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ABSTRACT 

Synthesis and Hierarchical Structure of Functional Organic Materials 

by 

Brenden McDearmon 

 

The design and synthesis of new organic materials is necessary to meet society’s 

needs. A central tenant of material science is that function follows form. With this in 

mind: 1) a one-step procedure to a new versatile pentacyclic benzodibenzofuranquinone 

building block for organic electronic applications is developed; 2) the effect of side-chain 

topology on conjugated polymer interchain interactions, morphology, and optical 

properties are studied by comparing a novel macrocyclic benzodithiophene unit to its 

more traditional linear acyclic analogue; and 3) a short and modular synthetic route to 

functional and well-defined photocrosslinked bottlebrush networks is developed. All of 

three of these projects highlight how molecular architecture and design can be used to 

engineer macroscopic material properties and tailor function from form. In particular, 

conjugated polymers and organic electronics are an interesting class of materials wherein 

the electronic properties of the materials are dictated by several hierarchical orders of 

structure. The primary level of structure is the (co)monomer structure which dictates 

energetics of the polymer backbone. The aggregation, self-assembly, and interaction of 

these conjugated polymer chains then form higher-order structures which determine the 

overall material properties and device performance. Project 1 addresses this primary level 

of structure by developing simple inexpensive and versatile new building blocks for 

organic electronic materials. Project 2 studies how higher-order structure and properties 
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of organic electronic materials are impacted by primary molecular structure. This is done 

by comparing materials based on a macrocyclic benzodithiophene unit which disrupts 

conjugated polymer aggregation and interchain interactions to materials based on its 

acyclic linear analogue which does not. Project 3 examines this structure-property mantra 

through the lens of a different class of materials—soft compliant elastomeric bottlebrush 

networks. In bottlebrush networks, the macromolecular architecture of the bottlebrush 

polymers results in their soft and compliant mechanical properties. A concise and 

modular strategy for synthesizing well-defined and functional photocrosslinkable 

bottlebrush networks is demonstrated. With versatility in the monomer, macromonomer, 

bottlebrush polymer, and crosslinked bottlebrush network, these hierarchical levels of 

structure can be tailored and the resulting macroscopic mechanical and chemical 

properties can be tuned. This strategy makes these materials more accessible and enables 

further use of these bottlebrush materials for various applications in fields such as 

biomaterials. 
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I. Introduction 

A central tenant of material sciences is that structure begets function. In the field of 

biomacromolecules and proteins, this tenant is further codified by the primary, secondary, 

tertiary, and quaternary structure nomenclature describing the monomer sequence, local 

secondary structure of the backbone, global structural fold of the protein, and inter-

protein interactions. This nomenclature describes the hierarchical assembly of these 

macromolecules and underscores the importance of molecular architecture on the 

resulting macromolecular structure, interactions, and material properties. Likewise, the 

field of synthetic organic materials can be viewed through this lens—monomer design 

and monomer sequence being the primary level of structure; polymer architecture and 

backbone connectivity being like the secondary and tertiary levels of structure; and, 

finally, physical association, self-assembly, and aggregation of these molecules and 

macromolecules into macroscopic materials being the quaternary level of structure. 

Through molecular and macromolecular design, these hierarchical levels of structure can 

be used to improve functionality, probe and test our understanding of the underlying 

physics, and engineer new materials. By designing novel monomer structures, 

characterizing their hierarchical assembly, and providing simple and versatile synthetic 

platforms, this dissertation seeks to establish new building blocks for material science, 

probe the evolution of structure to function, and provide a simple useful framework for 

others to build off this work. Work in this dissertation can be split into two classes of 

materials: 1) organic electronic materials wherein the bulk electrical and optical 

properties are the material properties of interest, and 2) elastic and compliant bottlebrush 
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networks wherein the bulk mechanical and chemical properties are the material properties 

of interest. In each of these two classes of materials, the material properties of interest are 

dictated by the hierarchical levels of structure from which they are built.  

Organic electronics are a class of materials which combine the mechanical properties 

and processability of polymers and small molecules with the electrical and optical 

properties of semiconductors. Typical polymers such as polystyrene in plastic knives and 

forks, polyethylene in plastic grocery bags, and polyvinyl chloride (PVC) in pipes are 

electrically insulating. When a reasonable voltage is applied across such a material, no 

current results. The insulating property of these materials is a result of the electrons in 

these materials being tightly held in covalent bonds resulting in a low dielectric constant, 

large band gap, and insulating character. Organic electronic materials are capable of 

shrinking this band gap to give rise to semiconducting properties by delocalizing 

electrons in sp2 π-conjugated frameworks. As the π-conjugated framework gets larger and 

larger the energy of the band gap decreases until an effective conjugation length is 

reached. This is similar to the decrease in spacing between energy levels for a quantum 

mechanical particle in a box with increasing length of the box1. This for example is why 

polystyrene with its π electrons in isolated benzene rings is insulating whereas poly(p-

phenylene vinylene) which has the benzene units electrically coupled through sp2 

hybridized bonds has a lower band gap making it semiconducting (Figure 1).  
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With a sufficiently narrow band gap, organic electronic materials possess new material 

properties and available applications relative to non-semiconducting plastics. Such 

properties and applications include optical band gaps in the visible range enabling the 

creation of organic photovoltaic devices and organic light emitting diodes. Organic 

electronic materials offer several advantages over more traditional inorganic 

semiconducting materials. Organic electronic materials can be synthesized from more 

abundant elements such as carbon, nitrogen, sulfur, and hydrogen utilizing the tools of 

organic chemistry to create a variety of materials with finely tuned electrical and 

mechanical properties, and such materials can be solution processed thereby improving 

the economic scalability of large area devices. Conjugated polymers can be roughly 

separated into two parts—1) the aromatic backbone which delocalizes charge and, to first 

order approximation, establishes the electronic properties of the material and 2) the side-

chains which promote solubility and processability of the material3,4,5,6. However, as 

noted the backbone only dictates the electronic properties of the material to a first order 

approximation, and the aggregation and interaction of these conjugated polymers in the 

solid state are critical to understanding and developing high performance materials. 

Typically, alkyl side-chains are used to promote solubility of the conjugated backbone 

Figure 1: Comparison of insulating polystyrene and semiconducting poly(p-

phenylene vinylene). 
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and enable solution processability. This leads to materials which can roughly be viewed 

as semiconducting molecular wires embedded in a matrix of grease. Obviously, the way 

in which these semiconducting wires overlap and the amount of this ‘grease’ is critical to 

a conjugated material’s ability to transport charge over a macroscopic length scale. 

However, without side-chains (i.e. without this ‘grease’), most conjugated polymers 

would be insoluble and non-processable. Chapter III of this dissertation deals with the 

development of novel pentacyclic benzodibenzofuran building blocks for organic 

electronics while chapter IV studies the aggregation and self-assembly of conjugated 

polymers using a novel cyclic benzodithiophene to disrupt π-stacking effecting both the 

thermodynamic and geometrical constraints of the self-assembly and aggregation 

process. 

 Bottlebrush polymers are another class of materials with hierarchical structure 

which controls their unique properties. Bottlebrush polymers are polymers wherein the 

repeat units are themselves also polymers (Figure 2). 

 

Figure 2: Schematic depiction of a bottlebrush polymer. 

There are multiple length scales relevant to properties of a bottlebrush material: 1) A 

backbone length scale dictated by the chemical repeat unit, size of the macromolecular 

side-chain, and linear repeat density of the macromolecular side chains along the 
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backbone; 2) A side-chain length scale dictated by the chemical identity of the 

macromolecular side-chains as well as the repeat density of the side-chains along the 

backbone; and 3) macroscopic length scales wherein the bulk properties are dictated by 

these backbone and side-chain length scales as well as any higher order aggregation and 

structuring. For example, for long side-chains that have a high linear density along the 

backbone, steric repulsion between the side-chains force the side-chains and backbone to 

extend and stiffen which dramatically effects these material’s properties relative to their 

corresponding non-bottlebrush analogues7. In particular, bottlebrush networks are 

materials made up of sparsely crosslinked bottlebrushes. Owing to the large size of 

bottlebrushes, the distance between crosslinking sites can be very large. Using low Tg 

macromolecular side-chains in these bottlebrush networks to fill in the volume between 

these crosslinking sites in much the same way solvent is used to fill in the volume between 

sparsely crosslinked polymer gels can result in super-soft and compliant materials with 

moduli comparable to nature biomaterials8. Bottlebrush materials therefore offer another 

example of how controlling the hierarchical structure from molecule, to polymer, polymer 

architecture, and higher order macromolecular assembly can be used to control material 

properties. Chapter V of this dissertation provides a simple and versatile approach to well-

define and functional bottlebrush networks with soft and compliant material properties. 
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II. Case Studies in Conjugated Polymer Design  

Organic electronics offer the promise of low cost, light weight, solution processed, 

plastic electronics. With a wide range of applications including light emitting devices, 

light harvesting devices, and transistors an array of materials have been developed over 

the last several decades. Fundamental to the development and understanding of high 

performance materials in these device applications has been the development of our 

understanding of how molecular structure impacts morphology leading to the 

macroscopic material properties which enable these high-performance devices. This 

structure-morphology-performance paradigm is ubiquitous within the field of organic 

electronics and serves to explain material properties such as field effect mobilities, power 

conversion efficiencies, and fluorescent intensity. This structure-morphology-

performance paradigm is well-studied by probing the effect of a minor structural variation 

such as the difference in side-chain architecture or heteroatom substitution on 

morphology and the resulting material performance. Such studies help to develop design 

rules which guide the future development of high performance materials. 

PBDTTPD and Linear vs Branched Side-Chains 

Originally synthesized in the Leclerc10
, Jen11, and Fréchet12 groups, the PBDTTPD family 
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of polymers have become a well-studied high-performance material in bulk 

heterojunction solar cells. The benzodithiophene (BDT) unit or the thieno[3,4-c]pyrrole-

4,6-dione (TPD) unit can be synthesized with different solubilizing groups which has 

enabled a diverse library of PBDTTPD derivatives to be generated and 

characterized13,14,15,16. Such experiments have led to a better understanding of the 

structure-morphology-performance relationship in bulk heterojunction devices and has 

led to the development of new design principles guiding future material development. In 

particular, the PBDTTPD derivatives wherein the BDT unit has two ethylhexyl groups 

and the TPD unit has either the branched ethylhexyl group or linear octyl group has 

proven to be an interesting case study. Differing only in the connectivity of this side-

chain, these structural isomers demonstrate how side-chain architecture impacts device 

performance. 

 

Figure 3: A) Thin film absorption measurements; B) Solar cell current density-

voltage plots; C) External quantum efficiency plots; and D) Grazing incidence X-
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ray scattering plots. Adapted with permission from Piliego et al.12 JACS 132, no. 22 

(2010): 7595-7597. Copyright 2010 American Chemical Society. 

GIXS and absorption measurements on neat films of the branched and linear 

derivatives indicate that the linear derivative adopts a more planar backbone 

configuration as evidenced by its more red-shifted absorption spectrum with shorter and 

less disordered π-stacking as evidenced by the more narrow π-π peak in the GIXS at 

higher q (Figure 3A and D). When blended with PC61BM, the linear derivative was seen 

to outperform the branched derivative with PCE >6% relative to the <4% seen in the 

branched derivative. This increased efficiency is due to the significantly enhanced short 

circuit current and fill factor of the linear derivative as seen in the J-V curve as well as 

the enhanced EQE for the devices made with the linear derivative (Figure 3B and C).  

 

Figure 4: a) Component structures with NMR signals labeled; b) Hypothesized 

molecular docking arrangement; c) solid-state 2D 13C{1H} dipolar-mediated 

heteronuclear correlation NMR spectroscopy the red arrows indicate 1H polymer 

resonances correlated with C60 13C resonances while the blue arrows indicate the 

Phenyl-butyric acid methyl ester 1H resonances which correlate with 13C resonances 
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on the linear side-chain of the TPD derivative. These interactions are depicted by 

the arrows in b. Reprinted and adapted with permission from Graham et al.17 JACS 

136, no. 27 (2014): 9608-9618. Copyright 2014 American Chemical Society 

The Amassian, Beaujuge, and McGehee groups have since proposed that the 

enhanced solar cell performance of the linear derivative is due to a more favorable 

polymer-fullerene interaction17. Using a series of experiments diluting either the branched 

derivative or linear derivative with fullerene to minimize polymer-polymer interactions 

and thereby only measure the differences in polymer-fullerene interactions, PCE, JSC, 

and sub-band gap EQE measurements all showed the linear derivative to outperform the 

branched derivative. The sub-band gap EQE measurements indicate that the linear 

derivative adopts a more favorable and less energetically disordered charge transfer state 

with PC61BM than the branched derivative. This the authors argued was due to a favorable 

molecular docking interaction between the less sterically crowded linear TPD repeat unit 

as opposed to the more sterically crowded branched derivative. This hypothesis was 

supported with solid-state 2D 13C{1H} dipolar-mediated heteronuclear correlation NMR 

spectroscopy which showed a stronger correlation between NMR resonances on the linear 

TPD group with those on the fullerene than those between a different PBDTTPD 

derivative that had linear C14 groups on the BDT unit and the branched ethylhexyl groups 

on the TPD unit (Figure 4). 
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Figure 5: A) Sub-bandgap external quantum efficiency; B) transient 

photoluminescent decay; C) short circuit current with increasing light intensity; and 

D) zero field mobility as a function of temperature. Reprinted with permission from 

Constantinou et al. 18 ACS applied materials & interfaces 7, no. 48 (2015): 26999-

27005. Copyright 2015 American Chemical Society. 

These results were further corroborated by the So group18. Higher sub-bandgap EQE 

and faster transient photoluminescent decays for blends of the linear derivative with 

PC61BM indicate better charge generation (Figure 5A and B). Measuring the short circuit 

current with increasing irradiation intensity showed that blends of the linear derivative 

with PC61BM underwent less bimolecular recombination (Figure 5C). The greater 
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dependence of the zero-field hole mobility on temperature for the branched derivative 

indicates more energetic disorder in these devices (Figure 5D). These results are 

consistent with GIXS measurements showing that blends of PC61BM and the linear 

derivative are more ordered with a more pronounced π-stacking peak than the branched 

derivative. The structure of blends of PC61BM with the linear derivative have been more 

extensively characterized19,20,21. Such characterization has shown the linear PBDTTPD 

derivative to adopt a morphology consisting of three phases 1) small regions of 

aggregated polymer surrounded by 2) amorphous regions of intermixed polymer with 

fullerene within a network of 3) PC61BM rich regions that percolate through the BHJ.  

These results show that the linear PBDTTPD derivative has a more favorable 

interaction with PC61BM than the branched analogue. This more favorable interaction 

promotes more efficient charge carrier generation. This is coupled with a more ordered 

morphology and better π-stacking which promotes improved charge carrier transport and 

extraction. Based on such results, it has been suggested that less sterically encumbered 

acceptor groups promote enhanced polymer-fullerene interactions thereby promoting 

charge-transfer and improved photovoltaic performance17.  

PCPDTBT and Si vs C bridging atoms 
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The carbon bridged PCPDTBT derivative was first reported by Brabec and co-

workers22,23 with the silicon bridged derivative being developed later by the Yang 

group24. Silicon, being one row lower on the periodic table than carbon, is a larger and 

more electropositive atom. This makes the bridgehead bond lengths of the silole ring 

longer than that of the cyclopentadiene ring causing a different backbone geometry. The 

σ* orbitals of the exocyclic Si-C bonds are also of sufficient energy level to participate 

in bonding interactions with the π* orbital of the aromatic core25. This atomic bridgehead 

substitution does not however appear to alter the HOMO-LUMO levels in this C/Si-

PCPDTBT system22,37,38. This single atom substitution however result in pronounced 

morphological and performance differences between the C and Si derivatives.   

 

Figure 6: Dimer structure of carbon derivative from electron diffraction of highly 

crystalline solvent vapor annealed films. Reprinted and adapted with permission 

from Fischer et al.34 Macromolecules 48, no. 12 (2015): 3974-3982. Copyright 2015 

American Chemical Society. 

The C derivative is known to adopt different morphologies based on the 

processing conditions. A more amorphous film is formed when spun cast from 

chloroform or chlorobenzene with the degree ordering and crystallinity increasing with 
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the use of additional additives such as 1,8-diiodooctane (DIO) and 1,8-octanedithiol 

(ODT)26,27,28,29,30,31,32. Thermal and solvent vapor annealing produce a highly crystalline 

and more thermodynamically stable dimer morphology (Figure 6)32,33,34. Films processed 

using high boiling point solvent additives are seen to have the most red-shifted absorption 

spectrum (lowest optical band gap) as well as the highest hole mobility. Solvent vapor or 

thermally annealed films with the dimer morphology are blue-shifted and exhibiting the 

lowest hole mobility27,32,35. The Si derivative on the other hand has been observed to form 

an interesting cross-hatched structure when spun cast from hot chlorobenzene (Figure 

7A)32,36. As evidence suggests that these cross-hatched structures develop in solution, and 

the Si derivative aggregates much more strongly than the C derivative (Figure 7B and C), 

no corresponding amorphous morphology has been observed32. Additionally, high 

temperature annealing does not seem to generate the dimer structure thermodynamically 

favored by the C derivative32,39. The Si derivative is observed to have about an order of 

magnitude higher field effect hole mobility than the C derivative32,37,38,39. This may be 

due to the cross-hatched structure’s network of interchain π-stacking promoting a more 

3-dimensional charge transport pathway capable of spanning the macroscopic distances 

of a FET devices better than more 2-dimnesional lamellar crystallites or even the more 1-

dimensional dimer crystallites seen in the C derivative.  
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Figure 7: A) High-Resolution TEM image of Si derivative showing cross-hatched 

morphology with top right inset showing a schematic of the cross-hatched backbones 

and the bottom right inset showing the Fourier Transform of the TEM image 

demonstrating preferential crossing angles at ~52o 36; Variable temperature 

absorption spectroscopy of B) the C derivative and C) the Si derivative showing the 

Si derivative to be much more aggregated32. A) is adapted with permission from 

Takacs et al. 36 Nano letters 14, no. 6 (2014): 3096-3101. Copyright 2014 American 

Chemical Society. B) and C) are adapted with permission from Schulz et al.32 

Macromolecules 50, no. 4 (2017): 1402-1414. Copyright 2017 American Chemical Society. 

Both the Si and C derivatives have been extensively characterized in bulk 

heterojunction solar cells with PCE up to 5.6% and 5.5% respectively being reported26,38. 

The cross-hatched structure adopted by the Si derivative is seen to persist when blended 

with PC61BM and observed in HRTEM images of BHJ thin films36. This morphological 

structure and the tighter and less disordered π-π distances for the Si derivative relative to 
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the C derivative observed in the GIWAXS of BHJ blends may account for the larger hole 

and electron mobilities reported for PC71BM blends of the Si derivative relative to the C 

derivative37,38,39,41. Annealing has been shown to increase crystallinity and electron and 

hole mobility in BHJ with the Si derivative38. The edge-on π-stacked morphology adopted 

by the C derivative when spun cast from chlorobenzene with additives such as DIO is 

also observed in BHJ blends28,29,40. Spin casting blend of the C derivative with fullerene 

without solvent additives like DIO has been shown to result in a more amorphous 

structure and decreased device performance26,27,28,29,30,40. Additionally, thermal 

annealing, which may promote dimer formation, has been shown to decrease BHJ 

performance for the C derivative relative to films processed with DIO or ODT26,27. 

These studies show how a simple atom substitution of Si for C results in structural 

changes at the molecular level changing the backbone geometry. This molecular scale 

difference is then seen to increase aggregation in the Si derivative and promote a novel 

cross-hatched structure.  The differences in aggregation, crystallinity, and morphology 

for the C and Si derivatives are then seen to impact BHJ performance.   

PBDTTT-Th and F vs H substitution 

Fluorine is the most electronegative atom on the periodic table. As such, 

substitution of a hydrogen atom with fluorine in a monomer unit has been shown to lower 
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both the HOMO and LUMO levels as well as changes the polarity and dipole moment. 

The fluorine substituted PBDTTT-Th (PTB7-Th) was one of the first conjugated 

polymers to achieve a >10% PCE in single junction solar cells42,43,44,45,46.  

 

Figure 8: A) Structure of fractionally fluorinated PBTTT-Th; B) open circuit 

voltage increases with % fluorination; C) short circuit current uncorrelated with % 

fluorination; D) hole mobility of BHJ increases with % fluorination; E) fill factor 

increases with % fluorination; and F) power conversion efficiency increases with % 

fluorination. Data adapted from Peng et al.47. 

In a recent study, the effect of fluorine substitution on the performance and 

morphology of PBDTTT-Th was studied using fractionally fluorinated PBDTTT-Th 

derivatives47. The fractionally fluorinated PBDTTT-Th derivatives where synthesized by 

polymerizing different ratios of fluorine substituted and hydrogen substituted 
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thienothiophene monomers with the thienobenzodithiophene comonomer to yield a series 

of PBTTT-Th derivatives with fractional fluorine content ranging from 0% (100% 

hydrogen derivative) to 100% (0% hydrogen derivative) (Figure 8A). Both the HOMO 

and LUMO energies were lowered with increasing fluorine content as indicated by the 

increased ionization potential with increasing fluorine content from 5.22 eV for the H 

derivative to 5.28 eV for the F derivative as well as the slight increase in the electron 

affinity from 3.65 eV for the H derivative to 3.67 eV for the F derivative. This larger 

ionization energy is reflected in solar cell performance as an increase in open circuit 

voltage (Voc) with increasing fluorine content for BHJ blends with PC71BM (Figure 8B). 

The short circuit current (Jsc) for these BHJ devices did not seem to correlate with fluorine 

content while the hole mobility of these devices, and hence also the fill factor (FF) were 

seen to increase with increasing fluorine content (Figure 8C, D and E). With roughly 

constant Jsc, increasing Voc, and increasing FF, the overall power conversion efficiency 

(PCE) was seen to increase with increasing fluorine content (Figure 8F). While the 

increasing Voc is readily explain by the propensity for the more electronegative fluorine 

to decrease the HOMO and LUMO energy levels, the increased mobility and FF are less 

apparent. Seeking to understand the impact of the fluorine substitution on the underlying 

morphology and explain this increase in mobility and FF, the authors conducted a series 

of grazing incidence X-ray diffraction (GIXD), transmission electron microscopy (TEM), 

and resonant soft X-ray scattering (RSoXS) experiments. The GIXD showed that the 

alkyl and π- π spacings remain relatively unchanged with varied fluorine content for the 

BHJ blends and the TEM experiments did not show any significant trend with fluorine 

content with the BHJ blends being mostly uniform with features on the order of 10 nm. 
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The RSoXS on the other hand showed a distinct trend with increasing fluorine content. 

The scattering intensity times q2 (I*q2) was observed to shift to higher q with increasing 

fluorine content indicates a decrease in crystallite size with increasing fluorine content. 

Integrating these (I*q2) peaks with along q gives the total scattering intensity which is a 

relative measure of the phase purity and intermixing of the polymer with the 

fullerene47,48,49. This total scattering intensity was observed to decrease with increasing 

fluorine content which suggest that the polymer and fullerene domains are less pure and 

indicating a greater extent of intermixing. 

This morphological characterization suggests that the increase in mobility with 

fluorine content is likely do to a more interconnected network of polymer and fullerene 

domains enabling better charge transport through the BHJ device which accounts for the 

increasing FF with increasing fluorine content. Therefore, the increasing PCE with 

increasing fluorine content can be ascribed to the improved Voc due to the energy 

lowering character of fluorine as well as the increased FF due to the improved 

morphology resulting from the differing solubility of the fluorine derivatives relative to 

the hydrogen derivatives due to the increased polarity and dipole moment of the fluorene 

substituted derivatives. 
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III. A New Pentacyclic  Benzodibenzofuran Building Blocks 

For Organic Electronic Applications 

Designing new conjugated building blocks for organic electronic materials is an 

important endeavor expanding the scope of accessible materials and furthering the 

understanding of structure-property relationships within the field. Much of the early 

studies of conjugated polymers focused on simple and easily accessible materials such as 

polyacetylene, polyaniline, poly(p-phenylenevinylene) and its various substituted 

derivatives, and poly(3-alkylthiophene)s (Figure 9) 50,51.  

 

Figure 9: Structures of various simple conjugated polymers. 

Yet as the field has grown and matured, much more complicated materials have been 

developed to further improve the performance of these materials in various applications 

(Figure 10)52,53 

 

Figure 10: Structures of representative high performance conjugated polymers. 
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While such materials are great for pushing the limits of device performance, advancing 

our knowledge of the underlying physics, and improving our understanding of structure-

property relations, they are also much more complex and synthetically challenging. Such 

synthetic complexity limits their accessibility and ultimately the practicality of this 

technology. What is needed are new building blocks which draw upon the knowledge 

gained from these more complicated high performing materials in their design, yet are 

synthetically much simpler and easily accessible. Some design principles characteristic 

of high performance materials are52,53,54,55,56: 

1) large polycyclic aromatic units which serve to increase the conjugation length and 

rigidify the polymer backbone thereby reducing energetic disorder  

2) a planar backbone which decreases torsional defects and further enhances the effective 

conjugation length  

3) Well delocalized molecular orbitals with appropriate energy levels  

A versatile and readily accessible polycyclic aromatic building block designed to satisfy 

criteria (1) could then be paired with appropriate co-monomers to satisfy the other two 

criteria. Therefore, a simple and concise route to a versatile polycyclic building block is 

desired.  

  Looking to a pair of studies from the 1950’s and 60’s a series of pentacyclic 

benzodibenzofuranquinones were prepared in a single step from the reaction of phenols 

with chloranil (Figure 11)57,58. 
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Figure 11: Schematic of previously synthesized benzodibenzofuranquinones 

R=Methoxy. 

This single step access to the pentacyclic benzodibenzofuranquinone core was reasoned 

to be a good starting point in the synthesis of a novel polycyclic building block for organic 

electronic materials. 

 It was discovered that the reaction of the inexpensive and readily available 

feedstocks chloranil and 3-bromophenol in refluxing pyridine in air afforded 

predominately the [1,2-b:5,4-b'] substituted isomer depicted in 51% yield. The work up 

consisted only of allowing the reaction to cool back to room temperature, adding water, 

collecting the solid via filtration, washing with water and methanol until the filtrate ran 

clear, and then removing residual solvents in a vacuum oven to afford the product (M1) 

as a red crystalline powder (Figure 12). 

 

Figure 12: Synthesis of benzodibenzofuranquinone M1. 

The structural assignment was determined via a combination of 1H NMR, 13C NMR, 

single crystal X-ray diffraction, and high-resolution mass spectrometry. 1H NMR 
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confirmed the presence of 3 aromatic protons with the expected singlet, doublet, doublet 

splitting pattern which would be expected for this isomer formed via the c-c ring closure 

reaction occurring para to the bromine (Figure 13, Figure 14). 

 

Figure 13: 1H NMR spectrum of M1. 

 

Figure 14: Assignment of protons based on 1H NMR spectrum of M1. 

13C NMR confirmed the presence of 10 different carbon resonances with two distinct 

carbonyl peaks at δ 178.4 and 166.7 respectively which is consistent with the [1,2-b:5,4-

b'] isomer assignment (Figure 15). 
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Figure 15: 13C NMR spectrum of M1 with two distinct carbonyl peaks indicated. 

 

Figure 16: Single crystal X-ray structure of M1. 

These NMR assignments were further confirmed via single crystal X-ray diffraction 

(Figure 16). 

Close inspection of the 1H and 13C NMR spectra reveals a minor impurity peak at δ7.89 

in the 1H NMR spectrum and a series of small resonances in the 13C NMR spectrum. This 

impurity is likely to be the [1,2-b:5,4-b'] substituted isomer (Figure 17). 
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Figure 17: Likely structure of minor isomer. 

Integration of the 1H NMR resonance at δ7.89 relative to that corresponding to the major 

isomer indicated a selectivity of >9:1 in favor of the [1,2-b:5,4-b’] isomer. This result is 

consistent with the previous literature for the condensation and ring closure reaction of 

chloranil with various phenols which found the [1,2-b:5,4-b’] isomer to be major isomer 

with a small amount of the [1,2-b:4,5-b’] isomer being formed as well. The selectivity of 

this reaction is remarkable considering that if both the condensation reactions of the 

phenol -OH with the chlorine on chloranil and the c-c bond forming ring closure reactions 

occurred randomly, a total of six different isomers would result (Figure 18). 
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Figure 18: All possible isomers including those not observed. 

This di-bromo substituted benzodibenzofuranquinone, having been formed by the simple 

reaction of the readily available and inexpensive starting materials chloranil and 3-

bromophenol and purified without chromatography via a simple and scalable 
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precipitation, filtration, and washing procedure, was then used as the entry point to a 

diverse series of organic electronic materials with wide ranging properties and potential 

applications. 

 Quinones are versatile materials. They are redox active compounds capable of 

accepting two electrons and two protons to transition into the more electron rich 

hydroquinone form (Figure 19)59. 

 

Figure 19: Quinone/hydroquinone redox cycle. 

Likewise, when the reduction potential of the benzodibenzofuranquinone (BDBFQ) M1 

was measured in anhydrous acetonitrile with 0.1M Bu4NPF6 two reduction peaks were 

observed as indicated by arrows in the Figure 20.  

 

Figure 20: Cyclic voltammetry measurement for M1 in acetonitrile with Bu4NPF6. 
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Taking advantage of this redox character, two separate classes of materials were 

developed using the benzodibenzofuranquinone M1 building block. First, a series of 

conjugated polymers using a reductively alkylated benzodibenzofuran (BDBF) form M2 

were developed, and second a paramethoxybenzyl (PMB) protected form M* was 

developed to permit further chemical modification followed by later deprotect back to the 

quinone form. The conversion of M1 to these reductively alkylated forms M2 and M* 

were achieved via reduction of the M1 quinone with Na2S2O4 in aqueous NaOH followed 

by treatment with either 1-bromoheptane to form M2 or 4-methoxybenzyl chloride to 

form the PMB protected quinone M* (Figure 21). 

 

Figure 21: Reductive alkylation of M1 to heptyl substituted M2 or PMB protected 

M*. 

This reductive alkylation improves the solubility of these materials and enables further 

purification and subsequent chemical modification. 1H and 13C NMR and high-resolution 

mass spec confirmed the successful synthesis and purification of these materials (Figure 

22, Figure 23). 
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Figure 22: 1H NMR spectrum of M2 with two distinct ether protons indicated. 

 

Figure 23: 1H NMR spectrum of M* with two distinct benzyl protons indicated. 

The reductively alkylated M2 monomer was then used in the synthesis of a series of 

conjugated polymers. First, M2 was utilized in a Stille coupling polymerization reaction 

with 4,7-bis(4-hexyl-5-(trimethylstannyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole to 

form the P1 donor-acceptor polymer depicted. Briefly, the monomers were mixed added 

to a dry Schlenk flask in a 1 to 1 molar ratio followed by the appropriate amount of dry 

toluene. The solution was then degassed via three freeze-pump-thaw cycles before being 
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frozen in liquid nitrogen to allow the addition of the Pd2(dba)3 and tri(o-tolyl)phosphine 

catalyst components against a flow of argon. The gas in the head space of the flask was 

replaced with argon and the mixture warmed to room temperature before being placed in 

an oil bath which had been heated to 105oC. The reaction proceeded at this temperature 

for 24 hours before being cooled to room temperature and diluted with chlorobenzene. 

The polymer solution was precipitated in methanol and collected via filtration. This 

material was then washed in a Soxhlet with acetone and hexanes before being extracted 

with chloroform. Removal of solvents with a rotary evaporator afforded the P1 polymer 

product in 40% yield (Figure 24). 

 

Figure 24: Synthesis of P1. 

Gel permeation chromatography (GPC) revealed a moderate molecular weight of 14 kDa 

relative to polystyrene standards with a relatively low dispersity of 1.4 for a step growth 

polymerization (Figure 25). 
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Figure 25: GPC (chloroform) of P1 shown Mn 14 kDa and Đ 1.4. 

1H NMR confirmed the chemical identity of P1 with appearance of the expected 

resonances (Figure 26). 
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Figure 26: 1H NMR spectrum of P1 showing expected resonances. 

Next, to increase the versatility of the pentacyclic monomer, the bromine groups of M2 

were converted to pinacolborane groups via lithium/halogen exchange and subsequent 

quenching with 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane to yield M3 

(Figure 27). 
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Figure 27: Synthesis of M3. 

1H and 13C NMR as well as high-resolution mass spectroscopy confirmed the identity 

and purity of this compound after work up and being twice recrystallized from hexanes 

(Figure 28, Figure 29).  

 

Figure 28: 1H NMR of M3 showing expected resonances and confirming high purity. 
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Figure 29: 13C NMR of M3 further confirming structure. 

This M3 monomer was then used in a Suzuki coupling polymerization with 3,6-bis(5-

bromothiophen-2-yl)-2,5-bis(2-hexyldecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione 

to form the polymer P2 depicted (Figure 30).  

 

Figure 30: Synthesis of P2 via Suzuki polymerization. 

The polymerization reaction was run as follows: The monomers were added to a Schlenk 

flask in a 1 to 1 molar ratio followed by toluene and 2.4 equivalents of K3PO4 as a 2M 

solution in water. Two drops of Aliquat 336 were added and the mixture was degassed 

via 3 freeze-pump-thaw cycles. The mixture was frozen in liquid nitrogen to allow the 

addition of 1.2 mol% Pd2(dba)3 and 4.8 mol% of P(o-tolyl)3 against a flow of argon. The 
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gas in the headspace of the flask was replaced with argon and the mixture was heated to 

reflux overnight. The reaction was then cooled to room temperature and diluted with 

chlorobenzene. The polymer solution was precipitated in methanol and the precipitate 

was collected via filtration. This material was then washed in a Soxhlet apparatus with 

acetone followed by hexanes. A lower molecular weight fraction was eluted with 

dichloromethane (37% yield Mn 68 kDa PDI 3.3) followed by eluting with chloroform 

to give a higher molecular weight fraction (40% yield Mn 73 kDa PDI 3.2). Despite being 

soluble in dichloromethane and chloroform, this polymer was found to aggregate 

significantly in these solvents necessitating the use of high temperature GPC at 150oC in 

1,2,4-trichlorobenzene (Figure 31). 

 

Figure 31: GPC (1,2,4-trichlorobenzene 150oC) traces of P2 fractions. 
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1H NMR at 120oC in deuterated 1,1,2,2-tetrachloroethane (TCE-d2) demonstrated 

this propensity for aggregation even at elevated temperatures as can be observed by the 

lack of clearly observable aromatic peaks due to this aggregation (Figure 32). 

 

Figure 32: 1H NMR spectrum of P2 (120oC TCE-d2). Aggregation is evidenced by 

the lack of sharp visible aromatic peaks. 

To better understand the properties of the reductively alkylated benzodibenzofuran unit, 

the homopolymer P3 was synthesized via Suzuki coupling polymerization of M2 with 

M3 using the same reaction procedure described for the synthesis of P2 (Figure 33).  



 

36 

 

 

Figure 33: Synthesis of homopolymer P3. 

After Soxhleting with acetone, hexanes, chloroform, and chlorobenzene, the product 

was extracted via boiling 1,1,2,2-tetrachloroethane to afford P3 in 70% yield. GPC 

(150oC in 1,2,4-trichlorobenzene) recorded a Mn of 15 kDa with a dispersity of 1.5 

(Figure 34). 

 

Figure 34: GPC (1,2,4-trichlorobenzene 150oC) trace for P3 with Mn 15 kDa and 

dispersity of 1.5. 
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1H NMR (TCE-d2 120oC) confirmed the chemical identity of the material (Figure 35). 

 

Figure 35: 1H NMR (TCE-d2 120oC) of P3. 

The synthesis of P1, P2, and P3 demonstrate the versatility of the reductively alkylated 

benzodibenzofuran core and establishes a series of interesting conjugated polymers 

consisting of the two donor-acceptor polymers P1 and P2 as well as the homopolymer P3 

(Figure 36). 

 

Figure 36: Structures of synthesized conjugated polymers P1, P2, and P3. 
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UV-Vis absorption spectroscopy of these three polymers as thin films show that the 

donor-acceptor polymers P1 and P2 have narrower optical band gaps of 1.9 eV and 1.4 

eV relative  

to the wider band gap homopolymer P3 with an optical band gap of 3 eV (Figure 37). 

 

Figure 37: Solution and thin film absorption spectrum for P1, P2, and P3. 
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The similarity of the solution spectrum in chlorobenzene and solid-state spectrum for P2 

both having the vibronic peak at about 800 nm further highlights the propensity for this 

material to aggregate in solution. Density functional theory (DFT) and time dependent 

density functional theory (TD-DFT) calculations using Gaussian09 and the B3LYP 6-

31Gd basis set further elucidate the electronic structure of these materials. Optimized 

geometries for P1, P2, and P3 show a flat and undulated backbone for P1 and P2 whereas 

P3 has a much larger torsional angle along the backbone owing to the phenyl-phenyl 

interaction causing a dihedra angle of 44o. P2 is seen to have a multi-donor structure 

where the lowest energy intramolecular donor to acceptor transition occurs between the 

thiophene units and the dipyrrolopyrroledione DPP unit and a second higher energy 

transition occurs between the benzodibenzofuran unit and the DPP unit. This is because 

the benzodibenzofuran unit has a deeper HOMO level relative to the thiophene units 

owing to the known energy stabilizing character of oxygen in heteroaromatics relative to 

their sulfur heteroaromatic analogues60. The TD-DFT calculations, molecular orbitals, 

and optical transitions are outlined in Figure 38. 
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Figure 38: TD-DFT calculations for P1 molecular orbitals. 
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The calculated optical transitions show that the lowest energy transition occurs 

between the HOMO and LUMO levels where the HOMO level is delocalized over the 

backbone and the LUMO is localized predominately on the BTD unit. A second higher 

energy transition occurs between the HOMO-2 and HOMO-3 levels locate predominately 

on the benzodibenzofuran unit to the LUMO and LUMO+1 levels located predominately 

on the BTD unit. This second transition is characteristic of a multi-chromophore (multi-

donor) effect due to the energy stabilizing character of the BDBF unit relative to the sulfur 

heteroaromatic thiophene units.  

TD-DFT calculations for P3 show well delocalized HOMO and LUMO levels 

with a large torsional angle of 44o between each monomer unit (Figure 39). 

 

Figure 39: TD-DFT calculations for P3. 

Similar analysis of P2 (Figure 40) shows more localized HOMO and LUMO 

levels situated predominately on the thiophene and DPP units. The lowest energy 

transitions occur within these thiophene and DPP units. A second higher energy transition 

is seen to arise between the lower energy orbitals localized on the BDBF unit and the 

DPP unit giving rise to the higher energy peak in the absorption spectrum at around 600 

nm. This second transition is also characteristic of a multi-donor system.  
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Figure 40: TD-DFT Calculations for P2. 

Cyclic voltammetry measurements for the three polymers as thin films drop-cast on the 

electrode and placed in a 0.1M solution of tetrabutylammonium hexafluorophosphate in 

anhydrous acetonitrile are shown below and reported relative to a ferrocene/ferrocenium 
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standard. All three polymers are seen to exhibit a large oxidation wave at 0.6, 0.5, and 

0.7 V for P1, P2, and P3 respectively. The ionization energies were then calculated from 

the onset oxidization energy as IE = −(4.8 + Eonset) eV to give -5.4, -5.3, and -5.5 eV 

respectively. These large ionization energies corresponding to deep HOMO levels further 

illustrate the energy stabilizing character of the BDBF unit (Figure 41).  

 

Figure 41: Cyclic voltammetry measurements for P1, P2, and P3 in acetonitrile with 

Bu4NPF6. 

P2 also features a very small reduction wave at -1.5 V which corresponds with an electron 

affinity (EA) of -3.4 eV. The EA of P1 and P3 were estimated from their respective optical 

gaps to give -3.5 eV and -2.4 eV respectively. Figure 36 depicts these energy levels. 
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Figure 42: Ionization (IE) and electron affinity (EA) values for P1, P2, and P3. 

As expected, the donor-acceptor polymers P1 and P2 have the narrowest band gap 

whereas the homopolymer P3 has a wider band gap. Furthermore, the IE of these 

polymers are all very low at below -5.3 eV indicative of the energy stabilizing character 

of the BDBF unit. 

 The solid-state morphology for these three polymers was then studied using 

grazing incidence wide angle X-ray scattering (GIWAXS). P1 and P2 were spun-cast 

from chloroform solutions at a concentration of 10 mg/ml and annealed at 150oC for 10 

minutes whereas P3 was drop-cast from a 1:1 mixture of 1,1,2,2-tetrachloroethane and 

chlorobenzene and measured as cast. All three showed reflections indicative of a 

semicrystalline morphology (Figure 43).  
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Figure 43: GIWAXS patterns for P1, P2, and P3. 

 

Figure 44: Vertical line cuts from GIWAXS experiments. 
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Figure 45: Horizontal line cuts from GIWAXS experiments. 

P1 and P2 have a diffuse lamellar structure as indicated by the progression of alkyl 

stacking peaks in the vertical line cut with d= 14.8 and 17.6 Å. P2 appears to be more 

textured than P1 which is predominately edge-on as indicated by the alkyl stacking peaks 

occurring predominately in the out of plane direction and the π-π stacking peak occurring 

predominately in the in-plane direction. P3 has a more isotropic scattering pattern as 

expected for a drop-cast film. The alkyl d-spacing for P3 is 14.2 Å. The d-spacing for the 

π-π stacking occurs at 3.70, 3.76, and 3.63 Å for P1, P2, and P3 respectively. The d-

spacings are seen to increase with increasing size of the side-chains of the co-monomers 

with P3 having the smallest d-spacings and P2 having the largest d-spacings (Figure 44, 

Figure 45). 
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P2 was chosen as an interesting candidate for further study in a field effect 

transistor as well as in preliminary OPV devices. This is because DPP based polymers 

such as P2 have been known to exhibit good charge mobility in OFETs61,62, and the broad 

absorption profile of P2 which trails off at longer wavelengths around 900 nm appears 

good for solar cell applications. The field effect mobility of P2 was characterized in a 

bottom-gated top-contact field effect transistor. A heavily doped silicon wafer with a 100 

nm thermal oxide layer was modified with a 100 nm layer of CYTOP, an amorphous 

fluoropolymer, as added dielectric. Then P2 was spun-cast from a 10 mg/ml solution in 

chloroform at 1000 rpm for 45 seconds followed by 3000 rpm for 30 seconds and the 

resulting film was annealed at 150oC in nitrogen for 1 hour. Top gold contacts were 

thermally evaporated under vacuum on to the film to achieve the OFET device geometry 

illustrated in Figure 46. 

 

Figure 46: Device geometry for OFET measurements. 
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Figure 47: Linear (left) and saturation (right) regime OFET measurements with 

calculated fits in red. 

 

Figure 48: transfer (left) and output (right) OFET plots. The solid line indicates is 

Id
1/2 for Vd=-20 V. 

The dotted lines of the transfer plot indicate Id for Vd=-40 V and the solid line is Id
1/2 for 

Vd=-20 V (Figure 48). The hole mobility for the material was calculated from the slope 

of the Id
1/2 curve to give 0.003 cm2/(V s) and the threshold voltage was found to be -21.7 

V. No n-type conductivity was observed. OFET mobility measurements are highly 

dependent on device architecture and material processing conditions2,63,64. These 
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preliminary results offer a proof of concept illustration that this material can conduct 

charge and operate in an OFET device. 

 Next, the effectiveness of P2 in solar cell devices was explored. First 

morphological structure of blends of P2 and PC71BM were studied via GIWAXS for 

samples spun-cast from either chlorobenzene with 1% 1,8-diiodooctane or chloroform 

with and without annealing.  The diffuse scattering patterns indicate good intermixing of 

the blend (Figure 49). 

 

Figure 49: GIWAXS patterns for 1:1 wt% blends of P2 and PC71BMeither as cast 

(left column) or annealed for 10 minutes at 100oC (right column). The solutions were 

either chlorobenzene with 1% 1,8-diiodooctane (top row) or chloroform (bottom 

row). 
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Devices were fabricated on glass/ITO/ZnO(sol-gel) substrates by spin-casting various 

weight ratios of P2 and PC71BM as 10 mg/ml solutions in chlorobenzene with 1% 1,8-

diiodooctane. Next, a 4 nm MoO3 layer and an 80 nm silver layer were thermally 

evaporated on top. Current density-Voltage measurements were then performed both in 

the dark and under 1 Sun AM1.5 illumination. The device details and characteristics are 

outlined in Figure 50.

 

Figure 50: Table of device fabrication parameters and corresponding device 

performance measurements. 
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Figure 51: Current density-voltage plot for the device indicated in the figure 44 with 

Voc= 0.75 V, Jsc= 5.11 mA/cm2, FF= 0.55, and PCE=2.11%. 

The J-V curve for a representative device is shown in Figure 51. A small dark current at 

the -1 V bias indicates a small amount of leakage current. To further understand this 

device’s performance, incident photon to current efficiency (IPCE) measurements were 

taken Figure 52A. These measurements revealed a low IPCE ratio at the longer 

wavelengths of 700 to 900 nm even though the polymer P2 absorbs these wavelengths 

of light. Furthermore, the absolute absorption coefficient for an 80 nm thick film of P2 

was measured and compared relative to PBDTT-FTTE, a known high performance 

donor material in OPVs53 (Figure 52B and C). 
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Figure 52: A) Incident photon to current efficiency and transmittance 

measurements for P2:PC71BM 1:1 wt% blend. B) Comparison of absolute 

absorption coefficient of P2 and high performance OPV material PBDTT-FTTE. C) 

Structure of PBDTT-FTTE. 

It was found that the absolute absorption coefficient was about a factor of 2 lower than 

the PBDTT-FTTE standard. The relatively low short circuit current of less than 6 mA/cm2 

for all of these devices as well as the low IPCE and low absolute coefficient of absorption 

which result in the overall low power conversion efficiencies of less than 2.5% are all 

characteristic of DPP based materials65. These proof of concept device measurements do 

however demonstrate utility of the BDBF unit in solar cell devices and offer a starting 

point for future materials and device optimization using this novel building block.  
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Returning to the M1 unit, as a further demonstration of the versatility of this 

compound, incorporation of the redox active quinone form into a series of materials was 

desired. Unfortunately, direct incorporation of the M1 unit into materials via either Stille 

or Suzuki coupling polymerization was unsuccessful. Such reactions only produced a 

brown colored mixture which did not precipitate well in methanol. It is possible that this 

reaction did not work because the redox cycle of the quinone M1 interferes with the redox 

catalytic cycle of the Pd catalyst as it is known that quinone compounds are capable of 

interacting with the catalytic cycle of Pd66. In order to circumvent this challenge, a 

protection/deprotection strategy was adopted. The quinone form was protected with para-

methoxybenzyl (PMB) groups in the reductively alkylated form M* (Figure 53). 

 

Figure 53: Structure of paramethoxybenzyl (PMB) protected  M*. 

This M* compound then proved successful in Suzuki coupling reactions. First, M* was 

reacted with 2,2'-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane) using 

standard Suzuki polymerization conditions (Figure 54). After Soxhlet washing with 
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acetone and hexanes, the polymer fraction was extracted with chloroform to give P4* in 

96% yield with a Mn of 18 kDa and PDI of 3.0 (Figure 55). 

 

Figure 54: Synthesis of PMB protected P4*. 

 

Figure 55: GPC (chloroform) trace of P4* with Mn 18 kDa and dispersity of 2.98. 

Deprotection of P4* to P4 also proved successful. When P4* was refluxed in 

anisole:trifluoroacetic acid (3:1) in air, the PMB were removed and the intermediate 

hydroquinone was oxidized down to the quinone form. The TFA elicits the removal of 
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the PMB group and anisole is used as the solvent to trap the resulting alkylating agent67. 

Oxygen in the air then oxidizes the resulting hydroquinone form down to the quinone 

(Figure 56). 

 

Figure 56: Deprotection conditions for converting P4* to the quinone form P4. 

The reaction was worked up by precipitating the polymer in methanol followed by 

Soxhlet washing with acetone and finally eluting with chloroform. The resulting polymer 

had a bluish-purple color as compared to the white-gray starting material. GPC analysis 

(150oC 1,2,4-trichlorobenzene) gave a Mn of 38 kDa with a PDI of 2.1 (Figure 57). This 

Mn is larger than the 18 kDa starting material. This is likely due to a combination of loss 

of lower molecular weight material during the precipitation and Soxhlet washing as 

reflected by the narrower PDI of 2.1 vs the 3.0 starting material, as well as an increase in 

aggregation due to the loss of the PMB solubilizing groups. The deprotected P4 polymer 

was run on a high temperature trichlorobenzene GPC in order to help minimize the effect 

of this expected increase in aggregation on the observed molecular weight. 
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Figure 57: GPC (1,2,4-trichlorobenzene 150oC) trace for deprotected P4 with Mn 38 

kDa and dispersity of 2.1. 

Successful deprotection of PMB protected P4* to its quinone for P4 was characterized by 

1H NMR spectroscopy (Figure 58, Figure 59) and Fourier transform infrared (FTIR) 

spectroscopy (Figure 60). 
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Figure 58: 1H NMR (Chloroform-d) spectrum for P4* showing characteristic PMB 

peaks. 

 

Figure 59: 1H NMR (TCE-d2 120oC) spectrum for P4 showing lack of characteristic 

PMB peaks. 

FTIR spectroscopy confirmed the appearance of a distinct carbonyl stretch at around 1670 

cm-1 indicated by the arrow in the chart below. 
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Figure 60: FTIR spectra for P4* and P4 showing emergence of carbonyl stretch in 

P4 as indicated by the arrow. 
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Upon deprotection, chlorobenzene solutions of the polymer became purple in color 

(Figure 61). 

   

Figure 61: Visual change corresponding with deprotection. P4* solution in 

chlorobenzene on the left and P4 solution in chlorobenzene on the right. 

This is reflected in a corresponding change in the UV-Vis absorption spectrum (Figure 

62). 

 

Figure 62: Normalized absorption spectra for PMB protected P4* and deprotected 

P4. 
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It is interesting to note that in addition to the appearance of a secondary maximum at 587 

nm, the π- π* transition shifts to shorter wavelengths from 378 nm in P4* to 351 nm in 

P4. This is likely due to the appearance of a node in the HOMO level at the quinone unit 

which limits the effective conjugation length along the backbone relative to the fully 

conjugated reductively alkylated P4* form. This suggestion is supported with DFT 

calculations of the quinone material showing the presence of this node (Figure 63). These 

DFT calculations also show that the LUMO level is located predominately on the quinone 

unit and suggests that the secondary maximum is due to an intramolecular donor-acceptor 

transition occurring between the electron rich fluorene unit and the electron accepting 

quinone unit. 

 

 

Figure 63: Calculated HOMO and LUMO for P4 sowing a node in the HOMO at 

the quinone. 



 

61 

Furthermore, the redox active nature of the quinone unit within the polymer backbone 

was verified via cyclic voltammetry. P4 was deposited as a thin film on the electrode and 

placed into a solution of 0.1M tetrabutylammonium hexafluorophosphate for cycling. The 

results are reported relative to a ferrocene/ferrocenium standard and show the presence 

of two reduction peaks at about -0.8 and -1.4 V respectively (Figure 64).  

 

Figure 64: Cyclic voltammetry measurements or P4 showing to reduction waves. 

Thin films of P4 spun-cast from a 10 mg/ml solution in chloroform and annealed for 10 

minutes at 150oC were analyzed via GIWAXS (Figure 65). 

 

Figure 65: GIWAXS pattern for P4. 
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P4 showed a similar layered structure to the previous polymers, and, unlike many 

poly(fluorene) polymers, does not exhibit a hexagonally packed structure68. 

 

Figure 66: Horizontal line cut of the GIWAXS pattern for P4. 

 

 

Figure 67: Vertical line cut of the GIWAXS pattern for P4. 

The π-stacking distance is 3.73 Å and the lamellar d-spacing is 13.6 Å (Figure 60 and 

61).  

To further support and characterize this protection/deprotection strategy, a small 

molecule analogue was developed by reacting M* with the monofunctional (9,9-dipentyl-

9H-fluoren-2-yl)boronic acid to give O4* (Figure 68). 
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Figure 68: Synthesis of PMB protected discrete small molecule O4*. 

This was then deprotected under the same conditions to give compound O4 (Figure 69). 

 

Figure 69: Deprotection of O4* to the quinone form O4. 

1H NMR, 13C NMR, and high-resolution mass spectroscopy confirmed the identity of 

compound O4 and the loss of the PMB groups. Comparison of the 1H NMR before and 

after deprotection are shown in Figure 70 and Figure 71 showing the loss of the PMB 

resonances with deprotection. 
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Figure 70: 1H NMR spectrum of PMB protected O4* with distinct PMB benzyl and 

methoxy peaks as indicated. 

 

Figure 71: 1H NMR spectrum of deprotected O4 showing lack of characteristic PMB 

groups. 
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FTIR confirmed the appearance of a new carbonyl stretch corresponding to the quinone 

form upon deprotection as indicated by the arrow in Figure 72. 

 

 

Figure 72: FTIR spectra of PMB protected O4* and deprotected O4 showing 

characteristic carbonyl stretch indicated by the arrow. 
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A solution of compound O4 in chlorobenzene appears purple whereas solutions of O4* 

in chlorobenzene are colorless. This is consistent with what was seen with P4 and is 

consistent with the emergence of the quinone unit (Figure 73). 

 

Figure 73: Visual change corresponding with deprotection. O4* solution in 

chlorobenzene on the left and O4 solution in chlorobenzene on the right. 

This color change was further characterized via UV-Vis spectroscopy (Figure 73Figure 

74). 

 

Figure 74: Normalized absorption spectra of PMB protected O4* and deprotected 

O4 in chlorobenzene. 
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Once again, the emergence of a secondary maximum at 552 nm was observed as well as 

a shift of the π- π* transition peak maximum from 345 nm in O4* to 322 nm in the 

deprotected O4. This is consistent with what was seen previously with P4* and P4 and 

further supports the idea that a node in the HOMO level is decreasing the effective 

conjugation length along the backbone resulting in the π- π* transition peak maximum 

shifting to lower wavelengths as well as the secondary maximum resulting from an 

intramolecular transition from the fluorene units to the quinone unit. The redox activity 

of the quinone unit was measure via cyclic voltammetry (CV) and is reported relative to 

a ferrocene/ferrocenium standard (Figure 75). The CV measurements confirmed the 

presence two reduction potentials at -0.8 V and -1.4 V. 

 

Figure 75: Cyclic voltammetry measurements of deprotected O4 showing to 

reduction waves. 

Together these materials demonstrate the versatility of the M1 core. P1, P2, P3, P4*, P4, 

O4*, and O4 show that with a few simple chemical transformations the M1 core and its 

reductively alkylated BDBF analogue can be incorporated into a diverse range of 

materials including lower band-gap donor-acceptor polymers for transistor or OPV 
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applications, the wide band-gap conjugated polymer P3, and even redox active quinone 

materials using a novel protection/deprotection strategy. Such redox active materials 

could eventually find use in energy storage applications or n-type transistors69,70,71. 

 

IV. Effect of Side-Chain Cyclization on Aggregation of 

Conjugated Polymers 

Most conjugated polymers have stiff aromatic backbones that interact with each 

other through enthalpically favorable π-stacking interactions. Long linear or branched 

aliphatic side-chains are typically used to increase the entropy of mixing for these 

polymers in solution to enable solution processing72. These large floppy side-chains are 

able to access numerous conformations when dissolved in solution relative to them being 

confined in an aggregate. This difference in accessible microstates drives the entropy 

difference between the aggregated state and the solvated state (ΔSAS). With a sufficient 

amount of side-chain on the conjugated polymer backbone, this entropic term (ΔSAS) can 

overcome the inherent enthalpic drive for these conjugated polymers to form aggregates 

from solution (ΔHAS) and a soluble conjugated polymer will result (i.e. for a given 

temperature and solvent, the energetics associated with the transition from the aggregated 

state to the solvated state ΔGAS = ΔHAS -TΔSAS will be negative and spontaneous). 

Typically, this result is achieved by using an appropriately large linear or branched side-

chain for a given polymer backbone to increase the ΔSAS term. However, an under 

explored alternative approach would be to design the side-chains so as to periodically 

disrupt the π-stacking and thereby decrease the enthalpic term ΔHAS.  One way to achieve 
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this would be to use macrocyclic monomer units which block part of the π-face thereby 

reducing the backbones’ ability to π-stack. Using a macrocyclic side-chain unit rather 

than a linear side-chain unit would have the additional effect of decreasing the entropy 

change ΔSAS because a macrocyclic side-chain would inherently have fewer degrees of 

freedom than a linear side-chain of equal size due to the added topological constraint of 

being a loop. The decrease in ΔHAS and ΔSAS have opposing effects on ΔGAS and the 

resulting degree of aggregation Figure 76 schematically depicts the hypothesized effect 

of linear verses cyclic side-chains. 

 

Figure 76: Hypothesized effect of side-chain topology on conjugated polymer 

aggregation. 

Furthermore, the topological constraint of the macrocyclic loops will persist in the solid-

state which is expected to give rise to geometrical constraints on the packing of the 

polymer backbones which should effect the overall morphology and material properties. 
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It is unclear a priori what morphologies will be favored by polymers containing cyclic 

repeat units. Some potential examples are illustrated in Figure 77. 

 

Figure 77: Illustrations of select possible morphologies adopted by macrocyclic 

containing conjugated polymers. 

The first step in making and characterizing these macrocyclic containing materials was 

to synthesize a macrocyclic monomer unit. It was decided that benzodithiophene (BDT), 

as a common building block in organic electronic materials, would serve as the aromatic 

core73. It was also decided that a 10 carbon aliphatic loop connecting the two phenol 

oxygens would be used as this size loop had been previously reported 

for a hydroquinone compound74,75,76. 

 

Figure 78: Cyclic benzodithiophene (BDT) target compound. 

The first synthetic approach tried relied on a ring closing metathesis reaction as the key 

step (Figure 79). 
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Figure 79: Synthesis of cyclic BDT by ring closing metathesis route. 

1H NMR and single crystal X-ray diffraction confirmed the ring closed structure (Figure 

80, Figure 81). 

 

Figure 80: 1H NMR spectrum of ring closed product 

Three views of X-ray crystal structure of cyclic olefin: 
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Figure 81: Different views of the single crystal X-ray structure of the ring closed 

product. 

Interestingly, the olefin peak appears at δ4.68 ppm as opposed to the more typical δ5 to 

δ6 ppm range. This may be due to strain and/or proximity to the aromatic ring current of 

the BDT core. Overall, this procedure afforded the desired macrocycle in a 26% yield 

over 3 steps with the key step necessitating very high dilution conditions of 1 mM which 

decreases the scalability and practicality of the synthesis. Various tricks to try to improve 

this key step including the use of a conformational control element or a pseudo-phase 

separation strategy proved unsuccessful in improving this synthesis76,77. A Glaser couple 

route was then attempted to see if this would be a better synthetic strategy (Figure 82). 

 

Figure 82: Glaser coupling route to cyclic BDT. 

A couple interesting observations were made during this synthesis. First, the standard 

reductive alkylation conditions with Zn and NaOH (aq) did not work with the terminal 

alkyne. This may be due to some metal coordination to the terminal alkyne. For this 

reason, Na2S2O4 in NaOH(aq) was successfully used as the reductant instead. The Glaser 
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coupling worked; however, the bisalkyne appeared rather strained in the X-ray crystal 

structure likely limiting the yield (Figure 83).  

Three views of X-ray crystal structure of cyclic bisalkyne: 

 

Figure 83: Select views of the single crystal X-ray structure of the ring closed 

bisalkyne BDT. 

 

Figure 84: 1H NMR spectrum of the ring closed bisalkyne BDT. 

Furthermore, hydrogenation of the bisalkyne with Pd/C resulted in about 15% of the 

acyclic derivative suggesting either a C-C activation reaction of the bisalkyne possibly 



 

74 

due to ring strain or an oxidative cleavage of the bisalkyne followed by generation of the 

acyclic derivative during the hydrogenation reaction (Figure 85)78,79. 

 

Figure 85: Hydrogenation reaction of cyclic bisalkyne BDT showing unexpected C- 

bond cleavage. 

Attempts to utilize some recently developed high concentration Glaser macrocyclization 

conditions proved unsuccessful80. For these reasons, the Glaser coupling approach was 
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abandoned. Finally, a biphasic and bimolecular approach to the synthesis of the 

macrocycle was explored. The idea being to separate the BDT core as the dianionic 

nucleophile in one phase and have it react with the electrophilic 10 carbon bridge in 

another phase to form the macrocycle directly at a higher concentration than would be 

possible without the phase separation strategy (Figure 86). 

 

Figure 86: Overview of macrocyclization with phase separation strategy. 

Using ethylene glycol as the polar phase and xylenes as the nonpolar phase, this route 

proved successful (Figure 87). The structure was verified via single crystal X-ray 

diffraction and NMR spectroscopy (Figure 88, Figure 89). 

 

Figure 87: Synthesis of cyclic BDT by macrophase separation strategy. 

Considering that there is only 1 step and that the concentration is 10 times higher than the 

1 mM concentration used for either the ring closing metathesis approach or the Glaser 

coupling approach, the 31% yield was acceptable and enabled the gram scale production 
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of the desired cyclic BDT unit. It is interesting however to note that the selectivity of the 

reaction for the cyclic derivative versus acyclic oligomers was approximately 60% and 

the resulting 31% yield is due to the reaction not proceeding to completion. This is likely 

due to the fact that ethylene glycol is known to degrade into acidic byproducts at elevated 

temperatures even in the absence of oxygen81. This acid quenching of the reaction was 

confirmed via addition of a small amount of NaOH after completion of the reaction. This 

NaOH brought back the red color associated with the deprotonated dianion of BDT. This 

suggests that future optimization of this reaction could be achieved by using a different 

solvent system. One possible improvements would be the use of a DMF/Water/Hexanes 

system and possibly using Zn NaBr as a nonnucleophilic reductant to generate the dianion 

directly from the quinone form.  

 

Figure 88: Select views of the single crystal X-ray structure of the cyclic BDT 

synthesized via the phase separation strategy. 
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Figure 89: 1H and 13C NMR spectra of the cyclic BDT synthesized via the phase 

separation strategy. 

The 1H NMR is interesting. In particular, the bridge head protons are split due to their 

restricted position and different chemical environment. Additionally, the methylene 

resonances at δ0.7 and δ0.43 ppm are unusually upfield and may result from these 

proton’s orientation relative to the BDT core and its aromatic ring current. The acyclic 

BDT derivative can then be made similarly to a known procedure (Figure 90). 
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Figure 90: Synthesis of acyclic BDT analogue. 

It is important to point out that the acyclic derivative is almost an exact isomer of the 

cyclic compound differing only by the connectivity of the side-chain and the difference 

of the two hydrogen atoms that this connectivity entails. Two views of the single crystal 

X-ray diffraction results illustrate the difference between the cyclic and acyclic 

derivatives (Figure 91) 

 

Figure 91: Select views of the single crystal X-ray structure of the acyclic BDT. 

Additionally, the 1H NMR for the acyclic derivative does not show either the unusual 

splitting seen in the cyclic derivative or the unusual upfield resonances (Figure 92). 
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Figure 92: 1H and 13C NMR spectra of the acyclic BDT. 

The crystal structures of the cyclic and acyclic derivatives show that the macrocyclic loop 

blocks one of the two π-faces in the cyclic derivative whereas both of the π-faces of the 

acyclic derivative remain open. The effect of this macrocyclic loop on the packing 

structure of these materials in the solid state can be seen from the single crystal X-ray 

diffraction data (Figure 93 to Figure 99). The cyclic derivative has a triclinic unit cell 

with several molecules in it and an overall density of 1.496 g/cm3. The acyclic derivative 

has a monoclinic unit cell with the molecules adopting a herring bone type packing 

structure and an overall density of 1.269 g/cm3. 
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Figure 93: View down the a axis of cyclic derivative’s crystal structure. 
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Figure 94: View down the b axis of cyclic derivative’s crystal structure. 

 

Figure 95: View down the c axis of cyclic derivative’s crystal structure. 
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.  

Figure 96: View down the a axis of acyclic derivative’s crystal structure. 

 

 

Figure 97: View down the b axis of acyclic derivative’s crystal structure. 
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Figure 98: View down the c axis of acyclic derivative’s crystal structure. 

 

Figure 99: Off axis view of acyclic derivative showing the herring bone packing 

structure. 

The thermodynamic properties of these materials were then examined via differential 

scanning calorimetry (Figure 100, Figure 101). The heating and cooling was conducted 
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at 1oC/min. The second cycle is shown. Each cycle was substantially the same to within 

2oC and 1 J/g.  

 

Figure 100: DSC trace for the cyclic BDT. 

 

Figure 101: DSC trace for the acyclic BDT. 
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The cyclic derivative shows a melting point at 73oC with a melting enthalpy of 37.54 J/g 

or 13.5 kJ/mol. The entropy of melting can be calculated from 0=ΔGm= ΔHm-TΔSm to 

give 39.7 J/(mol K). The acyclic derivative is seen to have a melting transition at 63oC 

with a melting enthalpy of 33.9 kJ/mol and a melting entropy of 102 J/(mol K). It is 

interesting to point out that while the cyclic derivative has a higher density (cyclic: 1.496 

g/cm3 vs acyclic: 1.269 g/cm3), the acyclic derivative has a higher melting enthalpy. This 

demonstrates the importance of the π-π interactions because if one were to assume a 

simple spherically symmetric potential for each of the molecules, the denser derivative 

would have the larger enthalpy of melting in contrast to what is seen here experimentally. 

Furthermore, the entropy of melting for the acyclic derivative is seen to be higher than 

that of the cyclic derivative [acyclic: 102 J/(mol K) vs cyclic: 39.7 J/ (mol K)]. This is in 

agreement with the hypothesis outline above wherein the linear side-chains of the acyclic 

derivative should have a larger change in the number of accessible degrees of freedom 

upon melting as compared to the more constrained cyclic derivative. This is the first piece 

of support of the thermodynamic model for the effect of side-chain topology discussed at 

the beginning of this chapter. In order to further understand how this macrocycle effects 

both the structure and thermodynamics of organic electronic materials at the molecular 

level, a second series of cyclic and acyclic derivatives was prepared. The cyclic or acyclic 

BDT core was modified via the addition of two 3-hexyythiophene units according to the 

synthetic scheme shown in Figure 102. 
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Figure 102: Synthesis of cyclic and acyclic TBDTT derivatives. 

 

 

Figure 103: Three molecular views of the cyclic derivative from the X-ray crystal 

structure. 

 

Figure 104: Three molecular views of the acyclic derivative from the X-ray crystal 

structure. 
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Figure 105: 1H and 13C NMR spectra for the cyclic derivative. 

 

Figure 106: 1H and 13C NMR spectra for the acyclic derivative. 

Once again, it can be seen from the crystal structures that the macrocyclic loop blocks 

one side of the π-face whereas that of the acyclic derivative is open on both sides (Figure 

103, Figure 104). Additionally, the 1H NMR for the cyclic derivative again shows the 
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extra splitting for protons in the ring as well as the upfield methylene resonances (Figure 

105, Figure 106). The difference in packing structure can then be seen in the unit cells of 

these respective materials (Figure 107 through Figure 113). 

 

Figure 107: View down the a axis for the cyclic derivative. 

 

Figure 108: View down the b axis for the cyclic derivative. 
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Figure 109: View down the c axis for the cyclic derivative. 

 

Figure 110: Off axis view showing a hexagonal packing of tubules where the long 

axis of each tubule is made up of the long axis of each molecule with the loop 

alternating up and down as shown, and two isolated views of a three molecules in a 

tubule. 
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The acyclic derivative was seen to pack in a different morphology. The view down the a 

axis shows that the acyclic molecules pack in more of a layered structure where each 

layered sheet has the molecules rotated relative to the sheet above (Figure 111). 

 

Figure 111: View down the a axis for the acyclic derivative. 

 

Figure 112: View down the b axis for the acyclic derivative. 
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Figure 113: View down the c axis for the acyclic derivative. 

The density of the acyclic molecule’s crystal structure is much more dense than that 

of the cyclic derivative (acyclic: 2.513 g/cm3 cyclic: 1.219 g/cm3
). Once again, the 

enthalpy and entropy of melting was higher for the acyclic derivative [acyclic: ΔHm=46.6 

kJ/mol and ΔSm=146 𝐽/(𝑚𝑜𝑙∙𝐾); cyclic ΔHm=31.8 kJ/mol and ΔSm=90.1 𝐽/(𝑚𝑜𝑙∙𝐾)]. 

These findings conform with what was hypothesized wherein the macrocyclic loop 

decreases the π-stacking thereby reducing the enthalpic drive to crystallization and the 

reduced degrees of freedom due to the topological constrain of the macrocycle results in 

a decreased entropic change on melting.  

In order to understand how the cyclic unit affects the properties of conjugated 

polymers, the cyclic or acyclic unit was incorporated as a comonomer in a series of 

conjugated polymers (Figure 114). 
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Figure 114: Synthesis of cyclic or acyclic BDT containing conjugated polymers. 

The P(BDTTT) polymers have the exact repeat unit as the small molecule TBDTT 

derivatives studied above, and the P(BDTTBTDT) polymers have this TBDTT unit along 

with the benzothiadiazole unit. The P(BDTTPD) polymers have just the cyclic or acyclic 

BDT unit as a copolymer with the thienopyrroledione (TPD) unit. P(BDTTPD) polymers 

are a class of well-known OPV materials which have been known to display interesting 

morphologies including lamellar structures and even a two-dimensional cross-hatched 

structure (citations). These polymers were synthesized via a Stille coupling procedure 

wherein the aryl dibromide and aryl distannane were added to a dry Schlecnk flask in a 

1:1 molar ratio followed by the appropriate amount of dry chlorobenzene. The mixture 

was degassed via three freeze-pump-thaw cycles and the Pd2dba3 and tri(o-

tolyl)phosphine were added against a flow of argon. The mixture was then heated to 

110oC for 2 days. Afterwards, the reaction was allowed to cool to room temperature 

before being diluted with dichlorobenzene and precipitated in methanol. The precipitate 

was collected via filtration and the crude material was washed in a Soxhlet with acetone 

followed by hexanes. Additional washing and elution steps were specific to each polymer. 
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Different Soxhlet fractions were collected so as to obtain different molecular weight 

fractions for some of the materials. Testing these different molecular weight fractions 

helped to control for any observations which made be dependent on molecular weight.  

The two different chloroform fractions of the acyclic P(BDTTPD) were the result of two 

different reactions. In addition to the GPC measurements, the successful polymerization 

of these materials was confirmed via 1H NMR (Figure 117, Figure 118, Figure 119). The 

upfield methylene peaks of the cyclic unit can be seen in all of the cyclic polymer 

derivatives. Additionally, the splitting of the bridge-head protons can be seen in the cyclic 

P(BDTTT) and P(BDTTBTDT) derivatives but not in the P(BDTPD). This is probably 

due to aggregation of the much more polar P(BDTTPD) material which, even at 120oC 

in TCE-d2, showed a significant amount of broadening of the aromatic protons which is 

characteristic of aggregation for these types of materials. 

Molecular Weight and Dispersity for Different Polymer Fractions 

Polymer BDT Mn  Đ Fraction  

P(BDTTT) Acyclic 49 2.0 PhCl 

P(BDTTT) Cyclic 31 2.2 PhCl 

P(BDTTBTDT) Acyclic 14 2.3 PhCl 

P(BDTTBTDT) Acyclic 25 2.3 oDCB 

P(BDTTBTDT) Cyclic 25 2.1 PhCl 

P(BDTTPD) Acyclic 7.0 3.0 CHCl3 

P(BDTTPD) Acyclic 7.1 2.7 CHCl3 

P(BDTTPD) Cyclic 3.1 1.4 CH2Cl2 

P(BDTTPD) Cyclic 7.8 1.6 CHCl3 

P(BDTTPD) Cyclic 18 2.0 PhCl 

Molecular weights were measured via gel permeation chromatography (150 °C 

in 1,2,4-trichlorobenzene)  and reported relative to polystyrene standards in kDa. 

 

 

 

Figure 115: Table of Soxhlet fractions and corresponding molecular weights. 
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Figure 116: GPC traces (1,2,4-trichlorobenzene 150oC). 
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Figure 117: 1H NMR spectra (TCE-d2 120oC) of cyclic and acyclic P(BDTTT). 

 

Figure 118: 1H NMR spectra (TCE-d2 120oC) of cyclic and acyclic P(BDTTBTDT). 
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Figure 119: 1H NMR spectra (TCE-d2 120oC) of cyclic and acyclic P(BDTTPD). 

The aggregation of these materials in solution was then studied via variable temperature 

UV-Vis absorption spectroscopy. 
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Figure 120: Variable temperature UV-Vis absorption spectroscopy. A) Acyclic 

P(BDTTT); B) acyclic P(BDTTBTDT); C) acyclic P(BDTTPD); D) cyclic 

P(BDTTT); E) cyclic P(BDTTBTDT); F) cyclic P(BDTTPD); G) Normalized 

overlay of cyclic and acyclic P(BDTTT) at 30oC and 120oC; H) Normalized overlay 

of cyclic and acyclic P(BDTTBTDTT) at 30oC and 120oC; I) Normalized overlay of 

cyclic and acyclic P(BDTTPD) at 30oC and 120oC. 



 

98 

The acyclic P(BDTTT) (Figure 120A) derivative shows aggregation at lower 

temperatures which decreases with increasing temperature. This is evidenced by the 

isosbestic point at 491 nm and the vibronic peaks at 535 nm and 576 nm as well as the 

red-shifted absorption with an onset of 663 nm at 30oC. The cyclic P(BDTTT) derivative 

(Figure 120D) shows significantly reduced aggregation as evidenced by the lack of the 

vibronic peaks 535 nm and 576nm as well as the less red-shift absorption onset of 586 

nm. There does appear to be some aggregation in this cyclic P(BDTTT) sample however 

as evidenced by the isosbestic point at 475 nm and the small shoulder in the variable 

temperature absorption profile around 562 nm. The normalized overlay of the absorption 

profiles for the cyclic and acyclic P(BDTTT) compounds shows that by heating to 120oC 

in chlorobenzene, the aggregation is lost and the two absorption profiles converge to the 

same curve as expected (Figure 120G). This demonstrates that the differences in optical 

properties between the cyclic and acyclic P(BDTTT) derivatives are due purely to 

aggregation effects. The acyclic P(BDTTBTDT) sample (Figure 120B) also showed a 

significant amount to aggregation with isosbestic points at 573 nm, 467 nm, and 407 nm; 

a vibronic peak as evidenced by the shoulder at 668 nm, and a red-shifted absorption 

profile with an onset of 747 nm. The cyclic P(BDTTBTDT) did not show any evidence 

of aggregation and had a much less red-shifted absorption of 674 nm. The absorption 

curves of these two compounds converge at the higher temperatures with only a slight 

residual shoulder in the acyclic derivatives profile at 120oC. This convergences once 

again demonstrates that these differences in optical properties are due to aggregation 

effects which go away with increased temperature, and the small residual in the acyclic 

derivatives 120oC trace shows that a small amount of aggregation is still present even at 
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this elevated temperature. Both the cyclic and acyclic P(BDTTPD) derivatives show 

aggregation that was not lost upon heating. This is likely due to the much more polar 

thieno[3,4-c]pyrrole-4,6-dione (TPD) co-monomer. The two derivatives do appear to 

have different solution structures with the acyclic derivative having a more red-shift 

absorption onset of 659 nm relative to the cyclic derivatives absorption on set of 629 nm. 

Furthermore, the absorption profiles of the cyclic and acyclic derivatives no not overlay 

at the highest temperature measured which further suggests that the two derivatives are 

both still aggregated even at 120oC in chlorobenzene. 

Additional characterization of the P(BDTTPD) derivatives in solution were 

performed using diffusion ordered nuclear magnetic spectroscopy (DOSY NMR). Using 

three different molecular weights of the cyclic and acyclic P(BDTTPD) derivatives in 

deuterated chlorobenzene at a concentration of 0.5 mg/ml, the following DOSY spectra 

were obtained (Figure 121): 

 

Figure 121: DOSY NMR plots showing the diffusion coefficient for each proton 

signal for the three different cyclic P(BDTTPD) molecular weight samples. 
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Looking at the large alkyl peak at δ1.46 for each, the diffusion coefficient was plotted 

against the GPC measured Mn (polystyrene equivalents) and it was found that this 

diffusion coefficient scales as D0.5∽(Mn)-0.58 (Figure 122).  

 

Figure 122: Plot of diffusion coefficient of cyclic P(BDTTPD) samples as a function 

of polystyrene equivalent GPC molecular weight as linear-linear plot and a log-log 

plot with linear fit. 

The same experiments were performed on the acyclic derivatives; however, these 

measurements gave unclear results as seen in Figure 123. 

 

Figure 123: Plot of diffusion coefficient of cyclic P(BDTTPD) samples as a function 

of polystyrene equivalent GPC molecular weight as a linear-linear plot. 
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This may be due to the larger dispersity’s seen in these materials relative to their cyclic 

analogs or possibly due to the formation of large suspended aggregates which were visible 

to the naked eye. 

Variable concentration fluorescence measurements were then performed so as to 

further characterize the aggregation of these polymers in solution (Figure 124). The 

concentration of each polymer was adjusted until the peak absorption value for each 

polymer was 0.1, 0.3, and 0.6 (a. u.) in either chlorobenzene for the P(BDTTT) and 

P(BDTTPD) series or orthodichlorobenzene for the P(BDTTBTDT) series before being 

excited at 475 nm for the P(BDTTT) or 472 nm for the P(BDTTBTDT) and P(BDTTPD) 

series. All other measurement parameters were kept constant within each polymer series 

to enable comparison between the cycle and acyclic derivatives within each polymer 

series. 
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Figure 124: Variable concentration absorption and fluorescence spectra for A) 

acyclic P(BDTTT); B) acyclic P(BDTTBTDT); C) acyclic P(BDTTPD); D) cyclic 

P(BDTTT); E) cyclic P(BDTTBTDT); and F) cyclic P(BDTTPD). 

In all of the cyclic derivatives, the photoluminescence was seen to be higher than their 

corresponding acyclic derivatives. All of the cyclic derivatives showed increased 

photoluminescent intensity with increased concentration. The acyclic P(BDTTBTDT) 

and P(BDTTPD) derivatives also showed an increase in photoluminescence intensity 

with concentration whereas the acyclic P(BDTTT) derivative showed a distinct red-

shifting and quenching of the photoluminescence with increased concentration. 

The difference in behavior of concentrated solutions of these polymers at 20 mg/ml 

in either chlorobenzene for the P(BDTTT) and P(BDTTPD) series or 

orthodichlorobenzene for the P(BDTTBTDT) series was then studied. It was found that 
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both the cyclic and acyclic P(BDTTT) polymers gelled within minutes. The acyclic 

P(BDTTBTDT) also gelled within minutes whereas the cyclic derivative took several 

days at room temperature before gelling. The acyclic P(BDTTPD) polymer gelled within 

hours whereas the cyclic derivative was not observed to gel over the course of the couple 

weeks observed. For each of these experiments, the polymer solution was heated in a vial 

until the polymer solution was fully dissolved and the vial was left at room temperature 

to cool. Gelation was determined via tipping the vial. If the contents of the vial flowed 

while tipped, the solutions was determined not to have gelled (Figure 125).  

 

Figure 125: Pictures of 20 mg/ml polymer mixtures with chlorobenzene for 

P(BDTTT) and P(BDTTPD) or orthodichlorobenzene for P(BDTTBTDT) 

derivatives. 

The difference in time for gelation highlights how the macrocyclic loop effects the 

kinetics of aggregation in addition to the differences in the structural and thermodynamic 

properties examined previously. The enhanced stability of the cyclic polymer solutions is 

a desirable feature for solution processed devices82.  

 Looking now at the differences in structure and aggregation in the solid state, 

drop-cast films of each polymer were made from a 10 mg/ml solution of the polymer in 

chlorobenzene for the P(BDTTT) and P(BDTTPD) series or orthodichlorobenzene for 

the P(BDTTBTDT) series (Figure 126). These films were then annealed at 230oC for 1 
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hour, and the fluorescence was measured in an integrating sphere exciting with the same 

wavelength used for the solution experiments while keeping all other measurement 

parameters constant within each polymer series. It was found that the cyclic derivatives 

had enhanced photoluminescence for each polymer series. The P(BDTTT) and 

P(BDTTBTDT) series additionally showed a red-shifting of the photoluminescence 

spectrum for the acyclic derivatives with the cyclic derivatives showing only a slight 

shoulder in these red-shifted regions.  

 

Figure 126: Fluorescence measurements for drop cast films. 

Normalized UV-Vis absorption spectroscopy measurements performed on films spun 

cast at 2000 rpm for 30 seconds from 20 mg/ml polymer solutions (chlorobenzene for 

P(BDTTT) and P(BDTTBTDT) and orthodichlorobenzene for P(BDTTPD)) on to a glass 

substrate followed by an overnight annealing step at 230oC are shown in Figure 127. 
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Figure 127: Normalized absorption spectra for spun cast films. 

The acyclic derivatives all showed a more red-shifted spectrum. The acyclic P(BDTTT) 

derivative has an onset of absorption at 639 nm with a main peak at 542 nm and a vibronic 

peak at 581 nm. The cyclic P(BDTTT) has an onset of absorption of 604 nm with a main 

peak at 506 nm and a vibronic shoulder at 555 nm. The acyclic P(BDTTBTDT) derivative 

has an onset of absorption at 758 nm, and the cyclic derivative has an onset of 709 nm. 

The acyclic P(BDTTPD) derivative has an onset of 672 nm whereas the cyclic derivative 

has an onset of 620 nm. The enhanced photoluminescence of the cyclic derivatives is 

characteristic of a less aggregated polymer film with more J aggregate character while 

the more red-shifted absorption spectra and decreased photoluminescence of the acyclic 

derivatives are characteristic of a film with more H aggregate character83. 

Films prepared in the same manner as those used in the absorption spectroscopy 

studies, except for using silica substrates with a native oxide, were then used for grazing 

incidence wide angle X-ray scattering (GIWAXS) experiments (Figure 128).  
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Figure 128: GIWAXS patterns for spun cast films of A) acyclic P(BDTTT); B) 

acyclic P(BDTTBTDT); C) acyclic P(BDTTPD); D) cyclic P(BDTTT); E) cyclic 

P(BDTTBTDT); and F) cyclic P(BDTTPD). 

The acyclic P(BDTTT) has an edge-on lamellar structure with an in-plane peak at 3.84Å 

and out of plane alkyl spacing of 16.5Å. The alkyl spacing distance of the cyclic 

P(BDTTT) derivative is shorter at 11.9Å. The cyclic P(BDTTT) derivative has many high 

index reflections which suggests a well ordered 3-dimensional structure. The cyclic 

architecture therefore impacts the solid-state morphology for this series changing the 

layered lamellar structure of the acyclic derivative into a more 3-dimensional structure. 

This 3-dimensional structure may be a result of some sort of ‘lock-and-key’ effect arising 

from commensurate spacing of side-chains as a result of the cyclic architecture. The 
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acyclic P(BDTTBTDT) sample has in-plane alkyl stacking peak at 15.3Å with a textured 

but more edge-on morphology than the corresponding cyclic derivative. The π-stacking 

distance is 3.85Å in each. It is interesting to note the effect on texture due to the cyclic 

topology. Edge-on structures are typically more suited for OFET applications whereas 

face-on structures are typically better in OPVs84. It is also noteworthy that the cyclic 

derivative does not seem to impact the π-stacking distance for this polymer series. Acyclic 

P(BDTTPD) has a lamellar structure with a 21.2Å alkyl spacing while the cyclic 

derivative has a diffuse glassy scattering pattern with a slightly larger alkyl spacing of 

25.2Å. Degree of crystallinity is an important parameter in organic electronic applications 

with higher crystallinity being desirable in certain applications such as OFETs and more 

amorphous structures being desirable in certain other applications such as OPVs85.  

 

Figure 129: Vertical line cuts for P(BDTTT) derivatives. 
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Figure 130: Horizontal line cuts for P(BDTTT) derivatives. 

 

Figure 131: Vertical line cuts for P(BDTTBTDT) derivatives. 
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Figure 132: Horizontal line cuts for P(BDTTBTDT) derivatives. 

 

Figure 133: Vertical line cuts for all P(BDTTPD) derivatives. 
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Figure 134: Vertical line cuts for cyclic P(BDTTPD) derivatives. 

 

Figure 135: Vertical line cuts for acyclic P(BDTTPD) derivatives. 
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Figure 136: Horizontal line cuts for all P(BDTTPD) derivatives. 

 

Figure 137: Horizontal line cuts for cyclic P(BDTTPD) derivatives. 
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Figure 138: Horizontal line cuts for acyclic P(BDTTPD) derivatives. 

In conclusion, the macrocyclic loop was demonstrated to have a profound effect on 

the thermodynamic driving forces for assembly as seen by the lowering of both the 

entropy and enthalpy of melting for the cyclic BDT and TBDTT relative to their acyclic 

analogues. Kinetics for gelation and aggregation were impacted by the cyclic unit as 

evidenced by the difference in gelation and time required for the development of gelation 

for the P(BDTTPD) and P(BDTTBTDT) series respectively. The geometric requirements 

of the macrocyclic loop was also seen to influence the solid-state packing structure for 

the small molecules as well as the conjugated polymers. This is apparent in the different 

packing structures seen in the single crystal X-ray analysis of the small molecules as well 

as in the GIWAXS diffraction studies of the conjugated polymers which consistently 

showed differences in texturing, morphology, and crystallinity between the cyclic and 

acyclic polymers. Furthermore, the macrocycle was seen to suppress aggregation and 
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enhance fluorescence in solution and the solid-state. All told, the macrocyclic geometry 

was found to dramatically impact solution and slid-state structure as well as the 

optoelectronic properties which critically depend on such structure. 

V. A Simple Approach to Functional and Well-Defined 

Photo-Crosslinkable Bottlebrush Networks 

In the search for elastic and compliant materials with moduli comparable to biological 

materials, bottlebrush networks stand out from the crowd7,8,9. Unlike polymer gels which 

achieve low moduli and large elasticity via being swollen in a good solvent, bottlebrush 

networks need not be swollen to achieve their desired mechanical properties8,9. This is 

because the arms of the bottlebrushes take up the role of the solvent in a traditional gel to 

fill in the space between crosslinks and ‘swell’ the gel. This affords material which has 

the same desirable mechanical properties of a traditional polymer gel, but does not have 

the downside of requiring a solvent which could otherwise diffuse or evaporate out. 

Previous approaches to photo-crosslinkable bottlebrushes typically require multiple 

synthetic steps as seen in the 6 step synthesis of the coumarin functionalized photo-

crosslinkable bottlebrush depicted in Figure 13986: 

 

Figure 139: representative literature route to photo-crosslinkable bottlebrushes86. 
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In order to improve access to these desirable material, a concise and versatile approach is 

required. To this end, a 3 step synthesis of photo-crosslinkable bottlebrush materials was 

proposed (Figure 140). 

 

Figure 140: Proposed modular synthetic route to photo-crosslinkable bottlebrushes. 

This more concise approach also makes use of the more user friendly Cu(0) ATRP 

chemistry as well as the more robust ring opening metathesis polymerization (ROMP) 

technique to synthesis the bottlebrush materials87,88,89. The first attempt at this synthesis 

made use of a norbornene ATRP initiator (Figure 141). 

 

Figure 141: Synthesis of poly(nButyl Acrylate)  using a norbornene initiator. 

These conditions gave polymer with an undesired high molecular weight shoulder in the 

GPC trace (Figure 142). 
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Figure 142: GPC (chloroform) of ATRP product using norbornene initiator showing 

asymmetric peak. 

This high molecular weight shoulder was reasoned to derive from participation of the 

strain activated norbornene initiator in the ATRP reaction. For this reason, a second 

approach was sought wherein the photocrosslinking unit was used as the ATRP initiator. 

In this approach anthracene was used as the photocrosslinker owing to the fact that 

anthracene is known to undergo photodimerization when exposed to 365 nm light, and 

these dimers are thermally reversible (Figure 143)90. 

 

Figure 143: Reversible anthracene dimer formation. 
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An anthracene ATRP initiator was synthesized and the Cu(0) ATRP reaction was 

performed. 

 

Figure 144: ATRP reaction using anthracene based initiator as well as ethyl 

isobutyryl bromide. 

When the anthracene initiator was used as 1 to 10% of the total initiator in the reaction 

with the remaining percentage consisting of the ethyl isobutyryl bromide, the reactions 

produced polymer with more symmetric GPC traces, and the presence of the anthracene 

chain end was confirmed with the UV detector on the GPC (Figure 145,Figure 146).  
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Figure 145: Representative GPC trace (chloroform) for ATRP product using <10% 

anthracene based initiator. 

 

Figure 146: Representative UV signal from GPC trace (chloroform) for ATRP 

product using <10% anthracene based initiator showing presence of anthracene at 

the chain end. 
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These polymers were then functionalized with a norbornene carboxylic acid ROMP 

initiator (Figure 147). 

 

Figure 147: Chain end functionalization reaction with exo-5-Norbornenecarboxylic 

acid. 

1H NMR confirmed successful functionalization of the polymer chain end (Figure 148). 

 

Figure 148: 1H NMR spectra before and after chain end functionalization reaction 

showing successful incorporation of exo-5-Norbornenecarboxylic acid. 
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The chain end functionalization reaction did not affect the molecular weight or dispersity 

of the polymer material as determined via comparing the GPC trace before and after 

functionalization (Figure 149). 

 

Figure 149: Normalized GPC traces (chloroform) for before and after the chain end 

functionalization reaction. 

These materials were then subjected to ROMP conditions using a pyridine modified 

Grubbs 2 catalyst which will be referred to herein as Grubbs 3 henceforth (Figure 150). 

 

Figure 150: Ring opening metathesis reaction (ROMP) of exo-5-

Norbornenecarboxylic acid functionalized macromonomer. 
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These ROMP conditions were successful in preparing bottlebrush materials as 

determined via GPC (Figure 151). 

 

Figure 151: GPC trace (chloroform) of purified ROMP bottlebrush product. 

Crosslinking of these materials via exposure to 365 nm light proved unsuccessful with 

the material remaining as a viscous liquid regardless of the length of exposure. In order 

to understand whether this lack of crosslinking was due to inefficient dimerization or 

some other cause, the synthetic procedure was restarted using 100% anthracene initiator. 

Interestingly, the room temperature Cu(0) ATRP conditions used previously did not make 

any polymer when only the anthracene initiator was used. When these conditions were 

modified based on a literature procedure, polymer with a high molecular weight shoulder 

in the GPC trace resulted (Figure 152, Figure 153)91. 

 

Figure 152: ATRP reaction using only anthracene based initiator. 
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Figure 153: Asymmetric GPC trace (chloroform) of ATRP product for reaction 

using only the anthracene based initiator. 

The anthracene chain end was confirmed via the UV channel of the GPC as well as from 

1H NMR (Figure 154, Figure 155). 

 

Figure 154: UV single from the ATRP reaction using only the anthracene based 

initiator showing incorporation of the anthracene unit. 
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Figure 155: 1H NMR spectrum of the product of the ATRP reaction using only the 

anthracene based initiator showing incorporation of the anthracene unit. 

The chain end functionalization of this material with the norbornene carboxylic acid was 

successful; however, subsequent subjection of the chain end functionalized material to 

the ROMP conditions resulted in the material crosslinking during the reaction to form a 

gel. Heating the resulting gel with the hopes of thermally reversing any anthracene dimers 

crosslinks proved unsuccessful.  These observations of a high molecular weight shoulder 

in the GPC of the ATRP grown material as well as the resulting crosslinked gel with the 

ROMP reaction can be explained via radical side reactions of the anthracene initiator 

during the ATRP reaction resulting in the formation of bifunctional polymers which end 

up crosslinking the material during the ROMP reaction. This hypothesis is supported by 

the literature wherein anthracene is known to undergo various side reactions with radicals 

(Figure 156)92: 
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Figure 156: Known radical side reactions of anthracene92. 

This is despite the fact that this same anthracene initiator is reported to work in ATRP 

reactions with styrene in the literature91,93,94,95,96. 

A different photo-crosslinkable initiator was desired. Benzophenone is another well-

known photocrosslinking agent. When exposed to 365 nm light, benzophenone generates 

a radical which can react with nearby C-H bonds to form cross-links (Figure 157)97. 

 

Figure 157: Benzophenone photo-crosslinking reaction97. 

A benzophenone based ATRP initiator was synthesized, and this benzophenone based 

approach proved successful in the synthesis of photocrosslinkable bottlebrushes 

according to the 3 step synthetic scheme in Figure 158. 
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Figure 158: Three step synthesis of benzophenone functionalized bottlebrushes. 

First, this procedure was carried out using 100% benzophenone initiator. Figure 159 

shows an overlay of the GPC traces for the ATRP reaction (solid green line), the chain 

end functionalization reaction (dashed green line). 

 

Figure 159: Normalized GPC traces (chloroform) for the ATRP product and chain 

end functionalized polymer with 100% benzophenone chain end. 

The GPC polystyrene equivalents Mn for the ATRP product was 9.6 kDa with a dispersity 

of 1.2. The Mn for this material as determined by NMR was 9.2 kDa. Additionally, the 
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1H NMR of the purified ATRP product shows successful incorporation of the 

benzophenone unit (Figure 160). 

 

Figure 160: 1H NMR for ATRP product with 100% benzophenone chain end 

confirming presence of benzophenone. 

Note that the isobutyryl protons for the benzophenone functionalized chain-end are partial 

obscured by the large polymer peak at δ1.34. The GPC trace for the chain-end 

functionalized material matches that of the ATRP product material, and 1H NMR analysis 

shows successful incorporation of the norbornene unit with the olefin peaks at δ6.1 and 

the proton of the chain end on the last butyl acrylate group appearing at δ4.9 (Figure 161). 
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Figure 161: 1H NMR spectrum of the chain end functionalized macromonomer 

confirming the exo-5-Norbornenecarboxylic acid functionalized chain end. 

When the ROMP reaction was conducted over night at room temperature, GPC analysis 

of the crude reaction mixture showed that only 30% of the macromonomer had been 

consumed (Figure 162). 

 

Figure 162: Crude ROMP GPC trace (chloroform) for macromonomer with 100% 

benzophenone chain end. 
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 To determine whether the conversion was limited by the degree of chain end 

functionalization or the ROMP catalyst, an additional aliquot of Grubbs 3 dissolved in 

dry CH2Cl2 was injected into the reaction and the reaction was allowed to proceed further 

for several hours at which point it was opened to air and quenched with ethylvinyl ether. 

The product was purified via column chromatography over silica gel eluting with a 

gradient of dichloromethane in hexanes from 0% to 40%. The bottlebrush material elutes 

first before the residual macromonomer suggesting that the selectivity of the purification 

is via size exclusion rather than affinity. The GPC trace of the resulting purified material 

is bimodal owing to the second catalyst injection and suggests that the conversion of the 

reaction is limited by the catalyst turn-over rather than the macromonomer (Figure 163). 

 

Figure 163: Final purified ROMP product after second in situ addition of Grubbs 3 

catalyst. 
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Multi-angle light scattering (MALS) GPC analysis of the purified bottlebrush material 

showed a Mn of 95 kDa with a dispersity of 2.8.  Rheology of the bottlebrush material 

shows it to be a viscous liquid with the loss modulus G” less than the elastic modulus G’. 

The bottlebrush was then scooped into a mold formed by a PDMS cutout placed on top 

of Teflon and heated in a vacuum oven at 60oC overnight to remove solvent before being 

crosslinked with 365 nm light for 3 hours. The resulting crosslinked material was much 

stiffer with a G’ greater than G”. Tensile testing of the material showed into to extend to 

a strain of about 0.45 before failure and the elastic modulus was found to be 333 kPa 

(Figure 164).  

 

Figure 164: Tensile measurement for crosslinked bottlebrush network with 100% 

benzophenone chain end. 
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Seeing that the chemistry for this approach works with the benzophenone initiator, softer 

more compliant materials were then targeted. To achieve this, the benzophenone, and 

hence the resulting maximum degree of crosslinking, was reduced from 100% to 5% and 

the molecular weights of the macromonomers were varied from 4 kDa, to 6 kDa, and 9 

kDa.  

 

Figure 165: Normalized GPC traces (chloroform) for the ATRP products, chain end 

functionalized products, and ROMP products for three separate poly(n-butyl 

acrylate) based materials with 5% benzophenone chain ends and 95% ethyl 

isobutyryl chain ends and corresponding molecular weights.  

For each of these materials, the GPC traces for the ATRP polymers and chain end 

functionalized polymers overlay nicely and show a single monomodal peak with narrow 

dispersity ranging from 1.13 to 1.21 (Figure 165). The resulting bottlebrush materials, 

synthesized without including a second catalyst injection as was done for the 100% 

benzophenone initiated sample discussed previously, were also well-defined with 

monomodal peaks and dispersities of 1.5 and less. Crude GPC analysis of a representative 

reaction showed a higher conversion of about 70% (Figure 166). 
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Figure 166: Representative crude GPC trace (chloroform) for the ROMP reaction 

of the butyl acrylate based materials with 5% benzophenone chain end and 95% 

ethyl isobutyryl chain end. 

MALS GPC showed that these bottlebrush materials ranged in molecular weight from 

491 kDa to 1140 kDa with degrees of polymerization ranging from 106 macromonomer 

units for BB-6 to 124 macromonomer units for BB-9. Molding a crosslinking these 

materials resulting in free standing crosslinked bottle brush networks with excellent 

clarity. Rheology of these materials before and after exposure to 365 nm light for 3 hours 

demonstrated successful crosslinking. It was found that the low frequency elastic 

modulus for both the crosslinked and uncrosslinked materials increased with decreasing 

molecular weight of the macromonomer side-chain as expected (Figure 167, Figure 

168)9,98,99,100. Tensile measurements of these materials showed that BB-4 and BB-6 had 

similar elastic moduli and max strains of 12.45 kDa about 2 respectively whereas BB-9 

had a much lower elastic modulus of 8.07 with a max strain of about 2.5 (Figure 169). 
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Figure 167: Free standing crosslinked materials pictured on top with corresponding 

rheological measurements below showing a pronounced difference upon 

crosslinking consistent with the formation of a more elastic like solid. 

 

Figure 168: Comparison of molecular weight effects on rheological properties of the 

uncrosslinked (left) and crosslinked (right) materials showing softer more compliant 

materials with increased macromonomer molecular weight. 
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Figure 169: tensile measurements for crosslinked bottlebrush materials. 

In order to demonstrate synthetic versatility beyond just butyl acrylate polymers, a 

diethylene glycol diethyl ether (DEGE) acrylate bottlebrush material was prepared 

(Figure 170). It was found to be necessary to first purify the commercial DEGE monomer 

via column chromatography over silica gel eluting with a gradient of ethyl acrylate in 

hexanes from 0% to 15% so as to remove any diacrylate impurities which would later 

cause crosslinking during the ROMP reaction. After this purification, the three step 

synthetic procedure proceeded without incident to afford well defined materials (Figure 

171). 

 

Figure 170: Synthesis of DEGE based bottlebrush materials. 
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Figure 171: GPC traces (chloroform) and molecular weights (left) and rheological 

properties (right) for DEGE based materials. 

Diethylene glycol diethyl ether acrylate is a more hydrophilic polymer than butyl acrylate 

and is known to be blood compatible101. One could imagine using such a DEGE 

bottlebrush in biomedical applications such as to make dialysis tubing more 

biocompatible or as a coating for stents as such biological interfaces require both the 

appropriate surface chemistry and mechanical properties for optimal 

functionality102,103,104. Water contact angle measurements were used to demonstrate the 

impact of this synthetic versatility on the resulting material properties (Figure 172). In 

this experiment, the BB-4, BB-6, and BB-DEGE materials were spread separately onto a 

plastic transparency slide and heated at 60oC in a vacuum oven overnight before being 

photo-cured under 365 nm light for 3 hours. The water contact angle for these thick 

crosslinked polymer films were then measured using 2 µl deionized water droplets three 

times for each material. 
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Figure 172: Comparison of water contact angle showing more hydrophilic nature of 

the DEGE based bottlebrush network. 

Next, it was desired to expand this approach to more functional materials which would 

include available chemical moieties attached to the bottlebrush network for further 

functionalization. The first attempt to achieve this relied on incorporating a 

pentafluorophenol activated ester via ATRP initiator (Figure 173)105. It was discovered 

that this activated ester underwent undesired side reactions during the ATRP reaction as 

evidenced by 19F NMR (Figure 174). 

 

Figure 173: Synthesis of functional polymer using pentafluorophenol ester based 

ATRP initiator. 
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Figure 174: 19F NMR spectra for the crude ATRP product (top) and 

pentafluorophenol ester initiator (bottom) showing evidence of side products during 

the ATRP reaction. 

A variety of conditions were then screen via 19F NMR by preparing mixtures of CuBr2, 

ligand, solvent, and the pentafluorophenol initiator in NMR tubes and observing the 19F 

NMR signal after 20 hours at room temperature for various combinations of ligand and 

solvent (Figure 175). It was discovered that the pentafluorophenol initiator was most 

stable in the protic solvent isopropanol (iPrOH) with the pyridine type aromatic ligand 

bipyridine (bpy).  

Bpy is not a sufficient catalyst for the ATRP of acrylates; however, tris(2-

pyridylmethyl)amine (TPMA) is a ligand known to effect the ATRP of acrylates and 
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consists predominately of aromatic pyridine type amines rather than trialkyl amines so 

this ligand was 

 

Figure 175: 19F NMR screening of solvent and ligand combinations showing 

iPrOH/Bpy to be the most stable. 

 tested next105,106. While the TPMA ligand did prove to enhance the stability of the 

pentafluorophenol ester under these reaction conditions relative to Me6TREN and TPMA 

did effect polymerization of butyl acrylate under these conditions, there was still about 

5% to 10% of undesired side product in the 19F NMR under these conditions (Figure 176-

Figure 178). 
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Figure 176: ATRP reaction of pentafluorophenol ester based initiator using either 

TPMA or Me6TREN as the ligand. 

 

Figure 177: 19F NMR spectra showing the pentafluorophenol ester to be more stable 

under the TPMA conditions than the Me6TREN conditions. 
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Figure 178: GPC trace of ATRP product from using TPMA as ligand and 

pentafluorophenol as the initiator. 

For this reason, a new approach was sought. A boc protected amine based initiator was 

synthesized (Figure 179).  

 

Figure 179: 1H and 13C NMR spectra for boc protected amine based initiator. 

This boc-amine initiator proved successful in the 3 step synthetic procedure allowing the 

synthesis of well-defined bottlebrush materials with functional end groups (Figure 180). 
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Figure 180: Synthesis of boc protected amine functionalized bottlebrush materials. 

A sample using 10% boc-amine, 5% benzophenone, and 85% ethyl ATRP initiators was 

prepared as well as another sample using only the boc-amine initiator. The 10% boc-

amine material had a macromonomer with a Mn of 3.5 kDa by NMR and 4.2 kDa by GPC 

(polystyrene equivalents) and a dipersity of 1.10 and a final bottlebrush Mn of 647 kDa 

by MALS GPC with a dispersity of 1.4. The 100% boc-amine initiator based material had 

used a macromonomer with a NMR Mn of 3.2 kDa, a GPC Mn of 4.3 kDa, and a 

dispersity of 1.1 to generate the bottlebrush material with a MALS GPC Mn of 110 kDa 

and dispersity of 1.4. For both polymer series, the GPC trace of the first ATRP step (solid 

line) overlaid well with the GPC trace of the second chain-end functionalization step 

(dashed line) (Figure 181). 
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Figure 181: Normalized GPC traces and measured molecular weights for materials 

made with either 100% boc-amine initiator (left) or 10% boc-amine initiator  plus 

5% benzophenone initiator plus 90% ethyl isobutyryl bromide (right). 

The deprotection of the boc group was first attempted via thermal deprotection which is 

known to occur starting at 150oC107. When the 100% boc-amine based material was 

heated to 150oC under nitrogen overnight, the material was observed to crosslink. While 

this suggests that thermal removal of the boc group was successful, it also suggests that 

the primary amine generated after loss of the boc group was reactive enough at this 

temperature to effect reaction with the butyl ester group to generate the amide with loss 

of butyl alcohol. Attempts to thermally deprotect the boc group at lower temperatures 

were unsuccessful. For this reason, a chemical deprotection strategy was employed. Boc 

groups are known to be easily removed under acidic conditions107. When the 100% boc-

amine based material was treated with trifluoroacetic acid in chloroform, the boc group 
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was removed as evidenced by the loss of the tert-butyl ester resonances as well as the 

amide resonances from the 1H NMR spectra (Figure 182). 

 

Figure 182: 1H NMR spectra for boc-amine functionalized bottlebrush before (top) 

and after Boc deprotection with TFA/CHCl3 (bottom). 

This strategy was then used to make bottlebrush networks with incorporated functional 

amines. First, crosslinked material were made from the 10% BocAmine based bottlebrush 

materials by applying the bottlebrush material to a PDMS mold on top of a Teflon 

substrate, heating in a vacuum oven at 60oC, and then crosslinking for 3 hours with 365 

nm light. A portion of this crosslinked material was then deprotected by submerging the 

material in TFA/CHCl3 1:2 at room temperature overnight. The solution was pipetted 

away and the material was soaked in chloroform for an hour. The solution was pipetted 

away and the material was soaked in a saturated solution of KHCO3 in DMSO for an 

hour. The solution was replaced with a fresh solution of saturated KHCO3 in DMSO and 

soaked for 6 hours before being replaced again with a fresh solution of saturated KHCO3 
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in DMSO and soaked for an additional 5 hours. This solution was then replaced with pure 

DMSO and soaked for 1 hour before being replaced with ethanol and soaked for 1 hour. 

The ethanol then pipetted away and the crosslinked material was dried by heating in 

vacuum oven at 60oC for 30 min. A 10 mg/ml solution of dye (either fluorescein 

isothiocyanate or Rhodamine B isothiocyanate) in ethanol was then applied to the 

crosslinked material by touching a dye solution loaded pipette to the material’s surface 

and letting the solution slowly wick into the material overnight. The dye functionalized 

crosslinked bottlebrush material was then wash with ethanol in a Soxhlet for two days. 

The exact same dye functionalization and washing procedure was applied to a separate 

non-deprotect portion of the crosslinked bottlebrush material. The deprotected material 

showed incorporation of the dyes after washing whereas the non-deprotect control 

material did not (Figure 183). 

 

Figure 183: Dye functionalization experiments showing dye incorporation in the 

deprotect bottlebrush network and no dye incorporation in the non-deprotected 

bottlebrush network control. 

Further characterization of these dye incorporation experiments were carried out using 

the Boc protected amine initiator and octylamine to represent the Boc protected control 
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bottlebrush network and the deprotect bottlebrush network respectively. These 

experiments were conducted by adding fluorescein isothiocyanate (FITC) to either the 

Boc protect amine initiator or octylamine followed by methanol-d4. The solution was 

kept at room temperature overnight before being analyzed by 1H NMR (Figure 184, 

Figure 185, Figure 186). 

 

Figure 184: 1H NMR (aryl region) of small molecule control reactions. The top 

shows successful reaction of the primary amine with FITC in MeOH-d4, the 

middle shows the FITC in MeOH-d4 control, and the bottom shows no reaction 

between the Boc protected amine and FITC in MeOH-d4. 
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Figure 185: 1H NMR (alkyl region) showing reaction of the primary amine with 

FITC in MeOH-d4. 

 

Figure 186: 1H NMR (alkyl region) showing no reaction of the Boc protected 

amine control with FITC in MeOH-d4. 
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These small molecule NMR experiments show the reaction of FITC with the primary 

amine and no reaction between FITC and the Boc protect amine control as expected. The 

reaction between the primary amine and FITC in methanol-d4 was then further confirmed 

via LC-MS which showed two separate peaks with one corresponding to the 

decomposition product of FITC with methanol-d4 and the other corresponding to the 

reaction product of FITC with the primary amine (Figure 187). 

 

Figure 187: LC-MS trace of total ion count with time in minutes (top), trace of 

observed mass 424 (middle), and trace of observed mass 518 (bottom) further 

confirming the reaction of the primary amine with FITC in methanol-d4. 
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In conclusion, a simple, concise, and modular synthetic strategy for making functional 

photocrosslinkable bottlebrush networks has been developed. These well-defined 

materials can be modulated by tuning the molecular weight of the macromonomer, the 

chemical identity of the repeat unit, and the functionality of the initiator. This gives access 

to materials with tunable mechanical properties, surface properties, and chemical 

functionality. Such materials are of interest in the field of biomaterial science wherein the 

mechanical properties, surface properties, and chemical functionality of a biomaterial 

scaffold are known to impact cell biology, biocompatibility, and biomedical 

utility108,109,110,111,112,113,114. 

 

VI. Conclusions 

A novel pentacyclic building block has been developed utilizing a concise and 

modular synthetic strategy. This pentacyclic unit was demonstrated to have versatile 

properties enabling the synthesis of low band gap donor-acceptor polymers capable of 

operating in field effect transistors and solar cell devices as well as redox active quinone 

based materials which could potentially have applications in energy storage type 

applications. This simple approach both broadens the scope of available building blocks 

for organic electronic materials as well as making such materials more easily accessible.  

A study on the effects of side-chain topology on conjugated polymer aggregation and 

resulting properties was conducted by comparing a novel macrocyclic benzodithiophene 

compound to its more traditional linear acyclic analogue. The macrocycle was observed 

to strongly effect the thermodynamics and kinetics of aggregation and self-assembly. In 
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small molecule model compounds, the melting entropy and enthalpy were both decreased 

as a result of the macrocyclic loop. Additionally, the macrocycle was observed to affect 

the geometric constrains of self-assembly and aggregation owing to the steric 

requirements of the more constrain macrocycle. In conjugated polymers, this was seen to 

decrease aggregation in solution and increase fluorescence relative to the acyclic 

analogues. In the solid state, π-π stacking was disrupted influencing texturing as well as 

the resulting morphology. 

A simple synthetic approach to well-defined and functional bottlebrush networks was 

developed. This versatile approach was demonstrated to give access to materials with: 1) 

variable mechanical properties via tuning either the crosslinking density or the 

macromonomer molecular weight; 2) variable interfacial properties via changing the 

macromonomer repeat unit; and 3) variable functional chemical properties via 

incorporating latent functional groups in the material design. This simple and versatile 

platform enables easier access to a diverse array of interesting bottlebrush materials.  

Together, these projects highlight the underlying structure-property relationship 

inherent to functional organic materials and both expands the scope of interesting 

structures and building blocks as well as making such structures and materials more easily 

accessible for future study and development.  These projects span the range from novel 

molecular building blocks controlling the electronic structure of conjugated polymer 

backbones and their self-assembly to macromolecular architecture controlling the bulk 

mechanical properties of bottlebrush networks. Through these many length scales, 

molecules can be designed and materials engineered to possess the desired properties and 

functionalities necessary to meet future needs. 
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