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Abstract

In a general setting, the EM and Newton-Raphson algorithms are compared as gradient
methods. The superior convergence rates of Newton-Raphson in a neighborhood of the
maximum likelihood estimator are explained as the failure of the EM to use the proper
hessian. Intermediate results show that the EM algorithm provides information matrix _
estimators as easily as Newton-Raphson and that one can conveniently switch from one
algorithm to the other. Louis’ improvement of EM by Aitken acceleration is shown to be
divergent in some cases.
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A COMPARISON OF THE EM AND NEWTON-RAPHSON ALGORITHMS

1. Introduction

The EM algorithm is a method of computing the maximum likelihood
estimator (MLE) when the data generating process for the observed data
y can be described as partial observation of the latent data y*<
Dempster, Laird, and Rubin (1977) (hereafter, DLR) proposed the
algorithm. It is widely used for its simplicity and convenience as a
numerical oﬁtimization technique. The algorithm also suffers, however,
from two general drawbacks: it converges relatively slowly in the
neighborhood of the MLE and its camputations do not offer estimates of
the information as a by-product. We show that both of these drawbacks
are easily overcome. The information matrix is as conveniently
estimated with EM as Newton-Raphson (NR) or Scoring (S). In addition,

one can conveniently switch from one algorithm to another to speed

convergence in the neighborhcod of the MLE.

2. The EM Algorithm

If we denote the many-to-one mapping from y* to y as
1 y o= 1)

and the latent likelihood function of an unknown parameter vector 4
given the latent y* as f(&;y*) , then the observed likelihood

function for ¢ given y must be specified as
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(2) £(8;y) = j £837) a'
4(y)

where

3y . Ady) = 1y |y=1)

In the EM algorithm, one finds the expectation of the latent log
likelihood function for 4 given f* , measuring with the distribﬁtion
of y* conditional on y , which is evaluated at an initial value for
4 , 8§ . Let Q denote this-expected log likelihood function:

0

(4) Q8.0iy) = Ey [ log £(65y) |y} = E, [ Ly |y 1,
0 0

where 'L denotes the log likelihood function. This is called the “E",
or expectation, step. In the "M" (maximization) step, one computes an

updated value for ¢ as the maximizing value of Q :
(5) HEM = argm?X Q(E,Bo;y)

The difference between ¢ and Iog £(8;y) , denoted H , is an
expected log likelihood function, analogous to @ . It is the
conditional expectation of the latent conditional log likelihood

L(6:y |3

(6 H,0iy) = Q8,0;y) - L(4:y)

= E, L LI6:Y |y) | ¥
. |
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The information inequality states that

(7) H(8,65y) S H(8,0;y) V¢

DLR use (7) to show that every value for # that increases Q(B,ﬂo;y)
also increases the log likelihood L(#;y) . It follows that iterating
{5) by replacing 90 with BEM and computing a new value for #
yields an algorithm with fixed points located at eritical values of the
log likelihood function L(#;y) . In particular,

8§ = argmax Q(8.,6;y) ,
#

.y

where ¢ is the maximum likelihood estimator (MLE) for #

3. Preliminary Results

Let f(ﬁ;y*) be continuously differentiable. Differentiating (6)

gives

: aL(8;y)

(8) T = Ll(ﬂ;y) = Ql(g,ﬂo:Y) - Hl(e’ﬁo’y) !
a°L(8;7)

(9 T T O = ey - 00y

where subscripts denote partial differentiation with respect to an

argument. The inequality in (7) implies that

(10) H(6,6;y) = 0 v 8
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so that (8) simplifies to

a1 L(8;5) = Q8,87

Differentiating equation (11),

(12) L,(5y) = Q8,857 + Q (6,6;%)

which combines with (9) to give

(13) Q,(0.6:y) = - H (0,8;7)

Ql(ﬂ,ﬂ;y) is, therefore, the score function of the observed log
likelihood function. Qm(E,B;y) is the information of the latent
conditional log likelihood function, and is therefore a symmetric,
positive semi-definite matrix. In exponential models (diséussed further
below), Qll(ﬁ,ﬂ;y) is the negative information of the latent marginal
log likelihood function; in general, the E{Qnﬁﬂ,ﬁ;y)} is the negative
information of the latent model. Thus, E[le(ﬂ,ﬁ;y)] iz the loss in
information caused by the partial observability of yf as described by

(1).

4, Ipformation Estimators

Ruud (1988) notes that equations (11) to (13) offer two convenient
estimators for EM of the information. The first is a reformulation of

Louis (1982). The so-called observed information, which is the negative
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hessian of the observed log likelihood, is given in (12). The score in
(11) is implicit in the EM calculations at convergence and the matrix of
second partial derivatives can be computed numerically or analytically
using (12).

When y consists of independently distributed elements {yﬁhﬁi .

the likelihood function factors into a product of marginal terms

N
(14) £057) - || £33

n=1

and one can use the outer product of the score
N
(15) ngl Q,(6.6:5) Q,(0,6:y)

as an élternative to the observed information. While (15) and the
observed information (12) require additions to the EM algérithm (at
convergence), neither involves more difficulty than thé corresponding
terms in the NR or BHHH algorithms (see Berndt et al (1977)).

The information itself can be derived analytically from either of
the preceding matrices by taking the expectation over y . This, of
course, 1s the same method that traditional methods use. If the
analytics are awkward; then‘Monte Carlo integration provides another
simple means to exploit these formulae. We summarize in the first

Proposition:
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PROPOSITION 1: Let JF() = E[ L (8;y) L (8;y)" ] . Then

-Ef Qll(ﬁ,ﬂ;y) + le(ﬁ,ﬁ;y) ] = 3(8) . If, in addition, y =

[y ;n=1,...,N] consists of independently distributed elements, then
a _

Yoy EL @ (855 0, (857 ) ] = $(8) also.

Occasionally, the EM algorithm is used without any direct reference

to the function @ (see for example, Baker and Laird, 1988) but the

v (v-1)

iterations take an explicit form: ¢ g4 Yo, (v=1,2,3,...). In

such cases, an estimator for the covariance matrix of 4 = g(4) can
be found by the delta method, provided that an asymptotic approximation

for the distribution of ¢ — g(#) 1is available. Because 4 - g4y 1is

usually a simple expression, this approximation is often easy to find.

5. EM versus Newton-Raphson

Equation (5) and differentiability allow us to write the EM
updating algorithm in a form reminiscent of such quadratic procedures as
NR. Suppose Q11 and L11 are nonsingular, Then

-1
(16) o, = 0, - Q, 9 + o(ﬂam—aou),
where Q11 and Q1 are evaluated at 60 . Tﬁis can be compared with

the simplest form of NR which computes

- 1 L]
an b = 0, — (L (81 L85y

-1
= ¢ - (Qll + Q12) Ql

0

To a first order approximation, the difference between EM and NR is the

matriz which scales the score vector Q1 . EM fails to use the hessian
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of the log likelihood function; it substitutes a matrix that differs
from the hessian by a negative semi-definite matrix that measures the
information loss due to partial observability. Intuition suggests that
this explains the slow rates of convergence exhibited by EM. In certain
cases, it does follow from (16) and (17) that there is a neighborhood of
the MLE in which the EM algorithm imﬁroves the log likelihood function
less than the NR algorithm. We use the following definition

{(Rothenberg, 1981):

DEFINITION: Let M(8) be a matrix whose elements are continuous

A
functions of 0 everywhere in an open subset © . The point § € & is
said to be a regular point of the matrix if there exists an open

A

neighborhood of 6 in which M(8) has constant rank.

PROPOSITION 2: If 8 is a regular point of L (8;y) and L (8;y)

is nonsingular then there is an open neighborhood of the MLE 8

such that

(18) L(Ho:y) < L(Bm;y) < L(Bm;y)

A proof is given in the appendix. Although NR takes faster steps than
EM toward the MLE in its neighborﬁood, experience shows that EM often
increasés the log likelihood function more than NR outside such small
neighborhoods. As a result, EM is often superior to NR at the outset of
iterative numerical optimization because each iteration takes less time

and increases the log likelihood function more.
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6. Louis’ Method for Speeding Conversence of EM

We can also make local comparisons with Louis’ (1982) method of
speeding up the convergence of EM with Aitken’s acceleration (see also
Laird, Lange, and Stram, 1987). In our notation, Louis’ updating
algorithm can be written
-1

(19) g = 68 = Q. [Q_ +Q._]

L o 11 12 (0 = 8

EM 0

-1 -1
- 30 - {Q11 M Qll le Q11] Ql + o(ugzn h 50")

which is quite similar to the NR step. Indeed, for the scalar case the
two updates are approximately equal. In higher dimensions, it appears
that a matrix is added to Qll that is related to le , but which may
fail to be negative definite. As a result, Louis’ method does not

appear to possess the general up-hill property
(20) L(GD) < L{aﬂL + (l—a)ac}

for sufficiently small « >0 . 1In soﬁe applicatiens, BL will
occasionally decrease the likelihood and its convergence is not
guaranteed. Although Laird et al. (1987) report some success for their
applications of Louis’ method, its failure to satisfy (20) raises doubts
about its usefulness as a general method. Laird et al. (1987) wisely
checked whether BL increases the likelihood over 90 at each
iteration, but this adds to the computatioﬁal burden of this method
relative to EM. This weakness of Louis’' method may explain its poor

performance in Lindstrom and Bates (1988).
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7. EM versus Scoring

Within the exponential family of distributions for y* , Ruud
(1988) makes comparisons between the EM algorithm and the method of
scoring that yield similar results. If the distribution of y* has a

probability density function of the form
(21) £08;7) = by explo7t(y) - a(s)] ,

then Qll(e,ﬂ;y) = -aza(a)/aaaa' does not depend on vy and, therefore,
equals the negative of the information of the latent marginal log
likelihood function. Taking the expectation over values of ¥y . (10}

becomes
(22) gy = - Q,(8) - ¥ ,
where J(#) 1is the information for 4 and H(#) 1s a symmetric,

positive semi-definite matrix. Using the same argument that leads to

(18), we have
PROPOSITION 3: One iteration of the S algorithm is given by

‘ -1
b, = 0, + F @ + oo, -4
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A

If the latent likelihood has the exponential form (21), 8 is a regular
point of L11 , and Iﬁl is nonsingular, then there is an open

~

neighborhood of 4 such that

L(Bu;y) < L(ﬂm;y) < L(Ss;y)

8. Concluding Remarks

We have demonstrated that the elements of the EM algorithm
caleulations can be exploited to compute the terms of the NR, BHHH, and
Scoring algorithms. It is now apparent that these latter schemes can be
used in combination with the EM algorithm with relative ease. Watson
and Engle (1983) advocate using the EM algorithm in the early iterations
of optimization to take advantage of its stability and relatively quick
convergence to the neighborhood of the MLE, and then switching to NR or
Scoring in the neighborhood of the maximum to exploit their quadratic
convergence properties. Lindstrom and Bates (1988) and Ruud (1988)
contain examples where this strategy appears to dominate all others.
Given the widespread complaint about the slowness of the EM algorithm in
some éppliéations, and the efforts by Louis (1982) and others to speed
up the algorithm, the advice of Watson and Engle may well become common

practice using the connections drawn here.

Appendix: Proof of Proposition 2

If L11 is nonsingular then so is Q11 by (13) so that (16)
and (17) are valid. Using the second order Taylor series expansion of

L{&;y) .
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L) = LGB = -2Q @, +¢ e + ofs_ -2
and
L) - LG = '2 Q11Q1;1(Q11 - le)Q1;1Q1 ¥ O(HBEM - BOHZ)
where all expressions in ( are evaluated at 60 . Choose § >0 so

that L =G + is negative definite for all 4§ e
11 11 12 0

(6 | |8 — 8] <8). Expression (13) implies that within this ball

-1
+
11 le)

le - le and Ql;l(Qll _'le)Ql;l - @

are positive definite matrices so that

0 < L(8) —L(8) +o(fo -0 | < L8 — L{B) + o(fe_—6 )

According to (16) and (17), O(||6NR - 5;")'= O(HBEM - 50") =

o - Eou) . Therefore as o, approaches ¢

L(EEM) - L(Ho) < lim L(HNR) - L(EO)

0 < Iim —x 5 = 3
lo - 5,1 le -4l

M

Therefore, there is an open neighborhood of the MLE 4 such that (18)

is satisfied for all 4  in that neighborhood.
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