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ABSTRACT OF THE DISSERTATION

Essays on Non-parametric and High-dimensional Econometrics

by
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Doctor of Philosophy in Economics

University of California San Diego, 2018

Professor Brendan K. Beare, Co-Chair
Professor Yixiao Sun, Co-Chair

Chapter 1 studies the instrument validity for local average treatment effects. we provide
a testable implication for instrument validity in the local average treatment effect (LATE)
framework with multivalued treatments. Based on this testable implication, we construct a
nonparametric test of instrument validity in the multivalued treatment LATE framework. The
test is asymptotically consistent. The size of the test can be promoted to the nominal significance
level over much of the null, indicating a good power property. Simulation evidence is provided
to show the good performance of the test in finite samples. Chapter 2 constructs improved

nonparametric bootstrap tests of Lorenz dominance based on preliminary estimation of a contact



set. Our tests achieve the nominal rejection rate asymptotically on the boundary of the null;
that is, when Lorenz dominance is satisfied, and the Lorenz curves coincide on some interval.
Numerical simulations indicate that our tests enjoy substantially improved power compared
to existing procedures at relevant sample sizes. Chapter 3 proposes a sieve focused GMM
(SFGMM) estimator for general high-dimensional semiparametric conditional moment models
in the presence of endogeneity. Under certain conditions, the SFGMM estimator has oracle
consistency properties and converges at a desirable rate. We then establish the asymptotic
normality of the plug-in SFGMM estimator for possibly irregular functionals. Simulation

evidence illustrates the performance of the proposed estimator.
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Chapter 1

Instrument Validity for Local Average
Treatment Effects

Abstract

This paper provides a testable implication for instrument validity in the local average
treatment effect (LATE) framework with multivalued treatments, generalizing the one obtained
by Balke & Pearl (1997), Imbens & Rubin (1997), and Heckman & Vytlacil (2005) for the
LATE framework with binary treatments. Based on this testable implication, we construct
a nonparametric test of instrument validity in the multivalued treatment LATE framework.
Specifically, we transform the testable implication into an inequality involving the value of the
supremum of a continuous map over a particular function space. A modified variance-weighted
Kolmogorov-Smirnov test statistic is employed in our test. We extend the delta method and
establish the asymptotic distribution of the test statistic, which takes a non-standard Kolmogorov-
Smirnov form. We then construct the critical value for this asymptotic distribution using the
bootstrap method developed by Fang & Santos (2014) and show that the test is asymptotically
consistent. The size of the test can be promoted to the nominal significance level over much of
the null, indicating a good power property. We also show that with a minor modification the
proposed test can easily be applied when there are conditioning covariates with finitely many
possible values. Simulation evidence is provided to show the good performance of the test in

finite samples. Finally, we use Vietnam-era draft lottery data to illustrate application of the test



in practice.

1.1 Introduction

The local average treatment effect (LATE) framework, introduced by the seminal works
Imbens & Angrist (1994) and Angrist et al. (1996), is a commonly used approach to study
instrumental variables (IV) models with treatment effect heterogeneity. The LATE framework
relies on several strong and often controversial assumptions of instrument validity: 1) the
instrument should not affect the outcome directly; 2) it should be as good as randomly assigned;
and 3) it affects the treatment in a monotone way. Violations of these conditions will generally
lead to inconsistent treatment effect estimates. Since the plausibility of the analysis of LATE
depends on IV validity, economics research has focused attention on examining these assumptions
based on testable implications.

The present paper proposes a testable implication of IV validity in the LATE framework
with multivalued treatments, generalizing the testable implication obtained by Balke & Pearl
(1997), Imbens & Rubin (1997) and Heckman & Vytlacil (2005) for the LATE framework with
binary treatments.! To the best of our knowledge, the proposed testable implication is new in
the literature. It is stronger than the first-order stochastic dominance condition discussed in
Angrist & Imbens (1995). Based on this testable implication, we propose a nonparametric test
for IV validity in the LATE framework with binary or multivalued treatments, and with binary
or multivalued instruments. Also, we show that with a minor modification, the proposed test
can easily be applied when there are discrete conditioning covariates with finitely many possible
values, such as gender and age.

Kitagawa (2015) provides a test of IV validity in the LATE framework with binary
treatments based on the testable implication in Balke & Pearl (1997), Imbens & Rubin (1997),

and Heckman & Vytlacil (2005). This paper uses a variance-weighted Kolmogorov-Smirnov

I'Studies of LATE with binary treatments can be found in Angrist (1990), Angrist & Krueger (1991), and Vytlacil
(2002). Those of LATE with multivalued treatments can be found in Angrist & Imbens (1995), Angrist & Krueger
(1995), and Vytlacil (2006).



test statistic and constructs the critical value by a bootstrap method. The test is shown to be
uniformly size-controlled and asymptotically consistent, but conservative as the bootstrap critical
value converges to a number larger than the 1 — o quantile of the true asymptotic distribution of
the test statistic. Mourifié & Wan (2017) reformulate the testable implication used in Kitagawa
(2015) as conditional inequalities, and show that they can be tested in the intersection bounds
framework of Chernozhukov et al. (2013).2 Compared to Kitagawa (2015), this test is more
convenient to implement. However, it is also conservative and it restricts the support of the
outcome variables to be compact, ruling out the case where outcomes are unbounded. Huber &
Mellace (2015) derive a testable implication for a weaker LATE identifying condition, that is,
the potential outcomes are mean independent of instruments, conditional on each selection type.
However, the condition of potential outcomes being mean independent of instruments is not
sufficient if we are concerned about distributional features of a complier’s potential outcomes,
for example, the quantile treatment effects for compliers; see Abadie et al. (2002) for details. Our
focus in this paper will be on full statistical independence of potential outcomes and instruments.

Since the tests in both Kitagawa (2015) and Mourifié & Wan (2017) are conservative,
an important contribution of the present paper is that the proposed test is more powerful when
applied in the LATE framework with binary treatments. As shown in Kitagawa (2015) and
Mourifié & Wan (2017), the IV validity assumption is refutable but nonverifiable. The testable
implication is a necessary but insufficient condition for IV validity; therefore, failing to reject the
hypothesis of the testable implication doesn’t allow us to confirm IV validity. In this sense, it is
always important to improve the power of the test in order to rule out any invalid instruments.
The test will be constructed in a framework similar to that in Kitagawa (2015). The key difference
is that the proposed test allows multivalued treatments.

We transform the proposed testable implication into an inequality involving the value

of the supremum of a continuous map over a particular function space. A modified variance-

%It is also worth noting that the test designed by Mourifié & Wan (2017) can easily be implemented using the
Stata package of Chernozhukov et al. (2014).



weighted Kolmogorov-Smirnov (KS) test statistic is employed in our test.> There are two major
complications in deriving and approximating the asymptotic distribution of the test statistic. First,
the continuous map becomes random after being weighted by an estimated standard deviation
using data. As a consequence, the standard delta method cannot be applied for establishing
the asymptotic distribution. To overcome this difficulty, we provide an extended delta method
that works even when the map is random. This might be of independent interest. By showing
that the particular function space is a VC class and applying the extended delta method, we
establish the asymptotic distribution of the test statistic and show that it takes the form of a
supremum over a smaller function space. Second, since the supremum map is not linear, the
standard bootstrap method may fail to approximate this asymptotic distribution consistently.*
To achieve a consistent approximation, we employ the bootstrap method proposed by Fang &
Santos (2014).> A consistent estimator of the supremum map in the asymptotic distribution is
provided and a series of conditions for the bootstrap method to work are verified. Then we show
that the size of this bootstrap-based test can be elevated to the nominal significance level over
much of the null, which suggests a good power property. We also show theoretically that the
finite sample power of the proposed test is higher than that in Kitagawa (2015) when the test is
applied in the binary treatment LATE. This is because this paper’s test statistic is equivalent to
that used in Kitagawa (2015), but its bootstrap critical value is always smaller.

To implement the test, we propose an empirical approach for choosing the tuning param-
eter. We find that under certain data generating processes (DGP), the test statistic asymptotic
distribution is equivalent to the supremum of a Gaussian process over the whole function space.

We then exploit this relationship and choose the tuning parameter from a set of candidates such

3 As mentioned in Kitagawa (2015), variance-weighted KS statistics have been widely applied in the literature on
conditional moment inequalities, such as Andrews & Shi (2013), Armstrong (2014), Armstrong & Chan (2016), and
Chetverikov (2018). More general KS statistics can be found in the stochastic dominance testing literature, such
as Abadie (2002), Barrett & Donald (2003), Horvath et al. (2006), Linton et al. (2010), Barrett et al. (2014), and
Donald & Hsu (2016).

4 Discussions of this can be found in Hirano & Porter (2012), Fang & Santos (2014), Hong & Li (2016) and
Hansen (2017).

3Other applications of this bootstrap method can be found in Beare & Moon (2015), Beare & Shi (2018), Seo
(Forthcoming), Beare & Fang (2017), and Sun & Beare (2018).



that the critical value constructed by using this tuning parameter is close to an equivalent critical
value under a certain DGP. Simulation evidence is provided and shows that the finite sample
power of the proposed test is indeed higher than that in Kitagawa (2015) and the empirical size
of the test is close to or below the nominal significance level. Finally, we use Vietnam-era draft
lottery data to illustrate application of the proposed test in practice.

The remainder of the paper is organized as follows: Section 1.2 introduces the general
setup of the LATE framework and the assumptions of IV validity. Based on these assumptions,
we provide a testable implication for IV validity in the multivalued treatment LATE framework.
Section 1.3 introduces the proposed hypothesis test in the binary treatment LATE framework. We
establish the asymptotic distribution of the test statistic and show the improvement in the power of
the test. Section 1.4 shows that the test proposed in the previous section can be extended to cases
where the treatment and the instrument are multivalued. The case with a continuous instrument
is briefly discussed in Section 1.4.2. When one additional condition holds, the proposed test can
be applied to continuous instruments. Section 1.5 shows that when the conditioning covariates
are discrete variables with finitely many possible values, the test proposed in Section 1.4 can
easily be applied in a slightly different framework. Section 1.6 provides an empirical approach
of choosing the tuning parameter. Section 1.7 reports the simulation results and compares them
with those of Kitagawa (2015). Section 1.8 provides an empirical example of how to examine

instrument validity using Vietnam-era draft lottery data. All proofs are contained in the appendix.

1.2 Setup and Testable Implication

To formally introduce the issue of interest, we first briefly introduce the setup of the
heterogeneous causal effect model considered in Imbens & Angrist (1994). Let D € {0, 1} be the
observable treatment variable, where D = 1 indicates that an individual receives treatment and
D = 0 indicates the opposite. Let Z € {0, 1} be a binary instrumental variable. Let Y;, € # C R,

with d € {0,1} and z € {0, 1} be the potential outcome variable when D = d and Z = z, and let



Y be the observable outcome variable. Similarly, let D, be the potential treatment variable when
Z=z
The instrument validity in the binary treatment LATE framework is formalized by the

following assumption.

Assumption 1.2.1 1V Validity for Binary Z:
(i) Instrument Exclusion: With probability 1, Y1 = Yy for d =0, 1.

(ii) Random Assignment: The variable Z is jointly independent of

(Y11,Y10,Yo1, Y00, D1, D).

(iii) Instrument Monotonicity (No defier): The potential treatment response indicators satisfy

D1 > Dg with probability 1.

Assumption 1.2.1 is almost the same as that in Imbens & Rubin (1997), except that our
version of Assumption 1.2.1 does not require strict monotonicity, that is, we don’t require the
strict inequality in Assumption 1.2.1(iii) to hold with positive probability. The strict monotonicity
assumption is also referred to as the instrument relevance assumption, but we do not include it in
Assumption 1.2.1. Let R denote the Borel o-algebra on R. Let & denote the set of probability
measures defined on the Borel -algebra of R?. For every Borel set B C R and d = 0, 1, define

probability measures as follows:

P(B,d)=P(Y eBD=d|Z=1),

O(B,d)=P(Y €B,D=d|Z=0).

Clearly P,Q € . Under Assumption 1.2.1, we can define Y; = Y;9 = Y;;. Imbens & Rubin



(1997) showed that for every Borel subset B of R,

P(B,l)—Q(B,l) :P(Yl € B,D; >D0),

Q(B,0)—P(B,0)=P(Yy € B,D; > Dy). (1.1)

To see why (1.1) is true, we can write

P(B,1)—Q(B,1)=P(Y;; €B,D; =1|Z=1)—P(Y;9 € B,Dy = 1|]Z = 0)

ZP(YI €B,D; = 1)—P(Yl € B,Dg = 1) Z]P(Yl e€B,D; = 1,D0:O),

where the second equality follows from Assumption 1.2.1(i) and 1.2.1(ii) and the third equality
follows from Assumption 1.2.1(ii1). Similar reasoning gives the second equation in (1.1). Since
the probabilities in (1.1) are nonnegative, we obtain the testable implication of Assumption 1.2.1

in Balke & Pearl (1997) and Heckman & Vytlacil (2005): For all B € %,

P(B71)_Q<Bvl) 201

Proposition 1.1. in Kitagawa (2015) shows an optimality of the testable implication (1.2),
namely, that any other feature of the data distribution cannot make a greater contribution to the
screening out of invalid instruments than (1.2) can. To understand (1.2) graphically, suppose
that Y is a continuous variable and that p (y,1), p(y,0), ¢(y,1), g(y,0) are density functions or
derivatives of the functions P ((—e,y], 1), P((—o0,¥],0), Q((—oe,y],1) and Q ((—ee,y],0) with
respect to y. As functions of y, the later are not probability density functions, because the integral
of each of them over the entire real line is not equal to 1. The following graphs show one possible
case where (1.2) holds. The first inequality in (1.2) is shown in Figure 1.1a, where the density

p(y,1) is greater than ¢ (y, 1). The second inequality in (1.2) is shown in Figure 1.1b, where the



p(y.1)

- = quD

-2 -1 0 1 2 =2 -1 0 1 2
@P(B,1)>0(B,1)  (b)Q(B,0)>P(B0)

Figure 1.1. Graphs of the Testable Implication.

density ¢ (y,0) is greater than p(y,0). Additional graphical examples can be found in Kitagawa
(2015).

The LATE framework shown above involves a simple binary treatment and a binary
instrument. In many applications, however, D and Z may be multivalued. See, for example,
Angrist & Imbens (1995), where the treatment variable is the number of years of schooling
completed by a student and can take more than two values.

Suppose, more generally, that D € 95 = {d,,d,,...} and Z € 2% = {z1,22,---,2k }- We
let dipax be the maximum value of D if it exists, and dp;, the minimum value of D if it exists.
Suppose the existence of potential variables Y;, € % for d € &; and z € Zk and the existence of
D, for z € Z. The 1V validity for the multivalued treatment D and the multivalued instrument

Z is formalized by the following assumption.

Assumption 1.2.2 1V Validity for Multivalued D and Z:
(i) Instrument Exclusion: With probability 1, Y;,, =Yg, = --- = Y4 forall d € 9.
(ii) Random Assignment: The variable Z is jointly independent of (YD), where

Y = (Ydlzlv"'aYdlzKaYdZZp"'7Yd2ZK7"')7

D= (D;,Dy,,...,Dy).

» K



(iii) Instrument Monotonicity (No defier): The potential treatment response indicators satisfy

D, ., > D, with probability 1 for all k =1,2,... , K — 1.

Zk+1

Assumption 1.2.2 is similar to that in Angrist & Imbens (1995). Since we allow multival-

ued Z, the monotonicity assumption needs to hold for each pair D,, and D Define conditional

k1"

probabilities

P, (B,C)=P(Y€B,DeC|Z=1z)

for all Borel sets B,C € %y and all z; € Zk. The next lemma establishes a testable implication
of IV validity in the multivalued treatment LATE when the treatment variable has a maximum

value and/or a minimum value.

Lemma 1.2.1 A testable implication of Assumption 1.2.2 is

P (37 {dmax}) <P (37 {dmax}) <. <P (Ba {dmax}) , if dmax exists,

Py (Ba {dmin}) > P (37 {dmin}) > > Px (B: {dmin})a if dmin exists, (1.3)

for all B € AR, and

forall C = (—eo,c] with c € R.

Lemma 1.2.1 generalizes the testable implication (1.2) to the case of a multivalued
instrument and the more interesting case of a multivalued treatment. Clearly, when D and Z
are both binary, dmax = 1 and dp,j, = 0 and (1.3) is equivalent to (1.2). The testable implication
(first-order stochastic dominance) discussed by Angrist & Imbens (1995) for Assumption 1.2.2

is equivalent to (1.4). To the best of our knowledge, (1.3) is new in the literature.



1.3 Binary Treatment and Instrument

To highlight the basic idea of our test, this section examines instrument validity in LATE
with a binary treatment D and a binary instrument Z based on the testable implication (1.2). We

will generalize this test to accommodate a multivalued D and a multivalued Z in the next section.

1.3.1 Hypothesis Formulation

Based on the testable implication (1.2), the hypothesis of the test is formulated as follows:

Hy:P(B,1)—Q(B,1)>0and Q(B,0) — P(B,0) > 0 for all B € P,

H,:P(B,1)—Q(B,1)<0orQ(B,0)—P(B,0) <0 for some B C Ap. (1.5)
By Lemma B.7 in Kitagawa (2015), hypothesis (1.5) is equivalent to

Hy:P(B,1)—Q(B,1)>0and Q(B,0)— P(B,0) > 0 for all closed intervals B C R,

H,:P(B,1)—Q(B,1) <0or Q(B,0)—P(B,0) < 0 for some closed interval B C R. (1.6)

Suppose the data set consists of N observations, {(¥;,D;,Z:)}, C % x {0,1}*. We
divide the sample into two subsamples, based on Z = 0, 1 respectively. Let { (¥;!,D}) }™" | be the
subsample for Z =1 and {(YiO,D?) }?:1 the subsample for Z = 0, with N = m 4+ n. We assume

that we have a simple random sample.

Assumption 1.3.1 {(Yi,Di,Zi)}é\; | Is an iid data set.

m

Assumption 1.3.1 implies that {(Yl-l,Dil) }izl and {(YiO,D?) }?:1 can be regarded as

m

being drawn independently and identically from P and Q, respectively, and that { (¥;!,D})}

i=1

is independent of {(YiO,D?) }7: The subsample sizes m,n could be correlated, since m =

I
N 1{Z; =1} and n =YY, 1{Z; = 0}. This would not pose a problem for the performance of

the test. The details can be found in the proofs.

10



Given the subsamples, it follows from Assumption 1.2.1 that P(B,d) and Q (B, d) can be

written by

P(B,d)=E[1{r'eB,D' =d}],

Q(B,d)=E[1{Y’eB,D’ =d}],

for all closed intervals B C R, d = 0, 1. Define the indicator function 14 (x) = 1{x € A} for every

set A € R¥ and every variable x € R¥ with k € N. Then we have

P(B,1)—Q(B,1) =E [lg.(1y (Y',D")] —E [1p, 1y (Y°,D%)],

Q(B,0)—P(B,0) =E [1p, 0y (Y, D°)] —E [1px(0y (Y',D")].
With the above setup, we define a set of functions by
H = {h =(-1)¢. g4y : Bis aclosed interval in R, d € {0, 1}} . (1.7)
Also, we define ¢ : 77 —R by
¢ (h)=E[h(Y',D")] —E[n(¥°,D")] (1.8)
for all 4 € 5. Then hypothesis (1.5) is equivalent to

Hy: sup ¢(h) <0,
he A

Hy : sup ¢(h) > 0. (1.9)
heA’

We introduce the following notations, which will also be used later in the paper. For a set

11



D, denote the space of bounded functions on D by ¢~:

D) ={f:D—=R: ||f||oo<°°}7||f||w=81€1§|f(X)|~

Then ¢~ (D) is a Banach space under ||-||... If D is a compact Hausdorff topological space, let

C (D) denote the set of continuous maps on D:
C(D)={f:D— R: fis continuous} .

Then C (D) C ¢~ (D) and is also a Banach space under ||-||... If D is a metric space with metric

d,let BL; (D) denote the set of all real functions on D) with a Lipschitz norm bounded by 1:

BLi (D) ={f:D =R :|[fll.. <oo[f (x) = f (2)| < d(x,2) forall x,z € D} .

1.3.2 Test Statistic and Asymptotic Distribution

The test statistic used in this section is a modified version of that used in Kitagawa (2015).
Let Ty = mn/N.

Assumption 1.3.2 m/N — A a.s. as N — oo, where A € (0,1).

By Assumption 1.3.2, m and n grow as N — oo in a balanced way. According to our
approach to splitting the sample, Assumption 1.3.2 is equivalent to assuming that P (Z =1) = A.
The almost sure convergence holds naturally for and iid data set. We define a probability measure
R=1/2-P+1/2-Q.

For every measurable function /4, define

P(h)=E[n(Y',D")],0(h)=E[n(Y°,D°)],
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and the sample analogue

By definition,
¢(h)=E[h(Y',D")] —E[n(Y",D")] =P (h)—Q(h)

for every h € 7. Define the sample analogue

3

¢ (h) =Py (h)—Qn(h) ==Y n(¥',D}) —

i i
1

S| =

n
Y n(x’.D}).
i=1

1
m:
i

Then define the asymptotic variance of /Ty (h) by

o? (h) = (1=24)|P(m)| (1 =P (h)]) +A]Q ()| (1 —|Q (h)])

and the sample analogue

6 (h) = (1= 2) [P ()] (1= [P (B)]) + 2| (W)| (1= |Qn ()])

for all h, where 2 = m/N.

Let (=() ={@: 7 — R:|@|.. =sup,cp|® (h)| < oo}, and define a map
LA (H) =R

such that for all ¢ € ¢~ (),

7 (9) Zhseuzfp(h)- (1.10)

Now consider the pointwise ratios [¢ /(& V &)](h) and [¢/(E V 6y)](h) on 7, where

& € (0,1) is a user specified parameter. Clearly, ¢ /(EV 6),¢/(E V 6y) € £ (), and set the

13



test statistic, 7Sy, to

TSN:\/T_NY( ¢ ) (1.11)

&V 6y
Now we introduce a theorem that establishes the asymptotic distribution of the test
statistic under Hy. Define ¥ j» = {h € 7 : ¢ (h) = .7 (¢)} and the map Ay , : (* () = R
such that for all y € (= (),

., (y) = sup y(h). (1.12)

hG\I’f,{/

Theorem 1.3.1 Suppose the underlying probabilities P and Q are fixed as N — . Under

Assumptions 1.3.1 and 1.3.2,

VTN (§ =) ~ V1 -1Gp—VAGy, (1.13)

and under Hy, we obtain the asymptotic distribution of the test statistic:

(7 (gl) - (efa)) = oo (PEES). o

&V 6N &V 6N EVo
with
V1—-AGp—VAG G
ﬂy%g< 556\/_ Q) é&”xy% (&/—Ho)’ (1.15)

where Gp,Gg are a P-Browian bridge and a Q-Browian bridge, respectively, H = AP +
(1—-2)Q, Gy is an H-Browian bridge, “~" denotes weak convergence, and Loy denotes

equivalence in law.

The weak convergence in (1.13) is basically due to the fact that .7 is a VC class, as
established by Lemma A.1.4 in the appendix. It is worth noting that because ¢ /(& V 6y)

is random, it is not straightforward to apply the standard delta methods to obtain the weak
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convergence in (1.14). We extend the standard delta method in Lemma A.1.2 in the appendix
so that it can be applied to such a “random parameter” situation. This might be of independent

interest. The details can be found in Lemma A.1.2.

1.3.3 Bootstrap-Based Inference

With the limiting distribution in (1.14), we construct the critical value by a bootstrap
method and establish the testing theory. As discussed in Theorems 3.1 and 3.2 in Fang & Santos
(2014), since Gy /(€ V ) is centered Gaussian and .Ay ,, is nonlinear, the standard bootstrap
method may fail to approximate the limiting distribution in (1.14) consistently. Thus we employ
the bootstrap method proposed in Fang & Santos (2014).

First, we need to obtain an estimation of Ay . This is because .Ay , is determined by
¢, which is unknown and has to be estimated. By (1.12), Ay, is an operator that involves the
set ¥ 5. Thus if we can find a “valid” estimator P  for ¥ r, then a natural approximation of

Sy, denoted by .y can be constructed by

In(w) = sup w(h),yeC(X).

hE‘P%
If Hy is true, then since 11,01, — 141 xf1} € € for all a € R, we have .7 (¢) = 0. By the
definition of ¥ ,», we can conclude that under H,

¥, ={he A ¢(h)=0}.

This is similar to what is called the contact set in Linton et al. (2010). Then we construct P w
naturally by
Yyp={he:|p(h)| <}, (1.16)

where Ty | 0 but Ty+/ Ty — o. This rate follows from the weak convergence in (1.13). Intuitively,

we do not want to exclude too many & from ¥ - as ¢ converges to ¢. Lemma A.2.1 in the
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appendix shows that ¥ - is a valid estimator for ¥ ,», so we can construct N by plugging in

A

Yop.
Test Procedure

With the estimator .y, we introduce the procedure for the bootstrap-based test.

m

(1) Obtain the bootstrap samples { (¥;'*,D}*) }_ |

and { (v**,D9*)}"_| drawn with replace-

m

ment from the subsample { (Yl1 ,D,-l) }izl

and { (Yl.O,D?) }?:1 respectively.

(2) Calculate the bootstrap version of ¢ by

and the bootstrap version of ¢ by

o) = (1= ) B3 )] (1~ 23 )] +

where By (h) =m~ 'Y h (Y}*,D}*) and O (h) =n~' X1 h (Y2, DY¥).
(3) Calculate the bootstrap version of the test statistic by Ay (v/Tn (9* — ) /(E V 67)).

(4) Repeat (1), (2), and (3) many times and obtain the empirical distribution of
In(VTIn(* — )/ (E V 63)). Given nominal significance level o, calculate the bootstrap

critical value é|_q by

=it {e:e (A (VIO <o oy (02001 ) 2 1-a).

¢V 6y
(5) The decision rule for the test is:

Reject Hy if \/Ty-7(9) > ¢1_q. (1.17)
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The difference between this bootstrap method and the standard bootstrap method is

that we use F(vTN (" — §)/(E V 63)) instead of vIN(S(8*/ (£ V &3)) — S(§/(E V 63))) to

construct critical values.

Theorem 1.3.2 Suppose Assumptions 1.3.1 and 1.3.2 hold. Then under decision rule (2.33):

(i) If Ho is true and the CDF of Ay, (G /(& V ©)) is strictly increasing and continuous at

its | — a quantile ¢y, then limy_, P (reject Hy) = .
(ii) If Hy is false, then limy_,.. P (reject Hy) = 1.

Theorem 11.1 in Davydov et al. (1998) implies that the CDF of Ay , (Gy/(§V o))
is differentiable and has a positive derivative everywhere except at countably many points
in its support, provided that Ay , (G /(& V 0)) # 0. Thus Theorem 1.3.2(i) shows that the
asymptotic size of the test can be promoted to the nominal significance level o over much of the
null. This suggests a good power property of the test. The remark below shows theoretically that

the finite sample power of the proposed test is higher than that in Kitagawa (2015).

Remark 1.3.1 Kitagawa (2015) approximates the distribution of Gy using a different bootstrap
estimator, denoted by \/Ty9* here, rather than \/TN((]s* — (13) It can be shown that Theorem
1.3.2 also holds if we use /Ty " instead of \/Ty(¢* — §). By definition,

5 5
ﬁN(m‘P ) gy(*/T_N‘P ) a.s. (1.18)

¢V 6y ¢V 6y
Since the test statistic used in this paper is equivalent to that in Kitagawa (2015), (1.18) shows
that the proposed test has a larger finite sample power because Kitagawa (2015) uses the
quantity on the right-hand side of (1.18) to construct the bootstrap critical value, while we use

the quantity on the left-hand side.
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1.4 Multivalued Treatment and Instrument

In this section, we extend the testing theory from the previous section to the case where
the treatment and/or the instrument is a multivalued discrete variable. The test is constructed
on the testable implication (1.3). Without loss of generality, we assume that both dyx and dpip
exist and that dpax = 1 and dpy;, = 0. By definition, for all B,C € %y,

P(Y eB,DeC,Z=z)
P(Z=z)

P.(B,C)=P(Ye€B,DeC|Z=z) =
Define function spaces

gK:{I]RX]RX{zk} k= 1727... 7K}7
&4 :{<1R><R><{zk}7leRx{zkH}) k=1,2,--- K- 1},
A1 = {(—l)d- 1BX{d}XgK : Bis aclosed interval, d = 0, 1},
ijZ:{lleCx:fK :C=(—o0,c],c € R},

Hx =Hx1 U Hko.

By Lemma B.7 in Kitagawa (2015), we use all closed intervals B C R to construct .7k instead

of all Borel sets.
Let 273 be the set of probability measures on R? and let P € &5 be the probability

measure induced by the joint distribution of (¥, D,Z). For every measurable function %, define

P(h) = / hdP.

Define for every (h,g) € H#xx¥ with g = (g1,82),

_ P(h-g2) P(h-g1)
Ox (hg) = P(g)  P(g1)
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and the sample analogue

b (h,g) = v i (h-g2) (Yi, Dy, Z;) B LYN (n-g1) (Yi;Di,Zi)'
v L 82 (Y DinZi) vIN g1 (Y, D;, Z)

For example, for every closed interval B, d € {0,1}, and k = 1,2,...,K — 1, and for h =

(—1)" g iayx 2 and g = (81,82) = (IrxRx{5}> IRxRx{z0,1})

« POYEBD=dZ=25.) 4 PYEBD=dZ=7)

¢k (h,g) = (—1) P(Z=2z1) (=1) P(Z=z%)

= (=1)*Pey1 (B.d) = (~1)* - P (B.d).

Obviously, if D, Z are binary and we let g1 = lgy {0} and g2 = Irxgrx {1}, then

N N
Y lrrxqy YD Zi) =m, Y Igarxqoy (Y, Di,Zi) = n.

i=1 i=1

In that case, m and n are subsample sizes defined in Section 1.3.

Define a map Y : £~ (Hxx¥) — R by
Sx(y)= sup  y(hg),
(h.g)eHk x4

for every y € (7 (x x%). Then the testable implication (1.3) is equivalent to

Hy : y]{((b[{) <0,

H y]{(d)[() > 0.

Define a metric on % x¥ such that for all (h,g), (I, g') € #xx¥9,

pr((h,g),(H.g)) = Hh_h/”LZ(P) +|lg1 _g/1||L2(P) + ng_g/Z“B(P)‘
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Lemma 1.4.1 Under Assumption 1.3.1, \/N(é,( — ¢x) ~ Gg for some Gaussian process G,
and for all (h,g) € H#xx¥Y,

_P(h-g)l [ [P(h-g2)|\  [P(h-g)| [, [P(h-g1)|
Var(@x (o) = TS (1 - B ) S (1) o

Lemma 1.4.1 provides the asymptotic distribution of N (431( — @) and its asymptotic
variance. This asymptotic variance will be used later, when we construct the test statistic later.

By (1.19), for every (h,g) € #xx¥ and g = (g1,82), let

2 _|P(h-g)| (, [P(h-g) |P(h-g)| (, |P(h-g1)|
%k (1:8) = "pr (g (1 P(2) )* P2 (1) (1 P(s1) )

Similarly, define the sample analogue of 62 (h,g) by

52, (h,g) = M (1_ |PN(h-gz)|) n Py (h-g1)| (1_ |PN(h-g1)|)7

KN Py (32) Py (g2) Py (31) Py (g1)

where Py is the empirical probability measure of P such that for every measurable function f,

=

1

PN(f):N f(Yi7Diazi)‘
i=1

For multivalued D and Z, set the test statistic, MT Sy, to

MTSy = V/'N.% ( Ok ) . (1.20)

&V 6kn

Define ¥ ;4 <o = {(h,8) € #k x4 : g (h,g) = Sk (¢k)}. It is not hard to see that
Y s <@ # @. Also, define LT (Hk x9) — R such that for all y € £* (g x9),

y‘yt;ﬁ(xg (ll/) - sup V/(h7g) :

(hvg)elyjkag
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Theorem 1.4.1 Suppose Assumption 1.3.1 holds. Then under H,

\/N{y]( (5 \/qSICffKN) 7k (5 V(pgKN) } St (%) '

Theorem 1.4.1 shows the asymptotic distribution of the test statistic for multivalued

treatments and instruments. By Lemma 1.4.1 and Lemma A.1.12 in the appendix, we establish
the weak convergence (¢x — ¢x)/(E V 6xn) ~ Gk /(€ V 0k). Then similarly to Theorem 1.3.1,
the extended delta method in Lemma A.1.2 in the appendix is applied to obtain the limiting

distribution in Theorem 1.4.1.

1.4.1 Bootstrap-Based Inference

Similarly to the binary treatment and binary instrument case, we need to obtain an
estimation of the map Ay A9 Equivalently we need to find a “valid” estimator ¥ i x for

W . «%. Then a natural approximation of .y i which we denote by kN, can be constructed

9’

by
Fxn (W)= sup y(h),yEC(H).

hG‘i‘Jfo%
If Hy is true, then since 1141 foyx 24> —L{a) x{1}x 2 € Hk for all a € R, we have k (¢x) = 0.

By the definition of ¥ ««, we can conclude that under Hy,
Yosxy =1{(h,g) € Hx x4 : g (h,g) = 0}.
Then we construct ¥, naturally by
Wosiexy = {(h.g) € Hk x G : |9k (h,g) | < T} (1.21)

where Ty | 0 but Tvv/N — o.

Lemma A.3.1 in the appendix is a result similar to Lemma A.2.1 and shows that ‘i’%kxg
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is a valid estimator for ¥ ;4 ««, so we can construct SN by plugging in ¥ A xG
Test Procedure

Now we introduce the procedure for the test in the case of multivalued D and multivalued

Z.

(1) Obtain the bootstrap samples {(Yi*,Dl’-‘,Zj‘)}f.i , drawn with replacement from the sample

{(YivDivzi)}f'v:l'

(2) Calculate the bootstrap version of ¢g by

e (h, gy — T (h-82) _ Fyj(h-g1)
&) ="p o) Biler)

for all h € 7% and g € ¢, and calculate the bootstrap version of ¢ by

B3 (- 52)] (1_ \ﬁ;(h-gz>|> MLAGED] (1_ |ﬁ;<h-g1>\>

B2 (20) B} (g2) B2 (g1) P (g1)
where P (v) = N~'YY v(YF, D}, ZY).

(3) Calculate the bootstrap version of the test statistic by Zxn (vV/N(d;: — @x)/(E V 6in)).-

(4) Repeat (1), (2), and (3) many times and obtain the empirical distribution of
Fxn(VN(9; — dk)/(EV 6%y)). Given the nominal significance level o, calculate the

bootstrap critical value ¢|_q by

el g = inf{c P (y?KN (M) < c[{(Y,-,Di,Zi)}fv) >1- a}.

&V by
(5) The decision rule for the test is:

Reject Hy if VN.k () > &1 _q. (1.22)
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Theorem 1.4.2 Suppose Assumption 1.3.1 holds. Then under decision rule (1.22):

(i) If Hy is true and the CDF of fmp%kxg (Gk /(& V ok)) is strictly increasing and continuous

at its 1 — & quantile ¢, then limy_,.. P (reject Hy) = o.
(ii) If Hy is false, then limy_,. P (reject Hy) = 1.

The proof of Theorem 1.4.2 is similar to that of Theorem 1.3.2, so we won’t repeat
it. Theorem 1.4.2 establishes the testing theory for IV validity in the LATE framework with a

multivalued treatment and a multivalued instrument.

1.4.2 Continuous Instrument

In this section, we briefly discuss the case where Z is continuous. For simplicity, suppose
D =0,1and Z € & C R. As mentioned in Cornelissen et al. (2016), when Z is continuous
the monotonicity assumption needs to hold between all pairs of values z,7 € Z so that the
IV LATE estimators can capture the average treatment effect for compliers with a change in
the instrument from z to 7. However, it is not quite possible to compute all pairwise LATEs
with a continuous instrument, because the number of observations in a sample for every pair
(z,7') is likely to be small. For the same reason, it is not straightforward to do the test for the
continuous instrument case based on the framework we introduced earlier. A practical way to
exploit a continuous instrument is to partition its support into discrete groups, since we would be
interested in the average treatment effect for compliers with a change of the instrument from one
group to another, provided that there is additional information about the treatment variable D in

each group. Suppose we are interested in a partition
Y =CiuCGyU---UCk,

where C1,C>,...,Ck are disjoint subsets of R. Suppose there exist potential variables Y; (z) € #

ford=0,landz € %, and D(z) forz € Z.
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Assumption 1.4.1 [V Validity for continuous Z:
(i) Instrument Exclusion: With probability 1, Y;(z) =Y (Z) ford =0,1 and all 7,7 € Z.

(ii) Random Assignment: The variable Z is jointly independent of (Y1 (z),Yy (z),D (z)) with
e Z.

(iii) Instrument Monotonicity (No defier): The potential treatment response indicators satisfy

D (Z') > D(z) with probability 1, where 7 and z are prespecified.
Assumption 1.4.2 D(z) = D(Z) for all z,7 € Cy and all k.

Assumption 1.4.2 requires D to be grouped by the partition of 2. If Assumptions 1.4.1
and 1.4.2 hold, we can construct potential variables Dy for Z € Cy, that is, Dy = D (z) 1{z € C¢}.
Then another IV validity condition for continuous instrument Z is formalized by the following

assumption.

Assumption 1.4.3 1V Validity for Continuous Z with D grouped by the partition of Z:
(i) Instrument Exclusion: With probability 1, Y; (z) =Y, (Z), ford =0,1 and all 7,7 € Z.

(ii) Random Assignment: The variable Z is jointly independent of

(Y1(z), Yo (z),D1,D2,- -+, Dk).

(iii) Instrument Monotonicity (No defier): The potential treatment response indicators satisfy

Dy > Dy with probability 1 for all k € {1,2,...,K—1}.

Define probability measures

P (B,d)=P(Y €B,D=d|Z€C),
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for every Borel set B € A and d = 0, 1. The testable implication for Assumption 1.4.3 can be

constructed as

Pl(Bal)SPZ(B71)§SPK(Bal)a

Py (B,0) > P,(B,0) > --- > Px (B,0). (1.23)
By definition,
P (Bod) = P(Y € II;,(? Zg,;)z € Ck)'
Define
G ={(1pxiayxcy Ipxiayxce,,) k=1,2,... ., K—1}
and

Ay = {(—l)d gy {ayxr : B is a closed interval, d = 0, 1}.

Let P be the probability measure on R? corresponding to the joint distribution of (Y, D, Z). For

any h, define
P(h) = / hdP.

For every closed interval B, d € {0,1} and k € {1,2,--- ,K — 1}, and for any (h,g) € #xx¥

- d
with 2 = (—1)" - 1, 14y xr and g = (81,82) = (IRx{0,11xCes LRx{0,1}xCpy ) -

_P(h-g) P(h-g1)
P (ho8) = P(g)  P(g1)
(L1t PO EBD=dZEC)

P(Z € Cy1)

d‘P(YEB,D:d,ZECk)
P(Z € Cy)

(=1)

— (=1)* Pt (B.d) — (~1)" - P (B.d).
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Then define a map .k : £~ (#x x¥) — R by

k(@)= sup ¢ (hyg),
(h,g)eHx <Y

for all ¢ € (A% x¥Y). Then the testable implication (1.23) is equivalent to

Hy: Sk (¢x) <0,

H, ZyK((])K) > 0.

The testing process and results are then similar to those for the case of multivalued D and

multivalued Z.

1.5 Conditional on Discrete Covariates

For simplicity, we consider the case where D = 0,1 and assume that X is a one-
dimensional variable. A testable implication for the conditional version of the inequalities

in (1.2) is given by

P(YeBD=1|Z=z,X)<P(Y €BD=1|Z=z.1,X) as.

P(Y € B,D=0|Z=2,X)>P(Y € B,D=0|Z =z,,X) as. (1.24)

Suppose X is discrete and let 27 be the set of possible values of X with 2} =

{x1,x2,...,x¢}. Then for every Borel set B and d =0, 1,

P(Y €B,D=d,7Z =z,X =x)

PYeBD=dZ=mX=x)=——p7 "~

Define

I
—_
N

gKL:{lRX{O,l}X{zk}X{xl} k=1,2,....K,l , ,...,L}
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and

G = { (Irx (0.1} x{ax} x> IRX {0 x {is i) xfon}) (k= 1,2, , K= 1,1=1,2,... L}
Then define
kL = {(—l)d 1px{dyx 2 x 2; : Bis aclosed interval, d =0, 1}.

Let &, be the set of probability measures on R*. Let P € &2, be the probability measure

corresponding to the joint distribution of (¥, D,Z,X). For every measurable 5, define

PUO:i/hdR

For every interval B, d € {0,1},k=1,2,...,K—1,and [ =1,2,...,L, and for (h,g) € H#x1 x4

with 7o = (—=1)? Ippay 221 and & = (81,82) = (Lrsc (0.1} {ee) () > LRx (0.1} % 2as} L} )
define
P(h-g2) P(h-g1)

L 8) =" Pla))

=(-1)"P(Y €B,D=d|Z=2:1,X =x))

—(-D)"P(YeB,D=d|Z=7.X=x).

The define a map Yk : £ (H#x1 X9 ) — R by

JkL(0)= sup  ¢(hg)
(h.g)eHy <Y
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for all ¢ € ¢ (A% x9). Then the testable implication (1.24) is equivalent to

Hy : Sk (9xr) <0,

Hi : k1L ((P[(L) > 0.

The testing process and results are then similar to those for the case of multivalued D and

multivalued Z.

1.6 Tuning Parameter Selection

For simplicity, we discuss the approach for choosing the tuning parameter under the
binary treatment and binary instrument framework in Section 1.3. It is straightforward to extend
this approach to the case of a multivalued treatment and a multivalued instrument. As we see in
Lemma A.2.1 in the appendix, we need to let Ty to decay to O at a certain rate in order to obtain
a consistent estimator fN. However, it is not obvious how to choose the value of 7y for a given

sample size. Notice that under Hy, if ¢ = 0 everywhere, then 77 = W 4 and therefore

Gy \ Gy

As we stated earlier, we can construct the bootstrap critical value by two methods. The first
one is the method proposed in the present paper using .y (v/Iy$* /(€ V 67;)), and the second
one is the method proposed in Kitagawa (2015) using .7 (v/Ty 9%/ (€ V 63,)); the relationship
between them is given in (1.18). When (1.25) holds, the bootstrap critical values constructed
with the two method should be close to each other, since they converge to the 1 — o quantile of
the same distribution in (1.25). Thus given that ¢ = 0 everywhere, we can choose Ty so that the

two critical values are sufficiently close.

(1) Predetermine a set of candidate values of 7y, denoted by C;.
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(2) Given a data set { (Yl1 ,Dil) };n:l from P, draw a sample of size m with replacement from

m
i=1’

{(v},D})}"" . denoted by { (Y2!, D)}, and draw a sample of size n with replacement

m

from {(¥;!,D})}"" . denoted by { (Y20, DF0)}"

{(r7.D7)

Pretend that { (Y2, D?1)}" and

1 i=1

are the samples from the population distribution P and Q, respectively.

(3) Compute ¢;_q with the data set { (YiBl,Dfl) }:n:l , { (YiBO,D?O) }:l:l by using each value
from the candidate set C;. Also, compute the bootstrap critical value from Kitagawa (2015)

with the same data set.

(4) Choose the value of 7y such that the two bootstrap critical values are sufficiently close.

In Step (2), by generating the bootstrap samples { (YiB ! ,DlB 1) };":1 and { (YiBO,D?O) }?:1

m
i=1’

by resampling from { (¥;!,D})}._ , we approximate the setting where ¢ = 0 everywhere.

1.7 Simulation Evidence

The Monte Carlo experiments conducted in this section follow the construction in
Kitagawa (2015), so we can compare the results and show the improvement in the power of the
test when the test is applied in the LATE framework with a binary treatment. We simulated the
limiting rejection rates from the test proposed in the present paper and that proposed in Kitagawa
(2015), using the same randomly generated data.

There were a total of 6 data-generating processes for Hy and H;. Each simulation
consisted of 1000 Monte Carlo iterations and 1000 bootstrap iterations. The user-specified
trimming parameter £ was set to 0.07, as suggested by Kitagawa (2015). 5 sets of sample sizes
were considered: (m,n) = (100,100), (100,500), (500,500), (100,1000), and (1000, 1000).
The set of candidate values of 7y was {0.00,1.02,...,0.10} for each of the sample sizes, and
we chose Ty by the approach proposed earlier. When calculating the supremum value in test
statistics and the bootstrap critical values, we followed the numerical computation approach

used in Kitagawa (2015). Specifically, we considered all the closed intervals with the values of
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Y observed in the data as endpoints. To expedite the simulation, we employed the warp-speed
method in Giacomini et al. (2013). Also, when we calculated the bootstrap version of ¢, we
followed the method used in Kitagawa (2015) because that reduced the amount of computation

and made it easy for us to compare the results.

1.7.1 Data-Generating Processes
The data-generating processes under Hy and H; in the binary D and binary Z framework:
(1) Hp is true:

DGP I: Forz € {0,1},P(D*=1)=0.5and Y*=D*-N(1,1)+ (1 —D%)-N(0, 1), where

the superscripts denote the subsamples as before.
DGP 2: P(D'=1) =0.5and P(D°=1) = 0.48. For z € {0,1}, Y* =D*-N(1,1)+
(1—-D%)-N(0,1).
(2) H, is true:
LetP (D' =1)=0.55,and P (D" = 1) =0.45,and Y' =D'-N (0,1)+ (1 —D")-N (0,1).
DGP 1: Y9 =D-N(-0.7,1)+ (1-D°) -N (0, 1).
DGP 2: Y' =D°-N (0,1.675%) + (1 —D%) - N (0,1).
DGP 3: Y? =D°-N (0,0.515%) + (1 —D%) - N (0,1).

DGP 4: Y° =D W+ (1-D°) -N(0,1), where W = ¥3_, 1{K = k}N (u,0.125%),
(P(K=1),P(K=2),P(K=3),P(K=4),P(K=5))=(0.15,0.2,0.3,0.2,0.15), and

(“17“27“37“47.“5) = (_17 —0.5,0,0.5, 1)

Figure 1.2 shows how DGPs 14 violate H.

1.7.2 Simulation Results

Tables 1.1 and 1.2 show the simulated rejection rates in the two cases under Hy from the

test proposed in the present paper and that proposed by Kitagawa (2015). The rejection rates are
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slightly upwardly biased but close to the nominal significance levels. With the chosen 7y’s, the
limiting rejection rates under the null or the empirical significance levels of the proposed test are

slightly higher than those in Kitagawa (2015).

Table 1.1. Rejection Rates under Hy.

DGPs: DGP1 DGP2

o 001 005 0.10 | 001 0.05 0.10

(m,n): (100,100) 0.017 0.069 0.134 | 0.009 0.055 0.108

100,500) 0.023 0.062 0.114 | 0.011 0.061 0.122

(
(
(500,500) 0.014 0.076 0.132 | 0.013 0.040 0.091
(100,1000) | 0.017 0.049 0.127 | 0.014 0.032 0.095
(

1000,1000) | 0.016 0.062 0.114 | 0.010 0.038 0.080

Table 1.2. Rejection Rates under Hy by Kitagawa (2015).

DGPs: DGP1 DGP2

a: 0.01 005 0.10 | 0.01 0.05 0.10

100, 100) 0.017 0.065 0.111 | 0.009 0.048 0.089

(m,n):

100,500) 0.023 0.062 0.097 | 0.011 0.047 0.074

(
(
(500,500) 0.014 0.071 0.129 | 0.013 0.036 0.090
(100,1000) | 0.017 0.043 0.127 | 0.014 0.032 0.095
(

1000, 1000) | 0.014 0.062 0.114 | 0.007 0.034 0.080

Tables 1.3 and 1.4 show the simulated rejection rates in the two cases under H;. We find
that most of the rejection rates are larger than those obtained by the test of Kitagawa (2015),

which shows an improvement in the test power.
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Table 1.3. Rejection Rates under H;.

DGPs: DGP1 DGP2 DGP3 DGP4

o 0.01 0.05 0.0 | 001 005 0.10 | 0.0 005 0.10 | 0.01 005 0.10
(m,n):  (100,100) | 0.053 0.193 0.344 | 0.013 0.045 0.209 | 0.069 0.188 0.404 | 0.017 0.095 0.181

(100,500) | 0.130 0.354 0.449 | 0.079 0.283 0.428 | 0.103 0.270 0.322 | 0.042 0.183 0.226

(500,500) 0.708 0.847 0919 | 0.740 0.897 0.974 | 0.536 0.706 0.860 | 0.103 0.363 0.562

(100,1000) | 0.157 0.299 0.460 | 0.191 0.270 0.446 | 0.128 0.184 0.373 | 0.054 0.165 0.266

(1000,1000) | 0.986 0.999 0.998 | 0.996 0.999 1.000 | 0.881 0.958 0.961 | 0.381 0.671 0.759

Table 1.4. Rejection Rates under H; by Kitagawa (2015).

DGPs: DGP1 DGP2 DGP3 DGP4

o 001 005 0.0 | 001 005 0.10 | 0.01 005 0.10 | 0.01 005 0.10
(m,n):  (100,100) | 0.049 0.187 0.263 | 0.013 0.044 0.117 | 0.068 0.176 0.315 | 0.017 0.084 0.132

(100,500) | 0.117 0.294 0.363 | 0.070 0.225 0.339 | 0.086 0.239 0.322 | 0.042 0.132 0.226

(500,500) 0.699 0.847 0.879 | 0.732 0.897 0.943 | 0.536 0.695 0.804 | 0.103 0.363 0.458

(100,1000) | 0.124 0.257 0.391 | 0.098 0.174 0.379 | 0.115 0.184 0.322 | 0.035 0.151 0.229

(1000,1000) | 0.986 0.999 0.997 | 0.996 0.999 1.000 | 0.881 0.957 0.961 | 0.381 0.664 0.756

Additional Results for Randomly Chosen Intervals

When the sample size is large, the numerical computation approach used in Kitagawa

(2015) for calculating the supremum value in the test statistic and the bootstrap critical value

is time-consuming. Here we employ another approach. We randomly choose 40,000 closed

intervals with endpoints between the maximum and minimum values of Y obtained in the data.

Then calculate the supremum value over all these 40,000 closed intervals.

The data-generating processes were the same as earlier. Each simulation consisted

of 1000 Monte Carlo iterations and 1000 bootstrap iterations. The user-specified trimming

parameter £ was set to 0.07, 0.30 and 1.00. The sample size was (m,n) = (3000,8000). The set

of candidate values of Ty was {0.00,1.02,...,0.10}.

Tables 1.5 and 1.6 show that under Hy all the rejection rates are close to or below the

nominal significance levels and under H; all the rejection rates are close to 1.
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Table 1.5. Rejection Rates under Hy with Randomly Chosen Intervals.

Measures: DGP 1 DGP 2

o 001 005 0.10 | 001 0.05 0.10

&: 0.07 |0.010 0.047 0.097 | 0.007 0.013 0.039
0.30 | 0.010 0.058 0.089 | 0.000 0.011 0.007
1.00 | 0.006 0.058 0.089 | 0.000 0.000 0.009

Table 1.6. Rejection Rates under H; with Randomly Chosen Intervals.

DGPs: DGP1 DGP2 DGP3 DGP4

o 001 005 0.10 | 001 005 0.10 | 001 0.05 0.10 | 0.01 0.05 0.10

(£): 0.07 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.999 1.000 1.000
0.30 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.999 0.998 1.000
1.00 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.969 0.988 0.998

1.8 Empirical Applications

We illustrate the performance of the proposed test in practice by examining the instrument
of the Vietnam-era draft lottery used in Angrist & Krueger (1992) and Angrist & Krueger (1995).
Details of the Vietnam era draft lottery can be found in Angrist (1990). We follow Abadie (2002)
and define a binary draft eligibility instrument (Z) by a dummy variable that indicates whether
one’s lottery number is less than or equal to 100. The data set we used is a subsample of the data
used in Angrist & Krueger (1992) and Angrist & Krueger (1995), which was taken from the
March Current Population Surveys in 1979 and 1981-1985. There are a total of 30,967 men in
the sample. After eliminating the people who had missing values or did not work during the year,
the sample size was 26,119. Finally, we kept only the people who were born in 1950 through
1953. The final sample size was 11,291. Similarly to Kitagawa (2015), two outcome measures
(Y) were used in the test, annual labor earnings and weekly wages, which were measured in

terms of 1978 dollars using the consumer price index (CPI). Weekly earnings were imputed by
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the annual labor earnings divided by the number of weeks worked. The treatment variable D
indicates whether a man had Vietnam veteran status.

By using the data above, the number of people with Z = 1 was m = 3125, and the number
of people with Z = 0 was n = 8166. P(D = 1|Z = 1) = 0.3094 and (D = 1|Z = 0) = 0.1876.
In Table 1.7, we show the empirical p-values obtained from the test for each & = 0.07, 0.30, 1.00
and oo = 0.00, 1.05,0.10. For each pair (&, &), we chose the value of the tuning parameter Ty.
When we calculated the test statistic and the bootstrap test statistic, we didn’t apply the numerical
method mentioned earlier because the sample size was large and as a result the calculation would
have been slow. Instead, we randomly chose 40,000 closed intervals with endpoints between
the maximum and minimum values of Y observed in the data. As shown in the table, all the

empirical p-values are close to 1, so we failed to reject the validity of the instrument.

Table 1.7. p-Values of Validity Test for Draft Lottery.

Measures: Annual Earnings Weekly Wages

o 001 005 0.10 | 001 0.05 0.10

&: 0.07 |1.000 0.999 0.989 | 0.973 1.000 0.996
0.30 | 1.000 0.995 0.999 | 0.996 1.000 1.000
1.00 | 1.000 1.000 1.000 | 0.996 1.000 0.998

1.9 Conclusion

In this paper, we have provided a testable implication for instrument validity in the LATE
framework with multivalued treatments. Based on this testable implication, we have constructed
a nonparametric test of instrument validity for the multivalued treatment LATE. We extended the
delta method and established the asymptotic distribution of the test statistic. We then constructed
the critical value for this asymptotic distribution using a modified bootstrap method and showed
that the test is asymptotically consistent. The size of the test can be promoted to the nominal
significance level over much of the null, indicating a good power property. We also showed that

with a minor modification the proposed test can easily be applied when there are conditioning
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covariates with finitely many possible values.

P

--- gD

-2 -1
(c) DGP 3 (d) DGP 4

Figure 1.2. Graphs of p(y,1) and ¢ (y, 1) under H;.

Chapter 1, in part is currently being prepared for submission for publication of the
material. Sun, Zhenting. The dissertation author was the primary investigator and author of this

material.
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Chapter 2

Improved Nonparametric Bootstrap Tests
of Lorenz Dominance

Abstract

One income or wealth distribution is said to Lorenz dominate another when the Lorenz
curve for the former distribution is nowhere below that of the latter, indicating a (weakly) more
equitable allocation of resources. Existing tests of the null of Lorenz dominance based on pairs
of samples of income or wealth achieve the nominal rejection rate asymptotically when the
two Lorenz curves are equal, but are conservative at other points in the null. We propose new
nonparametric bootstrap tests of Lorenz dominance based on preliminary estimation of a contact
set. Our tests achieve the nominal rejection rate asymptotically on the boundary of the null;
that is, when Lorenz dominance is satisfied, and the Lorenz curves coincide on some interval.
Numerical simulations indicate that our tests enjoy substantially improved power compared to

existing procedures at relevant sample sizes.

2.1 Introduction

Lorenz curves are widely used for the analysis of economic inequality. A Lorenz
curve is a function of the distribution of wealth (or income) across a population, which graphs

the cumulative proportion of total wealth by cumulative proportion of the population ordered
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from poorest to richest. In practice, people are interested in comparing the Lorenz curves
between different populations. If one Lorenz curve is below another one, the wealth in the
former population is more unequally distributed toward the rich. We use the concept of Lorenz
dominance to formalize the comparison of two Lorenz curves: distribution A Lorenz dominates
distribution B if the Lorenz curve for A is nowhere below that for B. So if distribution A Lorenz
dominates distribution B, then the allocation of resources is more equitable in distribution A than
in distribution B.

In Figure 2.1, the vertical axis measures the cumulative share of wealth owned and the
horizontal axis measures the cumulative share of people ordered from lowest to highest income.
Distribution A Lorenz dominates distribution B, hence distribution A exhibits more economic
equality than distribution B. The line of equality (45 degree line) is the Lorenz curve representing

perfect equality, i.e. wealth is uniformly distributed.

1 T T T T

— Line of equality :
--- Lorenz curve A
0.8} ]
------ Lorenz curve B S
0.6 il
0.4} |
0.2 | “,’ "v“-.‘ -

00 0.1 02 03 04 05 06 0.7 08 09 1

Figure 2.1. Lorenz Curves and Lorenz Dominance.

Because of the economic importance of Lorenz dominance, methods of statistically
testing for Lorenz dominance are of interest. Bishop et al. (1991a) and Bishop et al. (1991b)
employed pair-wise multiple comparisons of sample Lorenz ordinates to test for differences
between Lorenz curves and then determine Lorenz dominance. Dardanoni & Forcina (1999) and
Davidson & Duclos (2000) proposed tests of Lorenz dominance at a chosen set of points. Barrett

et al. (2014) pointed out that these tests are potentially inconsistent because they limit attention

37



to a small fixed set of grid points. They proposed a new class of consistent nonparametric tests
for testing the null hypothesis of Lorenz dominance, which are analogous to tests of stochastic
dominance proposed by McFadden (1989) and elaborated and extended by Barrett & Donald
(2003). The tests are constructed based on a general functional .% applied to ¢, a function on
[0, 1] equal to the difference between two empirical Lorenz curves. Two specific functionals used
to construct test statistics are ., which computes the supremum of ¢, and .#, which computes
the integral of ¢ over the region where ¢ is positive. The .#-based test statistic was first proposed
by Bhattacharya (2007).

A pair of distributions satisfying the null of Lorenz dominance is said to be on the
boundary of the null whenever the corresponding Lorenz curves coincide over some interval. To
obtain critical values, Barrett et al. (2014) employ a bootstrap procedure that leads to a test with
limiting rejection rate equal to the nominal level when the two Lorenz curves are equal, and below
the nominal level elsewhere in the null. If we are at a point on the boundary of the null where
the Lorenz curves are not equal, then their test has limiting rejection rate below the nominal
level, and thus lacks power against nearby points in the alternative. Our main contribution is an
alternative construction of bootstrap critical values for the test statistics of Barrett ef al. (2014)
that achieves a limiting rejection rate equal to the nominal level over the boundary of the null,
thereby improving power. Numerical simulations indicate that the improvement to power can be
large.

The primary technical obstacle to obtaining a valid bootstrap approximation over the
boundary of the null is that the functional .% typically fails to be Hadamard differentiable
in this region, which is known to imply inconsistency of standard bootstrap approximations
(Diimbgen, 1993). By applying recent results of Fang & Santos (2014) on bootstrap inference
under nondifferentiability, we show that a modified bootstrap procedure based on preliminary
estimation of a contact set can deliver consistent approximation over the boundary of the null.
Our power-improving modification to the tests of Lorenz dominance proposed by Barrett e al.

(2014) can be viewed as analogous to the modifications made by Linton ef al. (2010) and Donald
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& Hsu (2016) to the tests of stochastic dominance proposed by Barrett & Donald (2003), or to
the modification made by Beare & Shi (2018) to the tests of density ratio ordering proposed
by Carolan & Tebbs (2005) and Beare & Moon (2015), or to the modifications made by Seo
(Forthcoming) to the tests of stochastic monotonicity and conditional stochastic dominance
proposed by Delgado & Escanciano (2012, 2013).

Our asymptotic results exploit important recent work by Kaji (2017), who has established
weak convergence of the empirical quantile process and bootstrap empirical quantile process in
the L;-semimetric under mild technical conditions. Such convergence implies weak convergence
of the empirical Lorenz process and bootstrap empirical Lorenz process in the uniform metric
under the same conditions, greatly facilitating our analysis.

In this paper, given a set A, we let £*°(A) denote the Banach space of bounded real
functions on A equipped with the uniform norm || - [|.. When A is a metric space, we let C(A)
denote the subspace of ¢*°(A) consisting of continuous functions. If 7 € C(A), we say that &

vanishes at infinity if for every € > 0 the set {a € A : |h(x)| > €} is compact, and we define
Co(A) ={h € C(A) : h vanishes at infinity}.

We let ~~ denote weak convergence in a metric space in the sense of Hoffman-Jgrgensen.

2.2 Hypothesis Tests of Lorenz Dominance

Suppose that F] and F; are the cumulative distribution functions (CDFs) of income in
two populations. Let IL be the space of Lebesgue measurable functions £ : [0,00) — R with limit

h(e0) = limy . i(x) € R and ||A||;, < e, where

1Ay, = max{{|Allo , [| = h(o)[1}.
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Let Lr C L be the set of distribution functions that are monotone and cadlag with 2(0) = 0 and

h(eo) = 1. We impose the following regularity conditions on F} and F.

Assumption 2.2.1 For j = 1,2, F; € Lr is continuously differentiable with strictly positive

derivative f;. Also, F; has a (24 €)th moment for some € > 0.

Assumption 2.2.1 is a low level condition and guarantees that we can obtain the differen-
tiability of generalized inverse transformations by using the results in Kaji (2017). More details
will be discussed later.

We denote the quantile function by the generalized inverse transformation of a CDF, i.e.

for any CDF F with support [0,), the quantile function is

O(p) =7 (F)(p) =inf{x € [0,0) : F(x) > p}, (2.1)

for all p € [0, 1], where ¥ denotes the generalized inverse map.

Definition 2.2.1 With the existence of nonzero first moment of continuously differentiable distri-

bution Fj for j = 1,2, the Lorenz curve (LC) for the respective population is,

P xfide 0,
Jo~xfj(x)dx ujo

Lj(p) = (2.2)

where Q; is the quantile function of Fj, and [i; is the mean of the distribution.

One implication of Assumption 2.2.1 is that the quantile function can be defined as Q;(p) =
F jfl(p), (0 < p <1),and it is also continuously differentiable within (0,1). Here F jfl is the
standard inverse function of F;, which is well defined because Fj is strictly increasing under

Assumption 2.2.1.

Definition 2.2.2 Given two distributions Fy and F>, we say that F; weakly Lorenz dominates F>

if the Lorenz curve Ly for F| is nowhere below L, for F>, i.e. Li(p) — Ly(p) > 0 for all p € [0, 1].
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Notice that by Definition 2.2.1 the LC is a special type of distribution function with
support [0, 1]. In this sense, Definition 2.2.2 is similar to the first order stochastic dominance
for associated Lorenz curves, while Lorenz dominance has an economic background. If one
Lorenz curve is nowhere below another, the former one implies less inequality in economy
for the population. For example, in Figure 2.1, distribution A weakly Lorenz dominates B by

Definition 2.2.2, which indicates A is more economically equal than B.

2.2.1 Hypothesis Formulation

Under Assumption 2.2.1, Definition 2.2.1 and 2.2.2, Barrett et al. (2014) proposed
consistent nonparametric tests of Lorenz dominance. This paper follows the basic setup of
Barrett et al. (2014).

The hypothesis of interest in this paper is

Hy: Ly(p) < Ly(p) forall p € [0,1],

H, : Ly(p) > L (p) for some p € [0, 1].

The null hypothesis Hy is satisfied when F; weakly Lorenz dominates F», while the alternative
hypothesis H is satisfied when such dominance does not occur.

We define the point-wise difference between the two Lorenz curves by

¢(p) = La(p) — Li(p) for all p € [0,1]. (2.3)

And by Definition 2.2.1, under Assumption 2.2.1, ¢ € C|0, 1].
To test the hypothesis, we consider functionals which transform ¢ into a scalar value.
Suppose there exists a functional .% : C[0, 1] — R. We introduce necessary assumptions on .%

to establish the testing theory.

Assumption 2.2.2 Properties of functional 7 : For any h € C[0,1],
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(i) if h(p) < 0and h(p) =0 for some p € [0,1], then .F (h) = 0;
(ii) if h(p) > O for some p € (0,1), then .F (h) > 0.

Because by Definition 2.2.1 ¢(0) = ¢(1) = 0, under Assumptions 2.2.2(i) and (ii), H
(H,) is equivalent to . (¢) =0 (F(¢) > 0).

Two specific examples of . we will mainly focus on in this paper are

F(0)= swp 9(p), 4
pe(0,1]
and
1
79)= [ om1{o(p) > 0}p. @3

which can be proved to both satisfy Assumption 2.2.2.

The assumptions about sample data are given below.

Assumption 2.2.3 For j = 1,2, {Xij }7; | is an independent and identically distributed (iid)

collection of random variables drawn from F;. And {X}}' | is independent from {X?}2 .

Formally, we treat the first sample size n; as a function of the second sample size nj,

such that ny = ny(ny) — oo as ny — co. We suppose further that the sample sizes ny, n, satisfy:

ni

lim
ny—e N1+ Ny

=21 €(0,1). (2.6)

Basically, (2.6) requires that the sample sizes n; and n, grow at comparable rates which can be
extended in certain cases. We let n = nj +ny. Then ny — oo is equivalent to n — oo under (2.6).
We define T,, = nyny /(ny +ny). With Assumption 3.3.1 for sample data, the empirical notations

are defined as below.

nj
=1

Definition 2.2.3 With sample data {Xl-j Y., for j=1,2, define
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(i) Empirical CDF: Fi(z) =n; 'Y | 1{X{ <z},
(ii) Empirical quantile: Q;(p) = inf{z € [0,00) : F;(z) > p} for some p € [0,1] for z € [0,);

(iii) Empirical LC: L;(p) = ’1 s Q]( )dt for all p € [0,1], where f1; is the sample mean for

sample j.

Given sample data {X J .2y, for j=1,2, we can order {Xij } from smallest to largest by X(jl) <

Xl -+ < X, ). By Definition 2.2.3(), (ii), Q;(p) = X},

empirical Lorenz curve can be calculated exactly by plugging O j into L j- For p < n}l, we have

for p € ((i—1)/nj,i/n;]. Then the

Li(p) = ;Ij_le(jl). Forany p € ((i—1)/nj,i/n;] withi=2,3,--- n;

w L Xy + (p = ThX)
Li(p) = — L Q2.7)

Now we introduce the weak convergence of the empirical Lorenz process /7 (L i—Lj)
for j = 1,2. Similar results can be found in Goldie (1977) and Chernozhukov et al. (2010). We
obtain the asymptotic distribution by first deriving the Hadamard differentiability of Lorenz
curves with respect to the corresponding CDFs. This differentiability will also be helpful when
we apply the bootstrap method later. To this point, we first introduce the concept of Hadamard

differentiability.

Definition 2.2.4 Let D and E be normed spaces, and % : D g C D +— E. A map % is said to be
Hadamard differentiable at ¢ € D & tangentially to a set Dy C D, if there is a continuous linear

map Jq) Dy — Es.z.

ﬁ((]) +tnhn)_y(¢) ﬁ/

= 2.
. 0, (2.8)

lim
n—oo

for all sequences {h,} C D and {t,} € Rs.t. t, — 0, hy, = h € Dy as n — o and ¢ +t,h, € D4

for all n.
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Hadamard differentiability is an important property when we use the delta method to
derive the asymptotic distribution of Lorenz curves. The next lemma together show the Hadamard
differentiability of Lorenz curve defined by 2.2.1 with respect to the corresponding CDFs.

Let 2 : Lp — €70, 1] be such that

Py (F)(t)dr
2(F)(p) = O 29)
Jo V(F)(t)dr
where 7 is the quantile map. Under this map,
Li=Z(F), Lj=2(F)). (2.10)

Lemma 2.2.1 shows that the Lorenz curve is Hadamard differentiable with respect to F' at F;.

Lemma 2.2.1 Under Assumption 2.2.1, Z : Ly — £*[0,1] is Hadamard differentiable at F;

tangentially to Cy|0,00) N 1L with derivative

D —1 1 h(Fjil(t)) _rp h(Fjil(’)) 1 ~—1
_ fO Fj (t)dt fO fj(Fj_l(t))dt fO fj(Fj_](t))dt fO Fj (t)dt

(Jo i (0)dr)? ’

2, (h)(p)

2.11)

for all h € Cy[0,00) NL.

With the Hadamard differentiability of Lorenz curves, we obtain the asymptotic distribu-
tion of |/} (L;—L;) by first applying the weak convergence of Vi (F; —F;) in L in Kaji (2017).

And then we can show the asymptotic distribution of /7, ((}3 — ¢) based on Assumption 3.3.1.

Lemma 2.2.2 Under Assumptions 2.2.1 and 3.3.1,
Vij(Lj—=Lj) ~ Zj, (2.12)
as nj — oo for j = 1,2, where .Z; is a Gaussian process with continuous sample paths. Moreover,
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as n — oo, we have

VT(6—0) =VT(La— L) — VT (L1 — L) ~ VAL —V1-2.4.  (2.13)

We next derive the asymptotic distribution of v/T;,(.Z (¢) —.Z (¢)) to establish the testing
theory. If the map .% is Hadamard differentiable, we can easily obtain the limit distribution of
VT, (F(9) — .Z(¢)) by the Delta method with the weak convergence result in (2.13), and then
approximate that limit distribution using the bootstrap law of . %/, (/T,,(¢* — @)), where .7, q’) is
the Hadamard derivative of . at ¢ and ¢* is a bootstrap version of ¢. However, in applications
Z is not always Hadamard differentiable with respect to @, and as a result the bootstrap method
may not work. For the two specific non-Hadamard differentiable functionals (2.4) and (2.5),
Barrett et al. (2014) suggest instead to bootstrap the limit distribution of /7,,.# ((]3 — ¢) such that

under Hy:

FWT(§—9) =V, T (¢ —¢) > VT,F () as. (2.14)

And Barrett et al. (2014) bootstrap the p-value using

~|=

p(F) =

J
Y {7 (9] —¢) > VT.7(§)}, (2.15)
t=1

where (ﬁj* is the jth bootstrap version of ¢ obtained from bootstrap sample, and J is the total

number of bootstrap samples. With (2.15), the decision rule of the test in Barrett et al. (2014) is
reject Hy if p(F) < «, (2.16)

where « is the nominal significance level. Under this setting, Barrett et al. (2014) prove that
the limit rejection rate is less than or equal to o under Hy and converges to 1 under H;. The

reason why the limit rejection rate could be below « is that under Hy we have .7 (¢) = 0, and so
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VIiZ (6 —¢) > VT (F(§) - F(¢)) as. as is shown in (2.14). And with a finite sample we can
not rule out the strict inequality if the two Lorenz curves are not identical. The estimated p value
is obtained from bootstrapping the distribution of an upper bound of the test statistic and therefore
it is larger than that from bootstrapping the distribution of the test statistic itself. If we can find
an effective way to derive and bootstrap the asymptotic distribution of v/T;,(.Z (¢) —.% (¢)), we
may be able to construct a test with a superior power.

The bootstrap method proposed by Fang & Santos (2014) supports this idea. To proceed
to illustrating how to construct the test, we now introduce the concept of Hadamard directional

differentiability.

Definition 2.2.5 Let D and E be normed spaces, and ¥ :Dg C D — E. A map F is said to
be Hadamard directionally differentiable at ¢ € D & tangentially to a set Dy C D, if there is a
continuous map 354) : Dy — E s.t.

f((p"_tnhn)_ﬁw))
In

=0, (2.17)
E

lim
n—oo

— Fy(h)

for all sequences {h,} C D and {t,} € Ry 5.t. 1, 1 0, hy = h € Dy as n — « and ¢ +t,h, € D4
for all n.

As is mentioned in Fang & Santos (2014), there are two differences between Hadamard
differentiability and Hadamard directional differentiability. One is that in Definition 2.2.5, ¢,
must approach 0 from above. The other one is the map L%;, is not necessarily linear in (2.17).
And it is because of the second difference, we need to find a new way to applying the bootstrap

approach.
Hadamard Directional Derivatives for the Two Specific Functionals

In this part, the notations in Definition 2.2.5 are specified as D =D 5 = ([0, 1], Dy =

C[0, 1] with |||l = [I-|

> and E =R with [|-||g = |-|.
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For .7 (y) = sup (0.1 ¥(p), by Example 3 of Fang & Santos (2014), . is Hadamard

directionally differentiable at ¢ tangentially to C[0, 1], and the directional derivative is

F4(h)=sup h(p), (2.18)
pe¥,11(¢)

where W)y ;)(¢) = argmax |y ;)¢ (p). Then by Theorem 2.1 of Fang & Santos (2014) and
(2.13),

VI(S(8) = (9) ~ L4 (VAL —V1-1.2). (2.19)

For .7 (y) = [y w(p)1{w(p) > 0}dp, by Example 5 of Fang & Santos (2014), .7 is

Hadamard directionally differentiable at ¢. Define

Bo(9) ={p < [0,1]:¢(p) =0}
and

B.(¢)={p<0,1]: ¢(p) > 0}.

The Hadamard directional derivative of .# at ¢ is

VOB

h(p)dp+/ max{h(p),0}dp. (2.20)
B(9) Bo(¢)

By Theorem 2.1 of Fang & Santos (2014) and (2.13),

V(I (9) = 7(9)) ~ Ty (VAL =1 -2.4). 2.21)

Our next assumption, which imposes Hadamard directional differentiability upon the
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general functional ., is automatically satisfied when .# = . or .%% = .#.

Assumption 2.2.4 Functional .7 : ~|0,1] — R is Hadamard directionally differentiable at
¢ € C[0, 1] tangentially to the set C[0, 1], where the Hadamard directional derivative 7 satisfies

(2.17).

2.2.2 Bootstrap

As shown in Fang & Santos (2014), the asymptotic distribution of v/T;,(.Z (¢) —.Z (¢))
can be obtained if .% is Hadamard directionally differentiable, but this distribution could be
nonstandard. We would need to approximate it using a bootstrap procedure of some sort. Let ¢*
denote a “bootstrapped version” of ¢ which is defined as a function mapping the data {Xij }:Z |
for j = 1,2 and random weights {Wij }:’; | that are independent of {Xl.j }:’; , into D z. This general
bootstrap definition covers a large family of resampling schemes such as Bayesian, block, score,
and weighted bootstraps. Further discussion can be found in Remark 3.2 in Fang & Santos
(2014).

Specifically, in this paper we construct ¢* in the following way:

1. Obtain the bootstrap sample {Xl-j *}:1 | for j = 1,2 with replacement independently from

{Xl.j}:.il for j=1,2.
2. Calculate the following bootstrap objects:
(i) Bootstrap CDF: F"(x) = %Z:il 1{X/* < x} forx € [0,);

(ii) Bootstrap quantile: Q;‘ (p) =inf{x: F T (x) > p}for p € 10,1];

(iii) Bootstrap LC: ﬁj (p)= ﬂ;’l 17 QA;‘ (t)dt for p € [0,1], where i is the sample mean

for bootstrap sample j.

3. Let¢* =L — Lt
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Now we want to show the asymptotic distribution of \/Tn((ﬁ* — (]3) Notice that

L= 2(F}). (2.22)

Also, notice that the bootstrap CDF can be written as

=— ZW’ o) (2.23)

l’l]l

Lemma 2.2.3 Under Assumptions 2.2.1 and 2.2.1,

VIi(§" =)~ VAL —/1-2.4, (2.24)

for almost every sequence {Xl-j :1 | with j = 1,2. Also, it holds that

(i) T {0 — @} is asymptotically measurable (jointly in {XJ,W] ’1 with j=1,2),

1

(i) h(v/T,{0* —§}) is a measurable function of {W] 1.7 = 1,2, outer almost surely in

{X’}l 1»J = 1,2, for any continuous and bounded h : £[0,1] — R.

A natural approximation to the limiting distribution of +/T},(.Z (¢) — .%(¢)) is given by the
bootstrap law of ﬁé, (v/T(¢* — §). However, the exact form of ﬁé, is unknown because ¢ is
unknown. We will approximate .7, (;, using an estimator .%, (;, satisfying the following high level

condition taken from Fang & Santos (2014, Ass. 3.3).

Assumption 2.2.5 % : ([0, 1] — R is a function of {X;}}_, satisfying for every compact set

K cClo,1], K® = {a € 02]0,1] : infpeg ||a — bl| < 6}, and every € > 0O, the property:

limlimsup P( sup %, (h) — F4(h)| > €) = 0. (2.25)
0l0 p—eo hekK?d

We show in the following subsection that the constructed 5’% and jé satisfy Assumption 2.2.5

when % = . and .% = .# respectively.
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Consistency of the Estimators for the Hadamard Directional Derivatives of the Two
Specific Functionals

As discussed in Example 2.3 in Fang & Santos (2014), a natural estimator for Yé is
given by

A

Zu(h)=sup h(p) (2.26)
pE¥011(9)

for h € £]0, 1], where ‘i‘[(m (¢) is an estimator for the set W[ 1(¢) in (2.18). To obtain such an

estimator we construct

B, ={pe0,1],[¢(p)| <1}, (2.27)

where 7, is a tuning parameter satisfying 7, — 0 and /7,7, — o as n — . We will see that B,

provides a consistent estimate of

B(¢)={p€[0,1],9(p) =0}. (2.28)

The set B(¢) is called the contact set of L; and Ly, and plays a similar role to the contact set in

Linton et al. (2010).

Lemma 2.2.4 Under Ho, W[y 1(¢) = B(¢) and B, is a Hausdorff consistent estimator of B(¢),

i.e. dy(B(9),B,) = op(1), where dy is the Hausdorf metric.

If we set ‘i’[OJ] = En in (2.26) then Lemma B.3 in Fang & Santos (2014) implies that, when Hy
is satisfied, the resulting estimator 52"’ satisfies Assumption 2.2.5.
When .% = ., we see from Example 2.5 in Fang & Santos (2014) that a natural estimator

for .7 is given by

A

I (h) = [, h(p)dp+ | max(h(p),0)dp (2.29)
+n On

for h € £2([0,1]), where B, and By, are estimators for B, (¢) and Bo(¢). The sets B(¢) and
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By(¢) are the same, but we use the latter notation here to emphasize the connection to B (¢).

We estimate them by setting

Bi,={pe0,1]:9(p) >t} (2.30)

and

Bon={p<c0,1]:(p)| < &}, (2.31)

where again we require the tuning parameter 7, to satisfy 7, — 0 and /7,7, — o0 as n — oo.

Lemma 2.2.5 y(B,ABL(¢)) —, 0 and u(Bo,ABo(¢)) —, 0, where L is the Lebesgue mea-

sure and AAB denotes the symmetric difference between any sets A and B.

From this lemma and Lemma B.3 in Fang & Santos (2014) it follows that jn’ satisfies

Assumption 2.2.5 above.

Remark 2.2.1 When the null hypothesis is satisfied, B, (¢) = @. Consequently, if in place of
(2.30) we define B.,,, = @, Lemma 2.2.5 continues to be valid under the null. In the simulations

reported in Section 2.3 we define B, as in (2.30)
Bootstrap-based Inference

Our bootstrap critical value é;_¢ is the (1 — a)-quantile of the bootstrap law of
F(VT (9"~ 9)).
That is,

bl_q = inf{c P (ﬁq’,(\/ﬂ(é* — ) <el{x/ ", {X?}Zl) >1- a} . (2.32)
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The decision rule of the test is set to be

Reject Hy if VT, 7 (§) > ¢1_q. (2.33)

Then for a general functional .#, we have the following theorem.

Theorem 2.2.1 For functional .7 : {*]0,1] — R, if Assumptions 2.2.1-2.2.5 hold, then under
decision rule (2.33),

(i) if Hy is true and the CDF of 7, q') (VAL — 1= A.2) is continuous and strictly increasing

at its 1 — a quantile c|_q, then

Cl—q —p Cl—q and r}i_r&P(reject Hp) = a;

(ii) if Hy is false, then

lim P(reject Hy) = 1.

n—oo

For the specific functionals .’ and .# we have the following corollary to Theorem 2.2.1

Corollary 2.2.1 If ¥ = . or & = & and we estimate its Hadamard directional derivative

as in (2.26) or (2.29) respectively, and if Assumptions 2.2.1 and 3.3.1 are satisfied, then under
decision rule (2.33),

(i) if Hy is true and the CDF of %, ¢’, (\/Ifz —V 1= AA) is continuous and strictly increasing

at its 1 — a quantile c|_q, then

Cl—o —p Cl_q and r}i_r&P(reject Hy) = «o;
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(ii) if Hy is false, then

}%P(reject Hy) = 1.

Theorem 2.2.1 and Corollary 2.2.1 both require the CDF of .%, (2, (VAL —V1T=AZL) to
be strictly increasing at its 1 — & quantile c¢;_¢. In some cases this condition does not hold. For
the functional ., when Wy 1(¢) = {0, 1}, e.g. Ly is everywhere strictly below L; except at the
endpoints 0 and 1, we have .7 (VAL —\/1—=A%) =0 as. For the functional .7, if By(¢)
and B (¢) are Lebesgue measure 0, we have ﬂ(lﬁ(\/z,% —V1-=1.%4) =0 as. In these cases,
the test statistic and bootstrapped critical value will converge to zero and it is not clear how the
rejection rate will behave asymptotically.

The estimated sets B,,, By, and B..,, depend on the selection of the tuning parameter T,
If 7, > 1 then B,, and By, are equal to [0,1] and B, is empty. In this case our test is the same as
the test of Barrett ef al. (2014). Reducing 1, causes B, and By, to get smaller and B, to get
larger. This can improve power, at the risk of losing control of size if 7, is chosen too small. A
suitable balance needs to be achieved. We provide a simulation-based approach to choosing 1,

in Section 2.3.3.

2.3 Finite Sample Performance
2.3.1 Simulation Design

We ran a number of Monte Carlo simulations to investigate the finite sample size and
power of our test and the test of Barrett ef al. (2014). In each simulation we used sample
sizes nj = 200, j = 1,2, and nominal significance level oc = 0.05. We used a range of tuning
parameter values for our contact set estimator: 0.01, 0.02, 0.04, 0.06, 0.08, 0.1. We used
R = 10000 experimental replications, and employed the method of Giacomini et al. (2013) to

expedite computation.
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Figure 2.2. Lorenz Curves for X ! (solid) and X(ZY) (dashed), for Parameter Values
y € {0,0.25,0.5,0.75,1}.

In each simulation the data {Xl-l 1, were generated as independent copies of the random

variable

Y 4 with probability 5

8  with probability 3.

The data {ij}yi] were generated as independent copies of the random variable

447y  with probability 3

12 -3y  with probability §,

whose law is parametrized by y € [0,4]. The Lorenz curves corresponding to X land X(zy) are

displayed in Figure 2.2 for different values of y. The Lorenz curve for X' is drawn with a
solid line and has a kink at p = 0.5. The Lorenz curves for X(zy), Y =0,0.25,0.5,0.75,1, are
drawn with dashed lines and are kinked at p = 0.75. When y = 0, the Lorenz curve for X(zy) is

everywhere equal to or less than the Lorenz curve for X!, so that the null hypothesis of Lorenz

curve dominance is satisfied. When y > 0 the null hypothesis is violated.
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Figure 2.3. Rejection Rate Comparisons for . = .7

2.3.2 Simulation Results

Figures 2.3 and 2.4 display the simulated rejection rates for the test introduced in this
paper and the test proposed by Barrett et al. (2014), for .# equal to . and .#. The red curves
represent the simulated rejection rates for our test as ¥, which parametrizes the Lorenz curve
in Figure 2.2, increases from zero to one. The blue curves represent the simulated rejection
rates for the test of Barrett et al. (2014). It is apparent that the red curves are in all cases above
the corresponding blue curves, reflecting the power improvement obtained using our modified
bootstrap procedure. This is a consequence of Lemmas B.1.1 and B.1.2 in Appendix B.1, which
assert that .7/ (h) <.7(h) and .#!(h) < .# (h) for all h € £°[0, 1], implying that the critical value
used for our test is equal to or less than the critical value used for the test of Barrett ez al. (2014).

We also see in Figures 2.3 and 2.4 that as 7 increases, the difference between the red and
blue curves becomes smaller. This is because the estimates of the sets W[ 1(¢),B+(¢),Bo(9)

get larger as T increases. So ./ (h) and .#!(h) get closer to .%(h) and .# (h), respectively.
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Figure 2.4. Rejection Rate Comparisons for . = .#.

2.3.3 Tuning Parameter Selection

The power of our test increases as we reduce the tuning parameter 7,, So in practice we
would like to choose 7, to be as small as possible while still controlling size. We suggest the

following procedure.
(1) Choose a collection of candidate values for 7,,.

(ii) Resample with replacement from the data {X;'} | to create a bootstrap sample {X?5}2,.
Use the samples {X;'}7' | and {X?#}??, to test the null hypothesis of Lorenz dominance
using the test of Barrett ef al. (2014) and using our proposed test with each candidate value

for t,. Record the outcome of each of these tests.
(ii1) Repeat the previous steps many times. Compute the rejection rates of the different tests.

(iv) Choose the smallest candidate value for 7, such that the rejection rate computed for our
test is within € of the rejection rate computed for the test of Barrett et al. (2014). Here, €

is a small tolerance parameter; we suggest € = 0.001.
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Figure 2.5. Power Curve Comparisons with Automatically Selected Tuning Parameters.

For extremely large values of 7, our estimated contact set is [0, 1], and so our test is the
same as the test of Barrett ez al. (2014). So by including at least one very large candidate value
of 7,, in step (iv) there should always be at least one rejection rate within € of the rejection rate
for the test of Barrett et al. (2014).

The following intuition motivates our tuning parameter selection procedure. We know
that when the two distributions F| and F, are equal, the test of Barrett et al. (2014) has limiting
rejection rate equal to nominal size. So we would like our tuning parameter to deliver a similar
rejection rate. By generating the bootstrap sample {X?5 }%2, by resampling from {x! }eL,, we
approximate the setting where F; and F; are equal.

We applied our tuning parameter selection procedure to a sample of n; = 200 independent
copies of X! as defined in Section 2.3.1, using a nominal size of 0.05. For both functionals .7
and .#, we picked 7, from the grid 7, = 0.01 +0.005 x k with k =0, - -- , 18. The rejection rate
of the test of Barrett et al. (2014) was computed to be 0.0103 using . and 0.0198 using .#.
The smallest tuning parameter values yielding rejection rates within € = 0.001 of these rates
were T, = 0.03 using .’ and 7, = 0.045 using .#. We then repeated the simulations described in
Sections 2.3.1 and 2.3.2 using these tuning parameter values. Figure 2.5 shows the power curves
comparison for the functionals . and .. We see that our procedure using the automatically
selected tuning parameter values generates a large increase in power relative to the test of Barrett

et al. (2014).
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Chapter 2, in part is currently being prepared for submission for publication of the
material. Sun, Zhenting; Beare, Brendan K. The dissertation author was the primary investigator

and author of this material.
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Chapter 3

High-Dimensional Semiparametric Models
with Endogeneity

Abstract

When a model includes a large pool of regressors, endogeneity can arise incidentally
and cause inconsistency of the estimators from a high-dimensional regression. In this paper, we
propose a sieve focused GMM (SFGMM) estimator for general high-dimensional semiparametric
conditional moment models in the presence of endogeneity. Under certain conditions, the
SFGMM estimator has oracle consistency properties and converges at a desirable rate. We
then establish the asymptotic normality of the plug-in SFGMM estimator for possibly irregular

functionals. Simulation evidence illustrates the performance of the proposed estimator.

3.1 Introduction

In this paper, we consider high-dimensional semiparametric models in the presence of
endogeneity. High dimensions in a variety of nonparametric and semiparametric models have
been discussed in the literature, such as in Xie & Huang (2009), Ni et al. (2009), Chen et al.
(2012), Peng & Huang (2011), and Zhu & Zhu (2009). As discussed in Fan & Liao (2014), as
more and more explanatory variables are collected, the possibility that some of them end up being

correlated with random noise increases. Fan & Liao (2014) propose a focused GMM estimator
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that deals with both high dimensions and endogeneity in a general nonlinear parametric model.
Many interesting models, such as linear models, logit models, and probit models, are examples
of such a model. Under certain conditions, their FGMM estimator can be shown to have oracle
properties. The present paper employs their focused GMM approach and constructs an oracle
estimator for a general high-dimensional semiparametric model with possible endogeneity.

Nonparametric and semiparametric models with endogeneity but with low dimensions
have attracted much attention.! When we introduce high dimensions into the model, the usual
estimation and inference procedures might not work. We follow the basic setup of semiparametric
conditional moment models in the literature and propose a new estimator that deals with high
dimensions and endogeneity simultaneously.

Consider a high-dimensional semiparametric model with conditional moment restrictions:

E [p <Y,X(”)’ " g (5 (Y,X<")’9(§">)>) \WW} —0, G.1)

where the dimension of X ("), say p, may increase as the sample size n goes to infinity. The
dimension of Y, denoted by d,, is fixed. We allow (Y, X (")) to include endogenous variables. W (")
is a vector of instrumental variables; p and 0 are known smooth real-valued functions; and Oén)
and hg are the finite-dimensional and infinite-dimensional parameters of interest, respectively.
The possibly increasing dimension of X (") as n goes to infinity captures the feature of high-
dimensional models. All the superscripts () indicate that the dimensions would be increasing in
n.

Model (3.1) is an extension of the classic semiparametric models in Ai & Chen (2003) and
Chen & Pouzo (2009). It has been proved in Newey & Powell (2003), Ai & Chen (2003), Chen
& Pouzo (2009), and Chen & Pouzo (2012) that the sieve minimum distance (SMD) estimator
has good properties in general nonparametric and semiparametric models with regressors that

have fixed dimensions. In this paper, we propose an estimator based on the sieve method that has

ISee, for example, Newey & Powell (2003), Ai & Chen (2003), Chen & Pouzo (2009), and Chen & Pouzo
(2012).
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desirable oracle properties under additional high-dimensional assumptions. For simplicity, we
will assume that there is only one infinite-dimensional parameter, /g, in the model, and that there
are no finite-dimensional parameters of interest other than 9(5") . It would be straightforward to
include additional such parameters of interest in the model.

We assume that hy € 77, where 77 is a function space for the infinite-dimensional
parameter of interest, and that Gén) € ®("), where @) = @7, © C R, and p is the number of
regressors in X, which is increasing in n. Assume that for each fixed n, ® is compact
under the Euclidean norm || - ||z. Let &7 ") = ®@() x 2, the parameter space for o) = (6") p).
We let {74 }« be a sequence of compact subsets of .7 under a strong norm || - || of 7 such
that 7%, C J%,1,. Let %(n) = O x A4, the sieve space for .o/ ("), For estimation, we assume
that only a few of the parameters 9(5?) are nonzero, that is, we partition Gé") into two parts as
Gé") = (Gég)/, G(SX,)/)’ where Gég) and 9&’(,) correspond to the important regressors Xén) and trivial

") respectively, and Oéz,) = 0. Thus X’ eé") = (Xé")/,Xls,")/)(Gég)/, Gé;',)/)’ , and we

(n)

assume that the dimension of Gog

regressors X
is some s such that s < n and s grows very slowly compared
to n.

Throughout this paper, we denote the Euclidean norm by ||-|| ;. Specifically, for every

positive integer j and every j-dimensional vector x, we use ||x||; = x% —|—x% + - +x§. Also,
for every square matrix A, we let Ain (A) and Amax (A) be the smallest and largest eigenvalues of
A, and we use ||Al|p = ),ILQ)Z( (A’A). For any (possibly random) positive sequences {a,} ., and
{bn},_1, an = Op (b,) means that lim._,.limsup, P (a,/b, > c) = 0, and a, = 0, (b,) means

that for each € > 0, lim, . P (a, /b, > €) = 0.

3.2 Sieve Focused GMM Estimator

To simplify the notation, we omit the superscript (n) on parameters and random variables.

Fan & Liao (2014) propose a focused GMM estimator for nonlinear parametric high-dimensional
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models based on the general moment conditions

E[g(Y,X'B)W] =0, (3.2)

where g is a known smooth function and 8 € R” is the vector of finite-dimensional parameters
of interest. The estimator proposed in Fan & Liao (2014) is a new method for dealing with
high dimensions in general endogenous models. Model (3.1), which takes the nonparametric
component into account, is a semiparametric extension of model (3.2). To illustrate these ideas,

we introduce several specific examples of model (3.1).

Example 3.2.1 (label=PLM) In the partially linear model (PLM),

Y1 =X'0+h(Y)+e, (3.3)

where Y = (Y1,Y2) has a fixed dimension dy, =2, 0 is a p-component column vector of regression
coefficients associated with X, and h is an unknown function of Y>. Ai & Chen (2003) and Chen
& Pouzo (2009) discussed this model under the assumptions of finite dimensions with possible
endogeneity. If p — o as n — oo, (3.3) becomes a high-dimensional semiparametric model. Xie
& Huang (2009) propose a smoothly clipped absolute deviation (SCAD) penalized estimator
and obtain oracle properties for it under certain conditions by assuming that both X and Y, are

exogenous variables. We also allow X and Y, to be endogenous.

Example 3.2.2 Another classic semiparametric model is the single-index model (SIM):

Y =h(X'0)+e, (3.4)

where Y is a scalar variable, X is a p-component column vector of covariates, 0 = (01, ..., Gp)/
is the vector of finite-dimensional parameters of interest, and h is a smooth unknown function.

Model (3.4) is another specific example of Ai & Chen (2003) and Chen & Pouzo (2009) under
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the assumptions of finite dimensions and endogeneity. Peng & Huang (2011) studied this model
under the assumptions of high dimensions and exogeneity. Model (3.1) allows X in model (3.4)

to be endogenous .

Example 3.2.3 As mentioned earlier, model (3.1) can easily be transformed to include more

complicated cases. Consider the partially linear single index (PLSI) model

Y=n(Za)+X'0+e¢, (3.5)

where Z and X are q- and p-dimensional covariate vectors, respectively. Liang et al. (2010)
study the case where g — o and p — o as n — o by assuming that both Z and X are exogenous
variables. Model (3.5) can be incorporated into model (3.1), as we consider an additional

high-dimensional component Z' o, in model (3.1).

Because of the high-dimensional component, model (3.1) is different from the classic
semiparametric models in, for example, Ai & Chen (2003) and Chen & Pouzo (2009). In this
paper, we will extend the basic idea in Fan & Liao (2014) to deal with high dimensions in general
semiparametric models when endogeneity arises. Let (f1, f2,...), (h1,h2,...), and (g1,82,...) be
three different sets of transformations of W, for example, B-splines, Fourier series, polynomials,
or any other series basis. Write F = (f; (W), o (W),...), H= (hy (W),hy (W),...), and G =

(g1(W),g2(W),...)". Then we obtain the moment conditions under (3.1):

E[p(Y,X'60,ho (6 (Y,X'6)))F] =0,

E[p (Y,X'60,ho (6 (Y.X'6)))H] =0,

and

E[p(Y,X'60,ho (6 (Y,X'6))) G| =0.

We write (Y,X,W) = Z. In model (3.1), the original map p = p(u;,u2,u3), where u; is a d,-
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dimensional variable, and u; and u3 are scalar variables. For simplicity, we will also write
p = p (Z,a) for model (3.1), where o = (6,h). Let V = (F'.H',G')".

Let .77 be a linear finite-dimensional sieve space for 4. Each h € 7 takes the form
h = Z/;':1 bj@j, where {qoj};(’:l is a set of basis functions in .7#. As mentioned earlier, Q/IC(") =
0 x 7, 1s a sieve space for o/ ("), Because we don’t know the exact form of ho, we use
Z’J‘.: 1bj@; to approximate it. k will be required to be increasing in n, and to increase at a
particular rate.

The norm used to measure the distance between two parameters in the space <7 (1) ig

defined below. We will obtain the consistency for the parameters of interest under this norm.

Notice that § is assumed to be a scalar function in this model, so for all & € .7# we first define

d"h(t)
17l = maxsup | =", (3.6)
Then we let
letlls = 1101z + 7] (3.7)

for all o € o7 (),

In applications, the smoothness of the functions in .7 determines how well a sieve space
can approximate 7. A typical space of smooth functions is the Holder space AY (Z") of order
y>0. Forall g € AY(Z'), g: 2" — R, the first y derivatives of g are bounded, and the y-th
derivatives are Holder continuous with exponent y— Y € (0,1], where 7 is the largest integer
such that Y<Y. In model (3.1), 0 is a scalar function, so .2~ C R and if we consider the Holder
space with y > 2, then all & € J satisfy the condition that ||k||, < C for some C > 0.

Define

J = diag{1{01 7& 0}(1)11,...,1{9p 7& 0}0)p1, 1{91 7& 0}0)12,...,1{91, 75 O}wpz,a)13,...,wk3},
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2 k .
where {w LW jz}j: 1 and {w 3 }jzl are some constant weights, and define

= (W), ..., (W), i (W),....h,(W),g1(W),...,g(W))".

Let J(0) be a diagonal matrix whose diagonal elements are those w;,’s with j € {1,...,p},
t € {1,2}, and 6; # 0 and all w;3’s. Let V(0) be a column vector with elements all from V
except for those f;’s and h;’s with 6; = 0.

The sieve focused GMM (SFGMM) loss function is constructed to be

p n ? < ’
Z%ZI{GJ#O}X Wil [%ZP(Zi,OC)fj( +wj2 Z (Zi,a)h ')]
j=1 i=1 i=1
1 k 1 n 2
+§ Z wj3 [r_l ZP(Ziaa)ngVi)]
j=1 =
! 1y Zi,a)V; /J_l y Zi,a)V;
—5 _Z;p( ,,OC) i _Z,:Zip( lva) l
:% %fp(z,.,a)vi(e) J(6) [%fp(zi,a)vi(@) , (3-8)
|7 i=1 i =1

where o € &%,c(n). Letb = (by,...,by)".

In the sieve space, the parameters to be estimated are y = (6',5')’. The SFGMM loss
function consists of two parts. The first part (associated with F' and H), that is, the first summation
in (3.8), is for the parametric parameters 6, which is similar to that in Fan & Liao (2014). The
second part (associated with G), that is, the second summation in (3.8), is for the sieve parameters
b, that is, the coefficients of the basis functions which are used to approximate 4.

Then the SFGMM sample criterion function is

Q(Ot):Q(aHiPn(}Oj!), (3.9)
j=1
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where {P,} is a sequence of penalty functions for 8. The SFGMM estimator is a local minimizer
of the criterion function (3.9), which achieves variable selection.

The indicator function in the first part of the loss function (3.8) is included for the
purpose of reducing dimensions and preventing the accumulation of estimation errors, so that
the oracle consistency for the estimator is achievable. For details and examples of this, see Fan
& Liao (2014). Fan & Liao (2014) also explained why two sets of IV’s for 0 are included. This
over-identification setup rules out extreme cases in which most of the coefficients can be set to be
zeros, which minimizes the criterion function, but they are far from the true values. The second
summation in (3.8) is important not only because it shows the sample moment conditions for
the sieve parameters but also because it helps rule out extreme cases in which all the parametric

parameters are equal to 0. If we omit the second part, the criterion function becomes

2 2
) | & | n
Q(a)zig,ll{@ﬁé()} Wi [Z;P(Zba)fj( +wjn Zi p (Zi,a)h )]
14
Z (l6s])- (3.10)

It is obvious that 8 = 0 always minimizes the criterion function (3.10), but O is not likely to be
the true value of 6 in most cases. The second part, for the nonparametric component parameters
in the loss function (3.8), is an adjustment for this extreme case. If we let all the parametric
coefficients to be equal to O in the loss function (3.8), the first part will be 0, but the second part

will become large.

3.3 Oracle Consistency and Convergence Rates

» we first impose several basic conditions.
Assumption 3.3.1 The data {Y;,X;,W;}!"_, isi.id.

Assumption 3.3.2 The true parameter 0y is uniquely identified by model (3.1).
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Assumption 3.3.3 The parameter spaces satisfy the following conditions:

(i) szk(") = O x 74, is compact under I| -

S;

(ii) Let ,;sz(s) — OV x 74, where ®Y) js the space for Os. For each n, there exists I1,0s € %(s)
such that 1,005 = (QOS,lezlbo(pj) and ||IT,00s — os||, = O (Sos) = o (1) for some
Sps > 0.

Define d,, = %min { ‘ Goj‘ :60j #0,j=1, ...,p}. d,, represents the strength of the signals.
Assumption 3.3.4 There is a penalty function P, (t) : [0,e0) — oo such that
(i) P, (0)=0;

(ii) P, (t) is concave and nondecreasing on [0,%), and it has a continuous derivative P, (t)

whent > 0;
(iii) \/sP, (dn) =0 (1/\/n).

By Assumption 3.3.1, this paper focuses on independent data. Assumption 3.3.2 is the
standard identification condition. Assumption 3.3.3(i1) requires the sieve space to be compact
under the norm || - ||s. Assumption 3.3.3(ii) is a condition of the sieve space restricted to the
important finite-dimensional parameters. I, Qg is the projection of 0ggs onto the sieve space,
and the distance between IT,0qs and ogg decreases at the rate &g.

Assumption 3.3.4 defines the penalty function, which is similar to the concave penalty
function in Fan & Li (2001). This condition is standard, and it can be shown that with properly
chosen tuning parameters, the L, penalty (for p < 1), hard-thresholding Antoniadis (1996),
SCAD (Fan & Li, 2001), and MCP (Zhang, 2010) all satisfy these conditions. Fan & Li (2001)
show that a folded concave penalty is needed for an estimator to achieve three important oracle
properties: unbiasedness, sparsity, and continuity. In this paper, we employ the same conditions

for the penalty function.
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To obtain the oracle consistency of the SFGMM estimator, we now introduce the concept
of functional differentiability. Define the first pathwise derivative of a functional F : &7 — R

in the direction [Aq;] evaluated at ¢ by

JIF (ap)
Ja

oF (OC() —|—IAOC1)
ot

[A(Xl] =

l1=0- (3.11)

Then the second pathwise derivative of F in the direction [Acy, Aoy ] evaluated at o is given by

92F (ato) 0 2t A0) A gy

g2 [Aay,Aop] = 5 li=0- (3.12)

In this way, we can define the K-th pathwise derivative of F' the direction [Aqy, ..., Aok] evaluated

at ap. If Aoy = ... = Aoig = Aa, then
KF (o) OKF (ap) x  OKF(ap+tAa)
W[AOQ,AOQ,...,A(XK] = W[A(X] = 9K ’t:()- (313)

Clearly, the pathwise functional derivative is essentially an extension of simple function deriva-

tives. With the definitions above, we define the functional Taylor expansion.

Definition 3.3.1 Suppose the functional F : o/ — R has a (K + 1)-st pathwise derivative in

the direction [Aa]k+1. Then the functional Taylor expansion of F is

_ JF (o) 1 9%F (o)
1 dF(ag) 1k 1 " F(w+1A) ki
TR T gak AT e T ek e G

where T € (0,1).

The functional Taylor expansion is an extension of the univariate Taylor expansion. If we
let f(t) = F (ap +tAca) and expand f (1) around r = 0, we get the functional Taylor expansion.

Conditional on the dataset Z = (Y,X,W), O () is a functional of o € 7).
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Now, we introduce conditions under which the oracle consistency of the SFGMM

estimator can be obtained for model (3.1).

Assumption 3.3.5 The residual function p (Z, o) satisfies the following:

(i) The first and second path derivatives of p (Z, ) exist for all o € of (n), for almost surely

all Z;

(ii) As a map in model (3.1), p : RY*2 — R and p = p (uy,ua,u3) with

8 ui,uz,us 8 ui,uz,us 82 ui,uz,us
sup —p( L )<°°, sup —p( L )<°°, sup Pl ’2’ ) ,
uy,up,u3 duy uy,up,u3 dus uy,up,u3 a”2
0%p (uy,up, us 02p (uy,up, us
sup p(,z,)<mvsup p(,,><7
ug,uy,u3 a”3 uy,uy,u3 duzdus

where uy is a dy-dimension vector and uy, u3 are scalars.

Assumption 3.3.5 requires that the residual function p(Z, ¢) be second-order pathwise
differentiable with respect to ¢, and that p (u1,u», u3) have bounded first- and second-order partial
derivatives with respect to uy, u3. This condition can easily be satisfied by many nonparametric

and semiparametric models.
Example 3.3.1 (continues=PLM) Inthe PLM, Y, =X'60 +h(Y>)+€andp (Z,a) =Y, —X'6 —

h(Y2), where Z= (Y,X) and Y = (Y1,Y>). Then

dp (Z,a +1Aay) Y1 —X'(0+1A6;) — (h+1Ah;) (12)]

dp (Z,x
WPI20) 1pgy) = PR 2O AR, & =0
= —X'A6; — Ahy (Y>) (3.15)
and
9’p (Z,a)

In this case, p (u1,up,u3) = uy| — up — us, where uy = (uy1,uy2). It is obvious that Assumption

3.3.5 holds in this example.
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Example 3.3.2 (continues=SIM) In the SIM, Y = h(X'0) + ¢, and p(Z,a) =Y —h(X'6).

Then if Aoy = (ABy,Ahy) and Aoy = (A6,Ahy), where Ahy and Ahy are both second-order

differentiable,
op (Z,a) ey ] = ap (Z,oc+tAa1)’ _dY - (h+tAh1)(X’(6+tA91))]|
dat He ot =0 ot =0
=—1 (X'0)X'A6; — Ay (X'0) (3.17)
and
0p%(Z, ) 9 [— (h+1tAhy) (X'(0 +1A6))X'A8; — Ay (X' (0 +1A6,))]
aaz [AaluAaZ] = ot ’t:()

=—1"(X'0) X'A6X'A6, — A, (X'0) X'AO — AR (X'6) X'AB,.
(3.18)

In this case, p (uy,up,us) = u; — u3, so Assumption 3.3.5 holds.

Let S = {j < p:6p;#0}, the set of indexes of nonzero coefficients in the high di-
mensional component. Let ps(Z, as) = p(Z,((65,0'), 1)), Os (0s) = O (((9&,0’)’,%1)), and
Qs (as) =0 (((9@0’)’ ,h)), where ag = (60s,h) and o0 = ((9&, 9]’\,)l,h). For simplicity, we
will also write o0 = (&g, Oy) according to the context. Notice that S cannot be identified at
the outset. We first explore the properties of the estimator for the nonzero finite-dimensional
parameters and the infinite-dimensional parameters, pretending that S is known. Then under
certain conditions, we show that S need not be identified but the whole estimator & (i.e., for the
important and unimportant finite-dimensional parameters and the infinite-dimensional parameter)
can automatically achieve oracle properties. Notice that if Assumption 3.3.5 is satisfied by p,
then ps(Z, os) satisfies Assumption 3.3.5(i) with respect to ors. Let Jg denote J((6g,0')"), let Vg

denote V ((6¢,0')"), and let y5 = (6§,b')".

Assumption 3.3.6 Suppose the following inequalities hold:
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(i) For all n, max,,<, sup, \/Z’]‘.Zl (am(pj (t)/(?zm)z = Opgp < oo for some &y > 0;

(ii) Amax {E [(9ps (Zi, T,005)/IYs) V5] E [(9ps <zi,nnocos>/8yS>V§,-]’} > Cy, (n) for some
Cy, (n) > 0 such that lim,_,. Cy, (n)_ZS,%q,s (2s2 -I—sk) (2s+k)\/logp/n=0;

(iii) Js is a deterministic diagonal matrix based on the sample criterion function (3.8), where

A'min (Js) > C]L and A'max (Js) < CJU fOl’ some CJL,CJU > 0.

Assumption 3.3.6(i) is a condition on the basis functions. An example of this is the
Fourier basis. The condition similar to Assumption 3.3.6(ii) can be found in Bradic et al. (2011),
Fan & Lv (2011), and Fan & Liao (2014). In this paper, we relax this condition for nonparametric
and semiparametric models, that is, we allow C; (n) to decay as n — oo, and Assumption 3.3.6(ii)
requires that it not decay too fast. Assumption 3.3.6(iii) is a standard condition on Jg which can
easily be satisfied by construction. Remember Vg and Xg are column vectors and we use Vg; and

Xsm, to denote the /-th and the m-th element of the vectors, respectively.

Assumption 3.3.7 Suppose the following conditions hold:

(i) E [|V51]2} < M, for all | and some My > 0; E [!VSIXSmIZ] < My, for all I,m and some

Myx >0; E [|VSngmXS,|2} < M‘Z,XX forall l,m,t and some Myxx > 0O;

(ii) C(n) ™" 2/ (252 + 5k) 25+ K) log p = 0 (dy);

(iii) Let Cy (n) satisfies 3.3.6(ii), then

(2s+k)logp S \/% (252 + 5k) (25 +k)logp _
n(2s*+sk)’ Cy (n) ’

latos — T, 05| = O | min

(iv) Cy, (n)715,%(p (2s2 +5k) (25 + k) 4/ %logp =o(P,(0")).

Assumption 3.3.7(i) shows some moment conditions on X and V. It requires that

the moments be uniformly bounded as more and more important regressors enter the model.
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Assumption 3.3.7(i1) requires the signal to be sufficiently strong, that is,

dy > (5,%(,, \/(2s2 + sk) (25 + k) logp/n) :

Assumption 3.3.7(iii) demonstrates the rate of convergence of the projection of ajgs. This is
a high-level assumption. Assumption 3.3.7(iv) shows the relationship among s, k, p, O,¢, 7,
and the penalty function at the origin. When the SCAD penalty function is used with a tuning

parameter A, P,(0") = A,,. Then assumption 3.3.7(iv) implies that A,, cannot decrease too fast.

Theorem 3.3.1 Under Assumptions 3.3.1-3.3.7, with probability approaching one, there is
a local minimizer & = ((8%,0'),h) of Q(a) in the sieve space bafk(n) such that ||6& — ap||s =

O, (8na), where 8,q = O(C), (n)715,12(p\/n_1 (252 +5k) (25 + k) log p).

The basic idea of the existence of such a local minimizer is that we first find a neigh-
borhood of the sieve projection I, 0s in which the sample criterion function evaluated on the
boundary is larger than that same function evaluated at I, 0gg; then by continuity of the criterion
function on the sieve space, we know that there must be a local minimizer of the criterion
function inside this neighborhood. As n — oo, the neighborhood shrinks by construction and the
minimizer gets closer to the projection I, cs. Under the assumption that IT,, 0 approaches the
true value ogs fast enough, the local minimizer converges to Ogg at a certain rate.

Theorem 3.3.1 shows the existence of a consistent estimator for ¢ on the sieve space
which achieves variable selection. In addition, it provides a desirable convergence rate under

which we can obtain the asymptotic normality of a plug-in SFGMM estimator.

3.4 Asymptotic Normality of Plug-in SFGMM Estimator

In this paper, we are interested in the asymptotic distribution of a plug-in SFGMM
estimator f(d) for f(oys), where f : 27(®) i R is a known measurable map. For example,

f(ots) = n'6s for some known vector 17 with dimension s, which is similar to that in Fan & Liao
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(2014), and f(ag) = h(5) when we care about the behavior of g at a specific point 8. We don’t
consider the unimportant regressors here, since by Theorem 3.3.1 we can identify S. Chen ef al.
(2014) provide a method to obtain the asymptotic normality of f(&g) in the finite-dimensional
case, while in this paper we extend this method to obtain the limiting distribution under the
assumptions of high dimensions.

By Theorem 3.3.1, we have ||&s — 0s||; = Op (Ona), Where 3,4 is the convergence rate,
and Oy is a local minimizer in ,;z%k(s). Next, we construct a subset of ,ka(s), which we denote by

%5 (), in which @ is a global minimizer. Specifically,
By = {OCS e : |las— aps| < 5na}

and

23 (v) = {os € ") 2|65~ boslp < 1 (m)enn, [~ bolle < T2 (w)exn .

where T = (71 (n), 7, (n)) and 7 (n), 72 (n), €1, and ey, are obtained as in the proof of Theorem
3.3.1. Then it can be shown that %5 (1) C %35 N.’.

Suppose that for all ag € %’g , Os (as) — Os (ags) can be well approximated by a score
process A (Z, 0s) [0ts — 0lps] such that A (Z, ags) [ots — s] is linear in o5 — 0ts. When Qg (ats)
is pathwise differentiable at ofgg in the direction [0 — | for almost surely all Z and the

pathwise derivative is linear in ag — s, we let

00 _
A(Z, aps) [ots — ops] = QS(%S+aTT(aS aOS»\f:o. (3.19)

Suppose that for all g € 43, IE [ps (Z, s + T (0ts — 0los)) V] /9T exists in a neighbor-

hood of 0 and JE [ps (Z, aps + T (0ts — tps)) V] /I T is a linear functional of oy — os. Notice
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that by definition,

IE [ps (Z, os) V] E[ps(Z, 005+ T (ots — aos)) V] — E [ps (Z, 0os) V]

[(XS — aQS] = lim .
T—

dag 0 T
(3.20)
Then for any o1, 050 € %’(S) , define an inner product
IE |ps (Zi; aos) Vs;
(051 — Os, Qs — Olos) = ( [ al ) Sl] [as1 — aos] | Js

s

JE Z; Vsi
s

and the corresponding norm of g € %’g :

lts — as] = <8E [ps (5;5605)%] s — 0503]) Js (8E [ps (5;;:505) Vsi s — Otos]) .

(3.22)

We say that og = oy if || otg — (X05||2 = 0, which means that the parameters are defined, in the
sense of an equivalent class, according to the metric ||-||.

Under the regularity conditions,

JE [ps (Z;, dos) Vsi]
8a5

dps (Zi, aps)
8055

[os — otps] = E [ots — otos] Vs

for all n, that is, E and d/dag can be interchanged. Sufficient conditions for this interchange
condition can be found in Chen et al. (2014), and we simply assume that this condition holds for
all n.

Let V5 = clsp (#]) — {cs}, where clsp (%53) denotes the closed linear span of 3

under [|-||. Then ¥ is a Hilbert space under (-,-).
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Define

Oosn € arg min |las — aps]| (3.23)

Otsedsp(,%’,f(’c)

and let % (7) = clsp (% (t)) — { 0s . } . Then for each n, #,° (7) is a Hilbert space under (-, ),
and by definition (0s,, — Qos, vn) = 0 for all v, € ¥,5 (7).
For all v € #5, define 0 f (0s)/d s [v] to be the pathwise derivative of the functional f

at ofs in the direction v = o5 — ogs € ¥'S:

df (o) ., df (ops—+Tv)
Toas ] = T!r:o (3.24)

In what follows, we suppose that d f (cts)/d s [-] is a linear functional on ¥ and also
on ¥3(t). Since ¥, (7) is a finite-dimensional Hilbert space and any linear functional on a
finite-dimensional Hilbert space is bounded, by the Riesz representation theorem there is a

vi € ¥5 (1) such that

OF(G05) 11— 1 1) for all vy € %5 (2) (3.25)
8055
and
af(aOS) ¥ (%12 af(aOS) ? 2
2 Wl = il _vne%,?l(lg,v#o SFr Wal| /llvall™ (3.26)

Details on how to find the closed form of v} can be found in Chen et al. (2014). For
completeness, we show briefly how to find the representer for each » in (3.25).

By definition, the sieve Riesz representer v, = (v’(;’n, VZn) = (van, ):’J‘-:l bio j) c¥5(1)
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solves the optimization problem

o1tes) ,  \ 2f(ans) 1,11

df (os) e lve + 255
il = Ivil* = sup
805 v=(vg,vp)€¥,5(7),v£0 (v,v)
F.F]
- 5P YEFY (3.27)

y=(vj&) b0 YRy
/
where F, = <%§?S), % (o], ..., % [q)k]) is an (s + k)-component vector and Ry is an
(s+k) x (s+k) positive definite matrix such that YRy = (v,v) for all v € 7,5 (7).

Let ®, = (¢, ¢, ..., ¢, and define

I Lo Ill 112
Ry = "l andrt = " |, (3.28)
Lot Iy oz
9%0 90 9*
where I = E [— a%igo(?;)} Jh=E [—% [o1],...,— ggsggs [(pk]] w2l = Imlz, and
220 020 220
S5 lon e THGE om0 o T5GE 0104
92 A 92 A (92 A
| e ee] SEG e o 5 e 0l
n’22 _ . . . . )
02 02 020
Oslows) (g, y] LL) [y ] - L) [ g

under the regularity conditions. Then the 7, which solves the optimization problem (3.27) is

given by
T = (Veuby) =R Fe. (3.29)

The sieve Riesz representer is v = <v§;7n,cl>;,bj;> € ¥5(1). Also, ||v:||* = ¥%'Rey’, which is

finite for all n but it is possible that ||v};

nl

| = o0 as n — oo, in which case the functional f(cgg) is

called an irregular functional. Chen et al. (2014) discuss the irregular case where ||v}|| — oo,
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while in this paper the high dimensions could be another reason for the blow-up of ||v}||.
To obtain the asymptotic normality of \/n (f (&s) — f (®)), we introduce the following

conditions.

Assumption 3.4.1 sv/n(2s+k) (252 +sk) 52, = o(1).
Assumption 3.4.2 The map f satisfies the following conditions:

(i) vi= df (qos)/dos[v] is a linear functional from VS to R;
(1) Supegeage F (0) 1 (o5) — 3 (o) Dt s — s /v = o (1)

(ii) |21 (0s)/des [cos — avs] |/ IV; | = (n1/2).

Assumption 3.4.1 gives the convergence rate for obtaining the asymptotic normality. In
the low-dimensional case, this condition is equivalent to k/n = o(1). In the high-dimensional case,
Assumption 3.4.1 is a high-level condition, since s is increasing in n and J, is decreasing slower
than 1/+/n. Assumption 3.4.2 shows local properties of the functional f (). In Assumption
3.4.2(i), the linearity of d f (os)/d ots guarantees the existence of the Riesz representer defined
earlier. Assumption 3.4.2(ii), which controls the linear approximation error of the possibly
nonlinear functional f, is automatically satisfied if f is a linear functional. Assumption 3.4.2(ii1)
controls the bias which is due to the finite-dimensional sieve approximation 0s , of 0fs.

For simplicity, we assume that

8~ _
A(Z, 0tos) [0ts — tos] = QS(%S+;r(aS OCOS))|T:0_

For example, in the PLM and the SIM, it is easy to show that the first pathwise derivative of Qg

is linear. Also, we define

9ps (Z, ) .
il = (5 | 22520 v ) g

Var (ps (Z. 0s) Vs))Js (E {‘9”%0;‘“) i) VSD 7 (3.30)
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the sample variance of v} for model (3.1). Next, we introduce an assumption on ||v}; H?d.
Assumption 3.4.3 |[vi||/[|vill,;, = O(1).

Given the definition of v}, we have that ||v}|| > 0 and it is nondecreasing in dim (%, (7))
and nondecreasing in n. Since s increases as n — oo, it is possible that ||v|| / ||vi|l,; = o(1).
Assumption 3.4.3 rules out this possibility.

Define uj, = v}/ ||vi||,;- Then u;; = O(1), and by the linearity of A and the central limit

theorem,

VA (Z,0s) ] = /a2 25 908) [

8a5

1 <~ 9ps (Zi; oos) .
- Z; aas [ U, VSl ; ZzaOCOS Vs; —>LN(0,1).
(3.31)
We establish the asymptotic normality in the next theorem.
Theorem 3.4.1 Under assumptions 3.3.1-3.3.7 and 3.4.1-3.4.3,
Vn(f (0s) = f(as)) /IVillsa = VnA(Z, aos) [uy] +0p (1) =L N (0, 1), (3.32)

where O is the SFGMM estimator obtained in Theorem 3.3.1.

Theorem 3.4.1 shows that although the dimension of the regressors grows as n increases,

under certain conditions the asymptotic normality of the plug-in estimator still holds.

3.4.1 Consistent Estimate of J(6)

Up until this point, we have assumed that J(0) is deterministic, given that we know how

. k . o .
to choose the weights {w LW jz}le and {w 3 }jzl. But in applications, that is not always the
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case. For example, if we want to standardize the scale, we can use

wji = 1/Var (f;j(W)) ,wjp=1/Var (h;(W)) ,wjz=1/Var(g;(W)). (3.33)

Since we don’t know the distribution of W, a consistent estimate of J(6) is needed. In this
example, we can use W;| = 1/Var (fi(W)) W= 1/Var (hj(W)), and wj3 = 1/Var (g;(W))
to construct J ().

With the estimated version of J (0), we obtain a new loss function, with J (0) replaced
by J(8), that is,

2
+w,

:% i 1{6; #0} <)y [%ip(zi,a)fj (W)

J=1

2
~Y Pz a)hy <W»]

i=1

1 & 1 ?
ts Z Wj3 [; ;P(Zha)gj (Wi)]

J=

ey

/
[lZp Z,a)V, (3.34)
n i=1

1 n
[;Zp Z,a)V,

i=1

l\.)l'—‘

Then we let @" = ((éSW’,O’)/,iLW) be a local minimizer of 0" (), where Q% (o) = Q¥ (&) +
“1 P (165])-

Assumption 3.4.4 J(0) is a uniformly consistent estimate of J (8) such that

sup HJ —J(0)||;=0p(1).
gcol

Because of the special structure of J(6) and J (8), to verify Assumption 3.4.4, it suffices

to show that J is a consistent estimate of J, where

J= diag {WII, <y Wp1, W12, ..., Wp2, W13, ...,Wk3} (3.35)
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and
J=diag {Wi1,...;Wp1, W12, oo, Wp2, W13, o, Wiz | - (3.36)
Proposition 3.4.1 Under Assumptions 3.3.1-3.3.7 and 3.4.1-3.4.4,

Vi (f(65) — f (oos)) = V/nA(Z, o) [uy] +0p (1) =L N(0,1). (3.37)
The proof is similar to that of Theorem 3.4.1 under Assumption 3.4.4, so we omit it.

3.5 Implementation

As explained in Fan & Liao (2014), inclusion of an indicator function in (3.8) leads
to dimension reduction, but it also yields a non-smooth loss function; as a result, minimizing
0 (@) is generally NP-hard. Horowitz (1992) and Bondell & Reich (2012) propose a smoothing
technique which is employed by Fan & Liao (2014). We also apply this method to approximate

the indicator function by a smooth kernel K : R — R such that
(i) 0 <K (t) <M for some finite M and all r > 0;
(i) K(0)=0and limy ., K (¢) = 1;
(iii) limsupy,|_,. |K' ()| = 0, and limsupy,|_,., |[K” (£) %] < ee.
One example is

F(t)—F(0)

K=" Fo

where F (¢) is a twice-differentiable cumulative distribution function. Given a predetermined

small number r,, the indicator function is approximated by K (6]2 / rn>. Then the smoothed
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SFGMM criterion function is given by

A

Ok (o) = Ok (o) + iPn (|6;

j=1

), (3.38)

where Qy is the continuous approximation of Q (&) with the indicator function replaced by K.

Asr, 10, K (9]2 / r,,) converges to 1 {9 ; # 0}, and Qy is a smoothed approximation of Q.
With the kernel approximation, we next employ the iterative coordinate algorithm to

minimize the smoothed SFGMM criterion function. This algorithm, which has been used in Fu

(1998), Daubechies et al. (2004), Fan & Lv (2011), and Fan & Liao (2014), etc, goes as follows:
1 Obtain an initial value for (6’5 )/, for example by least-square estimation.

2 Keep the other coordinates fixed at their values while minimizing the sample criterion

function by choosing values for one coordinate of (6’,b')".

3 Iterate step 2 for each coordinate until the difference between the old sample criterion

function and the updated one converges to 0.

3.6 Simulation Evidence

In the simulation, we generated data by using a semiparametric model.

Specifically, we simulated from the partially linear model

1
Y; :X/G()—i— 3 + € (3.39)
exp (X6 + 1)

with p =50 or 100, and s = 5, and with X1, X, X3, X4, and X5 being the important regressors. Let
(601,602, 6003, 604, 6005) = (5,—4,7,-2,1.5), Opg =, ,= 6pp =0, and ho(r) = e~'. We used
Fourier basis functions to approximate kg = 1/exp(8) with k = 5.

Y, was set to be an N(0,1) random variable. For each j, X; was classified as either

exogenous (in which case it’s denoted by X;‘) or endogenous (in which case it’s denoted by

81



X7). Let F = (F1, ...,Fp)', H= (Hl,...,Hp)/, and G = (Gy,...,Gy)’ be the transformations of a

three-dimensional instrumental variable W = (W, W>,W3)" ~ N (0,13), where

F; (W) = V2 {sin (jaW) + sin (jaW,) +sin (jaW3)},1 < j < p;
H; (W) = v2{cos (jaW;) +cos (jaWs) +cos (jaWs)},1 < j < p;

Gj(W) = V2{sin((p+j) aW1) +sin((p+ j) AW2) +sin ((p+ ) aW3)} 1 < j < k.
X7 and X7 were generated as follows:
Xi=Fj+Hj+uj,X; = (Fj+H;j+1) 3e+1),

where {8, Up,..., up} are independent N (0, 1). There were a total of m = 10 or m = 50 endoge-
nous variables, which would be specified later for two different cases.

The dataset contains n = 100 i.i.d. tuples (Y,X,F,H,G). We used SCAD penalty
functions with different predetermined tuning parameters A.

For the smoothing indicator function in the loss function, we used logistic cumulative

distribution function with r,, = 0.1, that is,

2 2
Ft)= 1o ixfx(;)(t) K (%) —F (f—i) 1.

There were 100 replications for each simulation. Four performance measures were used
to evaluate the properties of the SFGMM estimator. The first one is the mean standard error
for the important regressors, MSEg: the average of H ég — 903” g over the 100 replications. The
second one is the mean standard error for the unimportant regressors, MSEy: the average of
H Oy — 90N|| g over the 100 replications. The third one is the average number of correctly selected
nonzero coefficients, the true posstive (7'P). And the last one is the average number of incorrectly

selected coefficients, the false positive (F P).
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3.6.1 Endogeneity in Both Important and Unimportant Regressors

The m endogenous variables are (X;,X,X3, X, ..., Xjnt2) with m = 10 or m = 50, and
the other variables are exogenous. Thus three of the important regressors (X;,X>,X3)" are
endogenous, and two of them, (X4,X5)’, are eXxogenous.

As we see in Table 3.1, when A increases, which shows more power on variable selection,
FP is decreasing in both cases (p = 50 and p = 100), and so is T P. Also, T P deviates very little
from 5, and FP is not large compared to p. The MSEs is increasing, and MSE} is decreasing,
which is consistent with the changes in TP and F P, and they both remain at low levels. It is
worth noting that as p increases, none of the four measurements gets worse by much, which

shows the power of the SFGMM estimator on variable selection under high dimensions.

Table 3.1. Endogeneity in Both Important and Unimportant Regressors.

p=50, m=10 p=100, m=>50
A=01 A=02 A=03 A=01 A=02 A=03
MSEg 0.2338 0.2961 0.3832  0.1836  0.2880 0.3715
MSEy 0.1055 0.0594 0.0519 0.0554 0.0527 0.0475
TP 49400 4.8900 4.8400 49400 4.8700 4.8100
FP 47100 3.0900 2.3000 6.7500 4.7300 3.9000

3.6.2 [Endogeneity in Only Unimportant Regressors

In this case, m = 10 or m = 50, and all the endogeneity lies in the unimportant regressors.
Table 3.2 shows that all the measurements perform better than when there is endogeneity in both
kinds of regressors. As A increases, FP decreases to a very small number and TP stays at 5.
MSEy decreases, while MSEg doesn’t increase by much, and both of them stay at low levels. As
p increases, none of the four measurements changes by much, which shows the reliability of the
SFGMM estimator on variable selection in high dimensions.

The reason why the results shown in Table 3.2 are better than those in Table 3.1 is that
all the endogeneity comes from the unimportant regressors, so it doesn’t affect the estimation in

a serious way.
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Table 3.2. Endogeneity in Only Unimportant Regressors.

p=50, m=10 p =100, m =50
A=01 A=02 A=03 A=01 A=02 A=03
MSEg 0.0943 0.1006 0.1074 0.0845 0.0934 0.1002
MSEy 0.0646 0.0487 0.0380 0.0431  0.0373 0.0319
TP 5 5 5 5 5 5
FP 44700 29800 2.1000 7.0700 4.6700 3.2700

Chapter 3, in part is currently being prepared for submission for publication of the

material. Sun, Zhenting. The dissertation author was the primary investigator and author of this

material.
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Appendix A
Proofs for Chapter 1

A.1 Some Useful Lemmas

Lemma A.1.1 Let D, (0) CDforall o € Q. Let F,, (0) ={f: f: D, (w) = E}. Let g, (@) €
F, (@) such that, for almost surely @ € Q, if x, — x with x, € D, (@) and x € Dy, then
gn (o) (x,) = g(x), where Dy C D and g : Dy — E. Let X, (®) be maps with values in D, (),

let X be Borel measurable and separable, and take values in Dy. Then
X, ~> X implies that g, (X,) ~ g(X).

Proof of Lemma A.1.1.
The proof is an extension of that of Theorem 1.11.1 in van der Vaart & Wellner (1996).

Let F be a closed set in [E. Then almost surely
N Usngm' (F) C g~ (F)U(D—Dy).
For every fixed k, by Portmanteau Theorem,

limsupP* (g, (X,) € F) < limsupP* (Xn e gm' (F)) <P (X €U gm' (F)> ,
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where P* denotes the outer probability. If we let k — oo,

P (X c U;';:kg,;l (F)) — P <X € ﬂleu;‘;:kg&l (F))

—P (X €NE U _gm (F),N2US_gm! (F) C g ' (F)u(D— DO)) <P(Xecg ' (F)).

Lemma A.1.2 Let D and E be metrizable topological vector spaces and r, constants with
Fp— oo, Let ¢, : Q@ — Dg C D be a random variable which takes values in Dz C D. Let

F D g — E satisfy that for almost surely ® € Q,
’”n(g;(‘ﬁn‘*'rn_lhn) — 7 (fn) — ﬁqlh (h),

for every converging sequence h, with (ﬁn + r,jlhn € D& forall nand h,, - h € Dy C D and
some arbitrary map F#; on Dy. If X, : Q@ — D g are maps with ry(X, — ¢A)n) ~ X, where X is
Borel measurable and separable, and takes its values in Dy, then ry,(F (X,) — F (9n)) ~ F5 (X).

Moreover, lfﬁq/) is continuous on the whole of I, then r,(F (X,) — F (¢,)) — ﬁ’d’) (rn (X, — On))

converges to zero in outer probability.

Proof of Lemma A.1.2.

The proof is an extension of that of Theorem 3.9.5 in van der Vaart & Wellner (1996).
We define a map g, (h) = r,(F (¢, +r;'h) —.F($,)). For any o € Q, g, is defined on the
domain D, (@) = {h: ¢, (®) +r;'h € Dz} and by assumptions g, (h,) — T (h) as. for all
h, — h € Dg. Then by Lemma A.1.1,

n(rn(Xn — ‘ﬁn)) ~ L%;lb (X).

Now suppose g;(;) is continuous on the whole of D and we let f; (hy,h2) = (g, (h1) ,3% (hy))

such that for any ® € Q, (h1,hy) € D, (@) = {(h1,h2) : ¢, (®) + 7, 'hy €Dz, hy € D). By
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Lemma A.1.1 again,

Then by continuous mappting theorem,

A~

(T (Xn) — F(On)) — F g (rn(Xn — ({3,,)) ~s 0.

Lemma A.1.3 7 is complete in L* (R) under norm |- 22(R)-

Proof of Lemma A.1.3.

Suppose there is a Cauchy sequence {/,} C 7 such that || hy, — || ;2(g) — 0 as n,m — oo,
then there is i € L* (R) such that ||, — h]| (r) — 0 because L?(R) is complete. Remember by
(1.7), hy = (—1)%. 1, x{d,}» Where By, is a closed interval in R and d, € {0, 1}.

(1) If for every N > 0, there are n,m > N such that d,, # d,,, then

2
||hn _hm||i2(R) = / ‘(_l)dn ’ anx{dn} - (_1)dm ’ 1Bm><{d,,,} dR

:/1B,l><{d,l}dR+/1Bm><{dm}dR_>O'

This implies [ 1p, . {4,1dR — 0 as n — co. Thus we can find B = {a} for some a € R such that
P(Y € B)=0and h, — lpxio1 € T

(2) There are d,N; > 0 such that for all m,n > Ny, d,, = d,, = d, then

2
IIhn—hmllizae):/lanx{d}—lex{d}} dR

= / an\BmX{d}dR + / 1Bm\Bn><{d}dR — 0.
It is possible that [ 15 ,(sdR — 0 and then we can find B = {a} for some a € R such
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that P (Y € B) =0 and h, — g, (o) € .

Now let i, = (—l)d *1p, x{ay- Suppose there is € > 0 such that for all N > 0, there is n >
max {Ng,Nq} such that ||h,[|2(g) > €. For all 6; < €, 3Ny > Ny such that ||y, — hyl[12(5) < 61
forall m,n > Ny. And we can find ny > Ny such that ||hy, || ;2g) > € and ||y — B, || 125y < 61 for
all n > nj. Now let 0 < &, < 8y, there is N, > Nj such that ||/, —hm“Lz(R) < & for all m,n > N,.
Then we can find ny > N3 such that ||, || 2 () > € and ||ty — hn, || ;2 (g) < 82 for all n > ny. In this
\(—1>d 1

for all n > ny with & | 0. We let B* = U7 M;_; By,. Because By, is always a closed interval,

way, we can find a sequence {B,, }, with @ > ¢ and ||h, — hnkHL2(R) < O

M

B* is a closed interval. Now we have

|

because ||, — hnk”L2(R) < & for all n > ny.

= (i 5 05k

Last, we have

— 0.
L*(R)

B — (= 1) 15

d
hp—(—1) '1B°°X{d}HL2(R) = Hh"_h”k”ﬂmﬁ‘

Clearly (—1)? 1gos () € . m
Lemma A.1.4 J7 is a VC class with VC-index V () = 3.

Proof of Lemma A.1.4.
All the functions h € J take the form h = —1p, (1} or h = 1, (o), where B is a closed

interval. If h = —1p, (1}, the subgraph of & is

Cip= {(y,w,t) C¥ x {071} xRt < _1B><{1} (y,W)}-
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If h = 1y {0}, the subgraph of A is

Co = {(w1) CF x {01} x R: 1 < Lpfoy (32w)}

We let € ={C1p,Cop : B is a closed interval in R} .
Suppose any two different points a; = (y1,wi,t1),a2 = (y2,w2,0) € % x{0,1} xR,
with y; < yp, w; =wp =0and 0 <1;,; < 1. Then there is a point y € (y1,y2). Let By = [y1,7),

B = [,y2] and B3 = [y1,y2]. Now we have

{a1} = Cop, N{a1,a2} ,{az} = Cop, N{ai1,a2} ,{a1,a2} = Cop, N{a1,a2}.

Suppose any three different points a; = (y1,wy,11), ax = (y2,w2,82), az = (y3,w3,13)
€ % x{0,1} x R and we have a set {ay,a,a3}. Without loss of generality, suppose t; < 1, <
;< 1.

(1) Suppose #; > 0. In this case, it should hold that w; = w, = w3 = 0 so that {g;} can
be picked up for each i. Without loss of generality, suppose y; < y, < y3. If we want to pick out
{ay,a3}, we need to find a closed interval B such that y,y3 € B and then a1,a3 € Cyg. However,
ar € Cop.

(2) Suppose t; < 0, t; > 0. Then wy = w3 = 0 in order to pick out {a;} for eachi =2,3
by using Cop for some closed interval B. But in this case, € cannot only pick out {a,},{a3} or
{az, a3}, since for every closed interval B, a; € Cyp.

(3) Suppose 11,1 < 0, 3 > 0. Then we need w3 = 0 in order to pick out {a3} by using
Cop for some closed interval B. In this case, ¢ cannot only pick out a3, since for every closed
interval B, a,a> € Cyp.

For t1,1p,13 < 0, for every closed interval B, a;,a;,as € Cop. If we want € to pick out
{ax} or {ay,ay} for some different k, k' = 1,2,3, we need to use Cyp. If wy = 0, then for every

B, a; € Cig. Thus we consider wi; = wy = w3 = 1.
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(4) Suppose —1 < t1,12,13 < 0. Now without loss of generality, we assume y; <y, < y3.
But now if we want to pick out {a;}, we need to find a closed interval B such that y;,y3 € B but
y2 ¢ B. Not possible.

(5) Suppose t;, < —1 for some k = 1,2, 3. In this case, a; € Cp for all closed B.

Therefore, with the discussion of all cases above, we conclude that .27 is a VC class with

VC-index V () =3. m

Lemma A.1.5 For any probability measure R on % x{0,1}, 7 is compact under ||-|| - g for
re N

Proof of Lemma A.1.5.
Let N (¢,7¢,L" (R)) denote the covering number for .7 with all € > 0.
Since 77 is a VC class by Lemma A.1.4, with envelope function F = 1 and r > 1, by

Theorem 2.6.7 in van der Vaart & Wellner (1996), for any probability measure R,

2,

N (elIF Iy 2L (R)) < KV () (16)" ) (176 VO,

for a universal constant K and 0 < € < 1. Then by Lemma A.1.3, ¢ is compact in 7. &
Lemma A.1.6 For any probability measure R in &2, 7 is a R-Donsker.

Proof of Lemma A.1.6.
For every § > 0 and R € 2, define /5 = {h—g th,g € I, ||h—gll 2 gy < 5} and
A2 = {(h —g) hgeH } First we show that .77} g is R-measurable for all R € 2. Similarly

to the construction of .7 in (1.7), we construct another function space by
Iy = {h = (-1)¢. () : B = [a,b] with rational numbers a,b and d € {0, 1}} :

Let Q denote the set of all rational numbers. Since QQ is countable and therefore the set of ordered
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pairs of elements in Q is countable, %’g is countable. Now define

%57R: {h—g:h,gE%,Hh—gHU(R) < 5}'

Clearly, 77

75 R 1s @ countable subset of 75 . For any h € 7, there is a sequence h,, € 7 such

that &, (x) — h (x) for every x because Q is dense in R. For example, if h = 1[ V3,/3]> We can use
hy,, = L(4,.bm] tO approximate 4 such that a,, 1 V2, by, d V3 and ay,, by, € Q. Also, for all § > 0,
if h,g € g and ||h—g||;2r) < 8, ||Am — gmll;2(r) < & for large m. By Example 2.3.4 in van der
Vaart & Wellner (1996), 75  is R-measurable and this is true for all 0 > 0. Similarly, H2 is
R-measurable.

By the construction of 77, clearly, F = 1 is a measurable envelope function with
/ F?dR < oo.

By Lemma A.1.4, 77 is a VC class with VC-index V (.7°) = 3. By Theorem 2.6.7 in van der
Vaart & Wellner (1996), for every probability measure R, the covering number for every integer

7 satisfies

N(e,#,L" (R)) <K-2-(16e)’ (é)zr

for a universal constant K and 0 < € < 1. Also, let 2 denote the set of finitely discrete probability

measures, for all H € 2, when € > 2,

N (llFlly 712 (H)) =N (£, L2 (H)) = 1,
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which implies

/oo sup \/logN (8 1F 21y » 7€ L? (H))ds

OHe

sup \/logN £||FHL2 %,L%H))ds

0 HGQ
sup \/logN £||FHL2 %,L%H))ds—k sup \/logN 8||FHL2 , AL (H ))d
1 He2 0 He2

1 4
<c1+/ log K 2. (16¢)> (E) }d£<oo,

where Cj is a large positive number and the third inequality follows from Theorem 2.6.7 in
van der Vaart & Wellner (1996). The result follows from Theorem 2.5.2 in van der Vaart &

Wellner (1996). m

Assumption A.1.1 Suppose it holds that:

(i) Probability measures in & are nondegenerate and have a common dominating measure
U for the coordinate, where [l is the Lebesgue measure, a point mass measure with finite

support points, or their mixture. The density functions p = R are bounded uniformly over

,u
P, that is, there is M < oo such that for all R € P, p(y,d) < M for u-almost everyy € %

and d =0,1.

(ii) The set & is uniformly tight, i.e. for any € > 0, there is a compact set K C % x {0,1}
such that

sup R(K°) < ¢
ReZ

Lemma A.1.7 Suppose Assumption A.1.1 holds. Let {R" € &2 :m = 1,2,---} be a sequence of
probability measures that converges weakly to R € 2. Let R denote the empirical measure

of a iid sample {X,;}"| from distribution R™ with R = m~' Y™ | 8x,, where 8, is the Dirac
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measure at the observation X;. Construct the ¢ -indexed empirical process Gpx ,, by
Gm,Rm =vm (RZ —Rm) 5

that is, for all h € €,

G () = /1 (RIS — R™) () = ﬁi (wx)~ [ narr).

Then Gy, g converges weakly to the R-Brownian bridge Gg.

Proof of Lemma A.1.7.

For every 6 > 0 and R € &, define J¢5 p = {h—g th,g € A, ||h—g||Lz(P) < 5} and
H? = {(h — g)2 th,g € %} Similarly to the proof of Lemma A.1.6, we can show that 5 g is
R-measurable and .7 is R-measurable. By the construction of /#, clearly F = 1 is a measurable

envelope function with

sup [ F21{F >M}dR — 0, as M — oo.
ReZ

Also, similarly to Lemma A.1.6, it holds that

%}

sup \/logN (8 1N 2 , I L2 (H))de < oo,
0 He2

where 2 denotes the set of finitely discrete probability measures. Now by Theorem 2.8.3 in
van der Vaart & Wellner (1996), .7 is Donsker and pre-Gaussian uniformly in R € &.

For every R € &2, we define a semimetric pg by

Pr (h1,h2) = [[(hy = h2) = R (hy — h2)| 2 ) (A.1)
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for all hy,h, € 7. Then by Lemma B.2 in Kitagawa (2015), under Assumption A.1.1,

sup |prn (h,g) — pr(h,8)|> < sup |pan(h.g) —p(h,g)]
h.geH h.geH

< sup [(R"—R)(A)]—0,
A€ B(Y x{0,1})

where 2 (% x {0,1}) is the Borel o-algebra on % x {0,1}. Also, for all € > 0,

limsup/F- 1{F > ey/m}dR" = 0.

m—sco

By Lemma 2.8.7 in van der Vaart & Wellner (1996), G, gn ~ Gg, where G, is the R-Brownian

bridge. m
Lemma A.1.8 J7 is Glivenko-Cantelli uniformly in R € &.

Proof of Lemma A.1.8.
Similarly to the proof of Lemma A.1.6, ¢ is R-measurable for every R € &. And with

F =1 being an envelope function of .77,

lim sup [ F-1{F >M}dR=0.
M—oope op

By Lemma A.1.4, 57 is a VC class with VC-index V () = 3. By Theorem 2.6.7 in

van der Vaart & Wellner (1996), for every r > 1 and every probability measure H,

1 2r
for a universal constant K and 0 < € < 1. Then

sup logN<£||F||U(H) AL (H)) —o(n),
HeZ2,
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where 2, is the collection of all possible realizations of empirical measures of n observations.
By Theorem 2.8.1 in van der Vaart & Wellner (1996), 7 is Glivenko-Cantelli uniformly in
ReZ. m

Definition A.1.1 Let D and E be Banach spaces, and % : Dz C D — E. The map % is said to
be Hadamard directionally differentiable at ¢ € D z tangentially to a set Do C D, if there is a

continuous map ffq’) : Do — K such that

ﬁ((p +tnllln)_y(¢) ar!
In

lim
n—roo

for all sequences {y,} C D and {t,} C Ry such that t, [ 0, ¥, = ¥ € Dy as n — « and

O +t, ¥, € Dg for all n.

Lemma A.1.9 Let R = P/2+ Q/2. The map defined in (2.4) is Hadamard directionally differ-
entiable at ¢ defined by (1.8) tangentially to C (¢) and 5”4 : C(J) — R satisfies

s (v) = v (h),yeC(H), (A.2)

where W ,p = argmaxye ;7 ¢ (h).

Proof of Lemma A.1.9.

By Lemma A.1.5, 7 is compact under ||-|| ;2 g). First, we show ¢ defined in (1.8) is in

C (). For all hy,hy € A,

1 1 1 1
2 _ . 2 - - _ - . 2 - . 2
th_h2||L2(R)—/|hl hy| d(2P+2Q) _2/|h1 hs| dp+2/|h1 hy|“dQ.
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Also,

19 (h1) = ¢ ()]
=|(E[m (Y',DN)] = £ [l (v*,D)]) = (E [ (Y',D")] = E [ (Y*,D%)])|

12
g/]hl—h2|dP+/|h1—h2|dQ§ </|h1—h2|2d1’) - </|h1—h2|2dQ>

It is clear that when ||, —h2||iz(R) — 0, |¢ (h1) — ¢ (hp)| — 0. This implies ¢ € C (7). Then

1/2

the result follows Lemma B.1 in Fang & Santos (2014). =

Remark A.1.1 The map defined in (2.4) is a supremum over all h € €. We will not use
the Hadamard directional derivative of .# directly, but it provides an idea for us to obtain
the asymptotic distribution of the test statistic and apply the bootstrap method for Hadamard

directional differentiable maps.
Lemma A.1.10 N (¢,5¢ x4 ,pp) = O (1/€*) as € — 0.

Proof of Lemma A.1.10.
Since 77 is a VC class by Lemma A.1.4, with envelope function F = 1 and r > 1, by

Theorem 2.6.7 in van der Vaart & Wellner (1996), we have for every probability measure R,
N (E1Fl) 2L (R)) < K3(166)° (1/6)

for a universal constant K and 0 < € < 1. It is not hard to see that F' = 1 is also an envelope

function of % and for any r > 1,
N (e, 9,L" (P)) =N (g,7,L" (Pyp)),

Where Pyp is the probability measure on R? for (¥, D) induced by P.
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By the construction of % x ¢ and metric pp
£ 2 £ 2
< — = .
N (e, # x 9, pp) < max{N(S,%(,L (P)> ,N(S,%(,L (P))}

By definition, ¥x= {1R><{O,1}><{zk} k=1,2,... ,K}. It is easy to show that the .#x = {I{Zk}}k
is a VC class of functions with VC-index equal to 2. So by Theorem 2.6.7 in van der Vaart &

Wellner (1996), for every € and every r > 1, and for every probability measure R,
N (e,%k,L" (R)) =N (g, Ik, L (Rz)) <C(1/e)",

for some constant C > 0, where Rz is the probability measure on R for Z induced by R. This
implies

N(S,%Xg,pp):0($> as € — 0.

Lemma A.1.11 J7x X ¥ is complete under pp.

Proof of Lemma A.1.11.
Similarly to the proof of Lemma A.1.3, it can be shown that .7¢x and ¢k are both complete

under [|-[|;2(p), which implies 7 x & is complete under pp. ®
Lemma A.1.12 %k and 9k are Glivenko-Cantelli uniformly in R € &3.

Proof of Lemma A.1.12.
Similarly to the proof of Lemma A.1.6, with ¢ being a countable set, .7k and ¢ are

R-measurable for every R € 3. And with F = 1 being an envelope function of 7% and ¥,

lim sup /F-l{F>M}dR:0.
M%OOR€<923
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By Lemma A.1.4, 57 is a VC class with VC-index V (¢) = 3. By Theorem 2.6.7 in

van der Vaart & Wellner (1996), with r > 1, we have for every probability measure R,
1 2r
¥ (eIl L () <K-2-(160) 1)
for a universal constant K and 0 < € < 1. As we have shown in Lemma A.1.10 for all € > 0,
N (e, #%,L" (R)) =N (g, ,L" (Ryp))
for every probability measure R and induced probability measure Ryp for (¥, D). Then

sup logN (SHFHU(H) g, L (H)) =o(n),
He2,

where 2, is the collection of all possible realizations of empirical measures of n observations.
By Theorem 2.8.1 in van der Vaart & Wellner (1996), %% is Glivenko-Cantelli uniformly in
R e @3.

Also, as shown in Lemma A.1.10, for every € > 0 and every r € N,
N(e,%,L" (R)) < C(l/s)r,

which implies

sup log (& |F () %, L (H) ) = o (n),
He2,

where 2, is the collection of all possible realizations of empirical measures of n observations.
By Theorem 2.8.1 in van der Vaart & Wellner (1996), % is Glivenko-Cantelli uniformly in

Re Y5 m
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A.2 Results in Sections 1.2 and 1.3

Proof of Lemma 1.2.1.
Suppose dmax exists. Under Assumption 1.2.2, we can define

Yo=Yy, =Yy, ==Yy, foralld € Z;. For all k < K — 1, define

Py (Badmax) = ]P(Y €B,D= dmax’Z = Zk) = P(Ydmax € BaDzk = dmax)7

Pk+1 (Bydmax) = P(Y €B,D= dmaxlz = Zk+1) =P (Ydmax € BaDzkH = dmax) .
Also, under Assumption 1.2.2(iii),

IPD(Ydmax € BaDZk = dmax) = ZP(Ydmax € B>Dzk = dmaXaDZkH — d])
J

= ]P) (Ydmax S B7DZk = dmaX7DZk+l = dmax)

and

P (Ygper € B, Dy = dimax) = ) P (Ygpo € B,D;, =dj, Dy, = dimax) -

I 8|
J

Thus it holds that

P (Ydmax S B7DZk+l = dmax) -P (Ydmax S B’DZk = dmax)

=P (Ydmax € B>Dzk 7£ dmaanzkH = dmax) >0.
Suppose dpin exists. Similarly, under Assumption 1.2.2,

Py (Badmin) = P(Y €B,D = dmin|Z = Zk) = P(Ydmin € BaDZk = dmin) )

Pei1 (B,dmin) =P (Y € B,D =dwin|Z = z11) =P (¥,

min

€B,D;,,, = dmin) -
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Also, under Assumption 1.2.2(iii),

P (Ydmin = B’DZk - dmin) - ZP (Ydmin = B»Dzk = dminyDZkH = dj)
J

and

P (Ydmin € B7Dzk+1 = dmin) = ZP (Ydmin € BaDZk = djaDZk+1 = dmin)
J

=P (Y,

min

S B,Dzk = a’min,Dzk+1 = dmin) .
Thus it holds that

P (Y,

min

€ Bszk = dmin) —P (Yd

min

€B,D = dmin)

Zk+1

=P (Ydmin € BvDZk = dmiszkH 7£ dmin) > 0.

]
Proof of Theorem 1.3.1.
Define G,,,, H, : 7 —R by
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By Lemma A.1.6, G, ~ v/1 — AGp and H,, ~ \/IGQ. Notice that

Similarly,

(1-A)N = i
and
\/%<Ln_ (111)N>i:i{h(YzOD?) E[h(YODO)}}_)pO
<\/%_\/I> (1i;L)N;n;{h(YzOD?) E[n(Y°,D"]} —,0
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Under Assumption 1.3.1, by Example 1.4.6 and Theorem 1.3.6 in van der Vaart & Wellner
(1996),

=) 3 (D))~ [n(r'. 1))

—~ ﬁ\/ﬁ i {h(¥2,D?) —E [ (Y°,D°)]} ~ /1 -AGp — VAGy,
- i=1

where Gp and G are Gaussian processes. Thus, we have
VI (§ =) ~ /1 - AGp —VAGy.

Together with Lemma A.1.8, we obtain the marginal weak convergence of ¢ /(EV 6y).

Next we want to show /Tn (¢ — ¢)/(EV 6y) ~ (V1 —-AGp—VAGp)/(EV o). By
Theorems 1.5.4 and 1.5.7 in van der Vaart & Wellner (1996), it suffices to show the marginal
convergence, which has been obtained above, plus .77 being totally bounded and the sequence
VIn($ —¢)/(EV 6y) being asymptotically uniformly equicontinuous, both with respect to
some semimetric p.

For all h € 7,

m(@—w () _ g B (1) = Qn (1) — P (k) + Q ()
N

EV 6, EV 6y
_ VTN [Pu(h) = P ()] — /Ty [Qn () — Q ()]
&V by ‘

Since we have shown that G,, ~ 1 — AGp and H,, ~ \/X(GQ, as illustrated in Section 2.8.2 in
van der Vaart & Wellner (1996), 7 is totally bounded under semimetrics pp and pp which are

defined in (A.1) for P and Q, and for all £,1 > 0, there are 8p, 5p > 0 such that

lim supP”* ( sup |Gy (h) — G (2)] > e) <0
N—reo pp(h,g)<dp 2
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and

’

NS

lim supP* < sup |H,(h)—H,(g)| > 8) <
N—yeo po(h,g)<dg

where P* is the outer probability. Thus there is § = min {8p, g} such that

lim supP* ( sup |Gy (h) — G (g)| > 8)
Pp(

N—veo h.g)<8
+ lim supP* sup |H,(h)—H,(g)|>¢€ | <n. (A.3)
N—yoo po(h.g)<d

Define a new metric associated with probability R by

Pr (o) = [[(h = 2) || 2 gy -

It is not hard to show that pp (h1,h2) > pg (h1,hy) for all hy,hy € 7. Then we define another

new metric p = |/py? —|—p’Q2 on 7.

By (A.3), for all €, > 0, there is 6 > 0 such that

lim suplP* sup |Gy (h) — G (g)] > £
N\ pplhg)<s 4
+ lim supP* sup |H,(h)—H,(g)| > £ <n/2. (A4)
N—ew  \polhg)<s 4
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On the other hand,

limsuplP* | sup \/T_N(‘l3 —¢)(g) (5 val-N (h) Al )’ > g)

N—so0 phg)<d &V (g)

<timsupP* ( sup /T (9 - 9) (g) |&v6N<h>—év6N<g>|>§éz)

N—yeo p(h.g)<d

<limsupP* | sup \/T_N((la—‘l)) (&)||6n (h) — 6w (g)] > §§2>

N—yeo p(h.g)<o

<limsupP" ( sup |\/Tiv (6 —9) (s) IGN<h>—GN(g>|+op(1)>§52>

N—yeo p(h.g)<o

N—yeo p(h.g)<o

<limsupP* [ sup |\/Tn ($—9) (g) |GN(h)—GN(g)|>§€2>-

By definition,

|ow (h) — on (8)|” < [on (h) — on (g)] |on (k) + on (g)| = | (h) — o (8))]

(=) P (W) (1 =|P(W))) +A[QAR)|(1-[Q(R)])
—(1=A)[P()(1=[P(e))+AIQ(e)I(1—]2(g)])

<3(1-2)P(lh—gP)+3r0 (1 —sF).

Now it is easy to show that

Jow (1)~ oy (9) < |3 (0B (1,8) + 95 (1.8)) = V3p (1.0).

Therefore,

VI (6= 6) (9)| low (1) — on (g)] > §5z>

limsupP* [ sup
N—yeo p(hg)<d

Vv (6-0) ()| 35 > &)-0()

<limsupP* | sup
N—yoo geHN
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We let & be smaller than that in (A.4) such that

N—o0 geEHN

lim supP* (sup ’\/T_N((ﬁ —9) (g)‘ V36 > 252) <n/2. (A.5)

Combining (A.4) and (A.5) gives us that there is 6 > 0 such that

Ai h Ai
- VI -
lim supP sup g(é—l\ip() ()g) /_5( N()Z

N—soo p(hg)<d | 4/ Inevanm — VINEG o)

) % £
<limsupP" | sup |[Gu(h) —Gn(g)]— [Ha(h)—Hn(g)]| > =
N—yeo p(h,g)<d

+limsupP* [ sup
N—yeo p(hg)<s

<lim supP* < sup |Gy (h) — G (g)| > g)

Noeo \pp(hg)<b 4
. \ &g
+ lim supP sup |Hy(h)—H,(g)| > —
N—oo polhg)<d 4
" 1 1 £
+ lim supP* su T; - ( - — — )'>— <n.
i <p<h,g%°<5 VIV =0 O gey i) Evan 2) L

This implies that /Ty (¢ — @) /(E V 6x) is asymptotically uniformly equicontinuous.

Notice that for all h,g € J7,

P
0% (h,g) g/m— |d( +Q),

where P/2+ Q/2 is a probability measure. By Lemma A.1.5, JZ is totally bounded under

-] 12(E42)- Then the total boundedness of .77 under p follows from that for all € > 0,
2

N(e#.p) <N (e/V2,7, 3 rs0)) <=
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Now by Theorems 1.5.4 and 1.5.7 in van der Vaart & Wellner (1996),

\/T_N(qs—¢) L V1I-2Gp—ViGe

EVéy EVvo

Let oy = ¢ /(& V 6x). Given any sequence ry — oo, define
Dy (@) ={@ €~ () : oy (0)+ry o et ()}
for all @ € Q. Define

gn (0) (W) = ry (S (o (@) +ry' v) — S (on (@)))

forall o € Q, y € Dy (w). We know ¢y — ¢ /(E Vo) = @p as..

Let Qo={w e Q:¢y(w) — @} and P(Qp) = 1. Now we want to show that there is
some g, for all @ € Qp, gy (@) (Wn) — g () for all yy € Dy (@) such that yy — y for some
Yy € C (). We extend the proof of Lemma B.1 in Fang & Santos (2014) to show this result.

Given {Yil,D} }:n:l and {YP,D?}?:I, P, and Q, have finitely many possible values
on 7 respectively. Suppose totally there are Jy pairs of possible values for P, and Q,.
Under lemma A.1.5, S is compact. Since ¢ is continuous on 7, for all y € C(5),

Suppe e (Pv +iny) (h) < oo
We define a correspondence W 5 : C () — H# by

Yoo (v)={he A y(h) =5 (y)}

for all w € C (7). By Theorem 17.31 in Aliprantis & Border (2006), ¥ » (¢) is a nonempty

compact set. We now extend the domain of P s to £~ () such that ¥ : (= () — H:

Yo (y)=1{het y(h)=7(y)}
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for all y € £~ (#). Now we want to show ¥ 5, is upper hemicontinuous at ¢y. (See Definition
17.2 of upper hemicontinuity in Aliprantis & Border (2006)) Suppose there is a sequence { W, i, }

such that i, € ¥ (y,,) and W, — @q. It is easy to show that

| (Wn) = (@0)] < || Wn — @0l — O,

which implies W, (h,) — - (¢9). Suppose &, has no limit in ¥ (¢y). This implies for
each h € ¥ (¢o), there is an open neighborhood Vj, and ny, such that &, ¢ V;, when n > ny,.
Because we have shown W (@) is compact in J#, there is a finite open cover such that
Yo (@) CV = Vi, U---UWp,,. Let ng = maxy<pny,. Thus if n > ng, then h, ¢ V and

therefore h, ¢ ¥, (@p). Since 5 is compact and V¢ is closed in %, V¢ is compact. Then

sup ¢ (h) < sup @o(h)= sup @ (h).
heve hest he¥ s (¢o)

We let 0 = supj,c_» ®o (h) — sup,cye @o (h). Remember

Vi (hn) = sup W, (h) = sup y, (h).
het heve

Thus,

W (hy) — sup @o ()| < || W — ¢@oll.. — O.
heve

For all n that is large enough,

S
Wy (ha) < sup @ (h) +5 < sup @0 (h).
heve hes#

This contradicts ¥, (h,) — - (¢o). Thus, there is h € W, (¢g) such that h, — h. Then by

Theorem 17.20 in Aliprantis & Border (2006), ¥ ;» is upper hemicontinuous at ¢y.
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It is easy to show that under Hy,

Y (on) =Yor (@0) =W (9).

Since @y + ty ¥ is not continuous in .77, ¥, (@y +ty W) may be empty. As we have shown
earlier, P, and Q, can have at most Jy pairs of possible values on 7. We can construct a

modified version of @y, denoted by ¢}, such that @y, is upper semicontinuous and
(i) suppe @ (1) = supye i O (h),
(i) suppe (Qn +iny) (h) = supye (P +iny) (h),
(ili) @y +INY — @o, as N — oo.

Specifically, we can set the value ¢}, at discontinuities to the largest limit value at that point. In
this case, Wz (@) +1inY) # O, because @y + Iy is upper semicontinuous and .7 is compact.

Letty = r&l. It is easy to show that

sup {¢on (h) +ivyn (h)} — sup {@n () +tvy (W)} <tv Yy — ¥l =o(tn)-
hest hes#

Since @} (@) +ty Y converges to @y and P 4 is upper hemicontinuous at ¢y, there is a sequence

Oy such that

P (on +ivw) C P (90)™,

where ¥ - ()% = {h €A tinfyeq (o) 1h—H |l 2r) < 5N} and R =P/2+ Q/2. Remem-

ber that under Hy,

¥ (90) =Pr (py) and  sup @y (h) = sup @y (h) =0.
he¥ 5 (¢) heA
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Thus, we have that under H,

sup {on (h) +tvy (h)} —  sup  {on(h)+ivy (1)}
he he¥ - (¢o)

= sup {on (W) +ivy(h)} —  sup  {on(h)+ivy ()}
he¥  (oy+iny) he¥ ;7 (¢o)

< sup  {oy(W)+mww(h)}— sup iyy(h)
he¥ 5 (go)N he® » (¢o)

< sup v |y () —y ()| =o(ty).
hl7h2€%7||h1_h2”l‘2(R>S8n

Finally, put all things together and we have

sup {on (h) +ivwn (h)} — sup @y (h) —ty  sup ()
he# hest he¥ (@)

IA

sup  {on (h) +ivy ()} =ty sup Y (h)|+o(v) =o(iv).

he® (o) he¥ - (¢o)

This implies that gy (@) (yy) — SUDjew , (gy) v (h).
By Lemma A.1.2,

() (el oo (T 55).

&V on &V on

Notice that under Hy, 5”\;,%( o) = yd;’ where Vq; is obtained in Lemma A.1.9. As defined in the

context, under Hy,

Yo ={he A :¢(h)=0} =Ty (¢) =T (p),

which gives

. VI-AGp—VAGo\ _ [ VI-AGp-ViGo
Wr (90) EVo =Y, Evo )
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Now we want to show that under Hy, if restricted on ¥, V1 — AGp — \/IGQ L Gy.
First, note that for all h € ¥ _y, ¢ (h) = 0, that is, P (h) = Q (h) = H (h). Also,

V1I=AGp—VAG V1I—2AGp—VAG
Cov( Evo Q(h), Evo Q(é’))
(1—-A)[P(hg)—P(h)P(g)]+A[Q(hg)—Q(h)Q(g)]

(Evao(h)-(EVvo(g)) '

Suppose h,g € ¥ with h = (—1)% -1 14y and g = (—1)% - L, fy}-
() If d # d,, then hg = 0 and thus P (hg) = Q (hg) = H (hg).
(ii) If dy =dq, then hg = 1, np «(4,) and thus P (hg) = Q(hg) = H (hg).

Therefore, we now have

Con <\F1 —AGp—VAGg (h%\/l—)LGp—\/?_LGQ (g)>
EVvo EVo

_ H(hg)—H(h)H(g) o Gu Gy

“Evom)-(Evols) © <§v0(h)’§v0(g)>'

Equivalence of the covariance kernels implies equivalence of the probability laws of the mean

zero Gaussian processes, thus

% (\/I—AGP—\/ZGQ>£5/ Gy
tor EVo ~T¥x\Eve )
u
Given the probability measure R =1/2-P+1/2-Q, we define
3;1 (A1,A2) = sup inf [la—b| ;2
acA €Az
and

dy (A1,A2) = max {7H (A1,A2), d (Az,Al)},
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for all set Aj,A, C . The following lemma concludes that ‘i{;f in (1.16) is valid in the sense

that 5’?1\; satisfies Assumption 3.3 in Fang & Santos (2014).
Lemma A.2.1 Under Assumptions 1.3.1 and 1.3.2, if Hy is true, dy (¥ 50, ) —p 0.

Proof of Lemma A.2.1.

First, for all € > 0,

lim P (d g (¥, W) > &) < lim P(¥\¥ e £ 2)
N—poo

N—oo

<1imIP( sup ‘qS(h)—(p(h)}>TN>

T N—eo %
he¥ ;o \Y

< lim P (hs;}af\/T_N}é (h)—¢ (h)| > TNTN) .

T N—oo

By Theorem 1.3.1, /Ty ((ﬁ — (P) ~V1=AGp— \/IGQ. Then by Theorem 1.3.6 in van der
Vaart & Wellner (1996),

sup /Ty |$ (h) — ¢ ()| ~ sup ‘\/I—AGP(h)—\/IGQ(h) .
heA heA

If /Ty Ty — oo, then limy, o P (711 (P W) > e> —0.

Next, consider 711 (¥0,¥ ). Define d (h,\¥ ) = infeew , ||h—g||;2(g) for all h €
. For each € >0, let D ={he€ 7 :d(h,¥ ) >¢€}. In Lemma A.1.9, we have shown
¢ € C() with 5 being compact under norm ||-||;2(g). Suppose there is {h,} C D¢ and

h,, — h for some h € 7, then

d(h,¥ )= gel{{ljf)f 1 =8l 2 r) = geifql& 17— hn+ hn — gl 12g)

> gel{glf 170 = 8ll2r) = 1h = Bnll 2Ry = € = | = Pl 2y »

which is true for all n. Letting n — oo gives us d (h, ¥ ;) > €. This implies D¢ is closed in 57

which is compact, thus Dg is compact. If D¢ # @, then 36¢ > 0 such that infep, [¢ (h)] > .
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Then we have

lim P (7[1 (‘i‘%,‘l’%) > 8) :Al]im P ( sup inf [[h—gll;2p) > 8)
—yoo B

N=ve heW ,, 8

<1imIP< sup |@(h)] > O, sup ‘@(h)‘gm)

N=eo \heW ,\W he¥ o \¥

Here we define events:

ANZ{ wp o)~ %< sp  [§[< sup mwn+—}.

Now we have

|

P (sop [§00 0 1) <

he

>§P< sup \(ﬁ(h>—¢(h>}§%>

he‘i’f\‘Pﬁﬂ
< E»(

By Lemma A.1.8, lim, . P (Ax) = 1. Thus,

sup  |¢(h)|—  sup [ (h)

hGli‘jf\lef hGliljf\le

lim P <7H (¥, W ) > e)

N—ro0
< lim ]P( sup  |@ (k)| > O, sup ](]3 (h)‘ < TN,AN>
N—eo hE‘i’jf\‘I‘jf hEli’jy?\lef

< lim ]P( sup }(ﬁ(k)| > §, sup }(ﬁ(h)| < TN> =0astylO.
hG‘i’%\Tﬁo he‘i’%\‘l’%o

Proof of Theorem 1.3.2.

(1) We first show that ¢;_o — ¢1—q, Where ¢j_¢ is defined by

Cl—a:inf{CZ]ID(y\P%( I_AGP_\/IGQ) §c> > l—oc}.

EVo
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C () is complete under |[|-||.,. By Lemma A.1.6, ¢ is Donsker for both P and Q. Also,

by the construction of 7, P Hh—PhH?%p <ooand Q|h— Qthjf < oo, We let

A 1 “ * * “
Gontt) = | £t £t
i=1 i=1

1 m
VAN ,; ( ) I; ( )

i=1

— 1

1 1 u ST
() L;m D)= 3 (1.00) | = G 1) A
and
N L 0 0 ¥ 0 0
Gon(h) =—= | Y h (v, DY) h(Y?,DY)
ot =7 [ Byr0r o) - B
1 u 0% 0% C 0 n0
ENAEDL Y h (YD) =} h(¥,D7)

= G/'LQn (h) + Bn.

1 n . . n

where A, — 0 a.s. and B, — 0 a.s.. Then by Theorem 3.6.2 in van der Vaart & Wellner (1996),

we have that

sup |E £ (Gapw) 1{ (v, D)}, A (2D}, |~ ELF (@) = 0
feBLy
and
sup |E |/ (Gagn) { (KDDL, (XD Y, | ~ ELf (Go)l| =0
feBLy

for almost all sequence { (¥;!,D}) }l o1 (¥, DO)} where BL; = BL; (¢~ (.7¢)) . Then be-

i=1
cause conditional on {(Y!,D!)}" {(¥2,D?)}_ . Gip, is independent of G g,, we have
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given almost every sequence {(Y1 D; )}l E { (YO DO) }l T

(Gapm:Gagn) ~ (Gp,Gg),

where Gp and G are independent processes. This implies
(Gpm, Gon) ~ (Gp,Gy).

Then by the continuous mapping theorem, conditional on almost all sequences { (¥;!,D})}"
(00,00 )11 VIS (5~ 8) = V=T VTCy

Given any { (¥, Dl)}, 1 {1 DO)}

=1’

o |8 =P, — O as. and [|0; — Oul|.. — 0

a.s. by Lemma A.1.4 and Glivenko-Cantelli Theorem. Then by Lemma A.1.8,
|B;— P, —0as. ||0; -0, —0as.

which implies |6y — o], — 0 a.s. Repeating the proof for asymptotic uniform equicontinuity

in Theorem 1.3.1 gives us

VIN (0" —9) VI—AGp—VAGy

EV 6y w Evo

for almost all sequences { (Yl1 ,D}) }l L3 { (Y 0 DO) } . Or in another word,

E|f W {0 L, A DY)}
fi‘é% { ( é —E f(ﬁGp—f@Q)} } -9

Evo

for almost all sequences { (Yl1 7D}) } { (YO DO) } . Also, similarly to the proof of Theorem
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2.9.7 in van der Vaart & Wellner (1996), we have

Vv (9~

9)

e[ (B ooy Loy ] |
Sélzlalz VI-AGp—v2AGg -
JeBLy —E|f e
and
B [r () o (o Y]
—0
fselzlale E[ (\/ ?CGWGQ)

, Where

DY)}

> and f (—\/T_N (é* —(13)

£V

for almost all sequences { (¥;',D

DY {0,
f<m(<5*—43)

EVey

)

denote measurable majorants and minorants with respect to random weights used in boot-
strap and { (¥;',D})}7, . {(¥?,D?) }"_, jointly. This shows the asymptotic measurability of
(EV6y) VTN — ). Also, f((&V &)~

weights used in constructing ¢* for almost every sequence { (¥;',D})}" |, {(¥?,D9)}"_,, for

Tn(¢* — @)) is a measurable function of random

each continuous and bounded f. All these imply that Assumptions 3.1 and 3.2 in Fang & Santos
(2014) hold.

By Theorem 1.3.1, Assumption 2.2 in Fang & Santos (2014) holds. Moreover Ay, = Yé
satisfies Assumption 2.3(i) in Fang & Santos (2014) holds. By Lemma A.2.1 and Lemma B.3
in Fang & Santos (2014), Assumption 3.3 in Fang & Santos (2014) holds. If the CDF of
S, ((EV o) ' (VI—=2AGp—VAGy)) is strictly increasing at its 1 — a quantile ¢|_g, by
Theorem 3.3 and Corollary 3.2 in Fang & Santos (2014), ¢1_q —p ¢1—q-

Thus, if Hp is true and the CDF of Ay, ((v/1 —A2Gp —VAGy)/(&E V 6)) is continuous

at its 1 — o quantile c¢j_ ¢, under decision rule,

P (\/T_Ny((ﬁ) > 617()5)

—P <\/T_N§ﬂ((]3) —Cl—gq+C1—aq < C1,a> — Q.

115



(ii) Suppose Hy is false, that is sup;,c 4 ¢ (h) > 0.

First consider .7 (v/Tn (9* — ¢) /(& V 63,)). Since we have shown that

VNG = $)/(EV6y) ~ (V1-2Gp— VAGy)/(§ Vo)

m
i=1"

for almost all sequences { (Yl1 ,D}) } { (Yl.O,D?) }:l:l, by the continuous mapping theorem,

y<\/T_N(¢;*_‘§)) Wy<ﬂ—x@p—ﬁ@g>'

&V éy EVo
Construct
VIN (9" —¢
@’l—azi“f{“@(Y (W) AR ARTIAN) ) > l—a}.
N

(A.6)

By Theorem 11.1 in Davydov ef al. (1998), the CDF of . ((\/ﬂ@p —VAGg)/(EV c)) is

strictly increasing and continuous everywhere except on a countable subset of its support. By the

proof similar to that of Corollary 3.2 in Fang & Santos (2014), &|_, —p ¢|_,, Where ¢|_, is

the 1 — o quantile of . <(MGP — ﬂGQ)/(é V G)). By construction, 0 < &_¢ < & _,.
Thus, ¢1—¢ = 0, (1).

By Lemma A.1.8,

P(VINT (§) > é1a) 1.

A.3 Results in Section 1.4

Proof of Lemma 1.4.1.
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Letm =YV, IR f0,11x{z} (Yi, Di, Zi). Now we have

éK(hug)
=l§ (h-82) (Y;,Di, Zi) _12 (h-g1) (Y;,Di, Zi)

NS VEN e2(Y,DiZ) NS LYN, 81 (Y:,DiZ)

1 Y (h-g)(Yi,Di,Z) 1 X 1 1

]T[Z( gl))(z i l)+]T[Z — -5 (h-g2) (Y:,Di,Z;)
= (82) S\ vXiii g (Yi,DiZ) (82)
1 & (h- Y,D,Z 1 ¥ 1 1

_NZ gl i,Di, Zi) NZ — - (h-g1) (Y, D1, Z;)

and

g) — ok (h,g)
AR { S )
_ (%Vﬁ‘i[gz (Y;,D;, Z;) — P(gz)]) ( IIVZZI Nl ;ﬁéﬂlﬁfﬁé;)
(o) (FRESERS).

As defined before, ¥ = {1Rx{o,1}x{zk} k=12, ,K}, and it has been shown that % is
P-Glivenko-Cantelli by Lemma A.1.12.
We now first show the marginal convergence of v/N (¢3K (h,g) — 9 (h,8)).

By the multivalue central limit theorem,

(h-g2)(Yi,Di,Zi)  P(h-g2)

P(g2) P(g2)

| N (h-g1)(Yi,Di,Zi)  P(hg1)
SN:WZ P(g1) P(g1) ~N(0,%),

i=1| g2 (Y;,D;,Zi) — P(g2)
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where X is the covariance matrix of the asymptotic distribution such that

Yt X2 X3 X

Yo X Xo3 X4

L= ;
Y13 X3 X33z X34
Yig Xog4 X3s Xy
where
5 _P(h-g)| =P (h-g) , _ —|P(h-g)||P(h-g)
" P2 (g2) ’ P(s)  P(g)
213:%—1’(”&)7214 (( ‘)g) (81),
P(h-g\)|—P?(h- P(h

222:’ ( glf))2|(g1)( gl),223—%1)(g2),
2242%—P(h-gl)l%=P(82)—P2(g2),

T34 =—P(82)P(g1),5aa = P(g1) — P*(g1).

We can write

VN (¢k (h,g) — 9k (h,8))

(1 AT e (hDZ)  GER (s (DZ) )
C T YN (YD Zi) P(g2) § X &1 (Y, Di Zi) P(g1)

Notice that

L wE(he)(%DnZ) R XL (heg1) (YD1 Z)
’ ’ NZZ lgz(Yi7Di7Z) ( ) NZ; 181(Yi,Di,Zi)P(g1)

(h-g2) P(h-g1)\ _, . ¢
ﬁ(“*_ﬂ@ngm>‘A“
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which implies

\/N [qu (h7g) - ¢K (hag)] ~ N (OvAZAT) .

Also,
v (IP(h-g2)| P*(h-g2) |P(h-g1)|  P*(h-g1)
A ( Plg)  Plea) Plg) | Pla) ’0’0)
'<1 1 _P(h-g) P(h'gl))T
T PY(g) " Pr(g1)

_|P(h-g2)| P*(h-g2)  |P(h-g1)] P*(h-g1)

P2 (g2) P3(g2) P2(gy) P3(g1)
_P(h-g)| ([, [P(h-g)[\ | [P(h-g)| (, |P(h-g1)|
= P(g)) (1 P (%) )* P2 (1) (1 P(z1) )

This verifies (1.19).
For (/N (k (h1,81) — 0k (h1,81)) -, VN (9k (b, &) — 0x (hr,gz)))T with some inte-

ger ¢, similar results as above hold as well, that is, the marginal convergence holds.

Remember we defined a metric on % x% by
pr((h.g),(1,8")) = Hh_h/”Lz(P) + &1 _g,1||L2(P) + ng_g/2||L2(P)'
By Lemma A.1.10, 74 x¥ is totally bounded under pp. Let
Xw (h,g) = VN (9 (h.g) — ¢k (h,8))

Now we consider asymptotic uniform pp-equicontinuity of Xy in probability. Define another
function space by ¥ = {v cL? (P):v=nh-gg for some h € #x and gg € %(}. Define the em-

pirical process on 7 by

M=

Gy (v) = ﬁ (v(%.Dy.Z3) — E[v (%, D1, Z0)]}

1
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Notice that for each probability measure R on R3, we have

Vi =vallprr) = 111 - gx1 — h2 - gk2 | 1 ()
< |1 - gkt —ha- gkl gy + 12 - 8x1 = h2 - g2l 1)

< A = hall gy + gkt — gx2ll gy -

Thus, together with Lemma A.1.5, with F = 1 being the envelop function of 7#", we have for all

£>0,
N (elIF ), 7L (R)) < max {N (g,%{,ﬁ (P)).N (g,%ﬂ )}

Similarly to Lemma A.1.6, ¥ is a R-Donsker. Then for all €, > 0, by Example 1.5.10 in

van der Vaart & Wellner (1996), there is 85 > 0 such that

lim supP* sup Gy (v) =Gy (V)| >€ | <n.

N—soo =112y <86

Define Hy (u) = (vVN) ' YN, {u(Y;,D;,Z;) — P (u)} for all u € Y and it is easy to show that

Yk is a P-Donsker. This implies for all €, > 0, there is 8y > 0 such that
lim suplP* sup |Hy (u)—Hy ()| > € | <n.

N—reo H”_u,||L2(p)<3H

As defined before,

X (8) = X (,8")] = | [V (6 (h,8) = 0xc () | = [V (6 (W) — 0x (H8))) |
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Then by (A.7), for all € > 0,

P* ( sup ‘XN (h,g) — Xy (h’,g')| > 8>
pP((hvg

):(H'.g'))<8
5 &
4

. / . ,
<P ( sup Gy(h-g) Gn(M-g))
pP((hvg)v(h/vg/))<8

P(g2) P(gh)

. /- /
P sup Gn(h-g1) GN(h/gl) €
pr((g). (W g)<s | P(81) P(g)) 4
+P* ( sup |DHy| > E) +P ( sup |DHpy 1| > 2) , (A.8)
pp((hg). (W &) <8 4 pp((hg). (' )) <8

where

Y YN (h-gb) (Yi,Di,Z;)
LyN ¢ (%,Di,Z:) P (gh)

jivzé\’:l (h-g2) (Y:,Di, Z;)

DHy> = Hn (82)
+ Y 8 (Yi,Di,Zi) P (g2)

—Hy (g5)

and

YN (h-g1) (Y:,Di, Zy) («) ~ YV (h-gh) (%,Di, Z:)

DHpy = Hy (gl) — —H g1 )
v IV 81 (Y, Dy Zi) P(g1) vV, 8 (YD, Zi) P (g))

We now consider each term on the right-hand side of the inequality in (A.8). First we have

P* ( sup > f)
PP((h,g),(h/,g/))<5 4

<P s [Gv() =Gy (V)| > SminP(Z=2)

=1l 2 () <8 k<K
€
+P* ( sup > _)
pe((h.g),(H g'))<8 8

Gy (h-g2) Gn(H-g)
P(g2) P(g5)

Gy(h'-g) Gn(M-g5)
P(g2) P(g)
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and similarly,

IP’*( sup }GN(h-gl)—GN(h/-gll)‘ >Z>
pP((hvg)v(h/agl))<8
<P* sup ‘GN (v) =Gy (V) | > giriilr(lP(Z = 7)

vav’||L2(P)<5

G h/' / G I’l,‘ /
m( wp |G Gn(H-g))
pP((hvg)v(hlvg/))<6

S £
3]

P(g1) P(g})
Also,
“ €
P ( sup |DHp»| > —)
pr((h,g),(Hg))<5 4
1 vN
% _Zi: (th)(Yl7D17Zl) €
<P sup [Hy (82) —Hn (85)] - 1oy 1 3
pr((h.g). (i .g"))<8 v Liz182 (Yi, Di, Zi) P(82)
* E
+P ( sup |Hy (g5) - DRy | > g)’ (A.9)
pP((hvg)a(h/7g/))<6
where

X (hg) (YD Z) X (h-gh) (Yi,Di,Z))
DRy, = -

LYY e (YD1, Zi)P(g2) A~ XN, g (Yi,DiZ)P(gh)

Now we consider the two terms on the right-hand side of the inequality (A.9).

We have that

1 vN
* _Zi: (hgz) )]l'vDi7Zi
P s [ — i ()] D 82 B D )
pr((h,g), (W g')<8 v L1 82 (Y:,Di,Z;) P(g2)

P(h- £
SP*< sup [Hy (82) — Hy (83)] ba)l, E)
pr((h.g

).(H.g)<5 . P2 (gZ)
[Hy (g2) —Hn (g5)] €
LXN | (hg2)(YiDy.Zy) P(hugz)} > 16

>e
8

+P* sup
pr((h.g),(h'.g'))<6

YN (VD Zi)P(g2)  P*(g2)
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and

P* ( sup |HN (g'z) 'DRNQ‘ > g)
p((h.g),(H.g'))<d

. P(h-g) P(h-g5) €
[ swp () - S £
(pp«h,g),(hcg’)ka P2(g2)  P*(g)) 16

X €
+P ( sup ‘HN (glz) -{DRy» —EDRNz}‘ > 1_6> ,

pP((hvg)v(hlvg/))<6
where
P(h P

When 6 is small enough,

lim supP* ( sup |DHpy»| > E) <0
pr((h 4 4

N—so0

Similarly, when & is small enough,

€
lim supP* ( sup |DHy1| > —) <
Noeo  \pp((hg),(H.g))<d 4) 4
Notice that

Hh'gl _h/'g/IHLZ(p) < ||h'g1 _h,'ngLz(p) + Hh/'gl _h,'gllHLZ(p) <pr ((h7g)7(hlag,))-

Because 7 is a R-Donsker, for any €,17 > 0, when § is small enough,

lim supP* sup |G (h-g2) — Gy (W -gh)| > =minP(Z=7) | < o,
N=e pr((h.g),(.g')<8 8 k<K 8
i * o & . n
limsup® sup Gy (h-g1)— Gy (W -g})| > cminP(Z=z) | < .
N=e pr((h.g), (I g')) <8 8 k<K 3
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Also, when & is small, pp ((h,g) , (h',8")) < & implies [|g1 — &} [|;2(p) < 8 and [lg2 — &5 [l ;2(p) < .
and this implies |P(g; — g})| < 8% and |P (g2 — g5)| < 6°. Thus, small § implies

Gy(W-gh) Gy(H-gh)| e
lim suplP* sup N(-85)  Gnl /gz) S8 <
Noe \pel(ng).irgn)<s| Pl82) P(ge) |~ 8) 8
and
Gy(i-g)) Gy -g)| e
lim supP* sup N(-81) Gl ,gl) > — <E.
N \pplthg).(wg)<s| P(81) P(g) | 8) 8
Putting all above together, we have
lim supP* ( sup }XN (h,g) — Xn (h’,g’)! > 8) <n,
N—yeo pe((h.g),(H.g')) <8

which indicates Xy is asymptotically uniformly pp-equicontinuous in probability.
With the marginal weak convergence of v/N {431( — (I)K} and total boundedness of ¢k x¥

by Lemma A.1.10, we can conclude that
VN {0k — ¢k } ~ Gk,

for some Gaussian process Gg. ®
Proof of Theorem 1.4.1.
By Lemmas A.1.10 and A.1.11, 5k x ¢ is compact under pp.

Let @y = ¢k /(& V 6kn). Given each sequence ry — oo, define for all @ € Q,
Dy (@) = {@ € 7 (Hk x9) : o (@) +ry' ¢ € 7 (Hx x 9} .
For all o € Q, define

en (0) (W) = ry (Zk (on () +ry' v) — Tk (on (0)))
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for all y € Dy (). We know ¢y — ¢x/(EV or) = @pas. Let Qp ={w € Q: oy (0) — ¢o}
and P (Qg) = 1. Now we want to show that there is some g, for all @ € Qo, gn (®) (yn) — g(Y)
for all yy € Dy (w) with yy — y for some v € C (% x ¥4). Now we fix an @ € Q.

Given {Yi,Di}f]:l, Py has finitely many possible values on 7% x ¢. Suppose there are

in total Jy possible values of Py. Since @k is continuous on 7% x ¢, for all y € C (H#kx X ¥),

SUP (1 o) i x (PN +INY) (h,g) < oo.

We define a correspondence Py, o : £7° (#k x 4) — R by

Yoty (W) ={(h,g) € #x x4 :y(h,g) =Tk (¥)},

for all y € ¢ (% x¥). By the proof similar to that of Theorem 1.3.1, we can show that
W s« is upper hemicontinuous at ¢.

Under Ho, SUp(j, ). x On (h,8) = 0. And it is easy to show that under Ho,

P stiexa (On) = Porexs (00) = Pz xe (0k) -

Since @y + ty Y is not continuous on % x ¢4, ¥ Aix9 (Qn +1yy) may be empty. As we have
shown earlier, Py at most has Jy possible values. We can construct a modified version of @y,

denoted by ¢y, such that @y, is upper semicontinuous and
(D) SUp( g)e i xg ON (7, 8) = SUP(j oy i x P (1:8)
(i) SUp (g e <7 (ON +INY) (h,8) = SUP( o) e (P + W) (,8),
(ili) @y +INy — @p, as N — oo,

by a similar strategy to that of Theorem 1.3.1. Then ¥ ., & (@}, + 1IN V) # @.
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Letty = rﬁl. It is easy to show that

sup  {oy(h,g)+itnyn(h,g)}— sup  {on(hg)+tnw(h g)}
(h,g) ek xY (h,g)eHyx x4

<ty ||lyn — vl =o(tn).

As discussed before, ¥ iexg (@ +1tyy) is nonempty. Since @j + vy converges to @

and ¥ i x% 18 upper hemicontinuous at @y, there is a sequence Sy such that

sy (On+ivy) CP s xy (90)™

where

¥ exs (90) = { (h,g) € A x 9 inf pp((h.g),(H.g)) <bvnp.
(.8 )€Y s x5 (90)

Remember that under Hy,

¥ siexa (90) = Yo <y (@n) and sup on (h,8) = 0.
(h.8) €Y s x4 (90)

Thus, we have that under H,

sup {(PN(hag)+tNlI/(h7g)}_ _Sllp {(pN<h7g)+th<h7g)}
(h.g)eHk <Y (h.8) €Y sy x9 (90)

< sup {on () +wwvw(hg)}—  sup  wy(hg)
(1.8) €Y 5, x5 (90) N (h.8)€¥ s x(90)

< sup W (hi,81) — W (h2,82)| = o(tn).
(h1,81),(h2,82) €K <Y ,pp((h1,81),(h2,82)) <N
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Finally,

sup  {on(h.g)+wwyn(h.g)}— sup  on(h,g)—ty  sup v (hg)
(h,g)e A x4 (h.g)ex x4 (h.8)€Y i x9 (90)

IN

sup  {on(h)+ivy(h)}—iv  sup v (h,g)|+o(tn) =o(tw).
(h.8)€¥ sy x (90) (h.8) €Y sy x (90)

This implies that gy (®) (yy) — SUP (1,0) € ;s (90) v (h).
By Lemmas A.1.2 and 1.4.1,

() () e ()

where by definition, for all y € ¢~ (% x 9),

Sy W)= sup  y(hg)= sup v(h,g),
(h.8) €Y sy x (h.8)€Y s x4 (90)

under Hy. m

For all sets A1,Ay, C % x ¥, define

7[1 (Al,AQ) = sup inf pPpr (a,b),

aeAl bEAz

and

dy (A1, A2) = max {711 (A1,A2), d (42,41)}

The following lemma concludes that P A xw 10 (1.21) is valid in the sense that {521(1\/ satisfies

Assumption 3.3 in Fang & Santos (2014).
Lemma A.3.1 Under Assumption 1.3.1, if Hy is true, dy (‘i“%xg,ll{%ﬂ[(xg> —p 0.

Proof of Lemma A.3.1.
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The proof strategy is similar to that of Lemma A.2.1.
First, for all € > 0,

lim P (7H (Potaxa P oixs) > 8) < 1\;1_1&19’ (Pt xa\P a9 # 9)

N—oo

< lim P sup 0K (h,8) — 0k (h,8)| > T

T N—oo -
(h7g)€\ijK><{//\\ijK><fj

< nmp((h )sup Vv |9k (h,g) — 9k (h,g)| > TN’EN).
8

- Noeo XY

By Theorem 1.4.1, VN ((ﬁK — ¢K) ~» Gg. Then by Theorem 1.3.6 in van der Vaart & Wellner
(1996), SUP( g)c 4 xe VN |9k (1,8) — Ok (h,8)| ~ SUP(hg)c g xes |Gk (B, 8)]. If VNTyY — oo,
then limy_so P (7}1 (‘P%j(xg,liljﬁ{xg) > 8> =0.

Next, consider 7 H (\i{%kag, ‘I{;ﬁxg). Define

d((h,g),Yixy)=  inf  pp((hg),(H.g))

(h/7g/) ET%K %

for all (h,g) € H#x x . Foreach € >0, let Dg = {(h,g) € #x x ¥ :d((h,8),¥Y 5 x9) > €}.
We have shown that 7% x ¢ is compact under pp by Lemmas A.1.10 and A.1.11. Suppose there

is {(hn,gn)}, C D¢ and (hy, gn) — (h,g) for some (h,g) € Hx x 4, then

d((h,g),Yogxy) = inf  pp((hg),(H.g))

(8" )€Y sy x5

> inf pp ((hnagn)v(h/ag,))_pP((hag)v(hmgn)) >e—pp((h,8),(hngn)),

(W .8 )Y sy x5

which is true for all n. Letting n — oo gives us d ((h,8),¥ % x») > €. This implies D is

closed in % x ¢ which is compact and thus D is compact. If D, # &, then 35 > 0 such that
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inf(j, o)ep, |9k (h,g)| > 8. Also,

lim P (7,, (¥ otixs, Yocs) > €)

N—roo

=lim P sup inf pr ((h,g), (1)) > €
e (1,8) €W s <o (W ,8)EY s xes

Sz\l/im P sup |0k (h,g)| > O, ~sup ‘(])K (h,g)‘ <1y
e (1.8) €Y 5 x s\ s 0 (h.8) €Y g x g \¥ sty 9

Here we define events

63 N

O¢
S Sup(hvg)elpéfl(x%\\{{%”l(x% |¢K (h7g)| + 2

Now we have

. Se
P sup |9k (h,g) — 9k (h,g)| < 3)

(h,g)e k<Y
A O¢
<P ~sup |9 (h,g) — ¢k (h,8)| < 5
(hvg)elp.}kag\l{l.ﬁkaff
A O
<P ~sup q)K(h,g)\— _ sup |0k (h,8)] S?
(h,g)Glefog\lefog (hvg)el}’%](xg\quka(!/
—P(A).

129



By Lemma A.1.8, limy_,.. P(Ay) = 1. Thus,

lim P (7,, (P vt ¥ ) > s)

N—oo
<1\}i_r>rio]P> _sup |0k (h,g)| > O, ~ sup M;K (h,g)’ < 1n,AN
(h.8)€¥ s x5\ 5 x50 (h.8)€¥ s xo \¥ st x5
: A O¢ A
S[\}I_IQOP . sup |¢K(h7g)} > . sup |¢K(h,g)| <V
(h.8) €Y sz x 9\ sty 7 (h.8) €Y st x 9 \W st 7
=0as 1y | 0.
|
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Appendix B

Proofs for Chapter 2

B.1 Main Results

Proof of Lemma 2.2.1.

Define 7 : L'[0,1] — ¢[0,1] by

J§ Q(r)dr
Jo O(t)dt’

7(0)(p) =

forany Q € L'[0,1] and p € [0, 1]. For any h,,h € L'[0, 1] such that &, — h,

Q(t) +tuh

a(0)dt fy @)

(fé’
Jo O(t) +tyh
o h(r)dt Jo

n(2)dt fQ(t)dt)ln
Q(1)dt — [ Q(1)dt o h(t)ds

(Jo Q(1)dt)?
(t)dffo Q(r)dr — [ ()dffo

:<ﬁgm+%

PR fy

O(r)dr — [

In

()+tnhn(t)dt> 1
Jo Q1) + taha(t)dr fy Q(t)dt

Q(1)dt fo h(t)dr _ Ay(p)

= B.1
Bo(p) (B.1)

(Jo O(t)dr)?

131



where

Mm:{jfmmm[:gom—[fqnméﬁmﬂm>(ggamoz
~([Mnoa [ oar- [0t [ har)
- [( IA Q(f)dt>2+tn (f mioar) ([ Q(t)dl>]

<2y ]| ( [ Q(t)dt>3 +0(1). (B.2)
and
Balp) = [( A Q(t)dt)2+tn (f mioar) () Q(t)dt)] (f Q(t)dt)2
= ( / | Q(t)dt)4+0<tn>- (B3)
Then
e R e

This implies .7 is Hadamard differentiable at Q tangentially to L' [0, 1] with derivative

_ J§R()dt [y Q(1)dt — [ Q(1)dt fy h(t)ds
(Jo Q()dr)? |

Tp(h)(p) (B.4)

Notice that 2(Fj) = 7 o ¥ (F;) . By Theorem 3 in Kaji (2017), ¥ is Hadamard

differentiable at F; tangentially to Cy[0, ) N L, with Hadamard derivative

P)(p) = — L

for all h € Cy[0,00) NL. It is easy to show that ”//Iéj (h) € L'[0,1] when h € Cy[0,20) NLL. Then by
Lemma 3.9.3 (Chain rule) in van der Vaart & Wellner (1996), .7 o ¥ is Hadamard differentiable
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at F; tangentially to C[0,0) NIL with derivative .7, (F) © ”//F’j. |
Proof of Lemma 2.2.2.

By Proposition 2 in Kaji (2017), under Assumption 2.2.1, , /n; (F; — Fj) ~ G, for some
Gaussian process G in L with mean zero and covariance function Cov(x,y) = F;(x) AF;(y) —
F;(x)Fj(y). So we can write G; = # (F), where #  is a standard Brownian bridge. Now we
can write # (t) = A(t) —tA(1) for t € [0, 1], where A is a standard Brownian motion with a.s.
continuous paths. This implies G; € Cp[0,00) NL a.s..

Then by Lemma 2.2.1 and Theorem 3.9.4 in van der Vaart & Wellner (1996) (Delta

method),
Vij(Lj—Lj) ~ 2, (B.5)

for some Gaussian process .Z; with a.s. continuous paths.

Under Assumption 3.3.1, we know the two subsamples are independent, then

VT —9) = VTl — L) — VT, (L1 — Ly)
VAL V1 —AA. (B.6)

]
Proof of Lemma 2.2.3.

Remember F Jf" is the bootstrap CDF obtained from sample {Xl-j * ln; |- As we show before,
Lj= Z(Fj)

BLi(L)={h:L—>R: sul]i|h(G)\ < 1and |h(Gy)—h(G2)| < |G —G2]IL}-
Ge
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By Lemmas A.16, A.17 and A.18 in Kaji (2017),

sup |E[h(y/mj(F} — Fp) (XL AXP V2] = ER(G))]| =0

heBLy (]L)

in outer probability and , /i (F j* —F ;) is asymptotically measurable. Then by Lemma 2.2.1 and
Theorem 3.9.11 in van der Vaart & Wellner (1996),

VL~ L)~ 24(G)), (B.7)

in outer probability measure, where G; is the asymptotic distribution of , /i; (F i —F;). Also
Theorem 3.9.11 in van der Vaart & Wellner (1996) implies that , /7 (L* L L;) is asymptotically
measurable and therefore /7, (¢ — q)) is asymptotically measurable. The weak convergence
result for ¢* follows Assumption 3.3.1.

% is a continuous map from L to £°[0, 1]. Thus it is a measurable map. It is not hard to
see that h(y/T,,(¢* — @)) is a measurable function of {w',W?} for any continuous and bounded

h from the expression that

—[Z(Ry) — Z(Ry))). (B.8)

Proof of Lemma 2.2.4. Recall that the Hausdorff distance between B(¢) and B,, is

A

an(B(9), Ba) = max { d u(B(9),B,), d u(BB(9))}, (B.9)
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where 7H(A,B) = Sup,c4 infpep |a — b| for any sets A, B. For ., by Lemma B.3 in Fang &

Santos (2014), we only need to verify that

du(B(9),B))= sup inf |p1—pa. (B.10)
P1EB(9) P2EB,

Then for any € > 0,

P(d u(B(9),B,) > £) < lim P(B(9)\B, # 2)

§P< sup !@(p)—¢(p)!>fn>§P<sup \/Tnlfﬁ(p)—¢(p)|>\/7nfn>- (B.11)

pEB((]))\é” p€elo,1]

With (2.13), by Theorem 1.3.6 (Continuous Mapping) in van der Vaart & Wellner (1996),

it follows that
VIL|$ =9~ V2L —V1-24]. (B.12)
And by Theorem 1.3.6 in van der Vaart & Wellner (1996) again,

sup VT|$(p) — ¢(p)| ~ sup [VAZ(p)—V1-21LZ(p)|- (B.13)

pE(0.1] pel0,1]

So if /T, T, — oo, the limit probability in (B.11) is 0.
Next, consider 7H(§H,B(¢)). Define d(p,B(¢)) = infycp(¢) |p — p'|. For any € > 0,
36 > 0 such that

inf > &, (B.14)
pe[o,lLd(p,B(m)zewp I > %
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if {pel0,1]:d(p,B(¢)) > €} # @. This is because ¢ is continuous and
{pel0,1]:d(p,B(¢)) > €} is compact.
To verify that D, = {p € [0,1] : d(p,B(¢)) > €} is compact we only prove that it is
closed. Suppose there is a sequence {p;} s.t. px € D¢ and p; — p then
d(p,B(¢))= inf |p—p'|= inf |p—pr+p—p
(p.B(9)) P'EB(9) | | P'eB(9) | |

> inf |pe—p'|—|p—pl =€—|p—pil, (B.15)
P'EB(¢)

and this is true for any k. So letting k — oo gives d(p,B(¢)) > €.

Then it follows that

P( H(B,,B(¢ >2£> =P| sup inf |p1 pa| > 2¢
p1€B, P2
P( sup  [9(p)| > 8. sup  [B(p)] an>
pEBn\B PEB,\B(9)
=P ( sup [¢(p)| > 8, sup [§(p)| < Tn,An>
pEBn\B PEBL\B(9)

+P< sup  [¢(p)| > e, sup |¢3(P)|§Tn,AZ>

pEB,\B(9) pEB\B(9)

. O¢ A
SP( sup [¢(p)| = -, sup !¢(P)\§Tn>+P(AZ)

pEB,\B(9) PEB,\B(9)

—0as T, |0, (B.16)

where

Se .
An:{ sup !¢(p)|—3§ sup()|¢(p)!}
0

PEBL\B(9) p€B,\B

ﬂ{ sup  [§(p)| < sup |¢(P)|+§}-

pGén\B((l)) PEBn\B(¢)
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In the second equality, we used one result that P(A,) — 1. This is because
SUP e 3,\ B(9) |d(p) — ¢(p)| — 0 a.s. by implication of Theorem 11.1 in Csorgo et al. (1986) and

~

< sup |d(p)—9(p)l, (B.17)
PEB,\B(9)

sup  [(p)|— sup [@(p)]
PEB,\B(9) PEB,\B(¢)

which implies ’suppgén\B(q)) 1d(p)| — SUP e\ B(9) |¢(p)|’ — 0 a.s. As a consequence,

|

=P< sup \¢(p)|—%§ sup  |§(p)| < sup |¢(p)\+—>

sup  [B(p)— sup [9(p)]| <
pEB\B(9) PEB,\B(9)

PEB\B(9) pEB,\B(9) pEB,\B(9)

=P(A,) — 1. (B.18)

We used another fact in (B.16) that for any events A, s.t. lim,,_,.. P(A,) — 1 then for any event

|
Lemma B.1.1 For any h € £°)0,1], Z!(h) < .7 (h) almost surely.

Proof. By definition

Zn(h) = sup h(p), (B.19)
PEBy

where B, = {p €[0,1]: |¢(p)| < 7, }, and

S (h) = sup h(p). (B.20)
pel0,1]

Clearly, B, C [0, 1], which implies .7/ (h) < .7 (h). m
Proof of Lemma 2.2.5.
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For any 1, let By, = {p € [0,1]: |¢(p)| < T} and B, = {p €[0,1]: §(p) > 7,}. Then

we have

Bo(¢) ABoy = (Bo(9)\Bon) U (Bon\Bo(9)), (B.21)

and

Bi(¢)AB1y = (B+(9)\Bin) U (B1n\B1(9)). (B.22)

Let u denote a Lebesgue measure. First consider By(¢)/\By,. For any & > 0,

P(u(Bo(9)ABo,) > €)

< P(1(Bo(¢)\Bon) > £/2) + P(1t(Bon\Bo(¢)) > €/2). (B.23)

Remember we have sup g 1] 10(p) — 9(p)] — 0 as. ie. P(4y) =1,
where Ay = {® :sup (o 1] |0w(p) — ¢(p)| — 0}. Now we fix any @ € Ay. Forall €, IN > 0, s..
for any n > N, sup (g 1] |0w(p) — ¢(p)| < €. Then we can find €,(®) s.t. SUP e (0, 1] 100 (p) —

0(p)| < &,(w) for each n and &,(®) — 0. Thus

Bow(w) C {p €[0,1]: [9(p)| < Ty +&a()}. (B.24)
and
Bou(@)\Bo(¢) C {p €[0,1]:0 < [¢(p)| < Ty +&a(w)} . (B.25)
So we have
1 (Bon(@)\Bo(¢)) =0, (B.26)
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for any @ € Ay, which implies 1 (Bo,\Bo(¢)) — 0 a.s. Then

I{IJ(BOn\BO(¢)) > 8/2} —0a.s..

By Dominated Convergence Theorem,

P(R(Bon\Bo(9) > €/2) = [ 1{1(Bon\Bo(9)) > €/2}dP 0.

By arguments similar to (B.11),

P((Bo(9)\Bon) > €/2) < P(Bo($)\Bon # @) — 0.
Hence
P(u(Bo(¢)ABo,) > €) —= 0,

for any € > 0, which implies i (Bo(¢)ABo,) = 0,(1).

Next consider B (¢)AB.,. Fix any o € Ay,

B+ (¢)\B1n(@) C{p€[0,1]:0< ¢(p) < 7y +&x(0)},

by similar arguments,

P(u(B.(§)\B.n) > £/2) 0.
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and

P(U(B4n\B1(8)) > £/2) < P(B1,\B1 () # @)

< P( sup  |9(p)—o(p)| > Tn>

PEB+11\B+(¢)
§P< Sl[lp}\/Tnlé(p)—q)(p)l >\/an"> — 0, (B.33)
p€l0,1

as shown in (B.11). m
Lemma B.1.2 For any h € £~[0,1], .Z!(h) < .7 (h).

Proof. By definition,

I (h) = /max(h(p),())l (0<p<1}dp. (B.34)

and

Mp)I{0<p<1}dp+ [ max(h(p).0)1{0<p<1}dp

B +n Bon

§/max(h(p),0)1{0§p§ 1}dp = 7 (h). (B.35)

Proof of Theorem 2.2.1.

We first prove ¢|_q —+p c1—q by verifying the assumptions of Corollary 3.2 in Fang &
Santos (2014).

In the setting of the test, D = ¢°[0, 1], and E = R. ¢~[0, 1] is a Banach space under norm
|| -]l and R is a Banach space under |- |. By Assumption 2.2.4, .% is Hadamard directionally
differentiable at ¢. So Assumption 2.1 in Fang & Santos (2014) holds.

By Assumptions 2.2.1, 3.3.1 and 2.2.4 and (2.12), Assumptions 2.2 and 2.3 in Fang &

Santos (2014) hold.
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Assumptions 3.1 and 3.2 in Fang & Santos (2014) are satisfied automatically by Lemma
2.2.3.

By Assumption 2.2.5, Assumption 3.3 in Fang & Santos (2014) holds. Then by Corollary
3.2 in Fang & Santos (2014), if the CDF of ﬁé, (\/Ifz —V/1—=1.7,) is strictly increasing at its
1 — o quantile ¢j_¢q , then ¢1_g —) C1—q.

Under decision rule (2.33), if Hj is true,

VIZ(9) = VT (Z(9) = F(9)) ~ FH(VAL — V1= 124). (B.36)

Thus /T, 7 () — &1 _g ~ ﬁq’)(\/xo% —V1—=A4) —c1_q by Slutsky’s Theorem. Since the
CDF of fq’) (\/I.ﬁfz —+v1—=21.4) is continuous at ¢|_, by assumption, the CDF of
,35(;,(\/1.,2”2 —V1—=A4) — ci_q is continuous at 0. Then we have

p(\/TngZ((l;) —81—q >0)=1-G,(0)

—1-G(0) =P(F)(VAL—V1—A L) —c1_q > 0), (B.37)

as n — oo, where G, and G are the distribution functions for v/T;,.% (¢) — &|_q and T (VAL —
V1—=2.2)) — c|_q respectively.

If Hy is false, by Assumption 2.2.2 .%(¢) > 0.

Since \/T,(F (@) — F(9)) ~ F4 (VAL — /1= 1.2)) still holds, then

PV ()~ ¢1-a > 0)
=P(VT,(F(§) — F(9)) — ¢1-a + VT T ($) > 0) — 1. (B.38)
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Appendix C
Proofs for Chapter 3

C.1 Oracle Consistency

We first show general results for the oracle properties of penalized regressions and later
we will use these results to prove the oracle properties of SFGMM estimator.

Suppose a general form of criterion function is

p

Os(os) = Os (ats) + Y. P (16)]) + APy (h), (C.1)
j=1

where Q is a loss function, P, is a penalty function which satisfies Assumption 3.3.4 and P, is a

penalty function for & with tunning parameter Ay,. This criterion function is a more general form

than the one used in the main text. We can let A;,, = 0 and obtain the criterion function used in

the main text.

Lemma C.1.1 Suppose the following conditions hold:

(i) Almost surely, the loss function Qs (as) has first and second order pathwise derivatives

and by functional Taylor expansion in </ ),

~ ~ 205 (I,
Os (os) = Os (I, 0p5) + %SOC“) [ots — T, s

1 azés (IT, 005 + 6 (a5 — I, 5))
+ 57 2
2! dog

[ots — T, 0005]° (C.2)
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where ¢ € (0,1);

me. 2
(i) max,,<2 sup, \/Z§:1 (8 8%0)) = 8¢ < oo for each n;

o | 00g(TT,
(iii) | 2255) o5 — T, 5] | = O, (an) || s — Tyt

o Where a, = o0(dy);

(iv) 3C, Y, > 0 such that for each ys € &/VT("), h= le‘:l b;oj,
[Py () — Py (Tuho)| < €836 —bollE, (C3)

with ;thn(()'% =o(l);

(v) Let e1n = an+ /5P, (d,) and ez, = Supan + A8ty = 0 (1), where ay, satisfies (iii). For
each € >0, 3Cy(n) > 0, such that with probability 1 — €, for all large n with ||6s — 6os|| ; =

O (e1n/Ca(n)) =0(1), ||b—bo||p = O(e2,/Ca(n)) = o(1) and a5 = (65,21;qu)j>,

. 19%0s (T, 005 + ¢ (as — I, 0p5))
inf —
cel0,1] 2 aotg

s — [, 005)* > Ca (1) |75 — sz (C4)

where ys = (84,0")" and yos = (8}5,b})". Also, it holds that ey, /min {1,Cs (n)} = 0 (dy).

Then for each € > 0, with probability 1 — €, there is a local minimizer &g of Qs (as) on

the sieve space ssz(s) such that || 0 — I, 05|, = O (Cz(n)fl <€1n + 5ngo€2n))-

In Lemma C.1.1, condition (i) shows that the loss function can be written as a functional
Taylor expansion. In this way, we can take advantage of the quadratic form to prove the existence
of the local minimizer. Condition (ii) is a restriction for basis functions {¢;} ;. Condition (iii)
basically requires that the first order part of the Taylor expansion is o(||as — IToys||s). Condition
(iv) requires the penalty function on the nonparametric component to be continuous with respect
to i around IT,. Condition (v) requires the quadratic term in the Taylor expansion to be large
enough, so the difference of the first order and second order terms of the Taylor expansion is

positive. Because of the setup of the model, we allow C; (1) tobe a o (1).
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Proof of Lemma C.1.1.

The proof closely follows that of Theorem B.1 in Fan & Liao (2014). We extend it to
allow for the nonparametric component.

Define

A = {5 = (86.)" < 165 — Boslz < T (w)enn, b= bollg < Ta(n)ean |

for some 7 (n), T2(n) > 0 such that

w-o{ct)o-o{ )

For all 75 € 9.4;" and a5 = (65, ) with h = YX_, b;@;, by condition (i) we have

A A 20s (11,
Os (o) — Qs (I, 0005) = %Saw) [ots — T, s

1 9?05 (I, 005 + ¢ (ots — T, 05)) 2
+5; Ja [ots — 1, 0tos]

N

Z ‘ QSJ} (| Bos. ‘ ” + AinPh () — AP (o) - (C.5)
i=1

For each € > 0, by condition (iii), 3C; > 0, such that for large n, P (B},) > 1 — €/2, where

By, — {3QS (I, c0s)

5 [ats — I, 0605] > —C Has—HnaosHsan},
s

By condition (v), 3C»(n) > 0, such that for large n, P (By,) > 1 —€/2, where

By, = {5 Os (I, 0tos aéz( S %s)) [OCS—HnOCOS]Z>C2(”)H7S_YOSH]25}>
: S

¥ = (84,6') and g € (0,1).
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Since h —I1,,hg = Z’;Zl (bj — boj) @;, by condition (ii),

Xk: (b —boj) 99 (1)

[ —TLahol|y = max sup

ko 7omo: (1) 2
( "’f“) 1b—bolly = Supllb—bolly.  (C6)
j=

By Lemma B.1 in Fan & Liao (2014), with condition (v),

< V/sP, (dn) |65 — Bos||; - (C.7)

J

N

[P ([8ss]) = Pa([60s.)]
By conditions (i), (iv), and (v), for each %5 € 945" with h = ¥%_ b;¢;,
[Py () = Py (Thaho)| < Gy 1 — o & (C.8)

for some Cj, > 0.
With e1, = a, + /5P, (dy) = 0(dy) and ez, = 8ppan + A0ty = 0(1), on the event

Bln ﬂan,

Os (as) — Os (T, 05)
>~ C || ats — 005 s @n + Ca(n) || 5 — Yos]|2
— /5P, (dn) 1|05 — 605l — Chnn s ||b — bol|
= —C1 |65 — Bos]|p an + Ca(n) |85 — Bos|z — v/sP; (dn) (|65 — 6os]|
—C ||h—uho || an +Ca(n) ||b —b()H% —Chlhn5,2/(’;,|\b —bollg
>11(n)ern (—Cran+ Ca(n)t1(n)e1n — v/sP, (dn))
—C18up1b—bol| g an + Ca(n) |b = bollz; — ChAan S| —bo £

>11(n)el, (—Ci +Ca(n)11(n) — 1) + 1 (n)e3, (—Ci + 12(n)Ca(n) — Cp) . (C.9)
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Then if we take 7 (n) = (C; + 1+ €1)/C2(n) and 172 (n) = (C) 4+ Cj, + &) /C2(n) for some €, &, >
0, Os (as) — Qs (I, aps) > 0. Moreover, because Qs () is continuous on ,/I/T(n) and ,/VT(") is
compact, there exists a local minimizer &g such that Qg (&) < Qs (o) for all g with 75 €

</VT("). Also,

é\CS - HnaOSHs < (Tl (”)eln + T2(n)6n(p62n) . Let 61106 =T (”)eln + TZ(”)Bn(peZn’

then || &g —IT, 05|y = O (One)- ™

Lemma C.1.2 Suppose the assumptions in Lemma C.1.1 hold. Let T be a projection function

such that for all o = ((91,..., Op)',h),

_ _ _ 0, ifjes
ra=((61,..8,)';h).0,=1 ,
0 ifjé¢s
where S = {j <p:6y; # 0}. We also write
_ _ _ 0, ifjes
T9=((91,. ,9,,)/), = yies
0 ifj¢s

Suppose with the local minimizer Oy in Lemma C.1.1, it holds that with probability approaching
one there exists a neighborhood B C %(") of (6s,0) such that for all oo € B with o« = (s, Oy)

but Oy # 0,

O(Ta)—0(a)< Y P.(]6)])- (C.10)
j7s

Then with probability approaching one, & = (0s,0) is a local minimizer of

A

Q(a) zQ(a>+an(!e,~})+Athh (h) (C.11)

J=1

on Jz/k(n), and |0 — apl|; = O (8na), where 8pq is obtained in Lemma C.1.1.

The proof of Lemma C.1.2 is similar to that of Theorem B.2 in Fan & Liao (2014).
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Lemma C.1.3 Given C > 0, for all as such that ||os||, < C, under assumptions 3.3.1-3.3.7,

1 0 Zi, 0,
-y { P (Zi,0s) [Aa) VSz} =0p <\/ 232+5k> Aoy, (C.12)
i3 d0ss E
1 & [0%ps (Zi o ) i}
— Z —pS( > S> [A(Xs,A(Xs] VS1:| = Op <S\/ 2S+k> ||AOCS||S HAOCSHs' (C.13)
i3 dag E

Proof of Lemma C.1.3.
By Assumption 3.3.5, the first order pathwise derivative of p (Z;, &) exists, that is, for

each o € ,;zf(”),
ap (Zi7 a)
do

0 Zi, 0 +tAa
ao] = PP T OLIRD),

By simple calculation, for each ¢ such that ||a||; < C, we have

op (2, @) (\ o 9P (V,X'(6+1A0), (h+1tAh) (5 (Y, X' (0 +1A6))))
T e A= o =0
=0(1)X'A6+0(1)Ar (8 (¥,X'0)), (C.14)
and
% [Aa,Ad] = 0(1) (X'A6) (X'AB) +0O(1) (X'A6) AR (5 (Y,X'6))
+0(1)AR (6 (Y,X'0)) (X'A6) +0O(1)An (8 (Y,X'6)) AR (6 (Y,X'6))
+O0(1)AK (8(Y,X'0))X'A6+0(1) (X'A0) AR (6 (Y,X'6)). (C.15)
If Ao = Aa,
I°p (Z,0)

Sop— 8l =0(1) (X'A6)" + 0 (1) (x'A6) A (5 (v.X'6))

+0(1) (AR (8 (V,X'0)))* +0(1) (X'A8) AK (8 (Y,X'6)).  (C.16)

|et||; < C can easily be satisfied if the parameter space is bounded. Then under Assump-
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tion 3.3.7, for each At at o such that || os||, < C, 3M > 0 such that

1E [[(0(1) XsA85+ 0 (1) Ah (3 (¥, X5(85)))) Vs|] |
<M {||E [[VsXsabs[]]| o + [[E [|Vsan (8 (¥.Xs65)) ]|}

SM{\/S(Zs—i—k) max E |V Xsul] +v/25+k/My ¢ [|Aas||, = O (\/2s2+sk> lAas],
m

(C.17)
Thus,
HE HM[A%M} = 0( V252 +sk) l|Aas]. (C.18)
Os E
We know
2ps(Z,a 2
(M[Aas]"sz>
Qs
=0(1) [(X§A95)2 +AR? (8 (Y,X405)) +2X{A0sAh (5 (Y, Xges))] V2. (C.19)

Then we have

E[V3 (x5805)°] < || B [V3XsX5] | I1865]1E = O (s) a2,

e

E [VGAR (8 (¥,X565))] = O (1) ||Aas|3,

and
E[|vixa0san (5 (v,x365)) ] < £ [[V3x4]] | laas |2 = 0(s) Aas| .
Thus,
dps (Z, 2
E (%[AO@]V&) =0(s)||Aag]? .
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Then for each € > 0,

d Z[7
Lyn | 2052:05) 7 gy VSi‘

,E (8 masvs ]
V25?2 + sk||Aas]|

A

]E > ev/257 1 sk | Aas|, )

P

> €

0 is d iy
gP( ’ %Z?:l ps((i“Sl [Aas| Vs — E [% [Aos] VS;}
2s+k
<X P(
I

. , 2
251k NE {(%S”QS) [Aats] Vsii — E [%f‘m [Aoks] VsziD }
) <

=L

2s+k

2 e2(25*+sk) | Aas|?
n &~1= Og Og >

lyn 1 dps(Z;,o) [Aats| Vs — E [M [Ac] VSlii|

2s +k
—0 C.20
— ) . (C20)

n2e2s||Aag||?

under Assumption 3.3.6(ii). Thus,

1 & dps (Zi, o)
; lz} (X—S [AOCS] VSl

ps (7,
— HE {M Aass] VS,} +0p (V252 sk Ao )
S E

~0, (\/2s2+sk||Aa5||s> . (C.21)

E

This equation shows the relationship between the norm of the first order pathwise derivative
(dps (Zi, o5) /dais) [Aos| Vs and the norm of the increment on the parameter which is ||Acs]| ;.

Consider

HE HO(l)VS (XgAes)ZH HE < M |[E [|VsXa65 (X5065)[] ||, (C.22)
for some M > 0. By assumption 3.3.7(i),
E [‘VSlxéAGS (XéAes) H = }A9§|E [‘VSIXSX§H \A95| S SMVXX HAQSH]%? (C23)
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and then

HE HO(l)VS (XéAes)ZH HE <M -svV2s+kMyxx ||A95||125 <M-sV2s+kMyxx ”AOCﬂl?

~0 <sx/2s—|—k> A2 (C.24)
Similarly,
|E [0 (1) (x5a65) (X¢A85) V] ||, = O <S\/2s+k> Aas], || Aas]), - (C.25)

By calculation similar to (C.17), 3M > 0 such that

21100 VaXsaosan (5 (v. X580} ][ < 12 [V (X5a0) ], ],

I

=0< s(2s—|—k)> a2 (C.26)
By calculation similar to (C.21),
1 & 9%ps(Zi, o
Ly Ips(Z0s) g 2yl — o, (sv/25+E) llAas]? (C.27)
n= o dag E
and
1 & 9%ps (Zi, o ) _
Ly PP 1n o aas)v| =0, (s TE) Iaas laasl, €29
i=1 S E

for each org such that ||as||; < C. These two equations show the relationship between the norm
of the second order pathwise derivative (9ps (Z;, tts) /9 02 ) [Ats, Adis] Vis; and the norm of the
increment on the parameters, namely ||Acs||, and ||Ads]|;. m
Proof of Theorem 3.3.1.

We verify conditions for Lemma C.1.1 and Lemma C.1.2 to prove the consistency of the

SFGMM estimator in Theorem 3.3.1.
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(s)

For each o € @7/, by Assumption 3.3.5,

5 (o) — & _ 905 (Myons) 19%0s(as) 2
Os (os) — Qs (I 00s) = Jois los HnaOS]+2 P los —IT00s)7,  (C.29)

where ag = I1, 065 + ¢ (a5 — IT,,0ps) with ¢ € (0,1). We write the difference between Qg (ais)
and Qs (IT,,0ps) in the Taylor expansion form. Next, we will show the first order and the second
order of the Taylor expansion satisfy the conditions of Lemma C.1.1. For the first term in (C.29),

9 Qs (I, cps)

1 & Z,H o
L iz i=1

IN

1 & ps (Z:, 11,
= Zps Zz,aos)Vsl] Js [— Y ps( D05 0%s) [ats — T s VSi]
L i=1

l i 3PS (Zlann(XOS)

s [T, 0605 — Qlos] VS,] Js [n Jas

i=1 i=1

1 dps (Zis )
+ [nZ—

[ots — I, 005] VSi] .

(C.30)

By Lemma C.1.3 and Theorem 4.1 in Fan & Liao (2014),

a Zl7nn
[ ZPS Zj, O‘OS)VSl] Js [— Y ps( 05 %s) [ats — T, 05] Visi
i=1

1 3 8 Zlann
<{[1= Y ps (Zi, c0s) Vi | || M5l Z ps( Gos) [os — I, 005] Vi
=0p (\/(ZS2 +sk) (25 + k) logp/n> [l ots — T, 005 (C.31)
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and

‘M [as _ HnaOS]

&ag

=0, (\/(25‘2 +sk) (2s +k) logp/n) ||ots — I 005

+0, (252 + k) || ctos — I aos | || ots — T, 0tps |

=0, (ay) ||as — I, 00s]|,, (C.32)

where a, = max { V(252 +sk) (2s+k)log p/n, (25* + sk) || ctos — Ha05||s}. Under Assumption
3.3.7(iii), ay = O (\/ (257 1 5K) (25 + k) log p/n), we let

e1n =\ (252 4 5K) (25+ k) log p/n+ /5P, (d) (C.33)
and
e = 81 (252 + 5k) (25 + k) log p/n+ AT, (C.34)

where ey,,, s, are the notations used in Lemma C.1.1.
Consider
9%Q0s (0is
% [ots — T, 0t05]°
o
li dps (Zi, ts)
n= 8055

|
1 1 & 92ps(Z;, o
ZZ (Zi, ats) Vsl]J lﬁzw[%—nn%s]z‘/& :

" dps(Zi,a,
) %SS) [ais — I, 0] Visi

1
[ots — IT,, 0] Véi] Js [Z

=

(C.35)
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First we have

(19 dps (Z;, a) /
TS T — 11, 178
”izi ) [ots 0los] Vs;

1 & 9ps (Zi, as)
Y ZES 20T (g — T, 0008 Vi
Js [n L™ og ot dos| Vs

1 & 9ps (Zi, T, 00) , 1 & dps(Zi, )
”iz_i 05 [os — I, 005) Vs | s niz_l ois [os — I, 05 Vs

1 & 9%ps(Zi, & _

+ [— ) LZS) [ats — T, s [ @5 — T, Ot VS/i]
n= dog

1 & dps Zl,oc

[nZ > aS_HnaOS]VSi]

i=1

1 & apS(ZiaHnaOS) aPS(Zz,HnOCOS)
= | Hn - _Hn i
[ni_zi das [as aOS]VSl Js nl_zi Jas [as ops| Vs
1 & 92ps (Zi, o _
+ [— Z LZSI) [ats — T, aps] [@ts — 1, Qo] Véi]
n= o
1 ¢ 8pS Zl,Hn(Xos)
_Hn i

[”zz‘i as [as Qos] Vs

1 & 9?2 Z,,a )

; Z p S) _HnaOS] [aS_HnaOS] VS/‘i

i=1

1 & dps Z,,éc

[— Z > [as — T, ] VSi] :

nlzl

Given that os € ") with o = (65,h) and h = YX_, b;@;, we write
ps(Z,05) = ps (Y, X565,k (8 (Y, Xs565)))
k
= Ps (Y,Xé@g, Z bj(pj (5 (Y,Xé@s))) = Ps (Z, ’)/5) (C.36)

j=1

Here we use the map ps = ps(11,12,3). And later we will write pg; = Pé‘zj (t1,t2,13) for j =1,2,3.

Let LS (’}/S) = QS ((Xs), where Vs = (Qé,b/)/.
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Now consider

dps (Z;, 11, 05) dps (Z;, 11,005 +1 (o5 — I, 0ps))

05 [ots — T, 0005] = 5 li=0
9Ps (Zi, vos +1 (ys — dps (Z;,
_9Ps }’osat (% Yos))|t:0:(},s_},0s)/ pSéys'}’OS)_ (C.37)
By simple algebra,
5 9ps (1. X505, 31 ;03 (8 (¥, X465)) ) '
9ps (Zivtps) _ TS\ HISTR R VAT BTSN, (C38)
= Ys = ; :
s IYs Fa;
where
k
rii = Psa (I, 005) Xsi + ps3 (T, 00s) Y bo; @) (8 (Yi,X/60)) 8, (Yi, X[ 60) Xsi (C.39)
=l
and
r2i = Ps3 (Txs) (‘Pl (5 (YiaXi/GO)) 70 Pk (5 (YhXiIGO)))/' (C.40)
Also,
1 & dps (Z, I, 005) ) 1 & dps (Z, 1T, ap5)
[ZIZ{ aas [OCS—HnaOS]VSi Jg le‘{ 8ocS [(Xs—nnaos]VSI
|1 1 9Ps (Zi,%s) ¢ 1 9Ps (Zi, Yos)
= [n;(Ys 1s) 75 Vsi | Js n;(ﬂ’s s) 77 Vsi| s (C.41)
where
apS(ZanaOS)VS/iZ LiVg; . (C.42)
& raiVs;
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If

/
Do | [ 2P5 ZisTlncs) |, 1 [Ops (ZisTlaos) 1Y o
9% a5

for some Cy, (n) > 0, then under Assumption 3.3.6(ii), for each € > 0, with probability 1 — &, for

all large n,

/
1 & , 9Ps (Zi, Yos) ‘ 9155 (Zi,Y0s) . 1
[n l; Ys — Y0s) 7 Vi | Js l; Ys — Yos) 75 Vsi

>Cy (n) |75 — Yos||z (C.43)

E

for some Cj (n) > 0. By algebra, we can show that Cy (n) > C;.C; (n). This is a condition
similar to the Assumption 4.5 in Fan & Liao (2014). As n — oo, the basis functions will change,
so we allow the lower bound C, (n) to change as n increases.

With ey, ez, in (C.33) and (C.34), consider all o in the sieve space such that

165 — 6osl; = O (e10/C, (n))

and

15— bollz = O (e2n/Cy. (m))

By Lemma C.1.3 and Assumption 3.3.7, for &g = IT, s + ¢ (os — I, 05) and Acts =
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o5 — I, 005,

/
4 1 & 9%ps(Zi, @
( Z Zz,OCS)VSz> JS( Z%[AQS]ZV&)‘
= S

sup
ge[Ol] i=1 i=1
!/
1 & 1< 82pS(Z,-,éc5) 2
- Zi,a05) Vsi | || |V Sy ZPSELES) (AP Vs
(ni:leS( 0s) S) E|| slle (”l; 502 [Aas]™Vs .

/
1 <~ dps (Zi, Ois)

+ sup ||| =), ——— - [0s — 0os] Vsi 1/s]]
cel0,1] ( ; das £ £
( a pS Zl7(xS> [A(XS]ZVS'>

1 E

=0, (s(25+) \/1ogp/n) A2
+0, (V252 +5k) sup [[Ty005+cAas — s, 0, (1) Op (525 + 1) ||

g€l0,1]

=0, (C. (n)) 175 — s - (C.44)

Next consider for each bounded o, ¢y,

82 ) —

[l 1 %Szaﬂ) [otg =TTy xos] [Gts — T, 0tos] VS’;}

sup
n a iy

€[0.1] Jg [% i—1 %Sasz) [ots — T, 0] VSi]

1 & 9%ps (Z:, s - _

< sup ||| 23 TP IO (6 1, ] [t — TLyct05] Vi

n dog

¢e[0,1] i=1 JE
1 & Zl;aSZ
sl [nz [ s—HnOCos]VSi]
= E

<0, (sv25+ ) llos — Thyats), (s — Thaas) |, Op (V257 + k) [l s — Thacts

=0, (S\/(2s+k) (252 +sk)5,m) las — 0052 = 0, (Co (W) 115 — sl (C.45)
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So (C.43)—(C.45) above imply that

EQZQS (IT, 005 + ¢ (a5 — I, 005))

inf - 2> (G (n)—o0, (C — Yos][% .
nf 3 502 las — T, 005]” > (Cp (n) — 0, (Ca (1)) [ %5 — Yos
(C.46)
We let C; (n) = C,, (n) /2, then assumptions in Lemma C.1.1 hold.
By Lemma C.1.1, ||ots — 0ps||; = O (Oner) , With
Suce = 8291/ (252 + 5k) (25 + k) log p/n/C; ().
Next, we check the other assumptions for Lemma C.1.2. We know
~ ~ lwdp(Zi,Ta+¢c(oo—Ta
0(Ta)-0(a)< —( 6 [—2 plzTa s >)v,~'<T9>D
1¢8.40 |7 !
1 n
-J(T9)- (Z Y p(Zi,Ta+¢c(a—Ta))V; (T9)> . (C.47)
i=1
By calculation similar to that of Lemma C.1.3,
IENO () XiVsil]| s = 0 (V25 +K) (C48)
So for each bounded ¢,
ap (Z;, T —-T
HE{ p(Z: a;“;(“ “»\/,/(Te)] :0(\/2s—i—k>. (C.49)
! E
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For all € > 0,
12 dps(Zi Tg;rg(a Dy, i(TG)H _ HE |:apS(Zi7T(;;Zg((X7(X))‘/I.(T9)i| H ’ )
E El > ¢

P
V2s+k

e ops(zulecslesly, (1) — i [2525) [ vy .
- >ev/2s+k

ps(Z..T _ dps(Zi.T - 2
<2§kP % . sl g;g(a a))Vl(TG)—E[ Ps( g;g(a a))Vl(TG)H
=2 S g2

2
i nE [((”’“Z“T‘;‘;g(““”w (70)) ] 1
< ; -y =0 <—> —0

ne?

under Assumption 3.3.7(i), which implies

1 ap (Z,-,TOH—Q(OC—TOC))V., (T9)

n )

n=

=0, (V25 +k). (C.50)

E

Notice that

LY bz Ta+g(a—Ta)vi(r6) =

n i=1 i

@0+ 25D a viro), 51

S| =

1

where Ao =Ta+¢(o—Ta)— &, & = ((ég,O’)/,ﬁ) and remember G5 = (és,fz). We have

1 n n

=Y p(zi,a)V; Z (Zi, 00) Vi (T8)

iz PO | = E
1 & dps(Z;, i) : B 5

+ —Z—[as—aoS]V,(Te) _op((\/zs +sk) 6na). (C.52)
n —1 8 O £
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Also,

Ly P8 1ng)vire)

~0, ( p(2s—|—k)> Aal], . (C.53)
E

where Aa =g (oo — &)+ (1 —¢)(Taa— &) and g € (0,1).

We let

=0 (£ 00) Vs 0%)

We assume || — &||, < ry, then ||Ta — &||, < r, and |Act||, < ry. With Assumption 3.3.7(iv),

|:% Zi 8p(Z,~7TOC+g(Oc—T(x))Vi/ (T@):| J (TG)

gy (Z,-,aTe;aJrg(a—Toc))Vi(Te)) — 0, (P, (07)). (C.54)
Let
Dy (@) = [%Z ap (zi,Ta;le(a - Ta))W(TQ)] 5(79)
- (%ip(Zi,Taw(a—Ta))vi(Te)) ,
then

P (|D,| < %P,; (0+)> — 1. (C.55)

By mean value theorem and P, (0) = 0, we know 34 € (0, 1) such that

YR (a)= Y |alBAlel). (C.56)

128 1¢5,6,0
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Also, we know |6;| < r,, then because P, is non-increasing,
Py (2161]) = Py (1) (C.57)

Because P, is continuous, we can always find sufficiently small r, such that P, (r,) > %P,g (07).

Then with probility approaching to 1,

O(To)—0(a) <Y (~0)Dy (@) < X161 Dy ()] < X101 324 (0°)

¢S ¢S s
<Y 18P () < ), l6|P(A]61]) <Y P.(l61]). (C.58)
s 1¢S,6,0 1S

C.2 Asymptotic Normality

1
Define og = o = &,u,, for €, = 0 <n7>, and

g

Lemma C.2.1 Local behavior of Criterion and Penalty: Under Assumptions 3.3.1, 3.3.4, 3.3.5

1 n
2 2B

) =E[A]]JEB)].

1 &
’;;Ai]J

and 3.4.1, it holds that

(i) SUPgee s (z)|Os (05) — Os (as) — & (Os (05) — Os (0ts)) — A(Z, q0s) [Aass] | = O (&7),

where A0ls = Oig — Ois;
) =P (|8si])| =0 (eD);

(i) ‘(go (05 () — Os (ats)) — ||Ocsienui;—aoszl\z—\la—%sllz‘ —0(g2).

0) *

(i) iy [Ba

Proof of Lemma C.2.1.
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First, Lemma C.2.1(ii) holds by Assumptions 3.3.4, 3.3.7(i1), and Lemma B.1 in Fan &

Liao (2014). Next, we prove Lemma C.2.1(i). For all ag € 7/,15 (

9@5(0651)

Os (a5) — A (as) [y = =5 X e,

dps (Zi, as)
8055

Qs (05) —
1 n

[ots1 — as] Vs;] Js [— Y

i=1

1 &
_ZZ

i=1

! 1
Z (Zi, 052) Vs; | Js .

aOCS

n

oy

i=1

8ZPS (Zh aSZ)
8(xS

— (Xos) and Qg1 = Os+ T (:I:Snun

where gy = Qs+ T (OCS 1

i) =

dps (Zi, as2)

7),

aQs(OCOS)
aOCS

[j:&‘nu;‘,] VSi]

[£é&quy]

[E=€ntyy, Q51 — Qs Vs,'] 3 (C.59)

*) with 71,7 € (0,1). This is from

the pathwise differentiability Assumption 3.3.5. We now apply Lemma C.1.3 to (C.59).

For the first part of (C.59),

_1 L aps(zi,asz) ,- —1 < apS(ZiaaSZ) _
Sy IR O 1 s Ve gs |- Y PSR O e v
”l; o [ots1 — Oos] Vs | s ”l; Jas [£&nuy] Vsi
1 & dps (Zi, ops) ,— 1 dps (Zi, ops) ]
— |-y PSS gl Ve s | = Y ZPSE0S) e
il o [ots1 — O] Vs | s n T do [+€,1] Vs;
1! 9%ps (Zi, ots3) 1 & dps(Z; O‘OS) _
— — 2 P Tog — o Vil J I 0 P e ut] Vs
+ n 302 [ots1 — Ots, Ots2 — Qlos| Vs, | Js - "l; o [£&nuy] Vsi
1 & dps (Zi, as) 1 & 92ps (Zi, otsa) ]
— —— Vil T — T 2 deut. gy — V;
+ ”l; s [ots1 — Otos] Vi | Js - "l; 902 [£&puy, 052 — Oos] Vs
_1 dae) Z;, 053
+ 1= ps| 5 S)[Oém—aos,asz—aos]‘/éi]
ni= 90
1 & 82p5 Zi,OCl "
'JS —Z—( 5 S4) [:l:Snun,(ng—(Xos]VSi (C.60)
nis dag
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By Lemma C.1.3, the construction of %5 (1), and Assumption 3.4.1, we know

1 9%ps(Z;, 01
[z i—1 % [ots1 — otos, Glso — O] VS',}

ps(Z,
Js [% i:l%jﬂﬂ[ign”ﬂvst]

=0, (s (2s+k)V/s) [|asi — sl || ots2 — s €. = O (&), (C.61)

aps(Z;,
[% i=1 %ﬁm) [ais1 — Os] Vsli] Js

1 92 Z;i, 0
: [; i1 —ps(-;ag s8) [ e, a5y — ot VSi]

=0, (s(25+k)/s) || ast — qos|l | ats2 — sl ;€. = Op (&7 , (C.62)

and

1 02 Zi,Q
[; i—1 pSa(Tz“”) [ots1 — Cos, Ots2 — Qlos] VSI,} Js

1 3*ps(Zi,
: [z i=1 —Ps&(asz $4) [e,u7, ots2 — Qs Vs:‘]

=0, (s* (25 +k)) ||ats1 — s, || ots2 — cos|> & = O, (€2) . (C.63)

Then the only problem is the first term in (C.60). We will take care of this term later.
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The second part of (C.59) is

[£e&quy,, as1 — 0ps| Vsi

1 & ] _1 L 82[)5 (Zi 0652)
- Zi, o) Vi | Jg | - Yy ——= 2
nlz:l,PS( i 0t52) Vsi | Js ”12:1' 902

1 ¢ 82[)5 Z, (XSZ)
==Y ps(Zi, aos) Vg; | J: § ’
ni:1PS( i, 0os) Vs | Js I

[£e&quy,, as1 — 0ps| Vsi

= dps (Zi, ags)
Z 8055

1
n=

li 9%ps (Zi, 0ts2)

+ [ots2 — O] Vs/i] Js

[£&nuy, As1 — s VSi]

nS 0
1 ¢ 9%ps (Z;, 0ts2)
= |- Zi, os) Vi | Js I PSVELT2) 4 e i gy — o] Vi
n.:1p s (Zi, oos) s,] l”; 902 [y, 51 — Olos] Vsi
-1 & apS(ZtaOCOS) a pS(ZhaSZ)
-y ———— oy — Vel J —2 - Y teul, o] — Vi
+ n; s [Ots2 — oos] Vs | Js ”z_zi 902 [£&,u,,, 051 — Otos] Vs
(1 & 92ps (Zi,
+1=-) M [otsy — oo, otss — Otos] Vs
ni= dog
1 & 9%ps(Zi
Js |~ M[isnufl,ag—aog]%i . (C.64)
ni= dog
By Lemma C.1.3, the construction of ,%’,f (1), and Assumption 3.4.1,
1 & 1 & 8 ps(Zl (XSZ)
- Zi Vil Js | =Y ——-——"0 [deul, os) — Qs] Vsi
[m;ps( i, 0s2) sl] S[”z; 302 [+&,u,,, 0651 — Otos] Vi
=0, (€}). (C.65)
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We also have

& (0s(05) - Os(ox)) = & ( 22518 e )

JE [ps (Z;, as1) Vsi]

_ . /. *
=F [pS (Zl, 0651) VSJ Jg Jas [:l:Snun]
dps (Z;, Vs; .
& [ps (1 ous) Vi st | ZP 20 8
Os
9%ps (Zi, ats7) Vsi

+E |ps (Zi, aos) Vs;| ISE { [+&nuty,, Ols1 — (Xos]}

2
20

+E 9ps (Zi, Oss) [ots1 — 0tos] Vs; | JSE 9ps (Zi»s) (L&t | Vi
dog dog
d Zi7 § 1
+E —Ps( %) [lots1 — s Vi | JSE —8 ps (Zi,0i7) [£entty, 0ts1 — s Vsi |, (C.66)
8ocs 5OCS
with
ps (Z;, o d°ps (Zi, o .
‘E [% [OCSl — (Xos] V.S{i JsE {% [ienun; Os1 — O‘OS]} =0 (83) , (C.67)
and
Zl,a J Zi, *
{ as s8) [Ots1 — Qs Vs/l} JsE {%SOM) [+&quy,] Vsl}
a Zia *
[ ((9 [Ot51 Clos] Vs/l} JsE {%S%S) [+&quy,] VSi:|
i, O ) i) *
+E { 8< o 59) [ais1 — Ops, Otsg — Otos] Vs’;} JSE [%Som) ESA7M VSi} , (C.68)
where
82p5 (Zi, 0659) apS (Zia aOS) *
'E {—805? [ats1 — Qs Qs — Otos] Véi} JsE {8—055 ESAM VS!} =0(,)
(C.69)

The first term of (C.68) is another problem. Now, we consider the first term of (C.60) and the
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first term of (C.68). By Lemma C.1.3, the construction of %5 (7) and Assumption 3.4.1,

[ Y M[Oﬂm—%s]V&] [ Yig MM”ZWS;’]

n a (3] a iy *
_[% ﬁll%mﬁﬁﬁkl—QMUE]h{E[J%mﬁﬁh%%NGJ}

S

Vn

dps(Z;,
- i A o —aas] V| = 0p (&) (C.70)
_ — 0, (€ .

\/Lﬁz (apsg i,0s) [eul] Vsi — E [8ps(z ,00s) [epu’] VSi})

and

[ . M [as1 — O] VS’Z} Jg {E [w [&qu] Vs:} }

9Ips(Z:. tpil
—E [%s%) [ot51 — otos] Vsli] IsE [M [Entty) VS’}

NG =0p (&), (C.71)

Therefore, Lemma C.2.1(i) holds.

Finally, we consider C.2.1(iii). We have that

ot = &, — 00|l — |l — a0 |*

2
L (] ) (PN e
P ., ! iy si
1 ( E [ps (aZaSOCos)VSJ s — ad) Js <8E [ps (aZaSaos)V ] [ots — Oto]>
<8E Ps Zl,ocos Vi [iSnMZ]> Js (8E [ps (aZ(l;:COS)Vsi] las — 060])
+% (aE [PS (aZlO;SaOS) VSJ [Snuj;]> Js (aE [os (aZlO;SOCOS) Vil [Snu;:]) (C.72)
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and

s = &g — | — || ots — o]
2

+ x 2 _ 2
:g(w[ﬂnm)_nas enty — oo |* — | ois — |

S 2
L1 (9
2
E | 925G5) [ar5y — ctgs] V| J5E | P2555) [ ] Vs
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Notice that ag; = o5 = €15, then
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2

2
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This implies C.2.1(iii). m
Proof of Theorem 3.4.1.

The proof of Theorem 3.4.1 closely follows that of theorem 3.4 in Chen et al. (2014),
while we consider the high-dimensional case. Because @ is a global minimizer in %> (7), by

Lemmas C.2.1(i), (ii), and the construction of &g,

0 <05 (62) — Os (&s) = Os (&) — Z (165;1) — P (1655])]

=& (0s (05) — Os (bi5)) + A () [b5 — bis] + Os (05) — Os (i) — & (Os (65) — Os (8is))
~ A (o0)[65 5]+ Y [P (105,]) — 2 (16])]

<& (05 (65) — Os (&s)) £ (00) &) + 0, (£7) (C75)
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The first inequality holds because we can always make 7; (n) and 7, (n) to be a little larger so

that ¢} is included in the boundary of %5 (7).

By Lemma C.2.1(iii),

& (QS (&;) — QS (ds)) = :|:8n<&5 — (X()S,u;kl> + Op (8,%) . (C.76)
Then
e, (05 — Otos, ) £ A (Z, 0s) [aty] + O, (€7) > 0, (C.77)
which implies
€4 (Gis — Qos, 1) +A(Z, qos) [€att])] | = O, (€7) - (C.78)
With <Otn70 — Oso, u;:> =0,
V| (Os — Qog s tty) + A(Z, aos) [u)| = 0, (1) . (C.79)
By assumption 3.4.2(ii) and the Riesz representation theorem,
N NN _ Of(s) ra.
fbs)— f(qosn) S (Gs)—f(aos) — =555 [Gs — o]
Villsa Vil sa
d d N d
o/ (qt0s,n) — f (ctos) — %‘?S) [0, — los] N %«2‘9) [Os — aps] — %‘Cﬁs’) [ 005, — o]
||V;;Hsd Hv;;Hsd
=(0Os — tos , ) +0p (1/4/n) . (C.80)
Then we have
f(as) _f OCOS7 *
Vn (9. — VA (Z, ags) [u]| = 0, (1). (C.81)

HVZHsd
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The theorem follows from (C.81) and Assumption 3.4.2(iii). m
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