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Abstract
Random DNA barcodes are a versatile tool for tracking cell lineages, with applications ranging from development to cancer 
to evolution. Here, we review and critically evaluate barcode designs as well as methods of barcode sequencing and initial 
processing of barcode data. We first demonstrate how various barcode design decisions affect data quality and propose a new 
design that balances all considerations that we are currently aware of. We then discuss various options for the preparation of 
barcode sequencing libraries, including inline indices and Unique Molecular Identifiers (UMIs). Finally, we test the perfor-
mance of several established and new bioinformatic pipelines for the extraction of barcodes from raw sequencing reads and 
for error correction. We find that both alignment and regular expression-based approaches work well for barcode extraction, 
and that error-correction pipelines designed specifically for barcode data are superior to generic ones. Overall, this review 
will help researchers to approach their barcoding experiments in a deliberate and systematic way.

Introduction

Observing how clonal populations of cells change over time 
is a key to many problems in evolution, development, cancer, 
and other fields. Until recently, tracking cell lineages was a 
slow and labor-intensive process (Conklin 1905; Serbedzija 
et al. 1989; Holland and Varmus 1998; Kretzschmar and 
Watt 2012; Hsu 2015). Recent advances in genetic engineer-
ing and nucleic acid sequencing technologies spurred the 
development of a new generation of high-throughput lineage 
tracking methods based on DNA “barcodes” (Blundell and 
Levy 2014; Woodworth et al. 2017; Kebschull and Zador 
2018; Masuyama et al. 2019; Baron and van Oudenaarden 
2019; Wagner and Klein 2020; VanHorn and Morris 2021; 
Dujardin et al. 2021). In these approaches, individual cells 
are tagged with unique genetic markers called “barcodes.” 

Many thousands of cell lineages carrying different barcodes 
can be tracked within a population over multiple genera-
tions using high-throughput sequencing. Although barcode 
lineage tracking (BLT) techniques are fairly nascent, they 
already found many applications, e.g., for characterizing 
T-cell recruitment (Schumacher et al. 2010), tracing cellular 
differentiation over the course of organismal development 
(McKenna et al. 2016; Frieda et al. 2017; Alemany et al. 
2018; Wagner et al. 2018; Weinreb et al. 2020), studying 
the clonal history of metastasis in cancer (Wagenblast et al. 
2015; Bhang et al. 2015; Roh et al. 2018; Umkehrer et al. 
2021; Gutierrez et al. 2021; Fennell et al. 2022), screen-
ing and characterizing mutant libraries (Giaever et al. 2002; 
Bell et al. 2014; Wetmore et al. 2015; Li et al. 2019; John-
son et al. 2019; Schubert et al. 2021), identifying the prov-
enance of microbial strains (Qian et al. 2020), and studying 
evolutionary dynamics (Levy et al. 2015; Cira et al. 2018; 
Al’Khafaji et al. 2018; Nguyen Ba et al. 2019; Jasinska et al. 
2020; Fasanello et al. 2020). With such rapid growth, many 
methods have been developed for designing, sequencing, and 
identifying barcodes in the raw sequence data. Multiple labs 
have independently developed their own BLT procedures 
without necessarily evaluating pros and cons of other meth-
odologies. Here, we review various existing approaches to 
BLT experiments and identify some of the best practices for 
generating and reading barcodes. Some downstream analy-
ses of barcode data, such as estimates of lineage fitness, are 
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discussed in other articles in this special issue (e.g., Limdi 
and Baym 2022; Li et al. 2023).

BLT studies fall into two modalities (Woodworth et al. 
2017; Kebschull and Zador 2018; Baron and van Oude-
naarden 2019). Retrospective studies, which are typically 
carried out in the context of development, infer the lineage 
history of a population of cells based on naturally occurring 
somatic genetic variation at highly mutable loci, such as 
microsatellites, which can be viewed as barcodes (e.g., Rei-
zel et al. 2011, 2012). In prospective studies, random DNA 
barcodes are introduced into an organism by the experimen-
talist to observe future changes. Barcodes diversity is usually 
generated in vitro, i.e., before the barcodes are integrated 
into the organism’s genome (e.g., Giaever et al. 2002; van 
Heijst et al. 2009; Levy et al. 2015; Bhang et al. 2015; John-
son et al. 2019; Ge et al. 2020; Eyler et al. 2020). More 
recent methods have also been developed that integrate a 
targeted-mutagenesis module into the organism which then 
generates barcode diversity at the barcode locus in vivo (e.g., 
Peikon et al. 2014; McKenna et al. 2016; Frieda et al. 2017; 
Raj et al. 2018; Spanjaard et al. 2018; Kalhor et al. 2018; 
Chan et al. 2019). In this review, we discuss DNA barcodes 
used for prospective lineage tracking, with a specific focus 
on in vitro barcoding approaches, although some of the dis-
cussion will be relevant to other cases as well.

Early prospective lineage tracking studies synthesized 
and engineered barcodes into individual strains (e.g., dif-
ferent gene-deletion mutants) and then pooled them for the 
tracking experiment (Giaever et al. 2002; Smith et al. 2009). 
This approach has the advantage that barcode sequences 
are known a priori, but it is expensive and labor intensive. 
Today, barcoded strains are typically generated in bulk by 
transforming populations of cells with libraries of constructs 
that contain a diversity of random DNA barcodes, so that 
barcode sequences of the transformed lineages are initially 
unknown. The number of distinct cell lineages in such a 
barcoded population can range from hundreds (Cira et al. 
2018; Fasanello et al. 2020) to millions (Bhang et al. 2015; 
Umkehrer et al. 2021). To track lineages, the population is 
sampled at one or more timepoints, and the PCR-amplified 
barcodes are sequenced, typically on the Illumina platform. 
The relative abundance of each barcode at each timepoint 
can be estimated from these data, which can then be used 
for downstream analysis, e.g., estimating mutant enrichment 
over the course of the experiment.

Researchers who seek to use in vitro-generated barcodes 
for prospective lineage tracking face a number of choices 
with respect to barcode design, sequencing, and barcode 
identification. These include questions regarding barcode 
length and base composition, strategies for barcode amplifi-
cation, methods for extracting barcodes from raw sequencing 
data as well as methods for error correction. Previous stud-
ies have implemented a variety of solutions to each of these 

problems, but we are unaware of any systematic review or 
comparison of various approaches. Here, we review current 
practices in barcode design, sequencing and identification, 
discuss the implications of various choices, and identify 
current best practices for designing and conducting lineage 
tracking experiments using DNA barcodes. In the Appendix, 
we also briefly discuss a related problem of high-throughput 
genotyping of clones at a barcode locus.

Barcode Design, Synthesis and Integration

Designing DNA barcodes involves a number of decisions. 
How long should the barcode locus be? What should be 
its base composition? Where in the genome will it be inte-
grated? etc. These choices can have various downstream 
implications, e.g., for the number of lineages that can 
be tracked, for the fidelity of barcode amplification and 
sequencing and for the accuracy with which lineage fre-
quencies can be estimated. In this section, we discuss some 
design considerations for the barcode locus itself (“Structure 
of the Barcode Locus” section) as well as some practical 
decisions involved in the construction of a barcoded strain 
library (“Synthesis and Integration” section).

Structure of the Barcode Locus

In essence, barcodes are simply random sequences of nucle-
otides. Most DNA synthesis companies offer an option of 
including random nucleotide bases into oligonucleotide 
sequences. Such “barcode” oligos are chemically synthe-
sized and then incorporated into plasmids and/or directly 
into the genome.

For transposon mutagenesis sequencing (TnSeq) experi-
ments, it is also possible to treat the nucleotides adjacent to 
the transposon (sometimes called the “edge sequence”) as a 
“barcode” that identifies the genomic location of each trans-
poson insertion (van Opijnen et al. 2009). However, since 
sequencing and analyzing the edge sequences are some-
what difficult, researchers often engineer synthetic random 
barcodes into the transposon, particularly when the same 
strain library is used in multiple BLT experiments (Wetmore 
et al. 2015; Johnson et al. 2019). In these studies, only one 
“difficult” sequencing experiment is required to associate 
each barcode with its corresponding edge sequence (and, 
therefore, with its insertion location). Then, in subsequent 
BLT experiments, one sequences only the random barcodes 
(Wetmore et al. 2015), which is relatively easy.

In this section, we discuss only the structure of the bar-
code locus itself and leave out the discussion of other parts 
of the oligos that may be necessary for engineering and 
sequencing purposes or other experiment-specific consid-
erations. For example, if restriction enzymes are being 
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used during the cloning process or if it is critical that bar-
codes are not subject to native restriction endonucleases, 
one should consider how frequently recognition sites will 
appear in the barcode design by chance.

The simplest barcodes can be formed by a sequence of 
random nucleotides, i.e., a sequence of “N”s in the oligo 
design (see Wetmore et al. 2015 design in Fig. 1A). Other 
existing barcode designs feature short constant “anchor” 
sequences that break up “variable” regions (see Levy et al. 
2015 and Johnson et al. 2019 designs in Fig. 1A) or con-
sist of alternating random bases that are constrained to 
be strong (“S,” i.e., G or C) or weak (“W,” i.e., A or T; 
see Bhang et al. 2015 design in Fig. 1A). Although these 
designs were motivated by various considerations, such 
as to balance GC content and reduce PCR amplification 
biases (Bhang et al. 2015), how well they achieve these 
goals has been unclear. In fact, we will show below that 
some designs produce barcodes that are more likely to 
exhibit extreme GC-content or long repetitive regions 
(e.g., “AAA AAA ”), which can lead to high error rates 
and PCR amplification or sequencing efficiency biases. We 
then discuss the considerations that determine the length 
of the barcode and describe our new proposed barcode 
design that we expect to perform better than existing alter-
natives. We conclude this section with a brief discussion 
of “pre-multiplexing,” a way of leveraging barcode design 
to reduce labor and material costs at the library prepara-
tion stage.

Anchors and GC‑Content Control

The sequence of the barcode matters. To demonstrate this, 
we reanalyzed data from six barcode sequencing datasets 
(Table S1). We found that the empirical rate of indel errors 
that occur during PCR and/or sequencing increases exponen-
tially with homopolymer run length (Fig. 2A) and with dinu-
cleotide run length (Fig. 2C). For runs with more than 10 
repeats of a single nucleotide or dinucleotide, up to 30% of 
reads associated with a barcode have an insertion or deletion 
in the repetitive sequence. Simulations predict that the prev-
alence of repetitive DNA sequences varies with the barcode 
design, and these predictions are quantitatively supported by 
the data (Fig. 2B, D). Specifically, long homopolymer runs 
are most common in barcodes with homopolymer anchor 
sequences (e.g., “AA,” Levy et al. 2015 design, Fig. 1A), and 
long dinucleotide runs are most common in barcodes with 
repeating pairs of twofold degenerate bases (“WSWS…”, 
Bhang et al. 2015 design, Fig. 1A, also used by Ge et al. 
2020 and Eyler et al. 2020) or repeated dinucleotide anchors 
(e.g., “CA,” Johnson et al. 2019 design, Fig. 1A).

We have also observed that a barcode’s GC content 
can sometimes dramatically bias its representation in the 
sequencing data (Figure S1, unpublished data). This bias 
could be driven by GC-content-dependent differences in 
the PCR amplification (Aird et al. 2011; Benjamini and 
Speed 2012; Laursen et al. 2017). The magnitude of this 
bias has a random component (i.e., the bias is stronger in 
some libraries than in others, see Figure S1), which could 

Fig. 1  Barcode and sequencing design considerations. A Structure of 
the barcode locus and examples of published barcode designs. “N” 
represents fully degenerate positions (“A,” “C,” “G,” or “T”), W (“A,” 
“T”) and S (“G,” “C”) represent partially degenerate positions. B Two 
commonly used barcode amplification strategies, one-step PCR (left) 
and two-step PCR (right). Key features on the primer sequences are 

indicated and explained in boxes. The optional experiment tag region 
on the template DNA is not shown for clarity. Note that in some 
one-step PCR strategies, inline indices with offsets are included, and 
sequencing starts at a similar location as in the two-step PCR strategy 
(Color figure online)
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stem from uncontrolled variation in the setup of the PCR 
reaction, purity of the template, etc. These observations also 
suggest that GC-content-driven biases can be reduced by 
constraining GC content of all barcodes to a narrow range. 
Anchors with balanced GC content (e.g., “CA” anchors as 
in the Johnson et al. 2019 design) can help achieve this goal 
(albeit at the expense of increasing the frequency of dinucle-
otide runs), while the “AA” and “TT” anchors used in (Levy 
et al. 2015) lead to both low GC-content barcodes (Fig. 2F) 
and a high occurrence of long homopolymer runs (Fig. 2B). 
A new barcode design we propose and discuss below is an 
attempt to minimize each of these potential sources of bias 
and error (Fig. 2B, D, F, black dashed lines).

Length and Information

The choice of barcode length is dictated by a balance 
between several factors. On the one hand, barcodes cannot 
be too long because of current synthesis and sequencing 
limitations as well as higher costs. Furthermore, longer 

barcodes, when read by sequencing, will contain statisti-
cally more errors than shorter barcodes. On the other hand, 
length of the barcode locus, together with its structure and 
base composition, determines the amount of information 
that the locus can encode, which in turn limits the num-
ber of distinct lineages that can be tracked. Specifically, the 
information content in bits of each barcode position is given 
by the logarithm with base 2 of the number of alternative 
nucleotides that can be present at the position. For exam-
ple, each position where any one of the four nucleotides can 
be present with equal probabilities encodes  log24 = 2 bits 
of information, positions where only two different nucleo-
tides are admissible encode 1 bit, whereas anchor positions 
encode 0 bits. The total information I of a barcode locus is 
given by the sum of information across all of its positions, 
such that there are at most  2I distinct barcode sequences. In 
a lineage tracking study, each lineage must be tagged with 
a unique barcode, so that a barcode locus with information 
I enables tracking of at most  2I distinct lineages. Thus, to 
track K lineages, the barcode locus must have information 

Fig. 2  Barcode design features and error rates. (A) The total indel 
error rate in homopolymer runs, estimated from barcode data in the 
datasets indicated in the legend. Barcode designs are shown in Fig. 1 
and Table  S1. (B) The frequency of homopolymer runs of different 
lengths in the empirical and simulated datasets of barcodes with dif-
ferent designs (see Methods for details). (C) The total indel error rate 
in dinucleotide runs, estimated from barcode data. (D) The frequency 

of dinucleotide runs of different lengths in the empirical and simu-
lated datasets of barcodes with different designs. (E) The empirical 
distributions of barcode lengths, putatively due to variation in the true 
length of barcodes (see Methods for details). (F) The distributions 
of GC content in barcodes in the empirical and simulated datasets 
(Color figure online)
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content that exceeds Imin =  log2K bits. A barcode locus that 
consists of L random nucleotides (the {N} × L design as in 
Wetmore et al. (2015), see Fig. 1A) has the highest informa-
tion content of 2L bits among all barcodes of length L. Thus, 
tracking K lineages requires the barcode of any design to be 
longer than Lmin = ½  log2K bp.

In practice, barcodes need to have information I that 
exceeds Imin by several bits (and, consequently, of which 
length exceeds Lmin by several bp). Recent studies have suc-
cessfully tracked K =  105 to K =  106 lineages (Imin between 
16.6 and 19.9 bits and correspondingly Lmin between 8.8 and 
10 bp) with barcodes with length between 15 and 20 bp and 
information content between 30 and 40 bits (see Fig. 1A; 
Levy et al. 2015; Johnson et al. 2019; Jasinska et al. 2020; 
Ge et al. 2020; Eyler et al. 2020; Borchert et al. 2022).

There are two reasons why I must exceed Imin. First, since 
cells acquire barcoded DNA constructs at random during 
transformation, the barcode library must be diverse enough 
to ensure that sufficiently many distinct barcodes are trans-
formed into cells. The wider the distribution of barcode fre-
quencies prior to transformation (for a given I), the lower 
will be the barcode diversity after transformation. To ensure 
high post-transformation diversity, a typical barcode should 
be introduced into at most one cell. This occurs whenever

where K is the number of barcoded cells and fmax is the fre-
quency of the most common barcode sequence present in the 
library (see Methods, “Conditions for Preserving Barcode 
Diversity During Transformation” section).

If all barcodes are represented in the library equally 
(so that their frequencies are  2–I), condition (1) is satisfied 
whenever I > Imin. However, in practice, not all barcodes are 
present in the library at the same frequency. We have esti-
mated the distribution of barcode frequencies right after the 
transformation in several existing datasets and found that it 
is closer to exponential or heavy tailed (Figure S2). When 
the distribution is wide, fmax >  2–I, and it is advisable to 
design barcodes with information content exceeding Imin by 
at least a few bits to preserve post-transformation diversity. 
For example, if the distribution of barcode frequencies in the 
library is exponential, then we expect.

fmax =  2–I(γ + I ln 2), where γ ≈ 0.577 is the Euler-
Mascheroni constant (Methods, “Conditions for Preserving 
Barcode Diversity During Transformation” section). Thus, 
to satisfy criterion (1), I should exceed Imin by at least 6 bits 
whenever the desired information content is between 30 and 
60 bits. This criterion has been satisfied in all the datasets 
that we reanalyzed.

The second reason to increase I further is that barcode 
sequences cannot be amplified or read with perfect accuracy. 
While errors are inevitable, good barcode designs account 

(1)Kfmax ≪ 1,

for error statistics and enable researchers to correct at least 
some of them. Sequencing errors can be accounted for most 
easily. On the Illumina platform, the error rate is estimated to 
be ≤ 0.4% per sequenced nucleotide (Stoler and Nekrutenko 
2021), such that up to 7.7% of reads of a 20-bp (40 bit) 
barcode are expected to contain at least one error and up to 
0.3% are expected to contain two or more errors. Good bar-
code designs ensure that the true barcode sequence can be 
correctly inferred despite these errors. All error-correction 
methods rely on the premise that true barcode sequences are 
sufficiently sparse in the sequence space, so that they all dif-
fer from each other at least at 2, or, better yet, at 4 positions 
(see “Identifying Barcodes in Sequencing Data” section).

To evaluate the error-correction capacity of a given bar-
code design when tracking K lineages, it is useful to calcu-
late the fraction of K random barcodes that have a nearest 
neighbor barcode within Hamming distance d. This quantity 
can be estimated analytically, using techniques from coding 
theory (Lamberger et al. 2012), or with simulations. Our 
simulations (see Methods, “Distribution of Hamming Dis-
tances Between Barcodes” section) show that this fraction 
increases rapidly with K (Fig. 3), such that if barcodes of 
length 15 bp are used to track K =  105 lineages, about 8.8% 
of them have another barcode at Hamming distance 2 or less, 
which can complicate or compromise our ability to correct 
many sequencing errors. However, increasing barcode length 
to 30 bp enables one to track K ~  107 lineages while main-
taining the capacity to correct sequencing errors since only 
about 0.002% of barcodes have a nearest neighbor within 
Hamming distance 4 (Fig. 3).

New Barcode Sequence Design

The considerations discussed above place conflicting 
demands on barcode design. High information content is 
most easily achieved by using fully random nucleotides, 
but such barcodes have problems with GC content and 
homopolymer runs (Fig. 2). At the same time, full control 
of the GC content is achieved at a great reduction of infor-
mation or expansion of length (see Fig. 1A) and can still 
have problems with dinucleotide runs (Fig. 2). Thus, we pro-
pose a new barcode design that achieves a reasonable bal-
ance between all these demands. We propose interspersing 
twofold degenerate “WS” nucleotides between every three 
fourfold degenerate nucleotides to generate a 38 bp barcode 
design which we refer to as “N3WS”: “NNNWSNNNWSN
NNWSNNNWSNNNWSNNNWSNNNWSNNN.” The two-
fold degenerate “WS” bases help control the GC content and 
limit the length of mononucleotide runs, the fourfold degen-
erate bases increase the information content and reduce the 
length of dinucleotide runs. These dinucleotide runs, which 
can lead to high error rates (Fig. 2C), are more prevalent in 
alternate designs with 2 or 4 fully degenerate bases between 
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the anchors rather than 3 (Figure S3), though in some cases 
the added benefit of more information in a shorter barcode 
may still make a N4WS design preferable.

The N3WS design has 62 bits of information, a guar-
anteed GC content between 28 and 72%, and maximum 
homopolymer/dinucleotide run lengths of 4 (Fig. 2B, D, 
F, black dashed lines). We note however that this barcode 
design may not be compatible with 50 bp single-end reads, 
depending on the length of the pre-barcode region (dis-
cussed below). If using shorter sequencing reads is a prior-
ity, researchers could reduce barcode length to, say, 28 bp 
(46 bits), and/or consider using a N4WS design.

Pre‑Multiplexing

It is often desirable to sequence barcodes from multiple 
BLT experiments on one Illumina lane. The standard solu-
tion to this problem is to use Illumina indices during library 
preparation (Fig. 1B and “Barcode Sequencing” section). 
However, this approach requires that the sequencing library 
is prepared for every sample individually. It is possible to 
reduce this labor and material costs by “pre-multiplexing” 
different BLT experiments.

One pre-multiplexing strategy is to add a short 
sequence—referred to as the “experiment tag”—next to the 
barcode (Fig. 1A) and to construct barcoded strain libraries 
for different BLT experiments with different experiment tags 
(Boyer et al. 2021). Another strategy is to create multiple 
plasmid libraries (see “Synthesis and Integration” section) 
with non-overlapping sets of barcode sequences (Johnson 
et al. 2019). Of course, these plasmid libraries must be 

sequenced to determine which barcodes belong to each set. 
The second strategy can be implemented easily only if the 
number of tracked lineages is much smaller than the diver-
sity of the library of chemically synthesized barcode oligos.

With either strategy, pre-multiplexed samples can be 
pooled together prior to DNA extraction and library prep-
aration. The identity of the BLT experiment can then be 
inferred from the sequence of the “experiment tag” (first 
strategy) or the barcode itself (second strategy). In addition 
to or instead of increasing throughput, pre-multiplexing can 
be used redundantly with standard Illumina multiplexing to 
avoid potential misidentification of reads due to template 
switching, index hopping, or primer cross-contamination 
(see “Barcode Sequencing” section and Johnson et  al. 
(2019)).

Synthesis and Integration

Once the barcode construct has been designed, the oligo-
nucleotides carrying the barcodes must be synthesized and 
engineered into the organism. While an in-depth discussion 
of various engineering methods involved in the barcoding 
process is beyond the scope of this paper, we outline here 
the basic steps and then discuss some considerations related 
to barcode construct synthesis and to the choice of the locus 
into which barcodes are integrated.

Overview of the Barcoding Process

The barcoding process usually begins with the synthesis 
of oligonucleotides carrying the barcode sequences. Such 

Fig. 3  Fraction of barcodes with at least one other barcode within a 
certain Hamming-distance radius, as a function of library size. Lines 
correspond to different Hamming-distance radii d, as shown in the 
legend. Panels show barcodes with different lengths and information 

content. For each library size K, five replicate libraries of fully degen-
erate barcode sequences were simulated and the resulting fractions 
were averaged over the replicates. Error bars show ± 1 standard error 
of the mean (Color figure online)



Journal of Molecular Evolution 

1 3

an oligo library is then typically used to generate a library 
of larger DNA constructs that are ready to be transformed 
into the organism of interest. These constructs are typically 
integrated into a plasmid backbone and transformed into 
Escherichia coli for long-term storage. Before each applica-
tion, plasmids are harvested and transformed into the target 
organism, either directly (Levy et al. 2015) or after another 
manipulation step, such as backbone digestion (Jasinska 
et al. 2020) or lentivirus generation (McKenna et al. 2016). 
Sometimes, barcodes are integrated into the organism’s 
genome using high-efficiency recombinase systems, such as 
transposon-based systems like Tn7 (Jasinska et al. 2020), 
Cre-Lox (Levy et al. 2015), or CRISPR-Cas9 (Zhu et al. 
2019).

It is important to keep in mind that the construction of 
barcoded strain libraries involves multiple sampling steps, 
each of which inherently reduces barcode diversity. It is crit-
ical to ensure that sample sizes at each step are large enough 
that the diversity of the barcoded strains is sufficient for the 
purposes of the BLT experiment.

Another important consideration is that any sufficiently 
large population harbors beneficial genetic variation, even 
prior to the barcoding step. As the population grows after the 
barcoding step, natural selection will elevate the frequencies 
of these variants, which will lead to unwanted variation in 
barcode frequencies. Thus, it is advisable to limit the num-
ber of generations of growth of the barcoded library, both 
in E. coli and in the target organism, prior to the beginning 
of the BLT experiment. This is especially important when 
the introduction of barcoded constructs itself is expected to 
cause fitness differences between lineages, e.g., when bar-
codes are associated with transposon insertion mutations. In 
cases where barcode diversity prior to the BLT experiment is 
in question, it may be useful to sequence the plasmid library 
before using it for the transformation of the target organism.

Synthesis

In vitro barcodes are typically generated using chemical 
oligonucleotide synthesis, which can result in errors in the 
length of the barcode as well as its sequence. We estimated 
the distributions of barcode length in our datasets (see Meth-
ods, “Measuring Variation in Synthesized Barcode Length” 
section) and found that barcodes of abnormal length are 
indeed present at appreciable frequencies (Fig. 2E). Filges 
et al. (2021) quantified the error rate of synthesized oligo-
nucleotides from multiple manufacturers and various puri-
fication methods, and found that IDT Ultramer and Eurofins 
PAGE oligonucleotides had similarly high purity (~ 98.4% 
full-length molecules). Oligonucleotides without any puri-
fication (“de-salted”) can result in as low as 86% full-length 
molecules, and should, thus, be avoided (Filges et al. 2021). 
In our experience with IDT, ordering “custom/hand mixed” 

random nucleotides provided a more even frequency distri-
bution than “machine mixed” nucleotides (see https:// www. 
idtdna. com/ pages/ produ cts/ custom- dna- rna/ mixed- bases).

Integration Locus

In some BLT studies, barcodes are integrated into different, 
sometimes random, genomic locations in different lineages 
(Giaever et al. 2002; Wetmore et al. 2015; Johnson et al. 
2019). But in many others, researchers wish to integrate a 
barcode into one specific locus, in which case they need 
to decide what this locus would be. The first decision is 
whether the barcode will be maintained on the chromosome 
(Levy et al. 2015; Jasinska et al. 2020) or on an extrachro-
mosomal plasmid (Cira et al. 2018). While the latter strategy 
is easier to implement, barcodes maintained on plasmids 
may be less stable (i.e., they can be lost), depending on the 
organism, growth environment, and the type of plasmid (Fri-
ehs 2004; Shao et al. 2021).

The second question is to identify the specific locus for 
barcode integration. Some considerations that will bear on 
this decision are study specific, e.g., whether the barcode 
needs to be expressed (Wagner et al. 2018). Others are more 
general, such as the aforementioned stability requirement, 
i.e., the requirement that lineages maintain their barcodes 
over the course of the experiment. For this purpose, one 
should avoid barcode integration into recombination hot-
spots or into loci adjacent to mobile genetic elements. While 
in our experience, genomic integration of barcodes tends to 
be stable in most genomic locations, stability can be fur-
ther enhanced by integrating the barcode in the immediate 
proximity of an essential gene, such as next to an antibiotic 
resistance marker (Giaever et al. 2002) or in an intron of an 
essential gene (Levy et al. 2015).

Another general consideration is that the presence of the 
barcode should minimally perturb cellular function. For 
example, in many evolutionary studies, barcodes should ide-
ally have no effect on the organism’s fitness, in which case 
pseudogenes or genes whose disruption is known to have 
no effect on fitness in the study environment are good can-
didates for integration. It is important to keep in mind that 
neutrality of a locus in one environment does not guarantee 
its neutrality in other environments.

Barcode Sequencing

Once a lineage tracking experiment is complete and samples 
are collected, the next step is to characterize lineage diversity 
in these samples by sequencing them at the barcode locus. 
Since the number of barcodes per sample is often very large 
and their relative abundances can vary by multiple orders of 
magnitude, sequencing must be done to a substantial depth, 

https://www.idtdna.com/pages/products/custom-dna-rna/mixed-bases
https://www.idtdna.com/pages/products/custom-dna-rna/mixed-bases
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often ≳106 reads per sample. Our discussion here focuses 
on the Illumina platform where such depths can currently be 
achieved at a relatively low cost.

Barcode amplification and sequencing begin with DNA 
extraction, usually with standard organism-specific meth-
ods. Then, PCR is used to simultaneously amplify the bar-
code locus and attach Illumina adapters necessary to create 
sequencing-ready DNA fragments. Both the sequencing-
library preparation and the sequencing process itself intro-
duce errors into the barcode sequence, which creates difficul-
ties in identifying barcodes in the data and increases noise 
in the estimates of their frequencies. However, clever PCR 
designs can help reduce and correct some of these errors, as 
well as reduce labor and sequencing costs. In particular, we 
discuss the benefits and pitfalls of using one- versus two-step 
PCR setups, Unique Molecular Identifiers (UMIs), inline 
indices, and a few other factors (see Fig. 1B).

One‑ and Two‑Step PCR Setups

The simplest way to generate sequencing-ready barcode 
amplicons from a sample’s genomic DNA is to PCR-amplify 
the barcode locus using primers that contain standard Illu-
mina adapter components, including Illumina multiplexing 
indices, the sequencing priming site, etc. We refer to this 
simplest approach as the “one-step” PCR setup (Fig. 1B). 
A slightly more complex alternative is the “two-step” PCR 
setup (Fig. 1B). Here, the first PCR is typically carried out 
for a small number of cycles (2–10). Its purpose is to attach 
“overhangs” to template molecules. These overhangs con-
tain useful components, such as inline indices, UMIs, and 
read offsets, which we discuss in detail below, as well as a 
“universal” priming site for the standard Illumina primers 
used in the second PCR. The second PCR is typically car-
ried out for a larger number of cycles (12–25) and results in 
sequencing-ready fragments.

Both setups have some advantages and disadvantages. A 
major advantage of the two-step PCR setup is that inline 
indices can greatly expand multiplexing capacity, which 
not only increases throughput but can also improve data 
quality (see below). This advantage is traded off against an 
additional bottleneck in the two-step PCR setup because a 
fraction of the original template molecules do not receive 
overhangs (which are necessary for the second PCR) and 
a fraction of molecules with overhangs are lost during the 
cleanup after the first PCR. The advantage of the one-step 
setup is that it avoids this bottleneck, potentially reducing 
noise, and in general, involves a bit less hands-on work. On 
the other hand, one-step setup requires (somewhat expen-
sive) long non-standard primers and, most importantly, lacks 
the multiplexing capacity endowed by inline indices.

Regardless of which setup is chosen, it is critical to keep 
in mind that amplification is a sampling step and, therefore, 

introduces measurement noise. To minimize this noise and 
preserve barcode diversity, the amount of template DNA 
must be sufficiently large. Specifically, we suggest that the 
number of templates should greatly exceed the eventual 
number of sequencing reads (see an extended discussion of 
this so-called “read-limited” regime in the section Unique 
Molecular Identifiers below). This may require genomic 
DNA in µg range with several parallel PCR reactions.

Inline Indices

A major advantage of a two-step PCR setup is that the inline 
indices added during the first PCR step greatly expand the 
multiplexing capacity enabled by standard Illumina indi-
ces (Fig. 1B). Like the Illumina indices, inline indices are 
predefined sequences that encode sample information. For 
example, each replicate of a BLT experiment can be tagged 
with its own inline index during the first PCR step. In this 
setup, sample information can be encoded by a combination 
of four indices (two Illumina and two inline). In principle, 
samples tagged with different inline indices during the first 
PCR can be pooled together for the second PCR, although 
we do not recommend this practice due to the possibility of 
template-switching events (Kinsler et al. 2022).

Expanded multiplexing capacity allows for redundant 
sample encoding whereby all samples are distinguished from 
each other by at least two indices, e.g., one inline index and 
one Illumina index. One redundant design that we found 
particularly useful is where each 5’ inline index is associated 
with a unique 3’ Illumina index and each 3’ inline index is 
associated with a unique 5’ Illumina index. Such redundancy 
can be used to effectively detect primer cross-contamina-
tion, “index hopping,” and template-switching events that 
can occur during library preparation or on the Illumina flow 
cell (Illumina 2017; Guenay-Greunke et al. 2021; Kinsler 
et al. 2022). These processes generate chimeric sequences, 
which introduce demultiplexing errors that in turn translate 
into errors in lineage frequency estimates. In the aforemen-
tioned design, most such events (those that occur in the bulk 
of the fragment, between the inline indices) generate “inad-
missible” index combinations that can be easily identified 
and discarded. Using this approach, we found that ~ 5% of 
reads had inadmissible index combinations (Venkataram 
et al. 2022), but others have reported rates of up to 43% 
(Kinsler et al. 2022). Note that, while it is possible to include 
inline indices in the one-step PCR setup, their utility would 
be limited. They cannot expand the multiplexing capacity 
but can help detect some index hopping events (those that 
occur between the Illumina index and the inline index that 
are on the same primer). The rate of index hopping is much 
higher on “patterned flow cell” Illumina machines, so we 
also recommend using a non-patterned flow cell machine 
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for barcode sequencing whenever possible (Illumina 2017; 
Guenay-Greunke et al. 2021; Kinsler et al. 2022).

Unique Molecular Identifiers (UMIs)

The process of preparing a sequencing library introduces 
a number of potential errors that may influence the qual-
ity of BLT data. In particular, if the number of template 
molecules that are being amplified by PCR is small, data 
will be noisy despite high read depth. In addition, sequence-
specific biases may arise during PCR (i.e., some barcodes 
may be amplified more efficiently than others) which can 
lead to systematically inaccurate frequency estimates (Thi-
elecke et al. 2017). Finally, “jackpot” errors that occur in the 
first few rounds of PCR can be overrepresented in the final 
sequencing pool. The two-step PCR setup allows research-
ers to employ Unique Molecular Identifiers, or UMIs, which 
can help diagnose these issues. UMIs are random sequences, 
typically 6 to 10 bp long, present on the first-step PCR prim-
ers (Fig. 1B), such that each molecule that serves as a tem-
plate in the second-step PCR is tagged with one UMI. Once 
the final DNA fragment is sequenced, the UMI appears at 
the start of each read and can be used to determine whether 
multiple reads with the same barcode sequence derive from 
the same template molecule (Fu et al. 2011; Kivioja et al. 
2011).

Although many BLT studies have used UMIs, few have 
clearly articulated what kinds of insight can and cannot be 
gained from them. UMI-tagged barcode data allow us to cal-
culate two numbers for each barcode, both of which depend 
on various experimental parameters, such as the quantity of 
input DNA and the total read depth: (i) the total number of 
reads containing the barcode and (ii) the number of unique 
barcode-UMI combinations among these reads. By divid-
ing the latter by the former and subtracting this ratio from 
1, we can obtain the fraction of “UMI duplicates,” i.e., the 
fraction of redundant reads derived from the same template 
molecule. To understand how the fraction of UMI duplicates 
can help diagnose potential PCR problems, consider two 
extreme cases of the distribution of UMI duplicates across 
barcodes.

At one extreme, the fraction of UMI duplicates is close 
to 1 for most barcodes, which means that the same barcode 
is associated with the same UMI on many reads. In other 
words, the number of sequenced fragments greatly exceeds 
the number of original template molecules, so that most 
reads derive from a small number of templates. We refer 
to this regime as “template-limited.” At the other extreme, 
the fraction of UMI duplicates is close to zero for most bar-
codes, which indicates that UMI duplicates are rare, i.e., 
almost every read contains a unique barcode-UMI combina-
tion. In other words, the number of original template mol-
ecules greatly exceeds the number of sequenced fragments, 

so that most templates are sequenced on at most one frag-
ment. We refer to this regime as “read-limited.”

These regimes differ in two respects. First, given the same 
total sequencing depth, estimates of lineage frequencies will 
be noisier in the template-limited regime than in the read-
limited regime simply because fewer molecules are being 
counted. In this sense, the read-limited regime is more cost 
effective. Second, in the read-limited regime, UMIs pro-
vide little information about sequence-specific amplifica-
tion biases because all templates that are represented in the 
sequencing data are represented equally (once) and it is 
unknown which templates are not represented. In contrast, 
sequence-specific amplification biases (if they exist) can be 
in principle detected in the template-limited regime because 
different template molecules may be represented by different 
numbers of reads. Such biases can also be to some extent 
corrected by removing UMI duplicates, i.e., by counting 
unique barcode-UMI combinations rather than counting all 
reads carrying each barcode. However, the extent to which 
such biases can be corrected using this simple procedure 
strongly depends on the fraction of UMI duplicates in the 
data. In fact, our simulations show that the power to cor-
rect biases grows slowly with the fraction of UMI dupli-
cates (Figure S4). For example, if each template molecule is 
sequenced on average twice, UMI duplicates comprise 50% 
of reads, but discarding all of them corrects only 40–70% of 
the underlying PCR biases.

Even if the biases cannot be corrected fully, removing 
UMI duplicates will in principle improve the estimation of 
lineage frequencies, in any sequencing regime. However, 
before removing UMI duplicates, researchers must ensure 
that the same UMI sequence is unlikely to associate with 
two distinct template molecules carrying the same bar-
code just by chance. This undesired event can happen if the 
UMI diversity is low. For example, if the UMI is 6 bp long, 
there are only  46 ≈  103 distinct UMIs available during the 
first PCR. If  104 distinct template molecules with a certain 
barcode are eventually sequenced, each UMI will on aver-
age associate with 10 different templates. Removing UMI 
duplicates in this case would erroneously reduce the abun-
dance of this barcode by a factor of 10. Thus, we recommend 
removing UMI duplicates only if the number of possible 
UMI sequences is several orders of magnitude larger than 
the highest barcode read count. In our own datasets (Johnson 
et al. 2019; Venkataram et al. 2022), we have not observed 
any meaningful changes in barcode frequencies when UMI 
duplicates are removed.

Finally, UMIs can in principle help detect and eliminate 
“jackpot” PCR errors. However, such errors do not represent 
a particularly severe problem, at least as long as sequenc-
ing is done in the read-limited regime. Consider an error 
that occurs in the first PCR cycle. The resulting errone-
ous barcode is present in one copy, which corresponds to 
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a frequency 1/T where T is the number of distinct template 
molecules that will eventually be sequenced. This frequency 
is very low as long as T is very large, i.e., in the read-limited 
regime. Since all these template molecules are amplified 
roughly equally during the subsequent PCR cycles (mod-
ule PCR biases, discussed above), the erroneous barcode 
will be present at the same low frequency in the read data. 
Therefore, error-correction methods discussed in “Identify-
ing Barcodes in Sequencing Data” section should be able to 
handle jackpot PCR errors along with sequencing errors, and 
UMIs are not required just for this purpose.

In summary, the distribution of UMI duplicates can 
help us determine the sequencing regime. Sequencing in 
the read-limited regime will produce data that may contain 
unobserved PCR biases which can distort barcode frequen-
cies. Sequencing in the template-limited regime will pro-
duce noisy data that will still contain biases, unless most 
of the reads are discarded. Thus, the read-limited regime 
is preferable in practice because of its cost-effectiveness, 
and most BLT studies have been done in this regime (Levy 
et al. 2015; Johnson et al. 2019). It appears more prudent 
to reduce sequence-specific amplification biases (e.g., GC-
content bias) with careful barcode design (see “Structure 
of the Barcode Locus” section). Thus, in our opinion, if a 
two-step PCR is required for multiplexing or other practi-
cal reasons, it is easy and beneficial to have UMIs on the 
first-step primers, but we see no fundamental issues with 
single-step PCR setups without UMIs.

Read Offsets

Every sequencing-ready fragment must contain a priming 
site for an Illumina sequencing primer, but there is some 
flexibility in its location. The standard location is down-
stream of the Illumina index and upstream of the inline 
index/UMI region (two-step PCR in Fig. 1B). This location 
implies that sequencing commences in a region that could 
have low nucleotide diversity in the sequencing library. Low 
diversity, particularly at the beginning of a read, can sub-
stantially reduce base-call accuracy on the Illumina plat-
form (Illumina 2022). This problem is usually remedied with 
standard methods, such as spike-in of PhiX or by sequenc-
ing a barcode library together with a genomic library on 
the same lane. A barcode PCR design feature referred to as 
“Read offsets” can be used in conjunction with these meth-
ods to further increase nucleotide diversity at the beginning 
of barcode reads (Bendixsen et al. 2020). The idea is sim-
ply to design a set of first-step PCR primers where either 
the inline indices or the UMIs have variable length. Such 
variation creates “read offsets” in the downstream regions 
of otherwise low diversity (e.g., between the inline index 
and the barcode), so that fragments with different offsets 

are read by the sequencer asynchronously, which increases 
base diversity.

As an alternative, some researchers have designed the 
barcode locus so that sequencing begins directly at the 
barcode (Jasinska et al. 2020; Ge et al. 2020; Eyler et al. 
2020), which largely avoids the aforementioned base diver-
sity issues. On the other hand, it precludes the use of inline 
indices for multiplexing and UMIs for estimating library 
preparation bottlenecks.

Other Considerations

In our experience, the quality of barcode sequencing data 
can vary depending on several factors, such as the type of 
polymerase, the PCR purification and size-selection method. 
We found that high-fidelity polymerases, especially during 
the first PCR step, consistently produce better quality data. 
We also found that bead-based size selection or standard 
gel extraction works reliably better than strict E-gel-based 
(Thermo Fisher) size selection. While these simple general 
practices improve data quality, some biases remain and 
require more sophisticated approaches, such as those dis-
cussed above (see “Structure of the Barcode Locus” section).

During the barcode-edge sequence association step in 
TnSeq experiments (see “Barcode Design, Synthesis and 
Integration” section), both chimeric PCR reads and a lack 
of diversity in the barcode library can lead to reads with 
identical barcodes but different edge sequences. Therefore, 
it is important to use a highly diverse barcode library and to 
computationally screen out chimeric barcode associations 
(Wetmore et al. 2015).

Identifying Barcodes in Sequencing Data

Once the sequencing data have been obtained and de-mul-
tiplexed, the final technical step is to extract barcodes from 
sequencing reads and estimate the relative abundances of 
the lineages.

Barcode extraction

Extracting barcodes from the sequencing reads may appear 
as a trivial problem at the first glance, given that the struc-
ture of the read is known by design. However, the challenge 
is that not all reads have identical structure, due to read 
offsets (see “Read Offsets” section), due to the variability 
in barcode length that arises during synthesis and due to 
errors that arise during sequencing-library preparation and 
sequencing itself. These challenges can be solved using 
either regular expressions (“regex,” e.g., Levy et al. 2015; 
Johnson et al. 2019; Chochinov and Nguyen Ba 2022) or 
sequence alignment (e.g., Jasinska et al. 2020; Venkataram 
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et al. 2022). The former scans each read for certain user-
specified patterns of characters, whereas the latter uses 
sequence alignments to find the locations of constant regions 
(sequence regions shared by all fragments) flanking the bar-
code before extracting the barcode sequence between those 
regions.

We applied both of these approaches to six barcode 
sequencing datasets (Table  S1) to test their speed and 
relative accuracy (see Methods, “Comparison of Barcode 
Extraction Methods” section). To compare the two meth-
ods, we looked at the first 100,000 reads of each dataset and 
directly compared extracted barcodes. We found that both 
methods successfully extracted barcodes from 94 to 98% of 
reads, with the vast majority of the remaining reads excluded 
due to low quality scores (Table S2). Excluding reads in 
which both methods did not extract a barcode (again usually 
based on low quality scores), the two methods extracted the 
same barcode in 97.5–99.5% of reads (Table S2). The most 
common exceptions to this overarching concordance are 
cases where barcodes have abnormal length. Such barcodes 
were correctly extracted by the alignment method but were 
not extracted or extracted incorrectly by our regex method, 
which only allows barcodes to vary in length by at most 2 
base pairs. However, more lenient regular expressions can 
be developed to allow for more barcode length variation. 
Indeed, we used regular expressions with no length con-
straints to examine the distributions of barcode length in our 
datasets (Fig. 2E). Finally, in very rare cases, both methods 
extracted incorrect barcode sequences, which happened usu-
ally due to misidentification of the constant regions flanking 
the barcodes.

In our hands, the regex approach ran 5 to 10 times faster 
than alignment, processing ~ 140 million reads in ~ 2 h using 
a basic cloud machine from Deepnote. Given the speed of 
the regex approach, we believe it will be the method of 
choice for most applications despite a minor loss of accu-
racy. When using any method, researchers should pay atten-
tion to the fraction of reads without an extracted barcode. 
This fraction exceeding a few percent indicates a potential 
problem with sequencing quality, misspecification of param-
eters of the extraction method (see Methods, “Comparison 
of Barcode Extraction Methods” section, for parameters we 
used), or data (e.g., high abundance of abnormal barcodes).

Error correction

Even with the best practices suggested above, there will be 
cases when the extracted barcode sequence differs from the 
sequence of its template molecule. The naive approach is to 
simply ignore these errors. However, it would come with a 
substantial data waste (and hence, reduced accuracy of lin-
eage frequency estimates). Assuming a per-base error rate 
of 0.4% (Stoler and Nekrutenko 2021), 7.7% of sequenced 

barcodes of length 20 bp contain at least one sequencing 
error; this fraction is 11% for 30-bp barcodes and 15% for 
40-bp barcodes. Moreover, some errors may be sequence-
specific (see “Structure of the Barcode Locus” section), such 
that the naive approach may produce biased lineage fre-
quency estimates. Fortunately, a number of error-correction 
techniques are available (e.g., Li and Godzik 2006; Edgar 
2010, 2016; Ghodsi et al. 2011; James et al. 2018; Wei et al. 
2021; Dasari and Bhukya 2022; Millán Arias et al. 2022), 
some of which were developed specifically for barcode data 
(e.g., Zorita et al. 2015; Zhao et al. 2018; Tavakolian et al. 
2022).

All these methods rely on a few assumptions. True bar-
codes must be sufficiently sparse in the sequence space, 
errors must be relatively infrequent, and an erroneous bar-
code sequence must be more similar to its “parent” barcode 
than to any other true barcode. With good barcode design 
and careful sequencing-library preparation, these assump-
tions are usually met. Then, error correction can be achieved 
by clustering sequenced barcodes according to a sensible 
similarity metric, such as Hamming or Levenshtein distance. 
The primary challenge is computational: BLT data often 
contain tens or hundreds of millions of reads, and calculat-
ing pairwise distances between all of them is not feasible. 
Clever algorithms that limit the number of comparisons are, 
thus, key to computational efficiency.

We selected six error-correction software, two devel-
oped for generic sequence data, DNAClust (Ghodsi et al. 
2011) and CD-Hit (Li and Godzik 2006), and four devel-
oped specifically for barcode data, Bartender (Zhao et al. 
2018), Starcode (Zorita et al. 2015), Shepherd (Tavakolian 
et al. 2022), and “Deletion-Correct,” a modified version 
of the algorithm used in (Johnson et al. 2019). We tested 
their accuracy by performing error correction on a dataset 
of simulated barcode reads with realistic errors (Methods, 
“Comparison of Error Correction Methods” section).

We quantified three types of errors that occur during error 
correction. The first type of error, false negatives (indicated 
by blue points in Fig. 4), represents cases in which a true 
barcode is not included in the post-error-correction dataset, 
either because that barcode was error corrected to another 
true barcode or because it was excluded due to low read 
counts. For example, a read count threshold is responsible 
for most of false negatives for Deletion-Correct. The sec-
ond is false positives, indicated by the green points in Fig. 4 
which occur when an error barcode is not corrected and is 
instead identified as a true barcode. The third is “wrong 
sequence” errors, indicated by the “WS” numbers in Fig. 4E, 
which occur when the method correctly clusters error 
sequences with the parent sequence but incorrectly infers 
the parent sequence. Wrong-sequence errors are less costly 
for downstream analysis than false positives because they 
do not distort barcode frequencies, whereas false positives 
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do. False positives are especially of concern in evolutionary 
lineage tracking experiments (e.g., Levy et al. 2015; Blun-
dell et al. 2019; Venkataram et al. 2022), where such errors 
could cause one lineage with a beneficial mutation to appear 
as multiple, leading to errors in the distribution of fitness 
effects.

We found that all four barcode-specific methods suc-
cessfully identified the vast majority of barcode sequences 
and correctly inferred lineage abundances (Pearson R = 1.0, 
Fig. 4A–D), while both generic methods performed poorly 
(Fig. 4E, F). Among the bespoke methods, Bartender has 
the highest WS and false-positive rates. One source of false 
positives is barcodes with indel errors, which Bartender does 
not attempt to correct. Starcode, Deletion-Correct, and Shep-
herd do attempt to correct them, although Shepherd does so 
only for single-base indels.

We next applied the barcode-specific methods on three 
empirical datasets (Levy et al. 2015; Johnson et al. 2019; 

Borchert et al. 2022) after having extracted barcodes using 
the alignment-based method. We found that Shepherd 
failed to identify many putative barcodes in these empiri-
cal datasets (Table S3). Specifically, the Levy, Johnson, and 
Borchert datasets contain 21,000, 10,000, and 2800 barcodes 
with at least 10 reads each, respectively, which are found by 
Bartender, Starcode, and Deletion-Correct but not by Shep-
herd. All lineages missed by Shepherd but identified by other 
methods have abnormal length, suggesting that Shepherd’s 
filtering criteria are too strict (see above). While Starcode 
consistently ran faster than the other methods, all methods 
took less than four minutes to run on a personal desktop 
computer, with the exception of Shepherd on the Levy et al. 
dataset, which took about 30 min. For all practical purposes, 
these execution times are sufficiently short to not substan-
tially influence the choice of method.

In summary, we strongly recommend using barcode-
specific methods for error correction, including Shepherd, 

Fig. 4  Comparison of error-correction methods. We tested six pub-
lished error-correction methods on a simulated barcode dataset (see 
“Identifying barcodes in sequencing data” section and Methods 
for details). The true abundance of each barcode (x-axis) is shown 
against the inferred abundance of the barcode most closely associ-
ated with it after error correction (y-axis). “R” is the Pearson correla-
tion coefficient of log-transformed data for the successfully inferred 

barcodes. “WS” is the fraction of barcodes where a wrong sequence 
was inferred by the error-correction method (see text). Blue points 
along the x-axis show false negatives, i.e., true barcodes that were not 
identified (numbers show percentages). Green points along the y-axis 
show false positives, i.e., identified barcodes that are not associated 
with a true barcode (numbers show percentages). The gray line is the 
diagonal y = x (Color figure online)
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Starcode, Bartender, and Deletion-Correct. It may be useful 
to use multiple methods in conjunction to better account for 
false positives, false negatives, wrong-sequence errors, and 
barcodes of abnormal length.

Summary

We have reviewed the choices faced by researchers during 
the design, sequencing, and identification of random bar-
codes, as well as some of the implications of these choices 
for the quality of the data. Here, we provide a succinct sum-
mary of our main points.

Design, Synthesis, and Integration

• The base composition of the barcode sequence strongly 
affects the error rates during sequencing-library prepara-
tion and/or sequencing process itself. In particular, long 
homopolymer or dinucleotide runs and extremely high 
or low GC content should be avoided.

• Barcode length and base composition limit the number of 
lineages that can be tracked. For barcodes with length 20 
to 40 bp, the library size should be small enough that all 
but a small fraction of barcodes are at Hamming distance 
of at least four from each other.

• Barcode oligonucleotides synthesized with HPLC or 
PAGE purification and hand-mixed random bases result 
in barcode sequences with lower error rates.

• When choosing the integration locus, consider (i) its 
stability with respect to recombination events that can 
lead to barcode loss and (ii) the implications of genetic 
manipulations at the locus for the organism’s physiology.

Sequencing

• Inline indices greatly expand multiplexing capacity and 
allow for detection of errors that arise due to template 
switching, index hopping, and primer cross-contamina-
tion.

• UMIs help detect whether noise in the data comes from 
a low number of template molecules, but their power to 
correct PCR biases is low.

• Read offsets help improve sequencing quality.
• Use of high-fidelity polymerase during PCR reduces 

amplification errors.

Identification

• Regex and alignment approaches are both excellent at 
barcode extraction. Regex is faster, and alignment is 
slightly better at identifying abnormal barcode sequences.

• Error correction methods designed specifically for 
barcode data work much better than generic methods. 
Among the former, Shepherd is most accurate on sim-
ulated data but fails to recover barcodes of abnormal 
length, which appear in real data at non-negligible fre-
quencies.

Methods

Measuring Variation in Synthesized Barcode Length

To measure variation in synthesized barcode length in the 
empirical datasets (Fig. 2E), we extracted barcodes using 
regular expressions that strictly match the 10 base pairs 
before and/or after the barcode sequence, with no length cri-
teria for the sequence in between (see “Comparison of Bar-
code Extraction Methods” section). We then measured the 
percentage of barcodes with each possible length, ranging 
from 10 bp less than expected to 10 bp more than expected. 
We only considered barcodes with at least 20 read counts 
for this analysis to minimize the impact of amplification and 
sequencing errors on the distributions (see below).

Estimation of Errors in Barcodes with Repetitive 
Sequences

To estimate the frequency of errors in repetitive barcode 
sequences (Figs. 2A, C), we extracted the barcode sequences 
from reads using the alignment method (see “Comparison 
of Barcode Extraction Methods” section). For both single 
nucleotides and every nucleotide pair (“dinucleotide”), 
we looked for barcodes with N repeats of that nucleotide 
or dinucleotide, with N ranging from 3 to 13. For the top 
50 most abundant barcodes with a particular length run 
(excluding barcodes with less than or equal to 100 reads), 
we searched for putative error barcodes, which we require 
to have fewer reads than the true barcode, in which the 
number of repeats was increased or decreased by 1 or 2, 
but the rest of the barcode was identical. In parallel, we 
searched for single-nucleotide errors derived from each of 
these barcodes. We added the read counts from both the 
indel and single-nucleotide errors to each “true” barcode’s 
read counts in order to ensure an accurate denominator when 
calculating error rates. We report the total indel error rate 
in Fig. 2, which we calculate as the combined frequency of 
all four types of errors (insertions and deletions of one or 
two repeats).
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Simulating Barcode Designs and Measuring Barcode 
Statistics

We assessed some barcode design features (Fig. 2B, D, F and 
Figure S3) for four previously proposed designs and our new 
designs as follows. For each design, we simulated 100,000 ran-
dom barcodes. We then measured the statistics of these simu-
lated sets of barcodes, along with the corresponding empirical 
sets. For each empirical dataset, we used the list of barcodes 
derived from alignment-based extraction (see “Comparison 
of Barcode Extraction Methods” section), excluding any bar-
codes that are not the expected length. For each barcode, we 
measured the percentage of GC bases, the longest homopoly-
mer run, and the longest dinucleotide run (Figs. 2B, D, F).

Conditions for Preserving Barcode Diversity During 
Transformation

Assuming that N =  2I barcodes are present at frequencies f1, 
f2, …, fN in the barcode pool prior to transformation and that 
K cells receive a barcode, the number of cells that receive 
each barcode is described by the multinomial distribution, 
so that the expected number of cells that receive barcode i is 
Kfi. Therefore, the barcode diversity after transformation is 
high if a typical barcode is present in at most one cell, which 
happens when Kfmax ≪ 1, where fmax is the frequency of the 
most frequent barcode in the pool.

Assuming that barcode frequencies are distributed expo-
nentially, we can estimate fmax as follows. First, note that if 
all fi are drawn from an exponential distribution with mean 
µ, the fact that all fi must sum to 1 implies that µ = N–1 =  2–I. 
Then, when N is large, the extreme value theorem states that 
fmax/µ – ln N is distributed according to the standard Gumbel 
distribution, whose expected value is γ ≈ 0.577, the Euler-
Mascheroni constant. Thus, in expectation, fmax =  2–I(γ + I 
ln 2).

Distribution of Hamming Distances Between 
Barcodes

We generated barcode libraries with  102,  103,  104,  105,  106, 
and  107 fully degenerate barcodes of length 15, 20, or 30 bp. 
To reduce computation time, we utilized an approximate-
nearest-neighbor algorithm as provided by the python Annoy 
library to find the nearest neighbor for every sequence in 
the dataset, which requires binary input. We, thus, encoded 
each position in the barcode using three bits (“A” = 000, 
“T” = 011, “C” = 101 and “G” = 110) so that every possible 
single-nucleotide substitution could be encoded by a change 
in two bits. This encoding, thus, ensures that nearest neigh-
bor sequences in the binary encoding are also nearest neigh-
bors in nucleotide space. We report the fraction of sequences 
with a Hamming distance to their nearest neighbor less than 

or equal to 0, 1, 2, 3, or 4 bp, averaged over five replicate 
simulations for each parameter combination.

Identification of UMI Duplicates and Detection 
of Chimeric Reads

We report rates of chimeric reads and UMI duplicate based 
on the lineage tracking data from Venkataram et al. (2022). 
In that study, BarcodeCounter2 was used to extract barcodes 
from lineage tracking data. This software uses inline and 
Illumina index information to identify chimeric reads during 
sample demultiplexing and provides a count of UMI dupli-
cates found for each barcode within each sequenced sample.

Simulations of Bias Detection Using UMIs

To assess the utility of UMIs for correcting PCR biases 
(Figure S4), we carried out the following simulations. We 
start with a focal barcode whose frequency among template 
molecules is either 0.05 or 0.25. We vary the number of 
template molecules tagged with UMIs from 100,000 and 10 
million, which spans the two regimes discussed in the main 
text. For each frequency and number of template molecules, 
we generate the “post-library-preparation pool” by (i) asso-
ciating every template molecule with a unique UMI and (ii) 
multiplying the initial abundance of the focal barcode by the 
bias factor indicated in Figure S4. We then randomly sample 
1 million reads from the post-library-preparation pool. We 
remove the UMI duplicates and compare the resulting fre-
quency of the focal barcode with its true frequency.

Comparison of Barcode Extraction Methods

We implemented custom regular expression and alignment 
software to extract barcodes from each of six datasets. To 
extract barcodes by regular expressions, a set of five custom 
regular expressions of increasing leniency were composed 
for each dataset to extract barcode sequences based on the 
read sequences from each dataset. For example, we used 
these five regular expressions successively to find barcodes 
in the reads from the Borchert et al. (2022) dataset (stopping 
if the regular expression found a match):
\D*?(CGT ACG )(\D{20})(AGA GAC )\D* (exact 

match to barcode sequence)
\D*?(CGT ACG )(\D{19,21})(AGA GAC )\D* (allows sin-

gle base indels)
\D*?(CGT ACG )(\D{18,22})(AGA GAC )\D* (allows two-

base indels)
\D*?(CGT ACG ){e<=1}(\D{20})(AGA GAC ){e<=1}\D* 

(allows one error in the flanking sequences)
\D*?(CGT ACG ){e<=1}(\D{18,22})(AGA GAC )

{e<=1}\D* (allows one error in the flanking sequences and 
two-base indels)
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To extract barcodes by alignment, we used BLASTn + v 
2.6.0 (Altschul et al. 1990; Camacho et al. 2009) to identify 
the location of the constant sequences flanking each bar-
code within the read, and used these positions to extract 
the barcode sequence. BLASTn + was run with the param-
eters -word_size 6 -outfmt 6 -evalue 1E0 
-maxhsps 1. The word_size and evalue parameters 
were selected so that matches could be found even for very 
short sequences, as the default parameters are typically 
unable to find matches even if the exact target sequence is 
present in the read. However, different parameter choices 
may be necessary for different datasets. Other read mapping 
software (e.g., Bowtie2 or BWA) can also be used to align 
entire reads to a template for barcode extraction (Jasinska 
et al. 2020).

Comparison of Error‑Correction Methods

Simulations of Barcode Data with Errors

To simulate barcode data with a range of frequencies includ-
ing high-frequency outliers, we first drew 99,895 barcode 
abundances from an exponential distribution with mean 1, 
100 barcode abundances from an exponential distribution 
with mean 10, and 5 barcode abundances from an expo-
nential distribution with a mean of 1000. We assigned each 
abundance to a randomly generated 20-bp barcode (“N20”). 
We then drew a number of reads associated with each bar-
code from a Poisson distribution with a mean of the fre-
quency of the barcode multiplied by 25 million (such that 
we expect a total of approximately 25 million reads). For 
any barcode with a mononucleotide run of 5 or more base 
pairs, we first simulated indel errors, using our empirical 
data on the rates of these events (Fig. 2) to draw a Poisson-
distributed number of reads with a single-base insertion 
or deletion. This indel simulation process was carried out 
recursively such that multiple-base indels were possible. 
Next, we simulated single nucleotide errors for each read at 
a rate of 0.4% per base. The final simulated dataset consists 
of a single row for each unique barcode that was “read” 
in this process, associated with a number of reads and the 
“true” barcode from which it is derived.

Comparison of Error‑Correction Methods

We tested six error-correction methods (Bartender v1.1.0, 
DNAClust v3, Starcode v1.4, Shepherd downloaded Aug 
15 2022, CD-Hit v4.8.1 and Deletion-Correct, provided in 
this manuscript) on each of four datasets (Levy, Borchert, 
Johnson, and the simulated dataset). Each program was run 
with the following parameters, where L is the length of the 
barcode, including anchor sequences.
Starcode ’-d 3 -s’

Bartender ‘-d 3’
Shepherd ‘-l L -bft 4 -eps 3’
Deletion-Correct: min_counts_for_centroid=2, max_

edits=3, poisson_error_rate=0.1
CD-Hit ‘-c {1-3.1/L} -n 6’
DNAClust ‘-s {1-3.1/L} -k 6’
While a complete analysis of the parameter space for 

each of these programs is beyond the scope of this paper, we 
encourage researchers to consider these choices carefully in 
the context of their data. In particular, edit distance thresh-
olds can alter the risk of failing to correct error barcodes. 
Based on the previously published error rates of PCR and 
Illumina Sequencing of ~ 0.5%, we expect an edit distance 
threshold of 3 to correctly cluster 99.9% of error sequences 
in the datasets we analyze here, while also correctly distin-
guishing most of the distinct barcode sequences (Fig. 4). We, 
thus, used this edit distance threshold for most analyses. The 
K-mer parameters used by DNAClust (−k) and CD-Hit (−n) 
only affect the speed of the computation and not the accu-
racy, so we did not explore the impact of these parameters. 
We used the default log Bayes factor parameter for Shephard 
(−bft) as recommended by the authors of the software for 
discriminating real and error sequences.

Programs were run on a personal desktop computer with 
an AMD Ryzen5 1600 3.2 GHz processor and 16 GB of 
RAM. Software with multithreading support was run with 
10 threads / allocated processing cores and 5000 MB of allo-
cated memory.

Appendix

Genotyping Clones at a Barcode Locus

A common task when using barcoded strain libraries is to 
identify the barcodes for individual clones isolated from the 
library. The traditional approach, based on Sanger sequenc-
ing, is effective for a small number of clones, but it becomes 
prohibitively expensive and labor intensive at ~  102 clones. 
At larger scales, approaches that leverage next-generation 
sequencing technologies are preferred.

The most straightforward cheaper alternative to Sanger 
sequencing is to individually amplify the barcode of each 
clone, tag it with a unique combination of indices and 
sequence it on the Illumina platform. Since this approach 
involves the same number of DNA extractions and PCR 
reactions as the Sanger approach, the cost of this approach 
scales linearly with the number of samples. The savings 
come from the reduction of sequencing costs per sample: 
sequencing of a sample with the Sanger technology currently 
costs about 2 USD, while the cost is less than 0.02 USD per 
sample on the Illumina MiSeq platform when sequencing 
10,000 clones.
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An even cheaper alternative for genotyping many clones is 
a pooled sequencing strategy sometimes referred to as “Carte-
sian pooling,” “Compressed sensing,” or the “Sudoku method” 
(Barillot et al. 1991; Erlich et al. 2009; Shental et al. 2010; 
Vandewalle et al. 2015; Baym et al. 2016). The idea is to pool 
clones into multiple groups, such that each clone is present 
in several groups, prepare one Illumina library per group, 
sequence them, and then infer the genotypes of all clones based 
on the knowledge of their presence/absence in each group. For 
example, clones can be arrayed into a 3-dimensional grid of 
p plates, each with r rows and c columns, e.g., in a series of 
96-well plates. This would result in p+r+c groups, each con-
taining all clones in a given plate, row or column across the 
entire collection. In this arrangement, each clone is present 
in only one specific combination of plate, row and column 
groups, and no two clones are present in the same combina-
tion of groups. In other words, group combination serves as a 
clone’s unique fingerprint. Further, if all clones have distinct 
barcodes, there will be only one barcode sequence present in 
any given combination of plate, row and column groups. In 
other words, each sequence will have a unique fingerprint, 
through which it can be assigned to the correct clone. While 
this strategy requires some additional work pooling clones into 
groups, the overall cost scales approximately as K1/3, where K 
is the number of clones, since only about K1/3 DNA extractions 
and PCR reactions are required. For example, a library of 960 
clones can be characterized using 30 pools (10 plate pools, 8 
row pools and 12 column pools). The efficiency can be fur-
ther improved by using additional “dimensions” for pooling 
and ensuring that all groups have similar numbers of clones 
(Barillot et al. 1991).

A key limitation of the Cartesian pooling approach occurs 
when multiple clones have the same barcode. In this case, 
some sequences are present in more than one group combina-
tion (i.e., they have multiple fingerprints) which makes the 
association of sequences with clones non-unique. For example, 
consider a collection of 96 clones, pooled by row and column, 
where clones present in wells A5 and D7 have the same bar-
code. In this scenario, row groups A and D as well as column 
groups 5 and 7 will have this particular barcode sequence. 
Thus, the barcode could be assigned to any of four wells: A5, 
A7, D5, and D7. Resolving these degeneracies may require 
additional genotyping (Barillot et al. 1991).
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