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Climate variability and malaria epidemics in the
highlands of East Africa
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1Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
2Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
3Climate and Human Health Research Unit, Center for Vector Biology and Control Research, Kenya Medical Research Institute,

P.O. Box 1578-40100, Kisumu, Kenya
The causes of the recent re-emergence of malaria in the

East African highlands probably involve a complex

interplay among multiple factors, including climate,

land use, topography, inadequate use of antimalarial

drugs and drug resistance, socioeconomic status, health

policy and public health control measures. It is import-

ant to determine the relative contribution of these

factors. In our study, we statistically attributed the

effects of autocorrelation, seasonality and climate

variability to the temporal variation in the number of

malaria patients in several highland sites in East Africa.

We found that in three out of seven sites, climate

variability contributed more variance to malaria patient

numbers than did autocorrelation and seasonality. In all

seven study sites, we found highly significant nonlinear,

synergistic effects of the interaction between rainfall

and temperature on malaria patient time series.
Introduction

In response to our study [1], Hay et al. [2] raised the
question that correction for multiple t testing would
reduce the number of significant results on climate
variability. In our report [1], we found that eight of 21 t
tests (38%) showed significant increases in climate
variability (annual variance in maximum and minimum
temperature, and rainfall) between the periods 1978–1988
and 1989–1998 (P!0.05). When the type I error level of
each test is set at 0.05, we would expect only one (0.05!
21Z1.05) of the 21 tests to be significant because of
chance. However, the number of tests with significant
results was greater than one, suggesting that increased
climate variability has occurred in the study sites.
Although we did not test the variance in the number of
malaria patients, we showed that the proportion of
epidemic months in the period of 1989–1998 was nearly
twice that of the period 1978–1988 (see Table 2 in Ref. [1]).
Such a substantial increase in the proportion of epidemic
months coincided with a parallel increase in climate
variability, and statistical tests support a strong associ-
ation between them [1]. We did not adjust annual human
population growth rates because there was strong evi-
dence for an increased number of hospitals, health centers
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and clinics as human population size increased in these
countries during the study period.

Table 1 presents the change in human population size
and the number of health facilities in Rift Valley and
Nyanza provinces, in Kenya from 1981 to 1993 and in
Uganda from 1987 to 2001 (health facility data in Ethiopia
are not available). We have chosen these two provinces of
Kenya because the three study sites (Kericho, Nandi and
Eldoret) are in Rift Valley province, and one site (Kisii) in
Nyanza province. The rates of increase in human
population size and the total number of health facilities
are remarkably similar (Table 1). For example, over the
12-year period, the human population size increased by
54.6% and 39.9% in Rift Valley and Nyanza provinces,
respectively, and the total number of health facilities
increased by 50.8% and 64.9%, respectively. Although the
number of health facilities at specific sites cannot be
inferred from the provincial-level data, there is no reason
to assume that the number of health facilities in the
highlands – where the economic situation is generally
better, compared with the lowlands – has not increased at
a rate comparable to the provincial average. Thus, it is
fairly reasonable to assume that the size of the human
population served by each hospital or health facility
remained similar during the study period. By contrast, it
is not reasonable to assume that the number of hospitals
or health facilities did not change during the 20-year
study period, and it is not appropriate to assume that the
size of the human population served by each hospital or
health facility changed according to the rate of increase in
the size of the human population. In the case of Kericho,
the population eligible for healthcare remained largely
unchanged (w50 000 people) during the study period [3].

The statistical model and stepwise multiple regression
analysis used in our report [1] have an advantage over
other methods, in that we were able to partition the
temporal variance in malaria patient numbers into two
variance components: the variance due to autoregression
and seasonality, and the variance due to climate varia-
bility. The stepwise regression method selected only those
variables that showed significant correlations with the
malaria data. Although the models contained nine
parameters (the constant term was not counted as a
parameter), only 3–6 parameters (averageZ4.7 for the
seven sites; see Table 3 in [1]) were selected and these
produced excellent fitting of the malaria patient dynamics
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Table 1. Changes in human population size and health facilities in the Rift Valley and Nyanza provinces, Kenya, from 1981 to 1993,

and in Uganda from 1987 to 2001

Year

Country Province Variable 1981 1985 1990 1993 Increases

from 1981

to 1993

Kenya Rift Valley Human population size (in thousands)a 3735 4358 5217 5775 54.6

Total number of health facilitiesb 502 447 583 757 50.8

Hospitals 52 51 61 64 23.1

Health centers 86 61 65 155 80.2

Health subcenters and dispensaries 363 335 457 757 108.5

Nyanza Human population size (in thousands)a 2621 2908 3353 3666 39.9

Total number of health facilitiesb 219 224 345 359 64.9

Hospitals 38 38 42 47 23.7

Health centers 39 47 49 76 94.9

Health subcenters and dispensaries 142 139 254 236 66.2

Year

1987 1992 2001 Changes

from 1987

to 2001

Uganda Human population size (in thousands)a 15 666 17 475 23 986 53.1

Total number of health facilitiesc 580 1047 3073 429.8

Hospitals 79 86 104 31.6

Health centers 89 184 159 67.4

Health subcenters and dispensaries 412 777 2810 582.0
aHuman population data for Kenya were estimated from Kenya national population census conducted in 1969, 1979, 1989 and 1999 (http://www.library.uu.nl/wesp/populstat/

populhome.html), assuming a constant annual increase rate between two consecutive censuses but varying rates among decadal censuses. Uganda population data were

obtained from the same web source.
bHealth facilities data for Kenya are from Table 8 of Ref. [18] (available at http://www.hsph.harvard.edu/ihsg/publications/pdf/No-20.PDF). See Ref. [11] for definition of

hospital, health center and health subcenter and dispensary.
cHealth facilities data for Uganda are from http://www.health.go.ug/.
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data. Thus, the criticism that the model has too many
parameters, leading to good data fitting, is inappropriate.
We did not explicitly include the variance measures for
temperature and rainfall in the model because adding the
variance terms [mean monthly minimum or maximum
temperature or monthly rainfall minus the average values
of these variables (i.e. constants) over the study period]
would only change the regression coefficients, without
affecting the results concerning the variances attributed
to autoregression and seasonality, and climate variability;
nor would the overall model fitting be affected. Addition of
the variance measures into the model would make it more
complex, although the variability term would be rep-
resented more explicitly. Similarly, inclusion of each of the
lagged climate variables in the model, rather than using
the average of climate variables for the months that
showed significant cross-correlations, would only add
more parameters and complexity to the model, without
substantially changing the results concerning the pro-
portion of variance explained by climate variability. Our
model, using only three factors (autoregression, season-
ality and climate variability) and 3–6 parameters,
explains 65–81% of the temporal variance in malaria
patient numbers. The general model (Equation 1 in [1])
can be used in any sites, although the model parameter
estimation should be conducted for individual sites
because of high spatial variations in climate condition,
vectorial system, land use, topography, socioeconomic
status, vector and disease control, and other factors
influencing the response of mosquito vectors and parasites
to climate variability. For example, whereas Anopheles
gambiae populations are very sensitive to rainfall, the
same is not true for Anopheles funestus [4]. Similarly, each
site might have specific rainfall thresholds, depending on
www.sciencedirect.com
the rates of evapotranspiration and drainage efficiency. It
should be noted that vectorial systems, malaria trans-
mission intensity [5,6] and, thus, clinical immunity [7] –
factors crucial in the outcome of malaria infection – vary a
great deal among sites, even within one region with
similar temperatures and rainfall. Our results (see Table 3
in [1]) strongly suggest that the malaria early warning
systems [8] should take account of the high spatial
variations in climate and other factors.

We recognize that the causes of malaria epidemics
involve climate, biological and socioeconomic factors and
their interactions. Because the time-series data for some
of these factors were not available, in our statistical
models we had to attribute these unknowns to the error
term. Our models left 19–35% of variance in malaria
patient numbers unexplained. Because of such large
residuals, model misspecification test results (i.e. homo-
scedasticity, autocorrelation and normality of the esti-
mated residuals) cannot be interpreted appropriately. The
question that we wanted to address was whether climate
factors were significantly associated with malaria data
and, if so, how much variance the climate factors
explained, we found that the stepwise regression
analysis had adequately addressed the question.
Hay et al. [2] correctly pointed out the mislabeling
of the Kericho inpatient data in our report, and we
regret the error.

We disagree with the comments by Hay et al. [2]
concerning misrepresentation of geographical expansion
of the malaria epidemic in Kenya and drug resistance
issues. Firstly, the Kenyan Government declared 15
districts in the highlands of western Kenya to be prone
to malaria epidemics in late 1990s, an increase from three
districts during the late 1980s [9]. The paper by Githeko
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and Ndegwa [10] was one of the first reports in the
scientific literature to state this fact.

Secondly, drug resistance alone cannot lead to malaria
epidemics in the highlands for several reasons. For
example, if drug resistance were the main driving force,
the effects of drug resistance on malaria patient numbers
should increase proportionally to resistance until a new
drug is introduced. Thus, we would expect the number of
malaria patients to increase gradually over time (until the
introduction of a new drug) but it would not exhibit
negative monthly case anomalies. By contrast, we
observed dramatic fluctuations in the malaria patient
numbers during the study period. Although the Kenyan
Government introduced sulfadoxine-pyrimethamine as
the first-line antimalarial drug in 1998, when treatment
efficacy was high (average adequate clinical response
O90%; [11]), a major epidemic occurred in the Kenyan
highlands in 1998 following the 1997–1998 El Niño event
[1,12–14]. Moreover, drug resistance could not explain the
sporadic malaria epidemics in the Kenyan highlands in
the 1920s to 1950s [15], when the problem of drug
resistance was insignificant. In addition, statistical
association between malaria epidemics and increased
drug resistance is lacking.

Thirdly, the malaria transmission climate suitability
index in the report of Small et al. [16] did not consider the
synergistic effects of temperature and rainfall on malaria
transmission – which are more important than their
individual effects, as demonstrated in our report [1]. In
addition, the trend analysis of malaria transmission
suitability changes over a period of 84 years [16] was
based on crude resolution and spatially extrapolated
climate data, and also assumed a static vectorial system
throughout Africa. Furthermore, the 80 mm rainfall
threshold for malaria vectors is only applicable to a
particular vectorial system, and not to the whole African
continent. We thus question the appropriateness of
inferring the role of climate in malaria transmission in
the highlands using continent-scale suitability maps
because of the high spatial variation in climate conditions,
topography and agricultural practices [17].

In sum, our report [1] suggests that assessing the
impact of climate change on malaria transmission
requires consideration not only of annual mean tempera-
ture changes but also, more importantly, on the extent of
temperature and rainfall intermonth and interannual
variability. The accuracy of our statistical model, particu-
larly with respect to the timing of malaria epidemics, can
be validated using the upcoming climate and
www.sciencedirect.com
epidemiological data. We would also like to emphasize
that thorough analyses of the time-series data concerning
other potentially important factors such as land use,
socioeconomic status, drug resistance and public health
control measures are needed to better understand the
mechanisms for malaria epidemics in the East African
highlands.
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