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Chapter 1 studies the instrument validity for local average treatment effects. we provide

a testable implication for instrument validity in the local average treatment effect (LATE)

framework with multivalued treatments. Based on this testable implication, we construct a

nonparametric test of instrument validity in the multivalued treatment LATE framework. The

test is asymptotically consistent. The size of the test can be promoted to the nominal significance

level over much of the null, indicating a good power property. Simulation evidence is provided

to show the good performance of the test in finite samples. Chapter 2 constructs improved

nonparametric bootstrap tests of Lorenz dominance based on preliminary estimation of a contact

x



set. Our tests achieve the nominal rejection rate asymptotically on the boundary of the null;

that is, when Lorenz dominance is satisfied, and the Lorenz curves coincide on some interval.

Numerical simulations indicate that our tests enjoy substantially improved power compared

to existing procedures at relevant sample sizes. Chapter 3 proposes a sieve focused GMM

(SFGMM) estimator for general high-dimensional semiparametric conditional moment models

in the presence of endogeneity. Under certain conditions, the SFGMM estimator has oracle

consistency properties and converges at a desirable rate. We then establish the asymptotic

normality of the plug-in SFGMM estimator for possibly irregular functionals. Simulation

evidence illustrates the performance of the proposed estimator.
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Chapter 1

Instrument Validity for Local Average
Treatment Effects

Abstract

This paper provides a testable implication for instrument validity in the local average

treatment effect (LATE) framework with multivalued treatments, generalizing the one obtained

by Balke & Pearl (1997), Imbens & Rubin (1997), and Heckman & Vytlacil (2005) for the

LATE framework with binary treatments. Based on this testable implication, we construct

a nonparametric test of instrument validity in the multivalued treatment LATE framework.

Specifically, we transform the testable implication into an inequality involving the value of the

supremum of a continuous map over a particular function space. A modified variance-weighted

Kolmogorov-Smirnov test statistic is employed in our test. We extend the delta method and

establish the asymptotic distribution of the test statistic, which takes a non-standard Kolmogorov-

Smirnov form. We then construct the critical value for this asymptotic distribution using the

bootstrap method developed by Fang & Santos (2014) and show that the test is asymptotically

consistent. The size of the test can be promoted to the nominal significance level over much of

the null, indicating a good power property. We also show that with a minor modification the

proposed test can easily be applied when there are conditioning covariates with finitely many

possible values. Simulation evidence is provided to show the good performance of the test in

finite samples. Finally, we use Vietnam-era draft lottery data to illustrate application of the test

1



in practice.

1.1 Introduction

The local average treatment effect (LATE) framework, introduced by the seminal works

Imbens & Angrist (1994) and Angrist et al. (1996), is a commonly used approach to study

instrumental variables (IV) models with treatment effect heterogeneity. The LATE framework

relies on several strong and often controversial assumptions of instrument validity: 1) the

instrument should not affect the outcome directly; 2) it should be as good as randomly assigned;

and 3) it affects the treatment in a monotone way. Violations of these conditions will generally

lead to inconsistent treatment effect estimates. Since the plausibility of the analysis of LATE

depends on IV validity, economics research has focused attention on examining these assumptions

based on testable implications.

The present paper proposes a testable implication of IV validity in the LATE framework

with multivalued treatments, generalizing the testable implication obtained by Balke & Pearl

(1997), Imbens & Rubin (1997) and Heckman & Vytlacil (2005) for the LATE framework with

binary treatments.1 To the best of our knowledge, the proposed testable implication is new in

the literature. It is stronger than the first-order stochastic dominance condition discussed in

Angrist & Imbens (1995). Based on this testable implication, we propose a nonparametric test

for IV validity in the LATE framework with binary or multivalued treatments, and with binary

or multivalued instruments. Also, we show that with a minor modification, the proposed test

can easily be applied when there are discrete conditioning covariates with finitely many possible

values, such as gender and age.

Kitagawa (2015) provides a test of IV validity in the LATE framework with binary

treatments based on the testable implication in Balke & Pearl (1997), Imbens & Rubin (1997),

and Heckman & Vytlacil (2005). This paper uses a variance-weighted Kolmogorov-Smirnov
1Studies of LATE with binary treatments can be found in Angrist (1990), Angrist & Krueger (1991), and Vytlacil

(2002). Those of LATE with multivalued treatments can be found in Angrist & Imbens (1995), Angrist & Krueger
(1995), and Vytlacil (2006).

2



test statistic and constructs the critical value by a bootstrap method. The test is shown to be

uniformly size-controlled and asymptotically consistent, but conservative as the bootstrap critical

value converges to a number larger than the 1−α quantile of the true asymptotic distribution of

the test statistic. Mourifié & Wan (2017) reformulate the testable implication used in Kitagawa

(2015) as conditional inequalities, and show that they can be tested in the intersection bounds

framework of Chernozhukov et al. (2013).2 Compared to Kitagawa (2015), this test is more

convenient to implement. However, it is also conservative and it restricts the support of the

outcome variables to be compact, ruling out the case where outcomes are unbounded. Huber &

Mellace (2015) derive a testable implication for a weaker LATE identifying condition, that is,

the potential outcomes are mean independent of instruments, conditional on each selection type.

However, the condition of potential outcomes being mean independent of instruments is not

sufficient if we are concerned about distributional features of a complier’s potential outcomes,

for example, the quantile treatment effects for compliers; see Abadie et al. (2002) for details. Our

focus in this paper will be on full statistical independence of potential outcomes and instruments.

Since the tests in both Kitagawa (2015) and Mourifié & Wan (2017) are conservative,

an important contribution of the present paper is that the proposed test is more powerful when

applied in the LATE framework with binary treatments. As shown in Kitagawa (2015) and

Mourifié & Wan (2017), the IV validity assumption is refutable but nonverifiable. The testable

implication is a necessary but insufficient condition for IV validity; therefore, failing to reject the

hypothesis of the testable implication doesn’t allow us to confirm IV validity. In this sense, it is

always important to improve the power of the test in order to rule out any invalid instruments.

The test will be constructed in a framework similar to that in Kitagawa (2015). The key difference

is that the proposed test allows multivalued treatments.

We transform the proposed testable implication into an inequality involving the value

of the supremum of a continuous map over a particular function space. A modified variance-

2It is also worth noting that the test designed by Mourifié & Wan (2017) can easily be implemented using the
Stata package of Chernozhukov et al. (2014).
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weighted Kolmogorov-Smirnov (KS) test statistic is employed in our test.3 There are two major

complications in deriving and approximating the asymptotic distribution of the test statistic. First,

the continuous map becomes random after being weighted by an estimated standard deviation

using data. As a consequence, the standard delta method cannot be applied for establishing

the asymptotic distribution. To overcome this difficulty, we provide an extended delta method

that works even when the map is random. This might be of independent interest. By showing

that the particular function space is a VC class and applying the extended delta method, we

establish the asymptotic distribution of the test statistic and show that it takes the form of a

supremum over a smaller function space. Second, since the supremum map is not linear, the

standard bootstrap method may fail to approximate this asymptotic distribution consistently.4

To achieve a consistent approximation, we employ the bootstrap method proposed by Fang &

Santos (2014).5 A consistent estimator of the supremum map in the asymptotic distribution is

provided and a series of conditions for the bootstrap method to work are verified. Then we show

that the size of this bootstrap-based test can be elevated to the nominal significance level over

much of the null, which suggests a good power property. We also show theoretically that the

finite sample power of the proposed test is higher than that in Kitagawa (2015) when the test is

applied in the binary treatment LATE. This is because this paper’s test statistic is equivalent to

that used in Kitagawa (2015), but its bootstrap critical value is always smaller.

To implement the test, we propose an empirical approach for choosing the tuning param-

eter. We find that under certain data generating processes (DGP), the test statistic asymptotic

distribution is equivalent to the supremum of a Gaussian process over the whole function space.

We then exploit this relationship and choose the tuning parameter from a set of candidates such

3As mentioned in Kitagawa (2015), variance-weighted KS statistics have been widely applied in the literature on
conditional moment inequalities, such as Andrews & Shi (2013), Armstrong (2014), Armstrong & Chan (2016), and
Chetverikov (2018). More general KS statistics can be found in the stochastic dominance testing literature, such
as Abadie (2002), Barrett & Donald (2003), Horváth et al. (2006), Linton et al. (2010), Barrett et al. (2014), and
Donald & Hsu (2016).

4 Discussions of this can be found in Hirano & Porter (2012), Fang & Santos (2014), Hong & Li (2016) and
Hansen (2017).

5Other applications of this bootstrap method can be found in Beare & Moon (2015), Beare & Shi (2018), Seo
(Forthcoming), Beare & Fang (2017), and Sun & Beare (2018).
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that the critical value constructed by using this tuning parameter is close to an equivalent critical

value under a certain DGP. Simulation evidence is provided and shows that the finite sample

power of the proposed test is indeed higher than that in Kitagawa (2015) and the empirical size

of the test is close to or below the nominal significance level. Finally, we use Vietnam-era draft

lottery data to illustrate application of the proposed test in practice.

The remainder of the paper is organized as follows: Section 1.2 introduces the general

setup of the LATE framework and the assumptions of IV validity. Based on these assumptions,

we provide a testable implication for IV validity in the multivalued treatment LATE framework.

Section 1.3 introduces the proposed hypothesis test in the binary treatment LATE framework. We

establish the asymptotic distribution of the test statistic and show the improvement in the power of

the test. Section 1.4 shows that the test proposed in the previous section can be extended to cases

where the treatment and the instrument are multivalued. The case with a continuous instrument

is briefly discussed in Section 1.4.2. When one additional condition holds, the proposed test can

be applied to continuous instruments. Section 1.5 shows that when the conditioning covariates

are discrete variables with finitely many possible values, the test proposed in Section 1.4 can

easily be applied in a slightly different framework. Section 1.6 provides an empirical approach

of choosing the tuning parameter. Section 1.7 reports the simulation results and compares them

with those of Kitagawa (2015). Section 1.8 provides an empirical example of how to examine

instrument validity using Vietnam-era draft lottery data. All proofs are contained in the appendix.

1.2 Setup and Testable Implication

To formally introduce the issue of interest, we first briefly introduce the setup of the

heterogeneous causal effect model considered in Imbens & Angrist (1994). Let D ∈ {0,1} be the

observable treatment variable, where D = 1 indicates that an individual receives treatment and

D = 0 indicates the opposite. Let Z ∈ {0,1} be a binary instrumental variable. Let Ydz ∈ Y ⊂R,

with d ∈ {0,1} and z ∈ {0,1} be the potential outcome variable when D = d and Z = z, and let

5



Y be the observable outcome variable. Similarly, let Dz be the potential treatment variable when

Z = z.

The instrument validity in the binary treatment LATE framework is formalized by the

following assumption.

Assumption 1.2.1 IV Validity for Binary Z:

(i) Instrument Exclusion: With probability 1, Yd1 = Yd0 for d = 0,1.

(ii) Random Assignment: The variable Z is jointly independent of

(Y11,Y10,Y01,Y00,D1,D0).

(iii) Instrument Monotonicity (No defier): The potential treatment response indicators satisfy

D1 ≥ D0 with probability 1.

Assumption 1.2.1 is almost the same as that in Imbens & Rubin (1997), except that our

version of Assumption 1.2.1 does not require strict monotonicity, that is, we don’t require the

strict inequality in Assumption 1.2.1(iii) to hold with positive probability. The strict monotonicity

assumption is also referred to as the instrument relevance assumption, but we do not include it in

Assumption 1.2.1. Let BR denote the Borel σ -algebra on R. Let P denote the set of probability

measures defined on the Borel σ -algebra of R2. For every Borel set B⊂ R and d = 0,1, define

probability measures as follows:

P(B,d) = P(Y ∈ B,D = d|Z = 1) ,

Q(B,d) = P(Y ∈ B,D = d|Z = 0) .

Clearly P,Q ∈P . Under Assumption 1.2.1, we can define Yd = Yd0 = Yd1. Imbens & Rubin

6



(1997) showed that for every Borel subset B of R,

P(B,1)−Q(B,1) = P(Y1 ∈ B,D1 > D0) ,

Q(B,0)−P(B,0) = P(Y0 ∈ B,D1 > D0) . (1.1)

To see why (1.1) is true, we can write

P(B,1)−Q(B,1) = P(Y11 ∈ B,D1 = 1|Z = 1)−P(Y10 ∈ B,D0 = 1|Z = 0)

= P(Y1 ∈ B,D1 = 1)−P(Y1 ∈ B,D0 = 1) = P(Y1 ∈ B,D1 = 1,D0 = 0) ,

where the second equality follows from Assumption 1.2.1(i) and 1.2.1(ii) and the third equality

follows from Assumption 1.2.1(iii). Similar reasoning gives the second equation in (1.1). Since

the probabilities in (1.1) are nonnegative, we obtain the testable implication of Assumption 1.2.1

in Balke & Pearl (1997) and Heckman & Vytlacil (2005): For all B ∈BR,

P(B,1)−Q(B,1)≥ 0,

Q(B,0)−P(B,0)≥ 0. (1.2)

Proposition 1.1. in Kitagawa (2015) shows an optimality of the testable implication (1.2),

namely, that any other feature of the data distribution cannot make a greater contribution to the

screening out of invalid instruments than (1.2) can. To understand (1.2) graphically, suppose

that Y is a continuous variable and that p(y,1), p(y,0), q(y,1), q(y,0) are density functions or

derivatives of the functions P((−∞,y],1), P((−∞,y],0), Q((−∞,y],1) and Q((−∞,y],0) with

respect to y. As functions of y, the later are not probability density functions, because the integral

of each of them over the entire real line is not equal to 1. The following graphs show one possible

case where (1.2) holds. The first inequality in (1.2) is shown in Figure 1.1a, where the density

p(y,1) is greater than q(y,1). The second inequality in (1.2) is shown in Figure 1.1b, where the
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−2 −1 0 1 2

p(y,1)

q(y,1)

(a) P(B,1)> Q(B,1)

−2 −1 0 1 2

(b) Q(B,0)> P(B,0)

Figure 1.1. Graphs of the Testable Implication.

density q(y,0) is greater than p(y,0). Additional graphical examples can be found in Kitagawa

(2015).

The LATE framework shown above involves a simple binary treatment and a binary

instrument. In many applications, however, D and Z may be multivalued. See, for example,

Angrist & Imbens (1995), where the treatment variable is the number of years of schooling

completed by a student and can take more than two values.

Suppose, more generally, that D ∈DJ = {d1,d2, . . .} and Z ∈ZK = {z1,z2, . . . ,zK}. We

let dmax be the maximum value of D if it exists, and dmin the minimum value of D if it exists.

Suppose the existence of potential variables Ydz ∈ Y for d ∈DJ and z ∈ZK and the existence of

Dz for z ∈ZK . The IV validity for the multivalued treatment D and the multivalued instrument

Z is formalized by the following assumption.

Assumption 1.2.2 IV Validity for Multivalued D and Z:

(i) Instrument Exclusion: With probability 1, Ydz1 = Ydz2 = · · ·= YdzK for all d ∈DJ .

(ii) Random Assignment: The variable Z is jointly independent of (Ỹ , D̃), where

Ỹ = (Yd1z1, . . . ,Yd1zK ,Yd2z1, . . . ,Yd2zK , . . .) ,

D̃ = (Dz1,Dz2, . . . ,DzK) .
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(iii) Instrument Monotonicity (No defier): The potential treatment response indicators satisfy

Dzk+1 ≥ Dzk with probability 1 for all k = 1,2, . . . ,K−1.

Assumption 1.2.2 is similar to that in Angrist & Imbens (1995). Since we allow multival-

ued Z, the monotonicity assumption needs to hold for each pair Dzk and Dzk+1 . Define conditional

probabilities

Pk (B,C) = P(Y ∈ B,D ∈C|Z = zk)

for all Borel sets B,C ∈BR and all zk ∈ZK . The next lemma establishes a testable implication

of IV validity in the multivalued treatment LATE when the treatment variable has a maximum

value and/or a minimum value.

Lemma 1.2.1 A testable implication of Assumption 1.2.2 is

P1 (B,{dmax})≤ P2 (B,{dmax})≤ ·· · ≤ PK (B,{dmax}) , if dmax exists,

P1 (B,{dmin})≥ P2 (B,{dmin})≥ ·· · ≥ PK (B,{dmin}) , if dmin exists, (1.3)

for all B ∈BR, and

P1 (R,C)≥ P2 (R,C)≥ ·· · ≥ PK (R,C) (1.4)

for all C = (−∞,c] with c ∈ R.

Lemma 1.2.1 generalizes the testable implication (1.2) to the case of a multivalued

instrument and the more interesting case of a multivalued treatment. Clearly, when D and Z

are both binary, dmax = 1 and dmin = 0 and (1.3) is equivalent to (1.2). The testable implication

(first-order stochastic dominance) discussed by Angrist & Imbens (1995) for Assumption 1.2.2

is equivalent to (1.4). To the best of our knowledge, (1.3) is new in the literature.
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1.3 Binary Treatment and Instrument

To highlight the basic idea of our test, this section examines instrument validity in LATE

with a binary treatment D and a binary instrument Z based on the testable implication (1.2). We

will generalize this test to accommodate a multivalued D and a multivalued Z in the next section.

1.3.1 Hypothesis Formulation

Based on the testable implication (1.2), the hypothesis of the test is formulated as follows:

H0 : P(B,1)−Q(B,1)≥ 0 and Q(B,0)−P(B,0)≥ 0 for all B ∈BR,

H1 : P(B,1)−Q(B,1)< 0 or Q(B,0)−P(B,0)< 0 for some B⊂BR. (1.5)

By Lemma B.7 in Kitagawa (2015), hypothesis (1.5) is equivalent to

H0 : P(B,1)−Q(B,1)≥ 0 and Q(B,0)−P(B,0)≥ 0 for all closed intervals B⊂ R,

H1 : P(B,1)−Q(B,1)< 0 or Q(B,0)−P(B,0)< 0 for some closed interval B⊂ R. (1.6)

Suppose the data set consists of N observations, {(Yi,Di,Zi)}N
i=1 ⊂ Y ×{0,1}2. We

divide the sample into two subsamples, based on Z = 0,1 respectively. Let
{(

Y 1
i ,D

1
i
)}m

i=1 be the

subsample for Z = 1 and
{(

Y 0
i ,D

0
i
)}n

i=1 the subsample for Z = 0, with N = m+n. We assume

that we have a simple random sample.

Assumption 1.3.1 {(Yi,Di,Zi)}N
i=1 is an iid data set.

Assumption 1.3.1 implies that
{(

Y 1
i ,D

1
i
)}m

i=1 and
{(

Y 0
i ,D

0
i
)}n

i=1 can be regarded as

being drawn independently and identically from P and Q, respectively, and that
{(

Y 1
i ,D

1
i
)}m

i=1

is independent of
{(

Y 0
i ,D

0
i
)}n

i=1. The subsample sizes m,n could be correlated, since m =

∑
N
i=1 1{Zi = 1} and n = ∑

N
i=1 1{Zi = 0}. This would not pose a problem for the performance of

the test. The details can be found in the proofs.
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Given the subsamples, it follows from Assumption 1.2.1 that P(B,d) and Q(B,d) can be

written by

P(B,d) = E
[
1
{

Y 1 ∈ B,D1 = d
}]

,

Q(B,d) = E
[
1
{

Y 0 ∈ B,D0 = d
}]

,

for all closed intervals B⊂R, d = 0,1. Define the indicator function 1A (x) = 1{x ∈ A} for every

set A ∈ Rk and every variable x ∈ Rk with k ∈ N. Then we have

P(B,1)−Q(B,1) = E
[
1B×{1}

(
Y 1,D1)]−E

[
1B×{1}

(
Y 0,D0)] ,

Q(B,0)−P(B,0) = E
[
1B×{0}

(
Y 0,D0)]−E

[
1B×{0}

(
Y 1,D1)] .

With the above setup, we define a set of functions by

H =
{

h = (−1)d ·1B×{d} : B is a closed interval in R, d ∈ {0,1}
}
. (1.7)

Also, we define φ : H →R by

φ (h) = E
[
h
(
Y 1,D1)]−E

[
h
(
Y 0,D0)] (1.8)

for all h ∈H . Then hypothesis (1.5) is equivalent to

H0 : sup
h∈H

φ(h)≤ 0,

H1 : sup
h∈H

φ(h)> 0. (1.9)

We introduce the following notations, which will also be used later in the paper. For a set
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D, denote the space of bounded functions on D by `∞:

`∞ (D) = { f : D→ R : ‖ f‖
∞
< ∞} ,‖ f‖

∞
= sup

x∈D
| f (x)| .

Then `∞ (D) is a Banach space under ‖·‖
∞

. If D is a compact Hausdorff topological space, let

C (D) denote the set of continuous maps on D:

C (D) = { f : D→ R : f is continuous} .

Then C (D)⊂ `∞ (D) and is also a Banach space under ‖·‖
∞

. If D is a metric space with metric

d, let BL1 (D) denote the set of all real functions on D with a Lipschitz norm bounded by 1:

BL1 (D) = { f : D→ R : ‖ f‖
∞
< ∞, | f (x)− f (z)| ≤ d(x,z) for all x,z ∈ D} .

1.3.2 Test Statistic and Asymptotic Distribution

The test statistic used in this section is a modified version of that used in Kitagawa (2015).

Let TN = mn/N.

Assumption 1.3.2 m/N→ λ a.s. as N→ ∞, where λ ∈ (0,1).

By Assumption 1.3.2, m and n grow as N → ∞ in a balanced way. According to our

approach to splitting the sample, Assumption 1.3.2 is equivalent to assuming that P(Z = 1) = λ .

The almost sure convergence holds naturally for and iid data set. We define a probability measure

R = 1/2 ·P+1/2 ·Q.

For every measurable function h, define

P(h) = E
[
h
(
Y 1,D1)] ,Q(h) = E

[
h
(
Y 0,D0)] ,
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and the sample analogue

Pm (h) =
1
m

m

∑
i=1

h
(
Y 1

i ,D
1
i
)
,Qn (h) =

1
n

n

∑
i=1

h
(
Y 0

i ,D
0
i
)
.

By definition,

φ (h) = E
[
h
(
Y 1,D1)]−E

[
h
(
Y 0,D0)]= P(h)−Q(h)

for every h ∈H . Define the sample analogue

φ̂ (h) = Pm (h)−Qn (h) =
1
m

m

∑
i=1

h
(
Y 1

i ,D
1
i
)
− 1

n

n

∑
i=1

h
(
Y 0

i ,D
0
i
)
.

Then define the asymptotic variance of
√

TN φ̂ (h) by

σ
2 (h) = (1−λ ) |P(h)|(1−|P(h)|)+λ |Q(h)|(1−|Q(h)|)

and the sample analogue

σ̂
2
N (h) = (1− λ̂ ) |Pm (h)|(1−|Pm (h)|)+ λ̂ |Qn (h)|(1−|Qn (h)|)

for all h, where λ̂ = m/N.

Let `∞ (H ) = {ϕ : H → R : ‖ϕ‖
∞
= suph∈H |ϕ (h)|< ∞}, and define a map

S : `∞ (H )→ R

such that for all ϕ ∈ `∞ (H ),

S (ϕ) = sup
h∈H

ϕ (h) . (1.10)

Now consider the pointwise ratios [φ/(ξ ∨σ)](h) and [φ̂/(ξ ∨ σ̂N)](h) on H , where

ξ ∈ (0,1) is a user specified parameter. Clearly, φ/(ξ ∨σ), φ̂/(ξ ∨ σ̂N) ∈ `∞ (H ), and set the
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test statistic, T SN , to

T SN =
√

TNS

(
φ̂

ξ ∨ σ̂N

)
. (1.11)

Now we introduce a theorem that establishes the asymptotic distribution of the test

statistic under H0. Define ΨH = {h ∈H : φ (h) = S (φ)} and the map SΨH
: `∞ (H )→ R

such that for all ψ ∈ `∞ (H ),

SΨH
(ψ) = sup

h∈ΨH

ψ (h) . (1.12)

Theorem 1.3.1 Suppose the underlying probabilities P and Q are fixed as N → ∞. Under

Assumptions 1.3.1 and 1.3.2,

√
TN
(
φ̂ −φ

)
 
√

1−λGP−
√

λGQ, (1.13)

and under H0, we obtain the asymptotic distribution of the test statistic:

√
TN

(
S

(
φ̂

ξ ∨ σ̂N

)
−S

(
φ

ξ ∨ σ̂N

))
 SΨH

(√
1−λGP−

√
λGQ

ξ ∨σ

)
, (1.14)

with

SΨH

(√
1−λGP−

√
λGQ

ξ ∨σ

)
L
= SΨH

(
GH

ξ ∨σ

)
, (1.15)

where GP,GQ are a P-Browian bridge and a Q-Browian bridge, respectively, H = λP +

(1−λ )Q, GH is an H-Browian bridge, “ ” denotes weak convergence, and ” L
=” denotes

equivalence in law.

The weak convergence in (1.13) is basically due to the fact that H is a VC class, as

established by Lemma A.1.4 in the appendix. It is worth noting that because φ/(ξ ∨ σ̂N)

is random, it is not straightforward to apply the standard delta methods to obtain the weak
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convergence in (1.14). We extend the standard delta method in Lemma A.1.2 in the appendix

so that it can be applied to such a “random parameter” situation. This might be of independent

interest. The details can be found in Lemma A.1.2.

1.3.3 Bootstrap-Based Inference

With the limiting distribution in (1.14), we construct the critical value by a bootstrap

method and establish the testing theory. As discussed in Theorems 3.1 and 3.2 in Fang & Santos

(2014), since GH/(ξ ∨σ) is centered Gaussian and SΨH
is nonlinear, the standard bootstrap

method may fail to approximate the limiting distribution in (1.14) consistently. Thus we employ

the bootstrap method proposed in Fang & Santos (2014).

First, we need to obtain an estimation of SΨH
. This is because SΨH

is determined by

φ , which is unknown and has to be estimated. By (1.12), SΨH
is an operator that involves the

set ΨH . Thus if we can find a “valid” estimator Ψ̂H for ΨH , then a natural approximation of

SΨH
denoted by ŜN can be constructed by

ŜN (ψ) = sup
h∈Ψ̂H

ψ (h) ,ψ ∈C (H ) .

If H0 is true, then since 1{a}×{0},−1{a}×{1} ∈H for all a ∈ R, we have S (φ) = 0. By the

definition of ΨH , we can conclude that under H0,

ΨH = {h ∈H : φ (h) = 0} .

This is similar to what is called the contact set in Linton et al. (2010). Then we construct Ψ̂H

naturally by

Ψ̂H =
{

h ∈H : |φ̂ (h) | ≤ τN
}
, (1.16)

where τN ↓ 0 but τN
√

TN→∞. This rate follows from the weak convergence in (1.13). Intuitively,

we do not want to exclude too many h from Ψ̂H as φ̂ converges to φ . Lemma A.2.1 in the
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appendix shows that Ψ̂H is a valid estimator for ΨH , so we can construct ŜN by plugging in

Ψ̂H .

Test Procedure

With the estimator ŜN , we introduce the procedure for the bootstrap-based test.

(1) Obtain the bootstrap samples
{(

Y 1∗
i ,D1∗

i
)}m

i=1 and
{(

Y 0∗
i ,D0∗

i
)}n

i=1 drawn with replace-

ment from the subsample
{(

Y 1
i ,D

1
i
)}m

i=1 and
{(

Y 0
i ,D

0
i
)}n

i=1 respectively.

(2) Calculate the bootstrap version of φ by

φ̂
∗ (h) = P̂∗m (h)− Q̂∗n (h) ,

and the bootstrap version of σ by

σ̂
∗
N (h) =

√(
1− λ̂

)∣∣P̂∗m (h)
∣∣(1− ∣∣P̂∗m (h)

∣∣)+ λ̂
∣∣Q̂∗n (h)∣∣(1− ∣∣Q̂∗n (h)∣∣),

where P̂∗m (h) = m−1
∑

m
i=1 h

(
Y 1∗

i ,D1∗
i
)

and Q̂∗n (h) = n−1
∑

n
i=1 h

(
Y 0∗

i ,D0∗
i
)
.

(3) Calculate the bootstrap version of the test statistic by ŜN(
√

TN(φ̂
∗− φ̂)/(ξ ∨ σ̂∗N)).

(4) Repeat (1), (2), and (3) many times and obtain the empirical distribution of

ŜN(
√

TN(φ̂
∗− φ̂)/(ξ ∨ σ̂∗N)). Given nominal significance level α , calculate the bootstrap

critical value ĉ1−α by

ĉ1−α = inf
{

c : P
(

ŜN

(√
TN(φ̂

∗− φ̂)

ξ ∨ σ̂∗N

)
≤ c|{(Y 1

i ,D
1
i )}m

i=1,{(Y 0
i ,D

0
i )}n

i=1

)
≥ 1−α

}
.

(5) The decision rule for the test is:

Reject H0 if
√

TNS (φ̂)> ĉ1−α . (1.17)
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The difference between this bootstrap method and the standard bootstrap method is

that we use ŜN(
√

TN(φ̂
∗− φ̂)/(ξ ∨ σ̂∗N)) instead of

√
TN(S(φ̂∗/(ξ ∨ σ̂∗N))−S(φ̂/(ξ ∨ σ̂∗N))) to

construct critical values.

Theorem 1.3.2 Suppose Assumptions 1.3.1 and 1.3.2 hold. Then under decision rule (2.33):

(i) If H0 is true and the CDF of SΨH
(GH/(ξ ∨σ)) is strictly increasing and continuous at

its 1−α quantile c1−α , then limN→∞P(reject H0) = α.

(ii) If H0 is false, then limN→∞P(reject H0) = 1.

Theorem 11.1 in Davydov et al. (1998) implies that the CDF of SΨH
(GH/(ξ ∨σ))

is differentiable and has a positive derivative everywhere except at countably many points

in its support, provided that SΨH
(GH/(ξ ∨σ)) 6= 0. Thus Theorem 1.3.2(i) shows that the

asymptotic size of the test can be promoted to the nominal significance level α over much of the

null. This suggests a good power property of the test. The remark below shows theoretically that

the finite sample power of the proposed test is higher than that in Kitagawa (2015).

Remark 1.3.1 Kitagawa (2015) approximates the distribution of GH using a different bootstrap

estimator, denoted by
√

TN φ̂ ] here, rather than
√

TN(φ̂
∗− φ̂). It can be shown that Theorem

1.3.2 also holds if we use
√

TN φ̂ ] instead of
√

TN(φ̂
∗− φ̂). By definition,

ŜN

(√
TN φ̂ ]

ξ ∨ σ̂∗N

)
≤S

(√
TN φ̂ ]

ξ ∨ σ̂∗N

)
a.s. (1.18)

Since the test statistic used in this paper is equivalent to that in Kitagawa (2015), (1.18) shows

that the proposed test has a larger finite sample power because Kitagawa (2015) uses the

quantity on the right-hand side of (1.18) to construct the bootstrap critical value, while we use

the quantity on the left-hand side.
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1.4 Multivalued Treatment and Instrument

In this section, we extend the testing theory from the previous section to the case where

the treatment and/or the instrument is a multivalued discrete variable. The test is constructed

on the testable implication (1.3). Without loss of generality, we assume that both dmax and dmin

exist and that dmax = 1 and dmin = 0. By definition, for all B,C ∈BR,

Pk (B,C) = P(Y ∈ B,D ∈C|Z = zk) =
P(Y ∈ B,D ∈C,Z = zk)

P(Z = zk)
.

Define function spaces

GK =
{

1R×R×{zk} : k = 1,2, · · · ,K
}
,

G =
{(

1R×R×{zk},1R×R×{zk+1}
)

: k = 1,2, · · · ,K−1
}
,

HK1 =
{
(−1)d ·1B×{d}×ZK : B is a closed interval, d = 0,1

}
,

HK2 ={1R×C×ZK : C = (−∞,c],c ∈ R} ,

HK =HK1∪HK2.

By Lemma B.7 in Kitagawa (2015), we use all closed intervals B⊂ R to construct HK1 instead

of all Borel sets.

Let P3 be the set of probability measures on R3 and let P ∈P3 be the probability

measure induced by the joint distribution of (Y,D,Z). For every measurable function h, define

P(h) =
∫

hdP.

Define for every (h,g) ∈HK×G with g = (g1,g2),

φK (h,g) =
P(h ·g2)

P(g2)
− P(h ·g1)

P(g1)
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and the sample analogue

φ̂K (h,g) =
1
N ∑

N
i=1(h ·g2)(Yi,Di,Zi)

1
N ∑

N
i=1 g2 (Yi,Di,Zi)

−
1
N ∑

N
i=1(h ·g1)(Yi,Di,Zi)

1
N ∑

N
i=1 g1 (Yi,Di,Zi)

.

For example, for every closed interval B, d ∈ {0,1}, and k = 1,2, . . . ,K − 1, and for h =

(−1)d ·1B×{d}×ZK and g = (g1,g2) =
(
1R×R×{zk},1R×R×{zk+1}

)
,

φK (h,g) = (−1)d · P(Y ∈ B,D = d,Z = zk+1)

P(Z = zk+1)
− (−1)d · P(Y ∈ B,D = d,Z = zk)

P(Z = zk)

= (−1)d ·Pk+1 (B,d)− (−1)d ·Pk (B,d) .

Obviously, if D,Z are binary and we let g1 = 1R×R×{0} and g2 = 1R×R×{1}, then

N

∑
i=1

1R×R×{1} (Yi,Di,Zi) = m,
N

∑
i=1

1R×R×{0} (Yi,Di,Zi) = n.

In that case, m and n are subsample sizes defined in Section 1.3.

Define a map SK : `∞ (HK×G )→ R by

SK (ψ) = sup
(h,g)∈HK×G

ψ (h,g) ,

for every ψ ∈ `∞ (HK×G ). Then the testable implication (1.3) is equivalent to

H0 : SK (φK)≤ 0,

H1 : SK (φK)> 0.

Define a metric on HK×G such that for all (h,g) ,(h′,g′) ∈HK×G ,

ρP
(
(h,g) ,

(
h′,g′

))
=
∥∥h−h′

∥∥
L2(P)+

∥∥g1−g′1
∥∥

L2(P)+
∥∥g2−g′2

∥∥
L2(P) .
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Lemma 1.4.1 Under Assumption 1.3.1,
√

N(φ̂K−φK) GK for some Gaussian process GK ,

and for all (h,g) ∈HK×G ,

Var (GK (g,h)) =
|P(h ·g2)|

P2 (g2)

(
1− |P(h ·g2)|

P(g2)

)
+
|P(h ·g1)|

P2 (g1)

(
1− |P(h ·g1)|

P(g1)

)
. (1.19)

Lemma 1.4.1 provides the asymptotic distribution of
√

N(φ̂K−φK) and its asymptotic

variance. This asymptotic variance will be used later, when we construct the test statistic later.

By (1.19), for every (h,g) ∈HK×G and g = (g1,g2), let

σ
2
K (h,g) =

|P(h ·g2)|
P2 (g2)

(
1− |P(h ·g2)|

P(g2)

)
+
|P(h ·g1)|

P2 (g1)

(
1− |P(h ·g1)|

P(g1)

)
.

Similarly, define the sample analogue of σ2
K (h,g) by

σ̂
2
KN (h,g) =

|PN (h ·g2)|
P2

N (g2)

(
1− |PN (h ·g2)|

PN (g2)

)
+
|PN (h ·g1)|

P2
N (g1)

(
1− |PN (h ·g1)|

PN (g1)

)
,

where PN is the empirical probability measure of P such that for every measurable function f ,

PN ( f ) =
1
N

N

∑
i=1

f (Yi,Di,Zi) .

For multivalued D and Z, set the test statistic, MT SN , to

MT SN =
√

NSK

(
φ̂K

ξ ∨ σ̂KN

)
. (1.20)

Define ΨHK×G = {(h,g) ∈HK×G : φK (h,g) = SK (φK)}. It is not hard to see that

ΨHK×G 6=∅. Also, define SΨHK×G
: `∞ (HK×G )→ R such that for all ψ ∈ `∞ (HK×G ),

SΨHK×G
(ψ) = sup

(h,g)∈ΨHK×G

ψ (h,g) .
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Theorem 1.4.1 Suppose Assumption 1.3.1 holds. Then under H0,

√
N
{

SK

(
φ̂K

ξ ∨ σ̂KN

)
−SK

(
φK

ξ ∨ σ̂KN

)}
 SΨHK×G

(
GK

ξ ∨σK

)
.

Theorem 1.4.1 shows the asymptotic distribution of the test statistic for multivalued

treatments and instruments. By Lemma 1.4.1 and Lemma A.1.12 in the appendix, we establish

the weak convergence (φ̂K−φK)/(ξ ∨ σ̂KN) GK/(ξ ∨σK). Then similarly to Theorem 1.3.1,

the extended delta method in Lemma A.1.2 in the appendix is applied to obtain the limiting

distribution in Theorem 1.4.1.

1.4.1 Bootstrap-Based Inference

Similarly to the binary treatment and binary instrument case, we need to obtain an

estimation of the map SΨHK×G
. Equivalently we need to find a “valid” estimator Ψ̂HK×G for

ΨHK×G . Then a natural approximation of SΨHK×G
, which we denote by ŜKN , can be constructed

by

ŜKN (ψ) = sup
h∈Ψ̂HK×G

ψ (h) ,ψ ∈C (H ) .

If H0 is true, then since 1{a}×{0}×ZK ,−1{a}×{1}×ZK ∈HK for all a ∈ R, we have SK (φK) = 0.

By the definition of ΨHK×G , we can conclude that under H0,

ΨHK×G = {(h,g) ∈HK×G : φK (h,g) = 0} .

Then we construct Ψ̂H naturally by

Ψ̂HK×G =
{
(h,g) ∈HK×G : |φ̂K (h,g) | ≤ τN

}
, (1.21)

where τN ↓ 0 but τN
√

N→ ∞.

Lemma A.3.1 in the appendix is a result similar to Lemma A.2.1 and shows that Ψ̂HK×G
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is a valid estimator for ΨHK×G , so we can construct ŜKN by plugging in Ψ̂HK×G .

Test Procedure

Now we introduce the procedure for the test in the case of multivalued D and multivalued

Z.

(1) Obtain the bootstrap samples {(Y ∗i ,D∗i ,Z∗i )}
N
i=1 drawn with replacement from the sample

{(Yi,Di,Zi)}N
i=1.

(2) Calculate the bootstrap version of φK by

φ̂
∗
K (h,g) =

P̂∗N (h ·g2)

P̂∗N (g2)
−

P̂∗N (h ·g1)

P̂∗N (g1)

for all h ∈HK and g ∈ G , and calculate the bootstrap version of σ by

σ̂
∗
KN (h,g) =

√√√√∣∣P̂∗N (h ·g2)
∣∣

P̂∗2N (g2)

(
1−

∣∣P̂∗N (h ·g2)
∣∣

P̂∗N (g2)

)
+

∣∣P̂∗N (h ·g1)
∣∣

P̂∗2N (g1)

(
1−

∣∣P̂∗N (h ·g1)
∣∣

P̂∗N (g1)

)
,

where P̂∗N (v) = N−1
∑

N
i=1 v(Y ∗i ,D

∗
i ,Z
∗
i ).

(3) Calculate the bootstrap version of the test statistic by ŜKN(
√

N(φ̂∗K− φ̂K)/(ξ ∨ σ̂∗KN)).

(4) Repeat (1), (2), and (3) many times and obtain the empirical distribution of

ŜKN(
√

N(φ̂∗K− φ̂K)/(ξ ∨ σ̂∗KN)). Given the nominal significance level α , calculate the

bootstrap critical value ĉ1−α by

ĉ1−α = inf
{

c : P
(

ŜKN

(√
N(φ̂∗K− φ̂K)

ξ ∨ σ̂∗KN

)
≤ c|{(Yi,Di,Zi)}N

i

)
≥ 1−α

}
.

(5) The decision rule for the test is:

Reject H0 if
√

NSK(φ̂)> ĉ1−α . (1.22)
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Theorem 1.4.2 Suppose Assumption 1.3.1 holds. Then under decision rule (1.22):

(i) If H0 is true and the CDF of SΨHK×G
(GK/(ξ ∨σK)) is strictly increasing and continuous

at its 1−α quantile c1−α , then limN→∞P(reject H0) = α.

(ii) If H0 is false, then limN→∞P(reject H0) = 1.

The proof of Theorem 1.4.2 is similar to that of Theorem 1.3.2, so we won’t repeat

it. Theorem 1.4.2 establishes the testing theory for IV validity in the LATE framework with a

multivalued treatment and a multivalued instrument.

1.4.2 Continuous Instrument

In this section, we briefly discuss the case where Z is continuous. For simplicity, suppose

D = 0,1 and Z ∈ Z ⊂ R. As mentioned in Cornelissen et al. (2016), when Z is continuous

the monotonicity assumption needs to hold between all pairs of values z,z′ ∈ Z so that the

IV LATE estimators can capture the average treatment effect for compliers with a change in

the instrument from z to z′. However, it is not quite possible to compute all pairwise LATEs

with a continuous instrument, because the number of observations in a sample for every pair

(z,z′) is likely to be small. For the same reason, it is not straightforward to do the test for the

continuous instrument case based on the framework we introduced earlier. A practical way to

exploit a continuous instrument is to partition its support into discrete groups, since we would be

interested in the average treatment effect for compliers with a change of the instrument from one

group to another, provided that there is additional information about the treatment variable D in

each group. Suppose we are interested in a partition

Z =C1∪C2∪·· ·∪CK,

where C1,C2, . . . ,CK are disjoint subsets of R. Suppose there exist potential variables Yd (z) ∈ Y

for d = 0,1 and z ∈Z , and D(z) for z ∈Z .
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Assumption 1.4.1 IV Validity for continuous Z:

(i) Instrument Exclusion: With probability 1, Yd (z) = Yd (z′) for d = 0,1 and all z,z′ ∈Z .

(ii) Random Assignment: The variable Z is jointly independent of (Y1 (z) ,Y0 (z) ,D(z)) with

z ∈Z .

(iii) Instrument Monotonicity (No defier): The potential treatment response indicators satisfy

D(z′)≥ D(z) with probability 1, where z′ and z are prespecified.

Assumption 1.4.2 D(z) = D(z′) for all z,z′ ∈Ck and all k.

Assumption 1.4.2 requires D to be grouped by the partition of Z . If Assumptions 1.4.1

and 1.4.2 hold, we can construct potential variables Dk for Z ∈Ck, that is, Dk = D(z)1{z ∈Ck}.

Then another IV validity condition for continuous instrument Z is formalized by the following

assumption.

Assumption 1.4.3 IV Validity for Continuous Z with D grouped by the partition of Z:

(i) Instrument Exclusion: With probability 1, Yd (z) = Yd (z′), for d = 0,1 and all z,z′ ∈Z .

(ii) Random Assignment: The variable Z is jointly independent of

(Y1 (z) ,Y0 (z) ,D1,D2, · · · ,DK).

(iii) Instrument Monotonicity (No defier): The potential treatment response indicators satisfy

Dk+1 ≥ Dk with probability 1 for all k ∈ {1,2, . . . ,K−1}.

Define probability measures

Pk (B,d) = P(Y ∈ B,D = d|Z ∈Ck) ,
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for every Borel set B ∈BR and d = 0,1. The testable implication for Assumption 1.4.3 can be

constructed as

P1 (B,1)≤ P2 (B,1)≤ ·· · ≤ PK (B,1) ,

P1 (B,0)≥ P2 (B,0)≥ ·· · ≥ PK (B,0) . (1.23)

By definition,

Pk (B,d) =
P(Y ∈ B,D = d,Z ∈Ck)

P(Z ∈Ck)
.

Define

G =
{(

1B×{d}×Ck
,1B×{d}×Ck+1

)
: k = 1,2, . . . ,K−1

}
and

HK =
{
(−1)d ·1B×{d}×R : B is a closed interval, d = 0,1

}
.

Let P be the probability measure on R3 corresponding to the joint distribution of (Y,D,Z). For

any h, define

P(h) =
∫

hdP.

For every closed interval B, d ∈ {0,1} and k ∈ {1,2, · · · ,K−1}, and for any (h,g) ∈HK×G

with h = (−1)d ·1B×{d}×R and g = (g1,g2) =
(
1R×{0,1}×Ck

,1R×{0,1}×Ck+1

)
,

φK (h,g) =
P(h ·g2)

P(g2)
− P(h ·g1)

P(g1)

= (−1)d · P(Y ∈ B,D = d,Z ∈Ck+1)

P(Z ∈Ck+1)
− (−1)d · P(Y ∈ B,D = d,Z ∈Ck)

P(Z ∈Ck)

= (−1)d ·Pk+1 (B,d)− (−1)d ·Pk (B,d) .
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Then define a map SK : `∞ (HK×G )→ R by

SK (φ) = sup
(h,g)∈HK×G

φ (h,g) ,

for all φ ∈ `∞ (HK×G ). Then the testable implication (1.23) is equivalent to

H0 : SK (φK)≤ 0,

H1 : SK (φK)> 0.

The testing process and results are then similar to those for the case of multivalued D and

multivalued Z.

1.5 Conditional on Discrete Covariates

For simplicity, we consider the case where D = 0,1 and assume that X is a one-

dimensional variable. A testable implication for the conditional version of the inequalities

in (1.2) is given by

P(Y ∈ B,D = 1|Z = zk,X)≤ P(Y ∈ B,D = 1|Z = zk+1,X) a.s.

P(Y ∈ B,D = 0|Z = zk,X)≥ P(Y ∈ B,D = 0|Z = zk+1,X) a.s. (1.24)

Suppose X is discrete and let XL be the set of possible values of X with XL =

{x1,x2, . . . ,xL}. Then for every Borel set B and d = 0,1,

P(Y ∈ B,D = d|Z = zk,X = xl) =
P(Y ∈ B,D = d,Z = zk,X = xl)

P(Z = zk,X = xl)
.

Define

GKL=
{

1R×{0,1}×{zk}×{xl} : k = 1,2, . . . ,K, l = 1,2, . . . ,L
}
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and

G =
{(

1R×{0,1}×{zk}×{xl},1R×{0,1}×{zk+1}×{xl}
)

: k = 1,2, . . . ,K−1, l = 1,2, . . . ,L
}
.

Then define

HKL =
{
(−1)d ·1B×{d}×ZK×XL : B is a closed interval, d = 0,1

}
.

Let P4 be the set of probability measures on R4. Let P ∈P4 be the probability measure

corresponding to the joint distribution of (Y,D,Z,X). For every measurable h, define

P(h) =
∫

hdP.

For every interval B, d ∈ {0,1}, k = 1,2, . . . ,K−1, and l = 1,2, . . . ,L, and for (h,g) ∈HKL×G

with h = (−1)d · 1B×{d}×ZK×XL and g = (g1,g2) =
(
1R×{0,1}×{zk}×{xl},1R×{0,1}×{zk+1}×{xl}

)
,

define

φKL (h,g) =
P(h ·g2)

P(g2)
− P(h ·g1)

P(g1)

=(−1)d ·P(Y ∈ B,D = d|Z = zk+1,X = xl)

− (−1)d ·P(Y ∈ B,D = d|Z = zk,X = xl) .

The define a map SKL : `∞ (HKL×G )→ R by

SKL (φ) = sup
(h,g)∈HKL×G

φ (h,g)
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for all φ ∈ `∞ (HKL×G ). Then the testable implication (1.24) is equivalent to

H0 : SKL (φKL)≤ 0,

H1 : SKL (φKL)> 0.

The testing process and results are then similar to those for the case of multivalued D and

multivalued Z.

1.6 Tuning Parameter Selection

For simplicity, we discuss the approach for choosing the tuning parameter under the

binary treatment and binary instrument framework in Section 1.3. It is straightforward to extend

this approach to the case of a multivalued treatment and a multivalued instrument. As we see in

Lemma A.2.1 in the appendix, we need to let τN to decay to 0 at a certain rate in order to obtain

a consistent estimator ŜN . However, it is not obvious how to choose the value of τN for a given

sample size. Notice that under H0, if φ = 0 everywhere, then H = ΨH and therefore

S

(
GH

ξ ∨σ

)
= SΨH

(
GH

ξ ∨σ

)
a.s. (1.25)

As we stated earlier, we can construct the bootstrap critical value by two methods. The first

one is the method proposed in the present paper using ŜN(
√

TN φ̂ ]/(ξ ∨ σ̂∗N)), and the second

one is the method proposed in Kitagawa (2015) using S (
√

TN φ̂ ]/(ξ ∨ σ̂∗N)); the relationship

between them is given in (1.18). When (1.25) holds, the bootstrap critical values constructed

with the two method should be close to each other, since they converge to the 1−α quantile of

the same distribution in (1.25). Thus given that φ = 0 everywhere, we can choose τN so that the

two critical values are sufficiently close.

(1) Predetermine a set of candidate values of τN , denoted by Cτ .
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(2) Given a data set
{(

Y 1
i ,D

1
i
)}m

i=1 from P, draw a sample of size m with replacement from{(
Y 1

i ,D
1
i
)}m

i=1, denoted by
{(

Y B1
i ,DB1

i
)}m

i=1, and draw a sample of size n with replacement

from
{(

Y 1
i ,D

1
i
)}m

i=1, denoted by
{(

Y B0
i ,DB0

i
)}n

i=1. Pretend that
{(

Y B1
i ,DB1

i
)}m

i=1 and{(
Y B0

i ,DB0
i
)}n

i=1 are the samples from the population distribution P and Q, respectively.

(3) Compute ĉ1−α with the data set
{(

Y B1
i ,DB1

i
)}m

i=1 ,
{(

Y B0
i ,DB0

i
)}n

i=1 by using each value

from the candidate set Cτ . Also, compute the bootstrap critical value from Kitagawa (2015)

with the same data set.

(4) Choose the value of τN such that the two bootstrap critical values are sufficiently close.

In Step (2), by generating the bootstrap samples
{(

Y B1
i ,DB1

i
)}m

i=1 and
{(

Y B0
i ,DB0

i
)}n

i=1

by resampling from
{(

Y 1
i ,D

1
i
)}m

i=1, we approximate the setting where φ = 0 everywhere.

1.7 Simulation Evidence

The Monte Carlo experiments conducted in this section follow the construction in

Kitagawa (2015), so we can compare the results and show the improvement in the power of the

test when the test is applied in the LATE framework with a binary treatment. We simulated the

limiting rejection rates from the test proposed in the present paper and that proposed in Kitagawa

(2015), using the same randomly generated data.

There were a total of 6 data-generating processes for H0 and H1. Each simulation

consisted of 1000 Monte Carlo iterations and 1000 bootstrap iterations. The user-specified

trimming parameter ξ was set to 0.07, as suggested by Kitagawa (2015). 5 sets of sample sizes

were considered: (m,n) = (100,100), (100,500), (500,500), (100,1000), and (1000,1000).

The set of candidate values of τN was {0.00,1.02, . . . ,0.10} for each of the sample sizes, and

we chose τN by the approach proposed earlier. When calculating the supremum value in test

statistics and the bootstrap critical values, we followed the numerical computation approach

used in Kitagawa (2015). Specifically, we considered all the closed intervals with the values of
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Y observed in the data as endpoints. To expedite the simulation, we employed the warp-speed

method in Giacomini et al. (2013). Also, when we calculated the bootstrap version of φ̂ , we

followed the method used in Kitagawa (2015) because that reduced the amount of computation

and made it easy for us to compare the results.

1.7.1 Data-Generating Processes

The data-generating processes under H0 and H1 in the binary D and binary Z framework:

(1) H0 is true:

DGP 1: For z ∈ {0,1}, P(Dz = 1) = 0.5 and Y z = Dz ·N (1,1)+(1−Dz) ·N (0,1), where

the superscripts denote the subsamples as before.

DGP 2: P
(
D1 = 1

)
= 0.5 and P

(
D0 = 1

)
= 0.48. For z ∈ {0,1}, Y z = Dz ·N (1,1)+

(1−Dz) ·N (0,1).

(2) H1 is true:

Let P
(
D1 = 1

)
= 0.55, and P

(
D0 = 1

)
= 0.45, and Y 1 =D1 ·N (0,1)+

(
1−D1) ·N (0,1).

DGP 1: Y 0 = D0 ·N (−0.7,1)+
(
1−D0) ·N (0,1).

DGP 2: Y 0 = D0 ·N
(
0,1.6752)+ (1−D0) ·N (0,1).

DGP 3: Y 0 = D0 ·N
(
0,0.5152)+ (1−D0) ·N (0,1).

DGP 4: Y 0 = D0 ·W +
(
1−D0) ·N (0,1), where W = ∑

5
k=1 1{K = k}N

(
µk,0.1252),

(P(K = 1) ,P(K = 2) ,P(K = 3) ,P(K = 4) ,P(K = 5)) = (0.15,0.2,0.3,0.2,0.15), and

(µ1,µ2,µ3,µ4,µ5) = (−1,−0.5,0,0.5,1).

Figure 1.2 shows how DGPs 1–4 violate H0.

1.7.2 Simulation Results

Tables 1.1 and 1.2 show the simulated rejection rates in the two cases under H0 from the

test proposed in the present paper and that proposed by Kitagawa (2015). The rejection rates are
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slightly upwardly biased but close to the nominal significance levels. With the chosen τN’s, the

limiting rejection rates under the null or the empirical significance levels of the proposed test are

slightly higher than those in Kitagawa (2015).

Table 1.1. Rejection Rates under H0.

DGPs: DGP1 DGP2

α: 0.01 0.05 0.10 0.01 0.05 0.10

(m,n): (100,100) 0.017 0.069 0.134 0.009 0.055 0.108

(100,500) 0.023 0.062 0.114 0.011 0.061 0.122

(500,500) 0.014 0.076 0.132 0.013 0.040 0.091

(100,1000) 0.017 0.049 0.127 0.014 0.032 0.095

(1000,1000) 0.016 0.062 0.114 0.010 0.038 0.080

Table 1.2. Rejection Rates under H0 by Kitagawa (2015).

DGPs: DGP1 DGP2

α: 0.01 0.05 0.10 0.01 0.05 0.10

(m,n): (100,100) 0.017 0.065 0.111 0.009 0.048 0.089

(100,500) 0.023 0.062 0.097 0.011 0.047 0.074

(500,500) 0.014 0.071 0.129 0.013 0.036 0.090

(100,1000) 0.017 0.043 0.127 0.014 0.032 0.095

(1000,1000) 0.014 0.062 0.114 0.007 0.034 0.080

Tables 1.3 and 1.4 show the simulated rejection rates in the two cases under H1. We find

that most of the rejection rates are larger than those obtained by the test of Kitagawa (2015),

which shows an improvement in the test power.
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Table 1.3. Rejection Rates under H1.

DGPs: DGP1 DGP2 DGP3 DGP4

α: 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

(m,n): (100,100) 0.053 0.193 0.344 0.013 0.045 0.209 0.069 0.188 0.404 0.017 0.095 0.181

(100,500) 0.130 0.354 0.449 0.079 0.283 0.428 0.103 0.270 0.322 0.042 0.183 0.226

(500,500) 0.708 0.847 0.919 0.740 0.897 0.974 0.536 0.706 0.860 0.103 0.363 0.562

(100,1000) 0.157 0.299 0.460 0.191 0.270 0.446 0.128 0.184 0.373 0.054 0.165 0.266

(1000,1000) 0.986 0.999 0.998 0.996 0.999 1.000 0.881 0.958 0.961 0.381 0.671 0.759

Table 1.4. Rejection Rates under H1 by Kitagawa (2015).

DGPs: DGP1 DGP2 DGP3 DGP4

α: 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

(m,n): (100,100) 0.049 0.187 0.263 0.013 0.044 0.117 0.068 0.176 0.315 0.017 0.084 0.132

(100,500) 0.117 0.294 0.363 0.070 0.225 0.339 0.086 0.239 0.322 0.042 0.132 0.226

(500,500) 0.699 0.847 0.879 0.732 0.897 0.943 0.536 0.695 0.804 0.103 0.363 0.458

(100,1000) 0.124 0.257 0.391 0.098 0.174 0.379 0.115 0.184 0.322 0.035 0.151 0.229

(1000,1000) 0.986 0.999 0.997 0.996 0.999 1.000 0.881 0.957 0.961 0.381 0.664 0.756

Additional Results for Randomly Chosen Intervals

When the sample size is large, the numerical computation approach used in Kitagawa

(2015) for calculating the supremum value in the test statistic and the bootstrap critical value

is time-consuming. Here we employ another approach. We randomly choose 40,000 closed

intervals with endpoints between the maximum and minimum values of Y obtained in the data.

Then calculate the supremum value over all these 40,000 closed intervals.

The data-generating processes were the same as earlier. Each simulation consisted

of 1000 Monte Carlo iterations and 1000 bootstrap iterations. The user-specified trimming

parameter ξ was set to 0.07, 0.30 and 1.00. The sample size was (m,n) = (3000,8000). The set

of candidate values of τN was {0.00,1.02, . . . ,0.10}.

Tables 1.5 and 1.6 show that under H0 all the rejection rates are close to or below the

nominal significance levels and under H1 all the rejection rates are close to 1.
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Table 1.5. Rejection Rates under H0 with Randomly Chosen Intervals.

Measures: DGP 1 DGP 2

α: 0.01 0.05 0.10 0.01 0.05 0.10

ξ : 0.07 0.010 0.047 0.097 0.007 0.013 0.039

0.30 0.010 0.058 0.089 0.000 0.011 0.007

1.00 0.006 0.058 0.089 0.000 0.000 0.009

Table 1.6. Rejection Rates under H1 with Randomly Chosen Intervals.

DGPs: DGP1 DGP2 DGP3 DGP4

α: 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

(ξ ): 0.07 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000

0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 1.000

1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.969 0.988 0.998

1.8 Empirical Applications

We illustrate the performance of the proposed test in practice by examining the instrument

of the Vietnam-era draft lottery used in Angrist & Krueger (1992) and Angrist & Krueger (1995).

Details of the Vietnam era draft lottery can be found in Angrist (1990). We follow Abadie (2002)

and define a binary draft eligibility instrument (Z) by a dummy variable that indicates whether

one’s lottery number is less than or equal to 100. The data set we used is a subsample of the data

used in Angrist & Krueger (1992) and Angrist & Krueger (1995), which was taken from the

March Current Population Surveys in 1979 and 1981–1985. There are a total of 30,967 men in

the sample. After eliminating the people who had missing values or did not work during the year,

the sample size was 26,119. Finally, we kept only the people who were born in 1950 through

1953. The final sample size was 11,291. Similarly to Kitagawa (2015), two outcome measures

(Y ) were used in the test, annual labor earnings and weekly wages, which were measured in

terms of 1978 dollars using the consumer price index (CPI). Weekly earnings were imputed by
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the annual labor earnings divided by the number of weeks worked. The treatment variable D

indicates whether a man had Vietnam veteran status.

By using the data above, the number of people with Z = 1 was m = 3125, and the number

of people with Z = 0 was n = 8166. P̂(D = 1|Z = 1) = 0.3094 and P̂(D = 1|Z = 0) = 0.1876.

In Table 1.7, we show the empirical p-values obtained from the test for each ξ = 0.07, 0.30, 1.00

and α = 0.00,1.05,0.10. For each pair (ξ ,α), we chose the value of the tuning parameter τN .

When we calculated the test statistic and the bootstrap test statistic, we didn’t apply the numerical

method mentioned earlier because the sample size was large and as a result the calculation would

have been slow. Instead, we randomly chose 40,000 closed intervals with endpoints between

the maximum and minimum values of Y observed in the data. As shown in the table, all the

empirical p-values are close to 1, so we failed to reject the validity of the instrument.

Table 1.7. p-Values of Validity Test for Draft Lottery.

Measures: Annual Earnings Weekly Wages

α: 0.01 0.05 0.10 0.01 0.05 0.10

ξ : 0.07 1.000 0.999 0.989 0.973 1.000 0.996

0.30 1.000 0.995 0.999 0.996 1.000 1.000

1.00 1.000 1.000 1.000 0.996 1.000 0.998

1.9 Conclusion

In this paper, we have provided a testable implication for instrument validity in the LATE

framework with multivalued treatments. Based on this testable implication, we have constructed

a nonparametric test of instrument validity for the multivalued treatment LATE. We extended the

delta method and established the asymptotic distribution of the test statistic. We then constructed

the critical value for this asymptotic distribution using a modified bootstrap method and showed

that the test is asymptotically consistent. The size of the test can be promoted to the nominal

significance level over much of the null, indicating a good power property. We also showed that

with a minor modification the proposed test can easily be applied when there are conditioning
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covariates with finitely many possible values.

−2 −1 0 1 2

p(y,1)

q(y,1)

(a) DGP 1

−2 −1 0 1 2

(b) DGP 2

−2 −1 0 1 2

(c) DGP 3

−2 −1 0 1 2

(d) DGP 4

Figure 1.2. Graphs of p(y,1) and q(y,1) under H1.

Chapter 1, in part is currently being prepared for submission for publication of the

material. Sun, Zhenting. The dissertation author was the primary investigator and author of this

material.
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Chapter 2

Improved Nonparametric Bootstrap Tests
of Lorenz Dominance

Abstract

One income or wealth distribution is said to Lorenz dominate another when the Lorenz

curve for the former distribution is nowhere below that of the latter, indicating a (weakly) more

equitable allocation of resources. Existing tests of the null of Lorenz dominance based on pairs

of samples of income or wealth achieve the nominal rejection rate asymptotically when the

two Lorenz curves are equal, but are conservative at other points in the null. We propose new

nonparametric bootstrap tests of Lorenz dominance based on preliminary estimation of a contact

set. Our tests achieve the nominal rejection rate asymptotically on the boundary of the null;

that is, when Lorenz dominance is satisfied, and the Lorenz curves coincide on some interval.

Numerical simulations indicate that our tests enjoy substantially improved power compared to

existing procedures at relevant sample sizes.

2.1 Introduction

Lorenz curves are widely used for the analysis of economic inequality. A Lorenz

curve is a function of the distribution of wealth (or income) across a population, which graphs

the cumulative proportion of total wealth by cumulative proportion of the population ordered
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from poorest to richest. In practice, people are interested in comparing the Lorenz curves

between different populations. If one Lorenz curve is below another one, the wealth in the

former population is more unequally distributed toward the rich. We use the concept of Lorenz

dominance to formalize the comparison of two Lorenz curves: distribution A Lorenz dominates

distribution B if the Lorenz curve for A is nowhere below that for B. So if distribution A Lorenz

dominates distribution B, then the allocation of resources is more equitable in distribution A than

in distribution B.

In Figure 2.1, the vertical axis measures the cumulative share of wealth owned and the

horizontal axis measures the cumulative share of people ordered from lowest to highest income.

Distribution A Lorenz dominates distribution B, hence distribution A exhibits more economic

equality than distribution B. The line of equality (45 degree line) is the Lorenz curve representing

perfect equality, i.e. wealth is uniformly distributed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Line of equality
Lorenz curve A
Lorenz curve B

Figure 2.1. Lorenz Curves and Lorenz Dominance.

Because of the economic importance of Lorenz dominance, methods of statistically

testing for Lorenz dominance are of interest. Bishop et al. (1991a) and Bishop et al. (1991b)

employed pair-wise multiple comparisons of sample Lorenz ordinates to test for differences

between Lorenz curves and then determine Lorenz dominance. Dardanoni & Forcina (1999) and

Davidson & Duclos (2000) proposed tests of Lorenz dominance at a chosen set of points. Barrett

et al. (2014) pointed out that these tests are potentially inconsistent because they limit attention
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to a small fixed set of grid points. They proposed a new class of consistent nonparametric tests

for testing the null hypothesis of Lorenz dominance, which are analogous to tests of stochastic

dominance proposed by McFadden (1989) and elaborated and extended by Barrett & Donald

(2003). The tests are constructed based on a general functional F applied to φ̂ , a function on

[0,1] equal to the difference between two empirical Lorenz curves. Two specific functionals used

to construct test statistics are S , which computes the supremum of φ̂ , and I , which computes

the integral of φ̂ over the region where φ̂ is positive. The I -based test statistic was first proposed

by Bhattacharya (2007).

A pair of distributions satisfying the null of Lorenz dominance is said to be on the

boundary of the null whenever the corresponding Lorenz curves coincide over some interval. To

obtain critical values, Barrett et al. (2014) employ a bootstrap procedure that leads to a test with

limiting rejection rate equal to the nominal level when the two Lorenz curves are equal, and below

the nominal level elsewhere in the null. If we are at a point on the boundary of the null where

the Lorenz curves are not equal, then their test has limiting rejection rate below the nominal

level, and thus lacks power against nearby points in the alternative. Our main contribution is an

alternative construction of bootstrap critical values for the test statistics of Barrett et al. (2014)

that achieves a limiting rejection rate equal to the nominal level over the boundary of the null,

thereby improving power. Numerical simulations indicate that the improvement to power can be

large.

The primary technical obstacle to obtaining a valid bootstrap approximation over the

boundary of the null is that the functional F typically fails to be Hadamard differentiable

in this region, which is known to imply inconsistency of standard bootstrap approximations

(Dümbgen, 1993). By applying recent results of Fang & Santos (2014) on bootstrap inference

under nondifferentiability, we show that a modified bootstrap procedure based on preliminary

estimation of a contact set can deliver consistent approximation over the boundary of the null.

Our power-improving modification to the tests of Lorenz dominance proposed by Barrett et al.

(2014) can be viewed as analogous to the modifications made by Linton et al. (2010) and Donald
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& Hsu (2016) to the tests of stochastic dominance proposed by Barrett & Donald (2003), or to

the modification made by Beare & Shi (2018) to the tests of density ratio ordering proposed

by Carolan & Tebbs (2005) and Beare & Moon (2015), or to the modifications made by Seo

(Forthcoming) to the tests of stochastic monotonicity and conditional stochastic dominance

proposed by Delgado & Escanciano (2012, 2013).

Our asymptotic results exploit important recent work by Kaji (2017), who has established

weak convergence of the empirical quantile process and bootstrap empirical quantile process in

the L1-semimetric under mild technical conditions. Such convergence implies weak convergence

of the empirical Lorenz process and bootstrap empirical Lorenz process in the uniform metric

under the same conditions, greatly facilitating our analysis.

In this paper, given a set A, we let `∞(A) denote the Banach space of bounded real

functions on A equipped with the uniform norm ‖ · ‖∞. When A is a metric space, we let C(A)

denote the subspace of `∞(A) consisting of continuous functions. If h ∈C(A), we say that h

vanishes at infinity if for every ε > 0 the set {a ∈ A : |h(x)| ≥ ε} is compact, and we define

C0(A) = {h ∈C(A) : h vanishes at infinity}.

We let denote weak convergence in a metric space in the sense of Hoffman-Jørgensen.

2.2 Hypothesis Tests of Lorenz Dominance

Suppose that F1 and F2 are the cumulative distribution functions (CDFs) of income in

two populations. Let L be the space of Lebesgue measurable functions h : [0,∞)→ R with limit

h(∞) = limx→∞ h(x) ∈ R and ‖h‖L < ∞, where

‖h‖L = max{‖h‖
∞
,‖h−h(∞)‖1}.
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Let LF ⊂ L be the set of distribution functions that are monotone and cadlag with h(0) = 0 and

h(∞) = 1. We impose the following regularity conditions on F1 and F2.

Assumption 2.2.1 For j = 1,2, Fj ∈ LF is continuously differentiable with strictly positive

derivative f j. Also, Fj has a (2+ ε)th moment for some ε > 0.

Assumption 2.2.1 is a low level condition and guarantees that we can obtain the differen-

tiability of generalized inverse transformations by using the results in Kaji (2017). More details

will be discussed later.

We denote the quantile function by the generalized inverse transformation of a CDF, i.e.

for any CDF F with support [0,∞), the quantile function is

Q(p) = V (F)(p) = inf{x ∈ [0,∞) : F(x)≥ p} , (2.1)

for all p ∈ [0,1], where V denotes the generalized inverse map.

Definition 2.2.1 With the existence of nonzero first moment of continuously differentiable distri-

bution Fj for j = 1,2, the Lorenz curve (LC) for the respective population is,

L j(p) =
∫ Q j(p)

0 x f j(x)dx∫
∞

0 x f j(x)dx
=

∫ p
0 Q j(t)dt

µ j
, (2.2)

where Q j is the quantile function of Fj, and µ j is the mean of the distribution.

One implication of Assumption 2.2.1 is that the quantile function can be defined as Q j(p) =

F−1
j (p),(0 ≤ p ≤ 1), and it is also continuously differentiable within (0,1). Here F−1

j is the

standard inverse function of Fj, which is well defined because Fj is strictly increasing under

Assumption 2.2.1.

Definition 2.2.2 Given two distributions F1 and F2, we say that F1 weakly Lorenz dominates F2

if the Lorenz curve L1 for F1 is nowhere below L2 for F2, i.e. L1(p)−L2(p)≥ 0 for all p ∈ [0,1].
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Notice that by Definition 2.2.1 the LC is a special type of distribution function with

support [0,1]. In this sense, Definition 2.2.2 is similar to the first order stochastic dominance

for associated Lorenz curves, while Lorenz dominance has an economic background. If one

Lorenz curve is nowhere below another, the former one implies less inequality in economy

for the population. For example, in Figure 2.1, distribution A weakly Lorenz dominates B by

Definition 2.2.2, which indicates A is more economically equal than B.

2.2.1 Hypothesis Formulation

Under Assumption 2.2.1, Definition 2.2.1 and 2.2.2, Barrett et al. (2014) proposed

consistent nonparametric tests of Lorenz dominance. This paper follows the basic setup of

Barrett et al. (2014).

The hypothesis of interest in this paper is

H0 : L2(p)≤ L1(p) for all p ∈ [0,1],

H1 : L2(p)> L1(p) for some p ∈ [0,1].

The null hypothesis H0 is satisfied when F1 weakly Lorenz dominates F2, while the alternative

hypothesis H1 is satisfied when such dominance does not occur.

We define the point-wise difference between the two Lorenz curves by

φ(p) = L2(p)−L1(p) for all p ∈ [0,1]. (2.3)

And by Definition 2.2.1, under Assumption 2.2.1, φ ∈C[0,1].

To test the hypothesis, we consider functionals which transform φ into a scalar value.

Suppose there exists a functional F : C[0,1]→ R. We introduce necessary assumptions on F

to establish the testing theory.

Assumption 2.2.2 Properties of functional F : For any h ∈C[0,1],
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(i) if h(p)≤ 0 and h(p) = 0 for some p ∈ [0,1], then F (h) = 0;

(ii) if h(p)> 0 for some p ∈ (0,1), then F (h)> 0.

Because by Definition 2.2.1 φ(0) = φ(1) = 0, under Assumptions 2.2.2(i) and (ii), H0

(H1) is equivalent to F (φ) = 0 (F (φ)> 0).

Two specific examples of F we will mainly focus on in this paper are

S (φ) = sup
p∈[0,1]

φ(p), (2.4)

and

I (φ) =
∫ 1

0
φ(p)1{φ(p)> 0}dp, (2.5)

which can be proved to both satisfy Assumption 2.2.2.

The assumptions about sample data are given below.

Assumption 2.2.3 For j = 1,2, {X j
i }

n j
i=1 is an independent and identically distributed (iid)

collection of random variables drawn from Fj. And {X1
i }

n1
i=1 is independent from {X2

i }
n2
i=1.

Formally, we treat the first sample size n1 as a function of the second sample size n2,

such that n1 = n1(n2)→ ∞ as n2→ ∞. We suppose further that the sample sizes n1, n2 satisfy:

lim
n2→∞

n1

n1 +n2
= λ ∈ (0,1). (2.6)

Basically, (2.6) requires that the sample sizes n1 and n2 grow at comparable rates which can be

extended in certain cases. We let n = n1 +n2. Then n2→ ∞ is equivalent to n→ ∞ under (2.6).

We define Tn = n1n2/(n1 +n2). With Assumption 3.3.1 for sample data, the empirical notations

are defined as below.

Definition 2.2.3 With sample data {X j
i }

n j
i=1, for j = 1,2, define
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(i) Empirical CDF: F̂j(z) = n−1
j ∑

n j
i=1 1{X j

i ≤ z};

(ii) Empirical quantile: Q̂ j(p) = inf{z ∈ [0,∞) : F̂j(z)≥ p} for some p ∈ [0,1] for z ∈ [0,∞);

(iii) Empirical LC: L̂ j(p) = µ̂
−1
j
∫ p

0 Q̂ j(t)dt for all p ∈ [0,1], where µ̂ j is the sample mean for

sample j.

Given sample data {X j
i }

n j
i=1, for j = 1,2, we can order {X j

i } from smallest to largest by X j
(1) ≤

X j
(2) · · · ≤ X j

(n j)
. By Definition 2.2.3(i), (ii), Q̂ j(p) = X j

(i), for p ∈ ((i− 1)/n j, i/n j]. Then the

empirical Lorenz curve can be calculated exactly by plugging Q̂ j into L̂ j. For p≤ n−1
j , we have

L̂ j(p) = µ̂ j
−1 pX j

(1). For any p ∈ ((i−1)/n j, i/n j] with i = 2,3, · · · ,n j,

L̂ j(p) =
1
n j

∑
i−1
k=1 X j

(k)+(p− i−1
n j

)X j
(i)

µ̂ j
. (2.7)

Now we introduce the weak convergence of the empirical Lorenz process √n j(L̂ j−L j)

for j = 1,2. Similar results can be found in Goldie (1977) and Chernozhukov et al. (2010). We

obtain the asymptotic distribution by first deriving the Hadamard differentiability of Lorenz

curves with respect to the corresponding CDFs. This differentiability will also be helpful when

we apply the bootstrap method later. To this point, we first introduce the concept of Hadamard

differentiability.

Definition 2.2.4 Let D and E be normed spaces, and F : DF ⊂ D 7→ E. A map F is said to be

Hadamard differentiable at φ ∈ DF tangentially to a set D0 ⊂ D, if there is a continuous linear

map F ′
φ

: D0→ E s.t.

lim
n→∞

∥∥∥∥F (φ + tnhn)−F (φ)

tn
−F ′

φ (h)
∥∥∥∥
E
= 0, (2.8)

for all sequences {hn} ⊂ D and {tn} ∈ R s.t. tn→ 0, hn→ h ∈ D0 as n→ ∞ and φ + tnhn ∈ DF

for all n.
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Hadamard differentiability is an important property when we use the delta method to

derive the asymptotic distribution of Lorenz curves. The next lemma together show the Hadamard

differentiability of Lorenz curve defined by 2.2.1 with respect to the corresponding CDFs.

Let Z : LF → `∞[0,1] be such that

Z (F)(p) =
∫ p

0 V (F)(t)dt∫ 1
0 V (F)(t)dt

, (2.9)

where V is the quantile map. Under this map,

L j = Z (Fj), L̂ j = Z (F̂j). (2.10)

Lemma 2.2.1 shows that the Lorenz curve is Hadamard differentiable with respect to F at Fj.

Lemma 2.2.1 Under Assumption 2.2.1, Z : LF → `∞[0,1] is Hadamard differentiable at Fj

tangentially to C0[0,∞)∩L with derivative

Z ′
Fj
(h)(p) =

∫ p
0 F−1

j (t)dt
∫ 1

0
h(F−1

j (t))

f j(F−1
j (t))

dt−
∫ p

0
h(F−1

j (t))

f j(F−1
j (t))

dt
∫ 1

0 F−1
j (t)dt

(
∫ 1

0 F−1
j (t)dt)2

, (2.11)

for all h ∈C0[0,∞)∩L.

With the Hadamard differentiability of Lorenz curves, we obtain the asymptotic distribu-

tion of√n j(L̂ j−L j) by first applying the weak convergence of√n j(F̂j−Fj) in L in Kaji (2017).

And then we can show the asymptotic distribution of
√

Tn(φ̂ −φ) based on Assumption 3.3.1.

Lemma 2.2.2 Under Assumptions 2.2.1 and 3.3.1,

√
n j(L̂ j−L j) L j, (2.12)

as n j→∞ for j = 1,2, where L j is a Gaussian process with continuous sample paths. Moreover,
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as n→ ∞, we have

√
Tn(φ̂ −φ) =

√
Tn(L̂2−L2)−

√
Tn(L̂1−L1) 

√
λL2−

√
1−λL1. (2.13)

We next derive the asymptotic distribution of
√

Tn(F (φ̂)−F (φ)) to establish the testing

theory. If the map F is Hadamard differentiable, we can easily obtain the limit distribution of
√

Tn(F (φ̂)−F (φ)) by the Delta method with the weak convergence result in (2.13), and then

approximate that limit distribution using the bootstrap law of F ′
φ
(
√

Tn(φ̂
∗− φ̂)), where F ′

φ
is

the Hadamard derivative of F at φ and φ̂∗ is a bootstrap version of φ̂ . However, in applications

F is not always Hadamard differentiable with respect to φ , and as a result the bootstrap method

may not work. For the two specific non-Hadamard differentiable functionals (2.4) and (2.5),

Barrett et al. (2014) suggest instead to bootstrap the limit distribution of
√

TnF (φ̂ −φ) such that

under H0:

F (
√

Tn(φ̂ −φ)) =
√

TnF (φ̂ −φ)≥
√

TnF (φ̂) a.s. (2.14)

And Barrett et al. (2014) bootstrap the p-value using

p̂(F ) =
1
J

J

∑
t=1

1{
√

TnF (φ̂∗j − φ̂)>
√

TnF (φ̂)}, (2.15)

where φ̂∗j is the jth bootstrap version of φ̂ obtained from bootstrap sample, and J is the total

number of bootstrap samples. With (2.15), the decision rule of the test in Barrett et al. (2014) is

reject H0 if p̂(F )< α, (2.16)

where α is the nominal significance level. Under this setting, Barrett et al. (2014) prove that

the limit rejection rate is less than or equal to α under H0 and converges to 1 under H1. The

reason why the limit rejection rate could be below α is that under H0 we have F (φ) = 0, and so
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√
TnF (φ̂−φ)≥

√
Tn(F (φ̂)−F (φ)) a.s. as is shown in (2.14). And with a finite sample we can

not rule out the strict inequality if the two Lorenz curves are not identical. The estimated p value

is obtained from bootstrapping the distribution of an upper bound of the test statistic and therefore

it is larger than that from bootstrapping the distribution of the test statistic itself. If we can find

an effective way to derive and bootstrap the asymptotic distribution of
√

Tn(F (φ̂)−F (φ)), we

may be able to construct a test with a superior power.

The bootstrap method proposed by Fang & Santos (2014) supports this idea. To proceed

to illustrating how to construct the test, we now introduce the concept of Hadamard directional

differentiability.

Definition 2.2.5 Let D and E be normed spaces, and F : DF ⊂ D 7→ E. A map F is said to

be Hadamard directionally differentiable at φ ∈ DF tangentially to a set D0 ⊂ D, if there is a

continuous map F ′
φ

: D0→ E s.t.

lim
n→∞

∥∥∥∥F (φ + tnhn)−F (φ)

tn
−F ′

φ (h)
∥∥∥∥
E
= 0, (2.17)

for all sequences {hn} ⊂D and {tn} ∈R+ s.t. tn ↓ 0, hn→ h ∈D0 as n→∞ and φ + tnhn ∈DF

for all n.

As is mentioned in Fang & Santos (2014), there are two differences between Hadamard

differentiability and Hadamard directional differentiability. One is that in Definition 2.2.5, tn

must approach 0 from above. The other one is the map F ′
φ

is not necessarily linear in (2.17).

And it is because of the second difference, we need to find a new way to applying the bootstrap

approach.

Hadamard Directional Derivatives for the Two Specific Functionals

In this part, the notations in Definition 2.2.5 are specified as D= DF = `∞[0,1], D0 =

C[0,1] with ‖·‖D = ‖·‖
∞

, and E= R with ‖·‖E = |·|.
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For S (ψ) = supp∈[0,1]ψ(p), by Example 3 of Fang & Santos (2014), S is Hadamard

directionally differentiable at φ tangentially to C[0,1], and the directional derivative is

S ′
φ (h) = sup

p∈Ψ[0,1](φ)

h(p), (2.18)

where Ψ[0,1](φ) = argmaxp∈[0,1]φ(p). Then by Theorem 2.1 of Fang & Santos (2014) and

(2.13),

√
Tn(S (φ̂)−S (φ)) S ′

φ (
√

λL2−
√

1−λL1). (2.19)

For I (ψ) =
∫ 1

0 ψ(p)1{ψ(p)> 0}dp, by Example 5 of Fang & Santos (2014), I is

Hadamard directionally differentiable at φ . Define

B0(φ) = {p ∈ [0,1] : φ(p) = 0}

and

B+(φ) = {p ∈ [0,1] : φ(p)> 0} .

The Hadamard directional derivative of I at φ is

I ′φ (h) =
∫

B+(φ)
h(p)dp+

∫
B0(φ)

max{h(p),0}dp. (2.20)

By Theorem 2.1 of Fang & Santos (2014) and (2.13),

√
Tn(I (φ̂)−I (φ)) I ′φ (

√
λL2−

√
1−λL1). (2.21)

Our next assumption, which imposes Hadamard directional differentiability upon the
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general functional F , is automatically satisfied when F = S or F = I .

Assumption 2.2.4 Functional F : `∞[0,1] 7→ R is Hadamard directionally differentiable at

φ ∈C[0,1] tangentially to the set C[0,1], where the Hadamard directional derivative F ′
φ

satisfies

(2.17).

2.2.2 Bootstrap

As shown in Fang & Santos (2014), the asymptotic distribution of
√

Tn(F (φ̂)−F (φ))

can be obtained if F is Hadamard directionally differentiable, but this distribution could be

nonstandard. We would need to approximate it using a bootstrap procedure of some sort. Let φ̂∗

denote a “bootstrapped version” of φ̂ which is defined as a function mapping the data {X j
i }

n j
i=1

for j = 1,2 and random weights {W j
i }

n j
i=1 that are independent of {X j

i }
n j
i=1 into DF . This general

bootstrap definition covers a large family of resampling schemes such as Bayesian, block, score,

and weighted bootstraps. Further discussion can be found in Remark 3.2 in Fang & Santos

(2014).

Specifically, in this paper we construct φ̂∗ in the following way:

1. Obtain the bootstrap sample {X j∗
i }

n j
i=1 for j = 1,2 with replacement independently from

{X j
i }

n j
i=1 for j = 1,2.

2. Calculate the following bootstrap objects:

(i) Bootstrap CDF: F̂∗j (x) =
1
n j

∑
n j
i=1 1{X j∗

i ≤ x} for x ∈ [0,∞);

(ii) Bootstrap quantile: Q̂∗j(p) = inf{x : F̂∗j (x)≥ p} for p ∈ [0,1];

(iii) Bootstrap LC: L̂∗j(p) = µ̂
∗−1
j

∫ p
0 Q̂∗j(t)dt for p ∈ [0,1], where µ̂∗j is the sample mean

for bootstrap sample j.

3. Let φ̂∗ = L̂∗2− L̂∗1.
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Now we want to show the asymptotic distribution of
√

Tn(φ̂
∗− φ̂). Notice that

L̂∗j = Z (F̂∗j ). (2.22)

Also, notice that the bootstrap CDF can be written as

F̂∗j =
1
n j

n j

∑
i=1

W j
i 1

[X j
i ,∞)

. (2.23)

Lemma 2.2.3 Under Assumptions 2.2.1 and 2.2.1,

√
Tn(φ̂

∗− φ̂) 
√

λL2−
√

1−λL1, (2.24)

for almost every sequence {X j
i }

n j
i=1 with j = 1,2. Also, it holds that

(i)
√

Tn{φ̂∗− φ̂} is asymptotically measurable (jointly in {X j
i ,W

j
i }

n j
i=1 with j = 1,2),

(ii) h(
√

Tn{φ̂∗− φ̂}) is a measurable function of {W j
i }

n j
i=1, j = 1,2, outer almost surely in

{X j
i }

n j
i=1, j = 1,2, for any continuous and bounded h : `∞[0,1]→ R.

A natural approximation to the limiting distribution of
√

Tn(F (φ̂)−F (φ)) is given by the

bootstrap law of F ′
φ
(
√

Tn(φ̂
∗− φ̂). However, the exact form of F ′

φ
is unknown because φ is

unknown. We will approximate F ′
φ

using an estimator F̂ ′
φ

satisfying the following high level

condition taken from Fang & Santos (2014, Ass. 3.3).

Assumption 2.2.5 F̂ ′
φ

: `∞[0,1] 7→ R is a function of {Xi}n
i=1 satisfying for every compact set

K ⊂C[0,1], Kδ ≡ {a ∈ `∞[0,1] : infb∈K ‖a−b‖∞ < δ}, and every ε > 0, the property:

lim
δ↓0

limsup
n→∞

P( sup
h∈Kδ

|F̂ ′
φ (h)−F ′

φ (h)|> ε) = 0. (2.25)

We show in the following subsection that the constructed Ŝ ′
φ

and Î ′
φ

satisfy Assumption 2.2.5

when F = S and F = I respectively.
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Consistency of the Estimators for the Hadamard Directional Derivatives of the Two
Specific Functionals

As discussed in Example 2.3 in Fang & Santos (2014), a natural estimator for S ′
φ

is

given by

Ŝ ′
n(h) = sup

p∈Ψ̂[0,1](φ)

h(p) (2.26)

for h ∈ `∞[0,1], where Ψ̂[0,1](φ) is an estimator for the set Ψ[0,1](φ) in (2.18). To obtain such an

estimator we construct

B̂n =
{

p ∈ [0,1], |φ̂(p)| ≤ τn
}
, (2.27)

where τn is a tuning parameter satisfying τn→ 0 and
√

Tnτn→ ∞ as n→ ∞. We will see that B̂n

provides a consistent estimate of

B(φ) = {p ∈ [0,1],φ(p) = 0} . (2.28)

The set B(φ) is called the contact set of L1 and L2, and plays a similar role to the contact set in

Linton et al. (2010).

Lemma 2.2.4 Under H0, Ψ[0,1](φ) = B(φ) and B̂n is a Hausdorff consistent estimator of B(φ),

i.e. dH(B(φ), B̂n) = oP(1), where dH is the Hausdorff metric.

If we set Ψ̂[0,1] = B̂n in (2.26) then Lemma B.3 in Fang & Santos (2014) implies that, when H0

is satisfied, the resulting estimator Ŝ ′
n satisfies Assumption 2.2.5.

When F =I , we see from Example 2.5 in Fang & Santos (2014) that a natural estimator

for I ′
φ

is given by

Î ′n(h) =
∫

B̂+n

h(p)dp+
∫

B̂0n

max(h(p),0)dp (2.29)

for h ∈ `∞([0,1]), where B̂+n and B̂0n are estimators for B+(φ) and B0(φ). The sets B(φ) and
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B0(φ) are the same, but we use the latter notation here to emphasize the connection to B+(φ).

We estimate them by setting

B̂+n =
{

p ∈ [0,1] : φ̂(p)> τn
}

(2.30)

and

B̂0n =
{

p ∈ [0,1] : |φ̂(p)| ≤ τn
}
, (2.31)

where again we require the tuning parameter τn to satisfy τn→ 0 and
√

Tnτn→ ∞ as n→ ∞.

Lemma 2.2.5 µ(B̂+n4B+(φ))→p 0 and µ(B̂0n4B0(φ))→p 0, where µ is the Lebesgue mea-

sure and A4B denotes the symmetric difference between any sets A and B.

From this lemma and Lemma B.3 in Fang & Santos (2014) it follows that Î ′n satisfies

Assumption 2.2.5 above.

Remark 2.2.1 When the null hypothesis is satisfied, B+(φ) =∅. Consequently, if in place of

(2.30) we define B̂+n =∅, Lemma 2.2.5 continues to be valid under the null. In the simulations

reported in Section 2.3 we define B̂+n as in (2.30)

Bootstrap-based Inference

Our bootstrap critical value ĉ1−α is the (1−α)-quantile of the bootstrap law of

F̂ ′
φ (
√

T (φ̂∗− φ̂)).

That is,

ĉ1−α = inf
{

c : P
(
F̂ ′

φ (
√

Tn(φ̂
∗− φ̂))≤ c|

{
X1

i
}n1

i=1 ,
{

X2
i
}n2

i=1

)
≥ 1−α

}
. (2.32)
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The decision rule of the test is set to be

Reject H0 if
√

TnF (φ̂)> ĉ1−α . (2.33)

Then for a general functional F , we have the following theorem.

Theorem 2.2.1 For functional F : `∞[0,1] 7→ R, if Assumptions 2.2.1-2.2.5 hold, then under

decision rule (2.33),

(i) if H0 is true and the CDF of F ′
φ
(
√

λL2−
√

1−λL1) is continuous and strictly increasing

at its 1−α quantile c1−α , then

ĉ1−α →p c1−α and lim
n→∞

P(reject H0) = α;

(ii) if H0 is false, then

lim
n→∞

P(reject H0) = 1.

For the specific functionals S and I we have the following corollary to Theorem 2.2.1.

Corollary 2.2.1 If F = S or F = I and we estimate its Hadamard directional derivative

as in (2.26) or (2.29) respectively, and if Assumptions 2.2.1 and 3.3.1 are satisfied, then under

decision rule (2.33),

(i) if H0 is true and the CDF of F ′
φ
(
√

λL2−
√

1−λL1) is continuous and strictly increasing

at its 1−α quantile c1−α , then

ĉ1−α →p c1−α and lim
n→∞

P(reject H0) = α;
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(ii) if H0 is false, then

lim
n→∞

P(reject H0) = 1.

Theorem 2.2.1 and Corollary 2.2.1 both require the CDF of F ′
φ
(
√

λL2−
√

1−λL1) to

be strictly increasing at its 1−α quantile c1−α . In some cases this condition does not hold. For

the functional S , when Ψ[0,1](φ) = {0,1}, e.g. L2 is everywhere strictly below L1 except at the

endpoints 0 and 1, we have S ′
φ
(
√

λL2−
√

1−λL1) = 0 a.s. For the functional I , if B0(φ)

and B+(φ) are Lebesgue measure 0, we have I ′
φ
(
√

λL2−
√

1−λL1) = 0 a.s. In these cases,

the test statistic and bootstrapped critical value will converge to zero and it is not clear how the

rejection rate will behave asymptotically.

The estimated sets B̂n, B̂0n and B̂+n depend on the selection of the tuning parameter τn.

If τn ≥ 1 then B̂n and B̂0n are equal to [0,1] and B̂+n is empty. In this case our test is the same as

the test of Barrett et al. (2014). Reducing τn causes B̂n and B̂0n to get smaller and B̂+n to get

larger. This can improve power, at the risk of losing control of size if τn is chosen too small. A

suitable balance needs to be achieved. We provide a simulation-based approach to choosing τn

in Section 2.3.3.

2.3 Finite Sample Performance

2.3.1 Simulation Design

We ran a number of Monte Carlo simulations to investigate the finite sample size and

power of our test and the test of Barrett et al. (2014). In each simulation we used sample

sizes n j = 200, j = 1,2, and nominal significance level α = 0.05. We used a range of tuning

parameter values for our contact set estimator: 0.01, 0.02, 0.04, 0.06, 0.08, 0.1. We used

R = 10000 experimental replications, and employed the method of Giacomini et al. (2013) to

expedite computation.
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Figure 2.2. Lorenz Curves for X1 (solid) and X2
(γ) (dashed), for Parameter Values

γ ∈ {0,0.25,0.5,0.75,1}.

In each simulation the data {X1
i }

n1
i=1 were generated as independent copies of the random

variable

X1 =


4 with probability 1

2

8 with probability 1
2 .

The data {X2
j }

n2
j=1 were generated as independent copies of the random variable

X2
(γ) =


4+ γ with probability 3

4

12−3γ with probability 1
4 ,

whose law is parametrized by γ ∈ [0,4]. The Lorenz curves corresponding to X1 and X2
(γ) are

displayed in Figure 2.2 for different values of γ . The Lorenz curve for X1 is drawn with a

solid line and has a kink at p = 0.5. The Lorenz curves for X2
(γ), γ = 0,0.25,0.5,0.75,1, are

drawn with dashed lines and are kinked at p = 0.75. When γ = 0, the Lorenz curve for X2
(γ) is

everywhere equal to or less than the Lorenz curve for X1, so that the null hypothesis of Lorenz

curve dominance is satisfied. When γ > 0 the null hypothesis is violated.
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Figure 2.3. Rejection Rate Comparisons for F = S .

2.3.2 Simulation Results

Figures 2.3 and 2.4 display the simulated rejection rates for the test introduced in this

paper and the test proposed by Barrett et al. (2014), for F equal to S and I . The red curves

represent the simulated rejection rates for our test as γ , which parametrizes the Lorenz curve

in Figure 2.2, increases from zero to one. The blue curves represent the simulated rejection

rates for the test of Barrett et al. (2014). It is apparent that the red curves are in all cases above

the corresponding blue curves, reflecting the power improvement obtained using our modified

bootstrap procedure. This is a consequence of Lemmas B.1.1 and B.1.2 in Appendix B.1, which

assert that Ŝ ′
n(h)≤S (h) and Î ′n(h)≤I (h) for all h ∈ `∞[0,1], implying that the critical value

used for our test is equal to or less than the critical value used for the test of Barrett et al. (2014).

We also see in Figures 2.3 and 2.4 that as τ increases, the difference between the red and

blue curves becomes smaller. This is because the estimates of the sets Ψ[0,1](φ),B+(φ),B0(φ)

get larger as τ increases. So Ŝ ′
n(h) and Î ′n(h) get closer to S (h) and I (h), respectively.
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Figure 2.4. Rejection Rate Comparisons for F = I .

2.3.3 Tuning Parameter Selection

The power of our test increases as we reduce the tuning parameter τn, so in practice we

would like to choose τn to be as small as possible while still controlling size. We suggest the

following procedure.

(i) Choose a collection of candidate values for τn.

(ii) Resample with replacement from the data {X1
i }

n1
i=1 to create a bootstrap sample {X2B

i }
n2
i=1.

Use the samples {X1
i }

n1
i=1 and {X2B

i }
n2
i=1 to test the null hypothesis of Lorenz dominance

using the test of Barrett et al. (2014) and using our proposed test with each candidate value

for τn. Record the outcome of each of these tests.

(iii) Repeat the previous steps many times. Compute the rejection rates of the different tests.

(iv) Choose the smallest candidate value for τn such that the rejection rate computed for our

test is within ε of the rejection rate computed for the test of Barrett et al. (2014). Here, ε

is a small tolerance parameter; we suggest ε = 0.001.

56



0 .25 .5 .75 1
0

.2

.4

.6

.8

1

(a) F = S ,τ = 0.03

γ
0 .25 .5 .75 1

0

.2

.4

.6

.8

1

(a) F = I ,τ = 0.045

γ

Figure 2.5. Power Curve Comparisons with Automatically Selected Tuning Parameters.

For extremely large values of τn our estimated contact set is [0,1], and so our test is the

same as the test of Barrett et al. (2014). So by including at least one very large candidate value

of τn, in step (iv) there should always be at least one rejection rate within ε of the rejection rate

for the test of Barrett et al. (2014).

The following intuition motivates our tuning parameter selection procedure. We know

that when the two distributions F1 and F2 are equal, the test of Barrett et al. (2014) has limiting

rejection rate equal to nominal size. So we would like our tuning parameter to deliver a similar

rejection rate. By generating the bootstrap sample {X2B
i }

n2
i=1 by resampling from {X1

i }
n1
i=1, we

approximate the setting where F1 and F2 are equal.

We applied our tuning parameter selection procedure to a sample of n1 = 200 independent

copies of X1 as defined in Section 2.3.1, using a nominal size of 0.05. For both functionals S

and I , we picked τn from the grid τn = 0.01+0.005× k with k = 0, · · · ,18. The rejection rate

of the test of Barrett et al. (2014) was computed to be 0.0103 using S and 0.0198 using I .

The smallest tuning parameter values yielding rejection rates within ε = 0.001 of these rates

were τn = 0.03 using S and τn = 0.045 using I . We then repeated the simulations described in

Sections 2.3.1 and 2.3.2 using these tuning parameter values. Figure 2.5 shows the power curves

comparison for the functionals S and I . We see that our procedure using the automatically

selected tuning parameter values generates a large increase in power relative to the test of Barrett

et al. (2014).
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Chapter 3

High-Dimensional Semiparametric Models
with Endogeneity

Abstract

When a model includes a large pool of regressors, endogeneity can arise incidentally

and cause inconsistency of the estimators from a high-dimensional regression. In this paper, we

propose a sieve focused GMM (SFGMM) estimator for general high-dimensional semiparametric

conditional moment models in the presence of endogeneity. Under certain conditions, the

SFGMM estimator has oracle consistency properties and converges at a desirable rate. We

then establish the asymptotic normality of the plug-in SFGMM estimator for possibly irregular

functionals. Simulation evidence illustrates the performance of the proposed estimator.

3.1 Introduction

In this paper, we consider high-dimensional semiparametric models in the presence of

endogeneity. High dimensions in a variety of nonparametric and semiparametric models have

been discussed in the literature, such as in Xie & Huang (2009), Ni et al. (2009), Chen et al.

(2012), Peng & Huang (2011), and Zhu & Zhu (2009). As discussed in Fan & Liao (2014), as

more and more explanatory variables are collected, the possibility that some of them end up being

correlated with random noise increases. Fan & Liao (2014) propose a focused GMM estimator
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that deals with both high dimensions and endogeneity in a general nonlinear parametric model.

Many interesting models, such as linear models, logit models, and probit models, are examples

of such a model. Under certain conditions, their FGMM estimator can be shown to have oracle

properties. The present paper employs their focused GMM approach and constructs an oracle

estimator for a general high-dimensional semiparametric model with possible endogeneity.

Nonparametric and semiparametric models with endogeneity but with low dimensions

have attracted much attention.1 When we introduce high dimensions into the model, the usual

estimation and inference procedures might not work. We follow the basic setup of semiparametric

conditional moment models in the literature and propose a new estimator that deals with high

dimensions and endogeneity simultaneously.

Consider a high-dimensional semiparametric model with conditional moment restrictions:

E
[
ρ

(
Y,X (n)′

θ
(n)
0 ,h0

(
δ

(
Y,X (n)′

θ
(n)
0

)))
|W (n)

]
= 0, (3.1)

where the dimension of X (n), say p, may increase as the sample size n goes to infinity. The

dimension of Y , denoted by dy, is fixed. We allow (Y,X (n)) to include endogenous variables. W (n)

is a vector of instrumental variables; ρ and δ are known smooth real-valued functions; and θ
(n)
0

and h0 are the finite-dimensional and infinite-dimensional parameters of interest, respectively.

The possibly increasing dimension of X (n) as n goes to infinity captures the feature of high-

dimensional models. All the superscripts (n) indicate that the dimensions would be increasing in

n.

Model (3.1) is an extension of the classic semiparametric models in Ai & Chen (2003) and

Chen & Pouzo (2009). It has been proved in Newey & Powell (2003), Ai & Chen (2003), Chen

& Pouzo (2009), and Chen & Pouzo (2012) that the sieve minimum distance (SMD) estimator

has good properties in general nonparametric and semiparametric models with regressors that

have fixed dimensions. In this paper, we propose an estimator based on the sieve method that has

1See, for example, Newey & Powell (2003), Ai & Chen (2003), Chen & Pouzo (2009), and Chen & Pouzo
(2012).
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desirable oracle properties under additional high-dimensional assumptions. For simplicity, we

will assume that there is only one infinite-dimensional parameter, h0, in the model, and that there

are no finite-dimensional parameters of interest other than θ
(n)
0 . It would be straightforward to

include additional such parameters of interest in the model.

We assume that h0 ∈H , where H is a function space for the infinite-dimensional

parameter of interest, and that θ
(n)
0 ∈ Θ(n), where Θ(n) = Θp, Θ ⊂ R, and p is the number of

regressors in X (n), which is increasing in n. Assume that for each fixed n, Θ(n) is compact

under the Euclidean norm ‖ ·‖E . Let A (n) = Θ(n)×H , the parameter space for α(n) = (θ (n),h).

We let {Hk}k be a sequence of compact subsets of H under a strong norm ‖ · ‖s of H such

that Hk ⊂Hk+1. Let A
(n)

k = Θ(n)×Hk, the sieve space for A (n). For estimation, we assume

that only a few of the parameters θ
(n)
0 j are nonzero, that is, we partition θ

(n)
0 into two parts as

θ
(n)
0 = (θ

(n)′
0S ,θ

(n)′
0N )′ where θ

(n)
0S and θ

(n)
0N correspond to the important regressors X (n)

S and trivial

regressors X (n)
N , respectively, and θ

(n)
0N = 0. Thus X (n)′θ

(n)
0 = (X (n)′

S ,X (n)′
N )(θ

(n)′
0S ,θ

(n)′
0N )′, and we

assume that the dimension of θ
(n)
0S is some s such that s≤ n and s grows very slowly compared

to n.

Throughout this paper, we denote the Euclidean norm by ‖·‖E . Specifically, for every

positive integer j and every j-dimensional vector x, we use ‖x‖E =
√

x2
1 + x2

2 + · · ·+ x2
j . Also,

for every square matrix A, we let λmin (A) and λmax (A) be the smallest and largest eigenvalues of

A, and we use ‖A‖E = λ
1/2
max (A′A). For any (possibly random) positive sequences {an}∞

n=1 and

{bn}∞

n=1, an = Op (bn) means that limc→∞ limsupn P(an/bn > c) = 0, and an = op (bn) means

that for each ε > 0, limn→∞ P(an/bn > ε) = 0.

3.2 Sieve Focused GMM Estimator

To simplify the notation, we omit the superscript (n) on parameters and random variables.

Fan & Liao (2014) propose a focused GMM estimator for nonlinear parametric high-dimensional

61



models based on the general moment conditions

E
[
g(Y,X ′β )|W

]
= 0, (3.2)

where g is a known smooth function and β ∈ Rp is the vector of finite-dimensional parameters

of interest. The estimator proposed in Fan & Liao (2014) is a new method for dealing with

high dimensions in general endogenous models. Model (3.1), which takes the nonparametric

component into account, is a semiparametric extension of model (3.2). To illustrate these ideas,

we introduce several specific examples of model (3.1).

Example 3.2.1 (label=PLM) In the partially linear model (PLM),

Y1 = X ′θ +h(Y2)+ ε, (3.3)

where Y = (Y1,Y2) has a fixed dimension dy = 2, θ is a p-component column vector of regression

coefficients associated with X, and h is an unknown function of Y2. Ai & Chen (2003) and Chen

& Pouzo (2009) discussed this model under the assumptions of finite dimensions with possible

endogeneity. If p→ ∞ as n→ ∞, (3.3) becomes a high-dimensional semiparametric model. Xie

& Huang (2009) propose a smoothly clipped absolute deviation (SCAD) penalized estimator

and obtain oracle properties for it under certain conditions by assuming that both X and Y2 are

exogenous variables. We also allow X and Y2 to be endogenous.

Example 3.2.2 Another classic semiparametric model is the single-index model (SIM):

Y = h
(
X ′θ

)
+ ε, (3.4)

where Y is a scalar variable, X is a p-component column vector of covariates, θ = (θ1, ...,θp)
′

is the vector of finite-dimensional parameters of interest, and h is a smooth unknown function.

Model (3.4) is another specific example of Ai & Chen (2003) and Chen & Pouzo (2009) under
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the assumptions of finite dimensions and endogeneity. Peng & Huang (2011) studied this model

under the assumptions of high dimensions and exogeneity. Model (3.1) allows X in model (3.4)

to be endogenous .

Example 3.2.3 As mentioned earlier, model (3.1) can easily be transformed to include more

complicated cases. Consider the partially linear single index (PLSI) model

Y = η
(
Z′α
)
+X ′θ + ε, (3.5)

where Z and X are q- and p-dimensional covariate vectors, respectively. Liang et al. (2010)

study the case where q→ ∞ and p→ ∞ as n→ ∞ by assuming that both Z and X are exogenous

variables. Model (3.5) can be incorporated into model (3.1), as we consider an additional

high-dimensional component Z′α in model (3.1).

Because of the high-dimensional component, model (3.1) is different from the classic

semiparametric models in, for example, Ai & Chen (2003) and Chen & Pouzo (2009). In this

paper, we will extend the basic idea in Fan & Liao (2014) to deal with high dimensions in general

semiparametric models when endogeneity arises. Let ( f1, f2, . . .), (h1,h2, ...), and (g1,g2, ...) be

three different sets of transformations of W , for example, B-splines, Fourier series, polynomials,

or any other series basis. Write F = ( f1 (W ) , f2 (W ) , ...)′, H = (h1 (W ) ,h2 (W ) , ...)′, and G =

(g1 (W ) ,g2 (W ) , ...)′. Then we obtain the moment conditions under (3.1):

E
[
ρ
(
Y,X ′θ0,h0

(
δ
(
Y,X ′θ0

)))
F
]
= 0,

E
[
ρ
(
Y,X ′θ0,h0

(
δ
(
Y,X ′θ0

)))
H
]
= 0,

and

E
[
ρ
(
Y,X ′θ0,h0

(
δ
(
Y,X ′θ0

)))
G
]
= 0.

We write (Y,X ,W ) = Z. In model (3.1), the original map ρ = ρ(u1,u2,u3), where u1 is a dy-

63



dimensional variable, and u2 and u3 are scalar variables. For simplicity, we will also write

ρ = ρ (Z,α) for model (3.1), where α = (θ ,h). Let V = (F ′,H ′,G′)′ .

Let Hk be a linear finite-dimensional sieve space for h. Each h ∈Hk takes the form

h = ∑
k
j=1 b jϕ j, where

{
ϕ j
}∞

j=1 is a set of basis functions in H . As mentioned earlier, A
(n)

k =

Θ(n)×Hk is a sieve space for A (n). Because we don’t know the exact form of h0, we use

∑
k
j=1 b jϕ j to approximate it. k will be required to be increasing in n, and to increase at a

particular rate.

The norm used to measure the distance between two parameters in the space A (n) is

defined below. We will obtain the consistency for the parameters of interest under this norm.

Notice that δ is assumed to be a scalar function in this model, so for all h ∈H we first define

‖h‖s = max
m≤2

sup
t

∣∣∣∣∂ mh(t)
∂ tm

∣∣∣∣ . (3.6)

Then we let

‖α‖s = ‖θ‖E +‖h‖s (3.7)

for all α ∈A (n).

In applications, the smoothness of the functions in H determines how well a sieve space

can approximate H . A typical space of smooth functions is the Hölder space Λγ (X ) of order

γ > 0. For all g ∈ Λγ (X ), g : X 7→ R, the first γ derivatives of g are bounded, and the γ-th

derivatives are Hölder continuous with exponent γ − γ ∈ (0,1], where γ is the largest integer

such that γ < γ . In model (3.1), δ is a scalar function, so X ⊂ R and if we consider the Hölder

space with γ > 2, then all h ∈H satisfy the condition that ‖h‖s <C for some C > 0.

Define

J = diag{1{θ1 6= 0}ω11, . . . ,1{θp 6= 0}ωp1,1{θ1 6= 0}ω12, . . . ,1{θp 6= 0}ωp2,ω13, . . . ,ωk3},

64



where
{

w j1,w j2
}p

j=1 and
{

w j3
}k

j=1 are some constant weights, and define

V = ( f1(W ), . . . , fp(W ),h1(W ), . . . ,hp(W ),g1(W ), . . . ,gk(W ))′.

Let J (θ) be a diagonal matrix whose diagonal elements are those ω jt’s with j ∈ {1, . . . , p},

t ∈ {1,2}, and θ j 6= 0 and all ω j3’s. Let V (θ) be a column vector with elements all from V

except for those f j’s and h j’s with θ j = 0.

The sieve focused GMM (SFGMM) loss function is constructed to be

Q̃(α) =
1
2

p

∑
j=1

1
{

θ j 6= 0
}
×

w j1

[
1
n

n

∑
i=1

ρ (Zi,α) f j (Wi)

]2

+w j2

[
1
n

n

∑
i=1

ρ (Zi,α)h j (Wi)

]2


+
1
2

k

∑
j=1

w j3

[
1
n

n

∑
i=1

ρ (Zi,α)g j (Wi)

]2


=
1
2

[
1
n

n

∑
i=1

ρ (Zi,α)Vi

]′
J

[
1
n

n

∑
i=1

ρ (Zi,α)Vi

]

=
1
2

[
1
n

n

∑
i=1

ρ (Zi,α)Vi (θ)

]′
J (θ)

[
1
n

n

∑
i=1

ρ (Zi,α)Vi (θ)

]
, (3.8)

where α ∈A
(n)

k . Let b = (b1, . . . ,bk)
′.

In the sieve space, the parameters to be estimated are γ = (θ ′,b′)′. The SFGMM loss

function consists of two parts. The first part (associated with F and H), that is, the first summation

in (3.8), is for the parametric parameters θ , which is similar to that in Fan & Liao (2014). The

second part (associated with G), that is, the second summation in (3.8), is for the sieve parameters

b, that is, the coefficients of the basis functions which are used to approximate h.

Then the SFGMM sample criterion function is

Q̂(α) = Q̃(α)+
p

∑
j=1

Pn
(∣∣θ j

∣∣) , (3.9)
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where {Pn} is a sequence of penalty functions for θ . The SFGMM estimator is a local minimizer

of the criterion function (3.9), which achieves variable selection.

The indicator function in the first part of the loss function (3.8) is included for the

purpose of reducing dimensions and preventing the accumulation of estimation errors, so that

the oracle consistency for the estimator is achievable. For details and examples of this, see Fan

& Liao (2014). Fan & Liao (2014) also explained why two sets of IV’s for θ are included. This

over-identification setup rules out extreme cases in which most of the coefficients can be set to be

zeros, which minimizes the criterion function, but they are far from the true values. The second

summation in (3.8) is important not only because it shows the sample moment conditions for

the sieve parameters but also because it helps rule out extreme cases in which all the parametric

parameters are equal to 0. If we omit the second part, the criterion function becomes

Q̂(α) =
1
2

p

∑
j=1

1
{

θ j 6= 0
}w j1

[
1
n

n

∑
i=1

ρ (Zi,α) f j (Wi)

]2

+w j2

[
1
n

n

∑
i=1

ρ (Zi,α)h j (Wi)

]2


+
p

∑
j=1

Pn
(∣∣θ j

∣∣) . (3.10)

It is obvious that θ = 0 always minimizes the criterion function (3.10), but 0 is not likely to be

the true value of θ in most cases. The second part, for the nonparametric component parameters

in the loss function (3.8), is an adjustment for this extreme case. If we let all the parametric

coefficients to be equal to 0 in the loss function (3.8), the first part will be 0, but the second part

will become large.

3.3 Oracle Consistency and Convergence Rates

In order to establish the consistency under ‖·‖s, we first impose several basic conditions.

Assumption 3.3.1 The data {Yi,Xi,Wi}n
i=1 is i.i.d..

Assumption 3.3.2 The true parameter α0 is uniquely identified by model (3.1).
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Assumption 3.3.3 The parameter spaces satisfy the following conditions:

(i) A
(n)

k = Θ(n)×Hk is compact under ‖ · ‖s;

(ii) Let A (s)
k =Θ(s)×Hk, where Θ(s) is the space for θS. For each n, there exists Πnα0S ∈A

(s)
k

such that Πnα0S =
(

θ0S,∑
k
j=1 b0ϕ j

)
and ‖Πnα0S−α0S‖s = O(δ0S) = o(1) for some

δ0S > 0.

Define dn =
1
2 min

{∣∣θ0 j
∣∣ : θ0 j 6= 0, j = 1, ..., p

}
. dn represents the strength of the signals.

Assumption 3.3.4 There is a penalty function Pn (t) : [0,∞)→ ∞ such that

(i) Pn (0) = 0;

(ii) Pn (t) is concave and nondecreasing on [0,∞), and it has a continuous derivative P′n (t)

when t > 0;

(iii)
√

sP′n (dn) = o(1/
√

n).

By Assumption 3.3.1, this paper focuses on independent data. Assumption 3.3.2 is the

standard identification condition. Assumption 3.3.3(i) requires the sieve space to be compact

under the norm ‖ · ‖s. Assumption 3.3.3(ii) is a condition of the sieve space restricted to the

important finite-dimensional parameters. Πnα0S is the projection of α0S onto the sieve space,

and the distance between Πnα0S and α0S decreases at the rate δ0S.

Assumption 3.3.4 defines the penalty function, which is similar to the concave penalty

function in Fan & Li (2001). This condition is standard, and it can be shown that with properly

chosen tuning parameters, the Lp penalty (for p ≤ 1), hard-thresholding Antoniadis (1996),

SCAD (Fan & Li, 2001), and MCP (Zhang, 2010) all satisfy these conditions. Fan & Li (2001)

show that a folded concave penalty is needed for an estimator to achieve three important oracle

properties: unbiasedness, sparsity, and continuity. In this paper, we employ the same conditions

for the penalty function.
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To obtain the oracle consistency of the SFGMM estimator, we now introduce the concept

of functional differentiability. Define the first pathwise derivative of a functional F : A (n) 7→ R

in the direction [∆α1] evaluated at α0 by

∂F (α0)

∂α
[∆α1] =

∂F (α0 + t∆α1)

∂ t
|t=0. (3.11)

Then the second pathwise derivative of F in the direction [∆α1,∆α2] evaluated at α0 is given by

∂ 2F (α0)

∂α2 [∆α1,∆α2] =
∂

∂F(α0+t∆α2)
∂α

[∆α1]

∂ t
|t=0. (3.12)

In this way, we can define the K-th pathwise derivative of F the direction [∆α1, ...,∆αK] evaluated

at α0. If ∆α1 = ...= ∆αK = ∆α , then

∂ KF (α0)

∂αK [∆α1,∆α2, ...,∆αK] =
∂ KF (α0)

∂αK [∆α]K =
∂ KF (α0 + t∆α)

∂ tK |t=0. (3.13)

Clearly, the pathwise functional derivative is essentially an extension of simple function deriva-

tives. With the definitions above, we define the functional Taylor expansion.

Definition 3.3.1 Suppose the functional F : A (n) 7→ R has a (K +1)-st pathwise derivative in

the direction [∆α]k+1. Then the functional Taylor expansion of F is

F (α0 +∆α) =F (α0)+
∂F (α0)

∂α
[∆α]+

1
2!

∂ 2F (α0)

∂α2 [∆α]2

+ ...+
1

K!
∂FK (α0)

∂αK [∆α]K +
1

(K +1)!
∂ K+1F (α0 + τ∆α)

∂αK+1 [∆α]K+1 , (3.14)

where τ ∈ (0,1).

The functional Taylor expansion is an extension of the univariate Taylor expansion. If we

let f (t) = F (α0 + t∆α) and expand f (1) around t = 0, we get the functional Taylor expansion.

Conditional on the dataset Z = (Y,X ,W ), Q̃(α) is a functional of α ∈A (n).
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Now, we introduce conditions under which the oracle consistency of the SFGMM

estimator can be obtained for model (3.1).

Assumption 3.3.5 The residual function ρ (Z,α) satisfies the following:

(i) The first and second path derivatives of ρ (Z,α) exist for all α ∈A (n), for almost surely

all Z;

(ii) As a map in model (3.1), ρ : Rdy+2 7→ R and ρ = ρ (u1,u2,u3) with

sup
u1,u2,u3

∣∣∣∣∂ρ (u1,u2,u3)

∂u2

∣∣∣∣< ∞, sup
u1,u2,u3

∣∣∣∣∂ρ (u1,u2,u3)

∂u3

∣∣∣∣< ∞, sup
u1,u2,u3

∣∣∣∣∂ 2ρ (u1,u2,u3)

∂u2
2

∣∣∣∣< ∞,

sup
u1,u2,u3

∣∣∣∣∂ 2ρ (u1,u2,u3)

∂u2
3

∣∣∣∣< ∞, sup
u1,u2,u3

∣∣∣∣∂ 2ρ (u1,u2,u3)

∂u2∂u3

∣∣∣∣< ∞,

where u1 is a dy-dimension vector and u2, u3 are scalars.

Assumption 3.3.5 requires that the residual function ρ(Z,α) be second-order pathwise

differentiable with respect to α , and that ρ(u1,u2,u3) have bounded first- and second-order partial

derivatives with respect to u2, u3. This condition can easily be satisfied by many nonparametric

and semiparametric models.

Example 3.3.1 (continues=PLM) In the PLM, Y1 =X ′θ +h(Y2)+ε and ρ (Z,α) =Y1−X ′θ−

h(Y2), where Z = (Y,X) and Y = (Y1,Y2). Then

∂ρ (Z,α)

∂α
[∆α1] =

∂ρ (Z,α + t∆α1)

∂ t
|t=0 =

∂ [Y1−X ′ (θ + t∆θ1)− (h+ t∆h1)(Y2)]

∂ t
|t=0

=−X ′∆θ1−∆h1 (Y2) (3.15)

and
∂ 2ρ (Z,α)

∂α2 [∆α1,∆α2] = 0. (3.16)

In this case, ρ (u1,u2,u3) = u11−u2−u3, where u1 = (u11,u12). It is obvious that Assumption

3.3.5 holds in this example.
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Example 3.3.2 (continues=SIM) In the SIM, Y = h(X ′θ) + ε , and ρ (Z,α) = Y − h(X ′θ).

Then if ∆α1 = (∆θ1,∆h1) and ∆α2 = (∆θ2,∆h2), where ∆h1 and ∆h2 are both second-order

differentiable,

∂ρ (Z,α)

∂α
[∆α1] =

∂ρ (Z,α + t∆α1)

∂ t
|t=0 =

∂ [Y − (h+ t∆h1)(X ′ (θ + t∆θ1))]

∂ t
|t=0

=−h′
(
X ′θ

)
X ′∆θ1−∆h1

(
X ′θ

)
(3.17)

and

∂ρ2 (Z,α)

∂α2 [∆α1,∆α2] =
∂
[
−(h+ t∆h2)

′ (X ′ (θ + t∆θ2))X ′∆θ1−∆h1 (X ′ (θ + t∆θ2))
]

∂ t
|t=0

=−h′′
(
X ′θ

)
X ′∆θ1X ′∆θ2−∆h′2

(
X ′θ

)
X ′∆θ1−∆h′1

(
X ′θ

)
X ′∆θ2.

(3.18)

In this case, ρ (u1,u2,u3) = u1−u3, so Assumption 3.3.5 holds.

Let S =
{

j ≤ p : θ0 j 6= 0
}

, the set of indexes of nonzero coefficients in the high di-

mensional component. Let ρS(Z,αS) = ρ(Z,((θ ′S,0
′)′,h)), Q̃S (αS) = Q̃

(((
θ ′S,0

′)′ ,h)), and

Q̂S (αS) = Q̂
(((

θ ′S,0
′)′ ,h)), where αS = (θS,h) and α =

((
θ ′S,θ

′
N
)′
,h
)

. For simplicity, we

will also write α = (αS,θN) according to the context. Notice that S cannot be identified at

the outset. We first explore the properties of the estimator for the nonzero finite-dimensional

parameters and the infinite-dimensional parameters, pretending that S is known. Then under

certain conditions, we show that S need not be identified but the whole estimator α̂ (i.e., for the

important and unimportant finite-dimensional parameters and the infinite-dimensional parameter)

can automatically achieve oracle properties. Notice that if Assumption 3.3.5 is satisfied by ρ ,

then ρS(Z,αS) satisfies Assumption 3.3.5(i) with respect to αS. Let JS denote J((θ ′S,0
′)′), let VS

denote V ((θ ′S,0
′)′), and let γS = (θ ′S,b

′)′.

Assumption 3.3.6 Suppose the following inequalities hold:
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(i) For all n, maxm≤2 supt

√
∑

k
j=1
(
∂ mϕ j (t)/∂ tm

)2
= δnϕ < ∞ for some δnϕ > 0;

(ii) λmax

{
E
[
(∂ρS (Zi,Πnα0S)/∂γS)V ′Si

]
E
[
(∂ρS (Zi,Πnα0S)/∂γS)V ′Si

]′}
>Cλ (n) for some

Cλ (n)> 0 such that limn→∞Cλ (n)
−2

δ 2
nϕs
(
2s2 + sk

)
(2s+ k)

√
log p/n = 0;

(iii) JS is a deterministic diagonal matrix based on the sample criterion function (3.8), where

λmin (JS)>CJL and λmax (JS)<CJU for some CJL,CJU > 0.

Assumption 3.3.6(i) is a condition on the basis functions. An example of this is the

Fourier basis. The condition similar to Assumption 3.3.6(ii) can be found in Bradic et al. (2011),

Fan & Lv (2011), and Fan & Liao (2014). In this paper, we relax this condition for nonparametric

and semiparametric models, that is, we allow Cλ (n) to decay as n→∞, and Assumption 3.3.6(ii)

requires that it not decay too fast. Assumption 3.3.6(iii) is a standard condition on JS which can

easily be satisfied by construction. Remember VS and XS are column vectors and we use VSl and

XSm to denote the l-th and the m-th element of the vectors, respectively.

Assumption 3.3.7 Suppose the following conditions hold:

(i) E
[
|VSl|2

]
≤M2

V for all l and some MV > 0; E
[
|VSlXSm|2

]
≤M2

V X for all l,m and some

MV X > 0; E
[
|VSlXSmXSt |2

]
≤M2

V XX for all l,m, t and some MV XX > 0;

(ii) Cλ (n)
−1

δ 2
nϕ

√
1
n (2s2 + sk)(2s+ k) log p = o(dn);

(iii) Let Cλ (n) satisfies 3.3.6(ii), then

‖α0S−Πnα0S‖s = Op

min

√(2s+ k) log p
n(2s2 + sk)

,
δ 2

nϕ

√
1
n (2s2 + sk)(2s+ k) log p

Cλ (n)

 ;

(iv) Cλ (n)
−1

δ 2
nϕ

(
2s2 + sk

)
(2s+ k)

√
1
n log p = o(P′n (0

+)).

Assumption 3.3.7(i) shows some moment conditions on X and V . It requires that

the moments be uniformly bounded as more and more important regressors enter the model.
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Assumption 3.3.7(ii) requires the signal to be sufficiently strong, that is,

dn�
(

δ
2
nϕ

√
(2s2 + sk)(2s+ k) log p/n

)
.

Assumption 3.3.7(iii) demonstrates the rate of convergence of the projection of α0S. This is

a high-level assumption. Assumption 3.3.7(iv) shows the relationship among s, k, p, δnϕ , n,

and the penalty function at the origin. When the SCAD penalty function is used with a tuning

parameter λn, P′n(0
+) = λn. Then assumption 3.3.7(iv) implies that λn cannot decrease too fast.

Theorem 3.3.1 Under Assumptions 3.3.1-3.3.7, with probability approaching one, there is

a local minimizer α̂ = ((θ̂ ′S,0
′)′, ĥ) of Q̂(α) in the sieve space A

(n)
k such that ‖α̂ −α0‖s =

Op (δnα), where δnα = O(Cλ (n)
−1

δ 2
nϕ

√
n−1 (2s2 + sk)(2s+ k) log p).

The basic idea of the existence of such a local minimizer is that we first find a neigh-

borhood of the sieve projection Πnα0S in which the sample criterion function evaluated on the

boundary is larger than that same function evaluated at Πnα0S; then by continuity of the criterion

function on the sieve space, we know that there must be a local minimizer of the criterion

function inside this neighborhood. As n→ ∞, the neighborhood shrinks by construction and the

minimizer gets closer to the projection Πnα0S. Under the assumption that Πnα0S approaches the

true value α0S fast enough, the local minimizer converges to α0S at a certain rate.

Theorem 3.3.1 shows the existence of a consistent estimator for α0 on the sieve space

which achieves variable selection. In addition, it provides a desirable convergence rate under

which we can obtain the asymptotic normality of a plug-in SFGMM estimator.

3.4 Asymptotic Normality of Plug-in SFGMM Estimator

In this paper, we are interested in the asymptotic distribution of a plug-in SFGMM

estimator f (α̂S) for f (α0S), where f : A (s) 7→ R is a known measurable map. For example,

f (αS) = η ′θS for some known vector η with dimension s, which is similar to that in Fan & Liao
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(2014), and f (αS) = h(δ̄ ) when we care about the behavior of h0 at a specific point δ̄ . We don’t

consider the unimportant regressors here, since by Theorem 3.3.1 we can identify S. Chen et al.

(2014) provide a method to obtain the asymptotic normality of f (α̂S) in the finite-dimensional

case, while in this paper we extend this method to obtain the limiting distribution under the

assumptions of high dimensions.

By Theorem 3.3.1, we have ‖α̂S−α0S‖s = Op (δnα), where δnα is the convergence rate,

and α̂S is a local minimizer in A
(s)

k . Next, we construct a subset of A
(s)

k , which we denote by

BS
n(τ), in which α̂S is a global minimizer. Specifically,

BS
0 =

{
αS ∈A (s) : ‖αS−α0S‖s ≤ δnα

}

and

BS
n (τ) =

{
αS ∈A

(s)
k : ‖θS−θ0S‖E ≤ τ1 (n)e1n,‖b−b0‖E ≤ τ2 (n)e2n

}
,

where τ = (τ1 (n) ,τ2 (n)) and τ1 (n), τ2 (n), e1n, and e2n are obtained as in the proof of Theorem

3.3.1. Then it can be shown that BS
n (τ)⊆BS

0 ∩A s
k .

Suppose that for all αS ∈BS
0 , Q̃S (αS)− Q̃S (α0S) can be well approximated by a score

process ∆(Z,α0S) [αS−α0S] such that ∆(Z,α0S) [αS−α0S] is linear in αS−α0S. When Q̃S (αS)

is pathwise differentiable at α0S in the direction [αS−α0S] for almost surely all Z and the

pathwise derivative is linear in αS−α0S, we let

∆(Z,α0S) [αS−α0S] =
∂ Q̃S (α0S + τ (αS−α0S))

∂τ
|τ=0. (3.19)

Suppose that for all αS ∈BS
0 , ∂E [ρS (Z,α0S + τ (αS−α0S))V ]/∂τ exists in a neighbor-

hood of 0 and ∂E [ρS (Z,α0S + τ (αS−α0S))V ]/∂τ is a linear functional of αS−α0S. Notice
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that by definition,

∂E [ρS (Z,α0S)V ]

∂αS
[αS−α0S] = lim

τ→0

E [ρS (Z,α0S + τ (αS−α0S))V ]−E [ρS (Z,α0S)V ]

τ
.

(3.20)

Then for any αS1,αS2 ∈BS
0 , define an inner product

〈αS1−α0S,αS2−α0S〉=

(
∂E
[
ρS (Zi,α0S)V ′Si

]
∂αS

[αS1−α0S]

)
JS

·
(

∂E [ρS (Zi,α0S)VSi]

∂αS
[αS2−α0S]

)
, (3.21)

and the corresponding norm of αS ∈BS
0 :

‖αS−α0S‖2 =

(
∂E
[
ρS (Zi,α0S)V ′Si

]
∂αS

[αS−α0S]

)
JS

(
∂E [ρS (Zi,α0S)VSi]

∂αS
[αS−α0S]

)
.

(3.22)

We say that αS = α0S if ‖αS−α0S‖2 = 0, which means that the parameters are defined, in the

sense of an equivalent class, according to the metric ‖·‖.

Under the regularity conditions,

∂E [ρS (Zi,α0S)VSi]

∂αS
[αS−α0S] = E

[
∂ρS (Zi,α0S)

∂αS
[αS−α0S]VSi

]

for all n, that is, E and ∂/∂αS can be interchanged. Sufficient conditions for this interchange

condition can be found in Chen et al. (2014), and we simply assume that this condition holds for

all n.

Let V S = clsp
(
BS

0
)
−{α0S}, where clsp

(
BS

0
)

denotes the closed linear span of BS
0

under ‖·‖. Then V S is a Hilbert space under 〈·, ·〉.
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Define

α0S,n ∈ arg min
αS∈clsp(BS

n(τ))
‖αS−α0S‖ , (3.23)

and let V S
n (τ) = clsp

(
BS

n (τ)
)
−
{

α0S,n
}

. Then for each n, V S
n (τ) is a Hilbert space under 〈·, ·〉,

and by definition 〈α0S,n−α0S,vn〉= 0 for all vn ∈ V S
n (τ).

For all v ∈ V S, define ∂ f (α0S)/∂αS [v] to be the pathwise derivative of the functional f

at α0S in the direction v = αS−α0S ∈ V S:

∂ f (α0S)

∂αS
[v] =

∂ f (α0S + τv)
∂τ

|τ=0. (3.24)

In what follows, we suppose that ∂ f (α0S)/∂αS [·] is a linear functional on V S and also

on V S
n (τ). Since V S

n (τ) is a finite-dimensional Hilbert space and any linear functional on a

finite-dimensional Hilbert space is bounded, by the Riesz representation theorem there is a

v∗n ∈ V S
n (τ) such that

∂ f (α0S)

∂αS
[vn] = 〈v∗n,vn〉 for all vn ∈ V S

n (τ) (3.25)

and

∂ f (α0S)

∂αS
[v∗n] = ‖v∗n‖

2 = sup
vn∈V S

n (τ),vn 6=0

∣∣∣∣∂ f (α0S)

∂αS
[vn]

∣∣∣∣2 /‖vn‖2 . (3.26)

Details on how to find the closed form of v∗n can be found in Chen et al. (2014). For

completeness, we show briefly how to find the representer for each n in (3.25).

By definition, the sieve Riesz representer v∗n =
(

v∗
θ ,n,v

∗
h,n

)
=
(

v∗
θ ,n,∑

k
j=1 b∗jϕ j

)
∈ V S

n (τ)
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solves the optimization problem

∂ f (α0S)

∂αS
[v∗n] = ‖v∗n‖

2 = sup
v=(vθ ,vh)∈V S

n (τ),v6=0

∣∣∣∂ f (α0S)
∂θ ′ vθ +

∂ f (α0S)
∂h [vh]

∣∣∣2
〈v,v〉

= sup
γ=(v′

θ
,b′)

′
,b6=0

γ ′FkF ′kγ

γ ′Rkγ
, (3.27)

where Fk =
(

∂ f (α0S)
∂θ ′S

, ∂ f (α0S)
∂h [ϕ1] , ...,

∂ f (α0S)
∂h [ϕk]

)′
is an (s+ k)-component vector and Rk is an

(s+ k)× (s+ k) positive definite matrix such that γ ′Rkγ = 〈v,v〉 for all v ∈ V S
n (τ).

Let Φn = (ϕ1,ϕ2, ...,ϕk)
′, and define

Rk =

 I11 In,12

In,21 In,22

 and R−1
k =

 I11
n I12

n

I21
n I22

n

 , (3.28)

where I11 = E
[
−∂ 2Q̂S(α0S)

∂θS∂θ ′S

]
, In,12 = E

[
−∂ 2Q̂S(α0S)

∂θS∂h [ϕ1] , ...,−∂ 2Q̂S(α0S)
∂θS∂h [ϕk]

]
, In,21 = I′n,12, and

In,22 =



∂ 2Q̂S(α0S)
∂h∂h [ϕ1,ϕ1]

∂ 2Q̂S(α0S)
∂h∂h [ϕ1,ϕ2] · · · ∂ 2Q̂S(α0S)

∂h∂h [ϕ1,ϕk]

∂ 2Q̂S(α0S)
∂h∂h [ϕ2,ϕ1]

∂ 2Q̂S(α0S)
∂h∂h [ϕ2,ϕ2] · · · ∂ 2Q̂S(α0S)

∂h∂h [ϕ2,ϕk]

...
... . . . ...

∂ 2Q̂S(α0S)
∂h∂h [ϕk,ϕ1]

∂ 2Q̂S(α0S)
∂h∂h [ϕk,ϕ2] · · · ∂ 2Q̂S(α0S)

∂h∂h [ϕk,ϕk]


,

under the regularity conditions. Then the γ∗n which solves the optimization problem (3.27) is

given by

γ
∗
n =

(
v∗′θ ,n,b

∗′
n
)′
= R−1

k Fk. (3.29)

The sieve Riesz representer is v∗n =
(

v∗
θ ,n,Φ

′
nb∗n
)
∈ V S

n (τ). Also, ‖v∗n‖
2 = γ∗′n Rkγ∗n , which is

finite for all n but it is possible that ‖v∗n‖→ ∞ as n→ ∞, in which case the functional f (α0S) is

called an irregular functional. Chen et al. (2014) discuss the irregular case where ‖v∗n‖ → ∞,
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while in this paper the high dimensions could be another reason for the blow-up of ‖v∗n‖.

To obtain the asymptotic normality of
√

n( f (α̂S)− f (α0)), we introduce the following

conditions.

Assumption 3.4.1 s
√

n(2s+ k)(2s2 + sk)δ 2
nα = o(1) .

Assumption 3.4.2 The map f satisfies the following conditions:

(i) v 7→ ∂ f (α0S)/∂αS [v] is a linear functional from V S to R;

(ii) supαS∈BS
n(τ)
| f (αS)− f (α0S)−∂ f (α0S)/∂αS [αS−α0S]|/‖v∗n‖= o

(
n−1/2

)
;

(iii)
∣∣∂ f (α0S)/∂αS

[
α0S,n−α0S

]∣∣/‖v∗n‖= (n−1/2
)

.

Assumption 3.4.1 gives the convergence rate for obtaining the asymptotic normality. In

the low-dimensional case, this condition is equivalent to k/n= o(1). In the high-dimensional case,

Assumption 3.4.1 is a high-level condition, since s is increasing in n and δnα is decreasing slower

than 1/
√

n. Assumption 3.4.2 shows local properties of the functional f (α0S). In Assumption

3.4.2(i), the linearity of ∂ f (α0S)/∂αS guarantees the existence of the Riesz representer defined

earlier. Assumption 3.4.2(ii), which controls the linear approximation error of the possibly

nonlinear functional f , is automatically satisfied if f is a linear functional. Assumption 3.4.2(iii)

controls the bias which is due to the finite-dimensional sieve approximation α0S,n of α0S.

For simplicity, we assume that

∆(Z,α0S) [αS−α0S] =
∂ Q̃S (α0S + τ (αS−α0S))

∂τ
|τ=0.

For example, in the PLM and the SIM, it is easy to show that the first pathwise derivative of Q̃S

is linear. Also, we define

‖v∗n‖
2
sd =

(
E
[

∂ρS (Z,α0S)

∂αS
[v∗n]V

′
S

])
JS

· [Var (ρS (Z,α0S)VS)]JS

(
E
[

∂ρS (Z,α0S)

∂αS
[v∗n]VS

])
, (3.30)
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the sample variance of v∗n for model (3.1). Next, we introduce an assumption on ‖v∗n‖
2
sd .

Assumption 3.4.3 ‖v∗n‖/‖v∗n‖sd = O(1).

Given the definition of v∗n, we have that ‖v∗n‖> 0 and it is nondecreasing in dim
(
V S

n (τ)
)

and nondecreasing in n. Since s increases as n→ ∞, it is possible that ‖v∗n‖/‖v∗n‖sd = o(1).

Assumption 3.4.3 rules out this possibility.

Define u∗n = v∗n/‖v∗n‖sd . Then u∗n = O(1), and by the linearity of ∆ and the central limit

theorem,

√
n∆(Z,α0S) [u∗n] =

√
n

∂ Q̃S (α0S)

∂αS
[u∗n]

=

[
1
n

n

∑
i=1

∂ρS (Zi,α0S)

∂αS
[u∗n]V

′
Si

]
JS

[
1√
n

n

∑
i=1

ρS (Zi,α0S)VSi

]
→L N (0,1) .

(3.31)

We establish the asymptotic normality in the next theorem.

Theorem 3.4.1 Under assumptions 3.3.1–3.3.7 and 3.4.1–3.4.3,

√
n( f (α̂S)− f (α0S))/‖v∗n‖sd =

√
n∆(Z,α0S) [u∗n]+op (1)→L N (0,1) , (3.32)

where α̂ is the SFGMM estimator obtained in Theorem 3.3.1.

Theorem 3.4.1 shows that although the dimension of the regressors grows as n increases,

under certain conditions the asymptotic normality of the plug-in estimator still holds.

3.4.1 Consistent Estimate of J(θ)

Up until this point, we have assumed that J(θ) is deterministic, given that we know how

to choose the weights
{

w j1,w j2
}p

j=1 and
{

w j3
}k

j=1. But in applications, that is not always the
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case. For example, if we want to standardize the scale, we can use

w j1 = 1/Var
(

f j (W )
)
,w j2 = 1/Var

(
h j (W )

)
,w j3 = 1/Var

(
g j (W )

)
. (3.33)

Since we don’t know the distribution of W , a consistent estimate of J(θ) is needed. In this

example, we can use ŵ j1 = 1/V̂ar
(

f j (W )
)
, ŵ j2 = 1/V̂ar

(
h j (W )

)
, and ŵ j3 = 1/V̂ar

(
g j (W )

)
to construct Ĵ (θ).

With the estimated version of J (θ), we obtain a new loss function, with J (θ) replaced

by Ĵ (θ), that is,

Q̃w (α) =
1
2

p

∑
j=1

1
{

θ j 6= 0
}ŵ j1

[
1
n

n

∑
i=1

ρ (Zi,α) f j (Wi)

]2

+ ŵ j2

[
1
n

n

∑
i=1

ρ (Zi,α)h j (Wi)

]2


+
1
2

k

∑
j=1

ŵ j3

[
1
n

n

∑
i=1

ρ (Zi,α)g j (Wi)

]2


=
1
2

[
1
n

n

∑
i=1

ρ (Zi,α)Vi (θ)

]′
Ĵ (θ)

[
1
n

n

∑
i=1

ρ (Zi,α)Vi (θ)

]
. (3.34)

Then we let α̂w =
((

θ̂ w′
S ,0′

)′
, ĥw
)

be a local minimizer of Q̂w (α), where Q̂w (α) = Q̃w (α)+

∑
pn
j=1 Pn

(∣∣θ j
∣∣).

Assumption 3.4.4 Ĵ (θ) is a uniformly consistent estimate of J (θ) such that

sup
θ∈Θ(n)

∥∥Ĵ (θ)− J (θ)
∥∥

E = op (1) .

Because of the special structure of Ĵ (θ) and J (θ), to verify Assumption 3.4.4, it suffices

to show that Ĵ is a consistent estimate of J, where

J = diag
{

w11, ...,wp1,w12, ...,wp2,w13, ...,wk3
}

(3.35)
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and

Ĵ = diag
{

ŵ11, ..., ŵp1, ŵ12, ..., ŵp2, ŵ13, ..., ŵk3
}
. (3.36)

Proposition 3.4.1 Under Assumptions 3.3.1–3.3.7 and 3.4.1-3.4.4,

√
n( f (α̂w

S )− f (α0S)) =
√

n∆(Z,α0S) [u∗n]+op (1)→L N (0,1) . (3.37)

The proof is similar to that of Theorem 3.4.1 under Assumption 3.4.4, so we omit it.

3.5 Implementation

As explained in Fan & Liao (2014), inclusion of an indicator function in (3.8) leads

to dimension reduction, but it also yields a non-smooth loss function; as a result, minimizing

Q̂(α) is generally NP-hard. Horowitz (1992) and Bondell & Reich (2012) propose a smoothing

technique which is employed by Fan & Liao (2014). We also apply this method to approximate

the indicator function by a smooth kernel K : R→ R such that

(i) 0≤ K (t)< M for some finite M and all t ≥ 0;

(ii) K (0) = 0 and lim|t|→∞ K (t) = 1;

(iii) limsup|t|→∞ |K′ (t) t|= 0, and limsup|t|→∞

∣∣K′′ (t) t2
∣∣< ∞.

One example is

K (t) =
F (t)−F (0)

1−F (0)
,

where F (t) is a twice-differentiable cumulative distribution function. Given a predetermined

small number rn, the indicator function is approximated by K
(

θ 2
j /rn

)
. Then the smoothed
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SFGMM criterion function is given by

Q̂K (α) = Q̃K (α)+
p

∑
j=1

Pn
(∣∣θ j

∣∣) , (3.38)

where Q̃K is the continuous approximation of Q̃(α) with the indicator function replaced by K.

As rn ↓ 0, K
(

θ 2
j /rn

)
converges to 1

{
θ j 6= 0

}
, and Q̃K is a smoothed approximation of Q̃.

With the kernel approximation, we next employ the iterative coordinate algorithm to

minimize the smoothed SFGMM criterion function. This algorithm, which has been used in Fu

(1998), Daubechies et al. (2004), Fan & Lv (2011), and Fan & Liao (2014), etc, goes as follows:

1 Obtain an initial value for (θ ′,b′)′, for example by least-square estimation.

2 Keep the other coordinates fixed at their values while minimizing the sample criterion

function by choosing values for one coordinate of (θ ′,b′)′.

3 Iterate step 2 for each coordinate until the difference between the old sample criterion

function and the updated one converges to 0.

3.6 Simulation Evidence

In the simulation, we generated data by using a semiparametric model.

Specifically, we simulated from the partially linear model

Y1 = X ′θ0 +
1

exp(X ′θ0 +Y2)
2 + ε (3.39)

with p = 50 or 100, and s = 5, and with X1,X2,X3,X4, and X5 being the important regressors. Let

(θ01,θ02,θ03,θ04,θ05) = (5,−4,7,−2,1.5), θ06 =, · · · ,= θ0p = 0, and h0(t) = e−t . We used

Fourier basis functions to approximate h0 = 1/exp(δ ) with k = 5.

Y2 was set to be an N(0,1) random variable. For each j, X j was classified as either

exogenous (in which case it’s denoted by Xx
j ) or endogenous (in which case it’s denoted by
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Xe
j ). Let F = (F1, ...,Fp)

′, H = (H1, ...,Hp)
′, and G = (G1, ...,Gk)

′ be the transformations of a

three-dimensional instrumental variable W = (W1,W2,W3)
′ ∼ N (0, I3), where

Fj (W ) =
√

2{sin( jπW1)+ sin( jπW2)+ sin( jπW3)} ,1≤ j ≤ p;

H j (W ) =
√

2{cos( jπW1)+ cos( jπW2)+ cos( jπW3)} ,1≤ j ≤ p;

G j (W ) =
√

2{sin((p+ j)πW1)+ sin((p+ j)πW2)+ sin((p+ j)πW3)} ,1≤ j ≤ k.

Xx
j and Xe

j were generated as follows:

Xx
j = Fj +H j +u j,Xe

j =
(
Fj +H j +1

)
(3ε +1) ,

where
{

ε,u1, ...,up
}

are independent N (0,1) . There were a total of m = 10 or m = 50 endoge-

nous variables, which would be specified later for two different cases.

The dataset contains n = 100 i.i.d. tuples (Y,X ,F,H,G). We used SCAD penalty

functions with different predetermined tuning parameters λ .

For the smoothing indicator function in the loss function, we used logistic cumulative

distribution function with rn = 0.1, that is,

F (t) =
exp(t)

1+ exp(t)
,K

(
θ 2

j

rn

)
= 2F

(
θ 2

j

rn

)
−1.

There were 100 replications for each simulation. Four performance measures were used

to evaluate the properties of the SFGMM estimator. The first one is the mean standard error

for the important regressors, MSES: the average of
∥∥θ̂S−θ0S

∥∥
E over the 100 replications. The

second one is the mean standard error for the unimportant regressors, MSEN : the average of∥∥θ̂N−θ0N
∥∥

E over the 100 replications. The third one is the average number of correctly selected

nonzero coefficients, the true posstive (T P). And the last one is the average number of incorrectly

selected coefficients, the false positive (FP).

82



3.6.1 Endogeneity in Both Important and Unimportant Regressors

The m endogenous variables are (X1,X2,X3,X6, ...,Xm+2)
′ with m = 10 or m = 50, and

the other variables are exogenous. Thus three of the important regressors (X1,X2,X3)
′ are

endogenous, and two of them, (X4,X5)
′, are exogenous.

As we see in Table 3.1, when λ increases, which shows more power on variable selection,

FP is decreasing in both cases (p = 50 and p = 100), and so is T P. Also, T P deviates very little

from 5, and FP is not large compared to p. The MSES is increasing, and MSEN is decreasing,

which is consistent with the changes in T P and FP, and they both remain at low levels. It is

worth noting that as p increases, none of the four measurements gets worse by much, which

shows the power of the SFGMM estimator on variable selection under high dimensions.

Table 3.1. Endogeneity in Both Important and Unimportant Regressors.

p = 50, m = 10 p = 100, m = 50
λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.1 λ = 0.2 λ = 0.3

MSES 0.2338 0.2961 0.3832 0.1836 0.2880 0.3715
MSEN 0.1055 0.0594 0.0519 0.0554 0.0527 0.0475

T P 4.9400 4.8900 4.8400 4.9400 4.8700 4.8100
FP 4.7100 3.0900 2.3000 6.7500 4.7300 3.9000

3.6.2 Endogeneity in Only Unimportant Regressors

In this case, m = 10 or m = 50, and all the endogeneity lies in the unimportant regressors.

Table 3.2 shows that all the measurements perform better than when there is endogeneity in both

kinds of regressors. As λ increases, FP decreases to a very small number and T P stays at 5.

MSEN decreases, while MSES doesn’t increase by much, and both of them stay at low levels. As

p increases, none of the four measurements changes by much, which shows the reliability of the

SFGMM estimator on variable selection in high dimensions.

The reason why the results shown in Table 3.2 are better than those in Table 3.1 is that

all the endogeneity comes from the unimportant regressors, so it doesn’t affect the estimation in

a serious way.
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Table 3.2. Endogeneity in Only Unimportant Regressors.

p = 50, m = 10 p = 100, m = 50
λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.1 λ = 0.2 λ = 0.3

MSES 0.0943 0.1006 0.1074 0.0845 0.0934 0.1002
MSEN 0.0646 0.0487 0.0380 0.0431 0.0373 0.0319

T P 5 5 5 5 5 5
FP 4.4700 2.9800 2.1000 7.0700 4.6700 3.2700

Chapter 3, in part is currently being prepared for submission for publication of the

material. Sun, Zhenting. The dissertation author was the primary investigator and author of this

material.
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Appendix A

Proofs for Chapter 1

A.1 Some Useful Lemmas

Lemma A.1.1 Let Dn (ω)⊂D for all ω ∈Ω. Let Fn (ω) = { f : f : Dn (ω)→ E}. Let gn (ω) ∈

Fn (ω) such that, for almost surely ω ∈ Ω, if xn → x with xn ∈ Dn (ω) and x ∈ D0, then

gn (ω)(xn)→ g(x), where D0 ⊂ D and g : D0→ E. Let Xn (ω) be maps with values in Dn (ω),

let X be Borel measurable and separable, and take values in D0. Then

Xn X implies that gn (Xn) g(X) .

Proof of Lemma A.1.1.

The proof is an extension of that of Theorem 1.11.1 in van der Vaart & Wellner (1996).

Let F be a closed set in E. Then almost surely

∩∞
n ∪∞

m=ng−1
m (F)⊂ g−1 (F)∪ (D−D0) .

For every fixed k, by Portmanteau Theorem,

limsupP∗ (gn (Xn) ∈ F)≤ limsupP∗
(

Xn ∈ ∪∞
m=kg−1

m (F)
)
≤ P

(
X ∈ ∪∞

m=kg−1
m (F)

)
,
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where P∗ denotes the outer probability. If we let k→ ∞,

P
(

X ∈ ∪∞
m=kg−1

m (F)
)
→ P

(
X ∈ ∩∞

k=1∪∞
m=kg−1

m (F)
)

=P
(

X ∈ ∩∞
k=1∪∞

m=kg−1
m (F),∩∞

n ∪∞
m=kg−1

m (F)⊂ g−1 (F)∪ (D−D0)
)
≤ P

(
X ∈ g−1 (F)

)
.

Lemma A.1.2 Let D and E be metrizable topological vector spaces and rn constants with

rn → ∞. Let φ̂n : Ω→ DF ⊂ D be a random variable which takes values in DF ⊂ D. Let

F : DF → E satisfy that for almost surely ω ∈Ω,

rn(F (φ̂n + r−1
n hn)−F (φ̂n))→F ′

φ (h) ,

for every converging sequence hn with φ̂n + r−1
n hn ∈ DF for all n and hn→ h ∈ D0 ⊂ D and

some arbitrary map F ′
φ

on D0. If Xn : Ω→ DF are maps with rn(Xn− φ̂n) X, where X is

Borel measurable and separable, and takes its values in D0, then rn(F (Xn)−F (φ̂n)) F ′
φ
(X).

Moreover, if F ′
φ

is continuous on the whole of D, then rn(F (Xn)−F (φ̂n))−F ′
φ
(rn(Xn− φ̂n))

converges to zero in outer probability.

Proof of Lemma A.1.2.

The proof is an extension of that of Theorem 3.9.5 in van der Vaart & Wellner (1996).

We define a map gn (h) = rn(F (φ̂n + r−1
n h)−F (φ̂n)). For any ω ∈ Ω, gn is defined on the

domain Dn (ω) = {h : φ̂n (ω)+ r−1
n h ∈ DF} and by assumptions gn (hn)→F ′

φ
(h) a.s. for all

hn→ h ∈ D0. Then by Lemma A.1.1,

gn(rn(Xn− φ̂n)) F ′
φ (X) .

Now suppose F ′
φ

is continuous on the whole of D and we let fn (h1,h2) = (gn (h1) ,F
′
φ
(h2))

such that for any ω ∈ Ω, (h1,h2) ∈ Dn (ω) = {(h1,h2) : φ̂n (ω)+ r−1
n h1 ∈ DF ,h2 ∈ D}. By
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Lemma A.1.1 again,

(
rn(F (Xn)−F (φ̂n))

F ′
φ
(rn(Xn− φ̂n))

)
=

(
gn

F ′
φ

)
(rn(Xn− φ̂n)) 

(
F ′

φ

F ′
φ

)
(X) .

Then by continuous mappting theorem,

rn(F (Xn)−F (φ̂n))−F ′
φ (rn(Xn− φ̂n)) 0.

Lemma A.1.3 H is complete in L2 (R) under norm ‖·‖L2(R).

Proof of Lemma A.1.3.

Suppose there is a Cauchy sequence {hn}⊂H such that ‖hn−hm‖L2(R)→ 0 as n,m→∞,

then there is h ∈ L2 (R) such that ‖hn−h‖L2(R)→ 0 because L2(R) is complete. Remember by

(1.7), hn = (−1)dn ·1Bn×{dn}, where Bn is a closed interval in R and dn ∈ {0,1}.

(1) If for every N > 0, there are n,m > N such that dn 6= dm, then

‖hn−hm‖2
L2(R) =

∫ ∣∣∣(−1)dn ·1Bn×{dn}− (−1)dm ·1Bm×{dm}

∣∣∣2 dR

=
∫

1Bn×{dn}dR+
∫

1Bm×{dm}dR→ 0.

This implies
∫

1Bn×{dn}dR→ 0 as n→ ∞. Thus we can find B = {a} for some a ∈ R such that

P(Y ∈ B) = 0 and hn→ 1B×{0} ∈H .

(2) There are d,Nd > 0 such that for all m,n > Nd , dn = dm = d, then

‖hn−hm‖2
L2(R) =

∫ ∣∣1Bn×{d}−1Bm×{d}
∣∣2 dR

=
∫

1Bn\Bm×{d}dR+
∫

1Bm\Bn×{d}dR→ 0.

It is possible that
∫

1Bn×{d}dR→ 0 and then we can find B = {a} for some a ∈ R such
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that P(Y ∈ B) = 0 and hn→ 1B×{0} ∈H .

Now let hn = (−1)d ·1Bn×{d}. Suppose there is ε > 0 such that for all Nε > 0, there is n >

max{Nε ,Nd} such that ‖hn‖L2(R) > ε . For all δ1� ε , ∃N1 > Nd such that ‖hn−hm‖L2(R) < δ1

for all m,n > N1. And we can find n1 > N1 such that ‖hn1‖L2(R) > ε and ‖hn−hn1‖L2(R) < δ1 for

all n > n1. Now let 0 < δ2 < δ1, there is N2 > N1 such that ‖hn−hm‖L2(R) < δ2 for all m,n > N2.

Then we can find n2 >N2 such that ‖hn2‖L2(R) > ε and ‖hn−hn2‖L2(R) < δ2 for all n > n2. In this

way, we can find a sequence {Bnk}k with
∥∥∥(−1)d ·1Bnk×{d}

∥∥∥
L2(R)

> ε and ‖hn−hnk‖L2(R) < δk

for all n > nk with δk ↓ 0. We let B∞ = ∪∞
j=1∩∞

k= j Bnk . Because Bnk is always a closed interval,

B∞ is a closed interval. Now we have

∥∥∥hnk− (−1)d ·1B∞×{d}

∥∥∥
L2(R)

→ 0 as k→ ∞,

because ‖hn−hnk‖L2(R) < δk for all n > nk.

Last, we have

∥∥∥hn− (−1)d ·1B∞×{d}

∥∥∥
L2(R)

≤ ‖hn−hnk‖L2(R)+
∥∥∥hnk− (−1)d ·1B∞×{d}

∥∥∥
L2(R)

→ 0.

Clearly (−1)d ·1B∞×{d} ∈H .

Lemma A.1.4 H is a VC class with VC-index V (H ) = 3.

Proof of Lemma A.1.4.

All the functions h ∈H take the form h =−1B×{1} or h = 1B×{0}, where B is a closed

interval. If h =−1B×{1}, the subgraph of h is

C1B =
{
(y,w, t)⊂ Y ×{0,1}×R : t <−1B×{1} (y,w)

}
.
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If h = 1B×{0}, the subgraph of h is

C0B =
{
(y,w, t)⊂ Y ×{0,1}×R : t < 1B×{0} (y,w)

}
.

We let C ={C1B,C0B : B is a closed interval in R} .

Suppose any two different points a1 = (y1,w1, t1) ,a2 = (y2,w2, t2) ∈ Y ×{0,1}×R,

with y1 < y2, w1 = w2 = 0 and 0≤ t1, t2 < 1. Then there is a point ȳ ∈ (y1,y2). Let B1 = [y1, ȳ],

B2 = [ȳ,y2] and B3 = [y1,y2]. Now we have

{a1}=C0B1 ∩{a1,a2} ,{a2}=C0B2 ∩{a1,a2} ,{a1,a2}=C0B3 ∩{a1,a2} .

Suppose any three different points a1 = (y1,w1, t1), a2 = (y2,w2, t2), a3 = (y3,w3, t3)

∈ Y ×{0,1}×R and we have a set {a1,a2,a3}. Without loss of generality, suppose t1 ≤ t2 ≤

t3 < 1.

(1) Suppose t1 ≥ 0. In this case, it should hold that w1 = w2 = w3 = 0 so that {ai} can

be picked up for each i. Without loss of generality, suppose y1 ≤ y2 ≤ y3. If we want to pick out

{a1,a3}, we need to find a closed interval B such that y1,y3 ∈ B and then a1,a3 ∈C0B. However,

a2 ∈C0B.

(2) Suppose t1 < 0, t2 ≥ 0. Then w2 = w3 = 0 in order to pick out {ai} for each i = 2,3

by using C0B for some closed interval B. But in this case, C cannot only pick out {a2} ,{a3} or

{a2,a3}, since for every closed interval B, a1 ∈C0B.

(3) Suppose t1, t2 < 0, t3 ≥ 0. Then we need w3 = 0 in order to pick out {a3} by using

C0B for some closed interval B. In this case, C cannot only pick out a3, since for every closed

interval B, a1,a2 ∈C0B.

For t1, t2, t3 < 0, for every closed interval B, a1,a2,a3 ∈C0B. If we want C to pick out

{ak} or {ak,ak′} for some different k,k′ = 1,2,3, we need to use C1B. If wk = 0, then for every

B, ak ∈C1B. Thus we consider w1 = w2 = w3 = 1.
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(4) Suppose −1≤ t1, t2, t3 < 0. Now without loss of generality, we assume y1 ≤ y2 ≤ y3.

But now if we want to pick out {a2}, we need to find a closed interval B such that y1,y3 ∈ B but

y2 6∈ B. Not possible.

(5) Suppose tk <−1 for some k = 1,2,3. In this case, ak ∈C1B for all closed B.

Therefore, with the discussion of all cases above, we conclude that H is a VC class with

VC-index V (H ) = 3.

Lemma A.1.5 For any probability measure R on Y ×{0,1}, H is compact under ‖·‖Lr(R) for

r ∈ N.

Proof of Lemma A.1.5.

Let N (ε,H ,Lr (R)) denote the covering number for H with all ε > 0.

Since H is a VC class by Lemma A.1.4, with envelope function F = 1 and r > 1, by

Theorem 2.6.7 in van der Vaart & Wellner (1996), for any probability measure R,

N
(

ε ‖F‖Lr(R) ,H ,Lr (R)
)
≤ KV (H )(16e)V (H ) (1/ε)r(V (H )−1) ,

for a universal constant K and 0 < ε < 1. Then by Lemma A.1.3, H is compact in H .

Lemma A.1.6 For any probability measure R in P , H is a R-Donsker.

Proof of Lemma A.1.6.

For every δ > 0 and R ∈P , define Hδ ,R =
{

h−g : h,g ∈H ,‖h−g‖L2(R) < δ

}
and

H 2
∞ =

{
(h−g)2 : h,g ∈H

}
. First we show that Hδ ,R is R-measurable for all R∈P . Similarly

to the construction of H in (1.7), we construct another function space by

Hq =
{

h = (−1)d ·1B×{d} : B = [a,b] with rational numbers a,b and d ∈ {0,1}
}
.

Let Q denote the set of all rational numbers. Since Q is countable and therefore the set of ordered
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pairs of elements in Q is countable, Hq is countable. Now define

Hqδ ,R =
{

h−g : h,g ∈Hq,‖h−g‖L2(R) < δ

}
.

Clearly, Hqδ ,R is a countable subset of Hδ ,R. For any h ∈H , there is a sequence hm ∈Hq such

that hm (x)−h(x) for every x because Q is dense in R. For example, if h = 1[
√

2,
√

3], we can use

hm = 1[am,bm] to approximate h such that am ↑
√

2, bm ↓
√

3 and am,bm ∈ Q. Also, for all δ > 0,

if h,g ∈Hq and ‖h−g‖L2(R) < δ , ‖hm−gm‖L2(R) < δ for large m. By Example 2.3.4 in van der

Vaart & Wellner (1996), Hδ ,R is R-measurable and this is true for all δ > 0. Similarly, H 2
∞ is

R-measurable.

By the construction of H , clearly, F = 1 is a measurable envelope function with

∫
F2dR < ∞.

By Lemma A.1.4, H is a VC class with VC-index V (H ) = 3. By Theorem 2.6.7 in van der

Vaart & Wellner (1996), for every probability measure R, the covering number for every integer

r satisfies

N (ε,H ,Lr (R))≤ K ·2 · (16e)3
(

1
ε

)2r

for a universal constant K and 0 < ε < 1. Also, let Q denote the set of finitely discrete probability

measures, for all H ∈Q, when ε ≥ 2,

N
(

ε ‖F‖L2(H) ,H ,L2 (H)
)
= N

(
ε,H ,L2 (H)

)
= 1,
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which implies

∫
∞

0
sup

H∈Q

√
logN

(
ε ‖F‖L2(H) ,H ,L2 (H)

)
dε

≤
∫ 2

0
sup

H∈Q

√
logN

(
ε ‖F‖L2(H) ,H ,L2 (H)

)
dε

≤
∫ 2

1
sup

H∈Q

√
logN

(
ε ‖F‖L2(H) ,H ,L2 (H)

)
dε +

∫ 1

0
sup

H∈Q

√
logN

(
ε ‖F‖L2(H) ,H ,L2 (H)

)
dε

≤C1 +
∫ 1

0

√√√√log

{
K ·2 · (16e)3

(
1
ε

)4
}

dε < ∞,

where C1 is a large positive number and the third inequality follows from Theorem 2.6.7 in

van der Vaart & Wellner (1996). The result follows from Theorem 2.5.2 in van der Vaart &

Wellner (1996).

Assumption A.1.1 Suppose it holds that:

(i) Probability measures in P are nondegenerate and have a common dominating measure

µ for the coordinate, where µ is the Lebesgue measure, a point mass measure with finite

support points, or their mixture. The density functions p = dR
dµ

are bounded uniformly over

P , that is, there is M < ∞ such that for all R ∈P , p(y,d)≤M for µ-almost every y ∈Y

and d = 0,1.

(ii) The set P is uniformly tight, i.e. for any ε > 0, there is a compact set K ⊂ Y ×{0,1}

such that

sup
R∈P

R(Kc)< ε.

Lemma A.1.7 Suppose Assumption A.1.1 holds. Let {Rm ∈P : m = 1,2, · · ·} be a sequence of

probability measures that converges weakly to R ∈P . Let Rm
m denote the empirical measure

of a iid sample {Xmi}m
i=1 from distribution Rm with Rm

m = m−1
∑

m
i=1 δXi , where δXi is the Dirac

92



measure at the observation Xi. Construct the H -indexed empirical process GPk,m by

Gm,Rm =
√

m(Rm
m−Rm) ,

that is, for all h ∈H ,

Gm,Rm (h) =
√

m(Rm
m−Rm)(h) =

1√
m

m

∑
i=1

(
h(Xi)−

∫
hdRm

)
.

Then Gm,Rm converges weakly to the R-Brownian bridge GR.

Proof of Lemma A.1.7.

For every δ > 0 and R ∈P , define Hδ ,P =
{

h−g : h,g ∈H ,‖h−g‖L2(P) < δ

}
and

H 2
∞ =

{
(h−g)2 : h,g ∈H

}
. Similarly to the proof of Lemma A.1.6, we can show that Hδ ,R is

R-measurable and H 2
∞ is R-measurable. By the construction of H , clearly F = 1 is a measurable

envelope function with

sup
R∈P

∫
F21{F > M}dR→ 0, as M→ ∞.

Also, similarly to Lemma A.1.6, it holds that

∫
∞

0
sup

H∈Q

√
logN

(
ε ‖F‖L2(H) ,H ,L2 (H)

)
dε < ∞,

where Q denotes the set of finitely discrete probability measures. Now by Theorem 2.8.3 in

van der Vaart & Wellner (1996), H is Donsker and pre-Gaussian uniformly in R ∈P .

For every R ∈P , we define a semimetric ρR by

ρR (h1,h2) = ‖(h1−h2)−R(h1−h2)‖L2(R) (A.1)
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for all h1,h2 ∈H . Then by Lemma B.2 in Kitagawa (2015), under Assumption A.1.1,

sup
h,g∈H

|ρRm (h,g)−ρR (h,g)|2 ≤ sup
h,g∈H

∣∣ρ2
Rm (h,g)−ρ

2
R (h,g)

∣∣
≤ sup

A∈B(Y ×{0,1})
|(Rm−R)(A)| → 0,

where B (Y ×{0,1}) is the Borel σ -algebra on Y ×{0,1}. Also, for all ε > 0,

limsup
m→∞

∫
F ·1

{
F ≥ ε

√
m
}

dRm = 0.

By Lemma 2.8.7 in van der Vaart & Wellner (1996), Gm,Rm  GR, where GR is the R-Brownian

bridge.

Lemma A.1.8 H is Glivenko-Cantelli uniformly in R ∈P .

Proof of Lemma A.1.8.

Similarly to the proof of Lemma A.1.6, H is R-measurable for every R ∈P . And with

F = 1 being an envelope function of H ,

lim
M→∞

sup
R∈P

∫
F ·1{F > M}dR = 0.

By Lemma A.1.4, H is a VC class with VC-index V (H ) = 3. By Theorem 2.6.7 in

van der Vaart & Wellner (1996), for every r ≥ 1 and every probability measure H,

N
(

ε ‖F‖Lr(H) ,H ,Lr (H)
)
≤ K ·2 · (16e)3

(
1
ε

)2r

for a universal constant K and 0 < ε < 1. Then

sup
H∈Qn

logN
(

ε ‖F‖Lr(H) ,H ,Lr (H)
)
= o(n) ,
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where Qn is the collection of all possible realizations of empirical measures of n observations.

By Theorem 2.8.1 in van der Vaart & Wellner (1996), H is Glivenko-Cantelli uniformly in

R ∈P .

Definition A.1.1 Let D and E be Banach spaces, and F : DF ⊂ D→ E. The map F is said to

be Hadamard directionally differentiable at φ ∈ DF tangentially to a set D0 ⊂ D, if there is a

continuous map F ′
φ

: D0→ E such that

lim
n→∞

∥∥∥∥F (φ + tnψn)−F (φ)

tn
−F ′

φ (ψ)

∥∥∥∥
E
= 0,

for all sequences {ψn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, ψn → ψ ∈ D0 as n→ ∞ and

φ + tnψn ∈ DF for all n.

Lemma A.1.9 Let R = P/2+Q/2. The map defined in (2.4) is Hadamard directionally differ-

entiable at φ defined by (1.8) tangentially to C (H ) and S ′
φ

: C (H )→ R satisfies

S ′
φ (ψ) = sup

h∈ΨH

ψ (h) ,ψ ∈C (H ) , (A.2)

where ΨH = argmaxh∈H φ (h).

Proof of Lemma A.1.9.

By Lemma A.1.5, H is compact under ‖·‖L2(R). First, we show φ defined in (1.8) is in

C (H ). For all h1,h2 ∈H ,

‖h1−h2‖2
L2(R) =

∫
|h1−h2|2 d

(
1
2

P+
1
2

Q
)
=

1
2

∫
|h1−h2|2 dP+

1
2

∫
|h1−h2|2 dQ.
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Also,

|φ (h1)−φ (h2)|

=
∣∣(E [h1

(
Y 1,D1)]−E

[
h1
(
Y 0,D0)])− (E [h2

(
Y 1,D1)]−E

[
h2
(
Y 0,D0)])∣∣

≤
∫
|h1−h2|dP+

∫
|h1−h2|dQ≤

(∫
|h1−h2|2 dP

)1/2

+

(∫
|h1−h2|2 dQ

)1/2

.

It is clear that when ‖h1−h2‖2
L2(R)→ 0, |φ (h1)−φ (h2)| → 0. This implies φ ∈C (H ). Then

the result follows Lemma B.1 in Fang & Santos (2014).

Remark A.1.1 The map defined in (2.4) is a supremum over all h ∈ H . We will not use

the Hadamard directional derivative of S directly, but it provides an idea for us to obtain

the asymptotic distribution of the test statistic and apply the bootstrap method for Hadamard

directional differentiable maps.

Lemma A.1.10 N (ε,HK×G ,ρP) = O
(
1/ε4) as ε → 0.

Proof of Lemma A.1.10.

Since H is a VC class by Lemma A.1.4, with envelope function F = 1 and r > 1, by

Theorem 2.6.7 in van der Vaart & Wellner (1996), we have for every probability measure R,

N
(

ε ‖F‖Lr(R) ,H ,Lr (R)
)
≤ K3(16e)3 (1/ε)2r

for a universal constant K and 0 < ε < 1. It is not hard to see that F = 1 is also an envelope

function of HK and for any r ≥ 1,

N (ε,HK,Lr (P)) = N (ε,H ,Lr (PY D)) ,

Where PY D is the probability measure on R2 for (Y,D) induced by P.
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By the construction of HK×G and metric ρP

N (ε,HK×G ,ρP)≤max
{

N
(

ε

3
,HK,L2 (P)

)
,N
(

ε

3
,GK,L2 (P)

)}
.

By definition, GK=
{

1R×{0,1}×{zk} : k = 1,2, . . . ,K
}

. It is easy to show that the IK =
{

1{zk}
}

k

is a VC class of functions with VC-index equal to 2. So by Theorem 2.6.7 in van der Vaart &

Wellner (1996), for every ε and every r ≥ 1, and for every probability measure R,

N (ε,GK,Lr (R)) = N (ε,IK,Lr (RZ))≤C (1/ε)r ,

for some constant C > 0, where RZ is the probability measure on R for Z induced by R. This

implies

N (ε,HK×G ,ρP) = O
(

1
ε4

)
as ε → 0.

Lemma A.1.11 HK×G is complete under ρP.

Proof of Lemma A.1.11.

Similarly to the proof of Lemma A.1.3, it can be shown that HK and GK are both complete

under ‖·‖L2(P), which implies HK×G is complete under ρP.

Lemma A.1.12 HK and GK are Glivenko-Cantelli uniformly in R ∈P3.

Proof of Lemma A.1.12.

Similarly to the proof of Lemma A.1.6, with G being a countable set, HK and G are

R-measurable for every R ∈P3. And with F = 1 being an envelope function of HK and G ,

lim
M→∞

sup
R∈P3

∫
F ·1{F > M}dR = 0.
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By Lemma A.1.4, H is a VC class with VC-index V (H ) = 3. By Theorem 2.6.7 in

van der Vaart & Wellner (1996), with r ≥ 1, we have for every probability measure R,

N
(

ε ‖F‖Lr(R) ,H ,Lr (R)
)
≤ K ·2 · (16e)3

(
1
ε

)2r

for a universal constant K and 0 < ε < 1. As we have shown in Lemma A.1.10 for all ε > 0,

N (ε,HK,Lr (R)) = N (ε,H ,Lr (RY D))

for every probability measure R and induced probability measure RY D for (Y,D). Then

sup
H∈Qn

logN
(

ε ‖F‖Lr(H) ,HK,Lr (H)
)
= o(n) ,

where Qn is the collection of all possible realizations of empirical measures of n observations.

By Theorem 2.8.1 in van der Vaart & Wellner (1996), HK is Glivenko-Cantelli uniformly in

R ∈P3.

Also, as shown in Lemma A.1.10, for every ε > 0 and every r ∈ N,

N (ε,GK,Lr (R))≤C (1/ε)r ,

which implies

sup
H∈Qn

logN
(

ε ‖F‖Lr(H) ,GK,Lr (H)
)
= o(n) ,

where Qn is the collection of all possible realizations of empirical measures of n observations.

By Theorem 2.8.1 in van der Vaart & Wellner (1996), GK is Glivenko-Cantelli uniformly in

R ∈P3.
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A.2 Results in Sections 1.2 and 1.3

Proof of Lemma 1.2.1.

Suppose dmax exists. Under Assumption 1.2.2, we can define

Yd = Ydz1 = Ydz2 = · · ·= YdzK for all d ∈DJ . For all k ≤ K−1, define

Pk (B,dmax) = P(Y ∈ B,D = dmax|Z = zk) = P(Ydmax ∈ B,Dzk = dmax) ,

Pk+1 (B,dmax) = P(Y ∈ B,D = dmax|Z = zk+1) = P
(
Ydmax ∈ B,Dzk+1 = dmax

)
.

Also, under Assumption 1.2.2(iii),

P(Ydmax ∈ B,Dzk = dmax) = ∑
j
P
(
Ydmax ∈ B,Dzk = dmax,Dzk+1 = d j

)
= P

(
Ydmax ∈ B,Dzk = dmax,Dzk+1 = dmax

)
and

P
(
Ydmax ∈ B,Dzk+1 = dmax

)
= ∑

j
P
(
Ydmax ∈ B,Dzk = d j,Dzk+1 = dmax

)
.

Thus it holds that

P
(
Ydmax ∈ B,Dzk+1 = dmax

)
−P(Ydmax ∈ B,Dzk = dmax)

=P
(
Ydmax ∈ B,Dzk 6= dmax,Dzk+1 = dmax

)
≥ 0.

Suppose dmin exists. Similarly, under Assumption 1.2.2,

Pk (B,dmin) = P(Y ∈ B,D = dmin|Z = zk) = P
(
Ydmin ∈ B,Dzk = dmin

)
,

Pk+1 (B,dmin) = P(Y ∈ B,D = dmin|Z = zk+1) = P
(
Ydmin ∈ B,Dzk+1 = dmin

)
.
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Also, under Assumption 1.2.2(iii),

P
(
Ydmin ∈ B,Dzk = dmin

)
= ∑

j
P
(
Ydmin ∈ B,Dzk = dmin,Dzk+1 = d j

)
and

P
(
Ydmin ∈ B,Dzk+1 = dmin

)
= ∑

j
P
(
Ydmin ∈ B,Dzk = d j,Dzk+1 = dmin

)
= P

(
Ydmin ∈ B,Dzk = dmin,Dzk+1 = dmin

)
.

Thus it holds that

P
(
Ydmin ∈ B,Dzk = dmin

)
−P

(
Ydmin ∈ B,Dzk+1 = dmin

)
=P
(
Ydmin ∈ B,Dzk = dmin,Dzk+1 6= dmin

)
≥ 0.

Proof of Theorem 1.3.1.

Define Gm,Hn : H →R by

Gm (h) =
√

TN

m

m

∑
i=1

{
h
(
Y 1

i ,D
1
i
)
−E

[
h
(
Y 1,D1)]} ,

Hn (h) =
√

TN

n

n

∑
i=1

{
h
(
Y 0

i ,D
0
i
)
−E

[
h
(
Y 0,D0)]} ,

for every h ∈H . Then

Gm (h)−Hn (h) =
√

TN(φ̂ (h)−φ (h)).
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By Lemma A.1.6, Gm 
√

1−λGP and Hn 
√

λGQ. Notice that

Gm (h) =
√

TN

m

m

∑
i=1

{
h
(
Y 1

i ,D
1
i
)
−E

[
h
(
Y 1,D1)]}

=

√
n
N

(
1√
m
− 1√

λN

) m

∑
i=1

{
h
(
Y 1

i ,D
1
i
)
−E

[
h
(
Y 1,D1)]}

+

(√
n
N
−
√

(1−λ )

)
1√
λN

m

∑
i=1

{
h
(
Y 1

i ,D
1
i
)
−E

[
h
(
Y 1,D1)]}

+
√

(1−λ )
1√
λN

m

∑
i=1

{
h
(
Y 1

i ,D
1
i
)
−E

[
h
(
Y 1,D1)]} ,

and it is not hard to show that as N→ ∞,

√
n
N

(
1√
m
− 1√

λN

) m

∑
i=1

{
h
(
Y 1

i ,D
1
i
)
−E

[
h
(
Y 1,D1)]}→p 0,(√

n
N
−
√

(1−λ )

)
1√
λN

m

∑
i=1

{
h
(
Y 1

i ,D
1
i
)
−E

[
h
(
Y 1,D1)]}→p 0.

Similarly,

Hn (h) =
√

TN

n

n

∑
i=1

{
h
(
Y 0

i ,D
0
i
)
−E

[
h
(
Y 0,D0)]}

=

√
m
N

(
1√
n
− 1√

(1−λ )N

)
n

∑
i=1

{
h
(
Y 0

i ,D
0
i
)
−E

[
h
(
Y 0,D0)]}

+

(√
m
N
−
√

λ

)
1√

(1−λ )N

n

∑
i=1

{
h
(
Y 0

i ,D
0
i
)
−E

[
h
(
Y 0,D0)]}

+
√

λ
1√

(1−λ )N

n

∑
i=1

{
h
(
Y 0

i ,D
0
i
)
−E

[
h
(
Y 0,D0)]}

and

√
m
N

(
1√
n
− 1√

(1−λ )N

)
n

∑
i=1

{
h
(
Y 0

i ,D
0
i
)
−E

[
h
(
Y 0,D0)]}→p 0,(√

m
N
−
√

λ

)
1√

(1−λ )N

n

∑
i=1

{
h
(
Y 0

i ,D
0
i
)
−E

[
h
(
Y 0,D0)]}→p 0.

101



Under Assumption 1.3.1, by Example 1.4.6 and Theorem 1.3.6 in van der Vaart & Wellner

(1996),

√
(1−λ )

1√
λN

m

∑
i=1

{
h
(
Y 1

i ,D
1
i
)
−E

[
h
(
Y 1,D1)]}

−
√

λ
1√

(1−λ )N

n

∑
i=1

{
h
(
Y 0

i ,D
0
i
)
−E

[
h
(
Y 0,D0)]} √1−λGP−

√
λGQ,

where GP and GQ are Gaussian processes. Thus, we have

√
TN
(
φ̂ −φ

)
 
√

1−λGP−
√

λGQ.

Together with Lemma A.1.8, we obtain the marginal weak convergence of φ̂/(ξ ∨ σ̂N).

Next we want to show
√

TN(φ̂ −φ)/(ξ ∨ σ̂N) (
√

1−λGP−
√

λGQ)/(ξ ∨σ). By

Theorems 1.5.4 and 1.5.7 in van der Vaart & Wellner (1996), it suffices to show the marginal

convergence, which has been obtained above, plus H being totally bounded and the sequence
√

TN(φ̂ −φ)/(ξ ∨ σ̂N) being asymptotically uniformly equicontinuous, both with respect to

some semimetric ρ .

For all h ∈H ,

√
TN

(
φ̂ −φ

)
(h)

ξ ∨ σ̂N
=
√

TN
(Pm (h)−Qn (h)−P(h)+Q(h))

ξ ∨ σ̂N

=

√
TN [Pm (h)−P(h)]−

√
TN [Qn (h)−Q(h)]

ξ ∨ σ̂N
.

Since we have shown that Gm 
√

1−λGP and Hn 
√

λGQ, as illustrated in Section 2.8.2 in

van der Vaart & Wellner (1996), H is totally bounded under semimetrics ρP and ρQ which are

defined in (A.1) for P and Q, and for all ε,η > 0, there are δP,δQ > 0 such that

limsup
N→∞

P∗
(

sup
ρP(h,g)<δP

|Gm (h)−Gm (g)|> ε

)
<

η

2
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and

limsup
N→∞

P∗
(

sup
ρQ(h,g)<δQ

|Hn (h)−Hn (g)|> ε

)
<

η

2
,

where P∗ is the outer probability. Thus there is δ = min{δP,δQ} such that

limsup
N→∞

P∗
(

sup
ρP(h,g)<δ

|Gm (h)−Gm (g)|> ε

)

+ limsup
N→∞

P∗
(

sup
ρQ(h,g)<δ

|Hn (h)−Hn (g)|> ε

)
< η . (A.3)

Define a new metric associated with probability R by

ρ
′
R (h1,h2) = ‖(h1−h2)‖L2(R) .

It is not hard to show that ρ ′R (h1,h2)≥ ρR (h1,h2) for all h1,h2 ∈H . Then we define another

new metric ρ =
√

ρ ′2P +ρ ′2Q on H .

By (A.3), for all ε,η > 0, there is δ > 0 such that

limsup
N→∞

P∗
(

sup
ρP(h,g)<δ

|Gm (h)−Gm (g)|> εξ

4

)

+ limsup
N→∞

P∗
(

sup
ρQ(h,g)<δ

|Hn (h)−Hn (g)|>
εξ

4

)
< η/2. (A.4)
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On the other hand,

limsup
N→∞

P∗
(

sup
ρ(h,g)<δ

∣∣∣∣√TN
(
φ̂ −φ

)
(g)
(

1
ξ ∨ σ̂N (h)

− 1
ξ ∨ σ̂N (g)

)∣∣∣∣> ε

2

)

≤limsup
N→∞

P∗
(

sup
ρ(h,g)<δ

∣∣∣√TN
(
φ̂ −φ

)
(g)
∣∣∣ |ξ ∨ σ̂N (h)−ξ ∨ σ̂N (g)|> ε

2
ξ

2

)

≤limsup
N→∞

P∗
(

sup
ρ(h,g)<δ

∣∣∣√TN
(
φ̂ −φ

)
(g)
∣∣∣ |σ̂N (h)− σ̂N (g)|> ε

2
ξ

2

)

≤limsup
N→∞

P∗
(

sup
ρ(h,g)<δ

∣∣∣√TN
(
φ̂ −φ

)
(g)
∣∣∣ |σN (h)−σN (g)|+op (1)>

ε

2
ξ

2

)

≤limsup
N→∞

P∗
(

sup
ρ(h,g)<δ

∣∣∣√TN
(
φ̂ −φ

)
(g)
∣∣∣ |σN (h)−σN (g)|> ε

4
ξ

2

)
.

By definition,

|σN (h)−σN (g)|2 ≤ |σN (h)−σN (g)| |σN (h)+σN (g)|=
∣∣σ2

N (h)−σ
2
N (g)

∣∣
=

∣∣∣∣∣∣∣
(1−λ ) |P(h)|(1−|P(h)|)+λ |Q(h)|(1−|Q(h)|)

−(1−λ ) |P(g)|(1−|P(g)|)+λ |Q(g)|(1−|Q(g)|)

∣∣∣∣∣∣∣
≤ 3(1−λ )P

(
|h−g|2

)
+3λQ

(
|h−g|2

)
.

Now it is easy to show that

|σN (h)−σN (g)| ≤
√

3
(

ρ ′2P (h,g)+ρ ′2Q (h,g)
)
=
√

3ρ (h,g) .

Therefore,

limsup
N→∞

P∗
(

sup
ρ(h,g)<δ

∣∣∣√TN
(
φ̂ −φ

)
(g)
∣∣∣ |σN (h)−σN (g)|> ε

2
ξ

2

)

≤limsup
N→∞

P∗
(

sup
g∈H

∣∣∣√TN
(
φ̂ −φ

)
(g)
∣∣∣√3δ >

ε

4
ξ

2

)
= o(δ ) .
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We let δ be smaller than that in (A.4) such that

limsup
N→∞

P∗
(

sup
g∈H

∣∣∣√TN
(
φ̂ −φ

)
(g)
∣∣∣√3δ >

ε

4
ξ

2

)
< η/2. (A.5)

Combining (A.4) and (A.5) gives us that there is δ > 0 such that

limsup
N→∞

P∗

 sup
ρ(h,g)<δ

∣∣∣∣∣∣∣
√

TN
(φ̂−φ)(h)
ξ∨σ̂N(h)

−
√

TN
(φ̂−φ)(g)
ξ∨σ̂N(h)

+
√

TN
(φ̂−φ)(g)
ξ∨σ̂N(h)

−
√

TN
(φ̂−φ)(g)
ξ∨σ̂N(g)

∣∣∣∣∣∣∣> ε


≤limsup

N→∞

P∗
(

sup
ρ(h,g)<δ

|[Gm (h)−Gm (g)]− [Hn (h)−Hn (g)]|>
εξ

2

)

+ limsup
N→∞

P∗
(

sup
ρ(h,g)<δ

∣∣∣∣∣√TN

(
φ̂ −φ

)
(g)

ξ ∨ σ̂N (h)
−
√

TN

(
φ̂ −φ

)
(g)

ξ ∨ σ̂N (g)

∣∣∣∣∣> ε

2

)

≤limsup
N→∞

P∗
(

sup
ρP(h,g)<δ

|Gm (h)−Gm (g)|> εξ

4

)

+ limsup
N→∞

P∗
(

sup
ρQ(h,g)<δ

|Hn (h)−Hn (g)|>
εξ

4

)

+ limsup
N→∞

P∗
(

sup
ρ(h,g)<δ

∣∣∣∣√TN
(
φ̂ −φ

)
(g)
(

1
ξ ∨ σ̂N (h)

− 1
ξ ∨ σ̂N (g)

)∣∣∣∣> ε

2

)
< η .

This implies that
√

TN(φ̂ −φ)/(ξ ∨ σ̂N) is asymptotically uniformly equicontinuous.

Notice that for all h,g ∈H ,

ρ
2 (h,g) = 2

∫
|h−g|2 d

(
P+Q

2

)
,

where P/2+Q/2 is a probability measure. By Lemma A.1.5, H is totally bounded under

‖·‖L2(P+Q
2 ). Then the total boundedness of H under ρ follows from that for all ε > 0,

N (ε,H ,ρ)≤ N
(

ε/
√

2,H ,‖·‖L2(P+Q
2 )

)
< ∞.
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Now by Theorems 1.5.4 and 1.5.7 in van der Vaart & Wellner (1996),

√
TN

(
φ̂ −φ

)
ξ ∨ σ̂N

 

√
1−λGP−

√
λGQ

ξ ∨σ
.

Let ϕN = φ/(ξ ∨ σ̂N). Given any sequence rN → ∞, define

DN (ω) =
{

ϕ ∈ `∞
(
H̄
)

: ϕN (ω)+ r−1
N ϕ ∈ `∞

(
H̄
)}

for all ω ∈Ω. Define

gN (ω)(ψ) = rN
(
S
(
ϕN (ω)+ r−1

N ψ
)
−S (ϕN (ω))

)
for all ω ∈Ω, ψ ∈ DN (ω). We know ϕN → φ/(ξ ∨σ) = ϕ0 a.s..

Let Ω0 = {ω ∈Ω : ϕN (ω)→ ϕ0} and P(Ω0) = 1. Now we want to show that there is

some g, for all ω ∈Ω0, gN (ω)(ψN)→ g(ψ) for all ψN ∈ DN (ω) such that ψN → ψ for some

ψ ∈C (H ). We extend the proof of Lemma B.1 in Fang & Santos (2014) to show this result.

Given
{

Y 1
i ,D

1
i
}m

i=1 and
{

Y 0
i ,D

0
i
}n

i=1, Pm and Qn have finitely many possible values

on H respectively. Suppose totally there are JN pairs of possible values for Pm and Qn.

Under lemma A.1.5, H is compact. Since φ is continuous on H , for all ψ ∈ C (H ),

suph∈H (ϕN + tNψ)(h)< ∞.

We define a correspondence Ψ̄H : C (H )�H by

Ψ̄H (ψ) = {h ∈H : ψ (h) = S (ψ)}

for all ψ ∈C (H ). By Theorem 17.31 in Aliprantis & Border (2006), Ψ̄H (ϕ0) is a nonempty

compact set. We now extend the domain of Ψ̄H to `∞ (H ) such that Ψ̄H : `∞ (H )�H :

Ψ̄H (ψ) = {h ∈H : ψ (h) = S (ψ)}
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for all ψ ∈ `∞ (H ). Now we want to show Ψ̄H is upper hemicontinuous at ϕ0. (See Definition

17.2 of upper hemicontinuity in Aliprantis & Border (2006)) Suppose there is a sequence {ψn,hn}

such that hn ∈ Ψ̄H (ψn) and ψn→ ϕ0. It is easy to show that

|S (ψn)−S (ϕ0)| ≤ ‖ψn−ϕ0‖∞
→ 0,

which implies ψn (hn)→ S (ϕ0). Suppose hn has no limit in Ψ̄H (ϕ0). This implies for

each h ∈ Ψ̄H (ϕ0), there is an open neighborhood Vh and nh such that hn 6∈ Vh when n ≥ nh.

Because we have shown Ψ̄H (ϕ0) is compact in H , there is a finite open cover such that

Ψ̄H (ϕ0) ⊂ V = Vh1 ∪ ·· · ∪VhM . Let n0 = maxm≤M nhm . Thus if n > n0, then hn 6∈ V and

therefore hn 6∈ Ψ̄H (ϕ0). Since H is compact and V c is closed in H , V c is compact. Then

sup
h∈V c

ϕ0 (h)< sup
h∈H

ϕ0 (h) = sup
h∈Ψ̄H (ϕ0)

ϕ0 (h) .

We let δ = suph∈H ϕ0 (h)− suph∈V c ϕ0 (h). Remember

ψn (hn) = sup
h∈H

ψn (h) = sup
h∈V c

ψn (h) .

Thus, ∣∣∣∣ψn (hn)− sup
h∈V c

ϕ0 (h)
∣∣∣∣≤ ‖ψn−ϕ0‖∞

→ 0.

For all n that is large enough,

ψn (hn)≤ sup
h∈V c

ϕ0 (h)+
δ

2
< sup

h∈H
ϕ0 (h) .

This contradicts ψn (hn)→ S (ϕ0). Thus, there is h ∈ Ψ̄H (ϕ0) such that hn → h. Then by

Theorem 17.20 in Aliprantis & Border (2006), Ψ̄H is upper hemicontinuous at ϕ0.
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It is easy to show that under H0,

Ψ̄H (ϕN) = Ψ̄H (ϕ0) = Ψ̄H (φ) .

Since ϕN + tNψ is not continuous in H , Ψ̄H (ϕN + tNψ) may be empty. As we have shown

earlier, Pm and Qn can have at most JN pairs of possible values on H . We can construct a

modified version of ϕN , denoted by ϕ ′N such that ϕ ′N is upper semicontinuous and

(i) suph∈H ϕN (h) = suph∈H ϕ ′N (h),

(ii) suph∈H (ϕN + tNψ)(h) = suph∈H (ϕ ′N + tNψ)(h),

(iii) ϕ ′N + tNψ → ϕ0, as N→ ∞.

Specifically, we can set the value ϕ ′N at discontinuities to the largest limit value at that point. In

this case, Ψ̄H (ϕ ′N + tNψ) 6=∅, because ϕN + tNψ is upper semicontinuous and H is compact.

Let tN = r−1
N . It is easy to show that

∣∣∣∣ sup
h∈H
{ϕN (h)+ tNψN (h)}− sup

h∈H
{ϕN (h)+ tNψ (h)}

∣∣∣∣≤ tN ‖ψN−ψ‖
∞
= o(tN) .

Since ϕ ′N (ω)+ tNψ converges to ϕ0 and Ψ̄H is upper hemicontinuous at ϕ0, there is a sequence

δN such that

Ψ̄H

(
ϕ
′
N + tNψ

)
⊂ Ψ̄H (ϕ0)

δN ,

where Ψ̄H (ϕ0)
δN =

{
h ∈H : infh′∈Ψ̄H (ϕ0)

‖h−h′‖L2(R) ≤ δN

}
and R = P/2+Q/2. Remem-

ber that under H0,

Ψ̄H (ϕ0) = Ψ̄H (ϕN) and sup
h∈Ψ̄H (ϕ0)

ϕN (h) = sup
h∈H

ϕN (h) = 0.
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Thus, we have that under H0,

∣∣∣∣∣ sup
h∈H
{ϕN (h)+ tNψ (h)}− sup

h∈Ψ̄H (ϕ0)

{ϕN (h)+ tNψ (h)}

∣∣∣∣∣
= sup

h∈Ψ̄H (ϕ ′N+tNψ)

{
ϕ
′
N (h)+ tNψ (h)

}
− sup

h∈Ψ̄H (ϕ0)

{ϕN (h)+ tNψ (h)}

≤ sup
h∈Ψ̄H (ϕ0)

δN

{
ϕ
′
N (h)+ tNψ (h)

}
− sup

h∈Ψ̄H (ϕ0)

tNψ (h)

≤ sup
h1,h2∈H ,‖h1−h2‖L2(R)≤δn

tN |ψ (h1)−ψ (h2)|= o(tN) .

Finally, put all things together and we have

∣∣∣∣∣ sup
h∈H
{ϕN (h)+ tNψN (h)}− sup

h∈H
ϕN (h)− tN sup

h∈Ψ̄H (ϕ0)

ψ (h)

∣∣∣∣∣
≤

∣∣∣∣∣ sup
h∈Ψ̄H (ϕ0)

{ϕN (h)+ tNψ (h)}− tN sup
h∈Ψ̄H (ϕ0)

ψ (h)

∣∣∣∣∣+o(tN) = o(tN) .

This implies that gN (ω)(ψN)→ suph∈ΨH̄ (ϕ0)
ψ (h).

By Lemma A.1.2,

√
TN

(
S

(
φ̂

ξ ∨ σ̂N

)
−S

(
φ

ξ ∨ σ̂N

))
 S

Ψ̄H (ϕ0)

(√
1−λGP−

√
λGQ

ξ ∨σ

)
.

Notice that under H0, S
Ψ̄H (ϕ0)

= S ′
φ

, where S ′
φ

is obtained in Lemma A.1.9. As defined in the

context, under H0,

ΨH = {h ∈H : φ (h) = 0}= Ψ̄H (φ) = Ψ̄H (ϕ0) ,

which gives

S
Ψ̄H (ϕ0)

(√
1−λGP−

√
λGQ

ξ ∨σ

)
=SΨH

(√
1−λGP−

√
λGQ

ξ ∨σ

)
.
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Now we want to show that under H0, if restricted on ΨH ,
√

1−λGP−
√

λGQ
L
=GH .

First, note that for all h ∈ΨH , φ (h) = 0, that is, P(h) = Q(h) = H (h). Also,

Cov

(√
1−λGP−

√
λGQ

ξ ∨σ
(h) ,

√
1−λGP−

√
λGQ

ξ ∨σ
(g)

)

=
(1−λ ) [P(hg)−P(h)P(g)]+λ [Q(hg)−Q(h)Q(g)]

(ξ ∨σ (h)) · (ξ ∨σ (g))
.

Suppose h,g ∈ΨH with h = (−1)dh ·1Bh×{dh} and g = (−1)dg ·1Bg×{dg}.

(i) If dh 6= dg, then hg = 0 and thus P(hg) = Q(hg) = H (hg).

(ii) If dh = dg, then hg = 1Bh∩Bg×{dh} and thus P(hg) = Q(hg) = H (hg).

Therefore, we now have

Cov

(√
1−λGP−

√
λGQ

ξ ∨σ
(h) ,

√
1−λGP−

√
λGQ

ξ ∨σ
(g)

)

=
H (hg)−H (h)H (g)

(ξ ∨σ (h)) · (ξ ∨σ (g))
=Cov

(
GH

ξ ∨σ
(h) ,

GH

ξ ∨σ
(g)
)
.

Equivalence of the covariance kernels implies equivalence of the probability laws of the mean

zero Gaussian processes, thus

SΨH
(

√
1−λGP−

√
λGQ

ξ ∨σ
)

L
= SΨH

(
GH

ξ ∨σ

)
.

Given the probability measure R = 1/2 ·P+1/2 ·Q, we define

−→
d H (A1,A2) = sup

a∈A1

inf
b∈A2
‖a−b‖L2(R)

and

dH (A1,A2) = max
{−→

d H (A1,A2) ,
−→
d H (A2,A1)

}
,
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for all set A1,A2 ⊂H . The following lemma concludes that Ψ̂H in (1.16) is valid in the sense

that ŜN satisfies Assumption 3.3 in Fang & Santos (2014).

Lemma A.2.1 Under Assumptions 1.3.1 and 1.3.2, if H0 is true, dH(Ψ̂H ,ΨH )→p 0.

Proof of Lemma A.2.1.

First, for all ε > 0,

lim
N→∞

P
(−→

d H
(
ΨH ,Ψ̂H

)
> ε

)
≤ lim

N→∞
P
(
ΨH \Ψ̂H 6=∅

)
≤ lim

N→∞
P

(
sup

h∈ΨH \Ψ̂H

∣∣φ̂ (h)−φ (h)
∣∣> τN

)

≤ lim
N→∞

P
(

sup
h∈H

√
TN
∣∣φ̂ (h)−φ (h)

∣∣>√TNτN

)
.

By Theorem 1.3.1,
√

TN
(
φ̂ −φ

)
 
√

1−λGP−
√

λGQ. Then by Theorem 1.3.6 in van der

Vaart & Wellner (1996),

sup
h∈H

√
TN
∣∣φ̂ (h)−φ (h)

∣∣ sup
h∈H

∣∣∣√1−λGP (h)−
√

λGQ (h)
∣∣∣ .

If
√

TNτN → ∞, then limn→∞P
(−→

d H
(
ΨH ,Ψ̂H

)
> ε

)
= 0.

Next, consider
−→
d H
(
Ψ̂H ,ΨH

)
. Define d (h,ΨH ) = infg∈ΨH̄

‖h−g‖L2(R) for all h ∈

H . For each ε > 0, let Dε = {h ∈H : d (h,ΨH )≥ ε}. In Lemma A.1.9, we have shown

φ ∈ C (H ) with H being compact under norm ‖·‖L2(R). Suppose there is {hn} ⊂ Dε and

hn→ h for some h ∈H , then

d (h,ΨH ) = inf
g∈ΨH

‖h−g‖L2(R) = inf
g∈ΨH

‖h−hn +hn−g‖L2(R)

≥ inf
g∈ΨH

‖hn−g‖L2(R)−‖h−hn‖L2(R) ≥ ε−‖h−hn‖L2(R) ,

which is true for all n. Letting n→ ∞ gives us d (h,ΨH )≥ ε . This implies Dε is closed in H

which is compact, thus Dε is compact. If Dε 6=∅, then ∃δε > 0 such that infh∈Dε
|φ (h)|> δε .
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Then we have

lim
N→∞

P
(−→

d H
(
Ψ̂H ,ΨH

)
> ε

)
= lim

N→∞
P

(
sup

h∈Ψ̂H

inf
g∈ΨH

‖h−g‖L2(R) > ε

)

≤ lim
N→∞

P

(
sup

h∈Ψ̂H \ΨH

|φ (h)|> δε , sup
h∈Ψ̂H \ΨH

∣∣φ̂ (h)
∣∣≤ τN

)
.

Here we define events:

AN =

{
sup

h∈Ψ̂H \ΨH

|φ (h)|− δε

2
≤ sup

h∈Ψ̂H \ΨH

∣∣φ̂ (h)
∣∣≤ sup

h∈Ψ̂H \ΨH

|φ (h)|+ δε

2

}
.

Now we have

P
(

sup
h∈H

∣∣φ̂ (h)−φ (h)
∣∣≤ δε

2

)
≤ P

(
sup

h∈Ψ̂H \ΨH

∣∣φ̂ (h)−φ (h)
∣∣≤ δε

2

)

≤ P

(∣∣∣∣∣ sup
h∈Ψ̂H \ΨH

∣∣φ̂ (h)
∣∣− sup

h∈Ψ̂H \ΨH

|φ (h)|

∣∣∣∣∣≤ δε

2

)
= P(AN) .

By Lemma A.1.8, limn→∞P(AN) = 1. Thus,

lim
N→∞

P
(−→

d H
(
Ψ̂H ,ΨH

)
> ε

)
≤ lim

N→∞
P

(
sup

h∈Ψ̂H \ΨH

|φ (h)|> δε , sup
h∈Ψ̂H \ΨH

∣∣φ̂ (h)
∣∣≤ τN ,AN

)

≤ lim
N→∞

P

(
sup

h∈Ψ̂H \ΨH

∣∣φ̂ (h)
∣∣≥ δε

2
, sup

h∈Ψ̂H \ΨH

∣∣φ̂ (h)
∣∣≤ τN

)
= 0 as τN ↓ 0.

Proof of Theorem 1.3.2.

(i) We first show that ĉ1−α →p c1−α , where c1−α is defined by

c1−α = inf

{
c : P

(
SΨH

(√
1−λGP−

√
λGQ

ξ ∨σ

)
≤ c

)
≥ 1−α

}
.
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C (H ) is complete under ‖·‖
∞

. By Lemma A.1.6, H is Donsker for both P and Q. Also,

by the construction of H , P‖h−Ph‖2
H < ∞ and Q‖h−Qh‖2

H < ∞. We let

ĜPm (h) =
1√
m

[
m

∑
i=1

h
(
Y 1∗

i ,D1∗
i
)
−

m

∑
i=1

h
(
Y 1

i ,D
1
i
)]

=
1√
λN

[
m

∑
i=1

h
(
Y 1∗

i ,D1∗
i
)
−

m

∑
i=1

h
(
Y 1

i ,D
1
i
)]

+

(
1√
m
− 1√

λN

)[ m

∑
i=1

h
(
Y 1∗

i ,D1∗
i
)
−

m

∑
i=1

h
(
Y 1

i ,D
1
i
)]

= ĜλPm (h)+AN

and

ĜQn (h) =
1√
n

[
n

∑
i=1

h
(
Y 0∗

i ,D0∗
i
)
−

n

∑
i=1

h
(
Y 0

i ,D
0
i
)]

=
1√

(1−λ )N

[
n

∑
i=1

h
(
Y 0∗

i ,D0∗
i
)
−

n

∑
i=1

h
(
Y 0

i ,D
0
i
)]

+

(
1√
n
− 1√

(1−λ )N

)[
n

∑
i=1

h
(
Y 0∗

i ,D0∗
i
)
−

n

∑
i=1

h
(
Y 0

i ,D
0
i
)]

= ĜλQn (h)+BN .

where An→ 0 a.s. and Bn→ 0 a.s.. Then by Theorem 3.6.2 in van der Vaart & Wellner (1996),

we have that

sup
f∈BL1

∣∣∣E [ f
(
ĜλPm

)
|
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1

]
−E [ f (GP)]

∣∣∣→ 0

and

sup
f∈BL1

∣∣∣E [ f
(
ĜλQn

)
|
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1

]
−E [ f (GQ)]

∣∣∣→ 0

for almost all sequence
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1, where BL1 = BL1 (`
∞ (H )) . Then be-

cause conditional on
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1, ĜλPm is independent of ĜλQn, we have
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given almost every sequence
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1,

(
ĜλPm, ĜλQn

)
 (GP,GQ) ,

where GP and GQ are independent processes. This implies

(
ĜPm, ĜQn

)
 (GP,GQ) .

Then by the continuous mapping theorem, conditional on almost all sequences
{(

Y 1
i ,D

1
i
)}m

i=1,{(
Y 0

i ,D
0
i
)}n

i=1,
√

TN
(
φ̂∗− φ̂

)
 
√

1−λGP−
√

λGQ.

Given any
{(

Y 1
i ,D

1
i
)}m

i=1,
{(

Y 0
i ,D

0
i
)}n

i=1,
∥∥P̂∗m−Pm

∥∥
∞
→ 0 a.s. and

∥∥Q̂∗n−Qn
∥∥

∞
→ 0

a.s. by Lemma A.1.4 and Glivenko-Cantelli Theorem. Then by Lemma A.1.8,

∥∥P̂∗m−P
∥∥

∞
→ 0 a.s.

∥∥Q̂∗n−Q
∥∥

∞
→ 0 a.s.

which implies ‖σ̂∗N−σ‖
∞
→ 0 a.s. Repeating the proof for asymptotic uniform equicontinuity

in Theorem 1.3.1 gives us

√
TN
(
φ̂∗− φ̂

)
ξ ∨ σ̂∗N

 

√
1−λGP−

√
λGQ

ξ ∨σ

for almost all sequences
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1. Or in another word,

sup
f∈BL1

∣∣∣∣∣∣∣∣
E
[

f
(√

TN(φ̂∗−φ̂)
ξ∨σ̂∗N

)
|
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1

]
−E
[

f
(√

1−λGP−
√

λGQ
ξ∨σ

)]
∣∣∣∣∣∣∣∣→ 0,

for almost all sequences
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1. Also, similarly to the proof of Theorem
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2.9.7 in van der Vaart & Wellner (1996), we have

sup
f∈BL1

∣∣∣∣∣∣∣∣
E
[

f
(√

TN(φ̂∗−φ̂)
ξ∨σ̂∗N

)∗
|
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1

]
−E
[

f
(√

1−λGP−
√

λGQ
ξ∨σ

)]
∣∣∣∣∣∣∣∣→ 0

and

sup
f∈BL1

∣∣∣∣∣∣∣∣
E
[

f
(√

TN(φ̂∗−φ̂)
ξ∨σ̂∗N

)
∗
|
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1

]
−E
[

f
(√

1−λGP−
√

λGQ
ξ∨σ

)]
∣∣∣∣∣∣∣∣→ 0

for almost all sequences
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1, where

f

(√
TN
(
φ̂∗− φ̂

)
ξ ∨ σ̂∗N

)∗
and f

(√
TN
(
φ̂∗− φ̂

)
ξ ∨ σ̂∗N

)
∗

denote measurable majorants and minorants with respect to random weights used in boot-

strap and
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1 jointly. This shows the asymptotic measurability of

(ξ ∨ σ̂∗N)
−1√TN(φ̂

∗− φ̂). Also, f ((ξ ∨ σ̂∗N)
−1√TN(φ̂

∗− φ̂)) is a measurable function of random

weights used in constructing φ̂∗ for almost every sequence
{(

Y 1
i ,D

1
i
)}m

i=1,
{(

Y 0
i ,D

0
i
)}n

i=1, for

each continuous and bounded f . All these imply that Assumptions 3.1 and 3.2 in Fang & Santos

(2014) hold.

By Theorem 1.3.1, Assumption 2.2 in Fang & Santos (2014) holds. Moreover SΨH
=S ′

φ

satisfies Assumption 2.3(i) in Fang & Santos (2014) holds. By Lemma A.2.1 and Lemma B.3

in Fang & Santos (2014), Assumption 3.3 in Fang & Santos (2014) holds. If the CDF of

SΨH
((ξ ∨σ)−1(

√
1−λGP−

√
λGQ)) is strictly increasing at its 1−α quantile c1−α , by

Theorem 3.3 and Corollary 3.2 in Fang & Santos (2014), ĉ1−α →p c1−α .

Thus, if H0 is true and the CDF of SΨH
((
√

1−λGP−
√

λGQ)/(ξ ∨σ)) is continuous

at its 1−α quantile c1−α , under decision rule,

P
(√

TNS (φ̂)> ĉ1−α

)
= 1−P

(√
TNS (φ̂)− ĉ1−α + c1−α ≤ c1−α

)
→ α.
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(ii) Suppose H0 is false, that is suph∈H φ (h)> 0.

First consider S (
√

TN(φ̂
∗− φ̂)/(ξ ∨ σ̂∗N)). Since we have shown that

√
TN(φ̂

∗− φ̂)/(ξ ∨ σ̂
∗
N) (

√
1−λGP−

√
λGQ)/(ξ ∨σ)

for almost all sequences
{(

Y 1
i ,D

1
i
)}m

i=1 ,
{(

Y 0
i ,D

0
i
)}n

i=1, by the continuous mapping theorem,

S

(√
TN
(
φ̂∗− φ̂

)
ξ ∨ σ̂∗N

)
 S

(√
1−λGP−

√
λGQ

ξ ∨σ

)
.

Construct

ĉ′1−α = inf

{
c : P

(
S

(√
TN
(
φ̂∗− φ̂

)
ξ ∨ σ̂∗N

)
≤ c|{(Y 1

i ,D
1
i )}m

i=1,{(Y 0
i ,D

0
i )}n

i=1

)
≥ 1−α

}
.

(A.6)

By Theorem 11.1 in Davydov et al. (1998), the CDF of S
(
(
√

1−λGP−
√

λGQ)/(ξ ∨σ)
)

is

strictly increasing and continuous everywhere except on a countable subset of its support. By the

proof similar to that of Corollary 3.2 in Fang & Santos (2014), ĉ′1−α
→p c′1−α

, where c′1−α
is

the 1−α quantile of S
(
(
√

1−λGP−
√

λGQ)/(ξ ∨σ)
)

. By construction, 0≤ ĉ1−α ≤ ĉ′1−α
.

Thus, ĉ1−α = Op (1).

By Lemma A.1.8,

P
(√

TNS
(
φ̂
)
> ĉ1−α

)
→ 1.

A.3 Results in Section 1.4

Proof of Lemma 1.4.1.
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Let mk = ∑
N
i=1 1R×{0,1}×{zk} (Yi,Di,Zi). Now we have

φ̂K (h,g)

=
1
N

N

∑
i=1

(h ·g2)(Yi,Di,Zi)
1
N ∑

N
i=1 g2 (Yi,Di,Zi)

− 1
N

N

∑
i=1

(h ·g1)(Yi,Di,Zi)
1
N ∑

N
i=1 g1 (Yi,Di,Zi)

=
1
N

N

∑
i=1

(h ·g2)(Yi,Di,Zi)

P(g2)
+

1
N

N

∑
i=1

(
1

1
N ∑

N
i=1 g2 (Yi,Di,Zi)

− 1
P(g2)

)
(h ·g2)(Yi,Di,Zi)

− 1
N

N

∑
i=1

(h ·g1)(Yi,Di,Zi)

P(g1)
− 1

N

N

∑
i=1

(
1

1
N ∑

N
i=1 g1 (Yi,Di,Zi)

− 1
P(g1)

)
(h ·g1)(Yi,Di,Zi)

and

φ̂K (h,g)−φK (h,g)

=
1
N

N

∑
i=1

{
(h ·g2)(Yi,Di,Zi)

P(g2)
− P(h ·g2)

P(g2)

}
− 1

N

N

∑
i=1

{
(h ·g1)(Yi,Di,Zi)

P(g1)
− P(h ·g1)

P(g1)

}
−

(
1
N

N

∑
i=1

[g2 (Yi,Di,Zi)−P(g2)]

)(
1
N ∑

N
i=1 (h ·g2)(Yi,Di,Zi)

1
N ∑

N
i=1 g2 (Yi,Di,Zi)P(g2)

)

+

(
1
N

N

∑
i=1

[g1 (Yi,Di,Zi)−P(g1)]

)(
1
N ∑

N
i=1 (h ·g1)(Yi,Di,Zi)

1
N ∑

N
i=1 g1 (Yi,Di,Zi)P(g2)

)
. (A.7)

As defined before, GK =
{

1R×{0,1}×{zk} : k = 1,2, · · · ,K
}

, and it has been shown that GK is

P-Glivenko-Cantelli by Lemma A.1.12.

We now first show the marginal convergence of
√

N
(
φ̂K (h,g)−φK (h,g)

)
.

By the multivalue central limit theorem,

SN =
1√
N

N

∑
i=1



(h·g2)(Yi,Di,Zi)
P(g2)

− P(h·g2)
P(g2)

(h·g1)(Yi,Di,Zi)
P(g1)

− P(h·g1)
P(g1)

g2 (Yi,Di,Zi)−P(g2)

g1 (Yi,Di,Zi)−P(g1)


 N (0,Σ) ,
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where Σ is the covariance matrix of the asymptotic distribution such that

Σ =



Σ11 Σ12 Σ13 Σ14

Σ12 Σ22 Σ23 Σ24

Σ13 Σ23 Σ33 Σ34

Σ14 Σ24 Σ34 Σ44


,

where

Σ11 =
|P(h ·g2)|−P2 (h ·g2)

P2 (g2)
,Σ12 =

−|P(h ·g2)|
P(g2)

|P(h ·g1)|
P(g1)

,

Σ13 =
P(h ·g2)

P(g2)
−P(h ·g2) ,Σ14 =

−P(h ·g2)

P(g2)
P(g1) ,

Σ22 =
|P(h ·g1)|−P2 (h ·g1)

P2 (g1)
,Σ23 =

−P(h ·g1)

P(g1)
P(g2) ,

Σ24 =
P(h ·g1)

P(g1)
−P(h ·g1) ,Σ33 = P(g2)−P2 (g2) ,

Σ34 =−P(g2)P(g1) ,Σ44 = P(g1)−P2 (g1) .

We can write

√
N
(
φ̂K (h,g)−φK (h,g)

)
=

(
1,−1,−

1
N ∑

N
i=1 (h ·g2)(Yi,Di,Zi)

1
N ∑

N
i=1 g2 (Yi,Di,Zi)P(g2)

,
1
N ∑

N
i=1 (h ·g1)(Yi,Di,Zi)

1
N ∑

N
i=1 g1 (Yi,Di,Zi)P(g1)

)
·SN .

Notice that

(
1,−1,−

1
N ∑

N
i=1 (h ·g2)(Yi,Di,Zi)

1
N ∑

N
i=1 g2 (Yi,Di,Zi)P(g2)

,
1
N ∑

N
i=1 (h ·g1)(Yi,Di,Zi)

1
N ∑

N
i=1 g1 (Yi,Di,Zi)P(g1)

)

→
(

1,−1,−P(h ·g2)

P2 (g2)
,
P(h ·g1)

P2 (g1)

)
= A a.s.
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which implies
√

N
[
φ̂K (h,g)−φK (h,g)

]
 N

(
0,AΣAT) .

Also,

AΣAT =

(
|P(h ·g2)|

P2 (g2)
− P2 (h ·g2)

P3 (g2)
,−|P(h ·g1)|

P2 (g1)
+

P2 (h ·g1)

P3 (g1)
,0,0

)
·
(

1,−1,−P(h ·g2)

P2 (g2)
,
P(h ·g1)

P2 (g1)

)T

=
|P(h ·g2)|

P2 (g2)
− P2 (h ·g2)

P3 (g2)
+
|P(h ·g1)|

P2 (g1)
− P2 (h ·g1)

P3 (g1)

=
|P(h ·g2)|

P2 (g2)

(
1− |P(h ·g2)|

P(g2)

)
+
|P(h ·g1)|

P2 (g1)

(
1− |P(h ·g1)|

P(g1)

)
.

This verifies (1.19).

For
(√

N
(
φ̂K (h1,g1)−φK (h1,g1)

)
, . . . ,
√

N
(
φ̂K (ht ,gt)−φK (ht ,gt)

))T
with some inte-

ger t, similar results as above hold as well, that is, the marginal convergence holds.

Remember we defined a metric on HK×G by

ρP
(
(h,g) ,

(
h′,g′

))
=
∥∥h−h′

∥∥
L2(P)+

∥∥g1−g′1
∥∥

L2(P)+
∥∥g2−g′2

∥∥
L2(P) .

By Lemma A.1.10, HK×G is totally bounded under ρP. Let

XN (h,g) =
√

N
(
φ̂K (h,g)−φK (h,g)

)
.

Now we consider asymptotic uniform ρP-equicontinuity of XN in probability. Define another

function space by V =
{

v ∈ L2 (P) : v = h ·gK for some h ∈HK and gK ∈ GK
}

. Define the em-

pirical process on V by

GN (v) =
1√
N

N

∑
i=1
{v(Yi,Di,Zi)−E [v(Yi,Di,Zi)]} .
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Notice that for each probability measure R on R3, we have

‖v1− v2‖Lr(R) = ‖h1 ·gK1−h2 ·gK2‖Lr(R)

≤ ‖h1 ·gK1−h2 ·gK1‖Lr(R)+‖h2 ·gK1−h2 ·gK2‖Lr(R)

≤ ‖h1−h2‖Lr(R)+‖gK1−gK2‖Lr(R) .

Thus, together with Lemma A.1.5, with F = 1 being the envelop function of V , we have for all

ε > 0,

N
(

ε ‖F‖Lr(R) ,V ,Lr (R)
)
≤max

{
N
(

ε

2
,HK,L2 (P)

)
,N
(

ε

2
,GK,L2 (P)

)}
.

Similarly to Lemma A.1.6, V is a R-Donsker. Then for all ε,η > 0, by Example 1.5.10 in

van der Vaart & Wellner (1996), there is δG > 0 such that

limsup
N→∞

P∗
 sup
‖v−v′‖L2(P)<δG

∣∣GN (v)−GN
(
v′
)∣∣> ε

< η .

Define HN (u) = (
√

N)−1
∑

N
i=1 {u(Yi,Di,Zi)−P(u)} for all u ∈ GK and it is easy to show that

GK is a P-Donsker. This implies for all ε,η > 0, there is δH > 0 such that

limsup
N→∞

P∗
 sup
‖u−u′‖L2(P)<δH

∣∣HN (u)−HN
(
u′
)∣∣> ε

< η .

As defined before,

∣∣XN (h,g)−XN
(
h′,g′

)∣∣= ∣∣∣[√N
(
φ̂K (h,g)−φK (h,g)

)]
−
[√

N
(
φ̂K
(
h′,g′

)
−φK

(
h′,g′

))]∣∣∣ .
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Then by (A.7), for all ε > 0,

P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣XN (h,g)−XN
(
h′,g′

)∣∣> ε

)

≤P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣∣∣∣GN (h ·g2)

P(g2)
−

GN (h′ ·g′2)
P
(
g′2
) ∣∣∣∣∣> ε

4

)

+P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣∣∣∣GN (h ·g1)

P(g1)
−

GN (h′ ·g′1)
P
(
g′1
) ∣∣∣∣∣> ε

4

)

+P∗
(

sup
ρP((h,g),(h′,g′))<δ

|DHN2|>
ε

4

)
+P

(
sup

ρP((h,g),(h′,g′))<δ

|DHN1|>
ε

4

)
, (A.8)

where

DHN2 = HN (g2)
1
N ∑

N
i=1 (h ·g2)(Yi,Di,Zi)

1
N ∑

N
i=1 g2 (Yi,Di,Zi)P(g2)

−HN
(
g′2
) 1

N ∑
N
i=1 (h ·g′2)(Yi,Di,Zi)

1
N ∑

N
i=1 g′2 (Yi,Di,Zi)P

(
g′2
) ,

and

DHN1 = HN (g1)
1
N ∑

N
i=1 (h ·g1)(Yi,Di,Zi)

1
N ∑

N
i=1 g1 (Yi,Di,Zi)P(g1)

−HN
(
g′1
) 1

N ∑
N
i=1 (h ·g′1)(Yi,Di,Zi)

1
N ∑

N
i=1 g′1 (Yi,Di,Zi)P

(
g′1
) .

We now consider each term on the right-hand side of the inequality in (A.8). First we have

P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣∣∣∣GN (h ·g2)

P(g2)
−

GN (h′ ·g′2)
P
(
g′2
) ∣∣∣∣∣> ε

4

)

≤P∗
 sup
‖v−v′‖L2(P)<δ

∣∣GN (v)−GN
(
v′
)∣∣> ε

8
min
k≤K

P(Z = zk)


+P∗

(
sup

ρP((h,g),(h′,g′))<δ

∣∣∣∣∣GN (h′ ·g′2)
P(g2)

−
GN (h′ ·g′2)

P
(
g′2
) ∣∣∣∣∣> ε

8

)
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and similarly,

P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣GN (h ·g1)−GN
(
h′ ·g′1

)∣∣> ε

4

)

≤P∗
 sup
‖v−v′‖L2(P)<δ

∣∣GN (v)−GN
(
v′
)∣∣> ε

8
min
k≤K

P(Z = zk)


+P∗

(
sup

ρP((h,g),(h′,g′))<δ

∣∣∣∣∣GN (h′ ·g′1)
P(g1)

−
GN (h′ ·g′1)

P
(
g′1
) ∣∣∣∣∣> ε

8

)
.

Also,

P∗
(

sup
ρP((h,g),(h′,g′))<δ

|DHN2|>
ε

4

)

≤P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣∣∣∣[HN (g2)−HN
(
g′2
)]
·

1
N ∑

N
i=1 (h ·g2)(Yi,Di,Zi)

1
N ∑

N
i=1 g2 (Yi,Di,Zi)P(g2)

∣∣∣∣∣> ε

8

)

+P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣HN
(
g′2
)
·DRN2

∣∣> ε

8

)
, (A.9)

where

DRN2 =
1
N ∑

N
i=1 (h ·g2)(Yi,Di,Zi)

1
N ∑

N
i=1 g2 (Yi,Di,Zi)P(g2)

−
1
N ∑

N
i=1 (h ·g′2)(Yi,Di,Zi)

1
N ∑

N
i=1 g′2 (Yi,Di,Zi)P

(
g′2
) .

Now we consider the two terms on the right-hand side of the inequality (A.9).

We have that

P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣∣∣∣[HN (g2)−HN
(
g′2
)]
·

1
N ∑

N
i=1 (h ·g2)(Yi,Di,Zi)

1
N ∑

N
i=1 g2 (Yi,Di,Zi)P(g2)

∣∣∣∣∣> ε

8

)

≤P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣∣∣[HN (g2)−HN
(
g′2
)]
· P(h ·g2)

P2 (g2)

∣∣∣∣> ε

16

)

+P∗

 sup
ρP((h,g),(h′,g′))<δ

∣∣∣∣∣∣∣
[HN (g2)−HN (g′2)]

·
[

1
N ∑

N
i=1(h·g2)(Yi,Di,Zi)

1
N ∑

N
i=1 g2(Yi,Di,Zi)P(g2)

− P(h·g2)
P2(g2)

]
∣∣∣∣∣∣∣>

ε

16


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and

P∗
(

sup
ρ((h,g),(h′,g′))<δ

∣∣HN
(
g′2
)
·DRN2

∣∣> ε

8

)

≤P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣∣∣∣HN
(
g′2
)
·

[
P(h ·g2)

P2 (g2)
−

P(h ·g′2)
P2
(
g′2
) ]∣∣∣∣∣> ε

16

)

+P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣HN
(
g′2
)
· {DRN2−EDRN2}

∣∣> ε

16

)
,

where

EDRN2 =
P(h ·g2)

P2 (g2)
−

P(h ·g′2)
P2
(
g′2
) .

When δ is small enough,

limsup
N→∞

P∗
(

sup
ρP((h,g),(h′,g′))<δ

|DHN2|>
ε

4

)
<

η

4
.

Similarly, when δ is small enough,

limsup
N→∞

P∗
(

sup
ρP((h,g),(h′,g′))<δ

|DHN1|>
ε

4

)
<

η

4
.

Notice that

∥∥h ·g1−h′ ·g′1
∥∥

L2(P) ≤
∥∥h ·g1−h′ ·g1

∥∥
L2(P)+

∥∥h′ ·g1−h′ ·g′1
∥∥

L2(P) ≤ ρP
(
(h,g) ,

(
h′,g′

))
.

Because V is a R-Donsker, for any ε,η > 0, when δ is small enough,

limsup
N→∞

P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣GN (h ·g2)−GN
(
h′ ·g′2

)∣∣> ε

8
min
k≤K

P(Z = zk)

)
<

η

8
,

limsup
N→∞

P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣GN (h ·g1)−GN
(
h′ ·g′1

)∣∣> ε

8
min
k≤K

P(Z = zk)

)
<

η

8
.
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Also, when δ is small, ρP ((h,g) ,(h′,g′))< δ implies ‖g1−g′1‖L2(P)< δ and ‖g2−g′2‖L2(P)< δ ,

and this implies |P(g1−g′1)|< δ 2 and |P(g2−g′2)|< δ 2. Thus, small δ implies

limsup
N→∞

P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣∣∣∣GN (h′ ·g′2)
P(g2)

−
GN (h′ ·g′2)

P
(
g′2
) ∣∣∣∣∣> ε

8

)
<

η

8

and

limsup
N→∞

P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣∣∣∣GN (h′ ·g′1)
P(g1)

−
GN (h′ ·g′1)

P
(
g′1
) ∣∣∣∣∣> ε

8

)
<

η

8
.

Putting all above together, we have

limsup
N→∞

P∗
(

sup
ρP((h,g),(h′,g′))<δ

∣∣XN (h,g)−XN
(
h′,g′

)∣∣> ε

)
< η ,

which indicates XN is asymptotically uniformly ρP-equicontinuous in probability.

With the marginal weak convergence of
√

N
{

φ̂K−φK
}

and total boundedness of HK×G

by Lemma A.1.10, we can conclude that

√
N
{

φ̂K−φK
}
 GK,

for some Gaussian process GK .

Proof of Theorem 1.4.1.

By Lemmas A.1.10 and A.1.11, HK×G is compact under ρP.

Let ϕN = φK/(ξ ∨ σ̂KN). Given each sequence rN → ∞, define for all ω ∈Ω,

DN (ω) =
{

ϕ ∈ `∞ (HK×G ) : ϕN (ω)+ r−1
N ϕ ∈ `∞ (HK×G )

}
.

For all ω ∈Ω, define

gN (ω)(ψ) = rN
(
SK
(
ϕN (ω)+ r−1

N ψ
)
−SK (ϕN (ω))

)
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for all ψ ∈ DN (ω). We know ϕN → φK/(ξ ∨σK) = ϕ0 a.s. Let Ω0 = {ω ∈Ω : ϕN (ω)→ ϕ0}

and P(Ω0) = 1. Now we want to show that there is some g, for all ω ∈Ω0, gN (ω)(ψN)→ g(ψ)

for all ψN ∈ DN (ω) with ψN → ψ for some ψ ∈C (HK×G ). Now we fix an ω ∈Ω0.

Given {Yi,Di}N
i=1, PN has finitely many possible values on HK×G . Suppose there are

in total JN possible values of PN . Since φK is continuous on HK×G , for all ψ ∈C (HK×G ),

sup(h,g)∈HK×G (ϕN + tNψ)(h,g)< ∞.

We define a correspondence Ψ̄HK×G : `∞ (HK×G )→ R by

Ψ̄HK×G (ψ) = {(h,g) ∈HK×G : ψ (h,g) = SK (ψ)} ,

for all ψ ∈ `∞ (HK×G ). By the proof similar to that of Theorem 1.3.1, we can show that

Ψ̄HK×G is upper hemicontinuous at ϕ0.

Under H0, sup(h,g)∈HK×G ϕN (h,g) = 0. And it is easy to show that under H0,

Ψ̄HK×G (ϕN) = Ψ̄HK×G (ϕ0) = Ψ̄HK×G (φK) .

Since ϕN + tNψ is not continuous on HK×G , Ψ̄HK×G (ϕN + tNψ) may be empty. As we have

shown earlier, PN at most has JN possible values. We can construct a modified version of ϕN ,

denoted by ϕ ′N such that ϕ ′N is upper semicontinuous and

(i) sup(h,g)∈HK×G ϕN (h,g) = sup(h,g)∈HK×G ϕ ′N (h,g),

(ii) sup(h,g)∈HK×G (ϕN + tNψ)(h,g) = sup(h,g)∈HK×G (ϕ ′N + tNψ)(h,g),

(iii) ϕ ′N + tNψ → ϕ0, as N→ ∞,

by a similar strategy to that of Theorem 1.3.1. Then Ψ̄HK×G (ϕ ′N + tNψ) 6=∅.
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Let tN = r−1
N . It is easy to show that

∣∣∣∣∣ sup
(h,g)∈HK×G

{ϕN (h,g)+ tNψN (h,g)}− sup
(h,g)∈HK×G

{ϕN (h,g)+ tNψ (h,g)}

∣∣∣∣∣
≤tN ‖ψN−ψ‖

∞
= o(tN) .

As discussed before, Ψ̄HK×G (ϕ ′N + tNψ) is nonempty. Since ϕ ′N + tNψ converges to ϕ0

and Ψ̄HK×G is upper hemicontinuous at ϕ0, there is a sequence δN such that

Ψ̄HK×G

(
ϕ
′
N + tNψ

)
⊂ Ψ̄HK×G (ϕ0)

δN ,

where

Ψ̄HK×G (ϕ0)
δN =

{
(h,g) ∈HK×G : inf

(h′,g′)∈Ψ̄HK×G (ϕ0)
ρP
(
(h,g) ,

(
h′,g′

))
≤ δN

}
.

Remember that under H0,

Ψ̄HK×G (ϕ0) = Ψ̄HK×G (ϕN) and sup
(h,g)∈Ψ̄HK×G (ϕ0)

ϕN (h,g) = 0.

Thus, we have that under H0,

∣∣∣∣∣∣ sup
(h,g)∈HK×G

{ϕN (h,g)+ tNψ (h,g)}− sup
(h,g)∈Ψ̄HK×G (ϕ0)

{ϕN (h,g)+ tNψ (h,g)}

∣∣∣∣∣∣
≤ sup

(h,g)∈Ψ̄HK×G (ϕ0)
δN

{
ϕ
′
N (h,g)+ tNψ (h,g)

}
− sup

(h,g)∈Ψ̄HK×G (ϕ0)

tNψ (h,g)

≤ sup
(h1,g1),(h2,g2)∈HK×G ,ρP((h1,g1),(h2,g2))≤δN

tN |ψ (h1,g1)−ψ (h2,g2)|= o(tN) .
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Finally,

∣∣∣∣∣∣ sup
(h,g)∈HK×G

{ϕN (h,g)+ tNψN (h,g)}− sup
(h,g)∈HK×G

ϕN (h,g)− tN sup
(h,g)∈Ψ̄HK×G (ϕ0)

ψ (h,g)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ sup
(h,g)∈Ψ̄HK×G (ϕ0)

{ϕN (h)+ tNψ (h)}− tN sup
(h,g)∈Ψ̄HK×G (ϕ0)

ψ (h,g)

∣∣∣∣∣∣+o(tN) = o(tN) .

This implies that gN (ω)(ψN)→ sup(h,g)∈Ψ̄HK×G (ϕ0)
ψ (h).

By Lemmas A.1.2 and 1.4.1,

√
N
(

SK

(
φ̂K

ξ ∨ σ̂KN

)
−SK

(
φ

ξ ∨ σ̂KN

))
 SΨHK×G

(
GK

ξ ∨σK

)
,

where by definition, for all ψ ∈ `∞ (HK×G ),

SΨHK×G
(ψ) = sup

(h,g)∈ΨHK×G

ψ (h,g) = sup
(h,g)∈Ψ̄HK×G (ϕ0)

ψ (h,g) ,

under H0.

For all sets A1,A2 ⊂HK×G , define

−→
d H (A1,A2) = sup

a∈A1

inf
b∈A2

ρP (a,b) ,

and

dH (A1,A2) = max
{−→

d H (A1,A2) ,
−→
d H (A2,A1)

}
.

The following lemma concludes that Ψ̂HK×G in (1.21) is valid in the sense that ŜKN satisfies

Assumption 3.3 in Fang & Santos (2014).

Lemma A.3.1 Under Assumption 1.3.1 , if H0 is true, dH
(
Ψ̂HK×G ,ΨHK×G

)
→p 0.

Proof of Lemma A.3.1.
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The proof strategy is similar to that of Lemma A.2.1.

First, for all ε > 0,

lim
N→∞

P
(−→

d H
(
ΨHK×G ,Ψ̂HK×G

)
> ε

)
≤ lim

N→∞
P
(
ΨHK×G \Ψ̂HK×G 6=∅

)
≤ lim

N→∞
P

 sup
(h,g)∈ΨHK×G \Ψ̂HK×G

∣∣φ̂K (h,g)−φK (h,g)
∣∣> τN


≤ lim

N→∞
P

(
sup

(h,g)∈HK×G

√
TN
∣∣φ̂K (h,g)−φK (h,g)

∣∣>√TNτN

)
.

By Theorem 1.4.1,
√

N
(
φ̂K−φK

)
 GK . Then by Theorem 1.3.6 in van der Vaart & Wellner

(1996), sup(h,g)∈HK×G

√
N
∣∣φ̂K (h,g)−φK (h,g)

∣∣ sup(h,g)∈HK×G |GK (h,g)|. If
√

NτN → ∞,

then limN→∞P
(−→

d H
(
ΨHK×G ,Ψ̂HK×G

)
> ε

)
= 0.

Next, consider
−→
d H
(
Ψ̂HK×G ,ΨHK×G

)
. Define

d ((h,g) ,ΨHK×G ) = inf
(h′,g′)∈ΨHK×G

ρP
(
(h,g) ,

(
h′,g′

))
for all (h,g) ∈HK×G . For each ε > 0, let Dε = {(h,g) ∈HK×G : d ((h,g) ,ΨHK×G )≥ ε}.

We have shown that HK×G is compact under ρP by Lemmas A.1.10 and A.1.11. Suppose there

is {(hn,gn)}n ⊂ Dε and (hn,gn)→ (h,g) for some (h,g) ∈HK×G , then

d ((h,g) ,ΨHK×G ) = inf
(h′,g′)∈ΨHK×G

ρP
(
(h,g) ,

(
h′,g′

))
≥ inf

(h′,g′)∈ΨHK×G

ρP
(
(hn,gn) ,

(
h′,g′

))
−ρP ((h,g) ,(hn,gn))≥ ε−ρP ((h,g) ,(hn,gn)) ,

which is true for all n. Letting n→ ∞ gives us d ((h,g) ,ΨHK×G ) ≥ ε . This implies Dε is

closed in HK×G which is compact and thus Dε is compact. If Dε 6=∅, then ∃δε > 0 such that
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inf(h,g)∈Dε
|φK (h,g)|> δε . Also,

lim
N→∞

P
(−→

d H
(
Ψ̂HK×G ,ΨHK×G

)
> ε

)
= lim

N→∞
P

 sup
(h,g)∈Ψ̂HK×G

inf
(h′,g′)∈ΨHK×G

ρP
(
(h,g) ,

(
h′,g′

))
> ε


≤ lim

N→∞
P

 sup
(h,g)∈Ψ̂HK×G \ΨHK×G

|φK (h,g)|> δε , sup
(h,g)∈Ψ̂HK×G \ΨHK×G

∣∣φ̂K (h,g)
∣∣≤ τN

 .

Here we define events

AN =

 sup(h,g)∈Ψ̂HK×G \ΨHK×G
|φK (h,g)|− δε

2 ≤ sup(h,g)∈Ψ̂HK×G \ΨHK×G

∣∣φ̂K (h,g)
∣∣

≤ sup(h,g)∈Ψ̂HK×G \ΨHK×G
|φK (h,g)|+ δε

2

 .

Now we have

P

(
sup

(h,g)∈HK×G

∣∣φ̂K (h,g)−φK (h,g)
∣∣≤ δε

2

)

≤P

 sup
(h,g)∈Ψ̂HK×G \ΨHK×G

∣∣φ̂K (h,g)−φK (h,g)
∣∣≤ δε

2


≤P

∣∣∣∣∣∣ sup
(h,g)∈Ψ̂HK×G \ΨHK×G

∣∣φ̂K (h,g)
∣∣− sup

(h,g)∈Ψ̂HK×G \ΨHK×G

|φK (h,g)|

∣∣∣∣∣∣≤ δε

2


=P(AN) .
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By Lemma A.1.8, limN→∞P(AN) = 1. Thus,

lim
N→∞

P
(−→

d H
(
Ψ̂HK×G ,ΨHK×G

)
> ε

)
≤ lim

N→∞
P

 sup
(h,g)∈Ψ̂HK×G \ΨHK×G

|φK (h,g)|> δε , sup
(h,g)∈Ψ̂HK×G \ΨHK×G

∣∣φ̂K (h,g)
∣∣≤ τN ,AN


≤ lim

N→∞
P

 sup
(h,g)∈Ψ̂HK×G \ΨHK×G

∣∣φ̂K (h,g)
∣∣≥ δε

2
, sup
(h,g)∈Ψ̂HK×G \ΨHK×G

∣∣φ̂K (h,g)
∣∣≤ τN


=0 as τN ↓ 0.
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Appendix B

Proofs for Chapter 2

B.1 Main Results

Proof of Lemma 2.2.1.

Define T : L1[0,1]→ `∞[0,1] by

T (Q)(p) =
∫ p

0 Q(t)dt∫ 1
0 Q(t)dt

,

for any Q ∈ L1[0,1] and p ∈ [0,1]. For any hn,h ∈ L1[0,1] such that hn→ h,

(∫ p
0 Q(t)+ tnhn(t)dt∫ 1
0 Q(t)+ tnhn(t)dt

−
∫ p

0 Q(t)dt∫ 1
0 Q(t)dt

)
1
tn

−
∫ p

0 h(t)dt
∫ 1

0 Q(t)dt−
∫ p

0 Q(t)dt
∫ 1

0 h(t)dt

(
∫ 1

0 Q(t)dt)2

=

(∫ p
0 Q(t)+ tnhn(t)dt

∫ 1
0 Q(t)dt−

∫ p
0 Q(t)dt

∫ 1
0 Q(t)+ tnhn(t)dt∫ 1

0 Q(t)+ tnhn(t)dt
∫ 1

0 Q(t)dt

)
1
tn

−
∫ p

0 h(t)dt
∫ 1

0 Q(t)dt−
∫ p

0 Q(t)dt
∫ 1

0 h(t)dt

(
∫ 1

0 Q(t)dt)2
=

An(p)
Bn(p)

, (B.1)
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where

A(p) =
(∫ p

0
hn(t)dt

∫ 1

0
Q(t)dt−

∫ p

0
Q(t)dt

∫ 1

0
hn(t)dt

)(∫ 1

0
Q(t)dt

)2

−
(∫ p

0
h(t)dt

∫ 1

0
Q(t)dt−

∫ p

0
Q(t)dt

∫ 1

0
h(t)dt

)
·

[(∫ 1

0
Q(t)dt

)2

+ tn

(∫ 1

0
hn(t)dt

)(∫ 1

0
Q(t)dt

)]

≤2‖hn−h‖1

(∫ 1

0
Q(t)dt

)3

+O(tn), (B.2)

and

Bn(p) =

[(∫ 1

0
Q(t)dt

)2

+ tn

(∫ 1

0
hn(t)dt

)(∫ 1

0
Q(t)dt

)](∫ 1

0
Q(t)dt

)2

=

(∫ 1

0
Q(t)dt

)4

+O(tn). (B.3)

Then

sup
p∈[0,1]

∣∣∣∣An(p)
Bn(p)

∣∣∣∣≤ 2‖hn−h‖1 (
∫ 1

0 Q(t)dt)3 +O(tn)

(
∫ 1

0 Q(t)dt)4 +O(tn)
→ 0.

This implies T is Hadamard differentiable at Q tangentially to L1[0,1] with derivative

T ′
Q(h)(p) =

∫ p
0 h(t)dt

∫ 1
0 Q(t)dt−

∫ p
0 Q(t)dt

∫ 1
0 h(t)dt

(
∫ 1

0 Q(t)dt)2
. (B.4)

Notice that Z (Fj) = T ◦ V (Fj) . By Theorem 3 in Kaji (2017), V is Hadamard

differentiable at Fj tangentially to C0[0,∞)∩L, with Hadamard derivative

V ′Fj
(h)(p) =−

h(F−1
j (p))

f j(F−1
j (p))

,

for all h ∈C0[0,∞)∩L. It is easy to show that V ′Fj
(h) ∈ L1[0,1] when h ∈C0[0,∞)∩L. Then by

Lemma 3.9.3 (Chain rule) in van der Vaart & Wellner (1996), T ◦V is Hadamard differentiable
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at Fj tangentially to C0[0,∞)∩L with derivative T ′
V (Fj)

◦V ′Fj
.

Proof of Lemma 2.2.2.

By Proposition 2 in Kaji (2017), under Assumption 2.2.1, √n j(F̂j−Fj) G j for some

Gaussian process G j in L with mean zero and covariance function Cov(x,y) = Fj(x)∧Fj(y)−

Fj(x)Fj(y). So we can write G j = W (F), where W is a standard Brownian bridge. Now we

can write W (t) = B(t)− tB(1) for t ∈ [0,1], where B is a standard Brownian motion with a.s.

continuous paths. This implies G j ∈C0[0,∞)∩L a.s..

Then by Lemma 2.2.1 and Theorem 3.9.4 in van der Vaart & Wellner (1996) (Delta

method),

√
n j(L̂ j−L j) L j, (B.5)

for some Gaussian process L j with a.s. continuous paths.

Under Assumption 3.3.1, we know the two subsamples are independent, then

√
Tn(φ̂ −φ) =

√
Tn(L̂2−L2)−

√
Tn(L̂1−L1)

 
√

λL2−
√

1−λL1. (B.6)

Proof of Lemma 2.2.3.

Remember F̂∗j is the bootstrap CDF obtained from sample {X j∗
i }

n j
i=1. As we show before,

L j = Z (Fj).

Let

BL1(L) = {h : L→ R : sup
G∈L
|h(G)|< 1 and |h(G1)−h(G2)| ≤ ‖G1−G2‖L}.
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By Lemmas A.16, A.17 and A.18 in Kaji (2017),

sup
h∈BL1(L)

∣∣E[h(√n j(F̂∗j − F̂j))|{X1
i }

n1
i=1,{X

2
i }

n2
i=1]−E[h(G j)]

∣∣→ 0

in outer probability and√n j(F̂∗j − F̂j) is asymptotically measurable. Then by Lemma 2.2.1 and

Theorem 3.9.11 in van der Vaart & Wellner (1996),

√
n j(L̂∗j − L̂ j) Z ′

Fj
(G j), (B.7)

in outer probability measure, where G j is the asymptotic distribution of √n j(F̂j−Fj). Also

Theorem 3.9.11 in van der Vaart & Wellner (1996) implies that√n j(L̂∗j − L̂ j) is asymptotically

measurable and therefore
√

Tn(φ̂
∗− φ̂) is asymptotically measurable. The weak convergence

result for φ̂∗ follows Assumption 3.3.1.

Z is a continuous map from LF to `∞[0,1]. Thus it is a measurable map. It is not hard to

see that h(
√

Tn(φ̂
∗− φ̂)) is a measurable function of

{
W 1

i ,W
2
i
}

for any continuous and bounded

h from the expression that

√
Tn(φ̂

∗− φ̂)

=
√

Tn([Z (F̂∗2 )−Z (F̂∗1 )]− [Z (F̂2)−Z (F̂1)])

=
√

Tn([Z (n−1
2

n2

∑
i=1

W 2
i 1[X2

i ,∞))−Z (n−1
1

n1

∑
i=1

W 1
i 1[X1

i ,∞))]

− [Z (R̂2)−Z (R̂1)]). (B.8)

Proof of Lemma 2.2.4. Recall that the Hausdorff distance between B(φ) and B̂n is

dH(B(φ), B̂n) = max
{−→

d H(B(φ), B̂n),
−→
d H(B̂n,B(φ))

}
, (B.9)
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where
−→
d H(A,B) = supa∈A infb∈B |a−b| for any sets A,B. For S , by Lemma B.3 in Fang &

Santos (2014), we only need to verify that

dH(B(φ), B̂n,B(φ)) = oP(1).

First, we consider
−→
d H(B(φ), B̂n), where

−→
d H(B(φ), B̂n) = sup

p1∈B(φ)
inf

p2∈B̂n

|p1− p2| . (B.10)

Then for any ε > 0,

P(
−→
d H(B(φ), B̂n)> ε)≤ lim

n→∞
P(B(φ)\B̂n 6=∅)

≤P

(
sup

p∈B(φ)\B̂n

|φ̂(p)−φ(p)|> τn

)
≤ P

(
sup

p∈[0,1]

√
Tn|φ̂(p)−φ(p)|>

√
Tnτn

)
. (B.11)

With (2.13), by Theorem 1.3.6 (Continuous Mapping) in van der Vaart & Wellner (1996),

it follows that

√
Tn|φ̂ −φ | |

√
λL2−

√
1−λL1|. (B.12)

And by Theorem 1.3.6 in van der Vaart & Wellner (1996) again,

sup
p∈[0,1]

√
Tn|φ̂(p)−φ(p)| sup

p∈[0,1]
|
√

λL2(p)−
√

1−λL1(p)|. (B.13)

So if
√

Tnτn→ ∞, the limit probability in (B.11) is 0.

Next, consider
−→
d H(B̂n,B(φ)). Define d(p,B(φ)) = infp′∈B(φ) |p− p′|. For any ε > 0,

∃δε > 0 such that

inf
p∈[0,1],d(p,B(φ))≥ε

|φ(p)|> δε , (B.14)
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if {p ∈ [0,1] : d(p,B(φ))≥ ε} 6=∅. This is because φ is continuous and

{p ∈ [0,1] : d(p,B(φ))≥ ε} is compact.

To verify that Dε = {p ∈ [0,1] : d(p,B(φ))≥ ε} is compact we only prove that it is

closed. Suppose there is a sequence {pk} s.t. pk ∈ Dε and pk→ p then

d(p,B(φ)) = inf
p′∈B(φ)

∣∣p− p′
∣∣= inf

p′∈B(φ)

∣∣p− pk + pk− p′
∣∣

≥ inf
p′∈B(φ)

∣∣pk− p′
∣∣−|p− pk| ≥ ε−|p− pk| , (B.15)

and this is true for any k. So letting k→ ∞ gives d(p,B(φ))≥ ε .

Then it follows that

P
(−→

d H(B̂n,B(φ))≥ 2ε

)
= P

(
sup

p1∈B̂n

inf
p2∈B(φ)

|p1− p2| ≥ 2ε

)

≤P

(
sup

p∈B̂n\B(φ)
|φ(p)|> δε , sup

p∈B̂n\B(φ)
|φ̂(p)| ≤ τn

)

=P

(
sup

p∈B̂n\B(φ)
|φ(p)|> δε , sup

p∈B̂n\B(φ)
|φ̂(p)| ≤ τn,An

)

+P

(
sup

p∈B̂n\B(φ)
|φ(p)|> δε , sup

p∈B̂n\B(φ)
|φ̂(p)| ≤ τn,Ac

n

)

≤P

(
sup

p∈B̂n\B(φ)
|φ̂(p)| ≥ δε

2
, sup

p∈B̂n\B(φ)
|φ̂(p)| ≤ τn

)
+P(Ac

n)

→0 as τn ↓ 0, (B.16)

where

An =

{
sup

p∈B̂n\B(φ)
|φ(p)|− δε

2
≤ sup

p∈B̂n\B(φ)
|φ̂(p)|

}

∩

{
sup

p∈B̂n\B(φ)
|φ̂(p)| ≤ sup

p∈B̂n\B(φ)
|φ(p)|+ δε

2

}
.
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In the second equality, we used one result that P(An)→ 1. This is because

supp∈B̂n\B(φ) |φ̂(p)−φ(p)| → 0 a.s. by implication of Theorem 11.1 in Csörgö et al. (1986) and

∣∣∣∣∣ sup
p∈B̂n\B(φ)

|φ̂(p)|− sup
p∈B̂n\B(φ)

|φ(p)|

∣∣∣∣∣≤ sup
p∈B̂n\B(φ)

|φ̂(p)−φ(p)|, (B.17)

which implies
∣∣∣supp∈B̂n\B(φ) |φ̂(p)|− supp∈B̂n\B(φ) |φ(p)|

∣∣∣→ 0 a.s. As a consequence,

P

(∣∣∣∣∣ sup
p∈B̂n\B(φ)

|φ̂(p)|− sup
p∈B̂n\B(φ)

|φ(p)|

∣∣∣∣∣≤ δε

2

)

=P

(
sup

p∈B̂n\B(φ)
|φ(p)|− δε

2
≤ sup

p∈B̂n\B(φ)
|φ̂(p)| ≤ sup

p∈B̂n\B(φ)
|φ(p)|+ δε

2

)

=P(An)→ 1. (B.18)

We used another fact in (B.16) that for any events An s.t. limn→∞ P(An)→ 1 then for any event

Cn, limn→∞ P(An∩Cn) = limn→∞ P(Cn).

Lemma B.1.1 For any h ∈ `∞[0,1], Ŝ ′
n(h)≤S (h) almost surely.

Proof. By definition

Ŝ ′
n(h) = sup

p∈B̂n

h(p), (B.19)

where B̂n =
{

p ∈ [0,1] : |φ̂(p)| ≤ τn
}

, and

S (h) = sup
p∈[0,1]

h(p). (B.20)

Clearly, B̂n ⊂ [0,1], which implies Ŝ ′
n(h)≤S (h).

Proof of Lemma 2.2.5.
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For any τn, let B̂0n = {p ∈ [0,1] : |φ̂(p)| ≤ τn} and B̂+n = {p ∈ [0,1] : φ̂(p)> τn}. Then

we have

B0(φ)4B̂0n = (B0(φ)\B̂0n)∪ (B̂0n\B0(φ)), (B.21)

and

B+(φ)4B̂+n = (B+(φ)\B̂+n)∪ (B̂+n\B+(φ)). (B.22)

Let µ denote a Lebesgue measure. First consider B0(φ)4B̂0n. For any ε > 0,

P(µ(B0(φ)4B̂0n)> ε)

≤ P(µ(B0(φ)\B̂0n)> ε/2)+P(µ(B̂0n\B0(φ))> ε/2). (B.23)

Remember we have supp∈[0,1] |φ̂(p)−φ(p)| → 0 a.s. i.e. P(Aφ ) = 1,

where Aφ = {ω : supp∈[0,1] |φ̂ω(p)−φ(p)| → 0}. Now we fix any ω ∈ Aφ . For all ε , ∃N > 0, s.t.

for any n > N, supp∈[0,1] |φ̂ω(p)−φ(p)| < ε . Then we can find εn(ω) s.t. supp∈[0,1] |φ̂ω(p)−

φ(p)|< εn(ω) for each n and εn(ω)→ 0. Thus

B̂0n(ω)⊂ {p ∈ [0,1] : |φ(p)| ≤ τn + εn(ω)} . (B.24)

and

B̂0n(ω)\B0(φ)⊂ {p ∈ [0,1] : 0 < |φ(p)| ≤ τn + εn(ω)} . (B.25)

So we have

µ(B̂0n(ω)\B0(φ))→ 0, (B.26)
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for any ω ∈ Aφ , which implies µ(B̂0n\B0(φ))→ 0 a.s. Then

1{µ(B̂0n\B0(φ))> ε/2}→ 0 a.s.. (B.27)

By Dominated Convergence Theorem,

P(µ(B̂0n\B0(φ))> ε/2) =
∫

1{µ(B̂0n\B0(φ))> ε/2}dP→ 0. (B.28)

By arguments similar to (B.11),

P(µ(B0(φ)\B̂0n)> ε/2)≤ P(B0(φ)\B̂0n 6=∅)→ 0. (B.29)

Hence

P(µ(B0(φ)4B̂0n)> ε)→ 0, (B.30)

for any ε > 0, which implies µ(B0(φ)4B̂0n) = op(1).

Next consider B+(φ)4B̂+n. Fix any ω ∈ Aφ ,

B+(φ)\B̂+n(ω)⊂ {p ∈ [0,1] : 0 < φ(p)≤ τn + εn(ω)} , (B.31)

by similar arguments,

P(µ(B+(φ)\B̂+n)> ε/2)→ 0. (B.32)
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and

P(µ(B̂+n\B+(φ))> ε/2)≤ P(B̂+n\B+(φ) 6=∅)

≤ P

(
sup

p∈B̂+n\B+(φ)

|φ̂(p)−φ(p)|> τn

)

≤ P

(
sup

p∈[0,1]

√
Tn|φ̂(p)−φ(p)|>

√
Tnτn

)
→ 0, (B.33)

as shown in (B.11).

Lemma B.1.2 For any h ∈ `∞[0,1], Î ′n(h)≤I (h).

Proof. By definition,

I (h) =
∫

max(h(p),0)1{0≤ p≤ 1}dp. (B.34)

and

Î ′n(h) =
∫

B̂+n

h(p)1{0≤ p≤ 1}dp+
∫

B̂0n

max(h(p),0)1{0≤ p≤ 1}dp

≤
∫

max(h(p),0)1{0≤ p≤ 1}dp = I (h). (B.35)

Proof of Theorem 2.2.1.

We first prove ĉ1−α →p c1−α by verifying the assumptions of Corollary 3.2 in Fang &

Santos (2014).

In the setting of the test, D= `∞[0,1], and E= R. `∞[0,1] is a Banach space under norm

‖ · ‖∞ and R is a Banach space under | · |. By Assumption 2.2.4, F is Hadamard directionally

differentiable at φ . So Assumption 2.1 in Fang & Santos (2014) holds.

By Assumptions 2.2.1, 3.3.1 and 2.2.4 and (2.12), Assumptions 2.2 and 2.3 in Fang &

Santos (2014) hold.
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Assumptions 3.1 and 3.2 in Fang & Santos (2014) are satisfied automatically by Lemma

2.2.3.

By Assumption 2.2.5, Assumption 3.3 in Fang & Santos (2014) holds. Then by Corollary

3.2 in Fang & Santos (2014), if the CDF of F ′
φ
(
√

λL2−
√

1−λL1) is strictly increasing at its

1−α quantile c1−α , then ĉ1−α →p c1−α .

Under decision rule (2.33), if H0 is true,

√
TnF (φ̂) =

√
Tn(F (φ̂)−F (φ)) F ′

φ (
√

λL2−
√

1−λL1). (B.36)

Thus
√

TnF (φ̂)− ĉ1−α  F ′
φ
(
√

λL2−
√

1−λL1)− c1−α by Slutsky’s Theorem. Since the

CDF of F ′
φ
(
√

λL2−
√

1−λL1) is continuous at c1−α by assumption, the CDF of

F ′
φ
(
√

λL2−
√

1−λL1)− c1−α is continuous at 0. Then we have

P(
√

TnF (φ̂)− ĉ1−α > 0) = 1−Gn(0)

→ 1−G(0) = P(F ′
φ (
√

λL2−
√

1−λL1)− c1−α > 0), (B.37)

as n→∞, where Gn and G are the distribution functions for
√

TnF (φ̂)− ĉ1−α and F ′
φ
(
√

λL2−
√

1−λL1)− c1−α respectively.

If H0 is false, by Assumption 2.2.2 F (φ)> 0.

Since
√

Tn(F (φ̂)−F (φ)) F ′
φ
(
√

λL2−
√

1−λL1) still holds, then

P(
√

TnF (φ̂)− ĉ1−α > 0)

=P(
√

Tn(F (φ̂)−F (φ))− ĉ1−α +
√

TnF (φ)> 0)→ 1. (B.38)
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Appendix C

Proofs for Chapter 3

C.1 Oracle Consistency

We first show general results for the oracle properties of penalized regressions and later

we will use these results to prove the oracle properties of SFGMM estimator.

Suppose a general form of criterion function is

Q̂S(αS) = Q̃S (αS)+
p

∑
j=1

Pn
(
|θ j|
)
+λhnPh (h) , (C.1)

where Q̃ is a loss function, Pn is a penalty function which satisfies Assumption 3.3.4 and Ph is a

penalty function for h with tunning parameter λhn. This criterion function is a more general form

than the one used in the main text. We can let λhn = 0 and obtain the criterion function used in

the main text.

Lemma C.1.1 Suppose the following conditions hold:

(i) Almost surely, the loss function Q̃S (αS) has first and second order pathwise derivatives

and by functional Taylor expansion in A (s),

Q̃S (αS) = Q̃S (Πnα0S)+
∂ Q̃S (Πnα0S)

∂αS
[αS−Πnα0S]

+
1
2!

∂ 2Q̃S (Πnα0S + ς (αS−Πnα0S))

∂α2
S

[αS−Πnα0S]
2 , (C.2)
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where ς ∈ (0,1);

(ii) maxm≤2 supt

√
∑

k
j=1

(
∂ mϕ j(t)

∂ tm

)2
= δnϕ < ∞ for each n;

(iii)
∣∣∣∂ Q̃S(Πnα0S)

∂αS
[αS−Πnα0S]

∣∣∣= Op (an)‖αS−Πnα0S‖s, where an = o(dn);

(iv) ∃C,γh > 0 such that for each γS ∈ ∂N
(n)

τ , h = ∑
k
j=1 b jϕ j,

|Ph (h)−Ph (Πnh0)| ≤Cδ
γh
nϕ‖b−b0‖E , (C.3)

with λhnδ
γh
nϕ = o(1);

(v) Let e1n = an +
√

sP′n (dn) and e2n = δnϕan +λhnδ
γh
nϕ = o(1), where an satisfies (iii). For

each ε > 0, ∃C2(n)> 0, such that with probability 1−ε , for all large n with ‖θS−θ0S‖E =

O(e1n/C2 (n)) = o(1), ‖b−b0‖E = O(e2n/C2 (n)) = o(1) and αS =
(

θS,∑
k
j b jϕ j

)
,

inf
ς∈[0,1]

1
2

∂ 2Q̃S (Πnα0S + ς (αS−Πnα0S))

∂α2
S

[αS−Πnα0S]
2 ≥C2 (n)‖γS− γ0S‖2

E , (C.4)

where γS =
(
θ ′S,b

′)′ and γ0S =
(
θ ′0S,b

′
0
)′. Also, it holds that e1n/min{1,C2 (n)}= o(dn).

Then for each ε > 0, with probability 1− ε , there is a local minimizer α̂S of Q̂S (αS) on

the sieve space A
(s)

k such that ‖α̂S−Πnα0S‖s = O
(

C2(n)
−1 (e1n +δnϕe2n

))
.

In Lemma C.1.1, condition (i) shows that the loss function can be written as a functional

Taylor expansion. In this way, we can take advantage of the quadratic form to prove the existence

of the local minimizer. Condition (ii) is a restriction for basis functions {ϕ j} j. Condition (iii)

basically requires that the first order part of the Taylor expansion is o(‖αS−Πα0S‖s). Condition

(iv) requires the penalty function on the nonparametric component to be continuous with respect

to h around Πn. Condition (v) requires the quadratic term in the Taylor expansion to be large

enough, so the difference of the first order and second order terms of the Taylor expansion is

positive. Because of the setup of the model, we allow C2 (n) to be a o(1).
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Proof of Lemma C.1.1.

The proof closely follows that of Theorem B.1 in Fan & Liao (2014). We extend it to

allow for the nonparametric component.

Define

N
(n)

τ =
{

γS =
(
θ
′
S,b
′)′ : ‖θS−θ0S‖E ≤ τ1(n)e1n,‖b−b0‖E ≤ τ2(n)e2n

}

for some τ1(n), τ2(n)> 0 such that

τ1(n) = O
(

1
C2 (n)

)
,τ2(n) = O

(
1

C2 (n)

)
.

For all γS ∈ ∂N
(n)

τ and αS = (θS,h) with h = ∑
k
j=1 b jϕ j, by condition (i) we have

Q̂S (αS)− Q̂S (Πnα0S) =
∂ Q̃S (Πnα0S)

∂αS
[αS−Πnα0S]

+
1
2!

∂ 2Q̃S (Πnα0S + ς (αS−Πnα0S))

∂α2
S

[αS−Πnα0S]
2

+
s

∑
j=1

[
Pn
(∣∣θS j

∣∣)−Pn
(∣∣θ0S, j

∣∣)]+λhnPh (h)−λhnPh (Πnh0) . (C.5)

For each ε > 0, by condition (iii), ∃C1 > 0, such that for large n, P(B1n)> 1− ε/2, where

B1n =

{
∂ Q̃S (Πnα0S)

∂αS
[αS−Πnα0S]>−C1 ‖αS−Πnα0S‖s an

}
,

By condition (v), ∃C2(n)> 0, such that for large n, P(B2n) ≥ 1− ε/2, where

B2n =

{
1
2!

∂ 2Q̃S (Πnα0S + ς (αS−Πnα0S))

∂α2
S

[αS−Πnα0S]
2 >C2(n)‖γS− γ0S‖2

E

}
,

γS =
(
θ ′S,b

′)′ and ς ∈ (0,1).
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Since h−Πnh0 = ∑
k
j=1
(
b j−b0 j

)
ϕ j, by condition (ii),

‖h−Πnh0‖s = max
m≤2

sup
t

∣∣∣∣∣ k

∑
j=1

(
b j−b0 j

) ∂ mϕ j (t)
∂ tm

∣∣∣∣∣
≤

max
m≤2

sup
t

√√√√ k

∑
j=1

(
∂ mϕ j (t)

∂ tm

)2
‖b−b0‖E = δnϕ ‖b−b0‖E . (C.6)

By Lemma B.1 in Fan & Liao (2014), with condition (v),

∣∣∣∣∣ s

∑
j=1

[
Pn
(∣∣θS j

∣∣)−Pn
(∣∣θ0S, j

∣∣)]∣∣∣∣∣≤√sP′n (dn)‖θS−θ0S‖E . (C.7)

By conditions (iii), (iv), and (v), for each γS ∈ ∂N
(n)

τ with h = ∑
k
j=1 b jϕ j,

|Ph (h)−Ph (Πnh0)| ≤Chδ
γh
nϕ‖b−b0‖E (C.8)

for some Ch > 0.

With e1n = an +
√

sP′n (dn) = o(dn) and e2n = δnϕan + λhnδ
γh
nϕ = o(1), on the event

B1n∩B2n,

Q̂S (αS)− Q̂S (Πnα0S)

≥−C1 ‖αS−Πnα0S‖s an +C2(n)‖γS− γ0S‖2
E

−
√

sP′n (dn)‖θS−θ0S‖E −Chλhnδ
γh
nϕ‖b−b0‖E

=−C1 ‖θS−θ0S‖E an +C2(n)‖θS−θ0S‖2
E −
√

sP′n (dn)‖θS−θ0S‖E

−C1 ‖h−Πnh0‖s an +C2(n)‖b−b0‖2
E −Chλhnδ

γh
nϕ‖b−b0‖E

≥τ1(n)e1n
(
−C1an +C2(n)τ1(n)e1n−

√
sP′n (dn)

)
−C1δnϕ ‖b−b0‖E an +C2(n)‖b−b0‖2

E −Chλhnδ
γh
nϕ‖b−b0‖E

≥τ1(n)e2
1n (−C1 +C2(n)τ1(n)−1)+ τ2(n)e2

2n (−C1 + τ2(n)C2(n)−Ch) . (C.9)
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Then if we take τ1(n) = (C1 +1+ ε1)/C2(n) and τ2(n) = (C1 +Ch + ε2)/C2(n) for some ε1,ε2 >

0, Q̂S (αS)− Q̂S (Πnα0S)> 0. Moreover, because Q̂S (αS) is continuous on N
(n)

τ and N
(n)

τ is

compact, there exists a local minimizer α̂S such that Q̂S (α̂S) ≤ Q̂S (αS) for all αS with γS ∈

N
(n)

τ . Also, ‖α̂S−Πnα0S‖s ≤
(
τ1(n)e1n + τ2(n)δnϕe2n

)
. Let δnα = τ1(n)e1n + τ2(n)δnϕe2n,

then ‖α̂S−Πnα0S‖s = O(δnα).

Lemma C.1.2 Suppose the assumptions in Lemma C.1.1 hold. Let T be a projection function

such that for all α =
(
(θ1, ...,θp)

′ ,h
)
,

T α =
((

θ̄1, ..., θ̄p
)′
,h
)
, θ̄ j =

 θ j

0

if j ∈ S

if j 6∈ S
,

where S =
{

j ≤ p : θ0 j 6= 0
}

. We also write

T θ =
((

θ̄1, ..., θ̄p
)′)

, θ̄ j =

 θ j

0

if j ∈ S

if j 6∈ S
.

Suppose with the local minimizer α̂S in Lemma C.1.1, it holds that with probability approaching

one there exists a neighborhood B⊆A
(n)

k of (α̂S,0) such that for all α ∈ B with α = (αS,θN)

but θN 6= 0,

Q̂(T α)− Q̂(α)< ∑
j 6∈S

Pn
(∣∣θ j

∣∣) . (C.10)

Then with probability approaching one, α̂ = (α̂S,0) is a local minimizer of

Q̂(α) = Q̃(α)+
p

∑
j=1

Pn
(∣∣θ j

∣∣)+λhnPh
(
ĥ
)

(C.11)

on A
(n)

k , and ‖α̂−α0‖s = O(δnα), where δnα is obtained in Lemma C.1.1.

The proof of Lemma C.1.2 is similar to that of Theorem B.2 in Fan & Liao (2014).
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Lemma C.1.3 Given C > 0, for all αS such that ‖αS‖s ≤C, under assumptions 3.3.1-3.3.7,

∥∥∥∥∥1
n

n

∑
i=1

[
∂ρ (Zi,αS)

∂αS
[∆αS]VSi

]∥∥∥∥∥
E

= Op

(√
2s2 + sk

)
‖∆αS‖s , (C.12)∥∥∥∥∥1

n

n

∑
i=1

[
∂ 2ρS (Zi,αS)

∂α2
S

[∆αS,∆ᾱS]VSi

]∥∥∥∥∥
E

= Op

(
s
√

2s+ k
)
‖∆αS‖s ‖∆ᾱS‖s . (C.13)

Proof of Lemma C.1.3.

By Assumption 3.3.5, the first order pathwise derivative of ρ (Zi,α) exists, that is, for

each α ∈A (n),
∂ρ (Zi,α)

∂α
[∆α] =

∂ρ (Zi,α + t∆α)

∂ t
|t=0.

By simple calculation, for each α such that ‖α‖s ≤C, we have

∂ρ (Zi,α)

∂α
[∆α] =

∂ρ (Y,X ′ (θ + t∆θ) ,(h+ t∆h)(δ (Y,X ′ (θ + t∆θ))))

∂ t
|t=0

= O(1)X ′∆θ +O(1)∆h
(
δ
(
Y,X ′θ

))
, (C.14)

and

∂ 2ρ (Z,α)

∂α2 [∆α,∆ᾱ] = O(1)
(
X ′∆θ

)(
X ′∆θ̄

)
+O(1)

(
X ′∆θ

)
∆h̄
(
δ
(
Y,X ′θ

))
+O(1)∆h

(
δ
(
Y,X ′θ

))(
X ′∆θ̄

)
+O(1)∆h

(
δ
(
Y,X ′θ

))
∆h̄
(
δ
(
Y,X ′θ

))
+O(1)∆h′

(
δ
(
Y,X ′θ

))
X ′∆θ̄ +O(1)

(
X ′∆θ

)
∆h̄′
(
δ
(
Y,X ′θ

))
. (C.15)

If ∆α = ∆ᾱ ,

∂ 2ρ (Z,α)

∂α2 [∆α]2 = O(1)
(
X ′∆θ

)2
+O(1)

(
X ′∆θ

)
∆h
(
δ
(
Y,X ′θ

))
+O(1)

(
∆h
(
δ
(
Y,X ′θ

)))2
+O(1)

(
X ′∆θ

)
∆h′
(
δ
(
Y,X ′θ

))
. (C.16)

‖α‖s ≤C can easily be satisfied if the parameter space is bounded. Then under Assump-
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tion 3.3.7, for each ∆αS at αS such that ‖αS‖s ≤C, ∃M > 0 such that

∥∥E
[∣∣(O(1)X ′S∆θS +O(1)∆h

(
δ
(
Y,X ′S (θS)

)))
VS
∣∣]∥∥

E

≤M
{∥∥E

[∣∣VSX ′S∆θS
∣∣]∥∥

E +
∥∥E
[∣∣VS∆h

(
δ
(
Y,X ′SθS

))∣∣]∥∥
E

}
≤M

{√
s(2s+ k)max

l,m
E [|VSlXSm|]+

√
2s+ k

√
MV

}
‖∆αS‖s = O

(√
2s2 + sk

)
‖∆αS‖s .

(C.17)

Thus,

∥∥∥∥E
[∣∣∣∣∂ρS (Z,αS)

∂αS
[∆αS]VS

∣∣∣∣]∥∥∥∥
E
= O

(√
2s2 + sk

)
‖∆αS‖s . (C.18)

We know

(
∂ρS (Z,αS)

αS
[∆αS]VSl

)2

=O(1)
[(

X ′S∆θS
)2

+∆h2 (
δ
(
Y,X ′SθS

))
+2X ′S∆θS∆h

(
δ
(
Y,X ′SθS

))]
V 2

Sl. (C.19)

Then we have

E
[
V 2

Sl
(
X ′S∆θS

)2
]
≤
∥∥E
[
V 2

SlXSX ′S
]∥∥

E ‖∆θS‖2
E = O(s)‖∆αS‖2

s ,

E
[
V 2

Sl∆h2 (
δ
(
Y,X ′SθS

))]
= O(1)‖∆αS‖2

s ,

and

E
[∣∣V 2

SlX
′
S∆θS∆h

(
δ
(
Y,X ′SθS

))∣∣]≤ ∥∥E
[∣∣V 2

SlX
′
S
∣∣]∥∥

E ‖∆αS‖2
s = O(s)‖∆αS‖2

s .

Thus,

E

[(
∂ρS (Z,αS)

αS
[∆αS]VSl

)2
]
= O(s)‖∆αS‖2

s .
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Then for each ε > 0,

P


∣∣∣∥∥∥1

n ∑
n
i=1

∂ρS(Zi,αS)
αS

[∆αS]VSi

∥∥∥
E
−
∥∥∥E
[

∂ρS(Zi,αS)
αS

[∆αS]VSi

]∥∥∥
E

∣∣∣
√

2s2 + sk‖∆αS‖s
> ε


≤P
( ∥∥∥1

n ∑
n
i=1

∂ρS(Zi,αS)
αS

[∆αS]VSi−E
[

∂ρS(Zi,αS)
αS

[∆αS]VSi

]∥∥∥
E
> ε
√

2s2 + sk‖∆αS‖s

)
≤

2s+k

∑
l

P
( ∣∣∣1

n ∑
n
i=1

∂ρS(Zi,αS)
αS

[∆αS]VSli−E
[

∂ρS(Zi,αS)
αS

[∆αS]VSli

]∣∣∣2 > ε2(2s2+sk)‖∆αS‖2
s

2s+k

)

≤
2s+k

∑
l

nE
[(

∂ρS(Zi,αS)
αS

[∆αS]VSli−E
[

∂ρS(Zi,αS)
αS

[∆αS]VSli

])2
]

n2ε2s‖∆αS‖2
s

= O
(

2s+ k
nε2

)
→ 0, (C.20)

under Assumption 3.3.6(ii). Thus,

∥∥∥∥∥1
n

n

∑
i=1

∂ρS (Zi,αS)

αS
[∆αS]VSi

∥∥∥∥∥
E

=

∥∥∥∥E
[

∂ρS (Zi,αS)

αS
[∆αS]VSi

]∥∥∥∥
E
+op

(√
2s2 + sk‖∆αS‖s

)
=Op

(√
2s2 + sk‖∆αS‖s

)
. (C.21)

This equation shows the relationship between the norm of the first order pathwise derivative

(∂ρS (Zi,αS)/∂αS) [∆αS]VSi and the norm of the increment on the parameter which is ‖∆αS‖s.

Consider

∥∥∥E
[∣∣∣O(1)VS

(
X ′S∆θS

)2
∣∣∣]∥∥∥

E
≤M

∥∥E
[∣∣VSX ′S∆θS

(
X ′S∆θS

)∣∣]∥∥
E (C.22)

for some M > 0. By assumption 3.3.7(i),

E
[∣∣VSlX ′S∆θS

(
X ′S∆θS

)∣∣]= ∣∣∆θ
′
S
∣∣E [∣∣VSlXSX ′S

∣∣] |∆θS| ≤ sMV XX ‖∆θS‖2
E (C.23)
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and then

∥∥∥E
[∣∣∣O(1)VS

(
X ′S∆θS

)2
∣∣∣]∥∥∥

E
≤M · s

√
2s+ kMV XX ‖∆θS‖2

E ≤M · s
√

2s+ kMV XX ‖∆αS‖2
s

= O
(

s
√

2s+ k
)
‖∆αS‖2

s . (C.24)

Similarly,

∥∥E
[∣∣O(1)

(
X ′S∆θS

)(
X ′S∆θ̄S

)
VS
∣∣]∥∥

E = O
(

s
√

2s+ k
)
‖∆αS‖s ‖∆ᾱS‖s . (C.25)

By calculation similar to (C.17), ∃M > 0 such that

∥∥E
[∣∣O(1)VSiX ′Si∆θS∆h

(
δ
(
Y,X ′Si∆θS

))∣∣]∥∥
E ≤M

∥∥E
[∣∣VSi

(
X ′Si∆θS

)∣∣]∥∥
E ‖∆h‖s

= O
(√

s(2s+ k)
)
‖∆αS‖2

s . (C.26)

By calculation similar to (C.21),

∥∥∥∥∥1
n

n

∑
i=1

∂ 2ρS (Zi,αS)

∂α2
S

[∆αS]
2VSi

∥∥∥∥∥
E

= Op

(
s
√

2s+ k
)
‖∆αS‖2

s (C.27)

and

∥∥∥∥∥1
n

n

∑
i=1

∂ 2ρS (Zi,αS)

∂α2
S

[∆αS,∆ᾱS]VSi

∥∥∥∥∥
E

= Op

(
s
√

2s+ k
)
‖∆αS‖s ‖∆ᾱS‖s (C.28)

for each αS such that ‖αS‖s ≤C. These two equations show the relationship between the norm

of the second order pathwise derivative (∂ 2ρS (Zi,αS)/∂α2
S ) [∆αS,∆ᾱS]VSi and the norm of the

increment on the parameters, namely ‖∆αS‖s and ‖∆ᾱS‖s.

Proof of Theorem 3.3.1.

We verify conditions for Lemma C.1.1 and Lemma C.1.2 to prove the consistency of the

SFGMM estimator in Theorem 3.3.1.
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For each αS ∈A
(s)

k , by Assumption 3.3.5,

Q̃S (αS)− Q̃S (Πnα0S) =
∂ Q̃S (Πnα0S)

∂αS
[αS−Πnα0S]+

1
2

∂ 2Q̃S (ᾱS)

∂α2
S

[αS−Πnα0S]
2 , (C.29)

where ᾱS = Πnα0S + ς (αS−Πnα0S) with ς ∈ (0,1). We write the difference between Q̃S (αS)

and Q̃S (Πnα0S) in the Taylor expansion form. Next, we will show the first order and the second

order of the Taylor expansion satisfy the conditions of Lemma C.1.1. For the first term in (C.29),

∣∣∣∣∂ Q̃S (Πnα0S)

∂αS
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]∣∣∣∣∣ .
(C.30)

By Lemma C.1.3 and Theorem 4.1 in Fan & Liao (2014),
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151



and

∣∣∣∣∂ Q̃S (Πnα0S)

∂αS
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where an = max
{√

(2s2 + sk)(2s+ k) log p/n,
(
2s2 + sk

)
‖α0S−Πα0S‖s

}
. Under Assumption

3.3.7(iii), an = O
(√

(2s2 + sk)(2s+ k) log p/n
)

, we let

e1n =
√

(2s2 + sk)(2s+ k) log p/n+
√

sP′n (dn) (C.33)

and

e2n = δnϕ

√
(2s2 + sk)(2s+ k) log p/n+λhnδ

γh
nϕ , (C.34)

where e1n, e2n are the notations used in Lemma C.1.1.

Consider
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∂αS
[αS−Πnα0S]VSi

]

+

[
1
n

n

∑
i=1

ρS (Zi, ᾱS)V ′Si
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. (C.35)
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First we have
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Given that αS ∈A
(s)

k with αS = (θS,h) and h = ∑
k
j=1 b jϕ j, we write
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Y,X ′SθS,h

(
δ
(
Y,X ′SθS
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b jϕ j
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= ρ̄S (Z,γS) . (C.36)

Here we use the map ρS = ρS(t1, t2, t3). And later we will write ρ ′S j = ρ ′St j
(t1, t2, t3) for j = 1,2,3.

Let LS (γS) = Q̃S (αS), where γS =
(
θ ′S,b

′)′.
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Now consider
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By simple algebra,
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where
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and

r2i = ρ
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Also,
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where

∂ρS (Zi,Πnα0S)

∂γS
V ′Si =
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If
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E
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]
E
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for some Cλ (n)> 0, then under Assumption 3.3.6(ii), for each ε > 0, with probability 1− ε , for

all large n,
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for some C̄λ (n) > 0. By algebra, we can show that C̄λ (n) ≥ CJLCλ (n). This is a condition

similar to the Assumption 4.5 in Fan & Liao (2014). As n→ ∞, the basis functions will change,

so we allow the lower bound Cλ (n) to change as n increases.

With e1n, e2n in (C.33) and (C.34), consider all αS in the sieve space such that

‖θS−θ0S‖E = O
(
e1n/C̄λ (n)

)
and

‖b−b0‖E = O
(
e2n/C̄λ (n)

)
.

By Lemma C.1.3 and Assumption 3.3.7, for ᾱS = Πnα0S + ς (αS−Πnα0S) and ∆αS =
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αS−Πnα0S,
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Next consider for each bounded αS1,αS2,
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[αS−Πnα0S] [ᾱS−Πnα0S]V ′Si

]
JS

[
1
n ∑

n
i=1

∂ρS(Zi,αS2)
∂αS

[αS−Πnα0S]VSi

]
∣∣∣∣∣∣∣

≤ sup
ς∈[0,1]

∥∥∥∥∥
[

1
n

n

∑
i=1

∂ 2ρS (Zi,αS1)

∂α2
S

[αS−Πnα0S] [ᾱS−Πnα0S]V ′Si
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So (C.43)–(C.45) above imply that

inf
ς∈[0,1]

1
2

∂ 2Q̃S (Πnα0S + ς (αS−Πnα0S))
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E .

(C.46)

We let C2 (n) = C̄λ (n)/2, then assumptions in Lemma C.1.1 hold.

By Lemma C.1.1, ‖αS−α0S‖s = O(δnα) , with

δnα = δ
2
nϕ

√
(2s2 + sk)(2s+ k) log p/n/Cλ (n).

Next, we check the other assumptions for Lemma C.1.2. We know
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. (C.47)

By calculation similar to that of Lemma C.1.3,

‖E [|O(1)XliVSi|]‖E = O
(√

2s+ k
)
. (C.48)

So for each bounded α ,
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For all ε > 0,

P


∣∣∣∥∥∥1

n ∑
n
i=1

∂ρS(Zi,T α+ς(α−α))
∂θl

Vi (T θ)
∥∥∥

E
−
∥∥∥E
[

∂ρS(Zi,T α+ς(α−α))
∂θl

Vi (T θ)
]∥∥∥

E

∣∣∣
√

2s+ k
> ε


≤P


∥∥∥1

n ∑
n
i=1

∂ρS(Zi,T α+ς(α−α))
∂θl

Vi (T θ)−E
[

∂ρS(Zi,αS)
αS

[∆αS]VSi

]∥∥∥
E

> ε
√

2s+ k


≤

2s+k

∑
l

P


∣∣∣1

n ∑
n
i=1

∂ρS(Zi,T α+ς(α−α))
∂θl

Vl (T θ)−E
[

∂ρS(Zi,T α+ς(α−α))
∂θl

Vl (T θ)
]∣∣∣2

> ε2



≤
2s+k

∑
l

nE
[(

∂ρS(Zi,T α+ς(α−α))
∂θl

Vl (T θ)
)2
]

n2ε2 = O
(

1
nε2

)
→ 0

under Assumption 3.3.7(i), which implies
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Notice that

1
n
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∑
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where ∆α = T α + ς (α−T α)− α̂ , α̂ =
((

θ̂ ′S,0
′)′ , ĥ) and remember α̂S =

(
θ̂S, ĥ

)
. We have
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Also,
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∑
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where ∆α = ς (α− α̂)+(1− ς)(T α− α̂) and ς ∈ (0,1).

We let

rn = o
(

P′n
(
0+
)
/

√
p(2s+ k)2

)
.

We assume ‖α− α̂‖s ≤ rn, then ‖T α− α̂‖s ≤ rn and ‖∆α‖s ≤ rn. With Assumption 3.3.7(iv),
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Let

Dl (α) =
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→ 1. (C.55)

By mean value theorem and Pn (0) = 0, we know ∃λ ∈ (0,1) such that

∑
l 6∈S

Pn (|θl|) = ∑
l 6∈S,θl 6=0

|θl|P′n (λ |θl|) . (C.56)
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Also, we know |θl| ≤ rn, then because P′n is non-increasing,

P′n (λ |θl|)≥ P′n (rn) . (C.57)

Because P′n is continuous, we can always find sufficiently small rn such that P′n (rn)≥ 1
2P′n (0

+).

Then with probility approaching to 1,
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C.2 Asymptotic Normality

Define α∗S = αS± εnu∗n for εn = o
(
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1
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, and
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Lemma C.2.1 Local behavior of Criterion and Penalty: Under Assumptions 3.3.1, 3.3.4, 3.3.5

and 3.4.1, it holds that
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.

Proof of Lemma C.2.1.
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First, Lemma C.2.1(ii) holds by Assumptions 3.3.4, 3.3.7(ii), and Lemma B.1 in Fan &

Liao (2014). Next, we prove Lemma C.2.1(i). For all αS ∈ V S
n (τ),

Q̃S (α
∗
S )− Q̃S (αS)−∆(α0S) [±εnu∗n] =

∂ Q̃S (αS1)

∂αS
[±εnu∗n]−

∂ Q̃S (α0S)

∂αS
[±εnu∗n]

=

[
1
n

n

∑
i=1

∂ρS (Zi,αS2)

∂αS
[αS1−α0S]V ′Si

]
JS

[
1
n

n

∑
i=1

∂ρS (Zi,αS2)

∂αS
[±εnu∗n]VSi

]

+

[
1
n

n

∑
i=1

ρS (Zi,αS2)V ′Si

]
JS

[
1
n

n

∑
i=1

∂ 2ρS (Zi,αS2)

∂α2
S

[±εnu∗n,αS1−α0S]VSi

]
, (C.59)

where αS2 = α0S + τ2 (αS1−α0S) and αS1 = αS + τ1 (±εnu∗n) with τ1,τ2 ∈ (0,1) . This is from

the pathwise differentiability Assumption 3.3.5. We now apply Lemma C.1.3 to (C.59).

For the first part of (C.59),
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By Lemma C.1.3, the construction of BS
n(τ), and Assumption 3.4.1, we know
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. (C.63)

Then the only problem is the first term in (C.60). We will take care of this term later.
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The second part of (C.59) is
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By Lemma C.1.3, the construction of BS
n(τ), and Assumption 3.4.1,
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We also have
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with
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and
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where
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(C.69)

The first term of (C.68) is another problem. Now, we consider the first term of (C.60) and the
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first term of (C.68). By Lemma C.1.3, the construction of BS
n(τ) and Assumption 3.4.1,
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and
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Therefore, Lemma C.2.1(i) holds.

Finally, we consider C.2.1(iii). We have that
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and
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Notice that αS1 = αS± ςεnu∗n, then
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This implies C.2.1(iii).

Proof of Theorem 3.4.1.

The proof of Theorem 3.4.1 closely follows that of theorem 3.4 in Chen et al. (2014),

while we consider the high-dimensional case. Because α̂S is a global minimizer in BS
n(τ), by

Lemmas C.2.1(i), (ii), and the construction of α̂∗S ,
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The first inequality holds because we can always make τ1 (n) and τ2 (n) to be a little larger so

that α∗S is included in the boundary of BS
n (τ).

By Lemma C.2.1(iii),
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Then
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which implies

|εn〈α̂S−α0S,u∗n〉+∆(Z,α0S) [εnu∗n] |= Op
(
ε

2
n
)
. (C.78)

With 〈αn,0−αS0,u∗n〉= 0,
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By assumption 3.4.2(ii) and the Riesz representation theorem,
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Then we have
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The theorem follows from (C.81) and Assumption 3.4.2(iii).

168



Bibliography

Abadie, Alberto. 2002. Bootstrap tests for distributional treatment effects in instrumental variable
models. Journal of the American Statistical Association, 97(457), 284–292.

Abadie, Alberto, Angrist, Joshua, & Imbens, Guido. 2002. Instrumental variables estimates of
the effect of subsidized training on the quantiles of trainee earnings. Econometrica, 70(1),
91–117.

Ai, Chunrong, & Chen, Xiaohong. 2003. Efficient estimation of models with conditional moment
restrictions containing unknown functions. Econometrica, 71(6), 1795–1843.

Aliprantis, Charalambos D, & Border, Kim. 2006. Infinite Dimensional Analysis: A Hitchhiker’s
Guide. Springer Science & Business Media.

Andrews, Donald W K, & Shi, Xiaoxia. 2013. Inference based on conditional moment inequali-
ties. Econometrica, 81(2), 609–666.

Angrist, Joshua D. 1990. Lifetime earnings and the Vietnam era draft lottery: Evidence from
social security administrative records. The American Economic Review, 80(3), 313–336.

Angrist, Joshua D, & Imbens, Guido W. 1995. Two-stage least squares estimation of average
causal effects in models with variable treatment intensity. Journal of the American Statistical
Association, 90(430), 431–442.

Angrist, Joshua D, & Krueger, Alan B. 1991. Does compulsory school attendance affect
schooling and earnings? The Quarterly Journal of Economics, 106(4), 979–1014.

Angrist, Joshua D, & Krueger, Alan B. 1992. Estimating the payoff to schooling using the
Vietnam-era draft lottery. Working Paper. National Bureau of Economic Research.

Angrist, Joshua D, & Krueger, Alan B. 1995. Split-sample instrumental variables estimates of
the return to schooling. Journal of Business & Economic Statistics, 13(2), 225–235.

Angrist, Joshua D, Imbens, Guido W, & Rubin, Donald B. 1996. Identification of causal
effects using instrumental variables. Journal of the American Statistical Association, 91(434),

169



444–455.

Antoniadis, Anestis. 1996. Smoothing noisy data with tapered coiflets series. Scandinavian
Journal of Statistics, 23(3), 313–330.

Armstrong, Timothy B. 2014. Weighted KS statistics for inference on conditional moment
inequalities. Journal of Econometrics, 181(2), 92–116.

Armstrong, Timothy B, & Chan, Hock Peng. 2016. Multiscale adaptive inference on conditional
moment inequalities. Journal of Econometrics, 194(1), 24–43.

Balke, Alexander, & Pearl, Judea. 1997. Bounds on treatment effects from studies with imperfect
compliance. Journal of the American Statistical Association, 92(439), 1171–1176.

Barrett, Garry F, & Donald, Stephen G. 2003. Consistent tests for stochastic dominance.
Econometrica, 71(1), 71–104.

Barrett, Garry F, Donald, Stephen G, & Bhattacharya, Debopam. 2014. Consistent nonparametric
tests for Lorenz dominance. Journal of Business & Economic Statistics, 32(1), 1–13.

Beare, Brendan K, & Fang, Zheng. 2017. Weak convergence of the least concave majorant
of estimators for a concave distribution function. Electronic Journal of Statistics, 11(2),
3841–3870.

Beare, Brendan K, & Moon, Jong-Myun. 2015. Nonparametric tests of density ratio ordering.
Econometric Theory, 31(3), 471–492.

Beare, Brendan K., & Shi, Xiaoxia. 2018. An improved bootstrap test of density ratio ordering.
Working Paper.

Bhattacharya, Debopam. 2007. Inference on inequality from household survey data. Journal of
Econometrics, 137(2), 674–707.

Bishop, John A, Formby, John P, & Smith, W James. 1991a. International comparisons of
income inequality: Tests for Lorenz dominance across nine countries. Economica, 58(232),
461–477.

Bishop, John A, Formby, John P, & Smith, W James. 1991b. Lorenz dominance and welfare:
Changes in the US distribution of income, 1967-1986. The Review of Economics and Statistics,
73(1), 134–139.

Bondell, Howard D, & Reich, Brian J. 2012. Consistent high-dimensional Bayesian variable
selection via penalized credible regions. Journal of the American Statistical Association,
107(500), 1610–1624.

170



Bradic, Jelena, Fan, Jianqing, & Wang, Weiwei. 2011. Penalized composite quasi-likelihood for
ultrahigh dimensional variable selection. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 73(3), 325–349.

Carolan, Christopher A, & Tebbs, Joshua M. 2005. Nonparametric tests for and against likelihood
ratio ordering in the two-sample problem. Biometrika, 92(1), 159–171.

Chen, Baicheng, Yu, Yao, Zou, Hui, & Liang, Hua. 2012. Profiled adaptive Elastic-Net procedure
for partially linear models with high-dimensional covariates. Journal of Statistical Planning
and Inference, 142(7), 1733–1745.

Chen, Xiaohong, & Pouzo, Demian. 2009. Efficient estimation of semiparametric conditional
moment models with possibly nonsmooth residuals. Journal of Econometrics, 152(1), 46–60.

Chen, Xiaohong, & Pouzo, Demian. 2012. Estimation of nonparametric conditional moment
models with possibly nonsmooth generalized residuals. Econometrica, 80(1), 277–321.

Chen, Xiaohong, Liao, Zhipeng, & Sun, Yixiao. 2014. Sieve inference on possibly misspecified
semi-nonparametric time series models. Journal of Econometrics, 178, 639–658.

Chernozhukov, Victor, Fernández-Val, Iván, & Galichon, Alfred. 2010. Quantile and probability
curves without crossing. Econometrica, 78(3), 1093–1125.

Chernozhukov, Victor, Lee, Sokbae, & Rosen, Adam M. 2013. Intersection bounds: Estimation
and inference. Econometrica, 81(2), 667–737.

Chernozhukov, Victor, Kim, Wooyoung, Lee, Sokbae, & Rosen, Adam. 2014. Implementing
Intersection Bounds in Stata. Working Paper. Centre for Microdata Methods and Practice.

Chetverikov, Denis. 2018. Adaptive tests of conditional moment inequalities. Econometric
Theory, 34(1), 186–227.

Cornelissen, Thomas, Dustmann, Christian, Raute, Anna, & Schönberg, Uta. 2016. From LATE
to MTE: Alternative methods for the evaluation of policy interventions. Labour Economics,
41, 47–60.
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