
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Loop-Free Integrated Forwarding and Routing with Gradients

Permalink
https://escholarship.org/uc/item/2wk3g0v8

Authors
Garcia-Luna-Aceves, J.J.
Mathewson, James
Ramanathan, Ram
et al.

Publication Date
2018-10-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wk3g0v8
https://escholarship.org/uc/item/2wk3g0v8#author
https://escholarship.org
http://www.cdlib.org/

Loop-Free Integrated Forwarding and Routing with Gradients
J.J. Garcia-Luna-Aceves,⇤† James Mathewson,† Ram Ramanathan,§ and Bishal Thapa‡

⇤Palo Alto Research Center, Palo Alto, CA 94304
†Department of Computer Engineering, University of California, Santa Cruz, CA 95064

‡Raytheon BBN Technologies, 10 Moulton Street, Cambridge, MA 02138
§goTenna Inc., 81 Willoughby Street, Brooklyn, NY 11201

Email: { jj, jlmathew }@soe.ucsc.edu, ram@gotenna.com, bishal.thapa@raytheon.com

Abstract—Selecting optimum paths subject to multiple con-

straints is known to be an NP-complete problem for either

additive or multiplicative constraints, and very few approaches

have been advanced that operate distributively or address more

than two constraints. On the other hand, forwarding loops are

known to occur in dynamic networks even when routing tables

are loop-free at every instant. We propose and analyze IFRoG

(Integrated Forwarding and Routing with Gradients), the first

approach for loop-free multi-constrained forwarding and routing

based on gradient vectors. IFRoG is based on a fully distributed

algorithm for the computation of loop-free routes using vectors

of gradients that specify path performance for a given additive or

multiplicative performance metric (e.g., latency or bandwidth).

Data packets are forwarded on a hop-by-hop basis and carry

gradient values used to eliminate forwarding loops. We show

that IFRoG renders valid loop-free multi-constrained paths to

destinations within a finite time and that no data packet can

traverse a forwarding loop independently of the state of the

forwarding tables maintained by routers. Furthermore, we show

that IFRoG has smaller complexity than approaches that require

each router to maintain complete network state at each router.

I. INTRODUCTION

As wireless networks have become pervasive in all sectors
of society, there has been an increasing need for network-
based multimedia applications (e.g., delivering digitized video
and audio) to run efficiently over them. For this to happen,
solutions are needed for quality-of-service (QoS) routing over
dynamic wireless networks, which consists of: (a) finding
feasible paths from sources to destinations that satisfy the
various application constraints (e.g., bandwidth, reliability,
end-to-end delay, jitter); and (b) forwarding the data traffic in a
way that network resources are used efficiently. QoS routing
differs from conventional best-effort (BE) routing deployed
in the Internet and assumed in mobile ad hoc networks
(MANET) mainly in that, the path selected for forwarding
traffic needs to satisfy multiple constraints simultaneously,
and the traffic should be routed in such a way that network
resources are used efficiently. This poses a big challenge in
dynamic wireless networks because of the inherent mismatch

This material is based upon work supported by the Defense Advanced
Research Project Agency (DARPA). The views, opinions, and/or findings
contained in this article/presentation are those of the author(s)/presenter(s)
and should not be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government. Distribution Statement
”A” (Approved for Public Release, Distribution Unlimited by DARPA on
April 23, 2018 under DISTAR Case 29311).

between the stringent QoS requirements of multimedia appli-
cations and the physical characteristics of wireless networks,
as well as the inherent complexity of routing under multiple
constraints. Wang and Crowcroft [13] have proven that the
multi-constrained path (MCP) computation is NP-complete
when the number of independent constraints is more than one,
regardless of whether the constraints are additive (e.g., delay or
hop count) or multiplicative (e.g., maximum path bandwidth).

The implementation strategies for QoS routing to date can
be classified into two categories: centralized source routing
and distributed routing. Centralized MCP algorithms suffer
from high computation complexity at source nodes, sluggish
response to network changes, and excessive overhead required
for the dissemination of topology and resource information
throughout the network, which significantly limits their scal-
ability. Distributed MCP algorithms compute feasible paths
locally at each node, and forward packets based only on their
destination addresses on a hop-by-hop basis.

Many of the existing distributed QoS routing approaches
require the availability of timely global network state at
each node, with some approaches even assuming that the
distribution of routing constraints is known [7]. Furthermore, a
large number of schemes address QoS routing subject to only a
single constraint (e.g., bandwidth [14], [8]), or compute only
the shortest paths with regard to the specified optimization
metric and need not satisfy multiple constraints simultaneously
[7], [14], [12], [11], [6].

Although much work has been done on QoS routing in
the Internet, they cannot be simply applied to mobile ad hoc
networks (MANETs) largely due to the dynamic and resource-
constrained nature of MANETs. In fact, most proposed routing
protocols supporting QoS provisioning for ad hoc networks
are derived from existing ad hoc routing protocols (e.g.,
QOLSR [1], (OLSR) [3], QAODV [9], etc.). Both QOLSR and
QAODV mainly focus on bandwidth-delay constrained routing
problem, and do not address the general k-constrained path
selection problem.

Sobrinho adopts an algebraic approach and investigates
the path optimization problem in the context of Hop-by-
Hop QoS routing [12]. Although the results obtained by
Sobrinho establish a generalized framework for QoS-oriented
path optimization, they cannot be applied to constrained path
optimization, because paths are optimized only with respect
to the given path weight function, rather than being computed

to satisfy multiple constraints.
Hence, a solution is needed for distributed multi-constrained

routing for wireless networks such that it enables the use of
hop-by-hop datagram forwarding rather than source routing,
does not require global network state to be made available at
each node, and finds multi-constrained paths while optimiz-
ing the overall routing performance according to the given
optimization metric(s). In this paper, we present Integrated
Forwarding and Routing with Gradients (IFRoG) that consists
of (a) maintaining the best set of paths to each known
destination, where best means that any QoS requirement that
is satisfiable by an existing path between a given source and
destination is already satisfiable by a path in the set; and (b)
forwarding datagrams in a way that the QoS requirements
stated in the datagrams are satisfied and no loops are traversed.

Sections II and III describe Integrated Forwarding and Rout-
ing with Gradients (IFRoG). Section IV discusses why iFRoG
provides loop-free packet forwarding in iFRoG and Section
V addresses its complexity. Section VI presents preliminary
simulation results addressing the performance of iFRoG.

II. PRELIMINARIES

QoS-related routing metrics, as well as the constraints
associated with them, can be categorized into minimal (or
concave), maximal (or convex), multiplicative and additive
metrics. The path measurement of a minimal metric (e.g.,
bandwidth) is determined by the minimal value of this metric
of all links in the path. The path measurement of a maximal
metric (e.g., probability of interceptability) would be inverse
of a minimal metric. The path measurement of an additive
(e.g., delay) or multiplicative metric (e.g., loss rate) equals
the sum or product of its values of all links along the path.

Multiplicative metrics, such as loss rate, in which the end-
to-end path loss is equal to the product of the loss rates of
all intermediate links, can be translated into additive metrics,
or vice versa, by taking logarithmic or exponential function,
respectively. Therefore, we only consider minimal and additive
QoS metrics and their associated constraints in this work,
unless specified otherwise.

The logical distance (LD) of path p is given by a path
function (or an optimization function) fp based on the weights
of its consisting links.

It is important to point out that logical distances are not

necessarily simple real numbers. A logical distance is a real
number only if the optimization function fp can be given by
a close-form expression. This is the case for the aggregated
metric used in the IGRP [4]: fp = L + k

C , where k is a
positive constant, L and C are the path length and capacity,
respectively.

In general, a logical distance can be viewed as a tuple
consisting of multiple routing metrics. For example, for widest
shortest-path (WSP) routing, a path with the shortest distance
(e.g., hops) is preferred, and if multiple such shortest paths
exist, the one with the maximal bandwidth is preferred. The
fp for WSP is then defined by (

P
Du,v,min(Bu,v)), in

which Du,v and Bu,v are the distance and bandwidth of

each comprising link lu,v along the path. As a result, to
compare the precedence between two paths, only bandwidth
or distance is not enough. Tuple <D,B > has to be used
as the logical distance for each path (D and B are distance
and bandwidth, respectively), and path p with logical distance
<D1, B1> is better than path q with <D2, B2>, only if
D1 < D2 _ (D1 = D2 ^B1 > B2).

Similarly, in least-cost shortest-path routing (LCSP), tuple
<D,C > is used as the logical distance for each path, in
which D is the distance and C is the cost. Function fp is
defined by (

P
Du,v,

P
Cu,v) over all comprising link lu,v

of a path. Path p with <D1, C1> is preferred over path q
with <D2, C2>, only if D1 < D2_ (D1 = D2^C1 < C2).
By extrapolating the real-number metrics used in conventional
best-effort routing to logical distances, it is handy to compute
optimal paths in the context of QoS routing, provided that
a total order properly exists amongst the logical distances
defined by the optimization function fp being used.

III. IFROG

Assumption: IFRoG assumes that every node detects, within
finite time, the existence of a new neighbor or the loss
of connectivity with an existing neighbor node; all packets
transmitted over an operational link are received without error
within a finite time; all routing messages, changes of link
weight or status (up/down), are processed one at a time and
in the order in which they are received or occur.

In IFRoG, each physical radio or interface (wired or wire-
less) has a tuple of MCP constraints. There may be multiple
interfaces on each node, and each tuple is associated with a
unique interface address. When each node initially broadcasts
a GEM (Gradient Establishment Message) packet, via UDP, it
only contains information identifying the name of the source
node, the IP address associated with the sending interface,
a sequence number of the GEM packet, and a tuple of
k-constraints. When the GEM gradient packet is received,
the values are matched to the receiving interface, using the
interface-sending address pair to identify gradient path. It is
important to note, when a node sends out a GEM packet,
the gradient values are set by the receiving interface (not the
sending interface). This is an important distinction noted later,
in the results. Algorithm 1 shows the steps to process the GEM
packets. GEM packets are flooded, but only propagated if they
are newer (via sequence number) or they dominate the MCP
in the current entry. GEM packets mark threshold values from
the neighbor as a forwarding route (if those constraints are
met). The forwarding table is kept fresh by purging all entries
more than 2 sequence numbers old.

Algorithm 2 shows the steps to forward a packet, based upon
information from the GEM packets. Each route entry with a
destination address is placed in a list. Then, each constraint is
applied to the list, until a destination is found. If a destination
is not found, due to the constraints, the packet is dropped
(even if a non constrained path exists). The table makes sure
all paths meet the minimum thresholds required, except in the
case of the most dominant value (threshold=0). In the event

Algorithm 1 Process GEM Packets
1: Constraint = GEMGradient(fp) (Interfacegradient Property)
2: GEMGradient Constraint
3: Key tuple(Nodename, NeighborIpAddress)
4: NameIpAssociationTable (Nodename, NodeIpAddress)
5: if Key does not exist in ROUTING TABLE then

6: ROUTING TABLEIncomingInterface (Key, Tuple(Constraint,
TIMENOW (), GEMSeqNum)

7: RESEND GEM(GEM)
8: else

9: for all Entry in ROUTING TABLE matching Key do

10: if Tuple(SeqNum) < (GEMSeqNum � 2) then

11: REMOVE ROUTING TABLEENTRY

12: DROP PACKET()
13: else

14: GradientEntry ROUTING TABLE(GEMSeqNum

15: if GEMConstraint.IsDominate(GradientEntry) then

16: GradientEntry GEMConstraint(fp)GradientEntry

17: ROUTING TABLE GradientEntry

18: RESEND GEM(GEM)
19: else

20: DROP PACKET()
21: end if

22: end if

23: end for

24: end if

there is more than one candidate which meets the constraint
requirements, the forwarding path is chosen at random from
the candidates.

Algorithm 2 Forwarding Packets via IFRoG
1: Nodedestination NameIpAssociationTable(GEMIpSrc)
2: Constraint GEMGradient

3: Threshold GEMTos

4: if Nodedestination not found then

5: DROP PACKET()
6: else

7: NeighborList ROUTING TABLE(Nodedestination)
8: for all constrainttype in Constraint do

9: REDUCE LIST(NeighborList,constrainttype, threshold)
10: if NeighborList.size=0 then

11: DROP PACKET
12: else if NeighborList.size == 1 then

13: return

14: end if

15: end for

16: return Forward Packet to Random Selected Dest in NeighborList
17: end if

Algorithm 3 reduces a potential list of forwarding candi-
dates, by using the appropriate thresholds and comparison
functions.

Technically, there is no hard limit on how many constraints
can be transmitted in a packet. The limitations could come
from the upward facing Application Interface. For example, if
the Application Interface was IP (e.g., IPv4), the 8 bits TOS
field limitation would restrict how much constraints can be
served simultaneously.

In the first implementation of IFRoG, we define the QoS
requirement with the 3-constraint gradient: Bandwidth, inter-
ceptability, and hops. Bandwidth is represented as a 32-bit
value (bps), interceptability is an arbitrary 8-bit value, where
a large values indicates it is very easy to intercept the signal,
and a low value indicates incremental difficulty in intercepting
the signal (e.g. directional waveforms). Hops is the traditional
metric used to indicate distance between nodes.

The first GEM packet is broadcast over a radio or interface,

Algorithm 3 Threshold Constraint Reduction
1: DEF FN() REDUCE LIST(NeighborList,constrainttype,threshold)
2: gradientMaxValue=MinimalDominatedValue
3: for all element in NeighborList do

4: if element.dominates(threshold,(fp)) then

5: gradientMaxValue = element
6: else

7: Erase(element from NeighborList)
8: end if

9: end for

10: if Neighborlist.size < 2 then

11: return

12: end if

13: if threshold=0 then

14: for all element in NeighborList do

15: if element 6= gradientMaxValue then

16: Erase(element from NeighborList)
17: end if

18: end for

19: end if

20: return Forward Packet to Random Selected Dest in NeighborList

it does not contain any constraint gradient information. When
a packet is first received, the receiving nodes applies its
gradient tuple information to the packet, and rebroadcast over
its radio. Each node keeps a separate table, with neighbor-
gradient stored in tables.

As each GEM is received, it is added to the table, if it is
from a new neighbor (as seen on that interface).

A GEM is dropped if it is inferior in all gradient tuples
compared to the existing record in the table. As an example,
a node may receive a GEM packet with a gradient field hop
of 4, and a bandwidth of 8Mbps. This same node may receive
another GEM packet, from the same source and intermediate
neighbor, with a hop of 8, and a bandwidth of 50Mbps.
The hop count is inferior, and if it was the sole means of
comparison, it would be dropped. But the bandwidth field is
dominated (50 Mbps >8 Mbps), so the table going to the
source node, through the neighbor, would be marked as hop:4,
bw:50Mbps. The node will route all packets, needing those
requirements, to the neighbor node, knowing the neighbor
will have 1 or many potential paths to route the packet. No
computation is needed, only newer GEM packets are saved or
current routing information is updated.

IV. LOOP-FREE FORWARDING USING GRADIENTS

To avoid loops, all gradient fields in GEM are saved (if
newer or dominated). If an update occurs, where a dominant
value in the MCP exists for the same source-neighbor-interface
tuple, it will replace the the entry if it is totally dominated (all
fields are dominated). If only a single field is dominated, the
old entry is replaced with the updated information. This is
done to avoid routing loops, which follow the trail of bread
crumbs from the GEM packets to the destination. Since each
entry is saved, when a particular entry is selected, the TTL
field in the IPv4 packet, for example, is modified with the
expected hop count, as opposed to a much larger default. The
modification only occurs in the source node.

The GEM packets have a built in TTL, as well as processing
to avoid flooding inferior source packets. Nodes only flood
GEM packets which are updates (by sequence number), or

have, at least, a single dominating value in its gradient payload.
Two approaches are currently used to cope with the oc-

currence of forwarding loops in datagram forwarding. In the
forwarding plane, the TTL field of a datagram is used to
discard a datagram after it circulates a forwarding loop too
many times. In the control plane, routing protocols (e.g., OSPF
and EIGRP) are used to reduce or eliminate the existence
of routing loops. However, even if no routing loops ever
occur in the control plane, a datagram may still circulate
along a forwarding loop while routing tables are inconsistent
among routers. In IFRoG, Forwarding Information Base is
used to ensure that forwarding decisions in the data plane
are consistent with the routing information maintained by the
routing protocol operating in the control plane.

The FIB entry stored at router i for address d states the
minimum-hop distance Hd

i to the address in addition to the
next hop n to it. Router i uses the following rule to forward
a datagram using its FIB within a network.

TTL-based FIB Rule (TFR): Router i accepts to forward
a datagram from router k towards the best-match for d if
TTL > Hd

i. A router simply drops a datagram intended for
a destination address of global scope with a TTL value that
does not satisfy TFR.

Theorem 1 proves that TFR eliminates forwarding loops.
Theorem 1: No datagram can traverse a forwarding loop in
a network in which TFR is used to forward datagrams.

Proof: We denote by P k[s, d, T k](p) a datagram sent by
router k with a header that contains a source address s, a
destination address d, a TTL value (T k), plus payload data p.
Router i uses the following rule to forward such a datagram
using its FIB within a network. Consider a network in which
TFR is used and assume for the sake of contradiction that
routers in a forwarding loop L of h hops {v1, v2, ..., vh, v1}
forward a datagram for destination d along L with no router
in L detecting that the datagram has traversed loop L.

Given that L exists by assumption, router vk 2 L must
forward P vk [s, d, T vk](p) to router vk+1 2 L for 1  k 
h � 1, and router vh 2 L must forward P vh [s, d, T vh](p) to
router v1 2 L.

According to TFR, if router vk (1 < k  h) for-
wards P vk [s, d, T vk](p) to router vk+1 as a result of re-
ceiving P vk�1 [s, d, T vk�1](p) from router vk�1, then it must
be true that T vk�1 > Hvk

d . Similarly, if router v1 for-
wards P v1 [s, d, T v1](p) to router v2 as a result of receiving
P vh [s, d, T vh](p) from router vh, then it must be true that
T vh > Hv1

d . However, these results constitute a contradiction,
because they imply that Hvk

d > Hvk
d for 1  k  h. Therefore,

the theorem is true.
TFR consists of imposing an ordering constraint on the

traditional datagram forwarding algorithm based on FIB en-
tries, and making the TTL value of the datagram equal to the
distance stored in the FIB for the intended destination, rather
than simply decrementing its value. The result of Theorem 1
is independent of whether the network is static or dynamic,
or the type of routing protocol used to compute distances and
next hops. The ordering constraint of TFR is essentially the

same loop-free condition first introduced in DUAL [5]. The
difference between the way in which the ordering constraint
is used in TFR and in DUAL is that TFR establishes distance-
based ordering in the data plane to forward datagrams based on
existing FIB entries, while DUAL establishes distance-based
ordering in the control plane to build FIB entries that are then
used to determine how to forward datagrams.

V. PERFORMANCE IMPLICATIONS

Under IFRoG, if up to x non-dominated paths are main-
tained for each destination at any given router i, the space
complexity is O(x|N i|N+xN) = O(x|N i|N), where |N i| is
the number of neighbors of node i, because the main routing
table and each neighbor table have O(N) entries, and each
entry can keep up to x routes for each destination.

In practice, the number of non-dominated paths between
source and destination can be exponential [15], and Yuan [15]
has shown that O(N2 log(N)) non-dominated paths need to be
maintained to have high probability of finding feasible paths.
However, if the data flows induced by the applications are not
such that their individual bandwidth and delay demands are
close to the total available bandwidth and average end-to-end
delay over an average path, a satisfactory success ratio can be
attained in IFRoG with a relatively small value of x, i.e., of
order O(1) with respect to N .

The computation complexity of the time needed for a router
to process gradient vectors regarding a particular destination
is O(x|N i|). When only the single shortest path is main-
tained, then the space and computation complexity reduce to
O(|N i|N) and O(|N i|) respectively, which are the same as
that of the distributed Bellman-Ford algorithm (DBF) [2].

The time complexity of IFRoG is the time it takes to
converge after a single change in the network, and the com-
munication complexity is the amount of messages required to
propagate this change before all routers can integrate it and
update their routing tables accordingly. Given that IFRoG is
free of routing-table loops, any routing information (GEM)
propagates as fast as the shortest physical path that dominates
other paths with respect to the gradient metric between its
origin and the recipient. This means that the time complexity
of IFRoG is O(l), where l is the length of the longest path that
a GEM containing a tuple that corresponds to a dominating
path along which a given gradient metric must traverse. The
length of l depends on the topology of the network and the
performance characteristics of its links. In the worst case, its
length could be N � 1; however, it is much closer to the
network diameter in practice.

An update message (GEM) in IFRoG contains all the tuples
needed to update the gradient vectors for a given destination.
Accordingly, the number of messages required for all routers
to have a correct logical distances to a given destination is
O(N ⇥ E), where E is the number of links in the network
and N is the number of destinations.

VI. PRELIMINARY SIMULATION RESULTS

To simply verify the IFRoG design, a number of simulation
scenarios were designed, to enable easy visual verification of

correct behavior. NS-3[16] was chosen as the simulator, using
standard sockets and IPv4 as the transport layer (with the TOS
field enabled). A six node scenario 1 using parameters shown
in Table I was run to demonstrate the key capabilities of
IFRoG. Table I shows each named interface (e.g. A1, A2, B1,
B2, ...) and the corresponding bandwidth and interceptability
of each interface.

The first 3 tests are routing tests that use each primary
gradient value (bandwdith, interceptability, and hop distance),
using a threshold value of zero (or use the largest value, and if
a match, continue the partial order determination) to define the
metric. The first 3 tests have similar parameters, with traffic
flowing from node 5 to node 0, based upon a specified routing
MCP (bandwidth, hops, and interceptability, respectively).

TABLE I
SIMULATION PARAMETERS

Node Connect Node 1 BW Node 2 BW Node 1 Interc Node 2 Interc
A 210 80 80 10
B 220 250 40 40
C 250 250 250 250
D 250 250 250 250
E 250 250 150 140
F 80 80 10 10
G 210 210 210 110
H 90 150 140 140

N4

N2 N0

N5 N3

N1

E2
F1

A1

A2

G1

G2H1

H2

C1

D2

D1

C2

B1 B2

F2

E1

Fig. 1. Small scale network

Figure 2 illustrates routing by the highest-bandwidth pa-
rameter, going in a counter clockwise direction, from node
5 ! 3 ! 1 ! 0. To validate routing by minimum-hop count,
Figure 3 shows the expected routing, going up from node
5 ! 0. The final parameter, Interceptability, follows the path
of least interceptability, taking a clockwise direction, going
from node 5 ! 4 ! 2 ! 0 as shown in Figure 4.

Fig. 2. Routing by highest bandwidth

Fig. 3. Routing by lowest hop distance

Fig. 4. Routing by minimum interceptability

Routing with multiple constraints, does not require the
constraints to be real; they can be virtual. In Figure 5, we
demonstrate maximum-bandwidth usage by creating a single
virtual ethernet channel. Node 5 transmits three different
types of packets, each carrying a different TOS value. One
TOS value directs the path to take a clockwise direction,
another goes counterclockwise, and the last one takes a direct
route up (using the bandwidth, interceptability, and hop count
parameters). Actual values, as reported to the GEM packet,
may, or may not, reflect actual hardware implementations,
but they mimic simple traditional TOS service, each taking
a different path. As an example, the highest priority packets
could take the 1-hop path, while a high value customer takes
a high bandwidth route, with general customers assigned to
a lower bandwidth route. By establishing different parameters
as a more traditional QoS routing, it can remove some of
the headache of having multiple constraints which may not
directly apply to a particular set of network traffic.

Fig. 5. Load balancing

Figure 6 is an example of using minimal thresholds. Using
a gradient TOS requirement of Bandwidth (threshold index of
3, or 200Mbps+), Hops, and finally Interceptability (threshold
index of 2, for 150Mbps-). While N5 ! B2 has 2 paths
meeting the bandwidth requirement (both considered equal),
the constraint goes to a second order of hop distance, which
both paths are equal in (3 hops). Finally, the constraint goes
to the third order, which only the path from Node 5 ! 3 !
2 ! 0 meets the requirement. The threshold values are set
per node. Note that this opens up future work, by allowing
traffic, which may not be allowed by the network constraint
thresholds.

Fig. 6. Routing by Bw 5Mbps+, Interc 100-, Hop Count

As a reminder, the path is set from the node destination
(Node 0, in this case), propagating GEM messages to be
received by Node 5. In this example, there are 4 paths for the
3 interfaces. Node 0 sends a GEM, and the interface C2 (node
1) applies the dominant gradient rules. It will then broadcast to
node 3 (D2 interface), and apply the dominate gradient rules.
Finally, it will arrive at node 5 (interface E2), and the path
from node 5, to node 0, will use the interface rules from E2,
D2, and C2; along one path). Likewise, node 5 will broadcast
GEMs that will take path (E1, D1, C1), in addition to other
paths. Figure 7 shows this asynchronous nature, by having
node 5 transmit to node 0, and node 0 will transmit to node 5,
using the highest bandwidth value. Instead of being forced
for a packet to go from node 5 ! 3 ! 1 ! 0, it still
follows the highest bandwidth value from node 0 to 5, via
nodes 0 ! 2 ! 4 ! 5.

Fig. 7. Asyncronous Routing

VII. CONCLUSIONS

We introduced a simple approach for integrated forwarding
and routing with multiple QoS constraints that ensures that
datagrams are sent over paths that satisfy the QoS desirements
specified by applications, and eliminates forwarding loops
even when routing tables have inconsistent forwarding state.
We implemented the QoS route computation of IFRoG in
NS-3 using IPv4 datagrams with the TOS filed enabled as
the network layer, and verified that the paths computed with
IFRoG satisfy the desired QoS requirements stated by appli-
cations. IFRoG can successfully support k-constraint routing
with threshold limitations and multiple radios or interfaces per
node. We note that the preliminary results presented in the
paper, by no means, neither are nor meant to be the product
of extensive performance evaluation tests. They are results of
the tests run to simply verify the design and demonstrate key
capabilities without stress testing the algorithm in a larger
and/or a more dynamic network setting. Our future work
focuses on the performance of IFRoG in dynamic wireless
networks, the implementation of the loop-free forwarding
component of IFRoG, and a more flexible specification of the
QoS requirements in datagrams.

REFERENCES

[1] H. Badis and K. Agha, “Quality of Service for Ad-hoc Optimized Link
State Routing Protocol (QOLSR),” IETF Internet Draft, March 2006.

[2] D. Bertsekas and R. Gallager, Data Networks - 2nd Edition, Prentice-Hall,
1992.

[3] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol,” RFC
3626 (Experimental), October 2003.

[4] J. Doyle, Routing TCP/IP, Cisco Press, 1998.
[5] J.J. Garcia-Luna-Aceves, “A Unified Approach to Loop-Free Routing

Using Distance Vectors or Link States,” Proc. ACM SIGCOMM ‘89, Aug.
1989.

[6] Z. Li and J. J. Garcia-Luna-Aceves, “A Distributed Approach For Multi-
Constrained Path Selection And Routing Optimization,” Proceedings of
QSHINE’06, Waterloo, Ontario, Canada, August, 2006.

[7] P. V. Mieghem, H. D. Neve, and F. Kuipers, “Hop-by-Hop Quality of
Service Routing,” Comput. Networks, 37(3-4):407–423, 2001.

[8] S. Nelakuditi, Z. Zhang, R. P. Tsang, and D. H. C. Du, “Adaptive
Proportional Routing: A Localized QoS Routing Approach,” IEEE/ACM
Trans. Netw., 10(6):790–804, 2002.

[9] C. Perkins, E. Royer, and S. Das, “Quality of Service in Ad-hoc On-
demand Distance Vector Routing,” IETF Internet Draft, July 2000.

[10] C. Perkins, E. Royer, and S. Das, “Ad Hoc On Demand Distance Vector
(AODV) Routing,” RFC 3561, July 2003.

[11] B. Smith and J. J. Garcia-Luna-Aceves, “Efficient Policy-Based Routing
without Virtual Circuits,” Proceedings of QSHINE’04, Dallas, Texas,
October, 2004.

[12] J. L. Sobrinho, “Algebra and Algorithms for QoS Path Computation
and Hop-by-Hop Routing in the Internet,” IEEE/ACM Trans. Netw.,
10(4):541–550, 2002.

[13] Z. Wang and J. Crowcroft, “Quality-of-Sservice Routing for Supporting
Multimedia Applications,” IEEE Journal of Selected Areas in Communi-
cations, 14(7):1228–1234, 1996.

[14] J. Wang and K. Nahrstedt, “Hop-by-Hop Routing Algorithms for
Premium-class Traffic in Diffserv Networks,” Proceedings of IEEE IN-
FOCOM, 2002.

[15] X. Yuan, “Heuristic Algorithms for Multiconstrained Quality-of-Service
Routing,” IEEE/ACM Trans. Netw., 10(2):244–256, 2002.

[16] https://www.nsnam.org/.

