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Abstract: Understanding which phenotypic traits are consistently corre-
lated throughout evolution is a highly pertinent problem in modern evolu-
tionary biology. Here, we propose a multivariate phylogenetic latent liability
model for assessing the correlation between multiple types of data, while
simultaneously controlling for their unknown shared evolutionary history in-
formed through molecular sequences. The latent formulation enables us to
consider in a single model combinations of continuous traits, discrete binary
traits, and discrete traits with multiple ordered and unordered states. Pre-
vious approaches have entertained a single data type generally along a fixed
history, precluding estimation of correlation between traits and ignoring un-
certainty in the history. We implement our model in a Bayesian phylogenetic
framework, and discuss inference techniques for hypothesis testing. Finally,
we showcase the method through applications to columbine flower morphol-
ogy, antibiotic resistance in Salmonella, and epitope evolution in influenza.

Keywords: Bayesian phylogenetics, Threshold model, Evolution, Genotype-
phenotype correlation.
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1 Introduction

Biologists are often interested in assessing phenotypic correlation among sets
of traits, since it can help elucidate many biological processes. These cor-
relations may be a result of genetic correlation, in which traits are partially
determined by the same or linked loci. Alternatively, they may be evidence
of selective correlation, in which the same environmental pressure acts on two
seemingly unrelated traits or the outcome of one trait affects selective pres-
sure on the other. Studying these processes is one of the aims of comparative
biology.

The purpose of this paper is to present a statistical framework for esti-
mating phenotypic correlation among many traits simultaneously for combi-
nations of different types of data. We consider combinations of continuous
data, discrete data with binary outcomes, and discrete data with multiple
ordered and unordered outcomes. We also provide inference tools to address
specific hypotheses regarding the correlation structure.

Several comparative methods have been proposed to assess the pheno-
typic correlation between groups of traits (Felsenstein, 1985; Pagel, 1994;
Grafen, 1989; Ives and Garland, 2010). These methods estimate correlations
in trait data across multiple species while controlling for shared evolutionary
history through phylogenetic trees. Yet their use is generally limited to fixed
phylogenetic trees, specific types of data or small datasets.

Markov chains are a natural choice to model the evolution of discrete
traits, allowing for correlation between them (Pagel, 1994; Lewis, 2001). In
this case, the state space of the Markov chain includes all combinations
of possible values for all the traits, and correlation is assessed through the
transition probabilities between states. Thus, when the number of traits and
possible outcomes for each trait increase, the number of parameters to be
estimated in the rate matrix scales up rapidly.

For continuous data, a common approach for assessing phenotypic cor-
relation is the independent contrasts method that models the evolution of
multiple traits as a multivariate Brownian diffusion process along the tree
(Felsenstein, 1985). Correlation between traits is assessed through the pre-
cision matrix of the diffusion process. This method has been extended to
account for phylogenetic uncertainty by integrating over the space of trees in
a Bayesian context (Huelsenbeck and Rannala, 2003). Recent developments
increase the method’s flexibility by allowing for different diffusion rates along
the branches of the tree (Lemey et al., 2010), more efficient likelihood com-
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putation, and thus, larger datasets (Pybus et al., 2012).
Phylogenetic linear models and related methods naturally consider com-

binations of different types of data (Grafen, 1989; Ives and Garland, 2010).
Developments in this area have led to flexible and efficient methods (Faria
et al., 2013; Ho and Ané, 2014). These models assess the effects of indepen-
dent variables on a dependent variable that evolves along a tree. Although
it is possible that the independent variables are phylogenetically correlated,
this aspect is generally not explicitly modeled. Thus, these models are not
tailored to assess correlation between sets of traits throughout evolutionary
history.

An approach for assessing correlated evolution that can combine both
binary and continuous data is the phylogenetic threshold model (Felsenstein,
2005, 2012). The threshold model is used in statistical genetics for traits
with a discrete outcome determined by an underlying unobserved continuous
variable (Wright, 1934; Falconer, 1965). Felsenstein (2005) proposed the use
of this model in phylogenetics. In his model, the underlying continuous vari-
able (or latent liability) undergoes Brownian diffusion along the phylogenetic
tree. At the tips, a binary trait is defined depending on the position of the
latent liability relative to a specified threshold. This non-Markovian model
has the desirable property that the probability of transition from the current
state to another can depend time spent in that current state.

A possible interpretation for this model is that the binary outcome rep-
resents the presence or absence of some phenotypic trait, and the underlying
continuous process represents the combined effect of a large number genetic
factors that affect this trait. During evolution, these factors undergo genetic
drift, which is usually modeled as Brownian diffusion.

In its multivariate version, the threshold model allows for inference on the
phenotypic correlation structure between a few continuous and binary traits.
As with the independent contrasts method, this correlation can be assessed
through the covariance matrix of the multivariate Brownian diffusion for the
continuous latent liability.

In this paper we build upon the flexibility of the threshold model to create
a Bayesian phylogenetic model for the evolution of binary data, discrete
data with multiple ordered or unordered states and continuous data. We
explore recent developments in models for continuous trait evolution that
improve computational efficiency, and make the joint analysis of multiple
traits feasible in the presence of possible phylogenetic uncertainty (Lemey
et al., 2010; Pybus et al., 2012).
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Importantly, our approach estimates the between trait correlation while
simultaneously controlling for the correlation induced through the traits be-
ing shared by descent. As shown in one of our examples, failing to control for
the evolutionary history can confound inference of correlation between traits,
in analogy to false inference in association analysis when failing to control
for population substructure or relatedness among individuals.

2 Methods

Consider a dataset of N aligned molecular sequences S from related or-
ganisms and an N × P matrix Y = (Y1, . . . ,YN)t of P -dimensional trait
observations from each of the N organisms, such that Yi = (yi1, . . . , yiP )
for i = 1, . . . , N . We model the sequence data S using standard Bayesian
phylogenetics models (Drummond et al., 2012) that include, among other
parameters φ less germaine to our development here, an unobserved phylo-
genetic tree F . This phylogenetic tree is a bifurcating, directed graph with
N terminal nodes (ν1, . . . , νN) of degree 1 that correspond to the tips of the
tree, N−2 internal nodes (νN+1, . . . , ν2N−2) of degree 3, a root node ν2N−1 of
degree 2 and edge weights (t1, . . . , t2N−2) between nodes that track elasped
evolutionary time. Conditional on F , we assume independence between S
and Y, and refer interested readers to, for example, Suchard et al. (2001)
and Drummond et al. (2012) for detailed development of p(S,φ, F ).

The dimensions of Yi contain trait observations that may be binary, dis-
crete with multiple states, continuous or a mixture thereof. Importantly,
to handle the myriad of different data types, we assume that the obser-
vation of Y is governed by an underlying unobserved continuous random
variable X = (X1, . . . ,XN)t, called a latent liability, where each row Xi =
(xi1, . . . , xiD) ∈ RD with D ≥ P depending on the mixture of data types.
We assume that X arise from a multivariate Brownian diffusion along the
tree F (Lemey et al., 2010) for which we provide a more indepth description
shortly. At the tips of F , the realized values of Y emerge deterministically
from the latent liabilities X through the mapping function g(X).
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2.1 Latent Liability Mappings

When column j of Y is composed of binary data, these values map from
a single dimension j′ in X following a probit-like formulation in which the
outcome is one if the underlying continuous value is larger than a threshold
and zero otherwise. Without loss of generality, we take the threshold to be
zero, such that

yij = g(xij′) =

{
0 if xij′ ≤ 0
1 if xij′ > 0.

(1)

Alternatively, if column j of Y assumesK possible discrete states (s1, . . . , sK),
and they are ordered so that transitions from state sk to sk+2 must necessar-
ily pass through sk+1, we use a multiple threshold mapping (Wright, 1934).
Again, column j of Y maps from a single dimension j′ in the latent lia-
bilities X; however, the position of xij′ relative to the multiple thresholds
(a1, . . . , aK−1) determines the value of yij through the function

yij = g(xij′) =


s1 if xij′ < a1
sk if ak−1 ≤ xij′ < ak for k = 2, . . . , K − 1
sK if xij′ ≥ aK−1,

(2)

where a2, . . . , aK−1 in increasing values are generally estimable from the data
if we set a1 = 0 for identifiability. Let A = {ak} track all of the non-fixed
threshold parameters for all ordered traits.

When column j of Y realizes values in K multiple states, but there is
no ordering between them, we adopt a multinomial probit model. Here the
observed trait maps from K−1 dimensions in the latent liabilities X, and the
value of yij is determined by the largest component of these latent variables,

yij = g(xij′ , . . . , xi,j′+K−2) =

{
s1 if 0 = sup(0, xij, . . . , xi,j+K−2)
sk+1 if xik = sup(0, xij, . . . , xi,j+K−2),

(3)
where, without loss of generality, the first state s1 is the reference state.

Finally, if column j of Y contains continuous values, a simple monotonic
transform from R suffices. For example, for normally distributed outcomes,
yij = g(xij′) = xij′ .

2.2 Trait Evolution

A multivariate Brownian diffusion process along the tree F (Lemey et al.,
2010) gives rise to the elements of X. This process posits that the latent
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trait value of a child node νk in F is multivariate normally distributed about
the unobserved trait value of its parent node νpa(k) with variance tk ×Σ. In
this manner, the unknown D ×D matrix Σ characterizes the between-trait
correlation and the tree F controls for trait values being shared by descent.

Assuming that the latent trait value at the root node ν2N−1 draws a
priori from a multivariate normal distribution with mean µ0 and variance
τ0 × Σ and integrating out the internal and root node trait values (Pybus
et al., 2012), we recall that the latent liabilities X at the tips of F are matrix
normally distributed, with probability density function

p(X |V(F ),Σ,µ0, τ0) =
exp

{
−1

2tr
[
Σ−1 (X− µ0)

t (V(F ) + τ0J)−1 (X− µ0)
]}

(2π)NP/2 |Σ|N/2 |V(F ) + τ0J|P/2
,

(4)

where J is an N × N matrix of all ones and V(F ) = {vii′} is an N ×
N matrix that is a deterministic function of F . Let dF (u,w) equal the
sum of edge weights along the shortest path between node u and node
w in F . Then diagonal elements vii = dF (ν2N−1, νi), the time-distance
between the root node and tip node i, and off-diagonal elements vii′ =
[dF (ν2N−1, νi) + dF (ν2N−1, νi′)− dF (νi, νi′)] /2, the time-distance between the
root and the most recent common ancestor of tip nodes i and i′.

We consider the augmented likelihood for the trait data Y and latent
liabilities X and highlight a convenient factorization

p(Y,X |V(F ),Σ,A,µ0, τ0) = p(Y |X,A)× p(X |V(F ),Σ,µ0, τ0). (5)

The conditional likelihood p(Y |X,A) = 1(Y=g(X)) in factorization (5) is
simply the indicator function that X are consistent with the observations
Y. Consequentially, the augmented likelihood is a truncated, matrix normal
distribution.

Figure 1 illustrates schematic representations of the latent liability model
for all four types of data. In the figure, we include trees with N = 4 to 6 taxa,
annotated with their observed traits Y at the tree tips and plot potential
realizations of the latent liabilities X values along these trees that give rise
to Y.

We complete our model specification by assuming a priori

Σ−1 ∼Wishart(d0,T), (6)
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Figure 1: Realizations of the evolution of latent liabilities X and observed
trait Y for different types of data. Both tree and Brownian motion plots are
color coded according to the trait Y. Realization (a) represents a contin-
uous trait, (b) represents discrete binary data, (c) represents discrete data
with multiple ordered states, and (d) represents discrete data with multiple
unordered states, for which the latent liabilities X is multivariate. ** This
figure was created using code modified from R package phylotools (Revell,
2012).
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with degrees of freedom d0 and rate matrix T.
For the non-fixed threshold parameters A, we assume differences ak−ak−1

for each trait are a priori independent and Exponential(α) distributed, where
α is a rate constant. Finally, we specify fixed hyperparameters (µ0, τ0, d0,T, α)
in each of our examples.

2.3 Inference

We aim to learn about the posterior distribution

p(Σ, F,φ,A |Y,S) ∝ p(Y |Σ, F,A)× p(Σ)× p(A)× p(S,φ, F ) (7)

=

(∫
p(Y,X |Σ, F,A)dX

)
× p(Σ)× p(A)× p(S,φ, F ).

We accomplish this task through Markov chain Monte Carlo (MCMC) and
the development of computationally efficient transitions kernels to faciliate
sampling of the latent liabilities X. We exploit a random-scan Metropolis-
with-Gibbs scheme. For the tree F and other phylogenetic parameters φ
involving the sequence evolution, we employ standard Bayesian phylogenetic
algorithms (Drummond et al., 2012) based on Metropolis-Hastings parameter
proposals. Further, the full conditional distribution of Σ−1 remains Wishart
(Lemey et al., 2010), enabling Gibbs sampling.

MCMC transition kernels for sampling X are more problematic; tied into
this difficulty also lies computationlly efficient evaluation of Equation (4).
Strikingly, the solution to the latter points to new directions in which to
attack the sampling problem. As written, computing p(X |V(F ),Σ,µ0, τ0)
to evaluate a Metropolis-Hasting acceptance ratio appears to require the
high computational cost of O(N3) involved in forming (V(F )+ τ0J)−1. Such
a cost would be prohibitive for large N when F is random, necessiating
repeated inversion. This is one reason why previous work has limited itself
to fixed, known F . However, we follow Pybus et al. (2012), who develop a
dynamic programming algorithm to evaluate density (4) in O(N) that avoids
matrix inversion. Critically, we extend these algorithmic ideas in this paper
to construct computationally efficient sampling procedures for X.

Pybus et al. (2012) propose a post-order tree traversal that visits each
node u in F , starting at the tips and ending at the root. For the example
tree in Figure 2, one possible post-order traversal proceeds through nodes
{1 → 2 → 4 → 3 → 5}. Let Xu for u = N + 1, . . . , 2N − 1 imply now
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Figure 2: Example N = 3 tree to illustrate pre- and post-order traversals for
efficient sampling of latent liabilities X = (X1,X2,X3)

t.

hypothesized latent liabilities at the internal and root nodes of F . Then, at
each visit, one computes the conditional density of the tip latent liabilities
{X}post

u that are descendent to node u given Xpa(u) at the parent node of
u by integrating out the hypothesized value Xu at node u. For example,
when visiting node u = 4 in Figure 2, one considers the conditional density
of (X1,X2) |X5. Each of these conditional densities are proportional to a
multivariate normal density, so during the traversal it suffices to keep track
of the partial mean vector mpost

u , partial precision scalar ppost
u and remainder

term ρu that characterize the conditional density. We refer interested readers
to the Supplementary Material in Pybus et al. (2012) for further details.

Building upon this algorithm, we identify that it is possible and practi-
cal to generate samples from p(Xi |X(−i),V(F ),Σ,µ0, τ0) for tip νi without
having to manipulate V(F ) via one additional pre-order traversal of F . This
enables us to exploit p(Xi |X(−i),V(F ),Σ,µ0, τ0) as a proposal distribution
in an efficient Metropolis-Hastings scheme to sample Xi, since the distribu-
tion often closely approximates the full conditional distribution of Xi.

To ease notation in the remainder of this section, we drop explicit depen-
dence on V(F ), Σ, µ0, τ0 in our distributional arguments. Further, let {X}pre

u

collect the latent liabilities at the tree tips that are not descendent to node u
for u = 1, . . . , 2N−1, such that {X}pre

u ∪{X}post
u = X and {X}pre

u ∩{X}post
u = ∅.

Notably, {X}pre

i = X(−i) and {X}pre

2N−1 = ∅. With these goals and definitions
in hand, we find p(Xi |X(−i)) recursively.

Consider a triplet of nodes in F such that node u has parent pa(u) = w
that it shares with sibling sib(u) = v. For example, in Figure 2, u = 1, v = 2
and w = 4 is one of two choices. Because of the conditional independence
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structure of the multivariate Brownian diffusion process on F , we can write

p(Xu | {X}pre

u ) =

∫
p(Xu |Xpa(u)) p(Xpa(u) | {X}pre

pa(u), {X}
post

sib(u)) dXpa(u), (8)

where Equation (8) returns the desired quantity when i = u and the first term
of the integrand is a multivariate normal density MVN

(
Xu ; Xpa(u), (tuΣ)−1

)
centered at Xpa(u) with precision (tuΣ)−1. The second term requires more
exploration

p(Xpa(u) | {X}pre

pa(u), {X}
post

sib(u)) =
p(Xpa(u), {X}post

sib(u) | {X}
pre

pa(u))

p({X}post

sib(u) | {X}
pre

pa(u))

∝ p({X}post

sib(u) |Xpa(u)) p(Xpa(u) | {X}pre

pa(u)),(9)

where the normalization constant does not depend on Xpa(u) and we fortu-
itously have determined that the probability p({X}post

sib(u) |Xpa(u)) is propor-

tional to MVN
(

Xpa(u) ; mpost

sib(u), p
post

sib(u)Σ
−1
)

during the post-order traversal.

Substituting Equation (9) in Equation (8) furnishes a set of recursive
integrals down the tree

p(Xu | {X}pre
u ) ∝

∫
p(Xu |Xpa(u)) p({X}post

sib(u) |Xpa(u)) p(Xpa(u) | {X}pre

pa(u)) dXpa(u).

(10)

To solve the set of integrals in (10), we recall that p(X2N−1 | {X}pre

2N−1) =
p(X2N−1) is MVN ( X2N−1 ;µ0, (τ0Σ)−1) and so define pre-order, partial mean
vector mpre

2N−1 = µ0 and partial precision scalar ppre

2N−1 = 1/τ0. Since the
convolution of multivariate normal random variables remains multivariate
normal, we identify that p(Xu | {X}pre

u ) is MVN
(

Xu ; mpre
u , p

pre
u Σ−1

)
where

pre-order, partial mean vectors and precision scalars unwind through

mpre

u =
ppost

sib(u)m
post

sib(u) + ppre

pa(u)m
pre

pa(u)

mpost

sib(u) + mpre

pa(u)

, and

1

ppre
u

= tu +
1

ppost

sib(u) + ppre

pa(u)

, (11)

until we hit tip node i. With a simple algorithm to compute the mean and
precision of the full conditional p(Xi |X(−i),V(F ),Σ,µ0, τ0) at our disposal,
we finally turn our attention toward a Metropolis-Hastings scheme to sam-
ple Xi. The algorithm must only generate samples for the latent liabilities
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Xi(−c) corresponding to the discrete traits, since the map function g(·) fixes
the latent liabilities Xic for all the continuous traits. Thus we consider the
proposal distribution p(Xi(−c) |Xic,X(−i),V(F ),Σ,µ0, τ0), which is obtained
from density p(Xi |X(−i),V(F ),Σ,µ0, τ0) by further conditioning on the
fixed liabilities Xic. This conditional distribution is MVN ( Xic ; mcond

i , ppre

i Wcc),
where

mcond

i = mpre

i(−c) −W−1
cc Wc(−c)

(
Xi(−c) −mpre

i(−c)

)
. (12)

Here the vector mpre

i(−c) = (mpre

i(−c),m
pre

ic ) is partitioned according to corre-
spondence to continuous traits, as is the precision matrix for the diffusion
process

Σ−1 =

(
W(−c)(−c) W(−c)c
Wc(−c) Wcc

)
. (13)

Several approaches compete for generating truncated multivariate normal
random variables, including rejection sampling (Breslaw, 1994; Robert, 1995)
and Gibbs sampling (Gelfand et al., 1992; Robert, 1995) possibly with data
augmentation (Damien and Walker, 2001). For the examples we explore
in this manuscript, the dimension D of Xi can be large, ranging up to 54
with N = 360 tips, with occasionally high correlation in Σ. Gibbs sampling
can suffer from slow convergence in the presence of high correlation between
dimensions. Consequentially, we explore an extension of rejection sampling
that involves a multiple-try Metropolis (Liu et al., 2000) construction. We

simulate up to R draws X
(r)
i ∼ p(· |X(−i),V(F ),Σ,µ0, τ0). For draw X

(r)
i , if

p(X
(r)
i |Yi,A) 6= 0, then we accept this value as our next realization of Xi.

The Metropolis-Hastings acceptance probability of this action is 1. If all R
proposals return 0 density, the MCMC chain remains at its current location.

In our largest example, we evaluate one approach to select R. We start
with a very large R = 10000 and observe that most proposals that lead to
state changes occur in the first 20 attempts; after 100 attempts, the resid-
ual probability of generating a valid sample becomes negligible. Thus, we
set R = 100 for future MCMC simulation. As MCMC chains converge to-
wards the posterior distribution, the probably of generating a valid sam-
ple approaches the 75 – 85% range in our examples. Finally, we employ a
Metropolis-Hastings scheme to sample A in which the proposal distribution
is a uniform window centered at the parameter’s current value with a tunable
length.
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2.4 Correlation Testing and Model Selection

To assess the phenotypic relationship between two specific components of
the trait vector Y, we look at the correlation of the corresponding elements
in the latent variable X. One straight-forward approach entertains the use
of the marginal posterior distribution of pair-wise correlation coefficients ρjj′
determined from Σ. As a simple rule-of-thumb, we designate ρjj′ significantly
non-zero if > 99% of its posterior mass falls strictly greater than or strictly
less than 0.

When scientific interest lies in formal comparison of models that involve
more than pair-wise effects, we employ Bayes factors. Possible examples
include identifying block-diagonal structures in Σ, comparing the latent li-
ability model to other trait evolution models and, as demonstrated in our
examples, state-ordering of multiple discrete traits.

The Bayes factor that compares models M0 and M1 can be obtained as

B01 =
p(Y,S|M0)

p(Y,S|M1)
, (14)

in which p(Y,S|M) is the marginal likelihood of the data under model M
(Jeffreys, 1935). Computing these marginal likelihoods is not straightfor-
ward, involving high dimensional integration. We adopt a path sampling
approach which estimates these integrals through numerical integration.

While estimating the Bayes factor directly by integrating along a path
that goes from model M0 to model M1 is possibly a good strategy for compar-
ing nested or closely related models, it does not present the same flexibility as
estimating individual marginal likelihoods. Individual marginal likelihoods
can be efficiently used for comparisons between multiple models. Addition-
ally, this strategy is better suited for comparisons between models defined
on different parameter spaces. For this reason, we pursue the latter.

To estimate the marginal likelihoods in (14), we follow Baele et al. (2012)
in considering a geometric path qβ(Y,S; X,θ) that goes from a normalized
source distribution q0(Y,S; X,θ) to the unnormalized posterior distribution
p(Y,S|X,θ)p(X,θ). Here both distributions are defined on the same pa-
rameter space, and θ = {Σ, F,φ,A} collects all model parameters. The
path sampling algorithm employs MCMC to numerically compute the path
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integral

log(p(Y,S|M)) =

∫ 1

0

Eqβ [log(q1(Y,S; X,θ))− log(q0(Y,S; X,θ))] dβ.

(15)
A natural choice for the source distribution is the prior p(X,θ). However, due
to truncations in the distribution of X induced by the map function g(·), the
path from the prior to the unnormalized posterior is not continuous. Since
continuity along the whole path is required for (15) to hold, we propose here
a different destination distribution that leads to a continuous path. Let

q0(Y,S; X,θ) = p(X|Y,A)ψ(X)p(θ), (16)

where p(θ) is the prior, p(X |Y,A) = 1(Y=g(X)), and ψ(X) is a function
proportional to a conveniently chosen matrix normal distribution. The pro-
portionality constant of ψ(X) is selected to guarantee∫

p(X |Y,A)ψ(X)dX = 1, (17)

and thus a normalized source distribution q0(Y,S; X,θ).
The choice of function ψ(X) = ψ∗(X)/Q(Y,A) is central to the success of

this path sampling approach. We select the matrix normal distribution ψ∗(X)
so that all entries in X are independent, and consequently the proportionality
constant is

Q(Y,A) =
N∏
i=1

P∏
j=0

Q(yij,A) =
N∏
i=1

P∏
j=0

∫
p(Xij∗ | yij,A)ψ∗(Xij∗)dXij∗ , (18)

where Xij∗ are all the entries of the latent liability corresponding to yij.
For binary traits, Xij∗ is univariate, and ψ(Xij∗) is proportional to a

normal distribution whose mean X̄ij∗ and variance σ̄2
ij∗ match those of the

posterior distribution of Xij∗ . Considering that the map function g(·) re-
stricts Xij∗ to be larger (or smaller) than 0, and that X̄ij∗ always belongs to
this valid region, the proportionality constant for a binary trait is

Q(Yij,A) = Φ

(
|X̄ij∗|
σ̄ij∗

)
, (19)

where Φ (·) is the cumulative distribution function (CDF) of the standard
normal distribution.
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For traits with K ≥ 3 ordered states, Xij∗ is also univariate, and we
make the same choice for mean and variance parameters of ψ∗(Xij∗). The
map function depends on the threshold parameters A, that must be fixed for
this analysis. If al(yij) and au(yij) denote respectively the lower and upper
threshold for the valid region mapped from yij, then the proportionality
constant becomes

Q(yij,A) = Φ

(
au(yij)− X̄ij∗

σ̄ij∗

)
− Φ

(
al(yij)− X̄ij∗

σ̄ij∗

)
. (20)

When yij assumes one of the extreme states s1 and sK , then the normalizing
constant considers the appropriate open interval.

For discrete data with K ≥ 3 unordered states, yij maps from K − 1
dimensions in Y. For simplicity, ψ∗(Xij∗) is a standard multivariate normal
distribution, and the proportionality constant is

Q(yij,A) =

{
2−(K−1) if yij = s1
1−2−(K−1)

K−1 if yij = s2, · · · , sK .
(21)

Finally, for continuous yij we simply have ψ(Xij∗) = yij.

Implementation

The methods described in this paper have been implemented in the software
package BEAST (Drummond et al., 2012).

3 Real-World Examples

We present applications of our model to three problems in which researchers
wish to assess correlation between different types of traits while controlling
for their shared evolutionary history.

3.1 Antimicrobial resistance in Salmonella

Development of multidrug resistance in pathogenic bacteria is a serious pub-
lic health burden. Understanding the relationships between resistance to
different drugs throughout bacterial evolution can help shed light on the
fundamentals of multidrug resistance on the epidemiological scale.
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We use the phylogenetic latent liability model to assess phenotypic cor-
relation between resistance traits to 13 different antibiotics in Salmonella.
We analyse 248 isolates of Salmonella Typhimurium DT104, obtained from
animals and humans in Scotland between 1990 and 2011 (Mather et al.,
2013). For each isolate, we have sequence data and binary phenotypic data
indicating the strains resistance status to each of the 13 antibiotics.

To assess which resistance traits are associated we examine the correlation
matrix of the latent liabilities X. Because the trait data are binary, the
underlying latent variables Xi for this problem are D = 13-dimensional,
with each entry corresponding to resistance to one antibiotic. To highlight
the main correlation structure of Σ, Figure 3 presents a heatmap of the
significantly non-zero pair-wise correlation coefficients. This matrix contains
only positive correlations, consistent with genetic linkage between resistance
traits. Additionally, the significant correlations form a block-like structure.
Table S1 presents posterior mean and 95% BCI estimates for all correlations
between resistance traits. Estimates of non-significant correlations tend to
be slightly positive, with the exception of correlations involving resistance to
ciprofloxacin.

Our analysis reveals a block of strong positive correlations between re-
sistance traits to the antibiotics tetracycline, ampicillin, chloramphenicol,
spectinomycin, streptomycin and sulfamethoxazole (sulfonamide), similar to
those found using a simpler model (Mather et al., 2012). We estimate a
posterior probability > 0.9999 for positive correlation between all these re-
sistance traits simultaneously. This block is consistent with the Salmonella
genomic island 1 (SGI-1), a 43-kb genomic island conferring multidrug resis-
tance. Among the drugs considered here, SGI-1 confers resistance to these 6
antibiotics (Boyd et al., 2001).

Another pair of antibiotic resistance traits that we infer to be strongly
correlated are gentamicin and netilmicin, with a 95% BCI of [0.80, 0.98].
These drugs are both aminoglycoside antibiotics, and the same genes may
confer resistance to both antibiotics. These drugs also appear correlated with
some of the resistance traits connected to SGI-1.

Although previous analysis of this dataset has revealed that most of the
evolutionary history that these data capture was spent in human hosts,
human-to-animal or animal-to-human transitions do occur across the tree
(Mather et al., 2013). We investigate whether these interspecies transitions
also correlate with antibiotic resistance. To do so, we include host species
(animal/human) as a 14th binary trait under in latent liability model. None
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Figure 3: Heatmap of posterior means for significantly non-zero correlations
between antibiotic resistance traits for the latent liability model. Darker
colors indicate stronger positive correlation.
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Figure 4: Heatmap of the posterior mean for the phenotypic correlation of
columbine floral traits in the latent liability model. Darker colors indicate
stronger correlations; shades of red for positive correlation and blue for neg-
ative correlation.

of the pair-wise correlations are significantly non-zero given our rule-of-thumb
definition. Table S2 contains estimated correlations to the host trait.

3.2 Columbine flower evolution

The flowers of columbine genus Aquilegia have attracted several different pol-
linators throughout their evolutionary history. One question that remains is
the exact role the pollinators play in the tempo of columbine flower evolution
(Whittall and Hodges, 2007). Since different pollinator species demonstrate
distinct preferences for flower morphology and color, we investigate here how
these traits correlate over the evolutionary history of Aquilegia.

We analyse P = 12 different floral traits for N = 30 monophyletic pop-
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ulations from the genus Aquilegia. Of these traits, 10 are continuous and
represent color, length and orientation of different anatomical features of the
flowers. Additionally, we consider a binary trait that indicates presence or
absence of anthocyanin pigment, and another discrete trait that indicates the
primary pollinator for that population. As the prevailing hypothesis is that
evolutionary transitions from bumblebee-pollinated flowers (Bb) to those pri-
marily pollinated by hawkmoths (Hm) are obligated to pass through an in-
termediate stage of hummingbird-pollination (Hb) (Whittall and Hodges,
2007), we treat pollinators as ordered states, but we formally test alterna-
tive orderings. Taken together, this results in a latent liability model with
D = 12 dimensions. As sequence data are not readily available for all the taxa
included in this analysis, we consider for our analysis the same fixed phyloge-
netic tree used in Whittall and Hodges (2007). The ability to either condition
on a fixed phylogeny F or integrate over a random F in a single framework
presents a strength in a field that has traditionally focused on either genetic
or phenotypic data alone and joint datasets are an emerging addition. Whit-
tall et al. (2006) and Whittall and Hodges (2007) have published the original
data, that are available at (http://bodegaphylo.wikispot.org).

To draw inference on the phenotypic correlation structure of these traits,
we focus on the 12 × 12 variance matrix Σ of the Brownian motion process
that governs the evolution of X on the tree. We report posterior mean
and BCI estimates for all pair-wise correlations in Σ in Table S3. Figure 4
presents a heatmap of the posterior means of the correlations. Our analysis
reveals a strong block correlation structure between the floral traits. We find
one block of positive correlation between chroma of both spur and blade and
the presence of anthocyanins. All other color and morphological traits in the
analysis form a second block of positive correlation. Additionally, phenotypic
correlation between the first and second trait blocks are all negative.

Whittall and Hodges (2007) highlight the relationship between changes in
pollinators and increases in floral spur length. They argue that flowers with
long spurs are only pollinated by animals with the long tongues required to
access and feed on the nectar contained at the end of the spur. We estimate
a positive correlation between pollinators and spur length, with a posterior
mean of 0.76, and a 95% BCI of [0.60; 0.88], consistent with their findings.

The pollinator trait has K = 3 ordered states and, under the latent
liability model, its outcome is determined by the relative position of one
dimension in X to threshold parameters a1 = 0 and a2. Consequently, our
estimate of a2 is instrumental in determining the relative probabilities of the
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Table 1: Model selection for the ordering of bumblebee (Bb), hummingbird
(Hb) and hawkmoth (Hm) pollinators in Columbine flowers.

log Marginal log Bayes Factor
Order Likelihood Hm-Bb-Hb Hb-Hm-Bb unordered

Bb-Hb-Hm -11.2 9.4 14.2 24.8
Hm-Bb-Hb -20.6 - 4.8 15.3
Hb-Hm-Bb -25.4 - - 10.5
unordered -36.0 - - -

states in our model and the inferred trait state at the root of the tree. We
estimate a2 to have a posterior mean of 3.00 with a 95% BCI of [1.14; 5.34].

The bumblebee ↔ hummingbird ↔ hawkmoth (Bb-Hb-Hm) ordering is
only one of several, and alternative hypotheses regarding pollinator adap-
tation have been proposed (van der Niet and Johnson, 2012).We examine
whether the data support this ordering, or if there is another model with
a better fit. We use Bayes factors to compare four different models for the
pollinator trait: the Bb-Hb-Hm, Hb-Hm-Bb, Hm-Bb-Hb, and an unordered
formulation. Note that there are only three possible orderings for a K = 3
state ordered latent liability model since, for symmetric models such as Bb-
Hb-Hm and Hm-Hb-Bb, inverting the order leads to equivalent models with
inverted signs for the latent traits. The unordered model leads to a bivari-
ate contribution to latent liability X. Table 1 presents the path sampling
estimates for the marginal likelihood of each model and the corresponding
Bayes factors. These comparisons indicate that, in agreement with Whittall
and Hodges (2007), the data strongly support the Bb-Hb-Hm model.

Our latent liability model estimates correlation between traits while ac-
counting for shared evolutionary history. To evaluate the effect that phylo-
genetic relatedness has on our estimates, we estimated the same correlation
under a latent liability model with no phylogenetic structure. In this analy-
sis, a star tree with identical distance between all taxa was used. Table S4
presents these correlation estimates and the corresponding 95% BCI. Com-
paring these results to the original latent liability analysis that accounts for
shared evolutionary history, we noticed that most estimates were consistent
between the both analyses, with a mean absolute difference for posterior
means of correlation of 0.11. However, for three of the pairwise correlations
(anthocianins × orientation, orientation × blade length, spur length × spur
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hue) the BIC‘s for the model that does not account for shared evolution did
not contain the posterior mean for the evolutionary model. In particular,
the evolutionary model estimates a significantly weaker correlation between
orientation and anthocianins (posterior mean of -0.45) than does the model
that does not account for shared history, with a 95% BCI of [-0.78; -0.46].

3.3 Correlation within and across influenza epitopes

In influenza, the viral surface proteins hemagglutinin (HA) and neuraminidase
provide the antigenic epitopes to which the host immune system responds.
Rapid mutation of these proteins to evade immune response, known as anti-
genic drift, severely challenges the design of annual influenza vaccines. The
epitope regions in these genes are particularly important to the drift process
(Fitch et al., 1991; Plotkin and Dushoff, 2003). In this context, we are in-
terested in studying the phenotypic correlation among the amino acid sites
of these epitopes, because the identification of correlated amino acids grants
insight into the dynamics of antigenic drift in influenza.

The HA protein has five identified epitopes A-E, each containing around
20 amino acids. We focus on epitopes A and B, because these are the most
immunologically stimulating for most influenza strains (Bush et al., 1999;
Cox and Bender, 1995). We analyse sequence data for 180 strains of hu-
man H3N2 influenza dating from 1995 to 2012, obtained from the Influenza
Research Database (http://www.fludb.org) and selected to promote geo-
graphic diversity. We use the amino acid information in epitope A and B for
the latent liability part of the model, and the remaining sequence data in a
standard phylogenetic approach to inform the tree structure.

Of the 40 amino acid sites in epitopes A and B of the HA protein, we
find 17 to be variable in our sample. The number of unique amino acids in
these sites varies between K = 2 and K = 5. Through a preliminary survey
of a larger sample of influenza strains (900 samples) from the same period we
find that all polymorphic sites for which the major allele frequency is < 99%
are also variable in our 180 sequence sample, strongly suggesting that our
limited dataset contains information about all the common variant sites in
epitopes A and B during this period.

We model these data with the latent liability model for multiple unordered
states. For each amino acid site, we have K − 1 corresponding latent traits,
yielding a total of D = 32 latent dimensions in X. Without loss of generality,
we take the amino acid observed in the oldest sequence of the sample as the
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Figure 5: (a) Heatmap of the posterior mean for the non-zero phenotypic
correlation of amino acids in H3N2 epitopes A and B in the latent liability
model. Darker colors indicate stronger correlation. We list the sites as fol-
lows: the number of the amino acid site in the aligned sequence; the one letter
code for the reference amino acid for the site, in parentheses; the code for the
amino acid corresponding to the latent trait; and the epitope to which the
site belongs.(b) Network representation of the correlation structure of anti-
genic sites. Yellow nodes represent sites from epitope A, and blue ones from
epitope B. Edges represent significant correlations, edge thickness represent
correlation coefficient, and node sizes are proportional to network centrality.
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reference state, and each entry of the latent liability column corresponds to
one of the other amino acid variants for that site.

To assess the phenotypic correlation structure between sites in epitopes
A and B, we estimate the correlation matrix associated with Σ of the la-
tent liability X. Figure 5 presents pairwise correlations for the significantly
non-zero estimates. The arrangement of states follows the order of sites in
the primary amino acid sequence, even though the sites are not necessarily
contiguous in folded protein-space.

Our analysis suggests a group of 10 sites that are strongly correlated with
each other. This group includes all the sites identified by Koel et al. (2013)
as being the major determinants of antigenic drift that are polymorphic in
our sample. We do not find preferential correlations within epitopes

Table S5 presents a list with point estimates and 95% BCI of correlations
whose credible intervals do not include zero. All correlations in this list are
positive and point estimates range from 0.6 to 0.74. Since, for all sites the
oldest variant was taken as the reference state, a positive correlation between
two latent traits could be seen as association between novel amino acids in
both sites. The strongest evidence for correlation was found between sites
158(E)K and 156(K)Q, with an estimated correlation coefficient of 0.74 (95%
BIC of [0.40, 0.93]). Koel et al. (2013) identified these specific mutations in
both sites as being the main drivers of major antigenic change taking place
between 1995 and 1997. Mutations in sites 159 and 189 are another example
of a pair of substitutions identified as driving major antigenic change taking
place in the late 1980’s. Even though the oldest sequence in our sample
only dates back to 1995, correlation between these two sites remains strongly
supported by our analysis, with an estimated correlation coefficient between
159(Y)F and 189(S)N of 0.69 (95% BIC of [0.27, 0.92]).

4 Discussion

We present the phylogenetic latent liability model as a framework for assess-
ing phenotypic correlation between different types of data. Through our three
applications, we illustrate the use of our methodology for binary data, dis-
crete data with multiple ordered and unordered states, continuous data and
combinations thereof. The applications exemplify current biological prob-
lems which our method can naturally address. Additionally, we show how
the model can be used to reveal the overall phenotypic correlation struc-
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ture of the data, and we provide tools to test hypotheses about individual
correlations and for general model testing.

The threshold structure of the phylogenetic latent liability model renders
it non-Markovian for the discrete traits. Both Felsenstein (2005, 2012) and
Revell (2013) argue that this is actually a valuable property for many pheno-
typic traits for which the probability of transitioning between states should
vary depending on the time spent at that state. Based on this argument,
Revell (2013) investigates ancestral state reconstruction for univariate or-
dered traits under the threshold model, and finds consistent reconstructions
for simulated data. For our model, it would be straightforward to perform
ancestral state estimation for multivariate traits of all types considered, be-
cause the inference machinery is already implemented in BEAST.

A problem with many comparative biology methods for phenotypic corre-
lation is the requirement for a fixed tree. Through sequence data, our model
can account for the uncertainty of tree estimation by integrating over the
space of phylogenetic trees, as we do for the influenza epitope and antibiotic
resistance examples.

As a caveat for this type of model, Felsenstein (2012) points out a general
lack of power, arguing that for realistically sized datasets confidence intervals
would be too large. This issue could be magnified on discrete traits, since the
correlations are an extra step removed from the data. In our applications,
the size of our posterior credible intervals are relatively large for intervals
constrained between -1 and 1. However, this did not prevent us from re-
covering general correlation patterns and identifying important correlations.
Moreover, for the columbine flower example, we find no difference in aver-
age size of credible intervals for correlations including latent traits and those
between two continuous traits.

Analytically integrating out continuous trait values at root and internal
nodes to compute the likelihood of Brownian motion on a tree leads to sig-
nificant improvement in efficiency of inference methods (Pybus et al., 2012).
This strategy computes successive conditional likelihoods by a post-order tree
traversal in a procedure akin to Felsenstein’s peeling algorithm (Felsenstein,
1981). Its effectiveness has been explored in similar contexts in univariate
(Novembre and Slatkin, 2009; Blum et al., 2004) and multivariate Brown-
ian motion (Freckleton, 2012) and to estimate the Gaussian component of
Lévy processes (Landis et al., 2013). A related post-order traversal approach
improves computation in the context of phylogenetic regressions for some
Gaussian and non-Gaussian models (Ho and Ané, 2014). Unfortunately, a
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similar solution is not available to marginalize the latent liability X at the
tips of the tree in our model. Consequently this integration must be per-
formed by MCMC. Integration for X is a critical part of our method, and for
large datasets, mixing becomes a problem. To address this issue, we present
an efficient sampler that, at each iteration, updates all components of the
multivariate latent variable X at one tip of the tree. This algorithm builds
upon the dynamic programming strategy of Pybus et al. (2012) to obtain a
truncated multivariate normal as the full conditional distribution of Xi. Even
though sampling from this truncated distribution requires an accept/reject
step that could be highly inefficient, we find that as the chain approaches
equilibrium, rejection rates become small.

In our analysis of influenza epitopes, we set the oldest amino acid observed
for each site as the reference state, and for each of the remaining variants we
assigned an entry in X. For the multiple unordered states model, this choice
results in a reduction of dimensionality in the problem, but is done mainly to
improve identifiability. However, this procedure breaks the symmetry of the
model and complicates interpretability of correlations. In fact, a correlation
between two entries of the latent trait X cannot be directly translated as a
correlation between the states they represent, because variations in an entry
of X are linked to all other states for that trait through the reference state.
Despite this caveat, general statements about the correlation structure of
the data can still be made based on the latent liability X, as we show in the
influenza epitopes application.

In this context, different model choices could be used to change the in-
terpretational links between correlations in X and in the data. Hadfield and
Nakagawa (2010) briefly discuss a multinomial phylogenetic mixture model
where a latent variable determines the probability of the multinomial out-
come. They consider the common choice of constraining the latent variable
to a simplex by setting the sum of its components to one. This makes the
value of the latent trait immediately interpretable as probabilities, however
it further complicates interpretability of the correlations. A possible alterna-
tive to address this issue is to model the evolution of X in the latent liability
model with a central tendency such as the Ornstein-Uhlenbeck process. It
remains to be investigated whether this change would improve identifiability,
eliminating the need to impose constraints on the model.

The Bayesian phylogenetic framework in which we integrate our model
easily lends itself to combination of different models. These could be phylo-
genetic models for demographic inference (Minin et al., 2008), methods for
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calibrating trees or relaxed clock models (Drummond et al., 2006). Addi-
tionally, we can explore the relaxed random walk (Lemey et al., 2010) to
get varying rates of trait evolution along different branches of the tree. The
latent liability model can easily be associated with these existing models to
provide comprehensive analyses.
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Table S2: Posterior mean and 95% Bayesian credible interval (BCI) estimates
for pairwise correlation between the host trait (Animal/Human) and the
different antibiotic resistance traits.

Correlation 95% BCI
Ampicillin 0.0349 [-0.2357, 0.3036]

Chloramphenicol -0.0610 [-0.3055, 0.1903]
Ciprofloxacin 0.1505 [-0.3313, 0.6099]

Gentamicin -0.3651 [-0.6893, -0.0086]
Kanamycin -0.1578 [-0.4641, 0.1715]

Furazolidone 0.0001 [-0.3131, 0.3098]
Nalidixic acid -0.0967 [-0.4199, 0.2439]

Netilmicin -0.3315 [-0.6551, 0.0145]
Spectinomycin -0.2696 [-0.5130, 0.0009]
Streptomycin -0.1392 [-0.4020, 0.1375]

Sulphamethoxazole 0.1399 [-0.2104, 0.4768]
Tetracycline -0.0142 [-0.2716, 0.2471]

Trimethoprim 0.0049 [-0.2888, 0.2976]
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Table S5: Posterior mean and 95% Bayesian credible
interval (BCI) estimates for significant correlations be-
tween sites in Influenza epitopes A and B.

Sites Correlation 95% BCI
1 [156(K)Q EpB, 158(E)K EpB] 0.7432 [0.3999, 0.9284]
2 [158(E)N EpB, 189(S)K EpB] 0.7365 [0.2806, 0.9499]
3 [144(V)N EpA, 158(E)K EpB] 0.7204 [0.3469, 0.9249]
4 [133(D)N EpA, 144(V)N EpA] 0.7180 [0.2908, 0.9391]
5 [159(Y)F EpB, 189(S)N EpB] 0.6913 [0.2655, 0.9174]
6 [144(V)I EpA, 156(K)Q EpB] 0.6883 [0.2880, 0.9161]
7 [133(D)N EpA, 158(E)K EpB] 0.6849 [0.2355, 0.9360]
8 [144(V)N EpA, 145(N)S EpA] 0.6826 [0.1411, 0.9304]
9 [131(A)T EpA, 159(Y)F EpB] 0.6792 [0.1932, 0.9353]

10 [145(N)S EpA, 188(D)Y EpB] 0.6726 [0.2276, 0.9137]
11 [144(V)N EpA, 188(D)Y EpB] 0.6640 [0.0368, 0.9332]
12 [144(V)N EpA, 156(K)Q EpB] 0.6602 [0.2393, 0.9076]
13 [159(Y)F EpB, 189(S)K EpB] 0.6586 [0.1364, 0.9346]
14 [156(K)H EpB, 159(Y)F EpB] 0.6585 [0.1583, 0.9204]
15 [158(E)K EpB, 188(D)Y EpB] 0.6534 [1.5e-05, 0.9262]
16 [144(V)N EpA, 144(V)D EpA] 0.6523 [0.0478, 0.9326]
17 [144(V)D EpA, 158(E)K EpB] 0.6516 [0.1447, 0.9094]
18 [131(A)T EpA, 156(K)H EpB] 0.6500 [0.1195, 0.9357]
19 [156(K)H EpB, 189(S)N EpB] 0.6381 [0.1477, 0.9119]
20 [144(V)N EpA, 156(K)H EpB] 0.6376 [0.0889, 0.9335]
21 [133(D)N EpA, 156(K)Q EpB] 0.6343 [0.1697, 0.9142]
22 [133(D)N EpA, 156(K)H EpB] 0.6328 [0.0869, 0.9432]
23 [145(N)S EpA, 156(K)H EpB] 0.6324 [0.0278, 0.9333]
24 [133(D)N EpA, 144(V)D EpA] 0.6320 [0.0886, 0.9170]
25 [144(V)I EpA, 158(E)K EpB] 0.6291 [0.1824, 0.8998]
26 [145(N)S EpA, 198(A)S EpB] 0.6195 [0.1026, 0.9115]
27 [156(K)H EpB, 198(A)S EpB] 0.6192 [0.0813, 0.9172]
28 [158(E)N EpB, 159(Y)F EpB] 0.6192 [0.0549, 0.9204]
29 [133(D)N EpA, 145(N)S EpA] 0.6190 [0.0058, 0.9267]
30 [189(S)K EpB, 193(S)Y EpB] 0.6138 [0.0330, 0.9231]
31 [131(A)T EpA, 189(S)N EpB] 0.6047 [0.0788, 0.9113]
32 [131(A)T EpA, 189(S)K EpB] 0.6030 [0.0881, 0.9200]

Continues on next page
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Table S5: Posterior mean and 95% Bayesian credible
interval (BCI) estimates for significant correlations be-
tween sites in Influenza epitopes A and B.

Sites Correlation 95% BCI
33 [144(V)D EpA, 156(K)Q EpB] 0.5898 [0.0680, 0.8939]
34 [159(Y)F EpB, 198(A)S EpB] 0.5780 [0.0158, 0.9013]
35 [145(N)S EpA, 158(E)K EpB] 0.5774 [0.0008, 0.8927]
36 [144(V)K EpA, 189(S)K EpB] 0.5738 [0.0089, 0.9101]
37 [131(A)T EpA, 158(E)N EpB] 0.5652 [0.0013, 0.9056]
38 [133(D)N EpA, 197(R)Q EpB] 0.5644 [0.0600, 0.8911]
39 [189(S)K EpB, 193(S)F EpB] 0.5149 [0.0128, 0.8652]
40 [131(A)T EpA, 193(S)F EpB] 0.4865 [0.0112, 0.8355]
41 [159(Y)F EpB, 193(S)F EpB] 0.4849 [0.0015, 0.8354]

-

*The code for sites is as follows: of the number of the amino acid site in the

aligned sequence; the one letter code for the reference amino acid for the site in

parenthesis; the code for the amino acid corresponding to the latent trait; and the

epitope to which the site belongs.
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