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ARTICLE OPEN

Respiration rate and volume measurements using wearable
strain sensors
Michael Chu1, Thao Nguyen2, Vaibhav Pandey3, Yongxiao Zhou1, Hoang N. Pham4, Ronen Bar-Yoseph4,5, Shlomit Radom-Aizik4,
Ramesh Jain3, Dan M. Cooper4 and Michelle Khine1,2

Current methods for continuous respiration monitoring such as respiratory inductive or optoelectronic plethysmography are
limited to clinical or research settings; most wearable systems reported only measures respiration rate. Here we introduce a
wearable sensor capable of simultaneously measuring both respiration rate and volume with high fidelity. Our disposable
respiration sensor with a Band-Aid© like formfactor can measure both respiration rate and volume by simply measuring the local
strain of the ribcage and abdomen during breathing. We demonstrate that both metrics are highly correlated to measurements
from a medical grade continuous spirometer on participants at rest. Additionally, we also show that the system is capable of
detecting respiration under various ambulatory conditions. Because these low-powered piezo-resistive sensors can be integrated
with wireless Bluetooth units, they can be useful in monitoring patients with chronic respiratory diseases in everyday settings.

npj Digital Medicine             (2019) 2:8 ; https://doi.org/10.1038/s41746-019-0083-3

INTRODUCTION
Chronic respiratory disease (CRD) is a growing global health and
economic burden. Two common CRDs, asthma and chronic
obstructive pulmonary disease (COPD), affect over 435 million
people worldwide;1 moreover, they each have an estimated
medical cost of 50 billion dollars per year.2,3 Fortunately, most
CRDs can be well controlled or even cured with proper monitoring
and care.1 Patients with a CRD should be mindful of their
respiratory status, and any sudden changes in condition should be
addressed immediately to prevent further exacerbations.4

There are several methods for assessing general respiratory
health. The most common methods are pulmonary function tests
(PFTs) that range from simple spirometry, which can be used to
assess a patient’s airflow,5,6 to full body plethysmography7 used to
assess lung volumes. Other methods include arterial blood
sampling and diffusion capacity.8 While these evaluations are
effective in assessing a patient’s respiratory health at a specific
point in time in a laboratory setting, they cannot continuously
monitor a patient’s respiratory state under normal daily environ-
ments. Moreover, PFTs such as spirometry require the patient to
breathe maximally into a mouthpiece, a maneuver that is
challenging, which makes these types of tests difficult to ensure
accurate readings and are not suitable for long term use.
Within a clinical setting, continuous monitors can be used to

track a patient’s respiration so that any measured changes in
breathing patterns can be used as markers for intervention or as
data for diagnoses.9,10 Apart from intervention and diagnosis
purposes, recent studies have also shown that data acquired from
continuous respiration can provide valuable information on a
patient’s respiratory health and recovery.11 Continuous respiration
monitoring can be achieved through different methods. Respira-
tory inductive plethysmography (RIP) uses two inductive belts

placed around the abdomen and ribcage to measure the changes
in circumference during respiration.12,13 The respiration volume
can be calculated by knowing the change in circumference of
both locations. This concept was first developed by Kono and
Mead in 1967 and has since been well established for monitoring
patients in a clinical setting.14–17 However, because the bands are
bulky and prone to slippage, this technology does not lend itself
to monitoring patients throughout the day in their native
environments.18 Similar to RIP, the motion of the chest wall and
abdomen can also be measured visually using cameras or depth
sensors. Optoelectronic plethysmography (OEP) uses several
cameras to monitor reflective markers placed on the torso of
the subject.19,20 The 3D coordinates of each marker can be
determined, and a topographic map of the torso can be generated
over time. The change in the topography can then be used to
calculated respiration volume and rate. A much higher resolution
topography of the torso can also be generated using depth
sensors, such as the Kinect,21,22 to calculate respiration volume
and rate. Transthoracic impedance measurements have also been
used to calculate respiration rate and volume by measuring the
change in impedance of the torso between several electrodes
during respiration.23

While these methods can all accurately track respiration rate
and volume, they are either cumbersome to wear or require
constant line of sight access to the patient’s entire torso, which
limits their use to research or clinical settings. Researchers have
developed modified RIP systems that are more portable; however,
the devices are still large and cumbersome as RIP inherently
requires access to the entire circumference of the chest and
abdomen.24,25 Active monitoring of a patient’s vitals requires the
device to move seamlessly with the patient and to have an
unobtrusive wearable form-factor. Wearable respiration monitors
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developed for these purposes are therefore small, and discrete,
making application and wear easy for the patient.26–28 However,
the sensors reported in literature only measure respiration rate,
and not volume. Mechanical based sensors, such as strain and
capacitive, have been developed to record torso movement to
calculate respiration rate.29–31 Researchers have also developed
acoustic based sensors to listen to the air moving through the
airway,32 and the actual breath itself can also be monitored using
breath sensors placed under the nose.33 There is currently, to our
knowledge, no unobtrusive system with a wearable form factor
that can measure both respiration volume as well as respiration
rate.
In this paper, we demonstrate that it is possible to measure

both respiration rate and volume using a disposable wearable
strain sensor placed discreetly on the abdomen and ribcage (Fig.
1a). The respiration sensor itself has a footprint smaller than that
of a typical Band-aid© and only measures the local change in
strain on the respective locations of the torso. Based on these
measurements, we demonstrate that respiration volume and rate
can still be calculated using the principles developed by Kono and
Mead.14 A calibration model was created for each subject to
calculate respiration volume and substantial agreement with the
gold standard spirometry was achieved. Additionally, we also
show initial proof of concept that the sensors can still record
respiration signals under walking and running conditions. While all
subject tests were conducted using a tethered data acquisition
unit to ensure accurate data alignment (Supplemental Fig. 1), we
also demonstrate that wireless respiration monitoring is achiev-
able using a small Bluetooth module (Fig. 1b, c). The high-fidelity
signals, small form-factor, and wireless capability makes contin-
uous monitoring of respiration rate and volume in daily
environments feasible.

RESULTS
Strain Sensor Characteristics and Testing Setup
The type of strain sensors used in this study was previously
reported by Pegan et al.; the sensor itself is composed of a piezo-
resistive metal thin film set in a silicone elastomer substrate.34 The
sensing mechanism is based on controlled fracturing of the metal
thin film to increase resistance with respect to strain. The thin film
itself has integrated hierarchal (nano- and micro- sized) wrinkle
structures that not only act as strain relieving features but also
help control the crack propagation, allowing the sensor to have a
greater dynamic range while maintaining sensitivity.34 The sensor
design used in this study has a maximum range of 156%–226%
strain and has been cycled up to 2000 cycles (Supplemental
Fig. 2). While there is a large spread in the maximum strain
between the sensors, the failure point is still far above the range
for measuring respiration. The sensors specifically used for the
subject tests have linear responses (R2 between 0.96 and 1.0) with
gauge factors ranging from .85 to 2.64 when taken up to 40%
strain (Supplemental Fig. 2).
Similar to RIP, the strain sensors were applied on the ribcage

and abdomen to measure the expansion and contraction of the
respective locations during respiration. The sensors have small
footprints, with a dimension of 21 mm by 10mm by .5 mm and
were placed perpendicular to each other to minimize crosstalk.
Double-sided, FDA approved, adhesive was used to adhere the
sensors to the skin; however, because the tape itself is not
inherently stretchable, strain relief patterns were cut into the tape
to allow the sensor to stretch with the skin. The ends of the
sensors were adhered onto the skin, and a single strip of double-
sided adhesive was placed widthwise in the center of the sensor
to prevent it from completely lifting off the skin when
compressed. This allowed the sensor to fold and stretch with
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Fig. 1 a The left image shows the strain sensors on the ribcage and abdomen. The middle schematics shows the placement of the
accelerometer (purple square) in addition to the strain sensors (gray rectangles). The exploded schematic on the right shows the strain sensor
and double-sided tape in order of attachment on the skin. All subject test was conducted using a wired data acquisition unit (Supplementary
Figure 1). b Change in resistance of the sensor, under strain, measured using the wireless Bluetooth unit. c Image of the wireless Bluetooth
unit with a single strain sensor attached
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the skin (Supplemental Fig. 3). The ends of the sensor and wires
were secured with medical tape.
All subjects recruited for this study were healthy individuals

with no active respiratory problems. Subject 1 had moderately
severe asthma during childhood, but no symptoms were present
during the study. The group had an average height of 172 cm with
a standard deviation of 8 cm, an average weight of 65 kg with a
standard deviation of 10 kg, and an average BMI of 22 kg/m2 with
a standard deviation of 2 kg/m2. Supplemental Table 1 contains

the metrics for each individual. In addition to the strain sensors, a
3-axis accelerometer was also adhered below the sternum to
detect and measure any motion during all testing. The actual
respiration volume was measured using a continuous spirometer
secured using a head strap. Figure 2 shows a process flow of the
wired data acquisition system; all the measurements made for
subjects 1–8 were completed using this setup. Subjects 1–7
performed the test procedure in a reclined position to minimize
motion artifact and patient discomfort; subject 8 was tested in the

Digital 
Acquisi�on 

Systems
Computer

Vmax Encore 
System

Wheatstone 
Circuit

Wheatstone 
circuit

Spirometer

3-axis Accelerometer

Strain Sensor

Strain Sensor

Fig. 2 Schematic of the hardware setup for the human subject test. The spirometer (blue circle) was placed in the mouth and held in place
using a strap; a nose plug was used to prevent breathing through the nose. The strain sensors (gray rectangles) were placed perpendicular to
each other on the chest and abdomen. The accelerometer (purple square) was placed right below the sternum. Airflow was measured by the
spirometer and processed by the Vmax Encore system; the data was then outputted in real time to one of the analog inputs on the digital
acquisition system. Two Wheatstone bridges were used to calculate resistance using 4.7 kΩ resistors. The output from the accelerometer was
directly measured by the digital acquisition system

Fig. 3 a Representative plots of the resistance measured by the strain sensors on the ribcage (top) and abdomen (middle) plotted with the
simultaneous respiration volume. The resistance of the sensor on the ribcage and abdomen are plotted together on the bottom graph. The
waveforms are detrended and shifted for ease of viewing. b Scatterplot of the change in resistance (ΔR) for the strain sensors on the ribcage
(left) and abdomen (right) plotted against exhaled volume. c 3D scatterplot of the transformed ΔR for the abdomen and ribcage plotted
against exhalation volume; the best fit plane is also shown
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standing position under walking and running conditions. All
subjects completed the test procedure without complications;
however, subject 6 was retested due to poor sensor placement
during the initial test.
The respiration sensor was also worn on the ribcage for two

hours while the data was recorded wirelessly through a Bluetooth
acquisition unit. The subject was asked to periodically sit and
breath normally for 2 min; each interval was graphed in
Supplemental Fig. 4.

Calibration Model for Volume Measurement
In order to calculate respiration volume from the strain sensors, a
calibration model was first developed between the respiration
volume and strain sensor’s output for each individual. The
continuous respiration volume was measured for each subject
while the expansion and contraction of the ribcage and abdomen
were concurrently recorded using the strain sensors. The breath
by breath exhalation volume and associated change in resistance
(ΔR) of the strain sensors were then calculated and used to build
the calibration model. To ensure a comprehensive model, a wide
range of respiration volumes were measured; each subject was
instructed to breath at three different depths (shallow, medium,
and deep) at their discretion since lung capacity varies between
individuals. Figure 3a shows a representative waveform of the
sensor’s output plotted with respiration volume; a change in

breathing amplitude occurred at the 20 s mark. Figure 3b shows a
representative scatterplot of the breath by breath exhalation
volume and the ΔR of the strain sensors on the abdomen and
ribcage.
The relationship between the ΔR of the strain sensors and the

exhalation volume generally followed a power regression model
for all subjects (Supplemental Table 2). Separate power models
were fitted for the abdomen and ribcage sensor values of each
person; the ΔR of each sensor was then linearized using their
respective power model. Afterwards, Multiple linear regression
(MLR) was applied to find the best fit plane between the
transformed ΔR and the exhaled volume;35 Fig. 3c shows a
representative scatterplot of the transformed ΔR and the
exhalation volume with the best fit plane plotted. Table 1 lists
the adjusted R2 values as well as the standard error estimation
(SEE) for the power fit and multiple linear regression. In general,
the R2 value from the power fit of the abdomen showed more
variations compared with the ribcage; this is also reflected in the
SEE, with the abdomen having comparatively much higher values.
Compared to their respective power models, the adjusted R2 and
SEE reported for the MLR showed an overall improved fit for each
individual with higher R2 values (all 0.92 or higher) and lower SEE
(all 0.213 or lower). It should also be noted that for all subjects,
one of the two power models can already account for the majority
of the exhalation volume, with respect to the ΔR of the strain
sensor, nearly as well as the MLR model. However, the location of
the better fit is not always consistent between subjects, making it
difficult to rely on a single location to calculate respiration volume.
Thus, to create a comprehensive model that is not location
dependent, both the ribcage and abdomen was accounted for in
the MLR; however, it could be conceivable to only use one sensor,
if the patient’s respiration is consistently and dominantly captured
through one modality.

Agreement between respiration volume and respiration rate
To determine the fidelity of the strain sensor measurement and
calibration model, each subject was instructed to breath at
different volumes in random order so that a test dataset can be
created. The breath by breath exhalation volume and associated
ΔR of each sensor was first linearized using the respective power
model from the calibration step; afterwards, MLR model was used
to calculate the exhalation volume. Figure 4a shows the
scatterplot of the calculated and measured exhalation volume

Table 1. R2 values and SEE for the power and multiple linear
regression model of each subject

Power
Regression
(Ribcage)

Power
Regression
(Abdomen)

MLR
(Ribcage+
Abdomen)

Subject Sex R2 SEE R2 SEE R2 SEE

1 Male 0.92 0.122 0.87 0.151 0.93 0.111

2 Male 0.83 0.2 0.9 0.15 0.96 0.098

3 Female 0.91 0.226 0.67 0.426 0.92 0.213

4 Female 0.97 0.173 0.76 0.462 0.97 0.166

5 Male 0.83 0.236 0.94 0.136 0.94 0.136

6 Female 0.96 0.054 0.8 0.12 0.96 0.051

7 Male 0.95 0.166 0.94 0.186 0.97 0.139

Fig. 4 a Scatterplot of the calculated exhalation volume plotted against the measured exhalation volume for all subjects from the test set. b
The Bland Altman plot of the measured exhalation volume and the calculated exhalation volume. The black line indicates the bias, and the red
lines indicates the limit of agreements
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for all subjects; Fig. 4b is the corresponding Bland Altman.36 The
combined data, across all subjects had a bias of −.077 l with limit
of agreements (LoAs) of −0.374 l and .220 l. Supplemental Table 3
contains the biases and LoAs for each individual. More impor-
tantly, there was substantial agreement between the measured
and calculated exhalation volume with a concordance correlation
coefficient37 of 0.962; the measured and calculated inhalation
volume had a moderate agreement with a concordance correla-
tion coefficient of .929.
To determine the sensor’s ability to measure respiration rate,

the subject was asked to pace their breathing with a metronome
at 10, 20, and 40 breaths per minute. Figure 5a shows a
representative waveform of the detrended respiration volume
and resistance measured from the ribcage strain sensor for
different rates. The peak to peak period for each respiration rate
was calculated and averaged for the spirometer and each strain
sensor. A one-way analysis of variance (ANOVA) found no
significant differences between periods calculated from the strain
sensors and spirometer across all respiration rate for each subject.
The averaged period and p-value for each subject is listed in
Supplementary Table 4. Additionally, the respiration volume was
also calculated for the paced dataset. The bias between the
measured and calculated volume for all subject combined was
.0347 l with LoAs of −.276 l and .346 l. There was also substantial
agreement between the measured and calculated exhalation
volume with a concordance correlation coefficient of .956; the
inhalation data had moderate correlation with a concordance
correlation coefficient of .924.
The strain sensor’s ability to measure standard spirometry was

also examined for subjects 1–7. A standard spirometry maneuver
requires the patient to inhale maximally and exhale forcefully with
a sustained exhalation of 6 s. Each subject was asked to perform
this maneuver 5 times with breaks in between; the calibration
model was then applied to the ΔR of the strain sensors over time,
with respect to the exhalation start, to calculate the forced
expiratory volume at one second (FEV1) and forced vital capacity
(FVC), and ratio of FEV1 to FVC (FEV1%); Supplementary Table 5
shows the FVC, FEV1, and FEV1% for each individual. Figure 5b
shows a representative waveform the top 3 spirometry PFT for the
measured and calculated volume. All subjects had calculated FEV1

and FVC values that were lower than the measured volume,
indicating that the strain sensors were not able to accurately
measure volume during large and forced exhalations. However,
the calculated FEV1% between the measured and calculated
volumes are relatively closer, but not all statistically insignificant,
suggesting that a rough ratio may be maintained.

Respiration During Motion
In order to understand the sensor’s performance under motion,
subject 8 was asked to perform similar respiration procedures
while walking at 4.8 km/h; additionally, he was also asked to run at
9.7 and 12.9 km/h as well. The strain sensors and accelerometer
placement were kept consistent with subjects 1–7, and respiration
volume was also measured concurrently.
Subject 8 performed the same calibration and test procedure as

subjects 1–7 while walking. Despite being under motion, the strain
sensors were still able to measure the displacement of the ribcage
and abdomen during respiration. An increase in the subject’s
respiration volume, from standing to walking, was also captured
(Fig. 6a, b); this should be expected since the body naturally
increases air intake during physical activities. Figure 6c shows the
sensor signal compared to the respiration volume for the different
walking and running paces.
A low pass filter was used to remove the motion artifact, which

has a higher frequency, from the strain sensor data. Figure 6d
shows a representative waveform of the abdomen’s strain sensor
resistance before (light blue) and after (dark blue) filtering. The
filtered signals were then used to calibrate the power and MLR
models for walking only. The R2 value for the power fit was .80 and
.62 respectively for abdomen and ribcage strain sensors; the
adjusted R2 for the multiple linear regression of the transformed
ΔR from strain sensor was 0.83. Figure 6e shows the scatterplot
and best fit plane for the multiple linear regression. However, the
calculated volume from the test set had poor agreement, with a
concordance correlation coefficient of 0.75.
In addition to calculating volume, the ability to measure

respiration rate while walking was also examined; the subject
paced his respiration to a frequency of 20 breaths per minute
while walking at 4.8 km/h. Figure 6f shows the fast Fourier

Fig. 5 a Representative detrended waveforms from the ribcage strain sensor and the measured respiration volume for breathing paced at
different frequencies. b Representative plots of the calculated (blue) and measured (red) forced exhalation volume for the spirometry PFT; the
top 3 maneuvers, as determined from the measured volume based on standards set by the ATS,6 are plotted
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transform (FFT) of the respiration volume, strain sensor resistance,
and the y component of the accelerometer output during the
procedure. The frequency decomposition of the strain sensor data
showed matching frequency peaks with the respiration volume at
.333 Hz and with the accelerometer at 2.09 Hz. Calculation of the
average peak to peak period for the filtered strain sensor outputs
and respiration volume showed no significant differences as
determined by a one-way ANOVA (p= .9935).
As the subject transitioned from walking to running, the motion

artifacts due to the movement also increased as well; however, the
strain sensors were still able to measure the movement of the
torso from respiration. As seen in Fig. 6c, the overlaid signal
between the volume and strain sensor on the abdomen for all
three speeds have apparent shared waveforms. The FFT of the
strain sensor data and the volume shared similar frequency
components for respiration; the FFT of the strain sensor data and
y-component of the accelerometer also shared similar frequency
peaks (Supplementary Figure 5). However, the accelerometer
alone does not appear to account for all the motion artifacts
present in the strain sensor signal; the strain sensor data for both
running paces contained frequencies not present in the accel-
erometer or respiration data. For example, there were prominent
peaks at 1.52 and 1.55 Hz for the 9.7 and 12.9 km/h pace
respectively; this is roughly half the running frequency measured
by the accelerometer, which occurred at 3.05 and 3.10 Hz for the
9.7 and 12.9 km/h pace respectively. This additional frequency
may be from the repetitive strain of the skin due to the torsion of

the body that occurs with running; the peaks around 1.50 Hz were
not as visible during walking.

DISCUSSION
Under sedentary conditions, we showed that the strain sensors
can calculate the respiration rate and volume based on the local
changes in strain around the abdomen and ribcage with high
fidelity. This follows the principles set by Kono and Mead, who
reported that the mechanism for respiration has two degrees of
freedom: the movement of the ribcage and movement of the
abdomen. The movement in both areas, for healthy individuals,
should be proportional to the volume of air inhaled and exhaled,
and by taking the linear combination of the change in dimension
of the respective locations, respiration volume can be calculated.
While most systems described in literature uses measurements
made over large area of the torso, e.g. RIP or OEP, our data
suggests that measurements taken over a smaller area of the
abdomen and ribcage can still be correlated to respiration volume.
Moreover, the movement of the left side and right side of the
ribcage and abdomen should be symmetric, so the strain sensor
should only need to be applied on one side of the torso. In
general, any wearable strain sensor with a sufficient gauge factor
can also be applied in the same manner to calculate respiration
volume.
While the breathing data taken while moving is still preliminary,

it demonstrates that the respiration signal in the strain sensor is
still present under motion. A calibration model was still

Fig. 6 a Plots of the detrended output from the abdomen and ribcage strain sensors, spirometer, and accelerometer while the subjection is
standing stationary. b Plots of the detrended outputs as the subject started walking; the respiration volume slowly increases as the subject
reaches a steady state walking speed. The artifact just past 6 s is interference caused by an analog event marker used to identify the end of the
speed ramping for the treadmill. c Plots of the detrended unfiltered signal from the abdomen strain sensor for walking at 4.8 km/h, running at
9.7 km/h, and running at 12.9 km/h. The concurrent detrended respiration volumes are plotted as well. d Representative plots of the raw (light
blue) and filtered (blue) signal from the abdomen strain sensor and measured respiration volume during walking. The waveforms are
detrended and shifted for ease of viewing. e 3D scatterplot of the transformed ΔR for the abdomen and ribcage strain sensors plotted against
the exhalation volume during walking. f Plots of the frequency domain for the respiration volume measured from the spirometer (top),
resistance measured from the abdomen and ribcage strain sensors (middle), and voltage measured from the y-component of the
accelerometer (bottom), during the paced respiration while walking. Y-axis is in arbitrary units
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established while walking, and respiration rate was also measured
accurately. However, while a calibration model was created, the
calculated respiration volume had poor agreement with the
measured volume; the strain sensors were also sensitive to
additional motions and artifacts that were not accounted for, such
as torsion of the torso, by the accelerometer. With the proper
filtering and optimization, however, it may be possible to extract
respiration volume and rate under moving conditions.
Sensor geometry and flexibility are generally important factors

in wearable devices. Smaller sensors with higher flexibility have
the advantage of being more discrete and comfortable, making it
easier to continuously monitor a patient’s health outside of a
clinical setting. However, with smaller sensors, proper placement
becomes more important since different locations will change the
signal acquired. For example, with subject 6, placement of the
strain sensor in a more lateral position on the ribcage attenuated
the signal measured and required a retest. Placement of the
sensors can be based on physiological markers, such as bone
structures, but care must be taken to ensure that the placement is
correct and consistent. In addition to small geometry, the flexible
and stretchable nature of the sensor allows it to be attached
intimately with the skin; because of the close contact, the sensor
was less prone to slipping, an issue that occurs with RIP
systems.18,38 However, while good adhesion prevented unwanted
sensor movements, it also made the sensors more susceptible to
the local deformations and mechanics of the skin, as demon-
strated in subject 8. Furthermore, as the ribcage and abdomen
initially to expand during inhalation, the skin must first deform
before the sensors can measure a change in distance. Conse-
quently, the ΔR will initially be much smaller since the ribcage and
abdomen must expand past a point that will start stretching the
skin and sensor; after this point, the ΔR should be larger for a
given change in volume since the skin is already taut. The
resulting relationship should be non-linear where the change in
ΔR is initially small for smaller respiration volume.
The spirometry PFT highlighted the inherent hysteresis present

in our system. The hysteresis is more prominent with high rate,
high amplitude motions characterized by the signal undergoing a
large change in resistance, as the sensor is suddenly stretched,
with a slow return to baseline, as the sensor is relaxed. For normal
respiration, where the amplitude change was smaller and slower
compared to the PFT, the hysteresis was minimal and could be
accounted for post-processing. However, with a maneuver that
involved a maximal inhalation followed by a fast exhalation over a
short time span, the measured resistance from the sensor was not
able to return to its original baseline in time. Consequently, the
measured ΔR was smaller and the calculated volume was lower.
Most elastomeric systems will have some inherent hysteresis due
to the viscoelastic nature of the polymer.39 This hysteresis needs
to be accounted for or minimized, especially when measuring rate
dependent information such as forced exhaled volume over time.
There are two main limitations with this study. First, the study

was done with a small and homogeneous healthy population.
While they provide a good initial proof of concept, further study
should focus on expanding the subject population to a larger and
more heterogeneous group that represent the patient demo-
graphic of interest. The second limitation is that the majority of
the testing was performed while the subjects were sedentary; they
were placed in a reclined position to minimize motion artifact and
to ensure comfort. However, this setup does not reflect the daily
environments most patients will operate in. Therefore, we
demonstrated that changes in ribcage and abdomen geometry
can still be measured under ambulatory condition; however,
further and more exhaustive testing needs to be done to fully
understand the type of motion artifacts that will be present and
the general limitation of the system under motion.
In this paper, we demonstrated that respiration volume and rate

can be calculated by measuring the local strain of the ribcage and

abdomen with a small wearable strain sensor. Normal respiration
volume and rate was determined with good fidelity under
stationary conditions. Even under ambulatory conditions, we
demonstrate respiration can be measured as well. While better
characterization of motion is still needed, this opens the possibility
for measuring respiration outside of a clinical or controlled
research environment using a smaller and more discrete wearable
system. High risk patient populations, such as asthmatics and
COPD patients, can thus be continuously monitored for acute
changes in breathing patterns, allowing for treatment to be
administered promptly.

METHODS
Strain Sensor Fabrication
Fabrication of the disposable strain sensors closely followed the process
developed previously by Pegan et al.34 First, a shadow mask was created
by laser etching the sensor design through a one-sided adhesive film
adhered onto a pre-stressed polystyrene (PS) sheet (Supplemental Fig. 6-(i).
The sensor design was removed, and 5 nm of Pt and Au was then
respectively deposited on the masked PS sheet using a timed magnetron
sputter deposition (Supplemental Fig. 6-(ii). Next, the shadow mask was
removed, and the PS sheet was placed in a convection oven at 160° Celsius
for 6 min to shrink (Supplemental Fig. 6-(iii). The shrunk samples were then
placed in an ethanol solution containing 5mM of (3-mercaptopropyl)
trimethoxysilane (MPTMS). The MPTMS act as a molecular glue to adhere
the metal thin film to the silicone elastomer. After drying, uncured silicone
elastomer (Smooth-On, Ecoflex 00-30) was spin coated onto the samples at
150 r.p.m. for 35 s (Supplemental Fig. 6-(iv). The sample was then degassed
and cured overnight. Afterwards, the PS was removed by submerging the
samples in a 75° Celsius acetone bath; residual PS on the metal was
removed using additional acetone and toluene (Supplemental Fig. 6-(v);
Supplemental Fig. 6-vi shows an inset SEM image of the surface of the
wrinkle metal thin film, scale bar is 50 µm. To further increase the
robustness of the sensors, the metal thin film was encapsulated in by spin
coating another layer of silicone elastomer over the sensing element,
leaving the pads exposed (Supplemental Fig. 6-(vii). Afterwards, ribbon
cables were attached onto the pads using double-sided adhesive and
carbon ink (Bare Conductive, Electric Paint), and wires were soldered onto
the ribbon cables. Polyimide tape was then used to encapsulate the
connection (Supplemental Fig. 6-(viii).

Hardware Setup
All the data collected for subjects 1–8 were made using a wired data
acquisition system. The resistance from the strain sensor was measured
using a Wheatstone bridge configuration with 4.7 kΩ resistors. The
differential potential was measured using a multifunction data acquisition
system (National Instruments, USB-6003). A continuous spirometer (Vyaire,
Vmax Encore 229) was used to measure respiration airflow from the
patient; the data was outputted as voltage from the Vmax Encore and
measured using the multifunction data acquisition system. A triple axis
accelerometer (Adafruit, ADXL326) was connected to a second data
acquisition system to measure movement of the subject. The digital
acquisition system was connected to the computer via USB, and all data
was recorded and timestamped using Signal Express (National Instrument,
Signal Express 2015) at a sampling frequency of 1000 Hz. Supplemental
Fig. 1 shows the sensor placement on the body and hardware setup.

Testing procedure
8 participants (5 men, 3 women) were recruited for the study. The subjects
all consented to the study and were compensated for their participation.
The study was approved by the Institutional Review Board at UC Irvine;
informed consent was obtained from all participants. Subject 1–7
performed all testing in a reclined position, while subject 8 performed
the testing under ambulatory conditions.
The subject’s height, weight, and blood pressure were recorded before

the start of the testing. They were then placed in a reclined position with
their lower ribcage and abdomen exposed. The strain sensor for the
ribcage was placed perpendicular to the 9th and 10th rib along the
midclavicular line on the left side of the torso; the strain sensor for the
abdomen was placed in the upper left quadrant of the abdomen, with the
long axis of the sensor perpendicular to the long axis of the ribcage sensor.
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The accelerometer was placed below the sternum with the y-axis oriented
towards the abdomen, the z-axis oriented into the torso, and the x-axis
oriented towards the right side of the torso. The spirometer was secured
and held in place using a head strap. Before the start of the tests, the
patient was given 30 s to acclimate to the set up.
For the calibration procedure, the subjects were instructed to breathe

for 1 min at a shallow amplitude, 1 min at a medium amplitude, and 1min
at a deep amplitude. The maneuvers were performed sequentially with
30 s of normal tidal breathing recorded before and after the entire
sequence. The calibration procedure was performed twice; the first set was
performed to acclimate the subject to the set up and to advise the subject
on breathing amplitude, and the second set of data used for the
calibration model.
For the paced respiration, the subject was asked to pace their breathing

with an audio-visual metronome. The beats per minute of the metronome
was set twice as fast as the targeted breath rate so that the subjects can
inhale and exhale per beat. 30 s of tidal breathing was recorded before and
after each paced breathing. Breath rates of 10, 20 and 40 breaths per
minute were recorded for 2 min, 1 min, and 30 s respectively.
For the test respiration, the subject was instructed to take a series of

shallow, medium, and deep breath in any order at their discretion. This was
done for a total of 3 min, with 30 s of tidal breathing recorded before and
after the 3-minute interval. The subject performed this procedure twice,
with the second set used for analysis.
For the PFT, the subject was asked to inhale maximally and forcefully

exhale, sustaining the exhalation for 6 s. This maneuver was performed 5
times, and the top 3 PFTs were calculated and selected for use in the
analysis as per ATS guidelines.6 Subjects were given a 45 s rest period
between each maneuver.
Subject 8 was tested under different walking and running conditions. All

testing occurred on a treadmill while the subject was upright; sensor
placement was the same as subject 1–7. The calibration procedure was
performed twice while the subject was standing still and twice while the
subject was walking at 4.8 km/h. The paced respiration procedure was
performed with a breathing frequency of 20 breaths per minute for 2 min
while the subject was walking at 4.8 km/h. The subject was also asked to
perform the test set procedure twice while walking at 4.8 km/h. Lastly, the
subject was asked to walk and run at 4.8, 9.7 and 12.9 km/h for 2 min each.
For the wireless data acquisition, the respiration sensor was placed on

the ribcage using the same procedure for subjects 1–8. Afterwards, a
voltage divider with a 4.7 kΩ resistor was used to measure the sensor
resistance through a Bluetooth acquisition unit (Espurino shop, Puck.js);
the data was sent to a tablet through a custom app. The subject was not
restricted in terms of movement and activity but was asked to periodically
(approximately every 15min) sit and breath normally for 2 min.

Data pre-processing
MATLAB (MathWorks, R2016b) was used to process and analyze the data.
The voltage output from the Vmax system was first filtered to remove
spikes in voltage; afterwards, the data was multiplied by a correction
constant (2.04 l/sV) to get airflow. The constant was determined before the
start of the subject test (Supplemental Figure 7). The volume was
calculated by integrating the respiration airflow with respect to time. To
segment the inhalation and exhalation volume, the respiration airflow was
integrated between two sequential y intercept of the flow data; integration
of positive flow yielded exhalation while integration of negative flow
yielded inhalation volume. A cutoff volume of .01 l was used to remove any
volume resulting from noise about 0.
The resistance reading from the strain sensor was first filtered using a

low pass filter with a cutoff frequency of 20 Hz. Afterwards, to account for
the hysteresis of the sensor, a MATLAB script was used automatically to
remove large jumps in resistance due to large amplitude change. For the
data acquired while walking, a low pass filter was applied to the signal
from the strain sensor. The cutoff frequency of the filter was determined by
the dominant frequency from the accelerometer; it was assumed that the
frequency of the respiration did not match the frequency of the walking or
running. Afterwards, the breath by breath peaks and value from the
respiration volume was used to help determine start and end of the ΔR for
the strain sensor of each breath. For the spirometry test, the data was
manually segmented into the 5 tests. The FEV1, FVC, and FEV1 to FVC ratio
was calculated according to the ATS standards.
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