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1 Introduction

The precision study of the Standard Model at the LHC, as well as increasingly sophisticated

searches for physics beyond the Standard Model, require precision predictions for processes

in a complicated hadron collider environment. When calculating higher-order QCD cor-

rections, the presence of infrared divergences require techniques to isolate and cancel all

divergences. Completely analytic calculations are only possible for some of the simplest

cases, e.g. [1–3], while for more complicated processes, in particular those involving jets in

the final state, numerical techniques are typically required.

At next-to-leading order (NLO) the FKS [4, 5] and CS [6–8] subtraction schemes

provide generic subtractions for arbitrary processes, and have been used to great suc-

cess. At next-to-next-to-leading order (NNLO), due to the more complicated structure

of infrared singularities, the development of general subtraction schemes has proven more

difficult. While subtraction schemes have been demonstrated both for color-singlet pro-

duction [9–15], as well as for several processes involving jets in the final state [16–22],

significant work is still required before efficient NNLO subtractions can be achieved for

arbitrary colored final states.

N -jettiness subtractions [20, 22] are based on the N -jettiness resolution variable

TN [23, 24], and are applicable to generic N -jet final states. They have successfully been

applied to NNLO calculations for a variety of color-singlet final states [25–29], as well as

final states involving a single jet [20, 21, 30–33]. They are also a key ingredient in one

of the first methods for combining NNLO calculations with parton showers [34, 35]. The

leading-power subtraction terms are given by an all-orders factorization formula derived in

refs. [23, 24] using soft-collinear effective theory (SCET) [36–40]. Required ingredients are

explicitly known to NNLO with up to a single jet in the final state [41–55].

An important feature of N -jettiness subtractions is that power corrections in the res-

olution variable can be calculated in an expansion about the soft and collinear limits,

allowing the numerical performance of the subtractions to be systematically improved. Re-

cently there has been significant interest in understanding subleading power corrections to

collider cross sections [56–71]. Advances in the understanding of subleading power lim-

its using SCET [65, 66] have allowed the leading logarithmic (LL) next-to-leading power

(NLP) corrections to be computed at NLO and NNLO [62, 64], with independent calcula-

tions of the same terms done by a second group in refs. [63, 70]. The leading logarithms

have also been resummed to all orders for pure glue QCD for 2-jettiness in H → gg [72].

The inclusion of the leading logarithms was found to improve the numerical accu-

racy, and thereby the computational efficiency, of N -jettiness subtractions for color-singlet

production by up to an order of magnitude [62, 64]. The analytic calculation of the next-to-

leading logarithmic (NLL) power corrections is important for several reasons. Theoretically,

it greatly furthers our understanding of the power corrections, since the perturbative struc-

ture becomes significantly more nontrivial at NLL as compared to at LL. From a practical

perspective, they provide further substantial improvements in the numerical performance

of the subtractions. In particular, they make the subtractions much more robust in cases

where there are accidental cancellations between different channels or where the NLL terms

are numerically enhanced relative to the LL terms.
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In this paper, we compute the full NLP corrections at O(αs) for both Drell-Yan and

gluon-fusion Higgs production in all partonic channels, including the nonlogarithmic terms

(which are the NLL terms at O(αs)). One focus of this paper is to derive a master formula

for the NLP corrections to 0-jettiness at O(αs) and to discuss in detail the subleading-power

calculation, in particular the treatment of measurements at subleading power, which in our

case are the invariant mass Q and rapidity Y of the color-singlet system. More generally,

one can consider measuring any observable that does not vanish for the partonic process at

lowest order in perturbation theory, which we refer to as Born measurements. Our analysis

lays the ground for extending the calculation of the NLP corrections to higher powers,

higher orders in αs, and to more complicated processes.

We also perform a detailed numerical study comparing our analytic results with the full

nonsingular result extracted numerically from MCFM8 [27, 73–75], which allows us both to

verify our analytic calculation and to probe the typical size of the higher-power corrections

in various different partonic channels. We find that the NLL power corrections can exhibit

a much more pronounced Y dependence from PDF effects than is the case at LL, which

demonstrates the importance of calculating the power corrections fully differential in the

Born phase space.

Our discussion of the Born measurements also allows us to clarify an apparent dis-

agreement in the recent literature regarding the LL power corrections. As we discuss in

more detail in section 6, since the calculations in refs. [63, 70] are not differential in the

color-singlet rapidity Y , their results can only be used fully integrated over Y .1 In con-

trast, the results computed here, which agree with those previously derived by a subset

of the present authors in refs. [62, 64], are differential in Y . When integrating over all Y ,

integration by parts is used to explicitly show that these LL results are equivalent to those

of refs. [63, 70]. In section 6 we also compare our new differential NLL results with the

integrated results of ref. [70].

The outline of this paper is as follows: in section 2, we briefly review N -jettiness

subtractions for color-singlet production and define our notation. In section 3, we discuss

in some detail the treatment of Born measurements at subleading power. In section 4,

we derive a formula to NLP for the soft and collinear power corrections for 0-jettiness.

Although our primary focus is on NLO, the general strategy is valid to higher orders as

well. In section 5, we use our master formula to derive explicit results for the NLP power

corrections at NLO for both Drell-Yan and gluon-fusion Higgs production. In section 6, we

provide a detailed comparison with the literature for those partonic channels where results

are available. In section 7, we present a detailed numerical study, and compare our analytic

results with a previous numerical extraction. We conclude in section 8.

2 N-jettiness subtractions, definitions and notation

In this section we briefly review N -jettiness subtractions [20, 22] in the context of color-

singlet production, and discuss the structure of the power corrections to the subtraction

1We thank the authors of refs. [63, 70] for discussions and confirmation of this point.
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scheme. This also allows us to define the notation that will be used in the rest of this

paper. For a detailed discussion, we refer the reader to ref. [22].

To compute a cross section for color-singlet production σ(X), where X denotes some

set of cuts on the Born phase space, we write the cross section as an integral over the

differential cross section in the resolution variable T0

σ(X) = σ(X, Tcut) +

∫
Tcut

dT0
dσ(X)

dT0
, (2.1)

where

σ(X, Tcut) ≡
∫ Tcut

dT0
dσ(X)

dT0
. (2.2)

For a general measure, the 0-jettiness T0 can be defined as [45, 76]

T0 =
∑
i

min

{
2qa · ki
Qa

,
2qb · ki
Qb

}
, (2.3)

where the sum runs over all hadronic momenta ki in the final state. Here, qa,b are projected

Born momenta (referred to as label momenta in SCET), which are given in terms of the

total leptonic invariant mass Q and rapidity Y as

qµa = xaEcm
nµ

2
= QeY

nµ

2
, qµb = xbEcm

n̄µ

2
= Qe−Y

n̄µ

2
, (2.4)

where

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) (2.5)

are lightlike vectors along the beam directions. The choice in eq. (2.4) corresponds to

parameterizing the Born phase space in terms of Q and Y , and this choice already enters

in the leading-power factorization theorem, where the beam functions are evaluated at

xa,b = Qe±Y .

The Qa,b measures in eq. (2.3) determine the different definitions of 0-jettiness. Two

different definitions, originally introduced in refs. [23, 44] as beam thrust, are the leptonic

and hadronic definitions given by

leptonic: Qa = Qb = Q , T lep
0 =

∑
i

min

{
xaEcm

Q
n · ki ,

xbEcm

Q
n̄ · ki

}
=
∑
i

min

{
eY n · ki , e−Y n̄ · ki

}
hadronic: Qa,b = xa,bEcm , T cm

0 =
∑
i

min
{
n · ki , n̄ · ki

}
. (2.6)

It has been shown [62] that the power corrections for the hadronic definition are poorly

behaved, and grow exponentially with rapidity, while the e±Y factor in the measure for the

leptonic definition exactly avoids this effect.

– 3 –
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For later convenience, we write the dimensionful and dimensionless 0-jettiness resolu-

tion variables in terms of a Y -dependent parameter ρ(Y ) as

T x0 =
∑
i

min
{
ρx k

+
i , ρ

−1
x k−i

}
, τx ≡ T

x
0

Q
, (2.7)

with

leptonic: ρlep = eY , τ lep =
T lep

0

Q
,

hadronic: ρcm = 1 , τ cm =
T cm

0

Q
. (2.8)

In the following, we will mostly drop the subscript 0 on T0, since there should be no cause

for confusion that our results are for 0-jettiness. For generic results that apply to both the

leptonic and hadronic definitions we also drop the superscript and simply use T and τ ,

keeping a generic parameter ρ when necessary.

To implement the N -jettiness subtractions, we now add and subtract a subtraction

term to the cross section (suppressing the dependence on the Born measurements X for

simplicity)

σ = σsub(Tcut) +

∫
Tcut

dT0
dσ

dT0
+
[
σ(Tcut)− σsub(Tcut)

]
≡ σsub(Tcut) +

∫
Tcut

dT0
dσ

dT0
+ ∆σ(Tcut) . (2.9)

Since T0 is a zero jet resolution variable, for τ = T0/Q→ 0 we can expand the differential

cross section dσ/dτ and its cumulative σ(τcut) about the soft and collinear limits from

τ → 0 and τcut → 0 as

dσ

dτ
=

dσ(0)

dτ
+

dσ(2)

dτ
+

dσ(4)

dτ
+ · · · , (2.10)

σ(τcut) = σ(0)(τcut) + σ(2)(τcut) + σ(4)(τcut) + · · · .

Here dσ(0)/dτ and σ(0)(τcut) contain all leading-power terms,

dσ(0)

dτ
∼ δ(τ) +

[
lnj τ

τ

]
+

, σ(0)(τcut) ∼ lnj τcut . (2.11)

These terms must be included in the subtraction term to obtain a finite result, namely

σsub(Tcut) = σ(0)(τcut = Tcut/Q) [1 +O(τcut)] . (2.12)

The further terms in the series expansion in eq. (2.10) are suppressed by powers of τ

τ
dσ(2k)

dτ
∼ O(τk lnj τ) , σ(2k)(τcut) ∼ O(τkcut lnj τcut) . (2.13)

While these terms with k ≥ 1 do not need to be included in the subtraction term, the size of

the neglected term, ∆σ(τcut) is determined by the leading-power corrections that are left out

– 4 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
4

of σsub. Therefore, including additional power corrections in σsub can significantly improve

the performance of the subtraction. Indeed, general scaling arguments imply that up to

an order of magnitude in performance can be gained for each subleading power logarithm

that is included in the subtractions [22]. For the leading logarithms, this was explicitly

confirmed for most partonic channels in the numerical studies in refs. [62, 64]. Here, we

extend the calculation to the NLL terms at O(αs), which yields the nonlogarithmic terms,

hence giving the complete NLP result. The remaining NLO power corrections then scale

at worst as αsτ
2
cut log τcut, and will be very small, as we will see in our numerical studies.

3 Born measurements at subleading power

We begin by discussing in some detail the treatment of the Born measurements, Q2 and

Y , which plays an important role at subleading powers. We will use the soft and collinear

expansions from SCET, which provide a convenient language when discussing the power

expansion of QCD amplitudes at fixed order. We will not need to employ any of the field

theory technology from SCET for our analysis here.

3.1 General setup and notation

Consider the production of a color-singlet final state L of fixed invariant mass Q and

rapidity Y , together with an arbitrary measurement T that only acts on hadronic radiation

and gives T = 0 at Born level. Since the observable T resolves soft and collinear emissions

it will induce large logarithms ln(T /Q). Our goal is to expand the cross section in T (or

τ = T /Q) in order to systematically understand its logarithmic structure.

Consider proton-proton scattering with the underlying partonic process

a(pa) + b(pb)→ L(p1, · · · ) +X(k1, · · · ) , (3.1)

where L is the leptonic (color-singlet) final state and X denotes additional QCD radiation.

Its cross section reads

dσ

dQ2dY dT
=

∫ 1

0
dζadζb

fa(ζa)fb(ζb)

2ζaζbE2
cm

∫ (∏
i

ddki
(2π)d

(2π)δ+(k2
i )

)∫
ddq

(2π)d
|M(pa,pb;{ki}, q)|2

×(2π)dδ(d)(pa+pb−k−q)δ(Q2−q2)δ

(
Y − 1

2
ln
q−

q+

)
δ
[
T −T̂ ({ki})

]
. (3.2)

Here, the incoming momenta are given by

pµa = ζaEcm
nµ

2
, pµb = ζbEcm

n̄µ

2
, (3.3)

k =
∑

i ki is the total outgoing hadronic momentum, and q is the total leptonic momentum.

Since our measurements are not sensitive to the details of the leptonic final state, we have

absorbed the leptonic phase space integral into the matrix element,

|M(pa, pb; {ki}, q)|2 =

∫
dΦL(q) |M(pa, pb; {ki}, {pj})|2 ,

dΦL(q) =
∏
j

ddpj
(2π)d

(2π)δ+(p2
j −m2

j ) (2π)dδ(d)

q −∑
j

pj

 . (3.4)

– 5 –
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The matrix elementM contains the renormalization scale µ2ε, which as always is associated

with the renormalized coupling αs(µ), and may also contain virtual corrections. For now

the measurement function T̂ ({ki}) is kept arbitrary.

We can now solve the Q2 and Y measurements to fix the incoming momenta as

ζa(k) =
1

Ecm

(
k− + e+Y

√
Q2 + k2

T

)
,

ζb(k) =
1

Ecm

(
k+ + e−Y

√
Q2 + k2

T

)
. (3.5)

Taking the Jacobian factors from solving the δ functions into account, eq. (3.2) becomes

dσ

dQ2dY dT
=

∫ (∏
i

ddki
(2π)d

(2π)δ+(k2
i )

)
fa(ζa)fb(ζb)

2ζaζbE4
cm

A(Q,Y ;{ki})δ
[
T −T̂ ({ki})

]
, (3.6)

where we defined

A(Q,Y ; {ki}) ≡ |M(pa, pb, {ki}, q = pa + pb − k)|2 (3.7)

to stress that the squared matrix element only depends on the Born measurements Q and

Y , which fix the incoming momenta through eqs. (3.3) and (3.5), and the emission momenta

ki. Note that we have left implicit in our notation in eq. (3.6) the dependence of ζa,b on

k through eq. (3.5). They are restricted to ζa,b ∈ [0, 1], which is implicit in the support of

the proton PDFs.

3.2 Power expansion in soft and collinear limits

Instead of solving the T measurement function to express (some of the) ki in terms of

T , we find that a convenient strategy to organize the expansion in T is to multipole

expand the final state momenta. At this stage we need only assume that T is a SCETI

observable, which is true for many definitions of N -jettiness. For such observables, it is

known from SCETI that we can organize the cross section in terms of a power counting

parameter λ ∼
√
τ . All momenta ki can then be categorized as either collinear or soft

modes (since we work in SCETI these are often called ultrasoft, although we will not make

this distinction), whose momenta scale as

n−collinear : kn ∼ Q (λ2, 1, λ) , (3.8)

n̄−collinear : kn̄ ∼ Q (1, λ2, λ) ,

soft : ks ∼ Q (λ2, λ2, λ2) ,

where we decomposed each momentum into lightcone coordinates

kµ = k−
nµ

2
+ k+ n̄

µ

2
+ kµ⊥ ≡ (k+, k−, k⊥) . (3.9)

Here n and n̄ are lightlike vectors satisfying n · n̄ = 2. The components of the momenta

that scale like λ2 are referred to as residual momenta. The soft momenta are homogeneous,

– 6 –
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and have purely residual scaling. Overlap between the soft and collinear modes occurring

in integrals over final state momenta is removed by the zero-bin subtraction procedure [77].

The benefit of this decomposition is that it allows one to expand eq. (3.6) in λ, agnostic

of the actual measurement T . The LP result is then simply obtained by expanding the

cross section through λ0, the NLP result by expanding through λ2, etc. Note that when

performing this expansion, all other factors, such as Q,Ecm ∼ λ0.

While the expansion of the matrix element is of course process dependent, we can give

general expressions for the incoming momentum fractions eq. (3.5), independent of the

process and observable T . If k is a soft momentum, then the expansion required at NLP

is given by

ζa(k) = xa

(
1 +

k−e−Y

Q

)
+O(λ4) ,

ζb(k) = xb

(
1 +

k+e+Y

Q

)
+O(λ4) , (3.10)

where we factored out the Born momentum fractions

xa =
Qe+Y

Ecm
, xb =

Qe−Y

Ecm
. (3.11)

In the n-collinear limit, we obtain

ζa(k) = xa

[(
1 +

k−e−Y

Q

)
+

k2
T

2Q2

]
+O(λ4) ,

ζb(k) = xb

[
1 +

(
k+e+Y

Q
+

k2
T

2Q2

)]
+O(λ4) . (3.12)

For clarity, we have grouped terms of the same power counting in round brackets. Similarly,

one can obtain the n̄-collinear limit, or any combination as might appear when combining

multiple emissions.

4 Master formula for power corrections to next-to-leading power

In this section we derive a master formula for the NLP corrections. This formula applies to

any SCETI observable in color-singlet production. In section 5, we will apply it to derive

explicit results for Drell-Yan and gluon-fusion Higgs production.

4.1 General setup for color-singlet SCETI observables

For reference, we start with the LO cross section for the production of a color-singlet

final state L of invariant mass Q2 and rapidity Y , together with an (up to now arbitrary)

measurement T acting only on hadronic radiation,

dσLO

dQ2dY dT
=
fa(xa) fb(xb)

2xaxbE4
cm

ALO(Q,Y ) δ(T ) , (4.1)

– 7 –
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where xa,b = Q
Ecm

e±Y and ALO is the squared matrix element in the Born kinematics, see

eq. (3.7). For future reference, we also define the LO partonic cross section, σ̂LO(Q,Y ), by

dσLO

dQ2dY dT
= σ̂LO(Q,Y ) fa(xa) fb(xb) δ(T ) , σ̂LO(Q,Y ) =

ALO(Q,Y )

2xaxbE4
cm

. (4.2)

Next, consider an additional real emission to the Born process. Eq. (3.6) yields

dσ

dQ2dY dT
=

∫
ddk

(2π)d
(2π)δ+(k2)

fa(ζa) fb(ζb)

2ζaζbE4
cm

A(Q,Y ; {k}) δ
[
T − T̂ ({k})

]
, (4.3)

where we remind the reader that the incoming momenta pa,b are given by eq. (3.5),

pµa = ζa(k)Ecm
nµ

2
=

(
k− + e+Y

√
Q2 + k2

T

)
nµ

2
,

pµb = ζb(k)Ecm
n̄µ

2
=

(
k+ + e−Y

√
Q2 + k2

T

)
n̄µ

2
. (4.4)

From these solutions, we see the interesting feature that at subleading power, regardless of

the type of final-state emission, the momenta entering both PDFs are modified.

Since we do not measure the azimuthal angle of k, it can be integrated over,∫
ddk

(2π)d
(2π)δ+(k2) =

Ω2−2ε

4(2π)d−1

∫ ∞
0

dk+dk−

(k+k−)ε
=

(4π)−2+ε

Γ(1− ε)

∫ ∞
0

dk+dk−

(k+k−)ε
. (4.5)

Eq. (4.3) simplifies to

dσ

dQ2dY dT
=

∫ ∞
0

dk+dk−

(k+k−)ε
fa(ζa) fb(ζb)

(4π)22ζaζbE4
cm

(4π)ε

Γ(1− ε)
A(Q,Y ; {k}) δ

[
T − T̂ ({k})

]
. (4.6)

So far, this expression is still exact. In the next step, we wish to expand the NLO cross

section in λ ∼ T /Q. When T is a SCETI observable, we can use the EFT knowledge

from SCETI to expand the momentum k in both collinear and soft limits, as discussed in

section 3.

At NLP, we need to expand eq. (4.6) consistently through O(λ2). The O(λ2) power

corrections arise from the following sources:

• The incoming momenta ζa,b. While collinear and soft limits yield quite different

power expansions, both give a well-defined expansion in λ. We thus simply define

the expansion

ζa,b = xa,b

[
1

za,b
+ ∆

(2)
a,b +O(λ4)

]
, (4.7)

where za,b ∼ λ0 and ∆
(2)
a,b ∼ λ2. We have pulled out the Born momentum fractions

xa,b and written 1/za,b as a fraction for later convenience. Explicit expressions can

be obtained from eqs. (3.10) and (3.12), and will be given below.
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• PDFs. Since the momenta ζa,b enter the PDFs, these also have to be power expanded,

fa,b(ζa,b) = fa,b

(
xa,b
za,b

)
+ xa,b∆

(2)
a,b f

′
a,b

(
xa,b
za,b

)
+O(λ4)

≡ fa,b + xa,b∆
(2)
a,b f

′
a,b +O(λ4) . (4.8)

• Flux factor. Similar to the PDFs, we have to expand the flux factor

1

ζaζb
=
zazb
xaxb

[
1− za∆(2) − zb∆

(2)
b

]
. (4.9)

• Matrix element. The expansion of the matrix element depends both on the process

and the considered limit. Here, we define the LP and NLP expansions by

A(Q,Y ; {k}) = A(0)(Q,Y ; {k})) +A(2)(Q,Y ; {k}) + · · · . (4.10)

In the soft limit A(0) ∼ λ−4 and A(2) ∼ λ−2, while in the collinear limit A(0) ∼ λ−2

and A(2) ∼ λ0. In both cases we have the scaling
∫

dk+dk−A(2j) ∼ λ2j , which is why

the soft and collinear corrections enter at the same order.

For example, for a 2→ 2 process, the matrix element can be written in terms of the

Mandelstam variables

sab = 2pa · pb =
Q2

zazb

[
1 + za∆

(2)
a + zb∆

(2)
b +O(λ4)

]
,

sak = −2pa · k = −k+Qe+Y

(
1

za
+ ∆(2)

a +O(λ4)

)
,

sbk = −2pb · k = −k−Qe−Y
(

1

zb
+ ∆

(2)
b +O(λ4)

)
. (4.11)

Since these terms now have a definite power counting, one can simply insert eq. (4.11)

into A(Q,Y ; {k}) and expand to the required order in λ.

• Measurement. Depending on the observable, the measurement function T̂ may also

receive power corrections. Since 0-jettiness is defined in terms of n, n̄, Q and Y , none

of which receive power corrections in our approach, we do not have such corrections,

and will therefore not write them explicitly in the following formulae. More generally,

these could be obtained from expanding δ
[
T − T̂ ({k})

]
.

Inserting all these expansions into eq. (4.6) and expanding consistently to O(λ2), we obtain

the LP result

dσ(0)

dQ2dY dT
=

∫ ∞
0

dk+dk−

(k+k−)ε
zazb fafb

(4π)22xaxbE4
cm

(4π)ε

Γ(1−ε)
A(0)(Q,Y ;{k})δ

[
T −T̂ ({k})

]
(4.12)

and the NLP master formula

dσ(2)

dQ2dY dT
=

∫ ∞
0

dk+dk−

(k+k−)ε
zazb

(4π)22xaxbE4
cm

(4π)ε

Γ(1− ε)
δ
[
T − T̂ ({k})

]
×
{
A(0)(Q,Y ; {k})

[
fafb

(
−za∆(2)

a − zb∆
(2)
b

)
+ xa∆

(2)
a f ′afb + xb∆

(2)
b faf

′
b

]
+ fafbA

(2)(Q,Y ; {k})
}
, (4.13)
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where za,b ≡ za,b(k) and ∆
(2)
a,b ≡ ∆

(2)
a,b(k) are defined by eq. (4.7). Note that the LP limits of

the matrix elements are universal, and hence eq. (4.12) holds independently of the process,

i.e. it only depends on the observable T . Although the focus of this paper is on the

power corrections, in appendix A we provide a brief derivation of the leading-power terms.

Likewise, the A(0) term together with the square bracketed factor on the second line of

eq. (4.13) is universal, such that all the process dependence arises from the last A(2) term.

We will discuss this in more detail in section 4.4.

In the following, we will evaluate eq. (4.13) in both the soft and collinear limit for

0-jettiness, eq. (2.7), whose measurement function for one emission is given by

δ
[
T − T̂ (k)

]
= Θ(ρk+ − ρ−1k−)δ(T − ρ−1k−) + Θ(ρ−1k− − ρk+)δ(T − ρk+) . (4.14)

The value of ρ depends on the specific definition of T , as given in eq. (2.8).

4.2 Collinear master formula for 0-jettiness

The expansion of the incoming momenta ζa,b for an n-collinear emission k ∼ (λ2, 1, λ) has

been given in eq. (3.12),

ζa(k) = xa

[(
1 +

k−e−Y

Q

)
+

k2
T

2Q2

]
+O(λ4) ,

ζb(k) = xb

[
1 +

(
k+e+Y

Q
+

k2
T

2Q2

)]
+O(λ4) , (4.15)

so the explicit expressions for the expansion eq. (4.7) are

za =

(
1 +

k−e−Y

Q

)−1

, ∆(2)
a =

k2
T

2Q2
,

zb = 1 , ∆
(2)
b =

(
k+e+Y

Q
+

k2
T

2Q2

)
. (4.16)

Since an n-collinear emission satisfies k− � k+, the 0-jettiness measurement eq. (4.14)

simplifies to

δ
[
T − T̂ (k)

]
= δ(T − ρk+) . (4.17)

Note that the integration in eq. (4.13) also includes the region k− → 0, where the as-

sumption k− � k+ is invalid. Indeed, this region corresponds to the soft expansion. It

is guaranteed by the zero-bin subtraction procedure that this overlap regime between the

soft and collinear limits is not double counted [77]. An important benefit of 0-jettiness and

our setup here is that the zero-bin contribution that removes the overlap is scaleless and

vanishes in pure dimensional regularization, such that we do not need to consider it further.

Eq. (4.17) fixes the k+ integral in eq. (4.13). It is also useful to write the remaining

k− integration in terms of za using eq. (4.16), giving

k− = QeY
1− za
za

,

∫ ∞
0

dk− =

∫ 1

xa

dza
z2
a

QeY . (4.18)
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Here the lower bound on the integration follows from the physical support of the PDF

fa(xa/za). Plugging back into eq. (4.13), we obtain the n-collinear master formula

dσ
(2)
n

dQ2dY dT
=

∫ 1

xa

dza
za

1

2xaxbE4
cm

QeY

ρ

(
QT eY

ρ

)−ε zεa
(1−za)ε

(4π)ε

(4π)2Γ(1−ε)

×

{
T eY

Qρ
A(0)(Q,Y,{k})

[
fa fb

(1−za)2−2

2za
+

1−za
2za

xaf
′
a fb+

1+za
2za

faxbf
′
b

]

+fa fbA
(2)(Q,Y,{k})

}
, (4.19)

where k is given by

kµ = QeY
1− za
za

nµ

2
+
T
ρ

n̄µ

2
+

√
QT e

Y

ρ

1− za
za

nµ⊥ . (4.20)

It only remains to plug in the expansions of the matrix element A(0) and A(2) and to expand

in ε. Note that even in the n-collinear case considered here, both the n and n̄-collinear

incoming momenta receive power corrections, see eq. (4.4), leading to derivatives of both

PDFs in eq. (4.19).

The analogous results for the n̄-collinear limit are obtained in the same manner, giving

dσ
(2)
n̄

dQ2dY dT
=

∫ 1

xb

dzb
zb

1

2xaxbE4
cm

Qρ

eY

(
QT ρ
eY

)−ε zεb
(1− zb)ε

(4π)ε

(4π)2Γ(1− ε)

×
{
T ρ
QeY

A(0)(Q,Y, {k})
[
fafb

(1− zb)2 − 2

2zb
+

1 + zb
2zb

xaf
′
a fb +

1− zb
2zb

fa xbf
′
b

]
+ fa fbA

(2)(Q,Y, {k})
}
, (4.21)

where k is given by

kµ = T ρ n
µ

2
+
Q

eY
1− zb
zb

n̄µ

2
+

√
QT ρ

eY
1− zb
zb

nµ⊥ . (4.22)

4.3 Soft master formula for 0-jettiness

The expansion of the incoming momenta ζa,b for a soft emission k ∼ (λ2, λ2, λ2) has been

given in eq. (3.10),

ζa(k) = xa

(
1 +

k−e−Y

Q

)
+O(λ4) ,

ζb(k) = xb

(
1 +

k+e+Y

Q

)
+O(λ4) , (4.23)

so the explicit expressions for the expansion eq. (4.7) are

za = 1 , ∆(2)
a =

k−e−Y

Q
,

zb = 1 , ∆
(2)
b =

k+e+Y

Q
. (4.24)
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Plugging back into eq. (4.13), we get

dσ
(2)
s

dQ2dY dT
=

∫ ∞
0

dk+dk−

(k+k−)ε
1

(4π)22xaxbE4
cm

(4π)ε

Γ(1− ε)
δ
[
T − T̂ ({k})

]{ 1

Q
A(0)(Q,Y, {k})

×
[
fa fb (−k−e−Y − k+e+Y ) + k−e−Y xaf

′
a fb + k+e+Y fa xbf

′
b

]
+ fa fbA

(2)(Q,Y, {k})
}
. (4.25)

Here, the measurement is given by eq. (4.14),

δ
[
T − T̂ (k)

]
= Θ(ρk+ − ρ−1k−)δ(T − ρ−1k−) + Θ(ρ−1k− − ρk+)δ(T − ρk+) . (4.26)

We can further simplify eq. (4.25) by utilizing the fact that A(0) and A(2) have a well

defined dependence on k+ or k− because of power counting and mass dimension,

A(0)(Q,Y, {k}) =
A

(0)
(Q,Y )

k+k−
, A(2)(Q,Y, {k}) =

A
(2)
+ (Q,Y )

k+
+
A

(2)
− (Q,Y )

k−
. (4.27)

Here the A’s are process-dependent expressions that depend on the Born measurements

Q and Y , but are independent of both k+ and k−. This implies that the k± integrals in

eq. (4.25) have the generic structure∫ ∞
0

dk+dk−

(k+k−)ε
δ
[
T − T̂ (k)

]
(k+)α(k−)β

= ρα−βT 1−α−β−2ε

(
1

ε+ α− 1
+

1

ε+ β − 1

)
. (4.28)

We then find the soft NLP master formula

dσ
(2)
s

dQ2dY dT
=

1

(4π)22xaxbE4
cm

(4π)ε

Γ(1− ε)
1

ε

T −2ε

Q

1− 2ε

1− ε

{
A

(0)
(Q,Y )

×
[
fa(xa) fb(xb)

(
− ρ

eY
− eY

ρ

)
+

ρ

eY
xaf

′
a(xa) fb(xb) +

eY

ρ
fa(xa)xbf

′
b(xb)

]
+ fa(xa) fb(xb)

[
ρQA

(2)
+ (Q,Y ) +

Q

ρ
A

(2)
− (Q,Y )

]}
. (4.29)

4.4 Universality of power corrections for 0-jettiness

Having derived our master formulas, in this section we comment on the universality of the

power corrections. In both the collinear and soft limits the power corrections arising from

the derivatives of the PDFs and from the expansion of the flux factor are proportional

to the LP matrix element A(0)(Q,Y ), see eqs. (4.19) and (4.29). Since the factorization

properties of A(0)(Q,Y ) are universal, most of the NLP corrections are universal as well,

in the sense that they essentially reduce to the LO cross section times a universal factor,

as we will make explicit below. The only process-dependent piece arises from the NLP

expansion A(2)(Q,Y ) of the matrix element. We stress that this limit is defined in our

particular choice of Born measurements Q2 and Y . Using different observables, e.g. q±,

the NLP corrections to ζa,b in eq. (3.5) would change, inducing also a change of the NLP

matrix element.
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4.4.1 Universality of collinear limit

We begin by considering the n-collinear limit of a real emission amplitude in detail. We

consider the Born process

κa(qa) + κb(qb)→ L(qa + qb) , (4.30)

where κi denotes all quantum numbers, including flavor, of the incoming partons, and L

is the leptonic final state of momentum q = qa + qb. The incoming momenta for the hard

collision are given by

qµa = xaEcm
nµ

2
= Qe+Y n

µ

2
, qµb = xbEcm

n̄µ

2
= Qe−Y

n̄µ

2
. (4.31)

Now consider that parton a arises from an n-collinear splitting of a parton with flavor a′,

κ′a(q
′
a) + κb(qb)→ L(q′a + qb − k) + κ1(k) . (4.32)

To describe this at leading power, we only need the O(λ0) relations for the momenta of

the incoming partons, which can be read off from eqs. (4.15) and (4.16),

q′
µ
a =

qµa
za

+O(λ2) =
QeY

za

nµ

2
+O(λ2) . (4.33)

The n-collinear emission is given by eq. (4.20),

kµ = QeY
1− za
za

nµ

2
+
T
ρ

n̄µ

2
+

√
QT e

Y

ρ

1− za
za

nµ⊥ . (4.34)

It follows that the leptonic momentum q′ = q′a + q′b − k = q +O(λ2) is equal to the Born

momentum q = qa + qb, and hence the collinear splitting does not affect the leptonic phase

space at LP.

The LP limit only exists if the splitting κ′a → κa + κ′1 is allowed, in which case it is

given by the O(λ−2) piece of the squared amplitude,

Aa′b→Lk(Q,Y, {k}) =
8παsµ

2ε
MS

QeY k+
Paa′(za, ε)A

LO
ab→L(Q,Y ) +O(λ0) , (4.35)

where the 1/k+ gives rise to the λ−2 behavior of the amplitude. Here the Paa′ are the

ε-dimensional splitting functions which are summarized in appendix A.

Recall that in our case, the measurement fixes k+ = T /ρ. In the notation of eq. (4.10),

we hence have for the LP matrix element

A
(0)
a′b→Lk(Q,Y, {k}) = 8παsµ

2ε
MS

ρ

QT eY
Paa′(za, ε)A

LO
ab→L(Q,Y ) . (4.36)

These results enable us to explicitly give the universal part of the NLP result in the

collinear limit. Inserting into the collinear master formula eq. (4.19) and converting to the
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MS scheme, we find

dσ
(2)
n

dQ2dY dT
(4.37)

= σ̂LO(Q,Y )
αs
4π

eY

Qρ
×
(
QT
µ2

eY

ρ

)−ε eεγE

Γ(1− ε)

∫ 1

xa

dza
za

zεa
(1− za)ε

Paa′(za, ε)

×
[
fa′

(
xa
za

)
fb(xb)

(1− za)2 − 2

za
+

1− za
za

xaf
′
a′

(
xa
za

)
fb(xb) +

1 + za
za

fa′

(
xa
za

)
xbf
′
b(xb)

]
+

∫ 1

xa

dza
za

fa(xa/za) fb(xb)

2xaxbE4
cm

QeY

ρ

(
QT eY

ρ

)−ε zεa
(1− za)ε

(4π)ε

(4π)2Γ(1− ε)
A(2)(Q,Y, {k}) .

Here, we factored out the LO partonic cross section eq. (4.2), which is only possible because

the collinear splitting leaves the leptonic momentum invariant at LP. We have made

explicit the universal piece and nonuniversal components. As already discussed, the full

nonuniversal structure arises from the NLP matrix element A(2)(Q,Y, {k}) in the last line.

It would also be interesting to understand if there is a universal structure to A(2)(Q,Y ).

This has recently been studied in ref. [78] for pure n gluon scattering amplitudes at the

level of the Cachazo-He-Yuan scattering equations [79, 80], where it was proven that in

the subleading power collinear limits the tree-level amplitude factorizes into a convolution

of the n − 1 gluon integrand and a universal collinear kernel. It would be interesting to

understand this at the level of the amplitude itself, as well as for fermions. Unlike at leading

power, we do not expect that there are universal subleading power splitting functions that

are simply functions of z, but there may exist splitting functions that involve differential or

integral operators, as occurs in the soft limit at subleading power [81, 82]. Understanding

this will be particularly important for generalizing the calculation of the power corrections

to more complicated processes.

4.4.2 Universality of soft limit

As for the collinear case, the LP soft limit of the matrix element is universal. Following

similar steps as in section 4.4.1, one can express the LP soft limit by

A
(0)
ab→Lk(Q,Y ; {k}) =

16παsµ
2ε
MSC

k+k−
×ALO

ab→L(Q,Y ) , (4.38)

which only exists for ab = gg, qq̄ and where C = CA, CF is the appropriate Casimir

constant. We thus obtain

dσ
(2)
s

dQ2dY dT
=
σ̂LO

Q

αsC

π

[
1

ε
− ln

T 2

µ2
− 1

]
×
[
fa(xa)fb(xb)

(
− ρ

eY
− eY

ρ

)
+

ρ

eY
xaf

′
a(xa) fb(xb) +

eY

ρ
fa(xa)xbf

′
b(xb)

]
+

fa(xa) fb(xb)

(4π)22xaxbE4
cm

(4π)ε

Γ(1− ε)
1

ε
T −2ε 1− 2ε

1− ε

[
ρ|A(2)

+ (Q,Y )|2 +
1

ρ
|A(2)
− (Q,Y )|2

]
.

(4.39)
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As for the collinear case, this emphasizes that the terms arising from the expansion of the

PDFs and flux factor are universal, in the sense that they only depend on the universal

LP soft limit of the amplitude. The only nonuniversal contributions are |A(2)
± |2. However,

these terms can in fact be derived from universal formulae [81–83] involving differential

operators. This has been recently studied in the threshold limit, where one only requires

soft contributions [67]. However, when one is away from the threshold limit as considered

here, one in general requires collinear contributions, which as discussed above, are not (yet)

known to be universal.

5 Power corrections at NLO for color singlet production

In this section we give explicit results for the full NLP correction for 0-jettiness at NLO for

Higgs and Drell-Yan production in all partonic channels. Since we only consider cases that

are s-channel processes at Born level, the LO matrix element only depends on Q and one

can factor out the LO partonic cross section σ̂LO(Q). We write the NLP cross section as

dσ(2,n)

dQ2dY dT
= σ̂LO(Q)

(αs
4π

)n ∫ 1

xa

dza
za

∫ 1

xb

dzb
zb

[
fi

(
xa
za

)
fj

(
xb
zb

)
C

(2,n)
fifj

(za, zb, T ) (5.1)

+
xa
za
f ′i

(
xa
za

)
fj

(
xb
zb

)
C

(2,n)
f ′ifj

(za, zb, T ) + fi

(
xa
za

)
xb
zb
f ′j

(
xb
zb

)
C

(2,n)
fif ′j

(za, zb, T )

]
,

where as always

xa =
QeY

Ecm
, xb =

Qe−Y

Ecm
. (5.2)

We will always express the real emission amplitudes in terms of the Mandelstam variables

sab = 2pa · pb , sak = −2pa · k , sbk = −2pb · k . (5.3)

This allows us to straightforwardly obtain the LP and NLP expansion using eq. (4.11). We

will give an explicit example of the derivation of the soft and collinear master formulas for

the gg → Hg channel, and only summarize the results in the other channels.

5.1 Gluon-fusion Higgs production

We begin by considering Higgs production in gluon fusion in the mt →∞ limit. At NLP,

there are three different partonic channels, gg → Hg, qq̄ → Hg and qg → Hq, which we

consider separately. The calculation for gg → Hg is shown in full detail as an illustration

of our master formulae. The LL power corrections were computed in [63, 64]. Ref. [64]

also computed the qq̄ → Hg NLL power corrections. The NLL power corrections for all

partonic channels for gluon fusion Higgs were computed in [70]. We will compare with

these results in section 6.

Throughout this section we consider on-shell Higgs production, for which the partonic

cross section is given by

σ̂LO(Q,Y ) =
ALO(Q,Y )

2xaxbE4
cm

= 2πδ(Q2 −m2
H)
|MLO

gg→H(Q)|2

2Q2E2
cm

. (5.4)
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The LO matrix element in d = 4− 2ε dimensions is given by [84, 85]

|MLO
gg→H(Q)|2 =

α2
sQ

4

576π2v2

(
4πµ2

MS

m2
t

)2εΓ2(1 + ε)

1− ε
. (5.5)

5.1.1 gg → Hg

The spin- and color-averaged squared amplitude for g(pa) + g(pb) → H(q) + g(k) is given

by [84]

Agg→Hg(Q,Y,{k}) =ALO
gg→H(Q)×

8παsCAµ
2ε
MS

Q4(1−ε)

×
[
(1−2ε)

Q8+s4
ab+s

4
ak+s4

bk

sabsaksbk
+
ε

2

(Q4+s2
ab+s

2
ak+s2

bk)
2

sabsaksbk

]
. (5.6)

n-collinear limit. Expanding eq. (5.6) using eqs. (4.11) and (4.16), the LP and NLP

limits of the matrix element are obtained as

A
(0)
gg→Hg(Q,Y ; {k}) = 16παsCAµ

2ε
MSA

LO
gg→H(Q)

(1− za + z2
a)2

(1− za)za
ρe−Y

QT
, (5.7)

A
(2)
gg→Hg(Q,Y ; {k}) = 16παsCAµ

2ε
MSA

LO
gg→H(Q)

1

Q2z2
a

[
1 + 5z2

a − z3
a + 2z4

a − z5
a − 2z2

a

1

1− ε

]
.

Since our scaling variable is λ ∼
√
T /Q, we clearly see that A(0) ∼ λ−2 and A(2) ∼ λ0, as

required at LP and NLP.

Inserting these expansions into eq. (4.19) and converting to the MS scheme yields

dσ
(2)
n

dQ2dY dT
= σ̂LO

gg→H(Q)× αsCA
π

∫ 1

xa

dza
za

1

Q

eY

ρ

(
T Q
µ2

eY

ρ

)−ε zεa
(1− za)ε

eεγE

Γ(1− ε)

×
{

(1− za + z2
a)2

(1− za)za

[
fa fb

(1− za)2 − 2

2za
+ xaf

′
a fb

1− za
2za

+ fa xbf
′
b

1 + za
2za

]
+ fa fb

1

z2
a

[
1 + 5z2

a − z3
a + 2z4

a − z5
a − 2z2

a

1

1− ε

]}
. (5.8)

To expand this in ε, we collect all powers of (1−za) and then use the distributional identity

(1− za)−1−ε = −δ(1− za)
ε

+ L0(1− za) +O(ε) , (5.9)

where L0(1 − z) = 1/(1 − z)+ is the usual plus distribution. We also combine the two

separate fafb pieces, as at this level there is no use to further distinguish the universal and
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process dependent pieces. This yields

dσ
(2)
n

dQ2dY dT
= σ̂LO

gg→H(Q)× αs
4π

4CA
eY

Qρ

∫ 1

xa

dza
za

×
{
fg

(
xa
za

)
fg(xb)

[(
1

ε
− ln

QT eY

µ2ρ

)
δ(1− za)

+
1− 2za + 8z2

a − 14z3
a + 12z4

a − 10z5
a + 3z6

a

2z2
a

L0(1− za)
]

+
xa
za
f ′g

(
xa
za

)
fg(xb)

(1− za + z2
a)2

2za

+ fg

(
xa
za

)
xbf
′
g(xb)

[(
−1

ε
+ ln

QT eY

µ2ρ

)
δ(1− za)

+
(1 + za)(1− za + z2

a)2

2z2
a

L0(1− za)
]}

. (5.10)

Comparing to eq. (5.1), we can read off the n-collinear kernels,

C
(2,1)
fgfg ,n

(za, zb, T ) = 4CA
eY

Qρ

[(
1

ε
− ln

QT eY

µ2ρ

)
δ(1− za)

+
1− 2za + 8z2

a − 14z3
a + 12z4

a − 10z5
a + 3z6

a

2z2
a

L0(1− za)
]
δ(1− zb) ,

C
(2,1)
f ′gfg ,n

(za, zb, T ) = 4CA
eY

Qρ

(1− za + z2
a)2

2za
δ(1− zb) ,

C
(2,1)
fgf ′g ,n

(za, zb, T ) = 4CA
eY

Qρ

[(
−1

ε
+ ln

QT eY

µ2ρ

)
δ(1− za)

+
(1 + za)(1− za + z2

a)2

2z2
a

L0(1− za)
]
δ(1− zb) . (5.11)

Soft limit. To expand the matrix element in the soft limit, we use eqs. (4.11) and (4.24)

to obtain

Agg→Hg(Q,Y, {k}) = ALO
gg→H(Q)× 16παsCA

µ2ε
MS

k+k−
+O(λ0) . (5.12)

Note that the first term scales as (k+k−)−1 ∼ λ−4, while there is no O(λ−2) component.

The NLP term in the expansion of the amplitude thus vanishes, and in the notation of

eq. (4.27) we have

A
(0)
gg→Hg(Q) = ALO

gg→H(Q)× 16παsCAµ
2ε
MS , A

(2)
gg→Hg(Q) = 0 . (5.13)

Inserting into eq. (4.29) and converting to the MS scheme yields

dσ
(2)
s

dQ2dY dT
= σ̂LO

gg→H(Q)
αs
4π
× 4CA

1

Q

(
1

ε
− ln

T 2

µ2
− 1

)
(5.14)

×
[
fg(xa)fg(xb)

(
− ρ

eY
− eY

ρ

)
+

ρ

eY
xaf

′
g(xa) fg(xb) +

eY

ρ
fg(xa)xbf

′
g(xb)

]
.
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Since there is no NLP matrix element, one can also obtain this from the universal expression

for the soft limit in eq. (4.39). Comparing to eq. (5.1), we can read off the soft kernel,

C
(2,1)
fgfg ,s

(za, zb, T ) = 4CA
1

Q

(
−e

Y

ρ
− ρ

eY

)(
1

ε
− ln

T 2

µ2
− 1

)
δ(1− za) δ(1− zb) ,

C
(2,1)
f ′gfg ,s

(za, zb, T ) = 4CA
1

Q

ρ

eY

(
1

ε
− ln

T 2

µ2
− 1

)
δ(1− za) δ(1− zb) ,

C
(2,1)
fgf ′g ,s

(za, zb, T ) = 4CA
1

Q

eY

ρ

(
1

ε
− ln

T 2

µ2
− 1

)
δ(1− za) δ(1− zb) . (5.15)

Final result. Adding the n-collinear kernel eq. (5.11), the n̄-collinear kernel which follows

from symmetry, and the soft kernel eq. (5.15), all poles in ε cancel as expected, and we

obtain

C
(2,1)
fgfg

(za, zb, T ) = 4CA
eY

Qρ

[(
ln
T ρ
QeY

+ 1

)
δ(1− za)

+
1− 2za + 8z2

a − 14z3
a + 12z4

a − 10z5
a + 3z6

a

2z2
a

L0(1− za)
]
δ(1− zb)

+

(
a↔ b ,

ρ

eY
→ eY

ρ

)
,

C
(2,1)
f ′gfg

(za, zb, T ) = 4CA
ρ

QeY
δ(1− za)

[(
− ln

T eY

Qρ
− 1

)
δ(1− zb)

+
(1 + zb)(1− zb + z2

b )2

2z2
b

L0(1− zb)
]

+ 4CA
eY

Qρ

(1− za + z2
a)2

2za
δ(1− zb) ,

C
(2,1)
fgf ′g

(za, zb, T ) = 4CA
eY

Qρ

[(
− ln

T ρ
QeY

− 1

)
δ(1− za)

+
(1 + za)(1− za + z2

a)2

2z2
a

L0(1− za)
]
δ(1− zb)

+ 4CA
ρ

QeY
δ(1− za)

(1− zb + z2
b )2

2zb
. (5.16)

Substituting these results into eq. (5.1) yields the NLP cross section for gg → Hg at NLO.

5.1.2 gq → Hq

The gq → Hq channel has power corrections at both LL and NLL. The spin- and color-

averaged squared amplitude for g(pa) + q(pb)→ H(q) + q(k) is given by [84]

Agq→Hq(Q,Y, {k}) = −ALO
gg→H(Q)× 8παsCFµ

2ε
MS

1

Q4sbk

[
s2
ab + s2

ak − ε(sab + sak)
2
]
.

(5.17)

Soft limit. The LP soft limit vanishes, since a leading-power soft interaction (which is

eikonal) cannot change a n-collinear quark into a n-collinear gluon and soft quark. However
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this does occur at NLP in the soft expansion and yields

A
(2)
gq→Hq(Q,Y, {k}) = ALO

gg→H(Q)× 8παsCFµ
2ε
MS

1− ε
Qk−e−Y

, (5.18)

and the soft kernel is given by

C
(1,2)
fgfq ,s

(za, zb, T ) = 2CF
eY

Qρ

(
1

ε
− ln

T 2

µ2
− 2

)
δ(1− za) δ(1− zb) . (5.19)

n̄-collinear limit. The n̄-collinear limit has both a LP and NLP contribution, given by

A
(0)
gq→Hq(Q,Y, {k}) = ALO

gg→H(Q)× 8παsCF
eY

ρ

1 + (1− zb)2 − εz2
b

QT zb
,

A
(2)
gq→Hq(Q,Y, {k}) = ALO

gg→H(Q)× 4παsCFµ
2ε
MS

4− z3
b + z4

b − εz2
b (4− zb + z2

b )

Q2z2
b

. (5.20)

The n̄-collinear kernel is obtained as

C
(1,2)
fgfq ,n̄

(za, zb, T ) = CF
ρ

QeY
δ(1− za)

2− 2zb + 5z2
b − 5z3

b + 2z4
b

z2
b

,

C
(1,2)
f ′gfq ,n̄

(za, zb, T ) = CF
ρ

QeY
δ(1− za)

(1 + zb)[1 + (1− zb)2]

z2
b

,

C
(1,2)
fgf ′q ,n̄

(za, zb, T ) = CF
ρ

QeY
δ(1− za)

(1− zb)[1 + (1− zb)2]

zb
. (5.21)

n-collinear limit. The n-collinear limit vanishes at LP. The NLP expansion of the

matrix element gives

A
(2)
gq→Hq(Q,Y, {k}) = ALO

gg→H(Q)×
8παsCFµ

2ε
MS(1− ε)

Q2(1− za)za
. (5.22)

The only nonvanishing kernel is

C
(1,2)
fgfq ,n

(za,zb,T ) = 2CF
eY

Qρ

[(
−1

ε
+ln

QT eY

µ2ρ
+1

)
δ(1−za)+

L0(1−za)
za

]
δ(1−zb) . (5.23)

Final result. Combining the n-collinear, n̄-collinear, and soft kernels, the 1/ε pole van-

ishes, and we obtain the final results,

C
(1,2)
fgfq

(za, zb, T ) = 2CF
eY

Qρ

[(
− ln

T ρ
QeY

− 1

)
δ(1− za) +

L0(1− za)
za

]
δ(1− zb)

+ CF
ρ

QeY
δ(1− za)

2− 2zb + 5z2
b − 5z3

b + 2z4
b

z2
b

,

C
(1,2)
f ′gfq

(za, zb, T ) = CF
ρ

QeY
δ(1− za)

(1 + zb)[1 + (1− zb)2]

z2
b

,

C
(1,2)
fgf ′q

(za, zb, T ) = CF
ρ

QeY
δ(1− za)

(1− zb)[1 + (1− zb)2]

zb
. (5.24)

Substituting these results into eq. (5.1) yields the NLP cross section for gq → Hq at NLO.
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5.1.3 qg → Hq

The final results needed in eq. (5.1) for qg → Hq follow from eq. (5.24) by flipping a↔ b,

eY /ρ↔ ρ/eY and fg ↔ fq,

C
(1,2)
fqfg

(za, zb, T ) = 2CF
ρ

QeY
δ(1− za)

[(
− ln

T eY

Qρ
− 1

)
δ(1− zb) +

L0(1− zb)
zb

]
+ CF

eY

Qρ

2− 2za + 5z2
a − 5z3

a + 2z4
a

z2
a

δ(1− zb) ,

C
(1,2)
f ′qfg

(za, zb, T ) = CF
eY

Qρ

(1− za)[1 + (1− za)2]

za
δ(1− zb) ,

C
(1,2)
fqf ′g

(za, zb, T ) = CF
eY

Qρ

(1 + za)[1 + (1− za)2]

z2
a

δ(1− zb) . (5.25)

5.1.4 qq̄ → Hg

The qq̄ → Hg channel first contributes at NLL. It was first given in [64] and then in [70],

which agreed, but we reproduce it here for completeness. The squared matrix element,

including the average on the initial state spin and colors, is given by [84]

Aqq̄→Hg(Q,Y, {k}) = ALO
gg→H(Q)× 64π

3
αsCFµ

2ε
MS

1− ε
Q4sab

[
s2
ak + s2

bk − ε(sak + sbk)
2
]
.

(5.26)

With our choice of Born measurements, the soft limit vanishes both at LP and NLP, leaving

only the collinear NLP correction. The LP collinear limit also vanishes, leaving only the

NLP n-collinear limit

A
(2)
qq̄→Hg(Q,Y, {k}) = ALO

gg→H(Q)× 64π

3
αsCFµ

2ε
MS(1− ε)2 (1− za)2

Q2za
, (5.27)

and the n̄-collinear result is obtained by replacing za ↔ zb. Combining both, we obtain

the kernel for eq. (5.1)

C
(2,1)
fqfq̄

(za, zb, T ) =
16CF

3

1

Q

[
eY

ρ

(1− za)2

za
δ(1− zb) +

ρ

eY
δ(1− za)

(1− zb)2

zb

]
. (5.28)

5.2 Drell-Yan production

We now consider the Drell-Yan process pp → Z/γ∗ → l+l−, and for brevity denote it as

pp → V . At NLO we have the partonic channels qq̄ → V g and qg → V q. The LL power

corrections for these channels were calculated to NNLO in [62, 63].

For Drell-Yan, it is important to be able to include off-shell effects. The LO partonic

cross section as a function of the leptonic invariant mass Q is given by

σ̂LO(Q) =
4πα2

em

3NcQ2E2
cm

[
Q2
q +

(v2
q + a2

q)(v
2
l + a2

l )− 2Qqvqvl(1−m2
Z/Q

2)

(1−m2
Z/Q

2)2 +m2
ZΓ2

Z/Q
4

]
. (5.29)

Here, vl,q and al,q are the standard vector and axial couplings of the leptons and quarks to

the Z boson, and we have integrated over the l+l− phase space.
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5.2.1 qq̄ → V g

We first consider the partonic channel qq̄ → V g. The squared amplitude is given by [86]

|Mqq̄→V g|2 = |Mqq̄→V |2 ×
8παsCFµ

2ε
MS

Q2

[
(1− ε)

(
sak
sbk

+
sbk
sak

)
+

2sabQ
2

saksbk
− 2ε

]
. (5.30)

Soft limit. With our setup, the soft limit of the matrix element has no NLP correction,

Aqq̄→V g(Q,Y, {k}) = ALO
qq̄→V (Q)×

16παsCFµ
2ε
MS

k+k−
+O(λ0) , (5.31)

and the soft kernels are given by

C
(2,1)
fqfq̄ ,s

(za, zb, T ) = 4CF

(
− e

Y

Qρ
− ρ

QeY

)(
1

ε
− ln

T 2

µ2
− 1

)
δ(1− za) δ(1− zb) ,

C
(2,1)
f ′qfq̄ ,s

(za, zb, T ) = 4CF
ρ

QeY

(
1

ε
− ln

T 2

µ2
− 1

)
δ(1− za) δ(1− zb) ,

C
(2,1)
fqf ′q̄ ,s

(za, zb, T ) = 4CF
eY

Qρ

(
1

ε
− ln

T 2

µ2
− 1

)
δ(1− za) δ(1− zb) . (5.32)

Collinear limit. The n-collinear expansion of the matrix element yields (at NLP, we

only need ε→ 0)

A
(0)
qq̄→V g(Q,Y, {k}) = ALO

qq̄→V (Q)× 8παsCFµ
2ε
MS

ρ

eY
1 + z2

a − ε(1− za)2

QT (1− za)
, (5.33)

A
(2)
qq̄→V g(Q,Y, {k}) = ALO

qq̄→V (Q)× 4παsCF
1− za + z2

a − z3
a

Q2za
. (5.34)

The n-collinear kernel is

C
(2,1)
fqfq̄ ,n

(za, zb, T ) = 4CF
eY

Qρ

[(
1

ε
− ln

QT eY

µ2ρ

)
δ(1− za)

+
1

2
(za − 2)(1 + z2

a)L0(1− za)
]
δ(1− zb) ,

C
(2,1)
f ′qfq̄ ,n

(za, zb, T ) = 4CF
eY

Qρ

1 + z2
a

4
δ(1− zb) ,

C
(2,1)
fqf ′q̄ ,n

(za, zb, T ) = 4CF
eY

Qρ

[(
−1

ε
+ ln

QT eY

µ2ρ

)
δ(1− za)

+
(1 + za)(1 + z2

a)

4za
L0(1− za)

]
δ(1− zb) . (5.35)
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Final result. Adding the n, n̄ and s kernel, we get

C
(2,1)
fqfq̄

(za,zb,T ) = 4CF
eY

Qρ

[(
ln
T ρ
QeY

+1

)
δ(1−za)+

1

2
(za−2)(1+z2

a)L0(1−za)
]
δ(1−zb)

+

(
eY

ρ
→ ρ

eY
,a↔ b

)
,

C
(2,1)
f ′qfq̄

(za,zb,T ) = 4CF
ρ

QeY
δ(1−za)

[(
− ln
T eY

Qρ
−1

)
δ(1−zb)+

(1+zb)(1+z2
b )

4zb
L0(1−zb)

]
+4CF

eY

Qρ

1+z2
a

4
δ(1−zb) ,

C
(2,1)
fqf ′q̄

(za,zb,T ) = 4CF
eY

Qρ

[(
− ln

T ρ
QeY

−1

)
δ(1−za)+

(1+za)(1+z2
a)

4za
L0(1−za)

]
δ(1−zb)

+4CF
ρ

QeY
δ(1−za)

1+z2
b

4
. (5.36)

Substituting these results into eq. (5.1) yields the NLP cross section for qq̄ → V g at NLO.

5.2.2 qg → V q

Next we consider the partonic channel qg → V q. The squared amplitude is given by [86]

Aqg→V q(Q,Y, {k}) = −ALO
qq̄→V (Q)×

8παsTFµ
2ε
MS

Q2(1− ε)

[
(1− ε)

(
sab
sbk

+
sbk
sab

)
+

2sakQ
2

sabsbk
− 2ε

]
.

(5.37)

Soft limit. The LP soft limit vanishes, and the NLP soft expansion is given by

A
(2)
qg→V q(Q,Y, {k}) = ALO

qq̄→V (Q)× 8παsTFµ
2ε
MS

eY

Qk−
. (5.38)

The soft kernel is given by

C
(2,1)
fqfg ,s

= 2TF
eY

Qρ

(
1

ε
− ln

T 2

µ2
− 1

)
δ(1− za) δ(1− zb) . (5.39)

n-collinear limit. The n-collinear limit does not contribute at LP, since the LP inter-

action can not change the n̄-collinear gluon into a n̄-collinear antiquark. The NLP matrix

element is given by

A
(2)
qg→V q(Q,Y, {k}) = ALO

qq̄→V (Q)× 8παsTF
1 + (1− za)2 − εz2

a

(1− ε)(1− za)Q2
, (5.40)

and the collinear kernel is

C
(2,1)
fqfg ,n

(za, zb, T ) = 2TF
eY

Qρ

[(
−1

ε
+ ln

QT eY

µ2ρ

)
δ(1− za)

+ [1 + (1− za)2]L0(1− za)
]
δ(1− zb) . (5.41)
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n̄-collinear limit. The n̄-collinear limit is IR finite, so we work in d = 4,

A
(0)
qg→V q(Q,Y, {k}) = ALO

qq̄→V (Q)× 8παsTF
eY

ρ

1− 2zb + 2z2
b

QT
, (5.42)

A
(2)
qg→V q(Q,Y, {k}) = ALO

qq̄→V (Q)× 4παsTF
1 + zb + 4z2

b − 8z3
b + 4z4

b

Q2zb
. (5.43)

The n̄-collinear kernel is given by

C
(2,1)
fqfg ,n̄

(za, zb, T ) = TF
ρ

QeY
δ(1− za) (1− zb)(1 + 8zb − 6z2

b ) ,

C
(2,1)
f ′qfg ,n̄

(za, zb, T ) = TF
ρ

QeY
δ(1− za)

(1 + zb)(1− 2zb + 2z2
b )

zb
,

C
(2,1)
fqf ′g ,n̄

(za, zb, T ) = TF
ρ

QeY
δ(1− za) (1− zb)(1− 2zb + 2z2

b ) . (5.44)

Final result. Adding the s, n, n̄ kernels, the pole in ε cancels and we get

C
(2,1)
fqfg

(za,zb,T ) = 2TF
eY

Qρ

[(
− ln

T ρ
QeY

−1

)
δ(1−za)+[1+(1−za)2]L0(1−za)

]
δ(1−zb)

+TF
ρ

QeY
δ(1−za)(1−zb)(1+8zb−6z2

b ) ,

C
(2,1)
f ′qfg

(za,zb,T ) =TF
ρ

QeY
δ(1−za)

(1+zb)(1−2zb+2z2
b )

zb
,

C
(2,1)
fqf ′g

(za,zb,T ) =TF
ρ

QeY
δ(1−za)(1−zb)(1−2zb+2z2

b ) . (5.45)

Substituting these results into eq. (5.1) yields the NLP cross section for qg → V q at NLO.

5.2.3 gq → V q

For completeness, we also give the explicit results for the gq → V q channel, which can

easily be obtained from eq. (5.45) by flipping a↔ b, eY /ρ↔ ρ/eY and fq ↔ fg,

C
(2,1)
fgfq

(za,zb,T ) = 2TF
ρ

QeY
δ(1−za)

[(
− ln
T eY

Qρ
−1

)
δ(1−zb)+[1+(1−zb)2]L0(1−zb)

]
+TF

eY

Qρ
(1−za)(1+8za−6z2

a)δ(1−zb) ,

C
(2,1)
f ′gfq

(za,zb,T ) =TF
eY

Qρ
(1−za)(1−2za+2z2

a)δ(1−zb) ,

C
(2,1)
fgf ′q

(za,zb,T ) =TF
eY

Qρ

(1+za)(1−2za+2z2
a)

za
δ(1−zb) . (5.46)

6 Comparison with integrated results in the literature

In this section, we compare our NLO results to previous results in the literature. The LL

results presented by a subset of the present authors in refs. [62, 64] fully agree with the

results obtained in this paper.
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The results in refs. [63, 70] are given only integrated over the color-singlet rapidity

Y , and hence take quite a different form at the integrand level. To compare to them, we

integrate our results over Y , which allows us to use integration by parts to bring our results

into the same integrated form as those in refs. [63, 70]. For leptonic T , whose definition

involves Y , we find that ref. [70] uses a different definition, and hence we cannot make

a meaningful comparison. For hadronic T , whose definition is independent of Y , we find

explicit agreement for the LL results after integrating over Y .

At NLL, the results obtained here for the power corrections differential in Y , for both

the leptonic and hadronic definitions and all partonic channels, are new. After integrating

over Y we find almost complete agreement with the hadronic results of ref. [70], up to a

relatively simple term.2

Since there are a number of differences in our treatment compared to refs. [63, 70],

we provide a detailed comparison in this section. In section 6.1 we discuss our different

treatments of the NLO phase space and of the Born measurements, and show that the

rapidity dependence cannot be easily reconstructed from the results in refs. [63, 70]. In

section 6.2 we provide an explicit comparison of the results for the gg → Hg channel

integrated over rapidity at LL and NLL, both analytically and numerically.

6.1 Treatment of the NLO phase space

The derivation in ref. [70] differs from ours here (and that in refs. [62, 64]) in that it is not

differential in the rapidity Y . To explore the differences arising from this, we give a brief

derivation of the NLO phase space following the same steps as ref. [70]. Note that in the fol-

lowing we always work with an on-shell process, in contrast to our more general setup in sec-

tion 4. We also only consider the case k+ < k−, since the case k+ > k− follows by symmetry.

We start with the expression for the NLO phase space as given in ref. [70],

dPSNLO

dT
=
T −ε(4πµ2

MS)−ε

8πΓ(1− ε)

∫
dξadξb

fg(ξa)fg(ξb)

2ξaξbE2
cm

(
Qaξa
xa

)1−ε

×
∫

dza(1− za)−εδ
(
ξaξbzaE

2
cm −m2

H −
Qaξa
xa
T
)
, (6.1)

where s = E2
cm, Qa is defined in eq. (2.6) and xa arises from the T measurement.

We can derive a similar expression in our notation, including in addition the rapidity

measurement as done in our main derivation. Denoting the incoming momenta at NLO by

q′a,b, we have from eq. (3.2)

dPSNLO

dY dT
=

∫ 1

0
dξadξb

fa(ξa)fb(ξb)

2ξaξbE2
cm

µ2ε
MS

∫
ddk

(2π)d
(2π)δ+(k2)

∫
ddq

(2π)d
(2π)δ+(q2 −Q2)

× (2π)dδ(q′a + q′b − q − k)δ

(
Y − 1

2
ln
q−

q+

)
δ[T − T̂ (k)]

=
1

8π

(4πµ2
MS)ε

Γ(1− ε)

∫ 1

0
dξadξb

fa(ξa)fb(ξb)

2ξaξbE2
cm

∫ ∞
0

dk+dk−

(k+k−)ε
δ[T − T̂ (k)]

× δ(ξaξbE2
cm − ξaEcmk

+ − ξbEcmk
− −Q2) δ

(
Y − 1

2
ln
ξaEcm − k−

ξbEcm − k+

)
. (6.2)

2This missing term has been confirmed by the authors of ref. [70] and was corrected in their version 2.
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As in eq. (6.1), we assume that k+ < k− to set T̂ (k) = ρk+, which gives

dPSNLO

dY dT
=

1

8π

(4πµ2
MS)ε

Γ(1− ε)

∫ 1

0
dξadξb

fa(ξa)fb(ξb)

2ξaξbE2
cm

∫ ∞
0

dk−

ρ

(
ρ

T k−

)ε
(6.3)

× δ(ξaξbE2
cm −Q2 − ξaEcmT /ρ− ξbEcmk

−) δ

(
Y − 1

2
ln

ξaEcm − k−

ξbEcm − T /ρ

)
.

Following ref. [70], we now change variables via k− = ξaEcm(1− za),

dPSNLO

dY dT
=
T −ε

8π

(4πµ2
MS)ε

Γ(1− ε)

∫ 1

0
dξadξb

fa(ξa)fb(ξb)

2ξaξbE2
cm

(
ξaEcm

ρ

)1−ε ∫
dza (1− za)−ε

× δ(zaξaξbE2
cm − ξaEcmT /ρ−Q2) δ

(
Y − 1

2
ln

zaξa

ξb − T
ρEcm

)
. (6.4)

Up to the rapidity measurement from the final δ function, we find complete agreement with

eq. (6.1) if we identify

ρ ≡ ρ(Y ) =
xaEcm

Qa(xa)
. (6.5)

At this step, our treatment differs from the one in ref. [70]. Since we explicitly implement

measurement δ functions for both Q and Y , we can uniquely solve for ξa and ξb in terms

of Q and Y or equivalently xa and xb,

ξa =
e+Y

2z2
aEcm

T eY
ρ

(1− za) +

√(
T eY
ρ

)2

(1− za)2 + 4Q2z2
a

 ,
ξb =

e−Y

2zaEcm

T eY
ρ

(1 + za) +

√(
T eY
ρ

)2

(1− za)2 + 4Q2z2
a

 . (6.6)

This holds for both ρ = 1 and ρ = eY . This is equivalent to eq. (3.5) (where we used the

notation ζa,b instead of ξa,b here). The reason this expression looks different is just because

in eq. (3.5) we performed this step before fixing k+ in terms of T and before changing

variables from k− to za via k− = ξaEcm(1− za).
Following a similar strategy as in section 4, one can now replace ξa,b in eq. (6.4) by

the solution eq. (6.6), take the Jacobian from solving the δ functions into account, and

then simply expand in T . The main difference to the derivation in section 4 is that here,

one directly expands the phase space in T , while in section 4 we expanded in terms of the

generic power-counting parameter λ.

In ref. [70], there is only the Q2 measurement but no rapidity measurement, i.e. Y is

implicitly integrated over. Hence, there is only one constraint for the two variables ξa, ξb,

whose solution is not unique. They choose to perform the variable transformation from

ξa,b to new variables x̃a,b defined by

ξa =
x̃2
ax̃bE

2
cm

zax̃ax̃bE2
cm −Qa(x̃a)T

, ξb = x̃b . (6.7)
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We write x̃a,b here to distinguish these from the Born variables xa,b = Qe±Y /Ecm that

appear in the Born-projected momenta in eq. (2.4). While they satisfy x̃ax̃b = Q2/E2
cm

due to the Q2 measurement constraint, (1/2) ln(x̃a/x̃b) is not equal to the rapidity Y , which

would require the solution in eq. (6.6).

In ref. [70], the x̃a,b defined by eq. (6.7) also enter in the definition of the 0-jettiness

measure in eq. (2.3) in place of xa,b. As a result, the nonhadronic T definition in ref. [70]

is not the same as the usual leptonic T with ρ = eY that we use. Their hadronic definition

is the same as ours, as it has no xa,b dependence. Therefore in the following we restrict

our comparison to the hadronic definition.

We also note that one cannot easily recover the rapidity dependence from the inte-

grands of the final results in ref. [70]. To see this explicitly, consider inserting the rapidity

measurement by comparing eqs. (6.1) and (6.4), which gives

δ

(
Y − 1

2
ln

zaξa

ξb − T
ρEcm

)
= δ

(
Y − 1

2
ln
zaξ

(0)
a

ξ
(0)
b

)
(6.8)

+
T
2
δ′

(
Y − 1

2
ln
zaξ

(0)
a

ξ
(0)
b

)(
ξ′

(0)
b

ξ
(0)
b

− ξ′(0)
a

ξ
(0)
a

− 1

ξ
(0)
b ρEcm

)
+O(T 2) .

On the right-hand side we have carried out the power expansion about T → 0 and the

superscript (0) denotes the results for these variables at LP, while ξ
′(0)
a = dξa/dT

∣∣
T →0

,

etc. This accounts for the fact that in general the ξa,b can depend on T themselves.

Equation (6.8) shows that one cannot use the LP expression δ[Y − (1/2) ln(zaξ
(0)
a /ξ

(0)
b )] =

δ[Y − (1/2) ln(x̃a/x̃b)] to recover the Y dependence from the x̃a,b dependence of the results

in ref. [70], as this does not account for the additional power corrections induced by the

Y measurement in the second line of eq. (6.8). This implies that the results in ref. [70]

and also those in ref. [63] cannot be used when being differential in rapidity or integrated

over bins of rapidity, but only integrated over all Y . This was also confirmed to us by

the authors.

6.2 Explicit comparison to results in the literature for gg → Hg

Our final results take a quite different form than those in refs. [63, 70]. For us, both ξa and

ξb receive power corrections resulting in derivatives for both PDFs. In contrast, the variable

transformation in eq. (6.7) for the case of k+ < k− does not yield power corrections for ξb
and hence no derivatives of fb, while the expansion of ξa yields derivatives of fa (and vice

versa for k+ > k−). Due to this different form, one cannot directly compare the integrands

of the two results, but one needs to use integration by parts to bring the results into the

same form, as we will now show explicitly. In particular, we will show that the results

of refs. [62, 64], obtained also here, do agree with the results of refs. [63, 70] at LL when

integrating over all Y .
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Integrating our result over Y , and transforming the integration variables to xa,b =

Qe±Y /Ecm, we obtain from eq. (5.1)

dσ(2,1)

dT
=
αs
4π

∫ 1

0
dxadxb 2πδ(xaxbE

2
cm −m2

H)
|MLO

gg→H(mH)|2

2xaxbE2
cm

∫ 1

xa

dza
za

∫ 1

xb

dzb
zb

×
[
fi

(
xa
za

)
fj

(
xb
zb

)
C

(2,1)
fifj

(za, zb, T ) +
xa
za
f ′i

(
xa
za

)
fj

(
xb
zb

)
C

(2,1)
f ′ifj

(za, zb, T )

+
xb
zb
fi

(
xa
za

)
f ′j

(
xb
zb

)
C

(2,1)
fif ′j

(za, zb, T )

]
. (6.9)

We will show the integration by parts explicitly for the fif
′
j piece. Let us denote the

piece we wish to integrate by parts by D(2,1), which can be chosen freely. To integrate over

Y1 < Y < Y2, we switch the integration variables xa, xb back to Q2 and Y , use that

xb
zb
f ′j

(
xb
zb

)
=
Qe−Y

Ecmzb
f ′j

(
Qe−Y

Ecmzb

)
= − d

dY
fj

(
Qe−Y

Ecmzb

)
, (6.10)

and integrate by parts with respect to Y . Combining the resulting pieces with those in

eq. (6.9), we find

dσ(2,1)

dT
=
αs
4π

∫ 1

0
dxadxb 2πδ(xaxbE

2
cm −m2

H)
|MLO

gg→H(mH)|2

2xaxbE2
cm

∫ 1

xa

dza
za

∫ 1

xb

dzb
zb

×
{
fi

(
xa
za

)
fj

(
xb
zb

)[
C

(2,1)
fifj

(za, zb, T ) +
d

dY
D(2,1)(za, zb, T )

]
+
xa
za
f ′i

(
xa
za

)
fj

(
xb
zb

)[
C

(2,1)
f ′ifj

(za, zb, T ) +D(2,1)(za, zb, T )

]
+
xb
zb
fi

(
xa
za

)
f ′j

(
xb
zb

)[
C

(2,1)
fif ′j

(za, zb, T )−D(2,1)(za, zb, T )
]}

− αs
4π

∫
dQ2 2πδ(Q2 −m2

H)
|MLO

gg→H(mH)|2

2Q2E2
cm

∫ 1

QeY

Ecm

dza
za

∫ 1

Qe−Y
Ecm

dzb
zb

× fi
(
QeY

Ecmza

)
fj

(
Qe−Y

Ecmzb

)
D(2,1)(za, zb, T )

∣∣∣∣Y=Y2

Y=Y1

. (6.11)

The dependence on D(2,1) exactly cancels in this expression. We can choose D(2,1) freely

to obtain different forms of the Y -integrated result. The last term in eq. (6.11) is the

boundary contribution, which vanishes as Y1,2 → ±∞, i.e. only if one is fully inclusive in

Y . They do in general contribute when placing acceptance cuts on Y .

We now work out explicitly the required integration by parts both at LL and NLL to

bring our results into the integrated form as given in refs. [63, 70]. For concreteness, we

focus on the gg → Hg channel. For the reasons mentioned earlier, we can only compare

the results for the hadronic T definition.
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6.2.1 Comparison at LL

At LL, our results in eq. (5.16) simplify to

C
(2,1),LL
fgfg

(za, zb, T ) = 4CA

[
eY

Qρ
ln
T ρ
QeY

+
ρ

QeY
ln
T eY

Qρ

]
δ(1− za)δ(1− zb) ,

C
(2,1),LL
f ′gfg

(za, zb, T ) = −4CA
ρ

QeY
ln
T eY

Qρ
δ(1− za)δ(1− zb) ,

C
(2,1),LL
fgf ′g

(za, zb, T ) = −4CA
eY

Qρ
ln
T ρ
QeY

δ(1− za)δ(1− zb) . (6.12)

These agree with the earlier results obtained by a subset of the current authors in

refs. [62, 64]. Note that for strict LL accuracy, one can also write the logarithms as

ln(T /Q) ± ln(ρ/eY ) and only keep the ln(T /Q) at LL, while including the ± ln(ρ/eY )

pieces in the NLL contributions. (This is the convention used in refs. [62, 64] and in sec-

tion 7.) Here, we keep them as part of the LL result, as they are relevant for the comparison

with ref. [70].

Up to a trivial change in notation, the LL result given in ref. [70] for hadronic T is

dσ
NLP [70]
LL

dT cm
=
αsCA
π

∫ 1

0
dx̃adx̃b 2πδ(x̃ax̃bE

2
cm −m2

H)
|MLO

gg→H(mH)|2

2x̃ax̃bE2
cm

(6.13)

×
[
−x̃af ′g(x̃a)fg(x̃b)

x̃aEcm

m2
H

ln
T cm

x̃aEcm
− x̃bfg(x̃a)f ′g(x̃b)

x̃bEcm

m2
H

ln
T cm

x̃bEcm

]
.

As discussed before, the x̃a,b here are not equal to the Born variables xa,b.

Inserting our LL result in eq. (6.12) with ρ = 1 into eq. (6.9), we have

dσ
(2,1)
LL

dT cm
=
αsCA
π

∫ 1

0
dxadxb 2πδ(xaxbE

2
cm −m2

H)
|MLO

gg→H(mH)|2

2xaxbE2
cm

×
[
fg(xa)fg(xb)

(
eY

mH
ln
T cme−Y

mH
+
e−Y

mH
ln
T cmeY

mH

)
− xaf ′g(xa)fg(xb)

e−Y

mH
ln
T cmeY

mH
− xbfg(xa)f ′g(xb)

eY

mH
ln
T cme−Y

mH

]
, (6.14)

where eY =
√
xa/xb. At the integrand level, the two results clearly have a different form,

as was also remarked in refs. [64, 70].

To show explicitly that eqs. (6.13) and (6.14) do agree, we integrate by parts to move

the fgfg contribution in eq. (6.14) into the fgf
′
g and f ′gfg terms. Using eq. (6.11), we can

achieve this by choosing

D(2,1)(za, zb, T cm) = 4CA

(
− eY

mH
ln
T cme−Y

mH
+
e−Y

mH
ln
T cmeY

mH

)
δ(1− za) δ(1− zb) .

(6.15)
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Figure 1. Comparison of the Y -integrated LL power correction for hadronic T for gg → Hg. The

solid red and blue dashed curves show the LL results keeping only ln(T /mH). In the long-dashed

orange and dotted light blue curves we keep all ln(T e±Y /mH) or ln[T /(x̃a,bEcm)] terms. In both

cases, our result in eq. (6.14) and the result of ref. [70] in eq. (6.13) agree. The small difference in

the second case arises due to the fact that e±Y /mH is not exactly the same as x̃a,bEcm.

Integrating over Y1 < Y < Y2 and using that eY =
√
xa/xb and mH =

√
xaxbEcm,

eq. (6.14) becomes

dσ
(2,1)
LL (Y1, Y2)

dT cm
(6.16)

=
αsCA
π

∫ 1

0
dxadxb 2πδ(xaxbE

2
cm −m2

H)
|MLO

gg→H(mH)|2

2xaxbE2
cm

×
[
−xaf ′g(xa)fg(xb)

xaEcm

m2
H

ln
T cm

xaEcm
− xbfg(xa)f ′g(xb)

xbEcm

m2
H

ln
T cm

xbEcm

]
+
αsCA
π

2π|MLO
gg→H(mH)|2

2m2
HE

2
cm

fg

(
mHe

Y

Ecm

)
fg

(
mHe

−Y

Ecm

)
×
[
eY

mH
ln
T cme−Y

mH
− e−Y

mH
ln
T cmeY

mH

]∣∣∣∣Y2

Y1

+
αsCA
π

∫ 1

0
dxadxb 2πδ(xaxbE

2
cm−m2

H)
|MLO

gg→H(mH)|2

2xaxbE2
cm

fg(xa)fg(xb)
eY +e−Y

mH
.

The first two lines exactly reproduce eq. (6.13). The following two lines are the boundary

term from integration by parts, which vanishes as Y1,2 → ±∞. The last line is a NLL effect

and can be neglected for the LL comparison. (It is induced by the integration by parts

acting on the Y dependence kept inside the argument of the logarithms.) Therefore, the

two expressions in eqs. (6.13) and (6.14) agree at LL and at integrated level if and only if

one integrates over all rapidity.

To illustrate this numerically, the Y -integrated results are compared in figure 1. First

note that the hadronic LL results in eq. (6.14) do not exactly correspond to those previously

given in refs. [62, 64]. This is due to the formally NLL terms proportional to ln(ρ/eY ),
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discussed below eq. (6.12), which are dropped in the strict LL results in refs. [62, 64], but

are kept in eq. (6.14). The analogous NLL terms proportional to ln(x̃a,bEcm) are also kept

in refs. [63, 70] and eq. (6.13). Dropping these NLL terms in eqs. (6.13) and (6.14), our

and their LL results defined in terms of the same ln(T /mH) agree exactly, as shown by

the solid red and blue dashed curves in figure 1.3 The long-dashed orange and dotted blue

curves in figure 1 show the results when using instead ln(T e±Y /mH) or ln[T /(x̃a,bEcm)]

to multiply the LL coefficients. The observed difference to the solid red/dashed blue strict

LL result has the size of a typical NLL contribution. There is also a very small difference

between the long-dashed orange and dotted blue results due to the fact that e±Y /mH is

not exactly the same as x̃a,bEcm. This difference is exactly accounted for by the last line

in eq. (6.16).

6.2.2 Comparison at NLL

We now extend our comparison of the Y -integrated results to NLL, focusing again only on

the gg → Hg channel, which contains all possible complications. The full NLL result of

ref. [70] can be written as

dσNLP [70]

dT cm
=
αsCA
π

∫ 1

0
dx̃adx̃b 2πδ(x̃ax̃bE

2
cm −m2

H)
|MLO

gg→H(mH)|2

2x̃ax̃bE2
cm

∫ 1

x̃a

dza
za

x̃aEcm

m2
H

×
{
fg

(
x̃a
za

)
fg(x̃b)

[(
(1− za + z2

a)2

z2
a

− 1

)
L0(1− za) +

3z2
a + 1− za + z3

a

z2
a

]
+
x̃a
za
f ′g

(
x̃a
za

)
fg(x̃b)

[
−δ(1− za) ln

T cm

x̃aEcm
+

(1− za + z2
a)2

z2
a

L0(1− za)
]

− fg
(
x̃a
za

)
x̃bf
′
g(x̃b)δ(1− za)

}
+ (a↔ b) . (6.17)

To bring our result into this same form, we need to integrate by parts twice, first with

respect to Y as shown in eq. (6.11), and then with respect to za. The details of this

calculation are given in appendix B. The final result is shown in eq. (B.5) and is given by

the result of ref. [70] in eq. (6.17) plus an extra contribution,

dσ(2,1)

dT cm
=

dσNLP [70]

dT cm
(6.18)

+2
αsCA
π

∫ 1

0
dxadxb 2πδ(xaxbE

2
cm−m2

H)
|MLO

gg→H(mH)|2

2xaxbE2
cm

fg(xa)fg(xb)
eY +e−Y

mH
.

The two results should agree exactly upon integration, and we have not been able to find

a source for this discrepancy. As discussed in more detail in section 7, the numerical

comparison with MCFM provides a strong confirmation of our result. The numerical

extraction of the integrated NLL coefficient yields −0.460± 0.026, which agrees well with

3In the first version of ref. [70] an analogous numerical comparison showed a disagreement between

their integrated LL results and our corresponding result from ref. [64]. This was only due to an incorrect

comparison. We thank the authors of ref. [70] for confirming this.

– 30 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
4

our analytic predicted value of −0.466 (see table 2 below). Dropping the term in the final

line of eq. (6.18) would instead predict the value −1.669.4

7 Numerical results

In this section we study our results numerically, including the size of the power corrections

and the rapidity dependence. We also compare our analytic results for the O(αs) NLP

power corrections with the full nonsingular spectrum obtained numerically from the LO

V+jet and H+jet calculations in MCFM8 [27, 73–75]. In refs. [62, 64], the NLP corrections

were extracted numerically by using a fit of the known form of their logarithmic structure

to the nonsingular spectrum from MCFM8. In refs. [62, 64], these fits were carried out for

the leptonic definition. Here, we have in addition performed the fits also for the hadronic

definition. We find excellent agreement between the analytically predicted values and the

numerically extracted values for all coefficients, i.e., for the LL and NLL coefficients in all

partonic channels for both the leptonic and hadronic definition. This provides a strong

and independent cross check for the correctness of the analytic NLL results obtained here.

By comparing the complete nonsingular spectrum with our NLP result, we can also assess

the importance of power corrections beyond NLP.

The NLO power corrections for each partonic channel are extracted from the nonsin-

gular spectrum by using the fit function

FNLO(τ) =
d

d ln τ

{
τ
[
(a1 + b1τ + c1τ

2) ln τ + a0 + b0τ + c0τ
2
]}
, (7.1)

with τ ≡ T0/mZ for Z production and τ ≡ T0/mH for Higgs production. Details of the

fitting procedure have been described already in refs. [62, 64], so we do not repeat them

here. A key point is that in order to obtain a precise and unbiased fit result for the to-

be extracted ai coefficients, it is crucial to include the higher-power bi and ci terms in

eq. (7.1), and to carefully choose the fit range and verify the stability of the fit, as was

done in refs. [62, 64]. At the level of precision the ai are extracted, this is essential since

the full nonsingular cross section includes the complete set of power corrections and if the

bi and ci terms were neglected, these higher-power corrections would be absorbed by the

ai terms in the fit, rendering their numerically extracted values meaningless. To obtain a

precise extraction of the NLL coefficient a0, we fix the LL coefficient a1 in the fit to its

analytic result.

The relevant coefficients for our NLP comparison at NLO are the LL coefficient a1

and the NLL coefficient a0. For leptonic T they were extracted for Drell-Yan in ref. [62]

and for gluon-fusion Higgs in ref. [64] and for the hadronic T we have obtained them here.

Depending on the partonic channel, the uncertainties on the fitted coefficients range from

0.08% to 2.3% for leptonic T and from 0.6% to 5.7% for hadronic T . The latter has larger

uncertainties because its power corrections are larger, requiring the fit to be restricted to

smaller T values where the uncertainties in the nonsingular data are larger.

4We recently received confirmation from the authors of ref. [70] that after rechecking their calculation

they identified a missing term, and now agree with our result for dσ(2,1)/dT cm.
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NLO T lep
0 qq̄ → Zg a1 a0

fitted [62] +0.25366± 0.00131 +0.13738± 0.00057

analytic +0.25509 +0.13708

NLO T lep
0 qg + gq → Zq a1 a0

fitted [62] −0.27697± 0.00113 −0.40062± 0.00052

analytic −0.27720 −0.40105

NLO T cm
0 qq̄ → Zg a1 a0

fitted +1.4188± 0.0614 −2.4808± 0.0176

analytic +1.3935 −2.4806

NLO T cm
0 qg + gq → Zq a1 a0

fitted −2.2981± 0.0442 +4.0991± 0.0132

analytic −2.3224 +4.0965

Table 1. Comparison between our analytic predictions and the fitted results for the LL a1 and

NLL a0 coefficients in Drell-Yan production. These fitted values for a1 and a0 with the leptonic

definition and the analytic results for a1 were already given in ref. [62].

7.1 Drell-Yan production

We first consider Drell-Yan production, taking pp → Z/γ∗ at Ecm = 13 TeV. We use the

MMHT2014 NNLO PDFs [87] with fixed scales µr = µf = mZ , and αs(mZ) = 0.118.

We fix Q = mZ , integrate over the vector-boson rapidity, and work in the narrow-width

approximation for the Z-boson. The NLP corrections for the leptonic T definition were

numerically extracted in ref. [62]. The results for both the leptonic and hadronic definitions

for all partonic channels are collected and compared to our analytic predictions in table 1.

We find excellent agreement within the fit uncertainties in all cases.

In figure 2 we show the complete NLO nonsingular contributions as black dots, as well

as a fit to their form with the solid red curve. Given the agreement in table 1 between

our analytic a0 and the earlier fit result for a0, we have fixed a0 to the analytic result,

and redone the fit using eq. (7.1) to obtain this red curve. The red curve from this fit

is fully consistent with the earlier fit result from ref. [62]. The dashed orange curve in

figure 2 is the extension of the fit function beyond its fit range. In dotted green and dashed

blue we show our analytic predictions. We see that with the inclusion of the NLL power

corrections, we obtain an excellent description of the full nonsingular cross section up to

nearly T0 ∼ 1 GeV. This is quite remarkable, and shows that additional higher-order power

correction terms are truly suppressed.

In figure 3 we show a plot of the corresponding residual power corrections for the

cumulant, ∆σ(τcut), on both a linear scale (left) and logarithm scale (right). The solid red

curve shows the full power corrections, the solid green curves show the remaining power

corrections after including a1 in the subtractions, and the solid blue curve those after

including a1 and a0 in the subtractions. We see that with the inclusion of the full NLL

power corrections, we achieve more than a factor of 100 reduction in the residual power
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Figure 2. The O(αs) nonsingular corrections for Z production for the qq̄ channel (top row) and

the qg + gq channel (bottom row). A fit to the nonsingular data is shown by the solid red curve.

The LL and NLL results are shown by green dotted and blue dashed curves, respectively. In all

cases, the NLL approximation provides an excellent approximation to the complete nonsingular

cross section.

corrections as compared with the leading-power result at NLO. Both partonic channels

have similarly sized power corrections and show a fast convergence of the power expansion.

The fact that the blue curve in the logarithmic plot exhibits a steeper slope than the red

and green curves is due to its O(τ2
cut) scaling corresponding to a next-to-next-to-leading

power correction. This provides a nice visualization that our results correctly capture the

complete NLP contribution.

The analogous results for the fitted nonsingular spectrum and the residual power cor-

rections ∆σ(τ cm
cut) for the hadronic T definition are shown in figures 4 and 5. As expected,

the power corrections are substantially larger for T cm than for the leptonic definition. To

obtain similarly sized power corrections, one has to go to about an order of magnitude

smaller values of T cm. Apart from the overall enhancement, the qualitative behavior of

the LL and NLL contributions and the different partonic channels is the same. This is ex-

pected from our analytic results, which show that the coefficients for both definitions have

essentially the same structure and primarily differ in the overall factors of e±Y leading to

the rapidity enhancement for the hadronic definition already observed in refs. [62, 64].
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Figure 3. The power corrections for the cumulative ∆σ(τcut) at O(αs) for Z production in the qq̄

channel (top row) and qg+ gq channel (bottom row). In both cases, after the inclusion of the NLL

power corrections, ∆σ(τcut) is reduced by a factor of 100 or more for τcut < 10−2.

In figure 6 we show the rapidity dependence of the NLP corrections at fixed τcut = 10−3

for both leptonic and hadronic T normalized to the LO rapidity spectrum. We can clearly

see the exponential enhancement for the hadronic definition at large |Y |. For the qg

channel, the asymmetric behavior in rapidity is expected from its analytic result. The

result for the gq channel corresponds to taking Y → −Y , such that their sum is symmetric

in rapidity. While the leptonic definition does not suffer from the exponential enhancement

of the hadronic definition, it still exhibits a substantial increase at large positive Y in the

qg channel, as well as a suppression at large negative Y . This is due to the substantially

different x-dependence of the quark-gluon luminosity (and its derivative) compared to the

qq̄ luminosity in the LO result to which we normalize. Knowing the NLL contribution to

the power corrections differential in rapidity enables one to explicitly account for this effect

in the subtractions.

7.2 Gluon-fusion Higgs production

Next, we consider gluon-fusion Higgs production. We take pp→ H at Ecm = 13 TeV with

an on-shell, stable Higgs boson with mH = 125 GeV, integrated over all Y . We use the

MMHT2014 NNLO PDFs [87], with fixed scales µr = µf = mH , and αs(mH) = 0.1126428.

The NLP power corrections for this configuration for the leptonic T definition were ex-
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Figure 4. Same as figure 2 for the hadronic T definition.

tracted numerically in ref. [64]. The results for both leptonic and hadronic definitions for

all partonic channels are collected and compared to our analytic predictions in table 2. In

all cases, excellent agreement is observed within the fit uncertainties.

In figure 7 we show as the solid red curve a fit to the full nonsingular result at NLO

(black points), which is compared with the LL and NLL predictions in dashed green and

dashed blue, respectively. Once again this solid red fit curve is obtained using the form

in eq. (7.1) with a1 and a0 fixed by the analytic result in table 2, and agrees very well

with the corresponding result obtained in ref. [64] where a0 was a parameter in the fit. In

all cases, we find that the NLL result provides a good description of the full nonsingular

cross section. This is expected since the NLL results includes all NLP terms in the NLO

cross section. We see, however, that particularly for the gq + qg channel, the NLL result

for a0 is required to get a good description, and the LL power correction a1 alone is not

sufficient. Thus the gq + qg channel provides an example where simply looking at the size

of the residual nonsingular result after subtracting the a1 term does not suffice to validate

the value of this coefficient.

In figure 8, we show a plot of the corresponding power corrections for the cumulant,

∆σ(τcut), on both a linear scale (left) and logarithm scale (right). Here we more easily see

that the inclusion of the NLL power corrections significantly reduces the residual power

corrections for the subtractions. For the dominant gg → Hg channel at a typical value

of τcut ∼ 10−3 approximately one order of magnitude is gained at each logarithmic order
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Figure 5. Same as figure 3 for the hadronic T definition.

that the power corrections are computed. From table 2, we see that for the gq + qg → Hq

channel, the LL coefficient is numerically suppressed, while in contrast its NLL coefficient

is quite larger. Due to this unusual behavior, the NLL result is required to consistently

reduce the power corrections as compared with the leading-power result. In the qq̄ channel

there is no a1 term, and significant improvement is apparent from including a0.

The analogous results for the fitted nonsingular spectrum and the residual power cor-

rections ∆σ(τ cm
cut) for the hadronic T definition are shown in figures 9 and 10. The power

corrections are noticeably larger, though the effect of the rapidity enhancement is not as

pronounced as for Drell-Yan, since here the PDFs suppress the cross section contribu-

tions at larger rapidities. For the dominant gg → Hg channel there are also numerical

cancellations in the NLL coefficient. More precisely the value for a0 in table 2 arises as

a0 = 2.356+(−2.822) = −0.466, where the first term corresponds to the rapidity-enhanced

version of the leptonic a0 while the second term is the NLL contribution arising from the

additional rapidity dependence in the argument of the leading logarithm discussed below

eq. (6.12). As a result of this cancellation, including only a1 in the subtractions leads

to slightly smaller power correction above τcut > 10−3 than subtracting both a1 and a0

(compare the green and blue solid lines in the top row of figure 10). If the second NLL

contribution were included as part of the LL result, the latter would provide a much poorer

approximation and including the remaining NLL contribution would provide a substantial

improvement. Either way, the remaining power corrections after subtracting the full NLL
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Figure 6. The NLO NLP corrections as a function of rapidity at fixed τcut = 10−3 for Z production

for the qq̄ channel (top row) and the qg channel (bottom row). The LL and NLL coefficients for

leptonic T are shown by the green dotted and blue dashed curves and for hadronic T by the dotted

and dashed gray curves.

result shows a much steeper slope, which is as expected from its O(τ2
cut) scaling. This

provides another example where considering only the overall size of the improvement can

be potentially misleading. The gq + qg → Hq channel shows a similarly unusual behavior

as for the leptonic definition.

In figure 11 we show the rapidity dependence of the NLP corrections at fixed τcut =10−3

for both leptonic and hadronic T normalized to the LO rapidity spectrum. The exponential

enhancement for the hadronic definition at large |Y | is again apparent in the LL results.

The NLL coefficients again exhibit an enhancement already for the leptonic definition at

large Y . This is again due to the different x dependence of the quark PDF and the PDF

derivatives compared to the LO gg luminosity to which we normalize. The quark PDF

contributions are also the main reason why the NLL term for the gq channel (a0 in table 2)

is much larger than the LL contribution. For the hadronic definition, the e±Y factors from

the observable definition turn out to partially compensate these PDF effects. This is best

visible in the gq channel, where the PDF enhanced terms at negative (LL) or positive (NLL)

Y get reduced by a e±Y factor from the observable definition. The same effect is also present

in the gg channel at NLL. This is the reason why the a0 term for the hadronic definition

in the gq channel turns out to be even slightly smaller than for the leptonic definition.
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Figure 7. The O(αs) nonsingular corrections for Higgs production for the gg channel (top row),

gq+qg channel (middle row), and qq̄ channel (bottom row). A fit to the nonsingular data (black dots)

is shown by the solid red curve. The LL and NLL results are shown by green dotted and blue dashed

curves, respectively. In all cases, the NLL approximation provides an excellent approximation to

the complete nonsingular cross section for sufficiently small T0.
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NLO T lep
0 gg → Hg a1 a0

fitted [64] +0.60936± 0.00600 +0.18241± 0.00425

analytic +0.60400 +0.18627

NLO T lep
0 gq + qg → Hq a1 a0

fitted [64] −0.03733± 0.00066 −0.42552± 0.00032

analytic −0.03807 −0.42576

NLO T lep
0 qq̄ → Hg a1 103 a0

fitted [64] – +4.90060± 0.00013

analytic – +4.90047

NLO T cm
0 gg → Hg a1 a0

fitted +1.5436± 0.0585 −0.45954± 0.02606

analytic +1.5225 −0.46646

NLO T cm
0 gq + qg → Hq a1 a0

fitted −0.06606± 0.00161 −0.33932± 0.00194

analytic −0.06498 −0.34068

NLO T cm
0 qq̄ → Hg a1 103 a0

fitted – +6.13445± 0.00015

analytic – +6.13448

Table 2. Comparison between our analytic predictions and the fitted results for the LL a1 and NLL

a0 coefficients in Higgs production. These fitted values for a1 and a0 with the leptonic definition

and the analytic results for a1 were already given in ref. [64].
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Figure 8. The power corrections for the cumulant ∆σ(τcut) at O(αs) for Higgs production in the

gg channel (top row), gq + qg channel (middle row), qq̄ channel (bottom row).
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Figure 9. Same as figure 7 for the hadronic T definition.
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Figure 10. Same as figure 8 for the hadronic T definition.
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Figure 11. The NLO NLP corrections as a function of rapidity at fixed τcut = 10−3 for Higgs

production for the gg channel (top row) and the gq channel (bottom row). The LL and NLL

coefficients for leptonic T are shown by the green dotted and blue dashed curves and for hadronic

T by the dotted and dashed gray curves.

8 Conclusions

In this paper, we have computed the next-to-leading power corrections in the N -jettiness

resolution variable for Drell-Yan and gluon-fusion Higgs production at NLO. This builds

on our previous work by computing the non-logarithmically enhanced terms at this order.

These results enable the performance of the N -jettiness subtraction method to be improved,

and provide important information on the structure of subleading power corrections beyond

the leading logarithms. Our calculation is based on a master formula applicable to SCETI

observables, and highlights a large degree of universality of these power corrections.

We explained in detail the issue of the treatment of Born measurements at subleading

power. We have shown that an apparent disagreement in the literature arises due to the

fact that the representation used to obtain the power corrections in refs. [63, 70] is only

valid when integrated over all rapidities, and therefore cannot be directly compared with

the results of refs. [62, 64] and those in the present paper, which are differential in rapidity.

We show that after integration over rapidity the LL results agree. Further details can be

found in section 6.

We find that the rapidity dependence of the NLL terms is quite sizeable and is therefore

important to know to be able to improve the subtractions. One reason for this effect is
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the different x-dependence of parton luminosities or derivatives of PDFs appearing in the

power corrections as compared to the Born-level parton luminosity. Hence, one can expect

this to be a generic feature of subleading power corrections.

We also compared our analytic NLL results for gluon fusion Higgs production and

Drell-Yan to numerical predictions for these NLO power corrections obtained from a fit to

data from MCFM. In all cases, excellent agreement was found. In addition we studied

the extent to which the inclusion of the NLL power corrections improves the subtraction.

At NLO, the inclusion of the NLL power corrections completely captures the O(τ) terms.

Numerically, summing over production channels, the inclusion of these results reduces the

size of the power corrections by two orders of magnitude in Higgs production and three

orders of magnitude in Drell-Yan production.

There are a number of directions for future work. It will be interesting to extend

the calculation of the NLL power corrections to NNLO. Generically we expect up to an

order of magnitude improvement could also be obtained by extending the known LL power

corrections at this order to NLL. Beyond fixed order, the derivation of subleading power

renormalization group evolution equations at NLL would allow for the all-orders prediction

of the NLL terms. Finally, while we have focused here on color-singlet production, our

results provide an important step toward the calculation of the NLP corrections at higher

orders and for more complicated processes.
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A Derivation of NLO leading power results

At leading power the singular terms for N -jettiness are most easily obtained from known

factorization formulas [23, 24], which describe the singular behavior of the observable to

all orders. The fixed order approach of this paper is therefore most useful when such

factorization formula are not available, or well understood, such as at subleading power.

However, it can also be applied to reproduce the LP results. In this appendix we illustrate

this at NLO, by reproducing the one-loop beam and soft functions for beam thrust.

To relate the beam and soft functions as defined in SCET to our calculation in this

work, recall the LP factorization formula for beam thrust [23],

dσ(0)

dQ2dY dT
= σ̂LO(Q,Y )Hab(Q,µ)

∫
dtadtbBa(ta, xa, µ)Bb(tb, xb, µ)S

(
T − ta

Q
− tb
Q
,µ

)
,

(A.1)
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where the superscript (0) refers to LP, and as before xa,b = Q
Ecm

e±Y . The hard function Hab

describes virtual corrections to the hard process ab→ L, Ba,b are the two beam functions

and S is the soft function. The beam functions can be further matched onto normal PDFs,

Bi(t, x, µ) =
∑
j

∫ 1

x

dz

z
Iij(t, z, µ)fj

(
x

z
, µ

)
. (A.2)

All of these functions have definitions as field theory matrix elements in the EFT.

Their fixed order definitions give rise to UV divergences, which are as usual removed by

a renormalization procedure, which in turn gives rise to RGEs that can be used to resum

large logarithms of T . In the approach presented in this paper, the same divergences

appear as 1/ε IR divergences in the soft and collinear limits of QCD amplitudes.

At LO, we have

HLO
ij (Q2, µ) = 1 , ILO

ij (t, x, µ) = δijδ(t) , SLO(T , µ) = δ(T ) . (A.3)

At one loop, the convolution structure thus becomes trivial. Working with hard, beam,

soft, and PDFs in the bare factorization theorem we have

dσ(0,1)

dQ2dY dT
= σ̂LOHNLO

ab (Q2, ε)δ(T )fa(xa, ε)fb(xb, ε)

+ σ̂LO
∑
a′

∫ 1

xa

dza
za

Q INLO
aa′ (QT , za, ε)fa′(xa/za, ε)fb(xb, ε)

+ σ̂LO
∑
b′

∫ 1

xb

dzb
zb

Q INLO
bb′ (QT , zb, ε)fa(xa, ε)fb′(xb/zb, ε)

+ σ̂LOfa(xa, ε)fb(xb, ε)S
NLO(T , ε) . (A.4)

Note the extra factor of Q in the beam contributions, arising from ta,b and T having different

mass dimensions. We have written eq. (A.4) in a form similar to our master formulas,

such that we can easily read off the one-loop beam function kernels and soft function.

The ε arguments in eq. (A.4) all refer to ultraviolet divergences and can be removed by

SCET counterterms to obtain the renormalized factorization theorem. To obtain this it is

important to include virtual graphs in the various sectors as well as zero-bin subtractions

for the beam functions.

A.1 Leading-power expansion of matrix elements

The leading-power behavior of real emission matrix elements in the soft and collinear limits

is universal, see e.g. [7], and has already been used in section 4.4. Here, we briefly review

the relevant formulas, and give the relevant one-loop expressions.

Given the Born process

κa(qa) + κb(qb)→ L(qa + qb) , (A.5)

where the incoming momenta are given by

qµa = QeY
nµ

2
, qµb = Qe−Y

n̄µ

2
, (A.6)
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and we write the one-emission process as

κ′a(q
′
a) + κ′b(q

′
b)→ L(q′a + q′b − k) + κ1(k) . (A.7)

In the soft limit kµ � qµa , q
µ
b , the squared matrix element obeys the LP relation

A
(0)
a′b′→Lk(Q,Y ; {k}) =

16παsµ
2ε
MSC

k+k−
× δaa′ δbb′ ALO

ab→L(Q,Y ) , (A.8)

where we made explicit that a soft emission can not change the incoming flavors.

C = CF , CA is the Casimir constant for ab = qq̄, gg.

In the LP n-collinear limit, the particle k arises from the splitting κ′a → κa+κ1. If this

splitting is allowed, at LP we have (in the notation of section 4) q′a = qa/za and q′b = qb,

and the LP limit of the matrix element is given by

A
(0)
a′b′→Lk(Q,Y, {k}) =

8παsµ
2ε
MS

QeY k+
Paa′(za, ε)× δbb′ ALO

ab→L(Q,Y ) . (A.9)

Similarly, in the n̄-collinear limit arising from κ′b → κb+κ1, at LP we get q′a = qa, q
′
b = qb/zb,

A
(0)
a′b′→Lk(Q,Y, {k}) =

8παsµ
2ε
MS

Qe−Y k−
Pbb′(zb, ε)× δaa′ ALO

ab→L(Q,Y ) . (A.10)

The one-loop splitting functions in d = 4− 2ε dimensions are given by [7]

Pqq(z, ε) = CF

[
1 + z2

1− z
− ε(1− z)

]
,

Pgq(z, ε) = CF

[
1 + (1− z)2

z
− εz

]
,

Pqg(z, ε) = TF

[
1− 2z(1− z)

1− ε

]
,

Pgg(z, ε) = 2CA

[
z

1− z
+

1− z
z

+ z(1− z)

]
. (A.11)

Note that we flipped the notation of qg and gq relative to [7], following the standard

convention.

A.2 NLO soft function

The NLO LP soft function follows from combining eq. (4.12) with eq. (A.8) using the same

steps as in section 4.3,

dσ
(0,1)
s

dQ2dY dT
=

∫ ∞
0

dk+dk−

(k+k−)ε
fa(xa)fb(xb)

(4π)22xaxbE4
cm

(4π)ε

Γ(1− ε)
A(0)(Q,Y ; {k}) δ

[
T − T̂ ({k})

]
=
ALO(Q,Y )

2xaxbE4
cm

αsC

π
fa(xa)fb(xb)×

eεγEµ2ε

Γ(1− ε)

∫ ∞
0

dk+dk−

(k+k−)ε+1
δ
[
T − T̂ ({k})

]
= σ̂LO(Q,Y )

αsC

π
fa(xa)fb(xb)

eεγE

Γ(1− ε)
2

ε

1

µ
(T /µ)−1−2ε

= σ̂LO(Q,Y )
αsC

4π
fa(xa)fb(xb)

[
− 4

ε2
δ(T ) +

8

ε

1

µ
L0(T /µ)

− 16

µ
L1(T /µ) +

π2

3
δ(T ) +O(ε)

]
. (A.12)

– 46 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
4

The Ln(x) are the standard one-dimensional plus distributions, see e.g. [88] for details.

Note that there, the precise definition of the MS scheme is important. We use

µ2 ≡ µ2
MS

=
4π

eγE
µ2

MS . (A.13)

If one were to use µ2ε = (4π)ε

Γ(1−ε)µ
2ε
MS, one would miss the π2/3 term. For the NLP results

presented in the main text, both definitions yield identical results.

Taking eq. (A.12) and adding the virtual soft diagram, and then comparing to eq. (A.4),

the one-loop bare soft function can be read off as

SNLO(T , ε) =
αsC

4π

[
− 4

ε2
δ(T ) +

8

ε

1

µ
L0(T /µ)− 16

µ
L1(T /µ) +

π2

3
δ(T )

]
. (A.14)

The finite terms precisely yield the renormalized one-loop soft function [23].

A.3 NLO beam function

Applying the LP master formula eq. (4.12) to the n-collinear case and following the same

steps as in section 4.2 gives

dσ
(0,1)
n

dQ2dY dT
=

∫ 1

xa

dza
za

fa′(xa/za)fb(xb)

2xaxbE4
cm

QeY

ρ

(
QT eY

ρ

)−ε zεa
(1− za)ε

(4π)ε

(4π)2Γ(1− ε)
×A(Q,Y ; {k}) . (A.15)

Using the universal n-collinear limit eq. (A.9), we obtain

dσ
(0,1)
n

dQ2dY dT
= σ̂LO(Q,Y )

∫ 1

xa

dza
za

fa′

(
xa
za

)
fb(xb)

αs
2π

eεγE

Γ(1− ε)
1

T

(
QT
µ2

eY

ρ

)−ε zεaPaa′(za, ε)
(1− za)ε

,

(A.16)

where Paa′(z) is the standard ε-dependent splitting kernel at NLO. Comparing to eq. (A.4),

we can read off a result that will enable us to obtain the real radiation bare NLO beam

function kernel,

I(1)real
ij (t, z, ε) =

αs
2π

[
eY

ρ

eεγE

Γ(1− ε)
1

µ2

(
t

µ2

eY

ρ

)−1−ε zεPij(z, ε)

(1− z)ε

]
. (A.17)

The splitting function Pij(z) may contain divergences as z → 1, which are regulated by

the overall (1− z)−ε. All divergences thus arise from the two expansions

1

µ2
ρ

(
t

µ2
ρ

)−ε−1

= −δ(t)
ε

+
1

µ2
ρ

L0(t/µ2
ρ)− ε

1

µ2
ρ

L1(t/µ2
ρ) +O(ε)2 , (A.18)

(1− z)−1−ε = −1

ε
δ(1− z) + L0(1− z)− εL1(1− z) +O(ε)2 , (A.19)

where we defined µ2
ρ = µ2 ρ

eY
for ease of notation. As written eq. (A.17) does not yet

contain the corresponding collinear virtual and zero-bin contributions.
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Example: qq kernel. From eq. (A.11), we obtain

zεPqq(z, ε)

(1− z)ε
= CF

zε

(1− z)ε

[
1 + z2

1− z
− ε(1− z)

]
(A.20)

= Pqq(z) + CF

{
−2

ε
δ(1− z)− 3

2
δ(1− z)

+ ε
[
(z − 1)− (1 + z2)L1(1− z) + (1 + z2) ln(z)L0(1− z)

]}
+O(ε2) ,

where the LO quark splitting function is given by

Pqq(z) = CF

[
Θ(1− z)

1 + z2

1− z

]
+

= (1 + z2)L0(1− z) +
3

2
δ(1− z) . (A.21)

Adding the corresponding virtual collinear and zero-bin contributions, eq. (A.17) yields

I(1)
qq (t,z, ε) =

αsCF
2π

{
2

ε2
δ(t)δ(1−z)+

δ(1−z)

ε

[
3

2
δ(t)−2

1

µ2
ρ

L0(t/µ2
ρ)

]
− δ(t)

ε

Pqq(z)

CF

+2δ(1−z)
1

µ2
ρ

L1(t/µ2
ρ)+

1

µ2
ρ

L0(t/µ2
ρ)

[
Pqq(z)− 3

2
δ(1−z)

]
+δ(t)

[
(1+z2)L1(1−z)− 1+z2

1−z
ln(z)+(1−z)−π

2

6
δ(1−z)

]}
. (A.22)

Note that all divergences are proportional to δ(1 − z), such that they cancel after adding

the soft, n̄ collinear and the virtual hard contribution from HNLO
ab (Q2, ε), as the latter also

has the universal structure (for Drell-Yan)

dσ
(0,1)
virt

dQ2dY dT
= σ̂LO(Q,Y )fa(xa) fb(xb)δ(T )

αsCF
π

[
− 1

ε2
− 1

ε

(
3

2
− ln

Q2

µ2

)
+O(ε)

]
. (A.23)

The cancellation of the 1/ε2 and the remaining 3/(2ε) pieces is obvious from comparing to

eqs. (A.22) and (A.14). The Pqq(z)/ε term cancels with the ultraviolet divergence from the

bare quark PDF. The remaining ln(Q2/µ2)/ε term cancels when combining the L0(T /µ)/ε

and L0(t/µ2)/ε distribution terms. The remaining O(ε0) piece in eq. (A.22) gives the

renormalized beam function and agrees with the result in ref. [42].

Example: qg kernel. For the full LP correction to Drell-Yan production, qq̄ → Z, we

also require the quark-gluon kernel. Here we only need

zεPqg(z, ε)

(1− z)ε
=

zε

(1− z)ε
TF

[
1− 2z(1− z)

1− ε

]
= Pqg(z)

[
1 + ε

(
ln

z

1− z
+ 1

)]
− εTF +O(ε2) , (A.24)

where the finite quark-gluon splitting function is defined as

Pqg(z) = TF [(1− z)2 + z2] . (A.25)
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Equation (A.17) thus yields

I(1)
qg (t,z,µ) =

αsTF
2π

{
−δ(t)

ε

Pqg(z)

TF
+

1

µ2
ρ

L0(t/µ2
ρ)Pqg(z)+δ(t)

[
Pqg(z)

(
ln

1−z
z
−1

)
+1

]}
.

(A.26)

Again the Pqg(z)/ε divergence cancels against the same mixing term from the bare gluon

PDF. The remaining O(ε0) terms give the mixing term in the one-loop quark beam func-

tion, agreeing with the result in [42].

B Comparison of NLP contributions for gg → Hg at NLO

Here, we give the explicit calculation to obtain our full NLP result for hadronic T in the

gg → Hg channel in the form of eq. (6.18). Our result prior to integration by parts is

obtained by inserting eq. (5.16) with ρ = 1 into eq. (6.9),

dσ(2,1)

dT cm
=
αsCA
π

∫ 1

0
dxadxb 2πδ(xaxbE

2
cm −m2

H)
|MLO

gg→H(mH)|2

2xaxbE2
cm

∫ 1

xa

dza
za

eY

mH

×
{
fg

(
xa
za

)
fg(xb)

[(
ln
T cm

mHeY
+ 1

)
δ(1− za)

− L0(1− za) +
1− za + 9z2

a − 5z3
a + 7z4

a − 3z5
a

2z2
a

]
+
xa
za
f ′g

(
xa
za

)
fg(xb)

(1− za + z2
a)2

2za

+ fg

(
xa
za

)
xbf
′
g(xb)

[(
− ln

T cm

mHeY
− 1

)
δ(1− za)

+
(1 + za)(1− za + z2

a)2

2z2
a

L0(1− za)
]}

+
(
a↔ b , eY ↔ e−Y

)
. (B.1)

Here, we also separated the pure L0(1− za) term from terms regular as za → 1.

We now apply integration by parts to the fgf
′
g piece, except for its −δ(1 − za) term.

In the notation of eq. (6.11), this is achieved by choosing

D(2,1)(za, zb, T cm) = 4CA
eY

mH

[
− ln

T cm

mHeY
δ(1− za)

+
(1 + za)(1− za + z2

a)2

2z2
a

L0(1− za)
]
δ(1− zb) . (B.2)

Here, we only consider being inclusive in Y , so we do not write down the boundary term.
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Eq. (B.1) becomes

dσ(2,1)

dT cm
=
αsCA
π

∫ 1

0
dxadxb 2πδ(xaxbE

2
cm −m2

H)
|MLO

gg→H(mH)|2

2xaxbE2
cm

∫ 1

xa

dza
za

eY

mH

×
{
fg

(
xa
za

)
fg(xb)

[
2δ(1− za) +

(
(1 + za)(1− za + z2

a)2

2z2
a

− 1

)
L0(1− za)

+
1− za + 9z2

a − 5z3
a + 7z4

a − 3z5
a

2z2
a

]
+
xa
za
f ′g

(
xa
za

)
fg(xb)

[
−δ(1− za) ln

T cm

mHeY
+

(1− za + z2
a)2

z2
a

L0(1− za)

− (1− za)(1− za + z2
a)2

2z2
a

]
− fg

(
xa
za

)
xbf
′
g(xb) δ(1− za)

}
+
(
a↔ b , eY ↔ e−Y

)
, (B.3)

where as usual, eY =
√
xa/xb. Next, we apply the following integration by parts:∫ 1

xa

dza
za

xa
za
f ′g

(
xa
za

)
fg(xb)

[
−(1− za)(1− za + z2

a)2

2z2
a

]
=

∫ 1

xa

dza
za

fg

(
xa
za

)
fg(xb)

2− 3za + 5z3
a − 6z4

a + 3z5
a

2z2
a

. (B.4)

Putting this back into eq. (B.3), we can rewrite it in a form close to eq. (6.17),

dσ(2,1)

dT cm
=
αsCA
π

∫ 1

0
dxadxb 2πδ(xaxbE

2
cm −m2

H)
|MLO

gg→H(mH)|2

2xaxbE2
cm

∫ 1

xa

dza
za

eY

mH

×
{
fg

(
xa
za

)
fg(xb)

[
2δ(1− za) +

(
(1− za + z2

a)2

z2
a

− 1

)
L0(1− za)

+
3z2
a + 1− za + z3

a

z2
a

]
+
xa
za
f ′g

(
xa
za

)
fg(xb)

[
−δ(1− za) ln

T cm

mHeY
+

(1− za + z2
a)2

z2
a

L0(1− za)
]

− fg
(
xa
za

)
xbf
′
g(xb) δ(1− za)

}
+
(
a↔ b , eY ↔ e−Y

)
. (B.5)

To compare this result to eq. (6.17), use the relations

eY

mH
=
xaEcm

m2
H

, ln
T cm

mHeY
= ln

T cm

xaEcm
. (B.6)
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[70] R. Boughezal, A. Isgrò and F. Petriello, Next-to-leading-logarithmic power corrections for

N -jettiness subtraction in color-singlet production, Phys. Rev. D 97 (2018) 076006

[arXiv:1802.00456] [INSPIRE].
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