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An automated selection algorithm for nonlinear solvers in
MDO

Shamsheer S. Chauhan John T. Hwang Joaquim R. R. A. Martins

Abstract There are two major types of approaches that are used for the multidisciplinary analysis (MDA)
of coupled systems: fixed-point-iteration-based approaches and coupled Newton-based approaches. Fixed-
point-iteration approaches are easier to implement, but can require a large number of iterations or diverge
for strongly coupled problems. On the other hand, coupled-Newton approaches have superior convergence
orders, but generally require more effort to implement and have more expensive iterations. Additionally,
these two major approaches have many variations, including hybrid approaches where the MDA begins with
a fixed-point iteration and then switches to a coupled-Newton approach after a certain number of iterations.
However, there is a lack of criteria to govern how to select between these approaches, and when to switch
between them in a hybrid approach. This paper compares these approaches and provides an algorithm that
can be used to automatically select and switch between them. The proposed algorithm is implemented using
OpenMDAO, NASA’s open-source framework for multidisciplinary analysis and optimization, and is tested
using OpenAeroStruct, an open-source low-fidelity tool for aerostructural optimization. The results show
that the proposed algorithm provides a balance of improved robustness and speed.

1 Introduction
Setting up multidisciplinary design optimization (MDO) problems requires making decisions that affect both
the speed and robustness of optimizations. Two major decisions are which MDO architecture to use (Martins
and Lambe, 2013), and which numerical optimization algorithm to use. For the popular multidisciplinary
feasible (MDF) architecture and distributed MDF architectures (Martins and Lambe, 2013), the choice of
approach for the multidisciplinary analysis (MDA) is also important.

The purpose of the MDA is to find a solution that satisfies the systems of equations representing the
multidisciplinary system, which is a nonlinear system in general. A widely used strategy for the MDA is
the nonlinear block Gauss–Seidel (NLBGS) approach, where each discipline is solved sequentially given fixed
values of the unknowns from other disciplines (Cervera et al, 1996; Maute et al, 2001; Küttler and Wall,
2008; Joosten et al, 2009; Keyes et al, 2012; Hwang et al, 2014; Gray et al, 2014; Chauhan et al, 2018;
Jasa et al, 2018). For example, in a fluid-structure interaction (FSI) problem, given an initial guess for
the structural shape, the fluid equations are solved and the tractions on the surfaces are computed. These
tractions are then used in the solution of the structural equations to obtain a new deformed shape. This
new shape is further used to solve the fluid equations again and the process is repeated until the desired
level of convergence is achieved. The block-Jacobi approach is another option, where discipline analyses are
solved in parallel. Since the variables are only updated after each iteration instead of being used as soon
as they are computed, the block-Jacobi approach requires more iterations than block Gauss–Seidel. These
approaches are also commonly referred to as fixed-point iteration (FPI) (Haftka et al, 1992), loosely coupled
(Arian, 1997; Keyes et al, 2012), partitioned (Heil, 2004; Keyes et al, 2012), or block relaxation schemes
(Saad, 2003). Note that when we use the term relaxation in the rest of the paper, we mean the use of under-
and over-relaxation factors.

When it is possible to compute partial derivatives for the residual equations being solved, approaches
based on Newton’s method can be used, where the systems of equations for the multiple disciplines are
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solved simultaneously. This is referred to as the coupled-Newton (CN) approach in this paper. This type
of approach is also commonly referred to as tightly coupled (Arian, 1997; Keyes et al, 2012) or monolithic
(Küttler and Wall, 2008; Heil et al, 2008).

FPI approaches are easier to implement with existing solvers and do not require significant modifications
or in-depth understanding of the solvers. Additionally, they are less likely to diverge without an initial guess
that is sufficiently close to the solution than CN approaches. However, FPI approaches require increasingly
large numbers of iterations or diverge as the strength of the coupling between components increases (Haftka
et al, 1992; Heil et al, 2008; Chauhan et al, 2018). In this paper, the terms disciplines and system components
are used interchangeably. Also, by one FPI or NLBGS iteration, we mean solving every component once.

On the other hand, CN approaches are known for their superior convergence orders and rates. Newton’s
method exhibits a quadratic order of convergence when sufficiently close to the solution. Due to this property,
CN approaches have the potential to reduce computation time over FPI approaches. Additionally, CN
approaches can be more robust than FPI approaches as the strength of coupling increases (Heil, 2004;
Barcelos et al, 2006; Heil et al, 2008; Chauhan et al, 2018). One disadvantage of CN approaches is that
without a good initial guess, the iterations may diverge. Another disadvantage is that CN approaches require
setting up and solving one large linear system of equations at each iteration, as opposed to multiple smaller
ones in the case of FPI approaches, resulting in more expensive iterations.

There have been various studies in FSI that show the promise of CN approaches (Heil, 2004; Heil et al,
2008; Fernández and Moubachir, 2005; Bazilevs et al, 2006; Sheldon et al, 2014). Fernández and Moubachir
(2005) compare NLBGS and CN approaches for the transient flow in a thin elastic vessel that is representative
of blood flow in large arteries. Their results show that the CN approach is almost twice as fast as the NLBGS
approach (with Aitken’s acceleration) for the solution of their test problems. Heil et al (2008) compare
NLBGS and CN approaches using the problem of flow in a collapsible channel with an adjustable parameter
used to control the strength of the FSI. In their test problems, the approaches are competitive when the
coupling is weak. However, when the coupling is strong, the CN approach outperforms the NLBGS approach.
Additionally, the CN approach is shown to be more robust and efficient for unsteady problems, while the
NLBGS approach diverges rapidly unless strong under-relaxation is applied. Sheldon et al (2014) compare
NLBGS and CN approaches using an unsteady flow benchmark (Turek and Hron, 2006). Their results show
that the NLBGS approach (with Aitken’s acceleration) requires over four times more CPU time than the
CN approach.

In the related field of aerostructural optimization, Maute et al (2001) developed an NLBGS method with
relaxation for the solution of high fidelity aerostructural systems. Later, to improve robustness and efficiency,
Barcelos et al (2006) proposed a Schur–Newton–Krylov method for the solution of coupled aerostructural
systems. Kenway et al (2014) addressed shortcomings of prior research by developing a more advanced
flow solver and a new parallel structural solver. Additionally, they benchmarked NLBGS (with Aitken’s
acceleration) and tightly coupled Newton–Krylov approaches for a high-fidelity aerostructural aircraft wing
model. Their results show that both methods require similar aerostructural solution times, but the coupled
Newton–Krylov method requires less time with certain preconditioning settings.

In an earlier conference paper (Chauhan et al, 2018), we compared NLBGS and CN approaches to study
the factors that impact their relative performance. We observed that several factors including the cost of
assembling the linear systems involved in the different approaches, the efficiency of the linear solvers used,
and the strength of coupling in the problem affect the relative performance of the approaches. Therefore, it
is difficult to determine beforehand which approach will be faster for a particular problem.

Since partial derivatives are required for a CN approach, the nature of the problem and the methods used
to compute or estimate these derivatives impacts the cost of each CN iteration. For example, this cost may
be negligible if simple analytic expressions are available for the derivatives. However, if computing these
derivatives is computationally expensive, the cost may greatly impact the performance. NLBGS approaches
may also require assembling linear systems for individual components (e.g., finite element analysis and
computational fluid dynamics). Since NLBGS approaches tend to require more iterations, the cost of setting
up these systems can add up and adversely impact performance. For a linear discipline (e.g., a linear finite
element model), the coefficient matrix of the linear system only needs to be set up once during the MDA and
this may not have a significant cost. However, for a nonlinear component (e.g., a nonlinear finite element
model), the linear system needs to be set up at each iteration and this may have a large impact on the overall
performance.
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The efficiencies of the solvers used to solve the linear systems involved in the different approaches also
play a major role in the relative performance of the different approaches. With CN approaches, larger linear
systems need to be solved than with NLBGS approaches. Several options are available for solving linear
systems including different variations of direct solvers and different variations of iterative solvers, which in
turn have multiple options for preconditioning. Direct solvers are easy to use and efficient for small problems.
However, direct solvers do not scale well with problem size and iterative solvers may be the only practical
alternative for large problems and CN approaches (Trefethen and Bau III, 1997; Chauhan et al, 2017). The
number of iterations required by iterative linear solvers, which impacts cost, depends on the location of the
eigenvalues and the conditioning of the linear system (for GMRES, the number of iterations is related to
the location of the eigenvalues of the linear system’s coefficient matrix and the condition number of the
eigenvector matrix for the linear system’s coefficient matrix (Trefethen and Bau III, 1997)). This means
that a preconditioning strategy is usually required with an iterative linear solver. With multiple options
available for preconditioning, this means that the computational performance depends on the effectiveness
and cost of the preconditioning strategy. In practice, another factor that impacts the relative performance
of the different approaches is the user’s particular implementation of the solvers, including the programming
languages and frameworks used.

Coupling strength is another important factor that impacts the relative performance of the MDA ap-
proaches. Researchers have observed that as the strength of coupling between the components of a mul-
tidisciplinary system increases, the number of iterations required by an NLBGS approach also increases,
improving the relative performance of CN approaches (Haftka et al, 1992; Heil et al, 2008; Kenway et al,
2014; Chauhan et al, 2018). However, since the performance of CN approaches with iterative solvers depends
on the conditioning of the linear system, there is still some dependence of the performance on the coupling
strength because of its impact on the conditioning. Additionally, changing the coupling strength in a system
(for example, by changing the sweep angle of a wing or the material properties of a wing structure) may
also change the proximity of the initial guess to the solution, further impacting the performance of CN
approaches.

In addition to computational time, we should also consider robustness when comparing and selecting
numerical solution approaches. For computationally expensive optimization problems that require several
hours or days to solve, the cost of an analysis failure that prevents the optimization from progressing and
completing successfully is high (in terms of both computing time and the amount of time the user has to
wait). In such cases, it is preferable to sacrifice some efficiency in exchange for greater robustness.

It is well known that CN approaches may not converge without an initial guess that is sufficiently close
to the solution. On the other hand, even with relaxation strategies, it is possible that NLBGS approaches
may not converge or may converge too slowly for problems with high coupling strength (Haftka et al, 1992;
Heil et al, 2008; Chauhan et al, 2018). If a CN approach is not converging, some initial NLBGS iterations
can be used to obtain a better initial guess (Haftka et al, 1992). If an NLBGS approach is not converging,
switching to a CN approach may solve the problem.

Based on the above, we conclude that it is difficult to successfully predict beforehand which approach
will perform better for a particular problem. Both efficiency and robustness need to be considered for this.
Also, during an optimization, the strength of coupling between components, and the proximity of the initial
guess to the solution may vary as the optimizer explores the design space, further making it difficult to know
beforehand which approach will be the best choice.

To address this problem, we propose a heuristic algorithm that uses convergence rate information to select
and switch between CN and NLBGS approaches while solving an MDO problem. This algorithm can help
the user save time by reducing the user effort and computational time spent testing approaches. Using the
proposed algorithm also reduces the likelihood that an expensive optimization process does not finish due to a
convergence failure in the MDA. These two advantages are often underrated. Given the continued decrease in
computational cost and increased access to computing resources, and the trade-off between the computational
cost and engineering labor, companies increasingly prefer to sacrifice computational efficiency if it means
fewer labor hours and increased success in overnight computations. The ultimate goal of the proposed
algorithm is to allow engineers and researchers to use tools like OpenMDAO and focus on their design
problems and results without having to spend considerable amounts of time studying and experimenting
with different options and approaches. This algorithm is the primary new contribution of this work and is
described in Section 4. We also propose a new analytic benchmark problem, described in Section 2.2, that

3



is versatile and scalable, since the dimensionality, the sparsity, the nonlinearity, and the coupling strength
of the problem can be customized.

Hulme et al (2000) also developed a heuristic MDA algorithm with the goal of building upon the weak-
nesses of NLBGS and CN approaches to find a balance between efficiency and robustness. However, their
algorithm does not select or switch between the above approaches, but instead uses neural network concepts,
concurrent sub-optimizations, and data fusion models for an alternative MDA approach. This approach has
not gained popularity over the years. In contrast, the algorithm presented in this paper is developed for
switching and selecting between existing MDA approaches and is not an alternative MDA approach on its
own. We consider our strategy to be much simpler and more practical to implement with existing methods
and frameworks.

2 Benchmark problems and tools
In this section, we describe the details of the benchmark problems and the framework used for this work.

2.1 OpenMDAO
OpenMDAO is a Python-based open-source framework for multidisciplinary analysis and optimization de-
veloped at NASA (Gray et al, 2010, 2014). It formulates the MDO problem using the modular analysis
and unified derivatives (MAUD) architecture (Hwang and Martins, 2018). In MAUD, disciplines are imple-
mented as system components that are then combined into a hierarchical structure of groups to facilitate the
solution of the MDA using a range of approaches and methods. OpenMDAO facilitates the implementation
of different MDA approaches and provides the flexibility to switch between them during an analysis or opti-
mization. Additionally, it provides automated derivative computations that can be used for gradient-based
optimization. These features make OpenMDAO a convenient and attractive framework for MDA and MDO.

The ability to easily switch between MDA approaches provides a platform for an automated algorithm
that selects and switches between MDA approaches during the design optimization of multidisciplinary
systems. In the following sections we describe our benchmark problems, which are implemented using
OpenMDAO.

2.2 Taylor series-based analytical scalable problem
To study the behavior of MDA approaches as the dimensionality of the problem increases and as other
properties like coupling strength vary, we developed an analytical scalable problem (Chauhan et al, 2018).
The scalable problem consists of a parametrized system of equations based on a multivariate Taylor series
that allows arbitrary control of its dimensionality and other characteristics, such as nonlinearity, structure,
and coupling strength. The intent is for this scalable problem to represent systems of equations that arise
in practical computational design in terms of problem size, numerical properties (such as conditioning), and
problem structure (i.e., the sparsity and structure of the Jacobian matrix). This scalable problem allows
users to:

1. define a system of equations using only closed-form mathematical expressions,

2. set the problem size—i.e., the number of variables,

3. divide the equations arbitrarily into groups to represent disciplines,

4. generate both linear and nonlinear equations, and

5. control the coupling between disciplines and the Jacobian structure of the problem.

While benchmark problems exist (Padula et al, 1996; Balling and Wilkinson, 1997; Kodiyalam and Yuan,
1998; Yi et al, 2008; Tosserams et al, 2010; Tedford and Martins, 2010), there is a lack of problems that
are scalable and provide the level of flexibility that we desire. Balling and Wilkinson (1997) presented a
flexible analytical scalable problem formulation for testing MDO architectures. However, this formulation
only generates components with nonlinear governing equations and does not include the option for coupled
linear equations. Hulme and Bloebaum (1997) developed a problem formulation that is similar to the one
we present. However, our formulation is developed with a focus on being scalable (by using formulas for
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coefficients instead of storing values) and providing more control over characteristics like coupling strength.
Tedford and Martins (2010) also developed an analytical scalable problem to benchmark MDO architectures;
however, their formulation does not include nonlinear components.

The advantage of using a Taylor series-based formulation is that it provides flexibility and control over
all the various characteristics listed above. This provides the user with the ability to test a range of different
types of problems. The formulation (Chauhan et al, 2018) consists of a system of n residual equations that
depends on n variables (v1, . . . , vn),

R1(v1, . . . , vn) = 0
...

Rn(v1, . . . , vn) = 0

. (1)

The LHS of the ith equation in this system is obtained using the Taylor polynomial form:

Ri(v1, . . . , vn) =

di∑
r=1

1

r!

∑
(j1,...,jr)

1≤jk≤n
j1,...,jr∈A(i)

∂rRi

∂vj1 . . . ∂vjr

r∏
k=1

(vjk − v∗jk). (2)

The partial derivative terms in Eq. (2) are specified by the user. In this paper we use

∂rRi

∂vj1 . . . ∂vjr
= f(r)

r∏
k=1

α(i, jk)g(i, jk), (3)

where

α(i, jk) =

{
1, if i and jk belong to the same component

α, otherwise
.

The nomenclature and the problem parameters are detailed in Table 1. The system of equations given by
Eq. (1) can be split up arbitrarily to represent components. Increasing the coupling strength amplification
factor, α, increases the magnitude of the local sensitivities of the variables of one component with respect
to the variables of another.

Table 1: User-specified parameters for the scalable problem formulation

Parameter Description Problem characteristic

n Number of variables Problem size

di Degree of polynomial Nonlinearity

v∗i Solution value Solution (set to zero WLOG)

A(i) Arguments of the ith equation. Jacobian structure and coupling
A : {1, . . . , n} → P({1, . . . , n})
where P() is the power set.

f(r) A user-defined function of r Nonlinearity

g(i, jk) A user-defined function of |i− jk| Conditioning and coupling strength

α(i, jk) Coupling strength amplification factor Coupling strength

The details of the test problems generated using this formulation are provided in Appendix A, and more
problem-specific details are provided as the results are discussed in the remainder of this paper.

2.3 OpenAeroStruct
OpenAeroStruct (Jasa et al, 2018) is an open-source low-fidelity tool for aerostructural optimization built
with the OpenMDAO framework. It couples a vortex-lattice method (VLM) with a 6 degree-of-freedom
finite element model (FEM). The structure for a lifting surface is modeled as a tubular spar, which may not
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be an accurate representation of typical wing structures, but is useful for studying coupled aerostructural
optimization trends. The spanwise spacing specified for the VLM discretization is also used for discretizing
the spar structure. OpenAeroStruct is implemented using OpenMDAO in a modular manner, where several
components represent disciplines and sub-disciplines. The partial derivatives for the different components
are computed using a combination of analytical expressions, automatic differentiated code, and the complex-
step approximation (Martins et al, 2003). The total derivatives for optimization are computed using the
coupled-adjoint method (Kenway et al, 2014; Martins and Hwang, 2013).

The test problems we use for this paper involve the coupled aerostructural analysis and optimization of a
simple trapezoidal wing with different sweep angles. The baseline wing planform geometry and performance
characteristics are based on the Bombardier Q400 regional aircraft (see Table 2).

Table 2: Estimates and specifications used for the wing analyses and fuel burn optimizations

Specification Value

Span 28.4 m

Root chord length 3.34 m

Tip chord length 1.34 m

Thickness-to-chord ratio 0.14

Range 2,000 km

Aircraft zero-fuel weight without wing structure 25,444 kg

Cruise altitude 24,000 ft

Cruise Mach number 0.5

Thrust-specific fuel consumption estimate 0.43 lb/lb h−1

Rest of aircraft zero-lift coefficient of drag 0.0142

For the optimization problems, the objective is to minimize fuel burn by varying the thickness distribution
of the tubular spar and the twist distribution of the wing. These distributions are controlled using B-splines
with 5 control points each. The fuel burn is estimated using the Breguet range equation with the assumption
that the speed, thrust-specific fuel consumption, and lift-to-drag ratio stay constant during the flight. The
optimization problems are also subject to constraints to ensure that the lift of the wing is equal to the weight
of the aircraft and that the equivalent von Mises stresses in the beam elements do not exceed the yield stress
of the specified material with factors of safety. The yield stress is set to 500 MPa (based on Al 7075), and
a factor of safety of 2.5× 1.5 is used to approximately size for maneuver loads. Also, the elastic axis of the
tubular spar is aligned with the 40% chord line of the wing. The optimization problem is summarized using
Formulation (4).

minimize fuel burn

with respect to wing twist
spar thickness

subject to lift = weight
σvon Mises ≤ 500MPa

2.5×1.5
−10◦ ≤ wing twist ≤ 10◦

0.002 m ≤ spar thickness ≤ 0.2 m

(4)

We use different sweep angles, initial thickness distributions, and elastic moduli to vary the coupling
between the aerodynamic and structural disciplines. We run these problems on a computer with a 2.7 GHz
Intel Core i7-7500U processor and 16 GB RAM and discuss the results in Sections 3 and 5. The fork of the
OpenAeroStruct GitHub repository used for this paper is publicly available1.

3 Background
3.1 Convergence order and rate
Different iterative methods display different convergence behaviors. To study these behaviors, we use con-
vergence order and convergence rate. Suppose x∗ is the solution that an iterative process is converging
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towards. The convergence order and asymptotic error constant are defined by taking the following limit as
the number of iterations, k, approaches infinity:

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p ≤ γ, (5)

where γ is called the asymptotic error constant and p is the convergence order. If p = 1 and there exists
some γ such that 0 < γ < 1, then the convergence has a linear order. If p = 2 for some finite γ, then the
convergence has a quadratic order. In general, if p > 1 for some finite γ, then the convergence is superlinear.
The above definition is useful for a sufficiently large k (i.e., close to the solution).

However, to track convergence in general as the iteration process progresses, including during early stages,
we can define the error ratio as

γk =
‖xk+1 − x∗‖
‖xk − x∗‖ . (6)

If the order of convergence is linear, then γk will approach a constant as k increases. If the convergence is
superlinear, then γk will approach 0 as k increases. The error ratio can also be used to define the rate of
convergence as

rate = − log10(γk) , (7)

which is simply the number of orders of magnitude that the error decreased after an iteration.
It is well known that the order of convergence of Gauss–Seidel and Jacobi FPI is linear. However,

with nonlinear problems and dynamic relaxation strategies, this linear convergence behavior is not observed
throughout the iteration process, especially during early stages. Similarly, Newton’s method is well known for
its quadratic convergence, but this quadratic convergence behavior is not necessarily observed throughout
the iteration process, especially at early stages. Therefore, the definition given by Eq. (7) is useful for
tracking and comparing convergence rates as iterations progress. Since different iterative processes also
require different amounts of time per iteration, we use the following temporal rate as a more practical metric
for comparison purposes:

ratet = − log10(γk)

tk
, (8)

where tk is the time required for the kth iteration.
Additionally, since x∗ is usually unknown, the governing equations residuals can be used to track con-

vergence, leading to a residual-based definition for the error ratio,

γk =
‖rk+1 − r∗‖
‖rk − r∗‖ , (9)

where r is the vector of residuals of the governing equations. Since the residuals are zero at the solution,
this can be simplified to

γk =
‖rk+1‖
‖rk‖

. (10)

We use this residual-based definition to compute convergence rates for the work presented in this paper.

3.2 Comparing NLBGS and CN approaches
The plots in Fig. 1 contrast the convergence behaviors of three MDA approaches using three random nonlinear
problems generated with the Taylor series-based scalable problem formulation described in Section 2.2. The
problems contain systems of equations representing 20 components, with each component containing between
200 and 1,000 equations. Random number generators are used to specify the degree of the polynomial
equations belonging to each component such that, on average, half the components are expected to be linear
and the other half are expected to be nonlinear. Among the half of the problems that are expected to be
nonlinear, half are expected to be cubic and the other half are expected to be quadratic. Additionally, the
coupling strength amplification factor is set to 1 for these problems and the initial guess for every variable
is randomly set to an integer between −150 and 150, excluding 0, which is a solution. See Appendix A for
more details.
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Figure 1: Convergence of three randomly-generated scalable problem examples with different MDA ap-
proaches. Convergence tolerance = 10−6. (CN = Coupled Newton, NLBGS = Nonlinear block Gauss–Seidel,
AR = Aitken’s relaxation)
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(b) α = 1.0
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(c) α = 1.5

Figure 2: Convergence of a randomly-generated scalable problem example with different MDA approaches
and different coupling strength amplification factors, α. Convergence tolerance = 10−6

The CN convergence curves in Fig. 1 initially exhibit linear convergence, followed by superlinear conver-
gence at later stages. This illustrates that the quadratic convergence that Newton-based methods are well
known for should not be expected at all stages of convergence. The NLBGS curves display their characteristic
linear convergence order, but the slopes change during the initial stages before becoming approximately con-
stant. With Aitken’s relaxation (AR), we also observe roughly linear convergence, but there are fluctuations
as the relaxation factors change with each iteration. We observed similar behaviors with a set of over 100
randomly-generated problems of varying sizes using the Taylor series-based scalable problem formulation.
These examples demonstrate that the MDA approach efficiency depends on the stage of convergence. For
nonlinear problems in general, it is difficult to predict at what point one approach has a higher convergence
rate than the other, and at what point an approach settles into its characteristic convergence behavior.

Figure 2 shows the convergence plots for another set of randomly-generated nonlinear problems using
the Taylor series-based scalable problem formulation. In this set of plots, the same problem settings are
used for the problems corresponding to all three subplots, except for the coupling strength amplification
factor, α, which increases from left to right. The number of iterations required by the CN approach does
not change significantly as the coupling strength amplification factor is increased. On the other hand, the
number of iterations required by the NLBGS approaches is more sensitive to the coupling strength factor.
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With a coupling strength amplification factor of α = 1.5, the NLBGS approach without relaxation did not
converge.
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Figure 3: Convergence of three aerostructural analysis problems with different MDA approaches; the cor-
responding meshes are shown below the plots. Convergence tolerance = 10−6. (CN = Coupled Newton,
NLBGS = Nonlinear block Gauss–Seidel, AR = Aitken’s relaxation)

Similarly, the plots in Fig. 3 show the convergence behaviors for three example problems using Ope-
nAeroStruct. In these plots, the same mesh is used with three sweep angles (30◦, 35◦, and 40◦, where the
baseline wing geometry is sheared by these angles). The initial mesh is planar and untwisted, and the initial
thickness for the entire tubular spar is 1.5 cm. For the CN approach, we use the GMRES solver in SciPy
(Jones et al, 2001) to compute the Newton steps. For preconditioning, we select the linear block Gauss–
Seidel option in OpenMDAO. For the NLBGS approaches, the system is solved by cycling through the solver
of every component in the coupled group that contains the aerodynamic and structural components. The
relaxation factor with AR is limited to a range of 0.1 to 1.5 for these problems, and the convergence tolerance
for the L2-norm of the residuals is set to 10−6.

For the 30◦ sweep case (Fig. 3a), the CN approach converges and exhibits superlinear convergence in a
few iterations, and the NLBGS curve has a consistent slope from the early stages. However, for the 35◦ case
(Fig. 3b), the change in slope of the NLBGS curve is more significant during the initial iterations, and CN
initially diverges and then converges. For the 40◦ case (Fig. 3c), CN does not converge and the NLBGS
curve shows fluctuations. As the sweep angle is increased in these examples, increasing the coupling strength
between the aerodynamic and structural disciplines, the overall slopes of the NLBGS curves decrease in
magnitude and the number of iterations required increases.

The curves in Figs. 1 and 3 can be deceiving when trying to infer the relative performance of the CN and
NLBGS approaches. Since there is no timing information available in these plots, it is easy to incorrectly
conclude that the CN approach can be expected to be much faster in general when it converges. Therefore,
for a more significant comparison, we plot the convergence data shown in Fig. 3b, but against wall time
instead of the number of iterations in Fig. 4. For this particular problem and implementation, each iteration

9



0 1 2 3

Wall time [s]

10−8

10−6

10−4

10−2

100

102

104

R
es

id
u

al
n

or
m CN

NLBGS

NLBGS + AR

Figure 4: When plotting the convergence data from Fig. 3b against wall time instead of iteration number,
we reach a different conclusion. The CN approach requires fewer iterations, but is slower due to the higher
cost of each iteration.

with the CN approach happens to require much more time than each NLBGS iteration. So in this case, even
though much fewer CN iterations are required, NLBGS converges more quickly. However, this will not be
the case in general. As discussed in the introduction, depending on the problem and the implementation, in
some cases the CN approach can converge more quickly.

3.3 Coupling strength and general metric
As discussed above, and observed by researchers in the past (Haftka et al, 1992; Heil, 2004; Barcelos et al,
2006; Heil et al, 2008; Chauhan et al, 2018), the strength of coupling between the components of coupled
systems impacts the performance of NLBGS approaches. As the coupling strength increases, the number of
iterations required for convergence also increases. Here, by coupling we mean the two-way information flow
between components of a system. In this sense, for example, a system with two components in which only
one component depends on information from the other would be considered uncoupled.

In the past, local sensitivities have been used to quantify the strength of the couplings between two
components (Bloebaum, 1995). The local sensitivities are defined as the local derivatives representing the
change in the output of a component with respect to the change in its input from another. This may
be computed analytically or approximated using methods like finite-difference approximations. With this
definition, a dependence of one component on another is called a coupling. Note that this is different from
the definition of coupling used in this paper, which refers to the two-way dependence between components.

To gain some insight into the relationship between the strength of coupling in a multidisciplinary system
and the performance of NLBGS approaches, we can look at the linear block Gauss–Seidel convergence
criterion. Consider a multidisciplinary system with n components. The update to the vector of unknown
variables, at the end of the kth block Gauss–Seidel iteration for the linearized multidisciplinary system, can
be written as

∆v(1)

∆v(2)

...
∆v(n)


k+1

=


I 0 · · · 0

−∂v(2)

∂v(1) I
. . .

...
...

. . .
. . . 0

−∂v(n)

∂v(1) · · · − ∂v(n)

∂v(n−1) I


−1 

0 ∂v(1)

∂v(2) · · · ∂v(1)

∂v(n)

0 0
. . .

...
...

...
. . . ∂v(n−1)

∂v(n)

0 0 · · · 0


︸ ︷︷ ︸

G


∆v(1)

∆v(2)

...
∆v(n)


k

, (11)

where ∂v(i)/∂v(j) are the local sensitivities of the variables of the ith component with respect to the variables
of the jth component. The development of this equation is included in Appendix B. At each iteration, the
previous update is multiplied by G. This means that the rate of convergence of the linear block Gauss–Seidel
iterative process depends on the spectral radius of the iteration matrix, G (Saad, 2003). The smaller the
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spectral radius, the faster the convergence. If the spectral radius of G in Eq. (11) is greater than 1, the
iterations will not converge without a relaxation strategy. Note that for nonlinear systems, the matrix G will
not stay constant as the NLBGS iterations progress. The amount G changes will depend on the nonlinearity
and the proximity to the solution.

Furthermore, using the chain rule that relates the variables through the residuals,

∂v(i)

∂v(j)
= −

(
∂R(i)

∂v(i)

)−1
∂R(i)

∂v(j)
, (12)

Eq. (11) can also be written as


∆v(1)

∆v(2)

...
∆v(n)


k+1

=


∂R(1)

∂v(1) 0 · · · 0
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...
...
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∂v(2) · · · ∂R(n)

∂v(n)


−1 

0 −∂R(1)

∂v(2) · · · −∂R(1)

∂v(n)

0 0
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...
...

...
. . . −∂R(n−1)
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0 0 · · · 0


︸ ︷︷ ︸

G


∆v(1)

∆v(2)

...
∆v(n)


k

, (13)

where R(i) is the vector of residual functions for the ith component. Intermediate steps can be found in
Appendix B. Once again, for convergence, the spectral radius of the iteration matrix, G, in Eq. (13) should
be less than 1. The smaller the spectral radius, the faster the convergence. This spectral radius can be
computed using the Jacobian of the governing equations residuals corresponding to the system components,
which may be available when using a CN approach or gradient-based optimization with analytic derivatives.

Although the block Gauss–Seidel convergence criteria and iteration matrix (Eq. (13)) are fairly well
known, their relationship to local sensitivities (Eq. (11)) and the strength of coupling between components
in a multidisciplinary system is not. Experimentally, described in the next paragraph, we observe that as
the magnitudes of the local sensitivities increase, and consequently the strength of the coupling between
the components increases, the spectral radius of the iteration matrix, G, also increases. Since the strength
of coupling in a system is usually described qualitatively, we also propose using this spectral radius as a
coupling strength metric for the system. This is a more general form of the convergence criterion for two
components provided by Haftka et al (1992). Using a more compact form of the iteration matrix, we define
the coupling strength metric as

ρc = Spectral radius

([
∂R

∂v

]−1
lower

[
∂R

∂v

]
upper

)
, (14)

where [∂R/∂v]lower is the block lower triangle of the Jacobian, including the diagonal blocks, and [∂R/∂v]upper
is the block upper triangle of the Jacobian excluding the diagonal blocks.

To experimentally test how increasing the strength of coupling between the components of a complex
system impacts the spectral radius of the iteration matrix, we generate random instances of the Taylor
series-based scalable problem formulation. Each problem consists of 20 systems of equations representing
20 components. We use a set of 60 linear problems with components composed of 200 to 4,000 equations,
and a set of 60 nonlinear problems with components composed of 100 to 2,000 equations (we use random
number generators to assign the number of equations to each component). We use the settings for these
120 problems to generate three subsets of problems by specifying three different values for the coupling
strength amplification factor, α: 0.5, 1.0, and 1.5. The coupling strength amplification factor, α, increases
the magnitudes of the partial derivatives in the off-diagonal blocks of Eq. (13). From Eq. (12) we see that
this increases the magnitudes of the local sensitivities. The initial guess for every variable is randomly set
to an integer between −15 and 15, excluding 0.

Figure 5 shows the coupling strength metric for the problems described above. Plots showing solution
times with CN and NLBGS approaches are also included in Appendix C for reference. As the coupling
strength amplification factor increases, the coupling strength metric also increases. Note that these are
computed using the initial Jacobian of the partial derivatives of the residual equations. This coupling
strength metric is by no means a perfect representation of the coupling in a multidisciplinary system. For
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Figure 5: The coupling strength metric for each problem increases with the coupling strength amplification
factor.

the nonlinear problems, these values are expected to change as the MDA iterations progress. The variation
of these values will depend on the nonlinearity and proximity to the solution. Also, the order in which
components are executed is known to impact the convergence of block Gauss–Seidel iterations (McCulley
and Bloebaum, 1996). However, we believe that this metric is useful for quantifying a system’s coupling
strength, especially when studying the design and optimization of complex systems.

4 An automated selection algorithm
As discussed so far using illustrative examples, it is difficult to conclude beforehand which MDA approach
will be better for a particular problem, with respect to both speed and robustness. To address this issue,
we propose a heuristic algorithm that switches between NLBGS and CN approaches by using convergence
rate information and iteration timings. The pseudo-code for the proposed algorithm is given in Algorithm 1.
Algorithms 2 and 3 are the pseudo-codes for the modified NLBGS and CN solvers called by Algorithm 1.
These algorithms can be adapted to use other MDA approaches as well. For example, nonlinear block-Jacobi
can be used instead of NLBGS by simply solving the components in parallel instead of in sequence (line 8
in Algorithm 2).

In general, the convergence rate of a particular approach evolves as iterations proceed and the particular
implementation of an approach also impacts the wall time for each iteration. At different points, depending
on the proximity to the solution, different approaches may display superior convergence rates. Therefore,
we must use convergence rate information that also takes iteration time into account to determine which
approach to select.

The proposed automated selection (AS) algorithm can help the user save time by reducing the effort and
computational time spent comparing approaches. Using this algorithm also reduces the likelihood that an
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Algorithm 1 Automated selection MDA algorithm

1: function AS(v, atol)
2: ucache ← v . Store initial guess
3: flagcheckCN1 ← False . Initialize flag for retesting CN
4: flagcheckCN2 ← False . Initialize flag for retesting CN when NLBGS diverges
5: uCNcache ← None . Initialize variable
6: t1 ← time() . Start timing
7: Perform 3 iterations of NLBGS
8: t2 ← time() . End timing
9: if ‖rlatest‖ < atol then

10: return v . Exit if converged
11: end if
12: tNLBGS ← (t2 − t1)/3 . Compute the average time per iteration for NLBGS

13: rateNLBGS ←
− log10

(
1
2

‖rlatest‖
‖rlatest−1‖

+ 1
2

‖rlatest−1‖
‖rlatest−2‖

)
tNLBGS

. Estimate NLBGS convergence rate
14: if rateNLBGS < 0 then
15: v ← ucache . Return to initial guess if NLBGS is diverging
16: end if
17: ucache ← v . Store a copy of current variables
18: t1 ← time() . Start timing
19: Perform 1 iteration of CN
20: t2 ← time() . End timing
21: tCN ← t2 − t1

22: rateCN ←
− log10

(
‖rlatest‖
‖rlatest−1‖

)
tCN

. Compute CN convergence rate
23: if rateCN < 0 then
24: v ← ucache . Return to previous point if CN diverges
25: else if rateCN < rateNLBGS then
26: uCNcache ← v . Store a copy of variables if CN converges but is not faster
27: end if
28: while ‖rlatest‖ > atol do
29: if rateNLBGS > rateCN or rateCN < 0 then . Switch to NLBGS if faster or CN is diverging
30: if flagcheckCN1 and rateCN < 0 then
31: v ← ucache . Return to previous point if CN diverged during retest
32: end if
33: t1 ← time() . Start timing
34: Switch to NLBGS solver
35: t2 ← time() . End timing
36: ucache ← v . Store a copy of current variables
37: tNLBGS ← (t2 − t1)/iterNLBGS . Compute the average time per iteration for NLBGS

38: rateNLBGS ←
− log10

(
1
2

‖rlatest‖
‖rlatest−1‖

+ 1
2

‖rlatest−1‖
‖rlatest−2‖

)
tNLBGS

. Estimate NLBGS convergence rate
39: else
40: flagcheckCN1 ← False . Reset flag
41: end if
42: if ‖rlatest‖ < atol then . Exit if converged
43: return v
44: end if
45: if flagcheckCN1 is False then
46: Switch to CN solver
47: rateCN ← −1 . Set rate to < 0 after exiting CN
48: flagcheckCN2 ← False . Reset flag
49: else
50: t1 ← time() . Start timing
51: Perform 1 iteration of CN
52: t2 ← time() . End timing
53: tCN ← t2 − t1

54: rateCN ←
− log10

(
‖rlatest‖
‖rlatest−1‖

)
tCN

. Compute CN convergence rate
55: end if
56: end while
57: return v . The solution is v
58: end function
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expensive optimization process does not finish due to a convergence failure in the MDA. The ultimate goal
is to allow engineers and researchers to use tools like OpenMDAO and focus on their design problems and
results without having to spend considerable amounts of time studying and experimenting with different
options and approaches.

Algorithm 1 begins by calling the NLBGS solver and performing three NLBGS iterations to estimate the
convergence rate for the NLBGS approach. We use three as the number of initial iterations to provide a
relaxation strategy (like AR) enough iterations to start and aid convergence. A dynamic relaxation strategy
may also lead to some fluctuations in the convergence, and therefore, an average rate is estimated using the
last two iterations. After this, one iteration of the CN approach is performed to estimate the convergence
rate for the CN approach. Only one CN iteration is used because of the higher cost of a CN iteration and
also because, if the CN approach does not provide superior convergence at this point, it is unlikely to be the
better option at this stage. If the CN approach exhibits a superior convergence rate, then this rate is also
likely to increase due to the Newton method’s superlinear convergence properties discussed earlier. However,
a user may choose to use multiple iterations to estimate the convergence rate of the CN approach (at the
cost of speed) to potentially favor robustness.

Next, the algorithm selects the approach with the higher convergence rate, as defined by Eq. (8). If the
CN approach converges with a lower rate than the NLBGS approach after the initial iteration is performed,
a copy of the unknown variables is stored and is used later as a starting point if the NLBGS approach starts
diverging. If both approaches are diverging, the algorithm selects the NLBGS approach. This choice is
made with the expectation that, with a relaxation strategy, NLBGS is more likely to converge using heavy
under-relaxation than a CN approach (which requires globalization when diverging). In Algorithms 1 to 3,
for simplicity and clarity, rlatest is the latest vector of residuals, and rlatest−1 and rlatest−2 are the vectors
of residuals from the previous two iterations. Also, v is the vector of unknown variables that we are solving
for.

After the initial rate estimations, the algorithm enters a while loop with a convergence criterion. In the
version presented in this paper, the norm of the residuals must be less than a specified absolute convergence
tolerance, atol. If the NLBGS approach is selected, we follow Algorithm 2. In this algorithm, if the norm of
the residuals decreases by an order of magnitude, we exit this algorithm to retest the CN approach and check
if a point has been reached where the CN approach has a higher convergence rate. If the CN approach does
not have a higher convergence rate, the main algorithm returns to the NLBGS solver. We wait for the norm
of the residuals to decrease by an order of magnitude before retesting the CN approach because, based on
our experience and experimentation with the problems described in this paper, if the CN approach does not
provide a superior convergence rate to begin with, and the initial guess is not very close to the solution, then
it is likely to require convergence by multiple orders of magnitude before providing a significantly improved
and superior convergence rate.

Before exiting the NLBGS solver to retest the CN approach, we use the convergence rate to estimate
the amount of time remaining until convergence for the NLBGS solver. We compare this value to the last
measured time for one CN iteration to decide whether it is worth retesting the CN approach. If the predicted
time to convergence for the NLBGS approach is less than the last measured time for a CN iteration, then
the NLBGS process continues.

In the NLBGS algorithm, we also have some additional conditional statements for robustness (lines 27
to 39). If the NLBGS solver is not converging, we reset the variables to the point that gave the lowest
residuals norm and test the CN solver again. If this does not help, and the CN solver was converging when
it was initially tested, we reset the unknown variables to the point where the CN approach converged and
test it again. This is only attempted once. For the above two checks, we use the simple criterion of checking
whether the norm of the residuals has decreased after 10 iterations to determine if it is an appropriate time
to test the CN solver again. We use 10 iterations to allow for fluctuations due to nonlinearity and the
relaxation strategy, and to avoid checking the more expensive CN solver too frequently.

When the CN approach is selected, either after the initial convergence rate estimations or after switching
from the NLBGS approach, we use Algorithm 3. If the CN approach diverges such that the increase in the
norm of the residuals is greater than 10 ·atol, then the solver exits and we return to Algorithm 1. The factor
of 10 is used to avoid exiting prematurely when there is a small amount of divergence near the solution due
to numerical errors and finite precision. If the CN solver diverges when it is not very close to the solution,
we choose to exit and try the NLBGS solver for globalization. Depending on how tight the user-specified
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Algorithm 2 NLBGS solver algorithm

1: function NLBGS(v, r, tCN, uCNcache, flagcheckCN1, flagcheckCN2, atol)
2: iterNLBGS ← 0 . Initialize iteration counter
3: basenorm← ‖rlatest‖ . Store a copy of the residuals norm
4: normcopy ← ‖rlatest‖ . Store another copy
5: ucache ← v . Store a copy of the variables
6: while ‖rlatest‖ > atol and flagcheckCN1 is False do
7: t1 ← time() . Start timing
8: Sequentially solve each discipline once
9: Apply relaxation strategy and compute residuals

10: t2 ← time() . End timing
11: iterNLBGS ← iterNLBGS + 1 . Increment counter
12: if ‖rlatest‖ < normcopy then
13: normcopy ← ‖rlatest‖ . Store lower residuals norm
14: ucache ← v . Update copy
15: end if
16: if ‖rlatest‖/basenorm < 0.1 and iterNLBGS > 3 then

17: γ ←
(

1
2
‖rlatest‖
‖rlatest−1‖ + 1

2
‖rlatest−1‖
‖rlatest−2‖

)
. Estimate error ratio

18: if γ < 1 then

19: nremaining ← log10

(
atol
‖rlatest‖

)
/ log10(γ)

20: tremaining ← nremaining · (t2 − t1) . Estimate time remaining to convergence
21: if tremaining > tCN then
22: flagcheckCN1 ← True . Set flag for retesting CN to True
23: end if
24: else
25: flagcheckCN1 ← True . Set flag for retesting CN to True
26: end if
27: else if iterNLBGS > 10 then
28: if ‖rlatest‖ > ‖rlatest−10‖ then
29: if flagcheckCN2 is False then
30: v ← ucache
31: flagcheckCN2 ← True . Reset flag
32: flagcheckCN1 ← True . Set flag for retesting CN to True
33: else if uCNcache is not None then
34: v ← uCNcache . Return to an earlier point
35: uCNcache ← None . Reset variable
36: flagcheckCN1 ← True . Set flag for retesting CN to True
37: end if
38: end if
39: end if
40: end while
41: return v, r, uCNcache, flagcheckCN1, flagcheckCN2, iterNLBGS

42: end function

convergence tolerance is, a user may choose to adjust the above factor.
The practical implementation of the AS algorithm may require additional instructions not included in

the algorithms mentioned above. For example, it may be necessary to keep track of the total number of
iterations for each MDA approach in case a maximum number of iterations is specified by the user to prevent
the algorithms from looping indefinitely. We have omitted these instructions in the interest of clarity. The
implementation (with OpenMDAO version 1.7.3) used herein is available in a GitHub repository2.
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Algorithm 3 CN solver algorithm

1: function CN(v, r, atol)
2: while ‖rlatest‖ > atol do
3: t1 ← time() . Start timing
4: ucache ← v . Store a copy of the variables
5: Take a Newton step and compute residuals
6: t2 ← time() . End timing
7: tCN ← t2 − t1
8: if ‖rlatest‖ − ‖rlatest−1‖ > 10 atol then
9: v ← ucache . Return to previous point if diverging

10: return v, r, tCN . Exit if diverging
11: end if
12: end while
13: return v, r, tCN

14: end function

5 Results
5.1 Benchmarking using the scalable problem
First, we present performance results of the AS algorithm tested with problems generated using the Taylor
series-based scalable problem formulation described in Section 2.2. We used two sets of nonlinear problems
for a total of 600 randomly-generated analysis problems. The first set consists of 300 problems, with each
component in a problem containing between 200 and 1,000 equations. The second set consists of another 300
problems, with each component in a problem containing between 500 and 2,000 equations (we use random
number generators to assign the number of equations to each component). Each problem consists of 20
components to represent a complex system. This gives us 600 test problems that have between 4,000 and
40,000 variables each.

Each problem set contains two subsets of 150 problems each. One subset has the initial guesses for the
variables set to random integers between 15 and −15, except 0 which is a solution. The other subset has
the initial guesses for the variables set to random integers between 150 and −150, except 0. This is done to
vary the proximity of the initial guess to the solution. For each subset, we generate 50 problems and use
the settings of these problems to generate 150 problems by specifying three different values for the coupling
strength amplification factor, α: 0.5, 1.0, and 1.5.

We use these problems to compare the performance of the AS, NLBGS, and CN approaches. Before
discussing the results, we provide some implementation details specific to these test cases here. Other
implementation details are described in Appendix A. The CN approach has an iteration limit of 30, and the
NLBGS approach has an iteration limit of 200. Based on initial testing, we found that when the CN solver
converges successfully, it usually does so in fewer than 15 iterations; therefore, we set the iteration limit
for the CN solver to 30 to avoid excessive iterations when it failed to converge to the specified tolerance.
Similarly, we found 200 to be a sufficiently large number of iterations for the NLBGS solver. The absolute
convergence tolerance for the fGMRES solver (used for the CN approach) is set to 10−12 and the iteration
limit is set to 100. The convergence tolerance for the L2-norm of the residuals is set to 10−6. The AS
approach switches between the above two approaches with the same settings. Additionally, we must note
that these nonlinear analytical problems have multiple solutions. Therefore, different MDA solvers, due to
their differing properties, approach different solutions. This provides a challenging set of problems to test
an algorithm that switches between approaches.

Table 3 shows the mean and median analysis wall times for the test problems. In order for the statistics
to be meaningful, they are only included if more than 75% of the problems of the corresponding problem
subset and approach converged successfully. Additionally, for fair comparison, if statistics are included, they
are for the problems that successfully converged with all the approaches that have statistics included for.
We observe that the NLBGS approach is faster than the CN approach for a majority of the problems with
the low and moderate coupling strength amplification factors (α = 0.5 and 1.0). However, for the problems
with high coupling strength, the CN approach is more robust than the NLBGS approach, which frequently
diverges despite the relaxation strategy.
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Table 3: Wall time statistics for the 600 analysis test problems with the AS, CN, and NLBGS approaches,
and varying coupling amplification factor, α. The lowest values are highlighted with bold font, and values
are omitted if less than 75% of problems converged.

α = 0.5 α = 1.0 α = 1.5

AS CN NLBGS + AR AS CN NLBGS + AR AS CN NLBGS + AR

mean [s] 34.44 46.73 34.84 75.84 113.82 90.43 291.73 313.54 –
median [s] 25.96 34.72 25.59 54.88 71.78 61.37 191.30 185.01 –

Table 4: Percentage of problems that converged with varying coupling amplification factor for the 600
analysis test problems

α = 0.5 α = 1.0 α = 1.5

AS CN NLBGS + AR AS CN NLBGS + AR AS CN NLBGS + AR

100% 100% 100% 99% 99% 84% 87% 89% 35%

0 10 20 30 40

Wall time [s]

10−9

10−7

10−5

10−3

10−1

101

103

R
es

id
u

al
n

or
m

CN

NLBGS + AR

AS

(a) α = 0.5
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(c) α = 1.5

Figure 6: Convergence behavior for three of the Taylor series-based scalable problem test cases with varying
coupling strength amplification factor, α, testing the automated selection algorithm. Convergence tolerance
= 10−6. (AS = Automated selection, CN = Coupled Newton, NLBGS = Nonlinear block Gauss–Seidel, AR
= Aitken’s relaxation)

For the problems with the low and moderate coupling strength amplification factors, the AS algorithm
either provides the lowest mean and median times, or times very close to the lowest. For the problems
with high coupling strength, the AS algorithm provides the same level of robustness as the CN approach.
The AS, CN, and NLBGS approaches successfully converged 95%, 96%, and 73% of all the test problems,
respectively. Table 4 shows the percentages of problems that converged successfully for the different coupling
strength amplification factors. Note that in the cases where the AS or CN approaches failed to converge, it
is usually due to a failure to converge tightly enough to the specified tolerance, rather than divergence. We
attribute this to numerical error. Figure 13 in Appendix D plots the timings for reference.

To illustrate the behavior of the AS algorithm, Fig. 6 shows the convergence histories for three of the
scalable problem test cases. These three problems have the same settings except for the coupling strength
amplification factor, α, which increases left to right. In Figs. 6a and 6b, the algorithm tests the NLBGS and
CN approaches, and then switches to the CN approach because the estimated rate for the CN approach is
slightly higher. The larger steps in the AS curves show the points at which the CN approach is selected. In
Fig. 6c, the algorithm initially selects the NLBGS approach after testing the NLBGS and CN approaches.
Then, after converging one order of magnitude, it retests the CN approach and switches to the CN approach
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due to its higher convergence rate at this point.
To summarize the results with the 600 scalable problem test cases, we find that the AS algorithm is

the best overall choice compared to the CN and NLBGS approaches. For the problems with relatively low
coupling strength, NLBGS is very efficient, and AS provides similar performance. For the problems with
the moderate coupling strength factor, NLBGS suffers from having to perform more iterations because of
the increase in coupling, so AS is noticeably faster. For the problems with the high coupling strength factor,
NLBGS does not converge for most cases, CN is the best choice, and AS provides similar performance.

5.2 Benchmarking using OpenAeroStruct
Next, we present performance results of the AS algorithm tested with OpenAeroStruct. Figure 7a shows
the AS algorithm tested with the OpenAeroStruct analysis example problem used for Fig. 4 (wing with
35◦ sweep and 1.5 cm spar thickness). To simulate implementations in which the CN approach is more
competitive compared to the NLBGS approach (similar to the approaches and problems used in the studies
cited in the introduction (Fernández and Moubachir, 2005; Heil et al, 2008; Sheldon et al, 2014; Kenway
et al, 2014)), we run the same problem with the NLBGS iterations slowed down by adding pauses to the
solver code. Figures 7b and 7c show the results with each NLBGS iteration slowed down by 0.02 and 0.04
seconds, respectively (approximately 5 and 10 times the time for one NLBGS iteration on the computer
used).

In Fig. 7a, we can see that the algorithm tests the CN approach once after the initial NLBGS iterations
and again after the residuals norm drops an order of magnitude. After this, the algorithm does not test the
CN approach again. In Figs. 7b and 7c, we observe that the algorithm switches to the CN approach after
the third time that it tests it. This is because the slope of the NLGBS curve is no longer steeper than the
CN curve at this point.

0 1 2 3

Wall time [s]

10−6

10−4

10−2

100

102

104

R
es

id
u

al
n

or
m CN

NLBGS + AR

AS

(a) Normal speed

0 1 2 3

Wall time [s]

10−6

10−4

10−2

100

102

104

R
es

id
u

al
n

or
m

CN

NLBGS + AR

AS

(b) 0.02 sec slowdown for NLBGS

0 1 2 3

Wall time [s]

10−6

10−4

10−2

100

102

104

R
es

id
u

al
n

or
m CN

NLBGS + AR

AS

(c) 0.04 sec slowdown for NLBGS

Figure 7: Convergence behavior for the OpenAeroStruct analysis problem testing the automated selection
algorithm. For the problems of Figs. (b) and (c), each iteration of the NLBGS solver is slowed down by
adding pauses. (AS = Automated selection, CN = Coupled Newton, NLBGS = Nonlinear block Gauss–
Seidel, AR = Aitken’s relaxation)

In earlier sections, we discussed the behavior of the two major MDA approaches and how several factors
impact their performance. Once we move further and consider optimization problems, there are more factors
that impact overall performance, making it necessary to test the proposed algorithm with optimization
problems instead of only analysis problems. For example, if a certain MDA convergence tolerance is specified,
the CN approach is more likely to overshoot this tolerance and converge to a lower value due to its quadratic
convergence (see Fig. 2). For gradient-based optimization, this difference in accuracies can impact the
gradients and the steps taken by the optimizer, potentially leading to different optimization convergence
histories (different design points evaluated and different numbers of objective function calls) with the different
MDA approaches.

To further test the AS algorithm, we use a set of optimization problems with OpenAeroStruct. The
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optimization cases consist in fuel burn minimization subject to stress and lift-equals-weight constraints,
as described in Section 2.3. We use the gradient-based optimizer SNOPT (Gill et al, 2005) to solve the
optimization problems, with optimality and feasibility tolerances set to 10−6. The linear solver for computing
gradients for the optimizer is SciPy’s (Jones et al, 2001) GMRES, with the absolute convergence tolerance
set to 10−12 and a limit of 200 iterations. The baseline mesh is based on the Q400 wing using 15 spanwise
and 3 chordwise nodes for a half wing. The wing is initially planar and untwisted. The twist and thickness
distributions are optimized for different fixed sweep angles (30◦, 35◦, 40◦, and 45◦ sheared sweep) and
different material properties. One set of optimization problems are solved with the Young’s modulus and
shear modulus for the structure set to 70 GPa and 30 GPa (which are approximate values for aluminum),
and another set with 75% of these values. Additionally, for the spar, we use two different initial thicknesses
of 2.0 cm and 1.5 cm. The lower initial thickness provides a more challenging start for the MDA approaches.

We compare the optimization results using the multidisciplinary feasible (MDF) architecture and four
MDA approaches. The CN approach uses SciPy’s GMRES solver to compute the Newton steps. The absolute
convergence tolerance for the GMRES solver is 10−12 and the iteration limit is 200. For preconditioning, we
use the linear block Gauss–Seidel option in OpenMDAO. Based on initial testing, we found that when the
CN solver converges, it does so in fewer than ten iterations, so we set the iteration limit for the CN solver
to 15 to avoid excessive iterations when it failed to converge. The NLBGS approach cycles through the
individual components and uses Aitken’s relaxation. The NLBGS iteration limit is 1,000, and the relaxation
factor is between 0.01 and 1.5 for these problems. The convergence tolerance for the L2-norm of the residuals
is set to 10−6. The AS approach switches between the above two approaches with the same settings. For
additional comparison, we also include another hybrid approach that simply switches to the CN approach
after ten NLBGS iterations.

Figure 8a shows the total MDA wall times for optimization problems with the different MDA approaches,
including the AS approach. Data points are missing for the cases where the optimization failed to converge.
Since the number of optimization iterations and objective function calls are not the same with all the MDA
approaches for each optimization problem, Fig. 8b is included to show the corresponding average wall time
per MDA for the problems described above. In general, the average times per MDA with the AS algorithm
and the 10-NLBGS-iteration hybrid approach are in between the average times for the other two approaches.

Figure 8 also shows that the AS algorithm is the most robust, with 14 out of the 16 optimization problems
converging. Using NLBGS with relaxation, 12 out of the 16 optimization problems converged, and with CN,
10 out of the 16 optimization problems converged. Using the hybrid approach that switches to the CN
approach after 10 NLBGS iterations, 10 out of the 16 optimization problems converged.

Since the time per MDA is significantly greater with the CN implementation used for these problems,
the same problems are rerun by slowing each NLBGS iteration with a 0.02 second pause (approximately 5
times the time for one NLBGS iteration on the computer used), to simulate an implementation in which
the CN approach is more competitive. This impacts the rates that the AS algorithm computes and uses to
select an approach. Figure 9a shows the corresponding total MDA wall times for the optimization problems.
Figure 9b shows the corresponding average wall times per MDA. Once again, in general, the average times
per MDA with the AS algorithm are in between the average times for the CN and NLBGS approaches. Also,
the AS algorithm is again the most robust for the optimizations, with 14 out of the 16 optimization problems
converging. The total objective function call times, number of objective function calls, and optimized fuel
burn values for the above cases are included in Appendix E for reference.

While the proposed AS algorithm does not fix all the shortcomings of the NLBGS and CN approaches,
it provides a way to increase robustness and to take advantage of the strengths of each approach.

6 Conclusion
In this work, we compare nonlinear block Gauss–Seidel and coupled-Newton approaches for the MDA of
coupled multidisciplinary systems, and propose a novel hybrid algorithm. This hybrid algorithm estimates
convergence rates and uses this information to select and switch between the two approaches to provide a
balance of efficiency and robustness. We implement this automated selection algorithm in the OpenMDAO
framework and this implementation is publicly available. We also propose a new analytic benchmark prob-
lem formulation that is versatile and scalable, since the dimensionality, nonlinearity, sparsity, and coupling
strength of the problem can be customized.
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Figure 8: MDA times for fuel burn optimization with OpenAeroStruct. AS is the most robust with 14 out
of 16 optimization problems converging. (CN = Coupled Newton, NLBGS = Nonlinear block Gauss–Seidel,
AR = Aitken’s relaxation, AS = Automated selection, 10 NBLGS + CN = Switch to CN after 10 NLBGS
with AR iterations)

We benchmark the automated selection algorithm using MDA problems constructed with the new Taylor
series-based scalable problem formulation, and using optimization problems run with OpenAeroStruct, an
open-source low-fidelity tool for aerostructural analysis and optimization. With a set of 600 randomly-
generated analysis problems representing complex multidisciplinary systems, we show that this algorithm
provides a balance of both speed and robustness. With a set of 16 OpenAeroStruct test problems, the
proposed algorithm provides greater robustness while maintaining MDA times in between the times of the
other two major approaches for most cases. This algorithm can help users save time by reducing the time
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Figure 9: MDA times for fuel burn optimization with OpenAeroStruct. Each NLBGS iteration is slowed
down by 0.02 seconds using a pause function. AS is the most robust with 14 out of 16 optimization problems
converging. (CN = Coupled Newton, NLBGS = Nonlinear block Gauss–Seidel, AR = Aitken’s relaxation,
AS = Automated selection, 10 NBLGS + CN = Switch to CN after 10 NLBGS with AR iterations)

and effort spent testing approaches, and by reducing the likelihood that an expensive optimization process
does not finish due to a convergence failure in the MDA.

The ultimate goal of the proposed algorithm is to allow engineers and researchers to use tools like
OpenMDAO and focus on their design problems and results without having to spend considerable amounts
of time studying and experimenting with different options and approaches. We expect this algorithm to be
useful and applicable to a large range of MDO problems, especially those that commonly arise in the design
of complex multidisciplinary systems with strong coupling.
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Recommendations for future work include testing this algorithm with more MDO applications, further
benchmarking it for problems with multiple analysis solutions (Allison et al, 2005), and studying the potential
of using it with other MDA approaches like the one developed by Hulme et al (2000). Future work will also
include integrating this algorithm with the main OpenMDAO repository so that all users can have access to
it by default.
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Appendix A
Additional details for the problems generated using the Taylor series-based scalable problem formulation are
provided here. We use the scalable problem formulation described in Section 2.2 to generate test problems
that consist of 20 components each. We consider 20 as a reasonably representative number of components
for complex systems such as aircraft (Hwang and Martins, 2016), satellites (Mosher, 1999; Hwang et al, 2014;
Hu et al, 2016), and wind-turbines (Gray et al, 2014; Ning and Petch, 2016), which involve O(10) disciplines.

The design structure matrices (DSM) (Steward, 1981; Lambe and Martins, 2012) for the problems are
randomly generated such that each component depends on at least one other component. A sample randomly-
generated component-level Jacobian structure (transpose of N2 diagram) is shown in Fig. 10a. Figure 10b
shows a smaller illustrative example with 5 components and a total of 50 residual equations. Figure 10c
shows the Jacobian structure detailing the internal structure of the diagonal and off-diagonal blocks shown in
Fig. 10b. The patterns shown in Fig. 10c for the diagonal and off-diagonal blocks are used for the benchmark
problems. The component blocks on the diagonal have fully filled tridiagonal structures, and the off-diagonal
blocks have tridiagonal structures where every other row is empty.

(a) A sample randomly-generated
component-level Jacobian struc-
ture with 20 components.

(b) Component-level Jacobian
structure for a smaller illustrative
example.
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(c) Internal structure of the Jaco-
bian for the smaller illustrative ex-
ample in Fig. 10b.

Figure 10: Jacobian structures (Chauhan et al, 2018)

We generate both linear and nonlinear systems of equations for the test problems. For the nonlinear
problems, we use random number generators to specify the degree of the polynomial equations belonging
to each component such that, on average, half of the components are expected to be linear, and the other
half are expected to be nonlinear. Of the half that are expected to be nonlinear, half are expected to be
quadratic, and the other half are expected to be cubic.

The nonlinearity and coupling functions used for the problems are f(r) = r−1 and g(i, jk) = 1.0001−|i−jk|.
We provide details on the coupling strength amplification factors, α, and the numbers of equations per compo-
nent in Sections 3.2, 3.3, and 5.1, as the problems are used. We run these problems on a desktop computer
with a 4 GHz Intel Core i7-4790K processor and 32 GB RAM. We implemented the residual and partial
derivative computations for the systems of equations in Fortran and wrapped it with Python (Peterson,
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2009). The rest of the computations are performed using the Python-based OpenMDAO framework.
When solving these analytical problems with the CN approach, we use the Krylov subspace with pre-

conditioning (KSP) flexible generalized minimal residual (fGMRES) (Saad, 1993) linear solver in PETSc
(Balay et al, 1997). For preconditioning, we use the linear block Gauss–Seidel option in OpenMDAO, which
sequentially solves smaller linear systems using each component’s Jacobian and SciPy’s (Jones et al, 2001)
linalg.solve direct solver. For the NLBGS approaches, we solve the system by cycling through every
component. SciPy’s linalg.solve direct solver is used for solving linear components and the linear Newton
systems for nonlinear components. We use OpenMDAO’s built-in reordering algorithm to determine the
execution order of the components (Gundersen and Hertzberg, 1983; Baharev et al, 2015; Chauhan et al,
2018). For the NLBGS approach with relaxation, we use Aitken’s acceleration (Irons and Tuck, 1969) based
relaxation (AR) (Chauhan et al, 2018) to help accelerate convergence and prevent divergence. The relaxation
factor is limited between 0.25 and 2.0, while the convergence tolerance for the L2-norm of the residuals is
set to 10−6.

Appendix B
The development of Eqs. (11) and (13) discussed in Section 3.3 are presented here. This is included to develop
the relationship between the convergence criterion of the block Gauss–Seidel method, local sensitivities, and
the partial derivatives of residual equations.

We begin with local sensitivities (as mentioned earlier, these are commonly used to quantify the strength
of the couplings between two components) and show how they relate to the convergence criterion of block
Gauss–Seidel iterations. Consider a multidisciplinary system with n components. The updated vector of
variables, at the end of the kth block Gauss–Seidel iteration for the linearized multidisciplinary system, can
be written as
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, (15)

where ∂v(i)/∂v(j) are the local sensitivities of the variables of the ith component with respect to the variables
of the jth component. This equation can be better understood by thinking about the variables of the
components that are solved first and last in the block Gauss–Seidel cycle. The updated variables for the first
component can be written as (slope-intercept form)

v
(1)
k+1 = v

(1)
k +

n∑
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∂v(1)

∂v(i)

(
v
(i)
k − v

(i)
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)
. (16)

Since the variables of other components have not been updated yet, this component uses the update to the

variables from the previous iteration,
(
v
(i)
k − v

(i)
k−1

)
. The updated variables for the last component can be

written as

v
(n)
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(n)
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(
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Since the variables of all the other components have been updated, this component uses the update to the

variables from the current iteration,
(
v
(i)
k+1 − v

(i)
k

)
, instead of

(
v
(i)
k − v

(i)
k−1

)
. The other components between

the first and last components will use some combination of the updates to the variables from the current
and previous iteration. This is why we see a lower and an upper triangular matrix in Eq (15).
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Eq. (15) can be further written in terms of updates to the variables as
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and simplified to
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At each iteration, the previous update is multiplied by G. This means that the rate of convergence of the
block Gauss–Seidel iterative process will depend on the spectral radius of the iteration matrix, G (Saad,
2003). The smaller the spectral radius, the faster the convergence. If the spectral radius of G in Eq. (20)
is greater than 1, the iterations will not converge without a relaxation strategy. Note that for nonlinear
systems, the matrix G will not stay constant as the iterations progress. The amount G changes will depend
on the nonlinearity and the proximity to the solution.

Furthermore, using the chain rule,
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which can be rearranged as
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Eq. (19) can also be written as
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Where, R(i) are the residual functions for the ith component and r(i) are the residual values for the ith

component. Multiplying both sides by 
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Finally, this can be rearranged to give
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Once again, for convergence, the spectral radius of the iteration matrix, G, in Eq. (25) should be less than 1.
This spectral radius can be computed using the Jacobian of the residual equations of the governing equations
of the system components, which may be available when using a coupled-Newton approach or gradient-based
optimization with analytic derivatives.

Appendix C
Analysis solution timings for the analytical problems discussed in Section 3.3 are included here to relate the
effect of coupling strength. In Figs. 11 and 12, if all problems converged for a particular approach and subset
of problems, the data points are blue, otherwise they are red. If less than 75% of the problems converged for
a particular approach and subset of problems, the data points are shown, but the box and whiskers are not.

Figure 11 compares the analysis solution times for the nonlinear problem set with the CN approach
and two different linear solvers for computing the Newton steps. One set of results corresponds to the CN
approach with SciPy’s (Jones et al, 2001) linalg.lu solve direct linear solver (DLS), and the second set
corresponds to the CN approach with the fGMRES iterative linear solver (ILS) described in Appendix A.
As we move from left to right in Fig. 11, we observe that the analysis timings are less sensitive to coupling
strength with the DLS than with the ILS. This is attributed to the effect that the coupling strength has on
the conditioning of the Newton linear system and on the effectiveness of the preconditioning strategy. Also,
as expected, we see that the analysis timings scale poorly with problem size for the CN approach with the
DLS.

Figure 12 compares the analysis solution times for the linear and nonlinear problem set with the CN
approach (with the ILS as described in Appendix A) and the NLBGS approach with AR. As the coupling
strength increases in this figure, moving from left to right, fewer problems converge with the NLBGS approach
than with the CN approach.

Appendix D
Analysis solution timings for the analytical test problems discussed in Section 5.1 are plotted here. In
Fig. 13, if all problems converged for a particular approach and subset of problems, the data points are blue,
otherwise they are red. If less than 75% of the problems converged for a particular approach and subset of
problems, the data points are shown, but the box and whiskers are not.

Appendix E
The total objective function call times, number of objective function calls, and optimized fuel burn values
for the optimization cases discussed in Section 5.2 are included here. Tables 5 to 8 correspond to the cases
without any artificial delay for the NLBGS iterations. Tables 9 to 12 correspond to the cases with a 0.02 sec
delay for each NLBGS iteration.
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Figure 11: Solution wall time for the nonlinear problem set described in Section 3.3 with CN approaches. The
coupling strength amplification factor, α, increases left to right. The analysis solution times are less sensitive
to coupling strength with the direct linear solver (DLS) than with the iterative linear solver (ILS). Data
points are blue if all problems converged for the combination of approach and problem settings, otherwise
they are red. Box and whiskers are not shown if less than 75% of the problems converged.
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Figure 13: Solution wall time for the analytical problems described in Section 5.1 with the automated selec-
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Table 5: Total objective function call time, number of objective function calls, and optimized fuel burn
values for the optimization cases with an initial spar thickness of 2 cm, E = 70 GPa, and G = 30 GPa

Sweep angle

MDA approach 30◦ 35◦ 40◦ 45◦

NLBGS + AR Total objective function call time [s] 3.4632 9.5859 3.4667 10.1850
No. of objective function calls 51 54 32 80
Optimized fuel burn [kg] 2341.0113 2385.6203 2453.4013 2564.0994

AS Total objective function call time [s] 12.3744 15.7428 7.6321 21.2630
No. of objective function calls 51 54 32 80
Optimized fuel burn [kg] 2341.0113 2385.6203 2453.4013 2564.0994

CN Total objective function call time [s] 20.3333 19.6667 13.0925 35.6903
No. of objective function calls 51 42 32 80
Optimized fuel burn [kg] 2341.0113 2385.6448 2453.4013 2564.0994

10 NLBGS + CN Total objective function call time [s] 9.2666 13.4116 7.7866 22.4154
No. of objective function calls 51 51 32 80
Optimized fuel burn [kg] 2341.0113 2385.6199 2453.4013 2564.0994

Table 6: Total objective function call time, number of objective function calls, and optimized fuel burn
values for the optimization cases with an initial spar thickness of 2 cm, E = 52.5 GPa, and G = 22.5 GPa
(DNC = did not converge successfully)

Sweep angle

MDA approach 30◦ 35◦ 40◦ 45◦

NLBGS + AR Total objective function call time [s] 11.4933 8.3092 15.7035 -
No. of objective function calls 73 57 58 -
Optimized fuel burn [kg] 2344.3228 2388.5153 2455.8987 DNC

AS Total objective function call time [s] 24.4031 18.9122 23.0266 -
No. of objective function calls 73 57 58 -
Optimized fuel burn [kg] 2344.3228 2388.5153 2455.8987 DNC

CN Total objective function call time [s] 31.5173 27.4315 - 99.6932
No. of objective function calls 53 57 - 157
Optimized fuel burn [kg] 2344.3242 2388.5153 DNC 2570.7689

10 NLBGS + CN Total objective function call time [s] 18.6671 17.9469 - -
No. of objective function calls 73 57 - -
Optimized fuel burn [kg] 2344.3228 2388.5153 DNC DNC
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Table 7: Total objective function call time, number of objective function calls, and optimized fuel burn values
for the optimization cases with an initial spar thickness of 1.5 cm, E = 70 GPa, and G = 30 GPa (DNC =
did not converge successfully)

Sweep angle

MDA approach 30◦ 35◦ 40◦ 45◦

NLBGS + AR Total objective function call time [s] 10.4334 9.0689 5.1368 40.4214
No. of objective function calls 62 93 52 174
Optimized fuel burn [kg] 2341.0272 2385.6186 2453.3352 2564.0986

AS Total objective function call time [s] 19.3982 22.6836 14.5699 197.5448
No. of objective function calls 62 93 52 185
Optimized fuel burn [kg] 2341.0272 2385.6186 2453.3352 2564.0993

CN Total objective function call time [s] - 39.1774 29.3865 -
No. of objective function calls - 93 52 -
Optimized fuel burn [kg] DNC 2385.6186 2453.3352 DNC

10 NLBGS + CN Total objective function call time [s] 17.0656 27.6118 - -
No. of objective function calls 62 93 - -
Optimized fuel burn [kg] 2341.0272 2385.6186 DNC DNC

Table 8: Total objective function call time, number of objective function calls, and optimized fuel burn
values for the optimization cases with an initial spar thickness of 1.5 cm, E = 52.5 GPa, and G = 22.5 GPa
(DNC = did not converge successfully)

Sweep angle

MDA approach 30◦ 35◦ 40◦ 45◦

NLBGS + AR Total objective function call time [s] - - 15.6457 -
No. of objective function calls - - 52 -
Optimized fuel burn [kg] DNC DNC 2455.8781 DNC

AS Total objective function call time [s] 96.8730 90.4025 19.0696 -
No. of objective function calls 114 292 52 -
Optimized fuel burn [kg] 2344.3182 2388.5149 2455.8781 DNC

CN Total objective function call time [s] - - - 74.4103
No. of objective function calls - - - 120
Optimized fuel burn [kg] DNC DNC DNC 2570.7677

10 NLBGS + CN Total objective function call time [s] 101.7250 127.1690 - -
No. of objective function calls 53 311 - -
Optimized fuel burn [kg] 2344.3207 2388.5151 DNC DNC
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Table 9: Total objective function call time, number of objective function calls, and optimized fuel burn
values for the optimization cases with an initial spar thickness of 2 cm, E = 70 GPa, and G = 30 GPa. For
these cases the NLBGS iterations are slowed down by 0.02 sec.

Sweep angle

MDA approach 30◦ 35◦ 40◦ 45◦

NLBGS + AR Total objective function call time [s] 16.8777 57.2158 19.8381 59.9634
No. of objective function calls 51 54 32 80
Optimized fuel burn [kg] 2341.0113 2385.6203 2453.4013 2564.0994

AS Total objective function call time [s] 22.7925 39.2888 17.5418 47.3558
No. of objective function calls 51 54 32 80
Optimized fuel burn [kg] 2341.0113 2385.6203 2453.4013 2564.0994

CN Total objective function call time [s] 18.6830 20.0364 12.9833 33.7610
No. of objective function calls 51 42 32 80
Optimized fuel burn [kg] 2341.0113 2385.6448 2453.4013 2564.0994

10 NLBGS + CN Total objective function call time [s] 17.9622 22.1656 13.6845 39.5152
No. of objective function calls 51 51 32 80
Optimized fuel burn [kg] 2341.0113 2385.6199 2453.4013 2564.0994

Table 10: Total objective function call time, number of objective function calls, and optimized fuel burn
values for the optimization cases with an initial spar thickness of 2 cm, E = 52.5 GPa, and G = 22.5 GPa.
For these cases the NLBGS iterations are slowed down by 0.02 sec (DNC = did not converge successfully).

Sweep angle

MDA approach 30◦ 35◦ 40◦ 45◦

NLBGS + AR Total objective function call time [s] 74.5445 46.8662 102.1477 -
No. of objective function calls 73 57 58 -
Optimized fuel burn [kg] 2344.3228 2388.5153 2455.8987 DNC

AS Total objective function call time [s] 41.6273 35.3379 51.7059 -
No. of objective function calls 73 57 58 -
Optimized fuel burn [kg] 2344.3228 2388.5153 2455.8987 DNC

CN Total objective function call time [s] 26.2211 23.9812 - 99.9636
No. of objective function calls 53 57 - 157
Optimized fuel burn [kg] 2344.3242 2388.5153 DNC 2570.7689

10 NLBGS + CN Total objective function call time [s] 32.2955 29.9007 - -
No. of objective function calls 73 57 - -
Optimized fuel burn [kg] 2344.3228 2388.5153 DNC DNC
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Table 11: Total objective function call time, number of objective function calls, and optimized fuel burn
values for the optimization cases with an initial spar thickness of 1.5 cm, E = 70 GPa, and G = 30 GPa. For
these cases the NLBGS iterations are slowed down by 0.02 sec (DNC = did not converge successfully).

Sweep angle

MDA approach 30◦ 35◦ 40◦ 45◦

NLBGS + AR Total objective function call time [s] 67.0960 57.6636 28.8311 280.8396
No. of objective function calls 62 93 52 174
Optimized fuel burn [kg] 2341.0272 2385.6186 2453.3352 2564.0986

AS Total objective function call time [s] 35.7094 49.7338 26.8468 262.8498
No. of objective function calls 62 93 52 189
Optimized fuel burn [kg] 2341.0272 2385.6186 2453.3352 2564.0964

CN Total objective function call time [s] - 38.8701 23.7411 -
No. of objective function calls - 93 52 -
Optimized fuel burn [kg] DNC 2385.6186 2453.3352 DNC

10 NLBGS + CN Total objective function call time [s] 30.5977 38.7081 - -
No. of objective function calls 62 93 - -
Optimized fuel burn [kg] 2341.0272 2385.6186 DNC DNC

Table 12: Total objective function call time, number of objective function calls, and optimized fuel burn
values for the optimization cases with an initial spar thickness of 1.5 cm, E = 52.5 GPa, and G = 22.5 GPa.
For these cases the NLBGS iterations are slowed down by 0.02 sec (DNC = did not converge successfully).

Sweep angle

MDA approach 30◦ 35◦ 40◦ 45◦

NLBGS + AR Total objective function call time [s] - - 88.8133 -
No. of objective function calls - - 52 -
Optimized fuel burn [kg] DNC DNC 2455.8781 DNC

AS Total objective function call time [s] 212.7032 186.1161 38.7096 -
No. of objective function calls 217 288 52 -
Optimized fuel burn [kg] 2344.3192 2388.5149 2455.8781 DNC

CN Total objective function call time [s] - - - 62.8136
No. of objective function calls - - - 120
Optimized fuel burn [kg] DNC DNC DNC 2570.7677

10 NLBGS + CN Total objective function call time [s] 112.8286 183.2096 - -
No. of objective function calls 53 311 - -
Optimized fuel burn [kg] 2344.3207 2388.5151 DNC DNC
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