

of PN (G(δ)) reduces to computing an expectation of a functional of a random walk. From here, Theorems

1 and 2 can heuristically be inferred replacing the random walk with a corresponding Brownian motion

via Donsker’s Theorem. However, the only regime in which Donsker’s Theorem applies is that of Theorem

1. Using this approach, we then verify in the case δ ∼ cN−1/2 that the expectation commutes with the

Brownian scaling limit. Section 4 computes the corresponding expectations for Brownian motion, based on

results of Matsumoto, Yor and others. Section 5 puts this together to prove Theorem 1. We also give the

relatively brief proof of Theorem 4. Theorem 2 is proved in Section 6. This is proved in two stages, first

when δ is required to decrease more rapidly than (logN)−1 and then when this is relaxed to (logN)−ε. The

final section presents some numerical simulations and further questions.

3 A scaling result

The following explicit formula for the probability of a birth and death process started at 1 to reach N before 0

is well known; we include its short proof for completeness.

Proposition 5. In a birth and death process, let pk be the probability of transition to k + 1 from k and let

qk := 1− pk be the probability of transition to k − 1. Let Qx denote the law of the process starting x and τa
the hitting time at state a. Then

Q1(τN < τ0) =
1∑N−1

k=0

∏k
j=1

qj
pj

. (6)

Here, the first term of the sum is the empty product, equal to 1 by convention.

Proof. Consider the network in which the resistance between k and k + 1 is
∏k
j=1(qj/pj). Note then that

the random walk on this network is equivalent to that described in the Proposition. The expression for Q1

is the ratio of the conductance 1 to N to that plus the conductance 1 to 0.

We now show that the denominator is close to a functional of a random walk, which is close to a functional

of a Brownian motion, and that these approximations are good enough to pass expectations to the limit.

For 1 ≤ k ≤ N − 1 denote

Xk := log
qk
pk

= log
1− βk
βk+1
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X̃k := log
1− βk+1

βk+1
= log

νk+1

µk+1

with partial sums Sk :=
∑k
j=1Xj and likewise for S̃. Define S0 = S̃0 = 0. The definition of Xk is chosen

so that Equation (6) becomes

PN (G(δ)) = E
1∑N−1

k=0 exp(Sk)
. (7)

On the other hand X̃k are chosen so that {S̃k} is precisely a simple random walk on the lattice δ′Z, with

holding probability 1/2, where

δ′ := log
1 + δ

1− δ = 2δ +O(δ2) .

For δ ≤ 1− ε, µj and νj are uniformly bounded away 0 and 1 and so βj is bounded away 1 as well. Thus

|S̃k − Sk| = | log(1− βk+1)− log(1− β1)| ≤ Cεδ (8)

as long as δ ≤ 1 − ε by applying Taylor’s theorem with remainder to log(1 − βk+1) and log(1 − β1) as a

function of δ. Donsker’s theorem then gives

(SbtNc)t∈(0,1)
N→∞−−−−→

√
2 · c · (B(t))t∈(0,1) (9)

in the càdlàg topology whenever δ
√
N → c, where B(t) is Brownian motion.

In a moment we will show

Lemma 6. Suppose δ and N vary so that δ
√
N remains bounded away zero and infinity. Then the random

variables {NQ1(τN < τ0)} are uniformly integrable. Further, if δ
√
N → c then

NPN (G(δ))→ E

[
1∫ 1

0
exp(
√

2cBs) ds

]

where (Bs) is standard Brownian motion.

The second half of Lemma 6 is the first part of Theorem 1 and follows uniform integrability together with (6)

and (9). This is because convergence of means follows uniform integrability together with convergence in

distribution.

Proof of Lemma 6: A consequence of (8) is that∣∣∣∣∣
∑N−1
j=0 exp(S̃j)∑N−1
j=0 exp(Sj)

− 1

∣∣∣∣∣ = o(1) .

It therefore suffices to show that the variables

N∑N−1
j=0 exp(S̃j)

are uniformly integrable.

For a simple random walk, the reflection principle gives

P[min
j≤n

Sj ≤ −r] = P[Sn = −r] + 2P[Sn < −r]

8



≤ 2P[Sn ≤ −r]
≤ 2 exp

(
−2r2/n

)
where the last bound is by Hoeffding’s inequality. Because {S̃k} is a simple random walk scaled by δ′ and

holding with probability 1/2, for all k ∈ Z+ and t > 0,

P[min
j≤k

S̃j < −t] ≤ 2 exp

− 2t2(
log
(

1+δ
1−δ

))2
k

 . (10)

Applying (10) shows that

P[ min
k≤Nε

S̃k ≤ −1] ≤ 2 exp (−B/ε) (11)

for B depending continuously on δ
√
N . Thus for ε ∈ (0, 1]

N∑N−1
j=0 exp(S̃j)

≤ N∑εN
j=0 exp(S̃j)

≤ 1

ε exp
(

minj≤εN S̃j

) .
Thus, for x large enough and picking ε = e/x we have

P

[
N∑N−1

j=0 exp(S̃j)
> x

]
≤ P

 1

ε exp
(

minj≤εN S̃j

) > x

 = P
[

min
j≤(eN/x)

S̃j < −1

]
.

We have, for each K ≥ e,

E

[
N∑N−1

j=0 exp(S̃j)
1

{
N∑N−1

j=0 exp(S̃j)
>K

}]
=

∫
x≥K

P

[
N∑N−1

j=0 exp(S̃j)
>x

]
dx

≤
∫
x≥K

P
[

min
j≤(eN/x)

S̃j<− 1

]
dx

≤
∫
x≥K

2 exp(−Cx/e) dx .

This inequality holds for all N and converges to zero as K →∞, thereby showing uniform integrability. �

4 Evaluation of the Brownian integral

Define the following functions of Brownian motion:

Aα(t) :=

∫ t

0

eαBs ds ; (12)

mα(t) := EAα(t)−1 . (13)

In this notation, Lemma 6 proves the first statement of Theorem 1 with

g(c) := mc
√
2(1) . (14)

To finish the proof of Theorem 1, it remains to evaluate (14). Expectations such as the one in (13) have

been well studied.
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Proposition 7 ([MY05]). Let {Bt : t ≥ 0} be a standard Brownian motion and let A(t) :=
∫ t
0
e2Bs ds. Then,

E
[
A2(t)−1|Bt = x

]
=

xe−x

t sinhx
if x 6= 0 ; (15)

E
[
A2(t)−1|Bt = 0

]
= t−1 ; (16)

m2(t) ∼
√

2

πt
as t→∞ . (17)

The next lemma uses Brownian scaling to transfer these results to the −1 moment of
∫ 1

0
eαBs ds.

Lemma 8. For α, ν, t > 0,

mα(t) =
α2

ν2
mν

(
α2

ν2
t

)
. (18)

It follows that

mα(1) ∼ α√
2π

as α→∞ . (19)

Both proofs are straightforward although somewhat technical, and so we defer them to Appendix A.

5 Proofs of Theorems 1 and 4

Proof of Theorem 1: We have already evaluated g. Continuity and strict monotonicity will follow

computing the second derivative of φ(x) = xe−x/ sinh(x) explicitly. The estimate (5) follows immediately

(14) and (19). It remains to prove (4), that is, to estimate g(c) = mc
√
2(1) near c = 0. Integrating (15) gives

tm2(t) =

∫
xe−x

sinh(x)
dN(0, t)(x) .

Plugging in xe−x/ sinh(x) = 1− x+ x2/3 +O(x3) gives

tm2(t) = 1 +
t

3
+O(t3/2)

as t ↓ 0. Using (18) with α = c
√

2 and ν = 2 then gives

g(c) =
c2

2
m2

(
c2

2

)
= 1 +

c2 + o(1)

6
,

proving (4). � Proof: We show that φ′′(x) > 0 for x 6= 0. Computing, φ′′(x) = e−x(sinh(x))−3h(x) where

h(x) = x+ 1 + (x− 1)e2x .

Because we have taken out a factor of the same sign as x, we need to show that h is positive on (0,∞) and

negative on (−∞, 0). Verifying first that h(0) = h′(0) = 0, the proof is concluded by observing that h′(x)

has a unique minimum at x = 0, because h′′(x) = 4xe2x has the same sign as x. �

Proof of Theorem 4: Extend the definition of Xk by reducing modulo N , thus XN := log(1−βN )− log β1

and so forth. This makes the sequence {Xk : k ≥ 1} periodic and shift invariant, that is, (X1, . . . , XN−1, XN )
D
=

10



(X2, . . . , XN , X1). Observe also that QN (SN = 0) = 1 because SN =
∑N
j=1 log(1 − βj) −

∑N
j=1 log βj and

the multiset of N values of βj is the same as the multiset of N values of 1− βj . This implies that for each

k ≥ 0 we have Sk+N = Sk and so
N−1∑
j=0

exp(Sj) =

N−1∑
j=0

exp(Sj+k), .

By shift invariance of (X1, . . . , XN ), we may shift this sequence k times to shift the sequence (Sk, . . . , Sk+N )

to (Sk − Sk, . . . , Sk+N − Sk) . In particular, this shows that

E
1∑N−1

j=0 exp(Sj)
= E

1∑N−1
j=0 exp(Sj+k)

= E
1∑N−1

j=0 exp(Sj − Sk)
= E

Sk∑N−1
j=0 exp(Sj)

.

Averaging over all 0 ≤ k ≤ N − 1 shows

E
1∑N−1

j=0 exp(Sj)
= N−1

N−1∑
k=0

E
Sk∑N−1

j=0 exp(Sj)
= N−1

proving Theorem 4. �

6 Proof of Theorem 2

6.1 KMT Coupling and Preliminaries

A key result for studying this larger regime δ is coupling of random walk to Brownian motion.

Lemma 9 (KMT-Coupling). Let {Xk}k≥0 be a simple random walk with i.i.d. increments ξ so that E[ξ] =

0,E[ξ2] = 1 and E[et|ξ|] < ∞ for t sufficiently small. Extend Xk to continuous time by defining Xt = Xbtc.

Then there exists a constant C so that for all T > e there is a coupling so that

P

[
sup
t∈[0,T ]

|Xt −Bt| ≥ C log(T )

]
≤ 1

T 2

where Bt is standard Brownian motion.

Proof. This is stated as equation (17) in [AD13]. In fact one can replace T−2 by a stretched exponential; a

slightly weaker result that may be quoted [LL10, Theorem 7.1.1] is that for any α > 0 there is a Cα such

that

P

[
sup
t∈[0,T ]

|Xt −Bt| ≥ Cα log(T )

]
≤ T−α . (20)

Another basic lemma is the well-known uniform estimate for random walk hitting probabilities whose proof

is standard and so we prove it in Appendix B.
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Lemma 10. Let {Sn}n≥0 be a random walk whose IID increments {Xn} satisfy the hypotheses of the KMT

coupling. Then, if u ranges over [Mε,M1/2−ε] for some ε ∈ (0, 1/2),

P( max
1≤j≤M

Sj ≤ u) ∼
√

2

π

u

M1/2

as M →∞, uniformly in u and the random walk.

We will prove Theorem 2 in two cases, both of which will make further use of the KMT coupling. Two

relevant functionals of random walk will correspond to two functionals of Brownian motion, and we will

need to show that the expectations in the random walk case are asymptotically equivalent to those in the

Brownian motion case. For this, we require a few results to show that these functionals are sufficiently

well-behaved.

6.2 Two Brownian functionals

The functionals of interest are

XM :=
1∫M

0
exp(Bs) ds

YM :=
B−M∫M

0
exp(2Bs) ds

where we use the notation Z− := max{−Z, 0}.

Lemma 11. The family of variables { XM

EXM
}M≥1 is uniformly integrable.

Proof. We first claim that E[XM ] = Θ
(
M−1/2

)
. Indeed, by Brownian scaling we have

EXM = E

(∫ M

0

exp(Bs) ds

)−1
=

1

4
E

(∫ M/4

0

exp(2Bt) dt

)−1
∼ 1

4
·
√

8

πM

where the asymptotic relation is by Proposition 7.

We claim that there exists a universal C > 0 so that P[XM ≥ t] ≤ Ct−2M−1/2. For t ≤ M1/3, note that

P[XM ≥ t] is at most the probability that both min0≤s≤1Bs ≤ − log(t) and that after first hitting − log(t),

Bs does not spend more than 1 unit of time above − log(t); this is because if min0≤s≤1Bs > − log t then

XM ≤
1∫ 1

0
exp(Bs) ds

<
1∫ 1

0
exp(− log t) ds

= t .

Let τ = inf{s ∈ [0, 1] : Bs = − log(t)}. The reflection principle gives

P[ inf
s∈[0,1]

Bs ≤ − log(t)] = 2P[B1 ≤ − log(t)] ≤ C exp

(
−1

2
(log(t))2

)
.

12



Conditioned on τ <∞, note that the probability Bs does not go above − log(t) for more than 1 unit of time

is 2
π arcsin(

√
1/(M − τ)) = Θ(M−1/2) by the strong Markov property together with Lévy’s arcsin law. For

all t we have

P[XM ≥ t] ≤ C exp

(
−1

2
(log(t))2

)
1√
M

.

For all t ≥ 1, there is some constant C ′ > 0 so that

exp

(
−1

2
(log t)2

)
≤ Ct−2

and so for t ≥ 1 we have

P[Xm ≥ t] = O(t−2M−1/2) .

For K large enough, we may then bound

E
[
XM

EXM
1XM/EXM≥K

]
≤ C
√
M

∫ ∞
K

t−2M−1/2 dt ≤ C/K .

Taking K →∞ completes the proof.

We find the asymptotics of the first two moments of the other functional; this calculation-heavy proof is

done in Appendix B.

Lemma 12. As M →∞ we have EYM → 1 and EY 2
M ∼ 4

√
2/π
√
M .

Lastly, we show that the expectation of YM is not dominated by the contribution when YM is much larger

than
√
M . Again, we defer the proof to Appendix B.

Lemma 13. Let YM denote the random variable
B−M∫ M

0
exp(2Bs) ds

. Then for all events E with P[E] ≤M−1/2−ε

for some ε > 0 we have E[YM1E ] = o(1) as M →∞.

6.3 Medium-sized case: N−1/2 � δ � 1/ logN .

Lemma 14. There exists a constant C ′ so that for δ in [0, 1− ε] we have

e−C
′δ log(N)E

1Ec
n

N
∫ 1

0
exp

(√
Nδ′Bt/

√
2
)
dt
−1/N2 ≤ PN (G(δ)) ≤ eC′δ log(N)E

1Ec
n

N
∫ 1

0
exp

(√
Nδ′Bt/

√
2
)
dt

+1/N2 .

where EN is an event with P(EN ) ≤ N−2.

Proof. For t ∈ [0, N ], define S̃t = S̃btc. Then note that

N−1∑
j=0

exp(S̃j) =

∫ N

0

exp(S̃t) dt .

Let

p(N) = Q1(τN < τ0) =
1∑N−1

k=0 exp(Sk)

13



and recall that PN (G(δ)) = Ep(N). By (7) and (8), we have

exp(−Cεδ) ≤ p(N) ·
(∫ N

0

exp(S̃t) dt

)
≤ exp(Cεδ) .

Note that S̃k is a random walk whose increments have variance (δ′)2

2 . By Lemma 9, there exists a coupling

so that

P

[
sup

t∈[0,N ]

∣∣∣∣∣
√

2

δ′
S̃t −Bt

∣∣∣∣∣ ≥ C log(N)

]
≤ 1

N2
.

Letting EN denote the event on the left-hand side, conditioned on the event EN , we have

exp

(
−Cεδ −

Cδ′√
2

log(N)

)
≤ p(N) ·

(∫ N

0

exp(δ′Bt/
√

2) dt

)
≤ exp

(
Cεδ +

Cδ′√
2

log(N)

)
.

Since δ′ ≤ C ′εδ for some constant C ′ε, we can find a new constant C ′′ so that

exp (−C ′′δ log(N)) ≤ p(N) ·
(∫ N

0

exp(δ′Bt/
√

2) dt

)
≤ exp (C ′′δ log(N))

conditioned on EN . Because p(N) ≤ 1, and P[EN ] ≤ 1
N2 , the lemma follows taking expectations and

Brownian scaling.

Proof of Theorem 2 for medium δ. Because δ log(N)→ 0, Lemmas 9 and 11 imply

E[p(N)] ∼ 1

N
m√Nδ′/

√
2(1)

where the uniform integrability guaranteed by Lemma 11 implies that we may ignore the 1Ec
n

term Applying

Lemma 8 completes the proof. �

6.4 Large case: δ = o(1/(logN)ε)

Let r > 6 be a real parameter to be chosen later and set T := dδ−re. Note that exp(δ−r)� exp((logN)rε)

grows faster than any polynomial in N once rε > 1. Also, we may assume that δ−r = o(Ns) for any positive

s because the medium case already covers the regime δ ≤ (logN)−2, say, and in the complement of this

case, certainly any negative power of δ grows more slowly than any power of N . In order to handle the

case at hand, we first show that the main contribution to PN (G(δ)) is the first T steps of the walk. This

is handled in Lemma 15. Analyzing the resulting functional of the random walk up to T will be done in a

similar manner to the “medium-sized case”: the KMT coupling will be employed to compare the random

walk to a Brownian motion, and the corresponding functionals of Brownian motion will be the same as those

appearing in Lemmas 12 and 13.

Recalling the process{S̃k} Section 3, we denote Z := S̃T and A :=
∑T−1
k=0 exp(S̃k). For a real number or

random variable X, we use the notation X+ := max(X, 0) for the positive part of X and X− := max(−X, 0)

for the negative part of X.
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Lemma 15. Let s > ε−1 where we recall δ = o(1/(logN)ε). Then

PN (G(δ)) = (1 + o(1))
2

δ′
√
πN

(
E
Z−

A
+O

(
E
δ−s

A

))
+O(e−δ

−s

) .

Proof. Recall (8) that {S̃n} is uniformly close to {Sn} as δ → 0, therefore (7) implies PN (G(δ)) ∼ E(A−1)

which we will use instead of (7).

We show the asymptotic equality in the statement of the theorem as two inequalities:

PN (G(δ)) ≥ (1 + o(1))
2

δ′
√
πN

(
E
Z−

A
+O

(
E
δ−s

A

))
; (21)

PN (G(δ)) ≤ (1 + o(1))
2

δ′
√
πN

(
E
Z−

A
+O

(
E
δ−s

A

))
+ e−δ

−s

. (22)

Choose r so that r/2 − 1 > s > ε−1. Let G′ denote the event {maxT≤m≤N S̃m ≤ −δ−s}. We condition on

A and Z.

PN (G(δ) |A,Z) = (1 + o(1))E

[
1∑N−1

k=0 exp(S̃k)

∣∣∣∣A,Z
]

≥ (1 + o(1))E

[
1G′∑N−1

k=0 exp(S̃k)

∣∣∣∣A,Z
]

≥ 1

A+Ne−δ−s PN (G′ |A,Z) . (23)

Since S̃m/(δ
′/
√

2) is a random walk with centered increments of variance 1, Lemma 10 gives

PN (G′ |A,Z) ∼
√

2

π(N − T )
· (−Z − δ−s)+

δ′/
√

2
∼ 2(Z + δ−s)−

δ′
√
πN

.

Combining with (23) gives

PN (G(δ) |A,Z) ≥ (1 + o(1))
2

δ′
√
πN
· (Z + δ−s)−

A+Ne−δ−s .

The quantity A is at least 1, while Ne−δ
−s → 0, therefore A+Ne−δ

−s ∼ A. Further, write

(Z + δ−s)− = −Z1Z≤−δ−s − δ−s1Z≤−δ−s = −Z(1Z≤0 − 1Z∈[−δ−s,0])− δ−s1Z≤−δ−s = Z− +O(δ−s) .

Taking unconditional expectations now gives (21).

For the reverse inequality, let G′′ denote the event that {maxT≤m≤N S̃m ≤ δ−s}. On the complement of

this event, at least one summand in the denominator of (7) is at least exp(δ−s). Because PN (G(δ) |A,Z) is

always at most 1/A, we see that

PN (G(δ) |A,Z) ≤ 1

A
PN (G′′ |A,Z) +

1

A
PN ((G′′)c |A,Z)

≤ 1

A
PN (G′′ |A,Z) + exp(−δ−s)
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≤ (1 + o(1))

√
2

π(N − T )

(δ−s − Z)+

Aδ′/
√

2
+ e−δ

−s

.

Again, taking unconditional expectations finishes, yielding (22).

We are now in a position to apply the KMT coupling to find the expectations that appear in Lemma 15.

Lemma 16.

E
Z−

A
∼ δ2 ; (24)

E
1

A
∼ δ√

πT
. (25)

The proof is similar to the results of Section 6.3, and so we defer to the appendix once more. While the

second asymptotic equality follows the result of Section 6.3, we include a proof as well since the intermediate

steps required for the first expression essentially prove it.

Proof of Theorem 2 for large δ: Combining Lemma 15 with Lemma 16 gives

PN (G(δ)) = (1 + o(1))
2

δ′
√
πN

(
E
Z−

A
+O

(
E
δ−s

A

))
+O(e−δ

−s

)

= (1 + o(1))
1

δ
√
πN

(
δ2 +O

(
δ1−s√
T

))
+O(e−δ

−s

)

∼ δ√
πN

where we used that T = Ω(δ−r) = Ω(δ−6) to show that δ2 +O(δ1−sT−1/2) ∼ δ2. �

7 Numerical simulations and further questions, and biological ap-

plications

To double check the results of Theorem 1, we simulated the process for N = 250 and c = 2. Thus,

δ = c/
√
N = 2/

√
250 ≈ 0.126. Theorem 1 predicts that as N → ∞, NPN (G(δ)) → g(2). Numerically

evaluating the integral defining g(2) gives approximately 1.516. Our quick and dirty Monte Carlo simulation

gives NPN (G(δ)) = 1.521± 0.06. We could have done more simulations to lower the standard error, but in

fact because we ran simulations for N = 10m for every m ≤ 25, there is already greater accuracy. Figure 2

shows all of these data points, as well as similar data for c = 3 and 1 ≤ m ≤ 15 (here g(3) ≈ 1.97). The

limits predicted by Theorem 1 are corroborated, or at least not contradicted, by the data.

Next we ran simulations to investigate Conjecture 3. Recall, the limit is known when δ → 0 as fast as

any power (logN)−ε, whereas this should fail when δ remains constant; the conjecture covers the ground in

between, which is clearly too slim to distinguish numerically. The best we could do was to hold δ constant,

thus allowing c := δ
√
N to go to infinity. One might expect (3) that NPN (G(δ)) is well approximated by

g(c), leading to
√
πNPN (G(δ)) ≈ g(δ

√
N)
√
π√

N
, (26)
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Figure 2: The average mutant fixation probability, 〈PN 〉 times N as a function of N for the line model.

The fitness of both mutants and normals at different locations are drawn the same two-valued distribution

function, where values 1−δ and 1+δ are equally likely. Two different values of δ are used: 2/
√
N (red points)

and 3/
√
N (blue points). The points are based on stochastic simulations and each data point represents the

average over 106 independent realizations.

which is asymptotic to δ by (5). Indeed, the data (red points in Figure 3) is a very good match for (26) (the

blue curve in Figure 3), which can be seen to be asymptotic to 0.2.

δ c/ N 0.2, Line
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Figure 3: Formula Eq.(26) (g(δ
√
N)
√
π/N , blue curve) is compared with the stochastic simulation results

for
√
π ×N〈PN 〉 (red points), plotted a functions of N , with δ = 0.2.
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Among the open questions on this model, one that looms large is whether these results or something similar

can be transferred to the circular model. Between the line and circle model, neither seems inherently more

compelling; however the fact that the birth and death chain reasoning holds only for the line model has

prevented us understanding the situation on any other graphs or initial conditions. We enumerate some

problems in what we expect to be increasing order of difficulty.

Problem 1. On a line segment graph, extend the model to the case where the initial configuration is some-

thing other than mutants in an interval containing an endpoint.

Problem 2. Extend the analysis to a circle.

We were curious whether empirically, the circle appears to behave differently the line. Figure 4 shows the

comparison. It appears that the limiting value of NPN (G(δ)) for the circle is just a shade less than for the

line. But also, it appears that the value approaches the limit much faster for the circle, and perhaps with

less sample variance. On a circle, starting with a single mutation, the interval set of mutant sites remains

an interval, which can now grow and shrink at both ends rather than just on the right. These two growth

processes are not independent, but may still be the reason we observe faster convergence and lesser variance.

δ c/ N , c 2

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
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◆ ◆ ◆ ◆ ◆ ◆
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〉

Figure 4: Comparison of the line and the circle model. The quantity N〈PN 〉 is plotted as a function of N

for the circle model (blue dots) and line model (red dots) with δ = 2/
√
N . For each value of N, the average

of 106 random simulations is presented.

Problem 3. Extend the analysis to any graph with a vertex of degree at least 3. The difficulty here is that

the cluster of mutants can become disconnected.

The present study contributes to theoretical understanding of evolutionary processes that have important

biomedical applications. The first step in cancer initiation is often a spread and (local) fixation of a neutral

mutation, which by itself does not confer an explicit selective advantage to the cell, but serves as a springboard
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for further transformations. For example, mutations in the so-called tumor suppressor genes drive the

progression of many cancers, including colorectal, breast, uterine, ovarian, lung, head and neck, pancreatic,

and bladder cancer [She04, JK18]. Tumor suppressor genes are sometimes compared with a brake pedal on

a car, as they keep the cell’s reproduction in check, preventing it dividing too quickly. An inactivation of a

single copy of a tumor suppressor gene is often considered a “neural” mutation, because if the second copy

is still active, an inactivation of a single copy of the gene does not result in any phenotypic changes. It is

only when the second copy of a tumor suppressor gene is inactivated, the cell starts experiencing a selective

advantage (because the “brake” is “off”). The spread and local fixation of mutants with a single, selectively

neutral, mutation inactivating the first copy of a tumor suppressor gene is the type of problem where our

present results can be applied. For example, a plausible scenario for colorectal cancer initiation is fixation of

a single-hit mutant, which comes to dominate a local compartment of colonic tissue (called a crypt). This

could be followed eventually by the second mutation, which then leads to a local outgrowth and creation of

a “dysplastic crypt” or a polyp. The first stage (the fixation of neutral, single-hit mutants) has been studied

extensively in the context of tumor-suppressor gene inactivation (see e.g. [NKS+02, KSN03]) but not in

the presence of environmental randomness. Results reported in this paper allow to account for the role of

variability in tissue microenvironment, and suggest that single-mutant fixation is more likely than predicted

by non-random models. Further models that include more realistic geometries, as well as heterogeneity of

cell types (such as stem cells vs differentiated cells) will require further mathematical efforts. The current

manuscript lays a foundation for such future efforts.
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[CGJD15] Ivana Cvijović, Benjamin H Good, Elizabeth R Jerison, and Michael M Desai. Fate of a mutation

in a fluctuating environment. Proceedings of the National Academy of Sciences, 112(36):E5021–

E5028, 2015.

[Che94] Peter Chesson. Multispecies competition in variable environments. Theoretical population biol-

ogy, 45(3):227–276, 1994.

[Che00a] Peter Chesson. General theory of competitive coexistence in spatially-varying environments.

Theoretical population biology, 58(3):211–237, 2000.

19



[Che00b] Peter Chesson. Mechanisms of maintenance of species diversity. Annual review of Ecology and

Systematics, 31(1):343–366, 2000.

[CW81] Peter L Chesson and Robert R Warner. Environmental variability promotes coexistence in

lottery competitive systems. The American Naturalist, 117(6):923–943, 1981.

[DS18] Matan Danino and Nadav M Shnerb. Fixation and absorption in a fluctuating environment.

Journal of theoretical biology, 441:84–92, 2018.

[ESAH19] Stephen P Ellner, Robin E Snyder, Peter B Adler, and Giles Hooker. An expanded modern

coexistence theory for empirical applications. Ecology letters, 22(1):3–18, 2019.

[Fis30] RA Fisher. The evolution of dominance in certain polymorphic species. The American Natu-

ralist, 64(694):385–406, 1930.

[Fra11] Steven A Frank. Natural selection. i. variable environments and uncertain returns on investment.

Journal of evolutionary biology, 24(11):2299–2309, 2011.

[FS90] Steven A Frank and Montgomery Slatkin. Evolution in a variable environment. The American

Naturalist, 136(2):244–260, 1990.

[FSDKK19] Suzan Farhang-Sardroodi, Amir H Darooneh, Mohammad Kohandel, and Natalia L Komarova.

Environmental spatial and temporal variability and its role in non-favoured mutant dynamics.

Journal of the Royal Society Interface, 16(157):20180781, 2019.

[FSDN+17] Suzan Farhang-Sardroodi, Amirhossein H Darooneh, Moladad Nikbakht, Natalia L Komarova,

and Mohammad Kohandel. The effect of spatial randomness on the average fixation time of

mutants. PLoS computational biology, 13(11):e1005864, 2017.

[GG02] Sergey Gavrilets and Nathan Gibson. Fixation probabilities in a spatially heterogeneous envi-

ronment. Population Ecology, 44(2):51–58, 2002.

[Gil77] John H Gillespie. Natural selection for variances in offspring numbers: a new evolutionary

principle. The American Naturalist, 111(981):1010–1014, 1977.

[GML10] Edward E Graves, Amit Maity, and Quynh-Thu Le. The tumor microenvironment in non–

small-cell lung cancer. In Seminars in radiation oncology, volume 20, pages 156–163. Elsevier,

2010.

[Hal27] John Burdon Sanderson Haldane. A mathematical theory of natural and artificial selection, part

v: selection and mutation. Mathematical Proceedings of the Cambridge Philosophical Society,

23(7):838–844, 1927.

[HCM94] Michael P Hassell, Hugh N Comins, and Robert M May. Species coexistence and self-organizing

spatial dynamics. Nature, 370(6487):290–292, 1994.

[HG04] Ilkka A Hanski and Oscar E Gaggiotti. Ecology, genetics and evolution of metapopulations.

Academic Press, 2004.

[HSM17] Jorge Hidalgo, Samir Suweis, and Amos Maritan. Species coexistence in a neutral dynamics

with environmental noise. Journal of theoretical biology, 413:1–10, 2017.

20



[JFNM14] Nadeera Jayasinghe, Ashley Franks, Kelly P Nevin, and Radhakrishnan Mahadevan. Metabolic

modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations

in electrical current generation. Biotechnology journal, 9(10):1350–1361, 2014.

[JK18] Catherine Joyce and Anup Kasi. Cancer, tumor-suppressor genes. In StatPearls [Internet].

StatPearls Publishing, 2018.

[Kim68] Motoo Kimura. Evolutionary rate at the molecular level. Nature, 217(5129):624–626, 1968.

[Kim89] Motoo Kimura. The neutral theory of molecular evolution and the world view of the neutralists.

Genome, 31(1):24–31, 1989.

[Kom06] Natalia L Komarova. Spatial stochastic models for cancer initiation and progression. Bulletin

of mathematical biology, 68(7):1573–1599, 2006.

[KSFS15] David Kessler, Samir Suweis, Marco Formentin, and Nadav M Shnerb. Neutral dynamics with

environmental noise: Age-size statistics and species lifetimes. Physical Review E, 92(2):022722,

2015.

[KSN03] Natalia L Komarova, Anirvan Sengupta, and Martin A Nowak. Mutation–selection networks of

cancer initiation: tumor suppressor genes and chromosomal instability. Journal of theoretical

biology, 223(4):433–450, 2003.

[LCU+07] Xiao-Feng Li, Sean Carlin, Muneyasu Urano, James Russell, C Clifton Ling, and Joseph A

O’Donoghue. Visualization of hypoxia in microscopic tumors by immunofluorescent microscopy.

Cancer research, 67(16):7646–7653, 2007.

[LL10] G. Lawler and V. Limic. Random walk: a modern introduction. Cambridge University Press,

Cambridge, 2010.

[MFH14] Wes Maciejewski, Feng Fu, and Christoph Hauert. Evolutionary game dynamics in populations

with heterogenous structures. PLoS Comput Biol, 10(4):e1003567, 2014.

[MIR+04] Franziska Michor, Yoh Iwasa, Harith Rajagopalan, Christoph Lengauer, and Martin A Nowak.

Linear model of colon cancer initiation. Cell cycle, 3(3):356–360, 2004.

[Mor58] Patrick Alfred Pierce Moran. Random processes in genetics. Mathematical proceedings of the

Cambridge Philosophical Society, 54(1):60–71, 1958.

[MS18] Immanuel Meyer and Nadav M Shnerb. Noise-induced stabilization and fixation in fluctuating

environment. Scientific reports, 8(1):1–12, 2018.

[MS20] Immanuel Meyer and Nadav M Shnerb. Evolutionary dynamics in fluctuating environment.

Physical Review Research, 2(2):023308, 2020.

[MV15] Anna Melbinger and Massimo Vergassola. The impact of environmental fluctuations on evolu-

tionary fitness functions. Scientific reports, 5:15211, 2015.

[MY05] H. Matsumoto and M. Yor. Exponential functionals of Brownian motion, I: Probability laws at

fixed time. Probability Surveys, 2:312–347, 2005.

[Nag80] Thomas Nagylaki. The strong-migration limit in geographically structured populations. Journal

of mathematical biology, 9(2):101–114, 1980.

21



[NKS+02] Martin A Nowak, Natalia L Komarova, Anirvan Sengupta, Prasad V Jallepalli, Ie-Ming Shih,

Bert Vogelstein, and Christoph Lengauer. The role of chromosomal instability in tumor initia-

tion. Proceedings of the National Academy of Sciences, 99(25):16226–16231, 2002.

[Pul88] H Ronald Pulliam. Sources, sinks, and population regulation. The American Naturalist,

132(5):652–661, 1988.

[SF08] Philip S Stewart and Michael J Franklin. Physiological heterogeneity in biofilms. Nature Reviews

Microbiology, 6(3):199–210, 2008.

[She04] Charles J Sherr. Principles of tumor suppression. Cell, 116(2):235–246, 2004.

[SP05] Francisco C Santos and Jorge M Pacheco. Scale-free networks provide a unifying framework for

the emergence of cooperation. Physical Review Letters, 95(9):098104, 2005.

[SPL06] Francisco C Santos, Jorge M Pacheco, and Tom Lenaerts. Cooperation prevails when individuals

adjust their social ties. PLoS Comput Biol, 2(10):e140, 2006.

[SRP06] Francisco C Santos, JF Rodrigues, and JM Pacheco. Graph topology plays a determinant

role in the evolution of cooperation. Proceedings of the Royal Society B: Biological Sciences,

273(1582):51–55, 2006.

[SSP08] Francisco C Santos, Marta D Santos, and Jorge M Pacheco. Social diversity promotes the

emergence of cooperation in public goods games. Nature, 454(7201):213–216, 2008.

[TI91] Hidenori Tachida and Masaru Iizuka. Fixation probability in spatially changing environments.

Genetics Research, 58(3):243–251, 1991.

[TPL07] Marco Tomassini, Enea Pestelacci, and Leslie Luthi. Social dilemmas and cooperation in com-

plex networks. International Journal of Modern Physics C, 18(07):1173–1185, 2007.

[WG05] Michael C Whitlock and Richard Gomulkiewicz. Probability of fixation in a heterogeneous

environment. Genetics, 171(3):1407–1417, 2005.

[Wri31] Sewall Wright. Evolution in mendelian populations. Genetics, 16(2):97, 1931.

[Yua16] Yinyin Yuan. Spatial heterogeneity in the tumor microenvironment. Cold Spring Harbor per-

spectives in medicine, 6(8):a026583, 2016.

A Proofs Section 4

Proof of Proposition 7: The first two are proved as Matsumoto and Yor [MY05, Proposition 5.9]. We

quickly derive the third by integrating (15). Letting y := x/
√
t,

m2(t) = t−1
∫

xe−x

sinh(x)
dN(0, t)(x)

= t−1/2
∫

ye−
√
ty

sinh(
√
ty)

dN(0, 1)(y) .

22



As t → ∞, the quantity ye−
√
ty/ sinh(

√
ty) converges pointwise to 2|y|1y<0. Truncating, integrating and

taking limits gives

t1/2m2(t)→
∫ 0

−∞
2|y| dN(0, 1)(y) = E|N(0, 1)| =

√
2

π
.

�

Proof of Lemma 8: Let fα(x, t) denote the density of Aα(t)−1 at x. Let Wt := (α/ν)Bν2t/α2 . Then {Wt}
is also a standard Brownian motion and αBt = νWt. Hence,

fα(x, t)dx = P

(
1∫ t

0
eαBs ds

∈ [x, x+ dx]

)

= P

(
1

(ν/α)2
∫ (α/ν)2t

0
eνWu du

∈ [x, x+ dx]

)

= P

(
1∫ (α/ν)2t

0
eνWu du

∈ [(ν/α)2x, (ν/α)2x+ (ν/α)2dx]

)

=
ν2

α2
fν

(
ν2

α2
x,
α2

ν2
t

)
dx . (27)

Consequently, changing variables to θ = (ν2/α2)x,

mα(t) =

∫ ∞
−∞

xfα(x, t) dx

=
ν2

α2

∫ ∞
−∞

xfν

(
ν2

α2
x,
α2

ν2
t

)
dx

=
α2

ν2

∫ ∞
−∞

θfν

(
θ,
α2

ν2
t

)
dθ

=
α2

ν2
mν

(
α2

ν2
t

)
,

proving (18). Set ν = 2 and t = 1, plug into (17) and send α to infinity to obtain

mα(1) =
α2

4
m2

(
α2

4

)
∼ α2

4

√
2

πα2/4
=

α√
2π

,

proving (19). �

B Proofs Section 6

Proof of Lemma 10: For Brownian motion run to time M , the reflection principle gives

P( sup
0≤t≤M

Bt ≤ u) = 1− 2P0(BM ≥ u)

which is asymptotic to (2/π)1/2uM−1/2 uniformly as u varies over the (0,M1/2−ε] for any ε ∈ (0, 1/2). Pick

α > 1/2. By (20), one then has√
2

π

u− Cα logM

M1/2
−M−α ≤ P( max

1≤j≤M
Sj ≤ u) ≤

√
2

π

u+ Cα logM

M1/2
+M−α .
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Proof of Lemma 12: By (15), we compute

E
B−M∫M

0
exp(2Bs) ds

=

∫
R

−x2e−x1x≤0
M sinh(x)

dN(0,M)(x)

=

∫
R

−y2e−
√
My1y≤0

sinh(
√
My)

dN(0, 1)(y) .

As M →∞, e−
√
My/ sinh(

√
My)→ −2 · 1y<0; truncating, integrating and taking limits then gives

E
B−M∫M

0
exp(2Bs) ds

→
∫ 0

−∞
2y2dN(0, 1)(y) = 1 .

By differentiating Equation (5.7) of [MY05] twice with respect to λ, we have that

E

(∫ M

0

exp(2Bs) ds

)−2 ∣∣∣∣BM = x

 =
e−2x

(
x2 sinh(x) +Mx cosh(x)−M sinh(x)

)
M2 sinh(x)3

.

This implies that

E[Y 2
M ]√
M

=

∫
R

e−2x1x<0(x4 sinh(x) +Mx3 cosh(x)−Mx2 sinh(x))

M5/2 sinh(x)3
dN(0,M)(x)

=

∫
R

e−2y
√
M1y<0(M2y4 sinh(

√
My) +M5/2y3 cosh(

√
My)−M2y2 sinh(

√
My))

M5/2 sinh(
√
My)3

dN(0, 1)(y) .

The integrand converges to −4y31y<0 as M →∞; truncating, integrating and taking limits shows

E[Y 2
M ]√
M
→
∫
R
−4y31y<0dN(0, 1)(y) = 4

√
2

π
.

�

Proof of Lemma 13: Using Lemma 12 together with Chebyshev’s inequality, we see that

P[YM ≥ t] ≤ C
√
Mt−2

for some constant C. This implies that

E[YM1YM≥M1/2+ε/2 ] =

∫ ∞
M1/2+ε/2

P[YM ≥ t] dt ≤ CM−ε/2 = o(1) .

We then may write

E[YM1E ] = E[YM1E1YM≥M1/2+ε/2 ] + E[YM1E1YM<M1/2+ε/2 ] ≤ o(1) +M1/2+ε/2P[E]→ 0 .

�

Proof of Lemma 16: By Lemma 9, there exists a coupling of
{

S̃t

δ′/
√
2

}
0≤t≤T

and {Bt}0≤t≤T so that

P

[
sup
t∈[0,T ]

∣∣∣∣∣ S̃t

δ′/
√

2
−Bt

∣∣∣∣∣ ≥ C log(T )

]
≤ 1

T 2
.
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Let E denote the event in the above probability; conditioned on Ec, we have

A =

∫ T

0

exp(S̃s) ds =

∫ T

0

exp(δ′Bs/
√

2 +O(δ′ log(T ))) ds ∼
∫ T

0

exp(δ′Bs/
√

2) ds

where the last asymptotic equality follows δ′ log(T ) = O(δ log δ)→ 0. This means that

E[A−1] = E[A−11E ] + E[A−11Ec ] = O(T−2) + (1 + o(1))E
1Ec∫ T

0
exp(δ′Bs/

√
2) ds

. (28)

By Brownian scaling,∫ T

0

exp
(
δ′Bs/

√
2
)
ds =

∫ T

0

exp
(
2(B(δ′)2s/23)

)
ds = 23(δ′)−2

∫ T (δ′)2/23

0

exp(2Bs) ds

since δ′ ∼ 2δ.

By assumption, T (δ′)2 →∞; further, the uniform integrability statement in Lemma 11 shows that

E

(∫ T (δ′)2/23

0

exp(2Bs) ds

)−1
1Ec

 ∼ E

(∫ T (δ′)2/23

0

exp(2Bs) ds

)−1
since the variables 1EXM/E[XM ] converge almost surely to 0 (because P(E) → 0) and are uniformly inte-

grable. From here, (28) then gives

E[A−1] = O(T−2) + (1 + o(1)) · (δ′)2

23
·
√

2

πT
· 23/2

δ′
= O(T−2) + (1 + o(1))

22

δ′
1√
πT
∼ δ√

πT
.

Similarly,

E[Z−/A] = E
[
Z−

A
· 1E

]
+ E

[
Z−

A
· 1Ec

]

= O(T−2) +
δ′√
2
E

[
B−T 1Ec∫ T

0
exp

(
δ′Bs/

√
2
)
ds

]
+O

δ log(T )E

(∫ T

0

exp(δ′Bs/
√

2) ds

)−1
= O

(
log(T )√

T

)
+

δ′√
2
E

[
B−T 1Ec∫ T

0
exp

(
δ′Bs/

√
2
)
ds

]
.

Using the same Brownian scaling as in below (28), note

B−T∫ T
0

exp(δ′Bs/
√

2) ds

d
=

δ′

23/2

B−
(23/2/δ′)2T∫ (23/2/δ′)2T

0
exp(2Bs) ds

=
δ′

23/2
YM

where we set M = (23/2/δ′)2T . By Lemma 13 together with Lemma 12, we have

E[YM1Ec ] = E[YM ] + o(1) = 1 + o(1) .

Combining the above equalities provides

E[Z−/A] = O

(
log(T )√

T

)
+ (1 + o(1)) · δ

′
√

2
· δ′

23/2
∼ δ2 .

�
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