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As Dr. Phillips ·mentioned this morning, it has become possible to do 

calculations on real materials with quite good accuracy in the last few years 

from first principles. In this talk, I would like to illustrate this by 

giving several examples, mostly from some recent work that we have done at 

Berkeley. Before I proceed, I would like to acknowledge my 

collaborators--Che-ting Chan, James R. Chelikowsky (at Exxon), Marvin L. 

Cohen, Mark Hybertsen, and David Vanderbilt. 

Let me begin by defining the term "!£ initio electronic structure 

calculations." By this, I mean calculations that do not require empirical 

input; that is, the only input are the atomic numbers and masses of the 

constituent elements. From these calculations, one would then obtain 

quantities such as equilibrium crystal structures and lattice constants, bulk 

·moduli, shear moduli, cohesive energies, vibrational properties, and even 

phonon-phonon and electron-phonon interaction parameters. This development 

has given rise to many exciting possibilites.l For example, it is now 

possible to predict new materials and their properties and to study the 

electronic and atomic structures of surfaces, interfaces, and defects. One 

can also investigate the phase stability of systems under extreme conditions 

of pressures and temperatures. 

There are several important factors that contributed to making these 

kinds of calculations possible. They include better approximations to the 

density functional formalism; better band structure and·total energy 

calculational techniques including the invention of ab initio 

pseudopotentials; and, of course, the availability of large and fast 

computers. The remainder of the talk is organized as follows: a brief 

discussion of the theoret.ical methods is given and then the rest of the time 

will be spent on applications.2 In discussing applications, the bulk 
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properties, which include the structural properties, solid-solid phase 

transformations, and vibrational properties, will be presented first. Next, 

we describe calculations of microscopic interaction parameters between 

elementary excitations in the solid state. Phonon-phonon and electron-phonon 

interactions are used as examples. Then, we turn to surface structural 

determination and discuss the case of the 2x1 reconstruction on the diamond 

(111) surface. Finally, a discussion on the possibility of calculating 

excited-state properties from first principles is presented. 

The basic quantity upon which we shall first focus is the total energy of 

the system as a function of the coordinates of the nuclei. This energy 

contains several terms--the core-core interaction energy, the electron-core 

interaction energy, the kinetic energy of the electrons, the classical 

electron-electron static interaction term, and a remaining term involving the 

many-body interaction among the electrons. 

E • E + E + Ekin + ECoul + E 
tot c-c e-c e e-c xc 

(1) 

Within the density functional formalism,3 the total electronic energy is a 

functional of the charge density. Thus 9 in principle, the only input to a 

total energy calculation is the atomic numbers. For example, in a study of 

crystal phase stability under pressure, calculations are carried out for a 

number of assumed crystal structures to determine the lowest energy at a 

given volume. For vibrational properties, the additional input of the atomic 

masses is needed. 

There are two major approximations in the calculations described below: • 

(1) the use of the local density approximation for the electron-electron 

interactions and (2) the use of ab initio pseudopotentials for the 

electron-ion interaction. The major advantage of using pseudopotentials is 



to eliminate the core electrons from the problem which is equivalent to a 

frozen-core approximation but has the added feature of much smoother valence 

wavefunctions. The ab initio pseudopotentials are generated from atomic 

calculations with no empirical input.4 Professor Kleinman will discuss more 

on pseudopotentials in a later talk. 

The calculations employ two important statements in the density 

functional formalism. The first one. as already mentioned. is that the 

ground-state total energy of an electronic system in an external potential 

can be expressed as a functional of the charge density. · That is. it may be 

determined without a knowledge of the full many-body wavefunction. The total 

energy is usually partitioned into an interaction term with the external 

potential. a classical el·ectrostatic term for the electron distribution. and 

a term which is a universal density functional that contains the kinetic 

energy and the exchange-correlation energy. The second important statement 

(derived from a variational principle of Etot with respect to the density) is 

that the correct charge density may be obtained from solving a set of 

self-consistent single-particle Schrodinger equations 

{- -2
1v2 + v t(r) + VH(r) + ~ (n.r)J~i(r) • £i~i(r) ex _ _ xc _ _ _ (2) 

where ~xc is the functional derivative of the exchange-correlation energy Exc 

with respect to the electron density. n. This formalism. thus. reduces a 

complicated many-body problem to a tractable single-particle problem. 

One remaining difficulty is the evaluation of the unknown 

exchange-correlation functional. Exc· The approximation usually made is the 

local density approximation3 in which the exchange-correlation potential at a 

given position in space is replaced by that of the homogeneous electron gas 

of the same density.· Thus. the steps in a calculation are: (1) determine 
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the external potential, that is, the position of the atoms; (2) determine the 

charge density from a self-consistent field calcuiation; and (3) evaluate the 

total energy from the charge density. 

As examples for bulk structural properties calculations. we present here 

results for several insulators and metals. Figure shows the calculated 

total energy of carbon in the diamond structure as a function of volume.5 In 

the calculation, a linear combination of gaussian orbitals basis set is used 

to expand the electron wavefunctions. The minimum of the curve gives the 

lattice constant; the curvature gives the bulk modulus; and by comparing the 

minimal energy to the pseudoatom energy, the cohesive energy is determined. 

Table I presents a comparison of the calculated results with the experimental 

values for diamond and silicon. This kind of calculation has been done for 

many other types of materials,2 including simple metals, compound 

semiconductors, transition metals, and insulators. Typically, the lattice 

constants are in excellent agreement with experiment to within a fraction of 

a percent. Cohesive energies and bulk moduli give agreement at a few percent 

level. Table II provides some results for the transition metal tungst~n.6 

Another major objective is to use these theoretical techniques for 

calculating quantities which cannot be easily measured experimentally. Some 

examples of these include the prediction of new crystals and the study of 

solid-solid structural transformations under pressures or at high 

temperatures. Figure 2 shows one such study for silicon by Yin and Cohen.7 

Here the calculated total energy per atom is presented for silicon in seven 

different crystal structures. The lowest energy curve (corresponding to the 

diamond structure) is predicted to be the preferred structure at zero 

pressure. This is consistent with experiment, and the theoretical 

equilibrium volume is at virtually the experimental value. At smaller 
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volumes, the diamond structure curve is above in energy than some of the 

other curves. This means that if pressure is applied to silicon, it-will 

eventually transform from the diamond structure into other crystal 

structures. The first transition is to the B-tin structure occurring along 

the indicated Gibbs line {dashed line in Fig. 2). The negative of the slope 

·of the Gibbs line is the transition pressure. Also indicated in Fig. 2 are 

the initial and final volumes of the crystal at the transition pressure. 

Table III provides a comparison between theory and experiment illustrating 

that the local-density pseudopotential method does give very good results for 

this kind of study. 

The advent of total energy calculations also makes possible an ab initio 

determination of vibrational properties such as phonon frequencies and 

eigenfunctions using a frozen-phonon calculation of the type shown in Fig. 

3. Here the potential energy vs. displacement for a zone-center optical 

phonon in diamond polarized in the {111) direction is presented.5 Each 

theoretical point represents a calcualtion for one structure, namely, a 

crystal with. the phonon of amplitude u frozen in. Making use of the standard 

Born-Oppenheimer assumption, the second derivative of the curve at the 

minimum gives the harmonic elastic constant and, hence, the phonon 

frequency. Specifically, if the distortion .energy is expanded in a Taylor 

series 

AE • -1 K u3 + -
1 K u3 + -

1 K 3 2! 2 3! 3 4! · 4u (3) 

then the phonon frequencies are given by 

for k • 0 or at zone edge 

{4) 

otherwise 
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Table IV presents the calculated results for the diamond phonon frequencies 

at the various points in the Brillouin zone.8 The agreement with experiment 

is excellent. More importantly, since these numbers are from total energy 

differences, microscopic information on various contributions that give rise 

to the restoring forces may be obtained. By analyzing the distortion energy, 

it is possible to isolate the core-core, electron kinetic energy, 

electron-core, and electron-electron contributions separately. This kind of 

information is extremely valuable in analyzing and understanding phonon 

anomalies in various semiconductors and transition metals. 

In addition to obtaining the individual phonon frequencies and 

eigenfunctions, it is possible to evaluate a whole dispersion curve along a 

particular direction. There are two equivalent approaches. One way is to 

move one plane of atoms and calculate the Hellmann-Feynman forces on all the 

other planes using a supercell technique. From the force constants, the 

dynamical matrix for wave propagation in the direction perpendicular to the 

planes·may be ·constructed, and, hence, the dispersion curve may be 

calculated. Another way is to calculate the phonon frequencies using the 

frozen-phonon technique ·for a particular branch at several k-points. From 

the frozen-phonon results, the dynamical matrices evaluated at these k-points 

may be inverted for the interplanar force constants. Again, the dispersion 

curve can then be calculated from the force constants. Results calculated 

using the latter approach for the longitudinal modes of diamondS ar.e 

presented in Fig. 4. The solid curve is obtained using interplanar force 

constants up to those of the sixth nearest-neighbor planes. 

We have, moreover, extended the frozen-phonon method to obtain, for the 

first time, a first-principles determination of higher order anharmonic 

elastic coupling constants.9 In Fig. 3, the third and fourth derivatives 

.. 

.. 
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give us the third and fourth order anharmonic coupling constants for this 

polarization. By looking at several polarizations with greater accuracy and 

at more values of u, we are able to completely characterize the zone-center 

optical coupling constants through fourth order. That is, the amplitudes for 

the three- and fourth-phonon interaction processes (Fig. 5) for k near zero 

have been calculated from first principles. By making use of straightforward 

perturbation theory, we can even then calculate the renormalized four-phonon 

vertex in which exchange of an optical phonon is allowed. Similar 

calculation for k-vectors away from zone center have also been carried out 

using a supercell technique. 

A surprising result emerged from the diamond phonon-phonon calculation. 

It had been assumed that the fourth-order coupling was positive; in fact, it 

had been proposed as long ago as 1969 by Cohen and Ruvalds10 that a strong 

enough positive coupling could give rise to a two-phonon bound state that 

might explain an anomalous peak in the two-phonon Raman spectrum of diamond. 

Unfortunately, no reliable experimental or theoretical information has been 

available on the underlying coupling constants during the last 15 years, and 

the two-phonon bound-state model has remained controversial. Our calculation 

shows the renormalized coupling to be negative in which case no bound state 

could form. Therefore, an alternative explanation for the Raman anomaly is 

probably the correct one. 

The same theoretical methods can be applied to calculate the 

electron-phonon interaction parameters in a solid. The standard expression 

for the matrix element of scattering an electron from state k to state k' 

with an emission or absorption of an phonon is given by 

g(k' ,k;>.) (5a) 
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where 

(5b) 

All the ingredients needed for evaluating Eq. 5 can be obtained from the 

theory--the phonon frequency from a frozen-phonon calculation, the electronic 

wavefunctions from the band structure calculation, and Eq. 5(b) from the 

difference between the self-consistent Hamiltonians for cases with and 

without the frozen-phonon distortion. This approach has been applied with 

success to Al11 in calculating the elec.tron-phonon parameter, >., which 

determines the superconducting transition temperature. 

Another important area of application for total energy calculations is 

surface structure determination, a major problem in surface science. We 

discuss here one such calculation on the 2x1 (111) surface of diamond.12 The 

goal is to find the correct structure by minimizing the total energy with 

respect to the atomic positions of the first several layers from the 

surface. In addition to information on surface atomic rearrangements, many 

other physical and chemical .properties may be obtained. Among these are 

surface electron wavefunctions and energies, work functions, surface 

energies, chemisorption geometries, bonding energies and charge 

distributions, and vibrational properties of the surface. 

There has been a number of models proposed in the literature for the 2x1 

reconstructed diamond (111) surface. This surface is of interest as the 

insulating limit for the group IV (111) surfaces which show a variety of 

surface reconstructions.13 In our study, energy minimization was carried out 

for all the topologically distinct models in the literature using slab 

geometries of at least 10 atomic layers. These include the ideal relaxed 
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model, the Haneman buckling model,13 the Pandey 11'-bonded chain model,14 the 

Chadi molecule model,15 and the Seiwatz single chain model.16 Of these, only 

the Pandey 11'-bonded chain model (which has chains of dangling bonds on the 

surface) has a lower energy than that of the relaxed 1x1 surface (see Table 

V). A minimum-energy structure is determined for this model after extensive 

consideration of atomic position relaxations for all atoms in the slab. The 

other models are found to be implausible on the basis of their total energies 
. 

and surface state disperisons as compared to photoemission results. Also, 

contrary to previous suggestion, no dimerization of the surface chain is 

found to be favorable. Thus, we conclude that the fully relaxed undimerized 

11'-bonded chain structure is a likely candidate for this surface in terms of 

energetic considerations and is consistent with experiments reported to 

date. The detailed structure of the surface is illustrated in Fig. 6. The 

driving force for this reconstruction is a mechanism that allows the highly 

unfavorable dangling bonds to move to near-neighbor positions so that they 

can participate in 'II' bonding. 

Thus far, the discussion has been focused on total energies and 

ground-state properties. The local density approximation (LOA), 

unfortunately, does not work as well when applied to the excited-state 

properties of insulators and semiconductors. The energy band gap for these 

materials calculated in the LOA is typically 30-50~ off in comparison with 

experimental values. There is, however, no formal justification for 

interpreting the LOA eigenvalues as quasiparticle energies since the density 

functional formalism is a ground-state theory.3 To obtain the band gaps, one 

should calculate the energy of the quasiparticles by solving17 

(- 1 v2 
+ v + vH)ljl(r) + J d3r• L (r,r' ,E)ljl(r') - Eljl(r) (6) 2 ext _ 
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where L is the Dyson mass operator which, unlike the exchange-correlation 

potential in LOA, is nonlocal and energy dependent. There are several 

approaches in attempting to calculate I. The particular approach that we 

used is Hedin's screened-exchange Coulomb hole approximation18 

I - iGW (7) 

where G is the addressed Green's function and W is the screened Coulomb 

interaction. The calculation thus requires the full dielectric matrix and 

the crystalline single-particle Green's function. We evaluate both G and W 

using the LOA results since they are found to be not far from the correct 

values. A number of previous attempts have been made along this line. 

However, the off-diagonal elements of the dielectric matrix (that is, 

local-field effects) were neglected in the past work. We find that 

local-field effects are extremely important in obtaining good quantitative 

results. Some preliminary results for the calculated quasiparticle energies 

for Si using the static dielectric matrix are presented in Table VI.19 The 

many-body results are generally in better agreement with experiment than the 

LOA eigenvalues. In particular, there are substantial improvements in the 

values of the direct optical transitions. 

In summary, this talk has given a brief discussion of several selected 

calculations of materials properties using a method combining !2 initio 

pseudopotentials and the local density functional approximation. It is 

evident from these results and from results of a number of other workers1 

that the LOA gives excellent ground-state properties for a wide variety of 

materials systems. However, for ab initio calculations of excited-state 

properties, it appears that one has to go beyond the density functional 
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theory and consider the many-body problem more carefully. 
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QUESTIONS AND ANSWERS 

QUESTION: (Bill Goddard) Those are extremely impressive results. A 

question has to do with how you describe bond breaking processes. Surfaces 

often have broken bonds. Have you considered taking a case like diamond and 

breaking it apart into atoms and actually doing the calculation all the way 

out? This is relevant to looking at chemical processes, and it's also 

relevant for looking at surface states. 

LOUIE: We have not done precisely that calculation. However, calculations 

on cohesive energies and surface energies indicate that one gets accuracy of 

the order of few tenths of an electron volt. 

QUESTION: Can information on energy barriers for surface reconstructions be 

obtained from the calculations? 

LOUIE: Yes, we can (and have) carried out calculations by transforming, say, 

the ideal (lxl) surface into a Pandey chain model and following the total 

energy curve continuously. 

QUESTION: Does the theory work for magnetic surfaces? 

LOUIE: I have not done calculations for magnetic surfaces. Art Freeman's 

group has done some spin polarized calculations for 3d transition metal 

surfaces, and their calculated magnetization seems to agree with experiment. 

QUESTION: Band gaps in a semiconductor can be formulated in terms of 

differences in ground-state energies. One should, therefore, be able to get 

them out from density functional calculations. 

LOUIE: Yes, formally, that is possible, but how does one go about 

calculating them? Excited states in the solid state are much more complex 

than excited states for localized systems such as atoms. The discrepancies 

between LDA results and experimental values are most severe for the 

insulators. However, even for metals, there are problems. For example, the 

.. 
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calculated relative position of the d-bands of the transition and noble 

metals to the Fermi level does not correspond exactly to that from 

photoemission measurements. This is because one should really calculate the 

quasiparticle energies since a photoemission experiment measures 

excited-state properties. 

QUESTION: Among the ground-state quantities, the cohesive energies appear to 

be more difficult to obtain accurately. 

LOUIE: I agree. The cohesive energy, the binding energy, is the trickiest 

quantity to get out because it involves the energy difference between atoms 

in the isolated and solid state. The local density approximation is not 

expected to have exactly the same degree of validity in both cases. Also, 

the answer changes slightly depending on the form of the local density 

exchange-correlation potential used. Presently, there is a number of LDA 

exchange-correlation potentials in the market. In the past few years, we 

have been using the potential derived from the electron ga~ data calculated 

by Ceperley and Alder. We believe the Ceperley-Alder results are probably 

the best electron gas data to date. 

QUESTION: I did not see any transverse modes in your diamond phonon 

results. Have you calculated them and their dispersion curves? Also, can 

you include temperature effects in the structural. transition studies? 

LOUIE: We have done calculations for the transverse modes. There are both 

TO and TA mode results in Table IV. We, however, have not carried out 

calculations for their dispersion curves. This simply requires calculation 

of phonon frequencies for a few more k-points and then inversion of the 

dynamical matrices for the interplanar force constants. One can, indeed, 

include temperature in structural phase transition studies. In fact, the 

temperature-induced phase transition for the case of beryllium has been 
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studied. The free energy which includes a phonon entropy term now determines 

the structural transformation. I have a figure here on the beryllium 

calculation that I could show you if you're interested. 

QUESTION: What do you believe is the accuracy of these calculations? Can 

they be applied to more complicated systems? 

LOUIE: My belief is that one can get accuracy within a few percent of 

experiment for ground-state properties using the local density 

approximation. At this moment, we are limited by computer capabilities (both 

speed and memory space), so we are not able to look at more complicated 

systems such as metal-semiconductor interfaces. For excited-state 

properties, such as optical spectra, it is still not clear at this moment 

what kind of effort is needed to obtain accurate first-principles results. 

QUESTION: (Peter Feibelman) In the calculation of the diamond surface, how 

big are your matrices? And how do you solve the Poisson equation? 

LOUIE: In that particular calculation of the 2x1 reconstructed surface, we 

have 12 localized orbitals per atom, and there were 20 atoms per surface unit 

cell in the slab. Thus, the matrix size that we are dealing with is 

240x240. As for the solution of the Poisson equation, we do not put the 20 

atoms in a supercell and perform fast fourier transforms because that would 

be too costly. Instead, we divide the slab into layers (in the order of few 

hundred layers for a 10 atom thick slab) and perform two-dimensional fast 

Fourier transforms for the charge on each of the layers. This way one can 

solve the Poisson equation very accurately and very fast. 

... 
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.. 

Table I. Ground-state properties of diamond and Si. 

. Lattice Cohesive Bulk 
Constant Energy Modulus 

0 

(A) (eV/atom) (Mbar) 

Diamond 
Theory 3.56 7.84 4.37 
Experiment 3.57 7.37 4.42 

Silicon 
Theory 5.41 4.76 0.93 
Experiment 5.43 4.63 0.99 
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Table II. Ground-state properties of tungsten. 

Expt. Theory Error 

Cohesive energy (eV) 8.9 8.46 -5% 
0 

Lattice constant (A) 3.16 3.13 -1% 

Bulk modulus (Mbar) 3.23 3.34 3% 
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Table III. Diamond to B-tin transitions for Si and 
Ge (after Ref. 7) 

v d 
t 

v B 
t 

v a,v d 
t t Pt(kbar) 

Si 
Theory 0.928 o. 718 o. 774 99 
Expt. 0.918 0.710 o. 773 125 
!:J. 1.1% 1.1% 0.1% -20% 

Ge 
Theory 0.895 0.728 0.813 96 
Expt. 0.875 0.694 o. 793 • 100 
!:J. 2.3% 4.9% 2.5% -4% 



-20-

Table IV. Diamond phonon frequencies. 

-1 -1 Mode w (em ) w t(cm ) theory exp 

LTO (r) 1347 1332 15 

LO(k•l/3X) 1353 

LO(k•2/3X). 1328 

LOA(X) 1219 1185 34. 

TO(X) 1173 1069 104 

TA(X) 772 807 . -35 
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Table V. Calculated total energies of diamond (111) 
1xl and 2x1 surface reconstruction models. 

Surface Model 

Ideal lx1 
0 

Buckled (~z=±0.26 A) 

Chadi ~-bonded molecule 

Seiwatz single chain 

Ideal Pandey ~-bonded chain 

Relaxed 1x1 

Relaxed Pandey ~-bonded chain 

~tot' ±2% dimerization 

~tot' ±4% dimerization 

~tot' ± 6% dimerization 

Energy 
(eV/surface-atom) 

0.00 

0.35 

0.28 

1.30 

-o.os 

-o.37 
-o.68 

-+().01 

-+(). 04 

+0.09 
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Table VI. Quasiparticle energies in silicon. 

LDA Present Work Expt. 

rlv -11.93 -12.72 -12.5 

rl5c 2.57 3.59 3.4 

r2'c 3.29 4.20 4.2 

x4v -2.87 -2.91 -2.9 

xlc 0.68 1. 76 1.3 

L3'v+Llc 2.73 3.65 3.45 

L3'v+L3c 4.58 5.73 5.50 

,., 
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FIGURE CAPTIONS 

Fig. 1 Total energy vs. volume for carbon in the diamond structure. The 

continuous curve is the Murnaghan equation of state fit to the calculated 

points. 

Fig. 2 Total energy curves for various assumed crystal structures of Si as a 

function of volume normalized to the observed volume. The dashed line is the 

common tangent between the diamond and white tin phases (from Ref. 7). 

Fig. 3 Frozen-phonon energy vs. bond displacement. 

Fig. 4 Calc.ulation of phonon dispersions for diamond in the [1 00] direction 

by extracting force constants from frozen-phonon results. Only the 

longitudinal modes are plotted. The squares are frozen-phonon results. The 

tri-angles and dots represent measured points. 

Fig. 5 Three- and four-phonon interaction diagrams. 

Fig. 6 Illustration of bond length changes (with respect to bulk) which 

occur upon relaxation of (a) 1x1 and (b) 2x1 Pandey chain models for the 

diamond (111) surface. 
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