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The Maximum Entropy method, using physical statistics, chooses the most probable
estimate consistent with limited measurements. Thermodynamic analogies and the degree of
confidence are discussed.

Maximum Entropy (ME) estimation has been applied in various forms with
various names to a wide variety of problems ranging from the depths of seismic
spectral analysis, sonar and radar beam forming and filter formation, to astronomical
imaging and beyond to economics. The particular techniques and theoretical points
of view differ greatly among the several disciplines. Our very general interpretation,
which includes these others as special cases, is based on two considerations. Any
image, measured as signal, pattern or spectrum, whatever it represents, is necessarily
a degraded version of the true object because real measurement systems have limited
spatial and temporal bandwidth. The samples are finite and perhaps undersampled.
Furthermore, noise cannot be ignored. Therefore, many different possible object
patterns can produce the same measured image pattern. One way to resolve this
ambiguity is to apply the ME method. In our interpretation, a probability is assigned
to every possible object pattern and the most probable pattern is chosen as the
estimated or restored object. Patterns are assigned probabilities based on the
physics and statistics of the immediate problem. The entropy is understood to mean
the logarithm of the probability, following Boltzmann. So, to find a maximum of the
entropy is to find a maximum of the probability, subject to the measured image data
constraints and any a priori bias. No new “principle of ME” or appeal to informa-
tion theory is needed to justify the method, though they may enrich our understanding.
Sometimes misunderstandings have arisen in the use of the information theoretic
entropy of Shannon, — f log f, and it has been used inappropriately. These consider-
ations have been developed at length,”~® so only a brief summary will be given here.
We develop the idea of ME in an analogy to the well-known statistical mechanical
principle of the minimization of free energy, and derive some useful benefits in the
consideration of fluctuations or noise. An outline for the calculation of the degree of
confidence in the ME estimate is presented.

The two entropy expressions commonly used by different groups in solving ME
problems, log B and — B log B, where B is the brightness, power, intensity, or their
spectral counterparts, can be derived as limiting special cases of a more general
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entropy expression based on the underlying properties of the source and the measur-
ing processing. For photon or electromagnetic signaling or imaging, the Bose-
Einstein statistics, and for electrons, the Fermi-Dirac statistics, are employed. The #»
quantum mechanical particles comprising the intensity are distributed over z degrees
of freedom as calculated by these statistics. The number of degrees of freedom can
be understood as the ratio of the space-time size of the detection volume to the
coherence volume of the particles. The entropy to be maximized is the logarithm of
~ probability as given by the physical statistics of the problem, following the original
meaning of entropy. The entropies log B and — B log B result in the limit #>z>1
and #<z, respectively.. When # is interpreted as an average over an ensemble, we
find in addition, for n>z=1, the Burg form log B results. The distribution of
intensity for this case is exponential, or expressed in another way, Gaussian in
complex amplitude. Shannon’s entropy expression is a special case appropriate for
his special interest, the z=1 (sampled at the Shannon rate) Gaussian case of equal «
priovi probabilities. »

We now will develop a thermodynamic analogy between the ME method and the
principle of minimization of free energy. First, we describe the method itself. Let us
consider an object pattern, and designate it by {Ob}. The reasoning presented in
Kikuchi and Soffer (Ref. 1)) shows that there are a number of different photon states
that can make the same pattern {Ob}. We write this number, the degeneracy, as
P({Ob}). If we accept the postulate that each state for the pattern is equally prob-
able, P({Ob}) is the relative probability that the pattern {Ob} appears. This postulate
is analogous to a basic property of quantum mechanics. [However, in context of
image processing, Frieden® recently proposed a generalization in which a priori
probabilities are assigned to different patterns. His treatment can be interpreted as
a modification of the discussions presented here.] Following Boltzmann, we will call
the logarithm of P({Ob}) the entropy S:

S({Ob})=log P({ODb}) . 1)

Our goal is to find the most probable pattern {Ob} under the constraint that the
image made from {Ob} is the observed image {I}. In the actual computation, we
consider fluctuations of the calculated image from the given image:

E((Ob), (1)=3}1,— SIPSF,.*Ob.) | )

where PSF,; is the point spread function that transforms object space into image
space, » and : represent (possibly two dimensional) image and object coordinates,
respectively, and * denotes convolution. We require that £ in Eq. (2) takes a certain
value Eo. Therefore, we maximize

Sc({Ob}) = Sconstramed({Ob}) = S({Ob}) - ,8 ° E({Ob}, {I}) , (3)

where S is a Lagrange multiplier. This maximization procedure can be interpreted
as analogous to the method of finding the equilibrium state in the microcanonical
ensemble treatment of statistical mechanics. In the microcanonical ensemble treat-
ment, the system is isolated from the rest of the universe so that the energy is fixed.
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The equilibrium state is the state of a maximum entropy constrained by a fixed given
energy. Thus, the treatment given in Eq. (3) is exactly the same as the microcanoni-
cal treatment with E interpreted as the energy.

It is known that the microcanonical ensemble treatment is equivalent to the
canonical ensemble treatment. In the latter, we place the system in contact with a
heat bath of temperature 7" and allow slow exchange of energy between the system
and the heat bath. The energy of the system fluctuates and is not a fixed quantity.
The equilibrium state is calculated not as a maximum of the entropy, but as a
minimum of a free energy. Since the canonical ensemble point of view is taken in
most formulations of statistical mechanics, it is helpful to illustrate the relation
between the microcanonical and canonical treatments. From the latter point of view,
what we maximize is the following constrained probability function:

Pc({Ob}, {I})EPconstrained ({Ob}; {I}>:eXp[SC({Ob}y {I})]
=exp[ S{Ob})]-exp[~B- E{Ob}, {I})]. | @

In analogy with statistical mechanics, we can interpret this maximization procedure
as follows. When A is the reciprocal of the temperature of the heat bath, the
expl — B+ E({Ob, I})] factor represents the relative probability that the object is made
from one of the P({Ob}) possible photon states corresponding to the pattern {Ob} when
the image {I} is given. The exp[S({Ob})]=P({Ob}) factor is the number of ways that
the object pattern {Ob} appears, as was stated in Eq. (1). Therefore, the product
P:({Ob}, {I}) is the relative probability that the object pattern {Ob} is made from any
one of the P.({Ob}, {I}) possible photon states, and hence is the relative probability of
finding the pattern {Ob}. Following statistical mechanics, we may define the free
energy F' as

B+ F({Ob}, {I})= B+ E({Ob}, {I}) — S({Ob}) . (5)
Then we can write the P function as
P({Ob}, {1 =exp[— 8- F({Ob}, {1D)], (6)

and the process of finding the most probable pattern {Ob} can be interpreted as finding
the minimum free energy state. On the basis of the analogy between Eq. (5) and -
thermodynamics, it is justifiable to call E({Ob}, {I}) the energy.

There is no unique way of defining the functional form E({Ob}, {I}). Whatever
form we may choose, the interpretation holds that exp[ — 8+ E({Ob}, {I})] is the relative
probability of {Ob}. The required properties of £ are (i) it becomes zero when I, is
equal to 2);PSF.,: *Ob,, (ii) it is positive and becomes larger when the difference
between the two increases. The square expression in Eq. (2) was chosen because it
resembles the potential energy expression of a simple harmonic oscillator, however,
it is possible to choose a fourth power of the expression, for example, without
violating the requirements (i) and (ii).

In the two-dimensional example we now turn to, the energy constraint is written
entirely in the spaces of the object and the image. In this example we use the log B
formulation of ME appropriate for Gaussian amplitude or exponential intensity
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statistics. We chose a convolutional point spread function of the measurement to be

“of the form sinc*(x)-sinc?(v) representing diffraction spreading by a limiting square
aperture. The scale of diffraction spreading was chosen to be a factor of 4 in each
dimension. That is, the number of independent variables needed to completely
describe the image was 4 X4=16 times less than required to describe the object from
which it was mapped. The image can be completely and uniquely represented on a
grid 4 X4 times coarser than the object.

The example was constructed from the binary black and white alphabetical
object shown in Fig. 1(a), constructed on a 20x20 grid. The diffraction image is
shown in Fig. 1(b). The 400-dimensional ME estimate of the object is shown in Fig.
1(c) for the case =10". The convergence was so slow and erratic at this high value
of B that Fig. 1(c) shows incompletely converged results; however, super resolution
was achieved.

It is interesting to note that the seemingly unrelated method of simulated anneal-
ing® is also a free energy minimization method, with the Monte Carlo technique
automatically providing the entropy contribution to the free energy via the random
number portion of the algorithm.

When we introduce the concept of the free energy, we can use the following
thermodynamic equation as a consistency check of computations:

18- F((Ob), (1)]=E(Ob}, 1)) ()

When E is defined in the quadratic form of Eq. (2), the left-hand side derivative in Eq.
(7) calculates the fluctuation of the
object pattern. Noting Eq. (2), this rela-
tion can be interpreted as corresponding
to the well-known relation for the
energy fluctuation in thermodynamics:

ke~ (B>, ®)
where £ is the Boltzmann constant and
Cy» 18 the specific heat.

The degree of confidence in the ME
estimate can be derived in a general
manner by expanding the object proba-
bility distribution near its calculated
maximum. Only the maximum, not the
entire multidimensional distribution, is
calculated in the ME method. The
expansion is done to second order terms
yielding a multivariate Gaussian. A
principal axis transformation (i.e., a lin- o
ear orthogonal transformation of the
variables) is made to a new set of vari-

Fig. 1. (a) Binary alphabetic test object, (b)
diffraction limited image, (c) ME object estimate.
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ables that are stochastically independent and normally distributed. The algebraic
form thus obtained is that of a sum of squares of these stochastically independent
variables and, therefore, has a chi-square distribution with a number of statistical
degrees of freedom (not the physical statistical “z2” defined earlier) equal to the
number of object variables. Tables of the P-fractal of the cumulative chi-square
distribution for that number of degrees of freedom give the desired statistical degree
of confidence estimates. The set of variances thus derived are projected back to the
space of the object estimates as confidence regions. A one-dimensional example of
the super resolution of two delta function objects was studied to test the method as a
function of the super resolution demanded and the fluctuation or noise temperatures
assumed. Preliminary results seem intuitively reasonable: the more super resolution
demanded or the higher the noise temperature, the smaller the degree of confidence in
the estimate. However, further generalization is elusive, as the results of this method
are strongly dependent on the particular object, requiring an expansion about the
maximum of the particular ME solution at hand. This method is computationally
demanding, but provides a useful measure of the degree of confidence in the ME
estimate.
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