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ABSTRACT
Incidental entrainment of fishes at large-scale 
state and federal water diversion facilities in the 
Sacramento-San Joaquin Delta, California, can 
trigger protective management actions when 
limits imposed by environmental regulations 
are approached or exceeded. These actions 
can result in substantial economic costs, and 
likewise they can affect the status of vulnerable 
species. Here, we examine data relevant to water 
management actions during January–June; the 
period when juvenile salmonids are present in 
the Delta. We use a quantile regression forest 
approach to create a risk forecasting tool, 
which can inform adjustments of diversions 
based on near real-time predictions. Models 
were trained using historical entrainment data 
(Water Years 1999–2019) for Sacramento River 
winter-run Chinook Salmon or Central Valley 
Steelhead and a suite of environmental and 

water operations metrics. A range of models was 
developed; their performance was evaluated 
by comparison of a quantile loss metric. The 
models were validated through examination 
of partial dependence plots, cross-validation 
procedures, and further evaluated through 
WY 2019 pilot testing, which integrated real-
world uncertainty in environmental parameters 
into model predictions. For both species, the 
strongest predictor of loss was the previous 
week’s entrainment loss. In addition, risk 
increased with higher water exports and more 
negative Old and Middle Rivers (OMR) flows. 
Point estimates of loss were modestly correlated 
with observations (R2 0.4 to 0.6), but the use of a 
quantile regression approach provided reliable 
prediction intervals. For both species, the 
predicted 75th quantile appears to be a robust 
and conservative estimator of entrainment risk, 
with overprediction occurring in fewer than 20% 
of cases. This quantile balances the magnitude 
of over- and under-prediction and results in a low 
probability (< 5% of predictions) of unexpected 
high-take events. These models, and the web-
based application through which they are made 
accessible to non-technical users, can provide 
a useful and complementary approach to the 
current system of managing entrainment risk.
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INTRODUCTION
In California’s increasingly arid climate, 
managing freshwater resources is a delicate 
balance between meeting the needs of fish and 
wildlife and the needs of agriculture and urban 
requirements to serve 25 million people (Service 
2007). Ensuring a predictable water supply is 
increasingly constrained by effects on a growing 
list of species of concern. In the tidal Sacramento-
San Joaquin River Delta (hereafter, the Delta), 
multiple vulnerable salmonid populations have 
the potential to interact with large-scale water-
diversion projects, resulting in a wide range 
of operational limitations. Sacramento River 
winter-run Chinook Salmon (Oncorhynchus 
tshawytscha) are listed as endangered under the 
federal Endangered Species Act (ESA); Central 
Valley steelhead (Oncorhynchus mykiss) are listed 
as threatened. Minimizing the effects of water 
diversions on these and other fishes is critical 
for managing vulnerable populations, and for 
ensuring a reliable water supply. Clarifying 
the factors that influence risk of salmonid 
entrainment could help to inform more targeted 
and effective water management actions, but 
it has thus far proven difficult to untangle 
interactions of migratory species with complex 
hydrodynamics in the Delta (Bever et al. 2016). 

Compared to current conditions, the historic 
Delta likely presented a relatively safe migration 
corridor for Chinook Salmon and Steelhead, 
with rich and ample floodplain habitat 
supporting additional growth before the stressful 
transition to marine waters (Sommer et al. 
2001). In contrast, in the modern Delta, much 
of this floodplain habitat has been reclaimed as 
agricultural lands, and the remaining waterways 
are deeper, highly channelized, and inhabited 
by large populations of non-native predators, 
including Striped Bass, Black Bass and Catfish 
(Young et al. 2018; Lindley et al. 2019). In addition, 
water from the Delta is diverted and exported for 

irrigation and municipal water supplies, primarily 
from two large pumping facilities in the south 
Delta—the State Water Project (SWP) Harvey O. 
Banks Pumping Plant and the federal Central 
Valley Project (CVP) Jones Pumping Plant—which 
together commonly divert more than 25% the 
daily flow from the Sacramento and San Joaquin 
rivers (~ one-third of the days during the period 
when these salmonids are present in the Delta). 
Water exports of this magnitude are capable 
of altering natural flow regimes, and indeed, 
diversions commonly reverse the net direction of 
flow in portions of the Delta toward the pumping 
facilities, which may increase the potential to 
entrain out-migrating salmonids (Buchanan et al. 
2013; Perry et al. 2018). 

Chinook Salmon and Central Valley Steelhead 
must transit the Delta en route from their 
spawning grounds in the upper watersheds to 
oceanic feeding areas, and, despite reasonably 
targeted downstream movement (Buchanan 
et al. 2013; 2021), can spend days or weeks 
moving through complex network of channels, 
sloughs, and water diversions on their way to 
San Francisco Bay and the ocean beyond (Perry 
et al. 2013). Winter-run Chinook Salmon migrate 
downstream in their first year of life, shortly 
after emerging from the gravel, and so the 
period of downstream migration and residence 
in the Delta is critical for growth (Yoshiyama et 
al. 1998; Bellido–Leiva et al. 2021). The timing 
of downstream movement, and therefore the 
period of vulnerability to entrainment, depends 
on Sacramento River flows, and can thus vary 
markedly between years in response to hydrologic 
conditions (Michel et al. 2015; Notch et al. 2020). 
In contrast with the smaller winter-run Chinook 
Salmon juveniles, Central Valley Steelhead rear 
in upstream habitats for one or more years 
before out-migration (McEwan 2001), and transit 
through the Delta more rapidly and at a larger 
size, which should result in reduced entrainment 
risk (Williams 2006). However, unlike winter-
run Chinook Salmon, which originate from 
a single population in the Sacramento River, 
Central Valley Steelhead are a stock complex, also 
spawning in the San Joaquin watershed, though 
in generally smaller numbers than Sacramento 
populations (Lindley et al. 2007). The body 
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Regardless of any life-history complexities or 
differences, juveniles from all anadromous 
species and populations must ultimately reach 
the ocean to complete their life cycle, and this 
is, at least in part, achieved by following river 
flow (Ramón et al. 2018). Although the pumping 
facilities are not located directly on primary 
migration corridors, the scale of diversions is 
often sufficient to alter flows through the Delta 
(Zeug and Cavallo 2014). Such flow alterations are 
likely to affect the migration routes of salmonids 
and may increase exposure to the pumping 
facilities, though the effect of entrainment risk 
is complex and continues to be an active area 
of research (Perry et al. 2016). In spite of this 
uncertainty, one of the primary management 
actions currently employed is to restrict the 
combined flows of the waterways located nearest 
the pumping facilities—the Old and Middle Rivers 
(OMR)—to no less than –5,000 cfs during months 
in which listed salmonids are most likely to be 
present in the Delta (NMFS 2019). Despite this 
management action, some proportion of the 
winter-run Chinook Salmon and Central Valley 
Steelhead populations nevertheless arrive in the 
vicinity of the pumping facilities, and the number 

of fish entrained tends to increase with higher 
exports (Kimmerer 2008; Newman and Brandes 
2010). Thus, in addition to coarse, seasonal 
limitations such as OMR restrictions, forecasting 
near-term (i.e., weekly) risk of salmonid 
entrainment and modifying water operations 
accordingly is a critical component of the current 
management approach. 

Following requirements of the ESA, the National 
Marine Fisheries Service (NMFS) issued a 
Biological Opinion (BO) in 2019, which requires a 
committee of natural resource agency fisheries 
biologists, water operators, and regulatory 
specialists to convene weekly to consult on 
demographic, environmental, and operational 
conditions at the pumping facilities that are 
anticipated to affect entrainment risk (Figure 1). 
The BO prescribes an Incidental Take Limit (ITL) 
based on entrainment loss, which the committee 
uses as a benchmark for recommending changes 
to operations, given trends in monitoring data 
from the rivers and in salvage at the water 
pumping facilities. Using a combination of rotary 
screw-trapping data in the main rivers that enter 
the Delta and routing probabilities (Perry et al. 

Figure 1 Schematic representation of the current approach to in-season management of entrainment risk—where the Smelt Working Group (SWG) and 
Salmon Management Team (SMT) jointly inform Water Operations Management Team (WOMT) decision-making—and the anticipated, complementary role of 
a quantitative prediction tool. 

https://doi.org/10.15447/sfews.2022v20iss2art3
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2018), the Salmon Management Team (SMT) meets 
weekly to estimate the distribution of each run 
of salmonids approaching, within, or exiting the 
Delta to assess entrainment risk (Figure 1). Then, 
using expert judgement, the committee produces 
a rationale for changes in fish distribution relative 
to the diversion facilities in the South Delta, and 
posts its notes online with recommendations of 
exposure risk based on flows and export rates for 
water operations managers to consider, (https://
www.usbr.gov/mp/bdo/salmon-monitoring-team.
html). Weekly notes and the various sources of 
data taken into consideration for management 
recommendations can occupy 30 pages of text. 
Given these complexities, expert consultations 
are time- and resource-intensive to produce, and 
their recommendations are difficult to reproduce. 
Quantitative modeling approaches may provide 
useful, independent and complementary 
predictions of entrainment risk in a much more 
timely and reproducible fashion. Moreover, such 
tools could allow for sensitivity analyses and the 
comparison of environmental and operational 
scenarios, which would help focus protections 
for fish when necessary, and provide flexibility 
of exports from pumping facilities during 
periods of low risk. Ultimately, reliable forecasts 
of entrainment risk could inform an adaptive 
management approach where water exports 
are reduced in response to predictions of high 
entrainment in the coming week. To facilitate 
such an approach, forecasts of entrainment 
risk should be reliable enough to minimize 
unexpected high loss events (i.e., large under-
predictions) while also avoiding consistently large 
over-predictions, which could lead to excessively 
conservative water management.

Incidental entrainment loss at the SWP and CVP 
pumping facilities is influenced by the interaction 
of environmental, behavioral, and water operation 
variables (Kimmerer 2008; Zeug and Cavallo 2014). 
Understanding the specific environmental and 
operational factors that influence entrainment 
risk has been the focus of previous studies 
(Grimaldo et al. 2009) and continues to be an 
important area of research. Forecasting risk to 
inform real-time operational decisions is a related, 
but distinct objective, and should be achievable 

even in the absence of a perfect understanding 
of the mechanisms that ultimately lead to the 
entrainment. Because the primary goal of a 
loss forecasting tool is prediction rather than 
description, machine learning methods—which 
have displayed superior predictive performance 
compared with traditional regression methods for 
many applications (Meinshausen and Ridgeway 
2006; Elith et al. 2008)— may be appropriate. 
Ecological data commonly have characteristics 
such as multicollinearity among interacting 
variables, non-normal distributions, and uncertain 
interactions that may violate assumptions of 
parametric regression approaches (Zuur et al. 2009). 
To circumvent these issues in multi-dimensional 
situations, a range of machine-learning techniques 
are gaining favor in ecology and natural resource 
management (Olden et al. 2008). 

While many methodological options exist, tree-
based methods including random-forest (RF) and 
boosted regression trees (BRT) have been applied 
widely to ecological problems, are relatively 
interpretable, and can provide outputs well suited 
to evaluation of risk. These methods are based 
upon classification and regression trees, which 
iteratively split the response data based on a 
single predictor variable such that the between-
group variance is maximized and the within 
group variance is minimized (Olden et al. 2008). 
The data are then continually split based on 
the next-best splitting rule, until each node has 
a single observation or other stopping criteria 
are met. Although intuitive, single regression 
trees typically are poor predictors and are very 
sensitive to the training data set. However, 
RF and BRT approaches add stochasticity to 
the selection of splitting rules, creating many 
individual trees, and resulting in more robust 
ensemble models that nevertheless retain the 
intuitive nature of a single tree (Olden et al. 2008; 
Brieuc et al. 2015). Apart from relatively strong 
predictive ability, tree-based regressions have 
several other beneficial characteristics. The tree 
structure inherently incorporates interactions, 
and unimportant variables need not be manually 
removed because they are rarely selected in the 
splitting process (Elith et al. 2008). Furthermore, 
the analysis requires no distributional 

https://www.usbr.gov/mp/bdo/salmon-monitoring-team.html
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assumptions, and inference is not biased by 
multicollinearity of predictors (though variable 
importance may not be appropriately resolved in 
the presence of highly correlated predictors). 

Using a tree-based approach, our overall goal 
was to develop a predictive tool that could 
provide useful risk estimates of winter-run 
Chinook Salmon and Central Valley Steelhead 
being entraining at the CVP and SWP facilities. 
Specifically, we sought to develop and validate a 
model capable of (1) forecasting loss of juvenile 
Salmon and Steelhead at the pumping facilities 
based on environmental, operational, and 
biological variables that are either available in 
near-real time or are forecasted for at least 1 
week, (2) providing an intuitive way to consider 
risk and uncertainty in loss predictions, and 
(3) facilitating the comparison of alternative 
operational scenarios. To achieve this goal, we 
identified potentially important predictors of 
entrainment, trained a series of models with 
varying levels of complexity using these data, 
evaluated predictive perfromance using multiple 
cross-validation approaches, developed a web-
based prediction interface, and carried out real-
world testing with the web tool during the 2019 
salvage season. 

METHODS
Data
We compiled all data for model training and 
testing from publicly available sources. The 
response variables included daily estimates of 
entrainment loss for winter-run Chinook Salmon 
and Central Valley Steelhead measured separately 
at the CVP and SWP pumping stations. Fish- 
collection facilities are located upstream of the 
pumps and use a series of louvers or screens to 
separate entrained fish from the flow of water. 
Fish captured in this way are deemed to have 
been salvaged. Collection and enumeration 
methods of the salvage process are explained 
in detail in Castillo et al. (2012). Briefly, fish 
are diverted into a holding tank where a sub-
sample is counted over a given period—typically 
a 30-minute sub-sample over a 2-hour collection 
period—to estimate the total number of fish 

salvaged. After counting, salvaged fish are 
transported by trucks to the western Delta where 
they are released to continue migrating to sea. 
Fish that do not survive this process are counted 
as lost. Loss is estimated by applying various 
multipliers to salvage estimates to account for 
predation, screening efficiency, and handling/
trucking mortality (Kimmerer 2008). Loss data 
were available for Water Years 1999–2020.

In a change from prior opinions, the 2019 BO 
specifies that the ITL for both winter-run and 
Chinook Salmon and Central Valley Steelhead is 
based on these loss estimates, and not raw salvage 
counts. In addition, the most recent BO includes 
two ITLs for each species based on single year 
loss and 3-year rolling average loss. Here, we 
evaluate models relative to the single-year values. 
For wild (naturally produced) winter-run Chinook 
Salmon, the maximum ITL in a single year is 2% 
loss of the estimated number of length-at-date 
juveniles entering the Delta, which is calculated 
annually based on estimates of adult spawning 
abundance in the prior year and assumptions of 
early life stage survival based on environmental 
conditions and survival data (NMFS 2009; 
O’Farrell et al. 2018). Seasonal runs of Chinook 
Salmon are identified in salvage —and counted 
against the ITL—using a length-at-date run 
estimation, which can result in misidentification 
with temporally overlapping runs (Harvey et al. 
2014) but remains the best available method until 
rapid genetic identification becomes more widely 
available. Because less information is available on 
annual wild Central Valley Steelhead natal origin 
and abundance, the maximum ITL in a single 
year is fixed at a loss of 2,760 between December 1 
and March 31, and a loss of 3,040 between April 1 
and June 15 (NMFS 2019). 

As noted in the Introduction, the Delta is a 
complex and heterogenous system, and so many 
environmental and operational variables are 
likely to influence the risk of entrainment while 
interacting in unknown ways (Zeug and Cavallo 
2014; Grimaldo et al. 2009). Moreover, for fish to 
be salvaged, they must, of course, be present in 
the Delta, which is determined by many factors 
including species- and population-specific 

https://doi.org/10.15447/sfews.2022v20iss2art3
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abundances, life histories, and phenologies. Given 
this environmental and biological complexity, 
the number of potentially relevant predictors 
of entrainment risk is almost infinitely large. 
As such, we did not undertake an exhaustive 
process of variable selection, but rather chose 
a set of predictor variables based primarily on 
those currently considered by the SMT (Table 1) 
that was intended to capture (1) environmental 
conditions that experts consult on that are 
thought to influence salmonid presence in the 
Delta (e.g., water temperature, precipitation, 
and inflow from the Sacramento and San 
Joaquin rivers); (2) operational conditions that 
might influence rates of entrainment (i.e., total 
diversions and OMR flow); and (3) indicators 
of relative abundance in the Delta (e.g., survey 
indices, recent salvage history, and date). We 
also limited predictor variables to those with 
data available for the entire salvage time-
series (WY 1999–2020), and gave preference to 
variables with readily available forecasts. For 
model training, we aggregated all variables from 
daily observations to weekly means, except for 
precipitation and prior week salvage, which were 
summed, and Delta Cross Channel (DCC) gate 
status, which was listed as “opened” or “closed” 
based on a simple majority of daily statuses. 

Modeling Approach
The basic objective of the predictive model was 
to provide an estimate of the range of plausible 
winter-run Chinook Salmon loss and Central 
Valley Steelhead and over the coming week, 
using a tree-based regression approach. A weekly 
time-step was chosen because it is compatible 
with the current format of risk evaluation (i.e., 
weekly meetings of resource managers), loss 
data are made publicly available at weekly 
intervals, and it reduces the effect of stochasticity 
in daily loss estimates. Because of a focus on 
interval rather than point predictions, we used 
a quantile regression forest (QRF) approach: a 
simple extension of the RF algorithm that retains 
the complete distribution of predictions from 
individual tress, rather than the mean prediction 
as in RF (Meinshausen and Ridgeway 2006). Each 
quantile should approximate the frequency with 
which the quantile prediction exceeds observed 

loss. For example, the 75th predicted quantile 
will be larger than observed loss in around 75% 
of cases. Thus, with the QRF output it is trivial 
to calculate any prediction interval of interest. 
The predictive model was initially developed as 
a single-step QRF model (hereafter the simple 
model), trained with data described above for 
water Years 1999-2020. For each species, three 
response variables were used: loss recorded at 
the CVP, at the SWP, and from the two facilities 
combined. The models were trained using the 
‘quantregForest’ (Meinshausen 2017), in R (R Core 
Team 2019). A range of values for key algorithm 
parameters were tested, including the number 
of variables sampled at each tree split (mtry), the 
minimum number of terminal nodes (nodesize) 
and the number of trees in the forest (ntree), but 
the defaults were ultimately deemed sufficient 
aside from tree number, which was set to 300 for 
the sake of computational efficiency (Oshiro et al. 
2012). 

Feedback from potential model users included 
some concern regarding the reliance of the 
models on the prior week’s loss since it may 
lead to poor prediction early in the salvage 
season when few fish are observed. In an 
attempt to address this concern, we developed 
an alternative, two-step model formulation 
(hereafter referred to as the hurdle model). 
The hurdle model first trains a random forest 
classifier using the ‘randomForest’ package (Law 
and Wiener 2002). The response and predictor 
variables are the same as for the simple model, 
except that the responses are converted from 
continuous to binary (i.e., loss/no loss) and the 
prior week’s loss is excluded. A QRF model with 
the same formulation as the simple model is then 
fit to a censored data set containing only weeks 
with non-zero observed loss. The prediction from 
the classification model is then multiplied by the 
prediction in the simple model. Thus, the first 
step (RF classifier) predicts whether or not any 
loss will occur in the coming week based only 
on environmental and operational conditions, 
and when loss is predicted to occur, the second 
step (QRF regression) estimates the magnitude 
of loss using the complete set of predictors, (i.e., 
including the prior week’s loss). For each response 
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variable, both the simple and hurdle models 
were fit. The output of each model is the same: a 
predicted distribution of the response variable, 
which can be used to explore the range of 
potential outcomes, given a set of environmental 
and operational conditions. 

Model Validation
Trained models were first qualitatively evaluated 
by examination of variable importance rankings—
based on the percent change in mean squared 
error resulting from randomly permuting each 
predictor variable—and examination of partial 

Table 1 Summary of predictor variables and data sources 

Variable Description Category Training source Prediction source

temp.mal Daily average water temperature at 
Mallard Island (°C) Environment CDECa NOAA San Francisco 

Bay Operational Forecast 
Systemb 

precip 5-day precipitation runoff estimate for
the Delta (cfs) Environment CDWR Dayflowc Precipitation Forecast for 

Stockton Fire Stationd 

sac Sacramento River Flow at Freeport (cfs) Environment CDWR Dayflow Bay Delta Livee

sjr San Joaquin River Flow at Vernalis (cfs) Environment CDWR Dayflow Bay Delta Live

OMR
Sum of Old and Middle Rivers 
discharge; tide filtered in CFS at Middle 
River and Bacon Island from USGS (cfs)

Operations Reclamation CVO Officef Reclamation CVO Office

export Sum of CVP and SWP discharge at 
HRO and TRP (cfs) Operations CDECg Bay Delta Live

dcc Delta Cross Channel Gate status Operations CDWR Dayflow Bay Delta Live

winter.pw Previous week’s CVP+SWP winter-run 
loss Abundance SacPAS Salvage and 

Loss Summaryh CDFW Salvage FTP i

steelhead.pw Previous week’s CVP+SWP Steelhead 
salvage Abundance SacPAS Salvage and 

Loss Summary CDFW Salvage FTP

Winter_Seine Chinook index in Sacramento Beach 
Seine survey, 6-week lag Abundance USFWS Delta Juvenile 

Fish Monitoring Programi Bay Delta Live

Steelhead_Seine O. mykiss index in Sacramento Beach
Seine survey, 3-week lag Abundance USFWS Delta Juvenile 

Fish Monitoring Program Bay Delta Live

a. http://cdec.water.ca.gov/dynamicapp/staMeta?station_id=MAL
b. https://tidesandcurrents.noaa.gov/ofs/sfbofs/sfbofs_info.html#:~:text=The%20San%20Francisco%20Bay%20Operational,of%20

the%20San%20Francisco%20Bay
c. https://data.ca.gov/dataset/dayflow
d. http://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SFS
e. https://www.baydeltalive.com/ops/daily-operations-summary
f. https://waterdata.usgs.gov/usa/nwis/uv?site_no= 11312676, https://waterdata.usgs.gov/usa/nwis/uv?site_no=11313405
g. http://cdec.water.ca.gov/dynamicapp/staMeta?station_id=HRO http://cdec.water.ca.gov/dynamicapp/staMeta?station_id=TRP
h. http://www.cbr.washington.edu/sacramento/data/delta_loss_summary.html
i. https://dev.baydeltalive.com/fisheries/triggers-and-indices 

https://doi.org/10.15447/sfews.2022v20iss2art3
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dependence plots, which show the change in 
predicted loss in response to changing a single 
variable while holding all others at their means. 
For the hurdle model, variable importance and 
partial dependencies were examined separately 
for the classification and QRF components. 
We then evaluated the models’ predictive 
performance using three separate approaches. 

First, the ‘quantregForest’ functions use “bagging” 
(Liaw and Wiener 2002), which takes bootstrap 
samples from the training data set and then 
predicts the remaining cases while the forests are 
being constructed (Breiman 1996). A summary of 
this internal estimate of predictive performance 
is then reported in terms of percent of total 
variance explained. Second, we performed 
leave-one-out (LOO) and 10-fold cross-validation 
procedures where either a single year or random 
10% of data were held back from the training set. 
Each model was then trained with the remaining 
data, and the resulting models used to predict 
the 1st,5th, 10th, 25th, 50th, 75th, 90th, 95th, 
and 99th quantiles. Because the QRF algorithm 
retains the complete response distribution, it is 
trivial to calculate a conditional mean identical 
to that produced by the random forest algorithm 
(Meinshausen and Ridgeway 2006), and so we 
also generated mean predictions. We compared 
the mean weekly predictions with observations 
using simple least-squares regression and the R2 
values taken as an indication of point-prediction 
performance. For the classification component of 
the hurdle models, we also calculated accuracy 
and the area under the receiver operating curve 
(AUC). For the quantile predictions, we calculated 
the prediction error of each weekly estimate using 
the quantile loss function suggested by Natekin 
and Knoll (2013) and then calculated the mean 
loss across all predictions. 

While this quantile loss function allows 
performance between the model formulations 
to be compared, it does not provide an intuitive 
measure of model performance relative to 
the goals of resource managers. Assuming an 
adaptive management system where water 
exports would be reduced in response to 
predictions of high entrainment, two goals need 

to be balanced: minimizing large, unexpected 
loss events, and avoiding consistently large over-
prediction, which could lead to unnecessarily 
conservative water management. To evaluate 
performance relative to these goals, for each 
model, cross-validation method, and a set of 
conservative quantiles (0.5, 0.75, 0.90 and 0.95), we 
calculated four metrics: the frequency of large, 
unexpected take events (defined as observed loss 
exceeding the relevant predicted quantile by 2% 
of the average ITL; 182 for winter-run Chinook 
Salmon and 116 for Central Valley Steelhead), 
the frequency of over-prediction by more than 
1% of the average ITL, and the mean and median 
values of over- or under-prediction. We chose 
the asymmetrical definition of large under- and 
over-prediction events because the distribution of 
over-predictions is bounded by zero, while under-
predictions are unbounded. For this portion 
of model validation, we were interested in the 
primary management-relevant outcome—total 
weekly loss, irrespective of salvage facility—and 
so focused on the final predictions of total winter-
run Chinook Salmon and Central Valley Steelhead 
loss, and not the individual components of the 
hurdle model, or the independent predictions of 
models fit only to CVP or SWP data. Thus, results 
include four model formulations for each species. 
“Combined” models were trained with total loss 
data; CVP+SWP models represent the sum of 
predictions from models trained with only CVP or 
SWP loss data. 

Finally, pilot-testing of the initially developed 
models (simple formulations trained with CVP 
and SWP combined) was conducted during the 
2019 salvage season. Pilot testing was not only 
out-of-sample testing that exposed the model 
to new data, but also incorporated uncertainty 
inherent in the forecasts of environmental and 
operational predictor variables. The web-based 
application (described below) was used to create 
weekly predictions using the sources shown in 
the last column of Table 1 for forecasted values 
of predictor variables. Predictions of the median, 
10th, and 90th quantiles were then graphically 
compared with observed loss.
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Web-Based Application
To facilitate use of the predictive model by 
resource managers and other interested 
parties, we initially developed a web-based 
interface for the QRF models using the R 
package ‘shiny’ (Chang et al. 2015) that has since 
been incorporated into a suite of monitoring, 
evaluation, and web-based data products and 
services called SacPAS (Sacramento Prediction 
and Assessment of Salmon; http://cbr.washington.
edu/sacramento/lossandsalvage/). The application 
provides a module that is used for in-season 
prediction of incidental entrainment loss and 
allows the user to manually set all forecasted 
predictor variables for sensitivity analyses and 
exploration of alternative water-operations 
scenarios. The web tool then provides graphical 
and tabular output of observed loss-to-date and 
predicted median and user-defined quantiles. 
The graphical output also compares cumulative 
observed and predicted loss relative to the average 
timing of loss observed in the training data set 
and scaled relative to the ITL or other value 
specified by the user.

RESULTS
Variable Importance and Conditional Effects of 
Predictors
Examination of variable importance rankings 
revealed that across all model formulations and 
for both species, the prior week’s loss was by far 
the most important predictor, and the week of 
the Water Year (i.e., date) was the second most 
important variable in all cases but one: Steelhead 
loss at the SWP where OMR was the second most 
important variable (Figure 2; Table 2). For the 
presence/absence classification step of the hurdle 
model, week of Water Year and temperature 
were the first and second ranked variables. 
Examination of partial dependence plots revealed 
that the most important predictors (Figure 3), and 
the variables most directly responsive to water 
management actions (Figure 4) all had intuitive 
relationships with the risk of entrainment loss. 
The relationships between prior week and current 
week loss were positive, generally linear, and 
asymptotic (Figure 3). Seasonal patterns of loss 
were also well captured in the plots of partial 

dependence on week of Water Year; though the 
period of highest risk is more pronounced for 
Central Valley Steelhead. The influence of directly 
manageable variables (Figure 4) was modest when 
compared to the prior week’s loss (Figure 3), but 
for both species, greater loss was predicted when 
OMR flows were negative, or exports increased.

Predictive Performance
Although both LOO and 10-fold cross validation 
were performed, the 10-fold approach produced 
consistently more optimistic results (i.e., 
suggested better predictive performance). This 
probably results from the fact that there is an 
unaccounted-for effect of year in determining 
the risk of entrainment and removing an entire 
year of data ensures that the model is trained 
completely naively to this annual effect. For the 
sake of clarity, we have chosen to report only 
the results from the more conservative LOO 
cross-validation. Based on these cross-validation 
results, the models for both species displayed 
modest, but potentially useful predictive ability. 
The Steelhead models provided more reliable 
point predictions with the overall R2 between 
weekly observations and cross-validation 
predictions of ~0.60 compared with ~0.44 for 
winter-run Chinook Salmon (Table 3). The 
classification components of the hurdle models 
suggest a strong ability to predict whether any 
loss will occur based only on environmental and 
operational conditions. Model performance for 
both species is well balanced across accuracy, 
precision, and recall; and the AUC scores, which 
are generally greater than 0.8, indicate excellent 
discrimination (Table 4) (Hosmer and Lemeshow 
2000).

Although the Central Valley Steelhead models 
produced more reliable point predictions of 
loss, the prediction intervals produced by 
winter-run Chinook Salmon models appear 
generally more useful based on the management-
relevant validation metrics. Across the range of 
precautionary predicted quantiles, the winter-
run Chinook Salmon models were less likely to 
produce a large under-prediction or a large over-
prediction (Table 3). Selection of an appropriate 
quantile on which to base management responses 

https://doi.org/10.15447/sfews.2022v20iss2art3
http://cbr.washington.edu/sacramento/lossandsalvage/
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depends, ultimately, on the management 
community’s risk tolerance. The winter-run 
Chinook Salmon median and 75th quantile 
predictions produce reasonably infrequent and 
balanced occurrences of large over- and under-
prediction. For Central Valley Steelhead, there is a 
larger trade-off between frequent over- and under-
prediction, and so avoidance of large, unexpected 
loss events comes at the cost of more frequent 
over-prediction (e.g., in > 20% of cases for the 
75th predicted quantile). Nevertheless, for both 
species the 75th predicted quantile appears to 
provide a reasonably precautionary management 
benchmark across all weeks of the salvage 
season, with modest over-prediction by far the 
most common outcome (Figure 5). Pilot testing in 
2019 further supported the utility of the interval 
predictions indicated by these cross-validation 
results, where all loss observations between 1 

January and 15 June (n = 48) fell within the 10th-to-
90th quantile prediction interval (Figure 7). 

Model Comparison
As noted previously, the outsized influence of 
the prior week’s loss on model predictions led to 
concern over poor predictive performance during 
the early weeks of a salvage season. The hurdle 
model formulation was intended to address this 
potential issue by first predicting whether any 
loss would occur using a classification model that 
excluded the prior week’s loss from the predictors. 
Training models separately for the CVP and 
SWP pumping facilities was also considered as 
a potential method to increase the accuracy of 
loss predictions. However, across the range of 
model validation approaches, there was no clear 
evidence of a single, superior model formulation 
for either species. Point and interval prediction 

Figure 2 Variable importance rankings for each component of the hurdle model. Panels A and C show the change in mean squared error when each 
variable is excluded from the quantile regression forest (QRF) model for winter-run Chinook Salmon and Central Valley Steelhead, respectively. Panels B 
and D show the decrease in classification accuracy when each variable is excluded from the RF classifier model for winter-run Chinook Salmon and Central 
Valley Steelhead, respectively. 
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performance revealed no clear favored model 
formulation (Tables 3 through 5), and although 
the hurdle models appeared to avoid some level of 
prediction error during the earliest weeks when 
salvage typically occurs (Figure 5), these are not 
necessarily the weeks in which the first large 
pulses of entrainment occur in any given year. 
Examination of prediction errors during the first 
week of each salvage season in which greater 
than 5% of the annual loss occurred revealed 
poor predictive ability in these circumstances 
across all model formulations, with large under-
predictions the norm (Figure 6A). In contrast, 
across all weeks in which greater than 5% of 
annual loss occurred, the 75th predicted quantiles 
for both species and all model formulations 
produced more balanced prediction errors 
(Figure 6B). In addition to indicating that the 
hurdle model formulation may be unnecessary, 
these results also suggest that use of a more 
precautionary management benchmark, such 
as the 90th quantile (Figure 6C and 6D), may be 

warranted early in the year when regular weekly 
loss is not yet occurring. 

DISCUSSION
We developed a series of tree-based models to 
predict the risk of entraining juvenile winter-run 
Chinook Salmon and Central Valley Steelhead 
during large-scale water exports. Extensive 
cross-validation procedures revealed that, using 
a small and readily available set of predictor 
variables, this modeling approach can provide 
potentially useful point and interval estimates of 
salmonid loss 1 week into the future. Although 
the majority of the predictive power of the models 
derives from seasonality and the temporally 
autocorrelated nature of entrainment (i.e., 
the best predictor of loss is the prior week’s 
loss), the model predictions are sensitive to 
water operations variables that management 
can directly influence. As such, these models 
provide managers the novel ability to consider 
the upcoming risk of salmonid entrainment loss 

Table 2 Summary of most important variables for each model formulation

Variable importance rank

Species Model Structure Type Response First Second Third

Winter run Simple QRF Combined Prior week loss Week of WY Temperature

CVP Prior week loss Week of WY Temperature

    SWP Prior week loss Week of WY Temperature

Hurdle QRF Combined Prior week loss Week of WY Temperature

CVP Prior week loss Week of WY Temperature

  SWP Prior week loss Week of WY Temperature

RF (Binary) Combined Week of WY Temperature Sacramento flow

CVP Week of WY Temperature Sacramento flow

      SWP Week of WY Temperature Sacramento flow

Steelhead Simple QRF Combined Prior week loss Week of WY Combined exports

CVP Prior week loss Week of WY OMR

    SWP Prior week loss OMR Week of WY

Hurdle QRF Combined Prior week loss Week of WY Combined exports

CVP Prior week loss Week of WY OMR

  SWP Prior week loss Week of WY OMR

RF (Binary) Combined Week of WY Temperature Sacramento flow

CVP Week of WY Temperature Sacramento flow

      SWP Week of WY Temperature San Joaquin flow

https://doi.org/10.15447/sfews.2022v20iss2art3
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Figure 3 Partial dependence of model predictions on the two variables consistently ranked as the highest importance for both winter-run (A-B) and 
Central Valley Steelhead (C-D): the prior week’s loss and the week of the Water Year. Predictions were made with all other variables held at their mean 
values. Black lines show predicted medians; the shaded area captures the interquartile range (25th–75th predicted quantiles). 

Table 3 Summary of QRF model validation metrics

Model 

Average quantile loss

R2Species Response 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99 Sum

Steelhead Simple Combined 42 41 39 33 26 32 64 95 196 566 0.60

  CVP+SWP 48 47 45 39 32 37 69 103 209 628 0.60

Hurdle Combined 42 40 38 32 26 34 63 87 167 529 0.59

    CVP+SWP 46 44 43 37 33 41 67 90 163 564 0.58

Winter run Simple Combined 35 35 33 29 23 28 55 88 216 542 0.43

  CVP+SWP 37 37 36 32 26 32 61 100 233 594 0.44

Hurdle Combined 35 34 33 29 24 30 57 89 196 528 0.44

    CVP+SWP 36 35 34 31 26 33 60 90 187 532 0.44

a. Bold values indicate the “best” model for each species; the lowest values for all quantile loss estimates and the highest R2 value.
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under a range of possible operational scenarios. 
The combination of quantitative, reproducible 
estimates of risk with this scenario exploration 
capacity results in a potentially powerful and 
complementary tool to integrate with the existing, 
expert-based risk-management approach. 
Integration of these predictive models into a web-
based application hosted on SacPAS—a familiar 
provider of fish monitoring data and tools in 
the Delta management community—allows the 
intended model users to generate risk forecasts 
and explore scenarios in a code-free manner 
(Figure 8). 

Figure 4 Partial dependence of model predictions on the two variables most responsive to management inputs for both winter run Chinook Salmon (A-B) 
and Central Valley Steelhead (C-D): combined water exports and OMR flow. Predictions were made with all other variables held at their mean values. Black 
lines show predicted medians; the shaded area captures the interquartile range (25th–75th predicted quantiles). 

Table 4 Summary of validation metrics for RF classifier components of 
hurdle models

    Hurdle model classifier metrics

Species Response Accuracy Precision Recall AUC

Steelhead Combined 0.83 0.83 0.83 0.83

CVP 0.80 0.84 0.86 0.79

  SWP 0.83 0.85 0.86 0.82

Winter-run Combined 0.86 0.89 0.89 0.84

CVP 0.85 0.89 0.89 0.84

  SWP 0.86 0.86 0.89 0.83

https://doi.org/10.15447/sfews.2022v20iss2art3
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Figure 5 Boxplots of weekly prediction errors for four formulations of the winter-run Chinook Salmon (A-D) and Central Valley Steelhead (E-H) model. 
Background shading indicates the typical periods of maximum loss for each species. Red dashed lines show management-relevant over- and under-
prediction thresholds of 1% and 2% of the average ITL, respectively. Vertical black lines show the first week with visible deviations for the hurdle models, 
and are intended to highlight increased predictive performance during the earliest weeks of the salvage season. Note that outliers are excluded to aid in 
visualization, but details on the frequency of occurrence of extreme values are provided in Table 4. 
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Predictive Performance Relative to Management Needs
While we have reported a variety of standard 
validation metrics for predictive models for the 
application of these predictions to management, 
there remains the question of “how good is 
good enough?” The ecological processes that 
ultimately determine the rate of entrainment 
in the Delta are highly complex, and it is not 
surprising that the model’s ability to provide a 
point estimate of loss is modest in absolute terms. 
However, for management purposes, the strength 
of the model is likely to be in the prediction 
intervals—especially the bounding by higher 
quantiles—rather than point estimates. The 
quantile regression framework allows for worst-
case scenarios to be considered, and the range 
of potential outcomes to be examined, given a 
set of predictor variables (Cade and Noon 2003). 
Table 5 highlights the trade-offs between various 
predicted quantiles and shows that the models’ 
75th to 95th quantile predictions result in a very 

low probability of unexcepted large loss events 
(~ 1% to 5%). Use of increasingly precautionary 
quantiles does come at the expense of more 
frequent large over-predictions, especially 
for the Steelhead models. It is also important 
to note that these frequencies depend on the 
definition of large under- and over-prediction 
events. We selected values of 2% and 1% of 
the average ITLs for the large under- and over-
prediction thresholds, assuming that water and 
fisheries managers would object to prediction 
errors greater than this magnitude. Overall, the 
predictive performance of the precautionary 
quantiles relative to the management targets that 
we have defined seems adequate. For purposes 
of risk forecasting and scenario evaluation. 
However, ultimately, the management process 
should determine what level of prediction error is 
tolerable, and therefore how much weight to place 
on model predictions. 

Figure 6 Boxplots of prediction errors for the 75th and 90th quantiles during weeks that loss exceeded 5% of the annual total. Panels A and C include 
only the first instance of loss above this threshold; panels B and D include all occurrences. Large under-predictions are far more common during the first 
high-loss occurrence, and performance does not appear to be improved in the hurdle model formulations. 

https://doi.org/10.15447/sfews.2022v20iss2art3
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Implications for Water Management 
The utility of these predictive models would 
be minimal if entrainment risk were totally 
independent of management inputs. Across 
species and model formulations, our results 
indicate that entrainment risk is influenced 
principally by variables beyond the control of 
any management action. The large influence 

of the prior week’s loss and week of Water 
Year reflect the importance of seasonality, and 
the timing of salmonid presence in the Delta. 
However, despite the precedence of these 
essentially unmanageable variables (Figure 2), 
more responsive variables—including OMR flows 
and exports—have an appreciable influence 
on entrainment risk (Figure 4). Moreover, the 

Table 5 Summary of predictive performance relative to management-relevant validation metrics 

Model Quantile Species
Frequency of large 
under-prediction

Frequency of large  
over-prediction

Mean/Median  
under-prediction

Mean/Median  
over-prediction

Hurdle, combined 0.50 Steelhead 10% 6% 125/52 47/28

Hurlde, CVP+SWP   10% 5% 122/47 49/32

Simple, combined 10% 7% 124/51 44/23

Simple, CVP+SWP 10% 5% 123/46 45/24

Hurdle, combined 0.75 5% 22% 116/41 108/69

Hurlde, CVP+SWP 6% 21% 108/32 120/78

Simple, combined 5% 23% 127/47 83/46

Simple, CVP+SWP 6% 24% 131/45 85/49

Hurdle, combined 0.90 3% 40% 105/26 229/164

Hurlde, CVP+SWP 3% 35% 87/26 252/188

Simple, combined 2% 47% 174/83 153/83

Simple, CVP+SWP 2% 52% 185/77 166/95

Hurdle, combined 0.95 2% 46% 63/26 334/261

Hurlde, CVP+SWP 2% 40% 65/20 365/278

Simple, combined 1% 65% 124/87 223/121

Simple, CVP+SWP 1% 69% 175/90 243/146

Hurdle, combined 0.50 Winter run 5% 2% 168/42 44/23

Hurlde, CVP+SWP 6% 1% 163/43 48/27

Simple, combined 5% 2% 170/41 40/19

Simple, CVP+SWP 5% 1% 167/39 41/22

Hurdle, combined 0.75 3% 12% 177/31 124/71

Hurlde, CVP+SWP 3% 10% 159/31 135/79

Simple, combined 3% 12% 195/30 95/45

Simple, CVP+SWP 3% 11% 191/34 107/51

Hurdle, combined 0.90 2% 25% 173/24 303/203

Hurlde, CVP+SWP 2% 19% 127/27 339/227

Simple, combined 2% 27% 260/39 180/69

Simple, CVP+SWP 2% 28% 257/46 190/88

Hurdle, combined 0.95 1% 29% 144/24 498/344

Hurlde, CVP+SWP 1% 22% 97/26 525/391

Simple, combined 1% 36% 241/52 251/79

Simple, CVP+SWP 1% 38% 264/142 269/100
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Figure 7 Results of pilot testing conducted during the 2019 salvage season. Solid black lines show median predictions; dashed lines enclose the 
10th–90th quantile range. Squares show observed loss.

Figure 8 SacPAS user interface for prediction and scenario exploration using the loss-prediction models. User inputs and controls are shown on the left, 
and an example output of the graphical prediction report is shown on the right. 

https://doi.org/10.15447/sfews.2022v20iss2art3
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relationships among loss, OMR, and exports are 
largely intuitive, with increased loss associated 
with higher exports and more negative OMR 
flows. These results are consistent with previous 
studies that have indicated a negative association 
between water exports and the survival of 
Chinook Salmon through the Delta. The influence 
of total exports on predicted loss of juvenile 
winter-run Chinook Salmon was qualitatively 
similar to the relationship reported by Kimmerer 
(2008), who reported that the proportion of out-
migrating salmon entrained at the pumping 
facilities increased substantially when total 
exports increased above 6,000 to 7,000 cfs. 
Newman and Brandes (2010) similarly reported a 
negative association between water exports and 
juvenile Chinook Salmon survival, though as in 
our results, found the magnitude of this effect to 
be minor relative to stochastic or environmentally 
driven variation in entrainment. Our results are 
also consistent with the operating assumption 
that entrainment risk increases when OMR flow 
reverses toward the pumping facilities (NMFS 2019). 

These results serve both to build confidence that 
the model is capturing important dynamics of the 
entrainment process and to show that the models 
can be useful for consideration of alternative 
operational scenarios. In theory, forecasts of low 
entrainment risk could offer the flexibility to 
increase water diversions. However, guidelines for 
the circumstances under which water diversions 
might be increased when salmonid entrainment 
risk is low would need to be established within the 
management process, and any flexibility could 
be further constrained by the BO criteria or other 
Delta management criteria, such as water quality 
control operations. 

Limitations
As with all models, the entrainment risk 
prediction tools presented here are subject 
to limitations, and conditional on underlying 
assumptions. One potentially important 
limitation of these models is that much of their 
predictive power derives from the temporally 
autocorrelated nature of loss as evidenced by 
the high importance of the prior week’s loss in 
all formulations of the models for both juvenile 

winter-run Chinook Salmon and Central Valley 
Steelhead. Because of this, when recent loss 
has not occurred, the model is more likely 
to produce a substantial under-prediction 
(Figure 6). The hurdle model formulation did 
not, as hoped, improve predictions under these 
circumstances, and, in the near term, use of a 
more precautionary quantile (e.g., 90th) seems 
warranted until loss is being regularly observed 
on a weekly basis. Longer term, exploration of 
upstream factors that influence the timing of 
entry into the Delta by Central Valley Steelhead 
and winter-run Chinook Salmon may offer a 
more informative forecast of when the period 
of increased entrainment risk is likely to begin. 
Another potential consequence of relying on 
temporal autocorrelation for prediction is that if 
Central Valley salmonid populations continue to 
decline, or if other management interventions 
effectively limit entrainment at the pumping 
facilities, model predictions may become less 
reliable. On the other hand, in either of these 
cases the chances of large entrainment events 
should also be reduced, which could serve 
to offset, in part, any reduction in predictive 
performance. Continued updating of the training 
data set, and exclusion of earlier years where 
salmonid populations were larger and high 
loss events were more common, may also help 
to improve model predictions under current 
conditions.

A critical limitation of the winter-run models 
is a reliance on phenotypic criteria; length of 
salmon at capture has been the primary way to 
assign runs, but this has been shown to be highly 
inaccurate. More than 50% of fish are classified 
as winter-run Chinook Salmon which actually 
belonging to spring, fall, or late-fall runs (Harvey 
et al. 2014). Genetic sampling that can rapidly 
distinguish runs with high reliability are being 
phased in to managing and monitoring of Central 
Valley Chinook Salmon (Meek et al. 2016). The 
accuracy of our model predictions for a given 
run can only be as good as the method of run 
assignment data being used, and for managers 
to be able to evaluate in-season entrainment 
risk, we have designed it to be consistent with 
methods prescribed by ITLs, which are still based 
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on phenotypic, length-at-date identification. As 
currently implemented, the predictions produced 
by the winter-run Chinook Salmon model can 
be interpreted as particularly conservative (i.e., 
biased toward additional protection of winter-
run Chinook Salmon), given this frequency 
of misclassification. However, this model 
can be easily adapted in the future if the ITL 
were changed to use genetic run assignments, 
assuming that rapid genetic run identification 
results can be returned within a few days. 

CONCLUSION
In spite of these limitations, the models described 
here should provide useful information when 
used in concert with the current, expert-based 
approach to evaluating salmonid entrainment 
risk in the Delta. Although the predictions will 
be imperfect, through cross-validation we have 
quantified the expected frequency and magnitude 
of large and minor prediction errors. From our 
perspective, these patterns of prediction error 
seem tolerable, though those responsible for 
managing water and protecting these fishes must 
ultimately determine what is “good enough.” Even 
if the predictive performance of these models 
is deemed insufficient, we believe this quantile-
based risk forecast approach combined with the 
web application’s in-season tracking provide a 
useful framework for exploring other predictive 
models. Given time and resource limitations, we 
focused on one promising method for prediction, 
rather than exploring an exhaustive range of 
modeling approaches. Inclusion of additional 
predictor variables, or integration of alternative 
modeling techniques into this framework could 
help to improve risk forecasts.
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