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ARTICLE

Normalized unitary synaptic signaling of the
hippocampus and entorhinal cortex predicted by
deep learning of experimental recordings
Keivan Moradi1,4, Zainab Aldarraji2, Megha Luthra2, Grey P. Madison 3 & Giorgio A. Ascoli 1,2✉

Biologically realistic computer simulations of neuronal circuits require systematic data-driven

modeling of neuron type-specific synaptic activity. However, limited experimental yield,

heterogeneous recordings conditions, and ambiguous neuronal identification have so far

prevented the consistent characterization of synaptic signals for all connections of any neural

system. We introduce a strategy to overcome these challenges and report a comprehensive

synaptic quantification among all known neuron types of the hippocampal-entorhinal net-

work. First, we reconstructed >2600 synaptic traces from ∼1200 publications into a unified

computational representation of synaptic dynamics. We then trained a deep learning archi-

tecture with the resulting parameters, each annotated with detailed metadata such as

recording method, solutions, and temperature. The model learned to predict the synaptic

properties of all 3,120 circuit connections in arbitrary conditions with accuracy approaching

the intrinsic experimental variability. Analysis of data normalized and completed with the

deep learning model revealed that synaptic signals are controlled by few latent variables

associated with specific molecular markers and interrelating conductance, decay time con-

stant, and short-term plasticity. We freely release the tools and full dataset of unitary

synaptic values in 32 covariate settings. Normalized synaptic data can be used in brain

simulations, and to predict and test experimental hypothesis.
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The discovery of place cells and grid cells underscored the
importance of the hippocampal formation as a key neural
substrate for spatial navigation1,2, fueling an intensive

investigation of this brain region. Understanding spatial coding
requires a model of the information flow in the underlying cel-
lular circuit. Synapses mediate neuronal communication by
enabling the transmission of signal from the axon of a (sender)
neuron to the dendrite or perisomatic area of a (receiver) neuron.
An electrical signal is thus recordable from the postsynaptic cell
upon activation of the presynaptic cell. Different synapses pro-
duce distinct signals ultimately orchestrating behavior and
cognition3. For example, the release probability, conductance, and
short-term plasticity (ST-P) vary among pairs of neuron types4.
Plastic changes in synaptic signaling subserve adaptive processes
underlying memory. Identifying aberrant synaptic dynamics is
crucial to the elucidation of the pathophysiology of diseases such
as schizophrenia and depression5,6. Yet, the synaptic physiology
of most neuronal connections remains poorly understood.

The summed synaptic activity of multiple contacts connect-
ing two neurons is a unitary signal. Unitary synaptic signals are
typically measured by paired recording7, allowing for post-hoc
identification of both presynaptic and postsynaptic neuronal
types. Unfortunately, paired recordings are based on blind
probing with a low success rate in finding connected pairs.
Accordingly, sample sizes for this method are typically small.
Collating recordings from different studies may increase sta-
tistical power if they can be mapped to a common framework.
Such a framework needs to unify synaptic measurement
methods (synaptometrics), experimental conditions such as
temperature and slicing preparation methods, and classification
of neuronal types.

The knowledge base Hippocampome.org provides a useful
starting point by identifying 122 neuron types based on their
main neurotransmitter (glutamate or GABA), their dendritic and
axonal morphologies, and their molecular expression. Since
neuronal connections require the anatomical co-location of a
presynaptic axon and a postsynaptic dendrite (or soma), synapses
could be classified based on the morphological patterns of the
corresponding neurons8. Specifically, if a neuron type sends its
axons to an anatomical subregion and layer in which another
neuron type extends its dendrites, these two neurons can make a
connection. The set of all axonal-dendritic co-locations is then
trimmed by excluding experimentally refuted connectivity to
yield a list of potential connections. Thus, anatomical constraints
and known connection specificities are used to reduce the num-
ber of potential connections from all 14,884 (122 × 122) pairs of
neuron types to only 3,120 (~21%) in the rodent hippocampus
and entorhinal cortex9,10. Nevertheless, Hippocampome.org
lacked until now a quantitative description of normalized
synaptic physiology for all potential connections in the circuit.

To coalesce synaptic physiology data from the hippocampal
formation, we mined approximately 1,200 publications, anno-
tated more than 2,600 synaptic electrophysiology traces or values,
extracted the synaptometrics, annotated the recording methods
and experimental conditions, and mapped the data to the neuron
types and potential connections of Hippocampome.org11. How-
ever, the data are in various formats, requiring unification into a
common formalism. This can be achieved using a phenomen-
ological description of synaptic dynamics that summarizes
synaptic properties in a low dimensional parametrization of the
ground truth12–14. In such an approach, synaptic amplitude is
defined by a conductance (g), decay kinetics with a deactivation
time constant (τd), and short-term plasticity (ST-P) through the
dynamics of synaptic resource utilization and recovery deter-
mined by three parameters: a recovery time constant (τr), a
facilitation time constant (τf), and the utilization ratio (U).

Large g values lead to high synaptic amplitudes, and large τd
values result in slow kinetics. Depending on the calcium con-
centration in the presynaptic terminal, each synaptic event
increases resource utilization rate, reflecting the number of
released neurotransmitters and postsynaptic receptors occupied
at any moment. U determines the utilization increment propor-
tion after each event, but it is not the only factor. Resource uti-
lization rate diminishes between events as calcium is reabsorbed.
The utilization reduction pace is determined by τf. When τf is
large, utilization reduction speed is slow, and synapses have a
higher probability to facilitate. Since synaptic resources are lim-
ited, utilization may cause depletion. Therefore, synapses could
have fewer resources for the next event, unless they recover
quickly. The factor τr determines the recovery speed. High τr
indicates lower recovery rate which makes synapses more likely to
undergo short-term depression.

Quantifying synaptic physiology with the aforementioned
parameters enables the unification of diverse experimental data.
Nevertheless, different covariates, including species, sex, tem-
perature, and recording modality, make it challenging to compare
synapses beyond the scope of the original studies (Fig. 1). Pub-
lished reports also do not cover all potential connections.
Synaptic data in Hippocampome.org are only available for ~84%
of potential connections in the hippocampal formation. More-
over, due to the often-ambiguous identification of cell types, each
synaptic signal is typically mappable to several potential
connections11. To solve these problems, the mined data require
proper integration15–17. Specifically, a comprehensive data model
is needed to normalize existing data and infer missing informa-
tion. Deep learning is a powerful tool for data integration and
supports multi-target regression18–21. In fact, trial-to-trial het-
erogeneity may increase the robustness of machine learning22.
Despite its successes in other fields, deep learning has never been
employed to integrate synaptic electrophysiology data.

This study introduces a strategy to normalize unitary synaptic
properties and employs it to generalize the available electro-
physiology data by inferring the missing information. First, we
effectively reconciled data collected through multifarious methods
by fitting the quantitative measurements of recorded connections
with a parametric synapse model. Then, we trained a predictive
deep learning model to normalize the data for covariates and
validated the prediction accuracy against the measured experi-
mental variability. The model can infer missing values in arbitrary
conditions and resolve ambiguous neuronal identities. Thus, for
the first time, we comprehensively analyzed the normalized
synaptic properties of all potential connections of the rodent
entorhinal-hippocampal network and unraveled crucial factors
governing synaptic physiology.

Results
We compiled, digitized, and reconstructed from the published
literature a comprehensive dataset of 2,621 synaptic signals
recorded from the dentate gyrus, CA3, CA2, CA1, subiculum, and
entorhinal cortex11. For each recording, we annotated the detailed
experimental conditions with 75 covariates (Methods; Table 1)
and mapped the potential pair of presynaptic and postsynaptic
neuron types among 3,120 potential connections identified by
Hippocampome.org9,10. While this synaptic database constitutes
a uniquely information-rich resource, its quantitative analysis
requires solving distinct challenges (Fig. 2). First, researchers
record synaptic signals in different modalities (current- or vol-
tage-clamp) and widely diverse experimental conditions, which
cannot be directly compared. Second, synaptic measurements can
rarely be ascribed to single identified presynaptic and post-
synaptic neuron types: in most cases, the mapping is ‘fuzzy’ and
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matches several potential connections (green arrows in Fig. 2).
Third, synaptic data are unavailable for a sizeable minority of
potential connections. Additionally, certain experiments only
include one synaptic event (e.g., the upper right signal in Fig. 2),
thus providing no information on short-term plasticity. We fit all
synaptic recordings to the same model via signal simulation to
solve part of the first challenge (normalizing recording modality
and a subset of covariates). To solve the remaining challenges
(normalizing the rest of the covariates, disambiguating potential
connections, and inferring missing data), we devise an original
strategy based on machine learning.

Modeling comparable synaptic parameters from diverse mea-
sures and modalities. Data integration starts with the digitization
of published synaptic recordings (Fig. 3a). These signals are
diverse in terms of measurement modalities (current vs voltage)
and the composition of intracellular and extracellular solutions
affecting reversal potentials (Erev). To transform these data into a
comparable form, we fitted all digitized signals to a simplified
Tsodyks, Pawelzik, and Markram (TPM) model, representing
synaptic properties with five parameters (Methods)12,13. These
synapse-specific parameters (g, τd, τr, τf, and U) depend on the
combination of presynaptic and postsynaptic neuronal types

involved and are estimated by fitting the TPM model output to
the digitized signals (Fig. 3b). The model also requires a small set
of measurements that depend on experimental settings and the
properties of the postsynaptic neuron: Erev, the initial value of the
membrane voltage (Vm), membrane time constant (τm), and
capacitance (Cm). We corrected the signals before parametric
fitting to eliminate the impact of processes causing slow signal
fluctuations (Suppl. Figure 1a-b and Methods). The fitting quality
was satisfactory resulting in minimal optimization error (Suppl.
Figure 1c-left). However, we could find a weak correlation
between paired-pulse ratio and the optimization error suggesting
the TPM model simulates depressing synapses better than facil-
itating synapses (Suppl. Figure 1c-right). The TPM model pro-
duced comparable synaptic parameters and normalized the data
with respect to synaptic driving force (Vm - Erev) by converting
synaptic amplitudes to conductance. Overall, the process reduces
data dimensionality by describing every signal with only five
values.

Construction and validation of a predictive model of all
synapses. The fitted parameters for matching potential connec-
tions in different experimental conditions reveal a large degree of
variation that could be associated with covariates such as animal

Fig. 1 Impact of covariates on synaptic properties. a Synaptic traces from two studies67,68 recording GABAergic signals from CA1 Axo-axonic to CA1
Pyramidal cells in different species. Differences in intracellular solutions are also indicated. Note large differences in g, τd, and U. Neuronal morphologies
are from NeuroMorpho.Org69–71 and displayed with schematics based on their axonal (red pattern) and soma-dendritic (blue dot and line) distributions
across layers (SMo/SMi, outer/inner molecular; SG, granule; H, hilus; SLM, lacunosum-moleculare; SR, radiatum; SP, pyramidal; SO, oriens). b GABAergic
signals from DG HICAP to DG Granule cells recorded at two different temperatures72. All other covariates were identical. Neuronal morphologies are from
NeuroMorpho.Org69,73,74.
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sex, species, recording and stimulation methods, and temperature
(Suppl. Fig. 2a–d). To normalize the effect of covariates, we
trained a predictive deep learning model of the synaptic para-
meters using a five-layer autoencoder perceptron architecture
(Fig. 3c and Suppl. Fig. 3; Methods section). Given a potential
connection and experimental covariates (i.e., features: Table 1),
the models learned to infer the five synaptic parameters (i.e.,
targets). Training converged to stable performance with learned
values deviating on average less than 30% from the experimental
measurements (Suppl. Fig. 4a). The model displayed no over-
fitting and the predicted values (for targets not included in the
training set) deviated only marginally more (~32%) from the
original measurements (Suppl. Fig. 4a).

To assess model performance, we calculated training and
prediction accuracies for the five synaptic parameters over all the
data. Training accuracy measures how well the deep learning
model fits the synaptic parameters for a given pair of neuron
types and a specific set of experimental covariates that were
included in the training data. Prediction accuracy measures how
well the deep learning model predicts the synaptic parameters for
the data that were excluded from the training set. To assess this
performance relative to the reliability of experimental measure-
ments, we consider different experimental values (targets)
recorded from the same nominal conditions (features). Those
differences can be ascribed to unknown experimental factors,
intrinsic biological variability, and random noise. We take such
empirical ground-truth range as the gold standard to benchmark
our model against. In these cases, we calculated the distance of
each target value from their average, a measure of experimental
fluctuation we call target variability (Fig. 4a and Suppl. Fig. 4b).
The within-group sample size, summarizing the number of
identical features with multiple measurements (n values in Suppl.
Fig. 4d) ranged from 2 to 10.

We compared the target variability with the training accuracy
and prediction accuracy, i.e., the distance of model output from
seen and unseen targets, respectively. The training and prediction

accuracies of our predictive model were remarkably close to the
target variability. Testing the predictive power of the model with
the jackknife (leave-one-out) method, we found that the vast
majority of unitary predictions fell within the 95% confidence
interval of the targets, i.e., they were reliable (Fig. 4a, b).
Specifically, this prediction reliability ranged from 90% for τr to
96% for U, with intermediate values for g (91%), τd (94%), and τf
(94%). By including all synaptic measurements (not just the
unitary values, prediction reliability was reduced slightly to
88–94% (Suppl. Fig. 4b–d). Additionally, comparing the relevant
values to sparse estimates available for matching potential
connections from a recent CA1 study14 revealed no statistically
significant difference for any of the five parameters (Suppl.
Fig. 5a). The paired-pulse ratio of the models and the data before
and after data normalization were also correlated, indicating both
the TPM and the deep learning models had a reliable fit to
the data (Suppl. Fig. 5b). Thus, the deep learning model
quantitatively predicts the properties of synaptic signals for
which experimental recordings are available within the margin of
measurement accuracy.

Connectivity matrix completion and synaptic data normal-
ization. Given its demonstrated performance on available data,
the predictive model can confidently estimate the synaptic para-
meters of yet uncharacterized potential connections based on the
learned properties of neuronal types. The model can complete the
synaptic electrophysiology matrix for all 3120 potential connec-
tions in the hippocampus and entorhinal cortex. Additionally,
since the learned neuronal properties are all unique, the model
also effectively disambiguates each potential connection: in other
words, the predicted synaptic parameters for each pair of neuron
types are also all unique. Notably, the deep learning model can
infer synaptic parameters for every potential connection in any
desired condition. Applying homogeneous conditions for all
potential connections practically normalizes the inferences with

Table 1 List of features used for machine learning.

Features Dimensions Columns

Potential presynaptic neuron(s) 122 neuron types (one-hot encoded) 122
Potential postsynaptic neuron(s) 122 neuron types (one-hot encoded) 122
Stimulation method Evoked, unitary, spontaneous, or miniature 3
Type of response GABAergic or glutamatergic 1
Response contamination with another
neurotransmitter

True vs false 1

GABAB or NMDA response or block Intracellular block, extracellular block, pure slow response, contaminated with AMPA or
GABAA, and discoverable but was absent

5

Preservation of intracellular monoamines True vs false 1
Calcium-permeable AMPA density High, low, absent, or blocked 4
Erev AMPA, NMDA, GABAA and GABAB 4
Vm Values in mV 1
Temperature Values in °C 1
Inter-stimulus interval Values in ms, NA (0) 1
Species Rats (1), mice (−1), or guinea pigs (0) 1
Sex Male (1), female (−1), or unstated (0) 1
Postnatal age Values in days 1
Slice region Hippocampus, entorhinal cortex, dorsal, ventral, and [medial or lateral] 5
Slice orientation Coronal, sagittal, transverse, horizontal, longitudinal, and ‘magic cut’ 6
Slice thickness Values in μm 1
Postsynaptic recording subregion Soma, dendrite, or axon initial segment 1
Ionic concentrations of intracellular and
extracellular solutions

Intracellular and extracellular values in molars corrected for the ionic activity constants of
solutions (Ca, Mg, Na, K, Cl, Cs, Br, Ba, H2PO4, HPO4, HCO3, gluconate, QX314, ATP,
GTP, EGTA, OH, SO4, phosphocreatine, acetate, methylsulfate, NMDG, tris, CeSO4,
pyruvate, TEA)

36

Potency True vs false 1
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respect to the covariates. This study primarily focuses on fast
unitary synaptic properties in near-physiological (henceforth
standard) conditions, namely AMPA and GABAA synapses of
adult male rats in voltage-clamp at body temperature and with a
pipette solution that does not disturb intracellular ionic con-
centrations (Methods). These so-derived synaptic signals reflected
the training data and showed a wide range of amplitudes, kinetics,
and ST-P across potential connections (Fig. 4c and Suppl.
Movie 1). To explore regional differences within the hippocampal
formation, we inspected the probability density distributions of all
parameter values normalized using the min-max method (Suppl.
Fig. 6a). Interestingly, the range of values in the entorhinal cortex
is smaller than in the hippocampus. Moreover, the GABAergic

and the glutamatergic synapses had overlapping distributions for
g and U but not for the time constants (Suppl. Fig. 6b), suggesting
that these synapse types have similar amplitudes but differ in
decay kinetics and ST-P.

Open access to data and source codes. The normalized and
completed synaptic data are broadly applicable to designing
experiments in optimal conditions, testing hypotheses, con-
straining biologically plausible simulations of the entire
entorhinal-hippocampal circuit23, and benchmarking machine
learning algorithms. We provide five synaptic constants for each
of 3120 connections in 32 different settings that include all binary

Fig. 2 Diversity of synaptic covariates and mapping degeneracy. Examples of synaptic signals mined from peer-reviewed studies (solid lines: blue,
GABAergic; gold, glutamatergic) and corresponding digitized reconstruction (dotted lines). Each signal is mapped to the possible presynaptic and
postsynaptic neuron types (schematic morphologies; SL, lucidum). We only illustrated the most likely neuron types. The green arrows point to all possible
mappings for every signal into the matrix of 3,120 potential connections (rows: presynaptic, columns: postsynaptic) among 122 neuron types. Blue and gold
brightness in the connectivity matrix indicate the number of available experimental recordings. Light pink entries are potential connections with missing
synaptic data. Black entries mark the absence of potential connection. The icons illustrate a sample of experimental covariates: species, age, sex, recording
temperature and modality, and relative intracellular anionic concentrations. a Recording between a pair of dentate gyrus (DG) MOLAX or DG Total
Moleculare Layer interneurons75. b signal from a DG Granule cell (or CA3 Granule, DG Semilunar Granule, or DG Hilar Ectopic Granule cell) to a CA3
Basket CCK+ cell76. c signal from a CA3 Pyramidal (or CA3c Pyramidal cell) to a CA3 Trilaminar (or CA3 Interneuron Specific Oriens) cell77. d signal from
a CA1 Basket CCK+ (or CA1 Radial Trilaminar, CA1 Oriens/Alveus, or CA1 Schaffer Collateral-Associated) cell to a CA1 Pyramidal cell78. e signal from a
CA1 O-LM cell to a CA1 Neurogliaform cell79. f signal from an entorhinal cortex (EC) LII Basket-Multipolar (or EC LII Axo-Axonic or medial EC LII Basket)
cell to a medial EC LII Stellate neuron80. g signal from a CA1 Pyramidal cell to a CA1 O-LM (or CA1 Recurrent O-LM, or CA1 O-LMR) cell81.
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combinations of species (rat or mouse), sex (male or female), age
(young or adult), recording method (voltage- or current-clamp),
and temperature (room or body). For each parameter we make
available the mean, standard deviation, and range over 100
training runs of the deep learning model (Fig. 5a). We also share
all implemented tools for unhindered reuse with other datasets.
The Synapse Modeling Utility, the preprocessing and analysis
code in R, the machine learning library in Python, and the pre-
processed machine learning-ready experimental data (2621
features-targets sets) are all freely available on Hippocampo-
me.org/synapse (Fig. 5b).

Presynaptic and postsynaptic determinants of synaptic phy-
siology. Deep learning-enabled full data normalization allowed us

to compare the synaptic properties of all potential connections
without the influence of confounding variables. Hereunder, we
analyzed the normalized data. We reported trends in unnorma-
lized data in an earlier paper11. To begin investigating how the
presynaptic and postsynaptic identities combine to define
synaptic dynamics, we asked two questions: (1) when a pair of
neuron types forms a synapse, which synaptic properties (e.g.,
amplitude, duration, ST-P) does either side dominantly deter-
mine? (2) Does the answer differ for glutamatergic and
GABAergic synapses? To answer these questions, we separated
the glutamatergic and GABAergic synapses. In each pool, we
created two groupings: one based on the presynaptic neuron
types, and the other based on the postsynaptic ones. For example,
the glutamatergic presynaptic grouping consisted of 38 groups,
one for every glutamatergic presynaptic type; each group contains
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all postsynaptic neuron types that presynaptic type forms a
connection with. We then calculated for each group the coeffi-
cient of variation (CV) of all five synaptic parameters in the
standard condition (Fig. 6a). A lower CV indicates less intragroup
variation and thus a tighter control of the corresponding
grouping on that synaptic property. For GABAergic synapses, the
ST-P parameters (τr, τf, and U) had significantly smaller CVs if
synapses were grouped based on postsynaptic type. In contrast,
for glutamatergic synapses, all parameters except U had sig-
nificantly smaller CVs if synapses were grouped based on pre-
synaptic type. In other words, presynaptic glutamatergic neurons
and postsynaptic GABAA receptors are more important deter-
minants of synaptic signals.

Principal covariate effects on synaptic properties. Next, we
systematically investigated the influence of experimental covari-
ates on synaptic parameters. Earlier research mainly checked the
impact of experimental conditions on synaptic amplitude and
kinetics of a limited number of neuron types. Our study also
allowed the inclusion of ST-P parameters and systematically
covered all potential connections of the hippocampal formation
by changing one covariate at a time. All tested covariates had a
statistically significant impact on synaptic parameters, but we
only report here (Fig. 6b, c) those with a meaningful effect size
(>10%) and emphasize the most substantive ones (>20%). Our
results indicate that g increases more than two-fold and τd
decreases 30% when switching from voltage- to current-clamp,
from male to female animals, and from gluconate-free to
gluconate-containing intracellular solutions. While the change
with recording modality agrees with previous studies, for
example24, and we expected a difference by sex, the pronounced
impact of gluconate in the pipette solution was surprising.
Moreover, current-clamp (relative to voltage-clamp) and female
animals (relative to male) also entailed notably higher τr and
lower τf, implying greater propensity towards synaptic depres-
sion. In contrast, the opposite trend, conducive to facilitation, was
observed with gluconate. Shifting from rats to mice or from room
to body temperature affected synaptic properties in the same
direction, but to a more modest extent (10–20% effect size), as the
male-to-female switch or intracellular gluconate addition,

respectively. Reducing [Cl]i substantially increased short-term
facilitation at GABAergic synapses, while more modestly slowing
down synaptic kinetics which was unexpected based on25. Other
covariates, including to our surprise age, did not affect the
parameters substantially. Altogether, remarkably, only two types
of variation, differing just in the change direction of τr and τf,
could explain the impact of all analyzed covariates irrespective of
neurotransmitter type. This observation suggests an inter-
dependence among synaptic parameters.

Synaptic amplitude predicts signal kinetics and the direction of
short-term plasticity. Among both glutamatergic and GABAer-
gic types, we noticed that synapses with high amplitude had fast
kinetics and demonstrated depressing ST-P. Conversely, synapses
with low amplitude had slower kinetics and were facilitating. To
visualize these observations, we averaged the model parameters
from the 30 synapses with the largest conductance and from the
30 with the smallest one among both glutamatergic and
GABAergic groups. We then compared the responses of the four
consensus models in standard conditions (Fig. 7a and Suppl.
Movie 1). The high-amplitude models exhibited short-term
depression and short signal duration (half-height width: 2.4 ms
for glutamatergic and 3.8 ms for GABAergic), while the low-
amplitude models demonstrated short-term facilitation and long
signal duration (half-height width: 5.1 ms for glutamatergic and
6.2 ms for GABAergic). Considering all 3120 connections
revealed a significant negative correlation between g and τd and
between g and the paired-pulse ratio from baseline of the third
synaptic event (AB3:A1), but a positive correlation between g and
U, suggesting that high-amplitude synapses have higher resource
utilization (Fig. 7b). Facilitation and depression partly depend on
interstimulus intervals (ISI) and the measure of ST-P. Testing ST-
P at 20 ms ISI and considering AB3:A1, the majority (>90%) of
synapses with an amplitude below 0.5 nS facilitated, irrespective
of neurotransmitter, while most synapses above 2 nS (glutama-
tergic) or 3 nS (GABAergic) depressed (Fig. 7c, left). Although the
second synaptic events (AB2:A1) tended towards facilitation
relative to subsequent signals (e.g., AB5:A1), all ST-P measures
consistently transitioned from facilitation to depression as a
function of conductance (Fig. 7c, right). Moreover, τf and τr were

Fig. 3 Synaptic modeling and deep learning. a Digitized trace (black line) from a CA2 Pyramidal cell to a CA2 Narrow-Arbor Basket PV+ cell82. The
corresponding 9-point reconstruction of each spike (red circles), based on initiation, peak, decay (filled circles), and 6 interpolations (hollow circles), are
used to optimize the simulated signal (green). b The Tsodyks-Pawelzik-Markram (TPM) model describes synaptic amplitude, kinetics, and short-term
plasticity in terms of utilization rate (u), activation (A), deactivation (D), and recovery (R) dynamics. State A represents the portion of activated synapses;
state D corresponds to deactivated synapses that are still bound to neurotransmitter and therefore cannot be reactivated; R is the portion of synapses
detached from neurotransmitter and ready to be reactivated. The kinetics of the transition from A to D is determined by the synaptic decay constant τd.
The recovery rate is instead mostly determined by τr. In terms of postsynaptic ionotropic neurotransmitter receptors, the TPM model assumes that ligand-
gated channel opens instantaneously. The portion of recovered synapses that are instantly activated after a synaptic event is indicated by u (lower case).
During deactivation, the gate is closing while the neurotransmitter is still attached to the channel receptor. For a full recovery, the neurotransmitter needs
to detach from the receptor for presynaptic reuptake. The time constant τr measures that recovery speed. While τd mainly defines synaptic decay, it can
affect ST-P as well when presynaptic firing is very fast. TPM model combined with Ohm’s law can simulate voltage-clamp experiments (synaptic current,
Isyn) by using experimentally measured reversal potential (Erev), junction potential (Ej), and holding potential (Vh). To simulate current-clamp experiments
(synaptic potential, Vsyn), we fed the Isyn to a simple membrane model (Resistor-Capacitor circuit), which depends on experimentally measured steady-
state potential (Vss), membrane capacitance (Cm), and membrane time constant (τm, that could be calculated knowing Cm and input conductance, gin). A
genetic algorithm yields the best-fitting values of 5 synapse-specific parameters: conductance (g), single-exponential decay time constant (τd), recovery
time constant (τr), facilitation time constant (τf), and utilization ratio (U, capital letter). c The predictive machine learning model of synaptic
electrophysiology used a deep learning architecture with five hidden layers and error backpropagation. The input layer encoded the (typically fuzzy)
presynaptic and postsynaptic neuron types (122 × 2 nodes) and all covariates (75 nodes). The output layer consisted of one node for each of the 5
synapse-specific parameters. Model training used the best-fitting TPM parameters corresponding to the available 2,621 reconstructed traces and matching
covariates (corresponding to ∼84% of 3120 potential connections). The model outputs the five predicted synapse-specific parameters for any directional
pair of neuron types and desired choice of covariates. We used random forest to complete the missing ST-P values (τr, τr, and U) in training data, and deep
learning to predict synaptic properties of potential connections for which no data existed, including experimental conditions and potential connections that
have never been studied before.
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negatively correlated (Rglu=−0.4, RGABA=−0.1, p < 0.05),
indicating that synapses needing a long time to recover their
resources tend to reduce their synaptic utilization rate rapidly.
Altogether, these analyses suggest that higher synaptic amplitudes
predict faster kinetics and a tendency towards depression over

facilitation, reflecting coordinated differences in τd and U as well
as interdependence of τf and τr.

Presynaptic and postsynaptic molecular expression as a bio-
marker of short-term plasticity. It is a widespread practice to

Fig. 4 Validation and representative output of the deep learning model for unitary signals. (a) Probability distribution functions of the mismatch
between model output and experimental data for each of the 5 TPM parameters (targets). The mismatch is quantified by the distance, measured by
symmetric absolute percentage error (SAPE), of the model output relative to targets used during training (training accuracy) and targets left out of training
set (prediction accuracy). These two measures to the intrinsic variability of the available experimental data grouped based on features (target variability).
Synapses are plastic and stochastic entities, hence if neuron pairs from the same presynaptic and postsynaptic types are recorded several times in the
same conditions, several values will typically be obtained experimentally, while model outputs will be constant. In other words, target variability is the
distance of a training data point from the average of targets with identical features. This measure of variability in the experimental dataset defines the ideal
limit of model accuracy. Training accuracy quantified the learning capacity of the model. Prediction accuracy measures the inference power of the model by
calculating the distance of model output with a ground truth, which is the experimental data not seen by the model during jackknife (leave-one-out)
procedure. The overall similarity of distributions indicates that the model achieved a level of accuracy comparable to the reproducibility of corresponding
experimental data. The prediction reliability (PR) is the proportion of model outputs falling within the 95% confidence interval of the experimental data with
identical features. (b) Prediction and training accuracy are highly correlated for all 5 parameters, suggesting the absence of overfitting. (c) Simulated
synaptic dynamics based on original training targets (black dotted traces) with identical features, and deep learning model inferences (solid lines). Model
predictions are remarkably close to the training data even though experimental data showed variability. Simulated synaptic traces (Vh=−35 mV, GABAA

Erev=−70 mV, and AMPA Erev= 0mV) showed a wide range of amplitudes and kinetics as well as different forms of short-term plasticity. Glutamatergic
and GABAergic examples are provided for every area involved in the tri-synaptic circuit.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03329-5

8 COMMUNICATIONS BIOLOGY |           (2022) 5:418 | https://doi.org/10.1038/s42003-022-03329-5 | www.nature.com/commsbio

www.nature.com/commsbio


study synapses based on molecular expression. Chemical
biomarkers were not directly among the training features of our
predictive synapse models, but were used for mapping mined
signals to potential connections11. Since the normalized infer-
ences are not fuzzy, we employed Hippocampome.org to query
neuron types expressing different markers26,27 and analyzed
differences in synaptic properties among neuron types containing
(+) or lacking (−) each molecule. Since marker expression can be
localized to the presynaptic terminals or postsynaptic dendrites
and soma28, we studied the presynaptic and the postsynaptic
groups separately (Fig. 8). Considering AB3:A1 as a measure of
ST-P and using a 20 ms ISI, we identified two classes of pre-
synaptic markers that respectively predicted synaptic facilitation
and depression. Specifically, presynaptic calbindin (CB), chole-
cystokinin (CCK), and neuropeptide-Y (NPY) expression corre-
lated with facilitation (larger AB3:A1 values).

In contrast, calretinin (CR), parvalbumin (PV), and somatosta-
tin (SOM) correlated with depression (smaller AB3:A1 values). The
relations of these markers with changes in synaptic amplitude and
kinetics were not always statistically significant but generally
followed the trends revealed in the previous section. Namely,
presynaptic expressions predicting short-term facilitation typically
demonstrated lower signal amplitudes and slower kinetics and vice

versa for those predicting short-term depression. Cannabinoid
receptor 1 (CB1) expression can be localized both on presynaptic
and postsynaptic sides of a synapse29. Since the presynaptic effects
were similar to CCK, we only illustrated the postsynaptic effects.
Among the postsynaptic markers, CB1 and serotonin receptor 3
(5HT-3) predicted lower amplitudes and a tendency towards
facilitation. Interestingly, CB1 changed g and AB3:A1 of GABAergic
synapses more than of glutamatergic synapses, on average.

Correlations between neuronal morphology and synaptic
parameters. In GABAergic neurons of both hippocampal area
CA1 and visual cortex, the kinetics of spontaneous synaptic
inputs vary depending on the specific axonal targeting of that
same postsynaptic neuron30,31. We tested similar interactions
between input synaptic properties and output axonal patterns
throughout the hippocampal formation, not only considering
unitary synaptic kinetics, but also conductance and ST-P (Suppl.
Figure 7). Among GABAergic synapses in CA1, we found sig-
nificant differences in g, τd, τf, and U, indicating that input
synaptic duration, as well as amplitude and facilitation, vary
by output axonal targeting (Fig. S7a). Extending the study
to other hippocampal regions revealed significant differences in

Fig. 5 Comprehensive open access to data and tools. a The full set of normalized synaptic data for the entire entorhinal-hippocampal circuit in 32 different
conditions (any combination of rat/mouse, male/female, young/adult, body/room temperature, and voltage-/current-clamp), the reconstructed synaptic
traces with original references and annotated metadata, and the machine learning training data are all freely available at Hippocampome.org/synapse. For
each synaptic parameter of every potential connection, we supply the mean, standard deviation, and range of 100 deep-learning model predictions. b Our
high-performance synapse modeling tool (Hippocampome.org/SynapseModelingTools) is equipped with a Trace Reconstructor and trace correction
algorithm.
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τd and τf among GABAergic synapses in CA3, and in τr in DG
and CA2. Glutamatergic synapses generally demonstrated fewer
significant differences. Visualizing consensus traces (Suppl. Fig-
ure 7b) and synaptometrics differences (Suppl. Fig. 7c) confirmed
these patterns.

In the visual cortex, connection probability correlates
with synaptic strength32. Hippocampome.org calculates the

probabilities of connections and the average synaptic distance
from the presynaptic and postsynaptic soma based on the layer-
specific linear densities of the corresponding axons and
dendrites33. Synaptic conductance had a weak but statistically sig-
nificant positive correlation with the connection probability
(RGABA= 0.27, RGlu= 0.19, p < 0.05). Consistent with dendritic
filtering, we found a significantly negative correlation between g
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and the synaptic distance from the postsynaptic soma (RGABA=
−0.13, RGlu=−0.06, p < 0.05).

Discussion
We digitized, reconstructed, and compiled a comprehensive
dataset of 2621 synaptic signals recorded from the rodent hip-
pocampus and entorhinal cortex, and mapped each to respective
covariates and potential connections. Through computational
modeling and machine learning, we normalized and completed
all synaptic physiology data to predict the amplitude, kinetics,
and ST-P of the 3120 potential connections of the hippocampal
formation. For each potential connection, we freely released via
Hippocampome.org the complete set of 5 synaptic parameters in
32 different experimental settings with all annotated experimental
data, plus analysis and modeling software source code. We
identified the major determinants of unitary synaptic physiology
and discovered new correlations among synaptic properties,
molecular expression, and neuronal morphology.

Broad diversity in experimental settings causes extreme varia-
bility in synaptic electrophysiological recording. Combined with
inherent measurement noise, this makes identifying causal rela-
tions among variables considerably challenging. To our knowl-
edge, our application of deep learning provides a suitable solution
to these issues. Testing the deep learning model with unseen data
demonstrated that the predictions are valid within experimental
accuracy. Applying uniform experimental conditions (voltage-
clamp at body temperature in male rats with specified intra- and
extra-cellular solutions) to all potential connections effectively
normalized data. In that scenario, the only differences in synaptic
parameters are due to the presynaptic and postsynaptic neuron
identities. At the same time, changing the chosen experimental
condition, such as switching from male to female animals, allows
the systematic investigation of every covariate effect.

Furthermore, our deep learning solution yields two notable
data augmentation benefits. First, it fills in missing data by matrix
completion harnessing the learned axonal and dendritic proper-
ties of the corresponding neuron types. In simple terms, if the
predictive model learns synaptic features from neuron type x to
neuron type y, and from type w to type z, it can then infer the
features from x to z and from w to y based on the axonal
properties of x and w and the dendritic properties of y and z. In
reality, the known features utilized in training are more numerous
than the set of missing data. For comparison, an earlier study
measured the synaptic physiology of 10% of potential connections
in CA1 to extrapolate the properties of the remaining 90% based
on marker profiles14. In contrast, our experimental dataset cov-
ered most potential connections across the entire hippocampal
formation, with missing values ranging from 16.3% for con-
ductance to 38.5% for ST-P. Singular value decomposition (SVD)
may robustly complete matrices with up to 50% of missing
values34, but deep learning typically outperforms SVD in this
process18.

The second beneficial effect of our machine learning approach
is that it leverages data redundancy to disambiguate the mappings

of individual signals to multiple potential connections. Consider
for instance an experimental recording mapped to potential
connections A or B and a different recording mapped to potential
connections B or C; the deep learning model utilizes the two
constraints on B to predict a unique set of synaptic parameter
values distinct from those of A and C. Indeed, the inferred values
were all different for the 3120 pairs of hippocampal neuron types,
indicating that the training data was sufficient to completely
resolve degenerate mappings.

The method we introduced is highly flexible and can be
adapted to include pathological conditions. For example, the set
of features could be expanded by including a descriptor to dis-
tinguish the epileptic state. Then, mining and modeling available
epileptic data, would allow the inference of normalized and
completed synaptic properties in epilepsy. At this time, we have
mined only the control condition of experiments. However, our
freely accessible code and data allow any interested researcher to
add and normalize their recordings as needed. The more data are
pooled together, the more generalizable the resulting predictions
will be.

Before delving into the implications of the results, we should
note that our observations are circumscribed to the somatic
impact of synaptic events. To investigate local postsynaptic
mechanism likely requires compartmental modeling of dendritic
morphologies, or optoelectrophysiological techniques14,35. We
also did not consider long-term plasticity and slow conductances
(GABAB or NMDA receptors; but see Suppl. Note 1) since the
required experimental data for most pairs of neuron types remain
sparse. Our regression models likewise excluded stimulation
strength of evoked events because this detail is seldom reported in
publications. Additionally, most published traces had a constant
ISI and a single recovery event. Future experimental designs
including variable ISIs and multiple recovery events would allow
more accurate estimation of τr and τf. Since homeostatic plasticity
may change synaptic strength in vitro, we suggest reporting
systematically the time elapsed from slice preparation until
the actual recording. It is also important to acknowledge that the
chosen TPM formalism is a fairly simple analytical model. While
it performs satisfactorily for the majority of synapse types in the
hippocampal formation, more complex models accounting
for rise time constant, calcium concentration, and stochasticity
may be better suited for extremely facilitating synapses14,36

(see Suppl. Note 2).
The synapses of the entorhinal-hippocampal network com-

municate through a broad continuum of signal amplitudes. Yet,
the sets of neurotransmitters and receptors employed by this
circuit are limited, raising a question: does variation in synaptic
conductance interact with resource utilization and recovery to
affect kinetics and ST-P? Unnormalized unitary data suggest that
decay kinetics are faster for strong GABAergic synapses than for
weak ones11. Additionally, one study on three synapse types
suggests that the ST-P of stronger synapses is depressing, and the
ST-P of weaker synapses is facilitating37. Indeed, analyzing all
potential connections of the hippocampal formation revealed a

Fig. 6 Principal determinants of synaptic properties. a To ascertain the relative importance of presynaptic axons and postsynaptic dendrites on synaptic
dynamics, we measured the coefficient of variation (CV) of all 5 parameters for each (presynaptic or postsynaptic) neuron type across its potential
connections. We then assessed the difference between these two groups by unpaired Wilcoxon test. A significantly lower variability (asterisks) indicates a
dominant role of that group in defining the synaptic signal. The lower and upper hinges of the box and whiskers plot correspond to the first and third
quartiles around median. The dataset underlying this analysis is available in Supplementary Data 1. b To investigate the impact of covariates on synaptic
parameters, we changed one experimental condition at a time and assessed the differences by paired Wilcoxon test. All changes were statistically
significant; bold arrows indicate differences >20%. c To simulate a consensus signal for each group in every pair of conditions, we averaged the 5 synaptic
parameters across all relevant (GABAergic or glutamatergic) connections. Comparatively, sex, recording method, and [gluconate]i had the greatest
phenomenological impact (in these simulations, Vh=−30mV, GABAA Erev=−60mV, and AMPA Erev= 0mV).
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Fig. 7 Synaptic conductance entails kinetics and short-term plasticity. a We averaged the synaptic parameters of the 30 potential connections with the
largest conductance (high-amplitude) and of the 30 with the smallest one (low-amplitude) to compare their simulated consensus signals. The low- and
high-amplitude groups exhibited respectively short-term facilitation and depression (ISI = 20ms, Vh=−35mV, GABAA Erev=−70mV, and AMPA
Erev= 0mV). A1 is the synaptic amplitude of the first event; AB3 is the amplitude from the baseline of the third event. b Considering all connections,
synaptic amplitude correlates with kinetics and short-term plasticity (ST-P). The negative correlation between g and τd (left) indicates that synapses with
large conductance tend to have faster signal decays. The positive correlation between g and U (middle) suggests that high-amplitude synapses have higher
resource utilization. The negative correlation between g and the ratio from the baseline of the third event, AB3:A1, (right) shows that high-amplitude
synapses depress more. c The ratio between facilitation (AB3:A1 > 1) and depression (AB3:A1≤ 1) decreases as a function of conductance with a transition
from mainly facilitating to mainly depressing between 1 nS (GABAergic) and 1.7 nS (glutamatergic) for 20ms ISI. d Fitting the dependence on g of the ratio
from the baseline of the xth event, ABx:A1, with an inverse first-order polynomial function reveals that earlier synaptic events (e.g., AB2:A1) tend to facilitate
while later ones (e.g., AB5:A1) tend to depress. The trend from facilitation to depression with increasing conductance is robust to ST-P measure.
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negative correlation of g with both τd and AB3:A1. Moreover, we
found a positive correlation between g and U, consistent with the
TPM model (Eq. 18 in Methods). Since U quantifies the utiliza-
tion increment, these results suggest high-amplitude synapses
depress more easily because of resource exhaustion.

The TPM model accounts for resource utilization and recovery.
When τr is small, the resource recovery pace is fast. When τf is

large, resource utilization remains prolonged. Therefore, the
opposite dependence of τf and τr on covariates indicates that
when resource recovery pace is fast, resource spending is pro-
longed. Furthermore, their higher negative correlation in gluta-
matergic synapses relative to GABAergic ones suggests that
resource utilization is subject to tighter control in the former than
in the latter. Overall, the effects of covariates on synaptic para-
meters revealed only two distinct patterns that differed exclusively
in the change direction of τr and τf. The correlation among
synaptic parameters could explain the mere simplicity of these
observations. Covariates increasing g will also increase U and
decrease τd. The only remaining freedom is in τr and τf, which
always change in opposite directions. This suggests that covariates
affect a small set of latent variables. See Suppl. Note 3 for further
discussions.

For equivalent experimental conditions and irrespective of the
neurotransmitter, female animals had, relative to males, multi-
plicatively larger unitary synaptic conductance, significantly faster
kinetics, and greater tendency towards short-term depression
than facilitation. It is tempting to speculate a link to chronic
exposure to neurosteroids and endocannabinoids, which increase
the amplitudes of glutamatergic and GABAergic synapses,
respectively, in females38–40. We observed similar changes in
synaptic parameters when switching from voltage-clamp to
current-clamp. This could be due to the activation of voltage-
gated ion channels in current-clamp or the reduction of passive
filtering during parametric fitting that brings the estimations
closer to the local dendritic event24,41. We also found qualitatively
parallel differences between species, with significantly larger
synaptic conductance in mice compared to rats. Notwithstanding
the high statistical sensitivity of our study, however, the phe-
nomenological disparity across rodents was practically negligible
(see Suppl. Note 4 for further considerations).

When added to the patch-clamp intracellular solution, the
common food additive potassium gluconate (E577) changes the
reversal potential of GABAA channels42, blocks ion channels
involved in subthreshold membrane physiology43, and alters fir-
ing patterns in hippocampal neurons44. However, the impact of
intracellular gluconate on unitary synaptic signaling has never
been studied systematically. We found intracellular gluconate to
be one of the most potent synaptic enhancers. With gluconate in
the recording pipette, synaptic amplitudes were a fold-factor
larger, kinetics were faster, and short-term plasticity shifted from
depression to facilitation (smaller τr and larger τf). The increment
of synaptic amplitude could be explained by blockage of the
subthreshold channels, which reduces shunting and increases
input resistance. The reduction of short-term depression may be
due to the role of gluconate as an energy source that facilitates

Fig. 8 Presynaptic and postsynaptic molecular markers of synaptic
physiology. a Comparison of synaptic signals between presynaptic neuron
types expressing (+) or not expressing (−) parvalbumin (PV). The
consensus trace was simulated with synaptic parameters averaged across
all potential connections in each group. The sample traces are from the CA1
Basket PV+ to CA1 Pyramidal connection (+), and from CA1 Basket CCK+
to CA1 Pyramidal (−). b Symmetric percentage differences (SPD) in
synaptic parameters between potential connections grouped by the
expression or absence of specific presynaptic or postsynaptic molecular
markers (with corresponding samples sizes). Positive values signify that the
measurement is larger in the (+) than in the (−) group, and vice versa.
Error bars indicate confidence intervals and asterisks denote statistical
significance by unpaired Wilcoxon test at the p < 0.05 level after False
Discovery Rate correction63 for multiple testing. The dataset underlying
this analysis and the listing of all 36 p-values are available in Supplementary
Data 1.
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resource recovery. As a comparison, the effect of gluconate on
synaptic parameters was a full order of magnitude larger than the
changes observed in the same direction when shifting from room
temperature to body temperature.

Our data analysis suggests that the presynaptic side of gluta-
matergic, and the postsynaptic side of GABAergic neurons, have a
relatively higher impact on synaptic properties. For GABAergic
synapses, this finding could be explained by the selective targeting
of Axo-axonic and Interneuron-Specific interneurons9. At the
same time, each neuron type in Hippocampome.org is linked to
known molecular biomarkers expressed either in the axons (e.g.,
calcium-binding proteins and neuropeptides) or in the dendrites
(e.g., neurotransmitter receptors). Among calcium-binding pro-
teins, calbindin was a biomarker of facilitating synapses while
calretinin and parvalbumin of depressing ones. Among neuro-
peptides, CCK and NPY marked a tendency toward facilitation
and somatostatin towards depression. Among neurotransmitter
receptors, cannabinoid receptor 1 and serotonin-gated ionotropic
channels altered synaptic properties similarly. While this result is
consistent with their pattern of co-expression in cortical
neurons45, their underlying mechanisms are likely distinct given
the specific dendritic compartmentalization of 5-HT3, but not of
CB1. See Suppl. Note 5 for further discussions.

Normalized synaptic data are required by large-scale modeling
efforts, such as the European Union Human Brain Project. Using
our approach, experimental synaptic recordings can be properly
integrated by computational modeling and deep learning to
provide the much needed normalized, completed, and dis-
ambiguated unitary electrophysiology data of all potential con-
nections in the hippocampal formation in any desired setting.
These data can be used to test hypotheses, constrain and validate
realistic computer simulations, and optimize experimental
designs. The hippocampal formation is a current focus of broad
community interest, but our platform can be applied to other
brain regions and circuits as well. The devised method and tools
can facilitate the quantitative investigation of synaptic data in
other brain regions and species (see Suppl. Notes 6–7 for future
directions).

Methods
Source dataset. The source dataset for this work was a publicly available collection
of synaptic traces and measurements mined from peer-reviewed publications and
carefully annotated for detailed metadata as previously described11. In this study,
we first reconstructed these signals into a set of systematic measurements. Next, we
simulated the traces with a synapse model to unify the data format. Then, we
created a predictive deep learning model of all the data to infer missing values,
disambiguate the identity of presynaptic and postsynaptic neuron types, and
normalize the data with respect to covariates. Lastly, we statistically analyzed the
resultant completed and normalized dataset and corresponding synaptic
simulations.

Synaptic signal reconstruction. To digitize the mined traces, we used Engauge
Digitizer, a multiplatform open-source software (digitizer.sourceforge.net). We
implemented a custom Python algorithm, Trace Reconstructor, as part of our
Synapse Modeling Utility, to extract a consistent set of data points from each
synaptic event, including an initiation, a peak, and a decay point (Suppl. Fig. 2a).
Each data point consists of a time and a corresponding amplitude. We found data
points either from digitizing traced or through interpolation of reported synap-
tometric measurements, such as the average amplitude, 10–90% or 20–80% rise
times, half-height width (50% rise to 50% decay time), and half-decay time
(100%–50% decay time). Six additional intermediate data points were interpolated
using the Akima interpolator implemented by SciPy46.

For the accurate simulation of ST-P, we ensured all digitized signals had at least
10 successive synaptic events and a recovery event, interpolating them if needed
from paired-pulse ratios (PPRs). To infer missing PPRs of facilitating and
pseudolinear ST-Ps, we used bicubic interpolation. For depressing signals, we used
a custom interpolator that assumed the PPRs exhibit exponential decay to a
minimum. For depressing or pseudolinear signals that lacked a recovery event, we
assigned a 2s period for recovering from synaptic depression47–49. Specifically, we
assumed this as the time for the recovery to reach 63% of the difference between

the amplitude of the first and the last events in a successive series of events. For
facilitating synapses, we did not add a recovery event.

Most synaptic signals start with a fast AMPA or a GABAA response which are
gradually mixed with slower synaptic responses or non-synaptic membrane
fluctuations. To diminish the impact of slower events, we corrected the signals
either at the reconstruction stage or during parametric fitting (Suppl. Fig. 1). When
the ISIs of synaptic events were constant, we reconstructed the signal based on the
amplitude and the decay time constant of the first synaptic event and the paired-
pulse ratios of the successive events. When the ISIs were variable, we used
simulated signals to correct the data as described below.

We implemented all the above-mentioned reconstruction algorithms in the
Trace Reconstructor tool of the Synapse Modeling Utility.

Biophysical synaptic model and parametric fitting. To facilitate comparison
between current and voltage recordings, we reduced the signals to modality
independent synaptic constants utilizing a specific version of the Tsodyks,
Pawelzik, and Markram (TPM) model12,13. The TPM model formulates a rela-
tionship between synaptic conductance (g), deactivation time constant (τd),
recovery time constant (τr), facilitation time constant (τf), and the utilization ratio
(U) of synaptic resources in one set of ordinary differential equations. Calculating
synaptic currents (Isyn) with an Ohmic model for ion channels (Fig. 3b) requires
the reversal potential (Erev) and the postsynaptic membrane potential (Vm). Erev is
experimentally measurable or can be accurately estimated from the ionic compo-
sition of bath and pipette solutions, temperature, and permeability of ion channels
to different ions11. We assumed kinetically fast synaptic responses to be mediated
by calcium-impermeable AMPA or GABAA channels, unless otherwise stated in
the original publications. Because Isyn is recorded in voltage-clamp experiments, we
calculated Vm by correcting holding potential (Vh) for liquid junction potential (Ej)
as previously described11.

Using the TPM model, we can analytically simulate the amplitude, kinetics, and
ST-P of Isyn. We numerically derived synaptic potentials (Vsyn) by feeding the
simulated Isyn to a resistor-capacitor circuit (RC) model of neuronal membrane,
from which we equated Vsyn as the evolution of Vm over time. We used the
ODEPACK solver via SciPy for numerical integration. The RC model depends on
three experimentally measurable parameters: the membrane time constant (τm),
membrane capacitance (Cm), and the initial value of Vm. Since Vsyn is recorded in
current-clamp experiments, we corrected resting or steady-state membrane
potential for Ej to estimate the initial value of Vm. We used τm and Cm values when
reported in the original study; otherwise, we utilized the values reported by
Hippocampome.org for a matching postsynaptic neuron type in the closest
available temperature, recording method, and solutions10. If parameters of the RC
model could not be found in the original paper or Hippocampome.org, the values
were optimized during parametric fitting. Only for 23% (603:2621) of the signals at
least one of the τm and Cm values was found through optimization.

We found the optimal g, τd, τr, τf, and U values for each experimentally
recorded synaptic signal by fitting TPM model simulations to the reconstructed
data points. We created a high-performance and user-friendly Python simulator,
the Synapse Modeling Utility, to aid in parametric fitting. Optimization was
performed by an implementation of the SciPy toolbox genetic algorithm,
differential_evolution function, a bound-constrained global optimizer. As the
objective function, we chose the mean soft L1 squared error, i.e.,

error ¼ 2
n
∑
n

i¼1
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� �2q
� 1
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where n is the number of reconstructed data points. We assigned the fitting error
associated with the first synaptic event twice the weight relative to all other events,
and the 6 interpolated data points half the weight of the initiation, peak, and decay
points. We set the following bound constraints: 50 < τr < 3000 ms, 1 < τf < 300 ms,
and 0.001 <U < 1. Optimization was stopped when the difference of fitting error
between successive fits yielded a change of less than 0.001.

If more than one stimulation frequency was available for a given experiment, we
pooled data prior to optimization to ensure the estimated parameters are more
generalizable to different frequencies. We then re-expanded the data after
optimization to match each of the original traces.

The Synapse Modeling Utility also implemented a correction for slow processes
when the ISIs varied (see also Supplementary Note 1). In the absence of a slower
process, the signal should gradually decay to a baseline. Provided slower processes
do not drastically affect the first simulated event such that τd estimation is accurate,
the recorded and simulated signals should be most similar at the initiation points of
the synaptic events. We defined the correction amounts at initiation points of two
successive synaptic events as the amplitude differences (Suppl. Fig. 1b). We then
calculated the correction values for data points in between two initiation points by
the triangulation method. Signals yielding τd values greater than 700 ms were
excluded from subsequent analysis. For signals that only reported amplitude and
not kinetics, we set the missing τd values to the median of the unitary GABAergic
and glutamatergic responses as appropriate.

Fitting a single synaptic signal using our Synapse Modeling Utility required
seconds to minutes, while fitting with a pipeline built using the Neuron Simulation
Environment50 required hours. We optimized each trace at least 30 times and
averaged the best 15 fits. The relative inter-trial variability was <0.001.
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Machine learning design and implementation. We employed machine learning
to infer the five parameters of the TPM model (the targets) based on a set of
features, namely the pre- and post-synaptic neuron types and covariates. Specifi-
cally, the set of features consisted of 319 one-hot encoded and numerical values
(Table 1): 122 features encoded presynaptic neuron types, 122 postsynaptic neuron
types, and the remaining 75 features encoded the experimental covariates. For
instance, three columns encoded four stimulation methods (evoked, unitary,
spontaneous, if all three columns were set to zero the stimulation method was
miniature), one column encoded three species (1= rats, −1=mice, and 0= gui-
nea pigs), and one column sex (1=male, −1= female, and 0= both or unknown).
When the animal age was not reported, we estimated it based on weight, diet,
species, and strain. One feature column encoded whether the target signal repre-
sented amplitude or potency, which differ in the averaging method: if failed events
are excluded from the signal average, the peak quantifies synaptic potency rather
than amplitude. For algorithm training, when the failure rate of the first synaptic
event was reported, we added an additional pseudo-signal by converting amplitude
to/from potency, resulting in a different g value as a target and a different potency
value as a feature. We normalized features with the MaxAbsScaler function of
Scikit-learn toolbox to preserve the sparsity of the feature matrix. Moreover, we
normalized the targets with the MinMaxScaler method to allow usage of sigmoid
activation functions in the deep learning output layer.

We implemented the machine learning pipeline in Jupyter and Python. We first
trained a random forest model using the Scikit-learn package on two Xeon-E5 v3
CPUs to infer missing values of ST-P. The random forest model is a refined series
of linear regressions that correct the predictions in every step towards the final
output. This algorithm is fully automated, has only one tuning parameter, and is
very robust. Specifically, whenever a signal lacked estimates for τr, τf, and U
(typically recordings of single synaptic events), we set those values to zero.
However, to allow machine learning to distinguish such ‘not available’ entries from
real zero values, we also set the ISI, a feature, to zero in those cases. The random
forest model, in contrast to deep learning, could learn to predict missing values for
τr, τf, and U, when ISI was zero. Similarly, the random forest model was able to
infer the missing values for these parameters when ISI was non-zero. Specifically,
we set missing ISI values to 50 ms, the mode of all ISIs. We then employed the
inferred values together with the original values to train a deep learning model
utilizing the Keras library with a TensorFlow 2.3 backend on seven NVIDIA Titan
X GPUs (Suppl. Fig. 3). First, we trained the deep learning model using the existing
experimental data by backpropagating output error. Specifically, during training,
information about the target features in the output layer (the TPM parameters) is
encoded in the intermediate layers as the information flows backward by back-
propagation, and from there all the way to the input layers which represent the
features (presynaptic neuron, postsynaptic neuron, and covariates). As a result of
this training process, the deep learning model learns to take in the features
(presynaptic neuron, postsynaptic neuron, and covariates) and produces a specific
target output (five TPM parameter values) based on the input features. The
distinction between training features and prediction features in Fig. 3 is that the
former ones are linked to the experimentally available traces, whereas the latter
ones can be chosen arbitrarily. We also fed back the originally missing values of τd,
τr, τf, and U estimated by deep learning iteratively until we observed no further
improvement in model performance (30 times).

We meticulously hand-tuned the hyperparameters of the deep learning model.
Checking different deep learning topologies, we settled on a five-layer autoencoder
perceptron, regularized with the latest available techniques to achieve state-of-the-
art accuracy and generalization power. Specifically, we used the self-regularized
mish activation function51, dropout layers52 combined with max-norm
constraint53, batch normalization layers54, weight decay regularization55, noise
regularization56, and early stopping technique57. As the objective function of the
deep learning model, we employed symmetric mean absolute percentage error

SMAPE ¼ 200
n

∑
n

i¼1

predictioni � targeti
�� ��
predictioni
�� ��þ targeti

�� �� ð2Þ

where n is the number of data points58,59. It is advantageous to use SMAPE over
the competing methods because it is scale-independent and unbiased. We trained
the models with the lookahead optimization algorithm60 guided by the AdamW
optimizer55 with weight decay= 0.001, learning rate= 0.015, and batch
size= 2621. We implemented learning rate reduction on plateau to achieve the best
fit (patience = 100 epochs, factor= 0.9). We used the early stopping technique for
restoring the best weights at the end of training to avoid overfitting.

The exact predictions of the model depended on the (randomized) sorting of
the training dataset. Thus, we trained 100 models and statistically analyzed the
results for each potential connection (Suppl. Fig. 8). The CV of model predictions
was not significantly larger in any region and did not correlate with the number of
data points available per potential connection. Among parameter predictions, the
CV was largest for τf, and smallest for τd, U, and GABAergic τr. To maximize
robustness, we reported the average value of 100 model inferences for each
parameter and potential connection.

The sigmoid activation functions in the output layer ensure model inferences
stay data-bound; nevertheless, we also made sure all g, τd, τr, τf, and U predictions
are unique and biologically plausible, i.e., g > 0 nS, 0 < τd < 70 ms, τr > 50 ms,
τf > 1 ms, and 0 <U < 1.

Machine learning model validation. We computed training accuracy as the
average SMAPE distance of the model output from the training data. In contrast,
prediction accuracy is the average SMAPE distance of the model output from the
unseen data. We monitored the prediction accuracy of the model after each
training epoch with k-fold cross-validation61,62 with k= 4. We trained four models
on four separate training runs, each using three-quarters of the data, used the
remaining one-fourth of data to measure prediction error, and averaged the results
over the four runs. We assessed the final model accuracy with the jackknife method
(Fig. 4a, b and Suppl. Fig. 4): we trained n= 2621 models with n−1 data points and
assessed the prediction error of the model for one set aside data point.

Our dataset had more than one data point for most potential connections
(Fig. 2, and Suppl. Fig. 2e, f). In certain cases, these data points had identical
features. Target variability is the average distance (in SMAPE) of each target value
in a group from the group average. For one set of features, predictive models can
only predict one set of targets. Therefore, the variability of targets imposes a limit
on the maximum accuracy the model can achieve. Considering the average target
values as the best estimates of the true values, we calculate the 95% confidence
interval around the mean and defined a model prediction as reliable if it fell within
the confidence interval. Prediction reliability (PR) is the percentage of model
predictions that are within the confidence interval.

Data normalization. The training features were highly heterogeneous and typically
mapped to multiple presynaptic and/or postsynaptic neuronal types (fuzzy or
ambiguous mapping). Nevertheless, a trained model can predict targets (synaptic
parameters) for an arbitrary set of features. We inferred values for the unambig-
uous (proper) mapping of all 3120 potential connections in the entorhinal-
hippocampal network. In other words, each inference feature was mapped to one
presynaptic neuron type and one postsynaptic neuron type. We also set all other
features except the presynaptic and postsynaptic neuronal types to identical values.
For instance, we selected identical ionic concentrations for physiological solutions
across all synapses and calculated Erev accordingly. We set no NMDA or GABAB

contamination for the features. Using the trained deep learning models, we inferred
unitary synaptic parameters for each potential connection always verifying that the
predicted values remained within the upper and lower boundaries of the training
set to avoid erroneous extrapolations. We chose unitary postsynaptic currents
recorded from adult male rat slices kept in artificial cerebrospinal fluid at body
temperature while using whole-cell patch pipettes devoid of high [Cl]i or [gluco-
nate]i solutions as a standard condition for model inferences. When analyzing
covariates, we changed one feature at a time to infer the corresponding synaptic
parameter. We also generated the inferences for 32 different permutations of
conditions, i.e., rat vs mice, male vs female, P14 (adolescent) vs P56 (adult), room
(22 °C) vs body (32 °C) temperatures, and voltage-clamp vs current-clamp
recording methods.

Statistics and reproducibility. To compare synapses, we either analyzed the TPM
model parameters directly or simulated each synapse separately and measured
different synaptometrics. The paired-pulse ratio is the measure of ST-P, which
requires the estimation of amplitude. For the first synaptic event, the baseline
crosses the initiation points, but for later events, the overlap of initiation points
with the baseline depends on the ISI and τd values. If the amplitude is measured
from the baseline, we used the ABi term, where i is the event number. Otherwise, if
the amplitude is measured from the initiation point, we used the Ai term. For
example, A1 is the amplitude of the first synaptic event, and AB3 is the amplitude
from the baseline of the third synaptic event (Figs. 3 and 7). Thus, ABi:A1 repre-
sents the paired-pulse ratio of the ith event from baseline, which assesses the
evolution of the synaptic activation (see derivation of TPM model section for
mathematical clarification).

We compared groups with paired or unpaired Wilcoxon’s test as appropriate.
We corrected all p-values for multiple comparisons using False Discovery Rate63

and selected 0.05 as the significance threshold. We corrected coefficients of
variation (CVs) for sample sizes and used the bootstrapping method to find the
confidence intervals64,65. We used the Pearson method to compute correlations.
The p-value of correlations is calculated using t distribution table and ggpubr
package in R.

As a measure of central tendency, we defined trimmed-mean as a mean value in
which 2.5% of outliers on both extremes are excluded. The interquartile range is the
measure of spread. Since the synaptic parameters have different units, we used
symmetric percentage distance

SPD ¼ 200
v1 � v2
v1
�� ��þ v2

�� �� ð3Þ

as a measure of change between two data points that is dimensionless and
unbiased. We simply use the term percentage to refer to SPD in the Results and
Discussion of this paper. Specifically, for covariates analysis (Fig. 6b), we computed
the trimmed-mean of SPDs of reference vs change of each potential connection:

SPD ¼ 200
change� reference

change
�� ��þ reference

�� �� ð4Þ

Then, compared the differences with paired Wilcoxon’s test. For morphology
and marker analysis (Fig. 8b, c), we used the unpaired Wilcoxon’s test.
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We converted the Wilcoxon’s estimate, a robust measure of the difference between
groups, and 95% confidence intervals to SPD by multiplying these values by

200
median �ð Þð Þ þmedian þð Þð Þ ð5Þ

where (+) refers to the group that expressed the marker and (−) for the group that
did not.

Derivation of a simplified Tsodyks, Pawelzik and Markram synapse model.
Over the last 50 years, a large body of phenomenological synaptic plasticity models
has been theorized12. One of the better-established models is that of Tsodyks,
Pawelzik, and Markram (TPM)13. In this work, we adapted a simplified version of
the TPM model12 and further streamlined the analytical solutions.

Ordinary differential equations describing synaptic temporal dynamics. Short-
term synaptic plasticity depends on the availability and utilization of synaptic
resources (Fig. 3b), including the number of readily releasable synaptic vesicles and
the concentration of calcium. Short-term synaptic facilitation begins with an
increase of calcium ions within the presynaptic terminal resulting in an increase in
synaptic resource utilization. Equation 6 formulates the utilization dynamics:

du
dt

¼ � u
τf

þ U � 1� u�
� � � δ Δti

� �
with Δti ¼ t � ti ð6Þ

where u is the fractional degree of synaptic utilization at any moment t, u�
indicates the value of u just before the synaptic event time ti , U determines the
increment proportion (between 0 and 1) with each presynaptic spike, and δ is
Dirac’s delta function. Since (1� u) quantifies unutilized resources and synapses
cannot use more than all the resources available to them, U � 1� u�

� �
determines

u increment after each synaptic event. Whenever a synapse is not being stimulated,
synaptic utilization exponentially decays to zero with the facilitation decay time
constant τf .

Synaptic depression is due to the depletion of available synaptic resources.
These resources can be partitioned into three portions, representing respectively
the activated (A), deactivated (D), and recovered (R) states. After each presynaptic
spike, an instantaneous shift occurs from recovered to activated state. The amount
of shift is determined by u. The active resources then decay to the deactivated state
by the decay time constant τd . Since synaptic resources are limited, the more
resources stay in the deactivated state, the more a synapse is depressed. In the TPM
model, synaptic resources exponentially recover from depression with the recovery
time constant τr. This process can be formulated by the following set of equations:

dR
dt

¼ D
τr

� uþR�δ Δti
� �

ð7Þ

dA
dt

¼ � A
τd

þ uþR�δ Δti
� �

ð8Þ

dD
dt

¼ A
τd

� D
τr

ð9Þ

where uþ is the value of u just after synaptic event time, which can be determined
using Eq. 6. R� is the value of R just before the synaptic event, which is determined
by Eq. 7. The product uþR� represents the fraction of the synaptic resources being
utilized after each synaptic event. This proportion is added to the already active
resources (A) and taken from the readily usable resources (R). Then, the change in
D at any moment is the difference between resources deactivating (Aτd) and

resources recovering (Dτr).

A simplified version of the four-state TPM model12 eliminated Eq. 9 which is
possible since the total amount of synaptic resources is fixed:

R þ A þ D ¼ 1 ð10Þ
Substituting D ¼ 1� R� A, the four-state TPM model can be reduced to the

following three-state model:

du
dt ¼ � u

τf
þ U � ð1� u�ÞδðΔtiÞ

dR
dt ¼ 1�R�A

τr
� uþR�δðΔtiÞ

dA
dt ¼ � A

τd
þ uþR�δðΔtiÞ

8>><
>>: ð11Þ

Analytical solution of the model. This three-state model can be solved using the
technique of exact integration66. If df

dt is a time varying function of S(t),

df
dt

¼ 1
τ

�f þ S tð Þ� �

f tð Þ is:

f tð Þ ¼ f ti�1
e�

4ti�1
τ þ 1

τ
e�

t
τ

Z t

ti�1

e
t0
τ S t0ð Þ dt0 ð12Þ

Applying this formula to solve Eq. 6:

u tð Þ ¼ uti�1
e
�4ti�1

τf þ U 1� u�
� �

e
� t

τf

Z t

ti�1

e
t0
τf δ 4t0i
� �

dt0

Since
R1
�1 f tð Þδ tð Þ ¼ f 0ð Þ, we will have:

u tð Þ ¼ uti�1
e
�4ti�1

τf if t ≠ ti

u� þ U 1� u�
� �

if t ¼ ti

8<
: ð13Þ

Similarly, the solution for A tð Þ is:

A tð Þ ¼ Ati�1
e�

4ti�1
τd þ uþR�e

� t
τd

Z t

ti�1

e
t0
τd δ 4t0i
� �

dt0

A tð Þ ¼ Ati�1
e�

4ti�1
τd if t ≠ ti

A� þ uþR� if t ¼ ti

(
ð14Þ

The solution for R tð Þ is:

R tð Þ ¼ Rti�1
e�

4ti�1
τr þ 1

τr
e�

t
τr

Z t

ti�1

e
t0
τr 1� A t0ð Þ � τruþR�δ 4t0i

� �� �
dt0

Substituting A from Eq. 14 and expanding the integral, yields:

R tð Þ ¼ Rti�1
e�

4ti�1
τr þ 1

τr
e�

t
τr

Z t

ti�1

e
t0
τr dt0 � Ati�1

Z t

ti�1

e
t0
τr
�4t0

i�1
τd dt0

 

�τruþR�

Z t

ti�1

e
t0
τr δ 4t0i
� �

dt0
!

Since
R b
a f tð Þdt ¼ F bð Þ � F að Þ,

R tð Þ ¼ Rti�1
e�

4ti�1
τr þ 1

τr
e�

t
τr τr e

t
τr � e

ti�1
τr

� 	
� Ati�1

τrτd
τd � τr

e
ti�1
τd e

t
τr
� t

τd � e
ti�1
τr

�ti�1
τd

� 	� �

� uþR�

Z t

ti�1

e�
4ti�1
τr δ 4t0i
� �

dt0

Which simplifies to the following equation assuming �Ati�1
¼ Ati�1

τd
τd�τr

:

RðtÞ ¼ 1� �Ati�1
e�

Δti�1
τd � ð1� Rti�1

� �Ati�1
Þe�

Δti�1
τr if t ≠ ti

R� � uþR� if t ¼ ti

(
ð15Þ

Summary of the analytical solution. Since A tð Þ is independent of the rest of the
equations, the simulation of synaptic amplitude after each synaptic event only
requires the calculation of Eq. 14. When a synaptic event occurs, the value of each
of the states should be calculated just before the synaptic event.

u� ¼ uti�1
e
�Δti�1

τf

A� ¼ Ati�1
e�

Δti�1
τd

R� ¼ 1� �Ati�1
A�

Ati�1
� ð1� Rti�1

� �Ati�1
Þe�

Δti�1
τr

8>>>><
>>>>:

ð16Þ

Note that only three exponential function evaluations are required if A� is
calculated just before the calculation of R� . Once pre-event values have been
calculated, the following set of equations are used to update u, A, and R:

uti�1
¼ uþ ¼ u� þ U 1 � u�

� �
Ati�1

¼ Aþ ¼ A� þ uþR�
Rti�1

¼ Rþ ¼ R� � uþR�

8><
>: ð17Þ

We emphasize that the order of equations is important: since uþ is the value of
u just after a synaptic event, A and R must be updated after uþ .

The first synaptic event. Ohm’s law is used to calculate the synaptic currents
(Isyn):

Isyn ¼ g ´ Vm � Erev

� �
In the TPM model, Isyn is calculated with the following equation:

Isyn ¼ goptimization ´A ´ Vm � Erev

� �
Therefore,

g ¼ goptimization ´A
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Before any synaptic event, all resources are readily usable, and there is no
utilization and activation. Therefore,

ut0 ¼ 0

At0
¼ 0

Rt0
¼ 1

8><
>:

For the first synaptic event, the value of A is easily calculatable.

ut1 ¼ ut0 þ U 1 � ut0

� 	
¼ U

At1
¼ At0

þ ut1Rt0
¼ U

8<
:

Therefore,

g ¼ goptimization ´At1
¼ goptimization ´U ð18Þ

Distinction between short-term plasticity measures. The distinction between
the paired-pulse ratio (PPRi:1) and paired-pulse ratio from the baseline ABi : A1

� �
is formulated with the following equations:

PPRi:1 ¼
Atiþ

� Ati�

At1þ
� At1�

¼
utiþRti�

ut1þRt1�

ð19Þ

ABi : A1 ¼
Atiþ

At1þ

ð20Þ

These equations indicate that the ABi : A1 measures the evolution of A state but
PPRi:1the evolution of uþR� .

Convergence of numerical and analytical solutions. We implemented the
numerical and analytical solutions in the NEURON simulation environment50 and
compared them to the original four-state model to confirm the convergence of all
the formalisms (Suppl. Fig. 9). The simulation files are available to download from
the ModelDB portal (Accession: 266934).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Supplementary Data 1 provides the source data underlying Figs. 6a and 8. All other data
are released on Hippocampome.org/synapse. The underlying experimental
measurements come from Hippocampome.org/synaptome as described in11.
Supplementary Data 2 provides the list of all 160 articles reporting those measurements.

Code availability
The Synapse Modeling Utility developed in this work is available at https://github.com/
k1moradi/SynapseModelingUtility, https://doi.org/10.5281/zenodo.6385650, and https://
hippocampome.org/general/synapse_modeling/Modeling.rar. The Machine Learning
Library is available at https://github.com/k1moradi/MachineLearningSynapsePhysiology,
https://doi.org/10.5281/zenodo.6385648, and https://hippocampome.org/general/
synapse_modeling/MachineLearningSynapsePhysiology.zip.
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