
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Rethinking System Design for Expressive Cryptography

Permalink
https://escholarship.org/uc/item/2wq2r01r

Author
Kumar, Sam

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wq2r01r
https://escholarship.org
http://www.cdlib.org/

Rethinking System Design for Expressive Cryptography

By

Sam Kumar

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David E. Culler, Co-chair
Associate Professor Raluca Ada Popa, Co-chair

Professor Scott Shenker
Professor Chris Jay Hoofnagle

Summer 2023

Rethinking System Design for Expressive Cryptography

Copyright 2023
by

Sam Kumar

1

Abstract

Rethinking System Design for Expressive Cryptography

by

Sam Kumar

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David E. Culler, Co-chair

Associate Professor Raluca Ada Popa, Co-chair

Expressive cryptography, including Secure Multi-Party Computation (SMPC), Fully Homomor-
phic Encryption (FHE), and policy-based encryption, has the potential to enable transformative
new applications. Unfortunately, it is often slow and resource-intensive, making those applications
difficult to realize. For example, SMPC enables multiple organizations (e.g., hospitals) to run joint
computations on their data (e.g., for better medical diagnosis and treatment) while keeping the
inputs to the computation (e.g., patient data) secret. But SMPC can have high memory overhead,
making it difficult to scale such applications to large problem sizes. As a result, while expressive
cryptography has seen some notable real-world usage, such as Meta using SMPC in its advertising
business, existing adoption is not widespread, limited to incipient and isolated deployments.

This dissertation studies how to design and build networked systems to enable expressive cryp-
tography to reach its full transformative potential. We present six system design techniques for
systems relating to expressive cryptography, classified into two high-level approaches. We vali-
date our techniques by using them to design and implement four systems: MAGE, TCPlp, JEDI,
and Ghostor.

Our first high-level approach is to make expressive cryptography generically more efficient by re-
designing the underlying systems that expressive cryptography uses. For example, MAGE provides
virtual memory for SMPC and FHE at nearly zero cost, allowing them to efficiently scale beyond
the available memory to larger problem sizes. TCPlp is a performant TCP-based transport layer
for low-power wireless networks, which allows the large ciphertexts and signatures associated with
expressive cryptography to be efficiently transferred over the network.

Our second high-level approach approach is to make expressive cryptography practical for partic-
ular applications by rethinking how and when to use expressive cryptography. For example, we
designed Ghostor, a data-sharing system, and JEDI, an end-to-end encryption protocol for publish-

2

subscribe IoT deployments, using this approach. Ghostor uses a blockchain and JEDI leverages
policy-based encryption, but they are carefully designed to use these components rarely and out-
side of the critical path of user-facing operations.

We further validate our techniques by using them to analyze related work, to identify existing
work that applies our techniques and opportunities to improve existing systems using our tech-
niques. Then, we discuss the impact of our work, including the adoption of TCPlp as the TCP
implementation in OpenThread, an open-source network stack used in the smart home IoT indus-
try, including by Amazon Eero and Google Nest. We hope that our techniques, and the systems we
designed using them, will accelerate the widespread adoption of expressive cryptography, bringing
stronger security to existing applications and enabling exciting new ones.

i

To my teachers.

ii

Contents

Contents ii

List of Figures viii

List of Tables xi

1 Introduction 1
1.1 Motivation: Expressive Cryptography and its Potential 1
1.2 Problem: Systems Built on Expressive Cryptography are Inefficient 3
1.3 Our Approach to Designing Systems for Expressive Cryptography 3
1.4 Systems We Built . 4

1.4.1 MAGE [297] . 5
1.4.2 TCPlp [294, 295, 280] . 5
1.4.3 Ghostor [229] . 6
1.4.4 JEDI [298] . 6

1.5 Thesis Statement and Roadmap for This Dissertation 7

2 Background 8
2.1 Expressive Cryptography . 8

2.1.1 Expressive Cryptography for Protecting Confidentiality 9
2.1.2 Expressive Cryptography for Protecting Integrity 11
2.1.3 Expressive Cryptography for Protecting Computation 12

2.2 Efficiency and Overheads of Expressive Cryptography 15
2.2.1 Types of Cryptographic Overhead . 15
2.2.2 Trade-Off Between Expressivity and Efficiency 18

2.3 Techniques for Making Expressive Cryptography Efficient 18
2.3.1 Generic Theoretical Improvements . 18
2.3.2 Specialized Cryptographic Schemes . 19
2.3.3 Systems Techniques . 19

2.4 Conclusion and Thesis Statement Revisited . 20

3 System Design Techniques for Expressive Cryptography 22

iii

3.1 Designing Systems that Support Expressive Cryptography 22
3.1.1 Manage Resources According to the Structure of the Computation 23
3.1.2 Identify the Bottleneck and Generically Optimize It 24

3.2 Designing Systems that Use Expressive Cryptography 24
3.2.1 Use Expressive Cryptography Rarely and Off of the Critical Path 25
3.2.2 Make the Frequency of Expressive Cryptographic Operations Tunable . . . 26
3.2.3 Identify and Use the Cheapest Cryptographic Primitive 27
3.2.4 Develop Application-Specific Cryptographic Interfaces 28

3.3 When to Use Each Class of Techniques . 29

4 Supporting Secure Computation with Nearly Zero-Cost Virtual Memory 32
4.1 Introduction . 32
4.2 Secure Computation Background . 35

4.2.1 Circuit Representation . 35
4.2.2 CKKS Homomorphic Encryption . 35
4.2.3 Garbled Circuits . 36
4.2.4 Efficiently Executing Circuits . 36

4.3 Memory Overhead of Secure Computation . 37
4.3.1 Analysis of the Memory Demand . 37
4.3.2 Scaling Collaborative Applications . 38

4.4 System Overview . 38
4.4.1 Address Translation . 39
4.4.2 Bytecode Representation . 40
4.4.3 Ecosystem and Extensibility . 41

4.5 Engine . 42
4.5.1 Parallel/Distributed Engine . 42
4.5.2 Distributed SMPC . 43

4.6 Planner . 44
4.6.1 Organization of the Planner . 44
4.6.2 First Stage: Placement . 45
4.6.3 Second Stage: Replacement . 47
4.6.4 Third Stage: Scheduling . 47

4.7 Implementation . 48
4.7.1 Interpreter . 49
4.7.2 Extending MAGE with New Protocols . 49
4.7.3 Garbled Circuit Protocol Driver . 50
4.7.4 CKKS Protocol Driver . 50

4.8 Evaluation . 50
4.8.1 Workloads . 50
4.8.2 Empirical Methodology . 52
4.8.3 Comparison to Existing Frameworks . 53
4.8.4 Overhead of Swapping Pages . 53

iv

4.8.5 Overhead of Planning . 55
4.8.6 Impact of Parallelism . 56
4.8.7 SMPC in Wide-Area Networks . 57
4.8.8 Applications . 58

4.9 Related Work . 60
4.10 Conclusion . 61

5 Supporting Cryptography in Low-Power Wireless Systems with Performant TCP 62
5.1 Introduction . 63
5.2 Background and Related Work . 65

5.2.1 Low-Power and Lossy Networks (LLNs) 65
5.2.2 TCP/IP for Embedded LLN-Class Devices 67

5.3 Motivation . 68
5.3.1 The Case for TCP in LLNs . 68
5.3.2 Anemometry: An Example TCP-Based LLN Application 69

5.4 Empirical Methodology . 70
5.4.1 Network Stack . 70
5.4.2 Embedded Hardware . 71

5.5 Implementation of TCPlp . 72
5.5.1 Supported TCP Features . 73
5.5.2 Concurrency Model . 74
5.5.3 Timer Event Management . 75
5.5.4 Connection State for TCPlp . 76
5.5.5 Memory-Efficient Data Buffering . 76

5.6 TCP in a Low-Power Network . 78
5.6.1 Reducing Header Overhead using MSS 78
5.6.2 Impact of Buffer Size . 79
5.6.3 Direct TCP Connection . 80
5.6.4 Upper Bound on Single-Hop Goodput . 81

5.7 TCP Over Multiple Wireless Hops . 82
5.7.1 Mitigating Hidden Terminals in LLNs . 82
5.7.2 Upper Bound on Multi-Hop Goodput . 84
5.7.3 TCP Congestion Control in LLNs . 84
5.7.4 Modeling TCP Goodput in an LLN . 85

5.8 TCP in LLN Applications . 87
5.8.1 Web Server Application Scenario . 88
5.8.2 Sense-and-Send Application Scenario . 90
5.8.3 Event Detection Application Scenario . 95

5.9 Conclusion . 95
5.9.1 Implications for Applications Relating to Cryptography 96
5.9.2 Broader Implications for Networking . 97

v

6 Using Cryptography Efficiently for Anonymous and Verifiable Data Sharing 98
6.1 Introduction . 98

6.1.1 Hiding User Identities . 101
6.1.2 Verifiable Consistency . 102
6.1.3 Summary of Contributions . 103

6.2 System Overview . 104
6.3 Threat Model and Security Guarantees . 106

6.3.1 Assumptions . 106
6.3.2 Verifiable Linearizability . 106
6.3.3 Anonymity . 107

6.4 Hiding User Identities . 107
6.4.1 No User Login or User-Specific Mailboxes 108
6.4.2 No Server-Visible ACLs . 108
6.4.3 No Server-Visible User Public Keys . 109
6.4.4 No Client-Side Caching . 110
6.4.5 Careful Application Design . 110

6.5 Achieving Verifiable Consistency . 110
6.5.1 Hash Chain of Digests . 110
6.5.2 Checkpoint and Verification . 111
6.5.3 Multiple Objects per Checkpoint . 112
6.5.4 Concurrent Operations on a Single Object 112

6.6 Mitigating Resource Abuse . 114
6.6.1 Anonymous Payments . 114
6.6.2 Proof of Work (PoW) . 114
6.6.3 Using Anonymous Payments and Proof of Work Together 115

6.7 Full Protocol Description . 115
6.7.1 GET Protocol . 115
6.7.2 PUT Protocol . 115
6.7.3 Access Control . 116
6.7.4 Object Creation . 117
6.7.5 Verification Procedure . 117
6.7.6 Payment . 118

6.8 Applying Ghostor to Applications . 118
6.9 Implementation . 119
6.10 Evaluation . 120

6.10.1 Microbenchmarks . 120
6.10.2 Server-Side Overhead . 121
6.10.3 End-to-End Latency . 124
6.10.4 Zcash . 125

6.11 Extensions . 126
6.11.1 Files and Directories . 126
6.11.2 Scalability . 127

vi

6.12 Related Work . 127
6.13 Conclusion . 129

7 Using Cryptography Efficiently for Many-to-Many End-to-End Encryption for IoT 130
7.1 Introduction . 130

7.1.1 Requirements for JEDI . 131
7.1.2 Overview of JEDI . 133
7.1.3 Summary of Evaluation . 136

7.2 System Model and Threat Model . 136
7.2.1 Trust Assumptions . 137
7.2.2 Applying JEDI to an Existing System . 137
7.2.3 Comparison to a Naı̈ve Key Server Model 138
7.2.4 IoT Gateways . 138
7.2.5 Generalizability of JEDI’s Model . 139
7.2.6 Security Goals . 139

7.3 End-to-End Encryption . 139
7.3.1 Building Block: WKD-IBE . 140
7.3.2 Concurrent Hierarchies in JEDI . 142
7.3.3 Overview of Encryption in JEDI . 142
7.3.4 Expressing URI/Time as a Pattern . 143
7.3.5 Producing a Key Set for Delegation . 143
7.3.6 Using WKD-IBE Efficiently . 144
7.3.7 Revocation . 146
7.3.8 Simple Solution: Revocation via Expiry 146
7.3.9 Immediate Revocation (Extended Paper) 146
7.3.10 Extensions . 146
7.3.11 Security Guarantee . 147

7.4 Integrity . 151
7.4.1 Starting Solution: Signature Chains . 151
7.4.2 Anonymous Signatures . 151
7.4.3 Using WKD-IBE for Signatures Efficiently 153
7.4.4 Security Guarantee . 155

7.5 Implementation . 156
7.5.1 C/C++ Cryptography Library . 157
7.5.2 Application of JEDI to bw2 . 157

7.6 Evaluation . 158
7.6.1 Building Block Comparison: HIBE, WKD-IBE, and KP-ABE 158
7.6.2 Microbenchmarks . 162
7.6.3 Performance of JEDI in bw2 . 162
7.6.4 Feasibility on Ultra Low-Power Devices 165
7.6.5 Comparison to Other Systems . 167

7.7 Related Work . 170

vii

7.8 Conclusion . 171

8 Related Work 173
8.1 Other Systems that Exemplify Our System Design Principles 173

8.1.1 Messaging and Storage Systems . 173
8.1.2 Cryptographic Planners . 174
8.1.3 Performance-Oriented Systems . 176

8.2 Applying Our System Design Principles to Other Systems 176
8.2.1 Applicability of Techniques for Supporting Expressive Cryptography . . . 176
8.2.2 Applicability of Techniques for Using Expressive Cryptography 177

9 Conclusion 179
9.1 Impact . 179

9.1.1 Integration of TCPlp into Thread and OpenThread 179
9.1.2 Integration of JEDI into WAVE and WAVEMQ 180

9.2 Future Research Directions . 180
9.2.1 Future Systems that Support Expressive Cryptography 180
9.2.2 Future Systems that Use Expressive Cryptography 181

9.3 Summary . 182

Bibliography 184

A Ghostor’s Security Guarantees 217
A.1 Ghostor’s Privacy Guarantee . 217

A.1.1 Overview . 217
A.1.2 Real World . 220
A.1.3 Ideal World . 221
A.1.4 Security Definition . 223
A.1.5 Proof of Ghostor’s Privacy . 224

A.2 Ghostor’s Integrity Guarantee . 230
A.2.1 Linearizability . 230
A.2.2 Verifiable Linearizability . 231

viii

List of Figures

3.1 Classical system design: the system provides applications with access to the hardware. 29
3.2 With expressive cryptography, there are two system layers: one providing applications

with access to expressive cryptography, and another providing expressive cryptography
with access to the hardware. 30

4.1 Overview of MAGE. It consists of two phases: planning (top) and execution (bottom). . 38
4.2 MAGE’s envisioned ecosystem, with planning as the narrow waist. 41
4.3 Example of distributed SMPC with MAGE. Workers are denoted as circles with W.

Solid lines indicate connections managed by MAGE’s engine; dashed lines indicate
connections managed by the protocol driver. 43

4.4 MAGE’s planner’s workflow, with its three stages. 44
4.5 Example code in an Integer-based DSL internal to C++ to solve Yao’s Millionaire’s

problem. 46
4.6 Comparison of MAGE and EMP-toolkit. 54
4.7 Comparison of MAGE and SEAL. 54
4.8 Performance of Unbounded, OS Swapping, and MAGE, normalized by the time for

Unbounded; absolute times, in seconds, are printed at the upper left corner of each bar. 55
4.9 Repeat of Figure 4.8, with larger problem sizes and a 16 GiB memory limit (note the

larger y-axis scale). 55
4.10 Normalized performance of Unbounded, OS Swapping, and MAGE, parallelized over

p = 4 workers (per party). 56
4.11 Wide-area garbled circuit performance in MAGE. 57
4.12 Scaling password reuse detection with MAGE. 59
4.13 Scaling computational PIR with MAGE. 59

5.1 Hamilton-based ultrasonic anemometer. 69
5.2 Snapshot of uplink routes in OpenThread topology at transmission power of -8 dBm

(5 hops). Node 1 is the border router with Internet connectivity. 72
5.3 Naı̈ve and final TCP receive buffers. 78
5.4 TCP goodput over one IEEE 802.15.4 hop. 80
5.5 Analysis of overhead limiting TCPlp’s goodput. 81

ix

5.6 Effect of varying time between link-layer retransmissions. Reported “segment loss” is
the loss rate of TCP segments, not individual IEEE 802.15.4 frames. It includes only
losses not masked by link-layer retries. 83

5.7 Congestion behavior of TCP over IEEE 802.15.4. 85
5.8 Latency of web request: CoAP vs. HTTP/TCP. 88
5.9 Goodput: CoAP vs. HTTP/TCP. 89
5.10 Effect of batching on power consumption. 91
5.11 Performance with injected packet loss. 92
5.12 Radio duty cycle of TCP and CoAP in a lossy wireless environment, in one represen-

tative trial (losses are caused by natural human activity). 94
5.13 CoAP, CoCoA, and TCP with four competing flows. 96

6.1 An example of what a server attacker sees in a typical end-to-end encrypted (E2EE)
system versus Ghostor’s Anonymous E2EE. 100

6.2 Information leakage in a data-sharing system and associated privacy properties. 100
6.3 Ghostor’s contributions. Ghostor’s techniques can be applied to both oblivious and

non-oblivious systems. 101
6.4 System overview of Ghostor. Shaded areas indicate components introduced by Ghostor. 105
6.5 Object layout in Ghostor. 109
6.6 Blind signature. 121
6.7 YCSB workloads (R: read, W: write). 121
6.8 Operations for verification. 121
6.9 Latency measurements. 123
6.10 Benchmarks comparing throughput of the six setups described in Section 6.10.2. 124
6.11 Microbenchmarks of PoW mechanism and Tor. 125
6.12 End-to-end latencies of client-side operations. 126

7.1 IoT comprises diverse devices that span more than four orders of magnitude of com-
puting power (estimated in Dhrystone MIPS).1 . 132

7.2 JEDI keys can be qualified and delegated, supporting decentralized, cryptographically-
enforced access control via key delegation. Each person has a decryption key for the
indicated resource subtree that is valid until the indicated expiry time. Black arrows
denote delegation. 133

7.3 Applying JEDI to a smart buildings IoT system. Components introduced by JEDI are
shaded. The subscriber’s key is obtained via JEDI’s decentralized delegation (Figure 7.2).137

7.4 Pattern S used to encrypt message sent to a/b on June 08, 2017 at 6 AM. The figure
uses 8 slots for space reasons; JEDI is meant to be used with more slots (e.g., 20). . . . 143

7.5 Pattern S for a private key granting access to a/+/b/* at 8 AM every day. The figure
uses 8 slots for space reasons; JEDI is meant to be used with more slots (e.g., 20). . . . 147

7.6 Latency of Encrypt, Decrypt, KeyDer, Sign, and Verify with 20 attributes. 162
7.7 Critical-path operations in bw2, with/without JEDI. 163
7.8 Occasional bw2 operations, with and without JEDI. 164

x

A.1 Overview of Real World and Ideal World. 219

xi

List of Tables

4.1 Planning times (s) and peak memory use of the planner (MiB) for workloads in Fig-
ure 4.8 and Figure 4.9. 56

5.1 Impact of techniques to run full-scale TCP in LLNs. 64
5.2 Comparison of the platforms we used (Hamilton and Firestorm) to TelosB and Rasp-

berry Pi. 71
5.3 Comparison of features among embedded TCP stacks: uIP (Contiki), BLIP (TinyOS),

GNRC (RIOT), and TCPlp (our work). 73
5.4 Memory usage of TCPlp on TinyOS. Our TCPlp implementation spans three modules:

(1) protocol implementation, (2) event scheduler that injects callbacks into userspace,
and (3) user library. 76

5.5 Memory usage of TCPlp on RIOT OS. We also include RIOT’s posix sockets mod-
ule, used by TCPlp to provide a Unix-like interface. 77

5.6 Comparison of TCP/IP links. 78
5.7 Header overhead with 6LoWPAN fragmentation. 78
5.8 Comparison of TCPlp to existing TCP implementations used in network studies over

IEEE 802.15.4 networks.2 Goodput figures obtained by reading graphs in the original
paper (rather than stated numbers) are marked with the ≈ symbol. 82

5.9 Performance in the testbed over a full day, averaged over multiple trials. The ideal
protocol (Section 5.8.2.2) would have a radio duty cycle of ≈ 0.63%–0.70% under
similarly lossy conditions. 94

6.1 Our goals and how Ghostor achieves each one. 103
6.2 Per-object keys in Ghostor. The server uses the global signing keypair (SVK,SSK) to

sign digests for objects. 108
6.3 A digest for an operation in Ghostor. 111

7.1 Performance comparison of HIBE, WKD-IBE, and KP-ABE in terms of pairings and
exponentiations. We omit operations that can be precomputed once for all IDs (at-
tribute sets) in the HIBE/WKD-IBE/KP-ABE system. KeyDer1 indicates deriving the
new key from the master key, and KeyDer2 indicates the other case. 160

xii

7.2 Size comparison of HIBE, WKD-IBE, and KP-ABE in terms of number of group ele-
ments. For elliptic curves that we used, elements of G1 are 48 B each, elements of G2
are 96 B each, and elements of GT are 576 B each. 161

7.3 Latency of JEDI’s implementation of BLS12-381. 161
7.4 CPU and power costs on the Hamilton platform. 165
7.5 Average current and expected battery life (for 1400 mAh battery) for sense-and-send,

with varying sample interval. 166
7.6 Comparison of JEDI with other crypto-based IoT/cloud systems. 168

xiii

Co-Authored Material

Parts of this dissertation are based on previously published material co-authored with others, as
follows.

• Chapter 4 is based on the following publication [297]:
Sam Kumar, David E. Culler, and Raluca Ada Popa. “MAGE: Nearly Zero-Cost Virtual
Memory for Secure Computation”. In: OSDI. USENIX, 2021.

• Chapter 5 is based on the following publication [295]:
Sam Kumar, Michael P Andersen, Hyung-Sin Kim, and David E. Culler. “Performant TCP
for Low-Power Wireless Networks”. In: NSDI. USENIX, 2020.

• Chapter 6 is based on the following publication [229]:
Yuncong Hu, Sam Kumar, and Raluca Ada Popa. “Ghostor: Toward a Secure Data-Sharing
System from Decentralized Trust”. In: NSDI. USENIX, 2020.

• Chapter 7 is based on the following publication [298]:
Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E. Culler.
“JEDI: Many-to-Many End-to-End Encryption and Key Delegation for IoT”. in: USENIX
Security. USENIX, 2019.

xiv

Acknowledgments

My ten years at UC Berkeley have been a tremendous journey, and a huge part of that journey
is the people I met along the way. Having arrived at Berkeley knowing little about computer
science and even less about academic research, I am particularly grateful to those individuals who
influenced my outlook on computer science, research, and academia. It is for this reason that I am
dedicating this dissertation to my teachers, broadly defined—those who shared their knowledge,
wisdom, and advice with me, shaping my perspectives and guiding me to where I am today.

I am deeply grateful to David E. Culler, my PhD co-advisor. He has been an excellent mentor
to me throughout my time at UC Berkeley. In my first year as an undergraduate, David took a
chance on me, giving me the opportunity to work in his research group even though I had no prior
research experience. I enjoyed working with him so much that I continued at UC Berkeley as his
student in graduate school! Over the years, David taught me how to do research and instilled in
me a deep appreciation for what it means to do science. In research, he gave me guidance and
support but also the flexibility to follow my own ideas. I appreciate now, more than I ever did
before, David’s advice to consciously focus on my education while in graduate school.

I am equally grateful to Raluca Ada Popa, my other PhD co-advisor. When my research drifted
into security in my early years of graduate school, Raluca was willing to collaborate with me and
ultimately co-advise me even though I had no prior research experience in security or cryptography.
She is an excellent collaborator and I learned tremendously from her guidance at each part of the
research process—formulating ideas, developing them into projects, and technical writing and
presentation. Her feedback and support pushed me to improve in all of these areas, and I am a
much better researcher for it.

I am also deeply thankful to Scott Shenker, a member of my dissertation committee and a
wonderful collaborator. In Fall 2020, when David’s other students had all graduated and David’s
research group had come to an end, Scott graciously welcomed me into the NetSys Lab, which
became my new systems home at UC Berkeley. Although I was not his student, Scott spent a great
deal of time to mentor me and give me advice. I deeply admire the clarity of his thought, the
directness of his advice, his principled approach to research, and his humility and warmth as an
individual. I only wish I had reached out to Scott and started working with him sooner!

I am fortunate to have also interacted with numerous other faculty members. Natacha Crooks,
Prabal Dutta, Dan Garcia, Joey Gonzalez, John Kubiatowicz, Amy Ousterhout, Aurojit Panda,
Sylvia Ratnasamy, Ion Stoica, and Matei Zaharia all gave me invaluable career advice during my
final year of graduate school. I am also grateful to have had the opportunity to engage with some
of them in research, through either collaboration or receiving their technical advice. I would like
to thank John Kubiatowicz, whose CS 162 course I took as an undergraduate in Fall 2015 helped
me discover my interest in computer systems. Chris Hoofnagle helped me explore the broader
implications of cybersecurity and is a member of my dissertation committee. Stuart Cheshire is an
engineer at Apple, not a faculty member, but his mentorship and support, both during my internship
at Apple and afterward, were essential for achieving real-world adoption and impact for TCPlp.

Staff members, both in the research labs I worked in and in the EECS department, worked
diligently and professionally to make my graduate school experience as smooth as possible. I

xv

would particularly like to thank Albert Goto for the many late nights he spent helping me with the
networking testbed for the TCPlp project and for his generosity, kindness, and support as a friend.

I am also thankful to my colleagues in the EECS department. I started out working primar-
ily in 410 Soda, sharing the lab space with a close-knit group of graduate students and postdocs:
Moustafa AbdelBaky, Michael Andersen, Kaifei Chen, Gabe Fierro, Hyung-Sin Kim, and Jack
Kolb. The stimulating environment in 410 Soda, particularly my office mates’ enthusiasm for
system building, was tremendously influential for me. I also got to interact with many other col-
leagues, including Emmanuel Amaro, Chris Branner-Augmon, Lloyd Brown, Weikeng Chen, Au-
drey Cheng, David Chu, Emma Dauterman, Tess Despres, Chris Douglas, Lisa Dunlap, Vivian
Fang, Silvery Fu, Narek Galstyan, Rolando Garcia, Yuncong Hu, Rishabh Iyer, Paras Jain, Alex
Krentsel, Sukrit Kalra, Darya Kaviani, Shadaj Laddad, Shu Liu, Zhihong Luo, Emily Marx, Sarah
McClure, Mae Milano, Pratyush Mishra, Norman Mu, Micah Murray, Akshay Narayan, Amy
Ousterhout, Charles Packer, Ashwinee Panda, Shishir Patil, Julien Piet, Rishabh Poddar, Conor
Power, Deevashwer Rathee, Mayank Rathee, Daniel Rothchild, Peter Schafhalter, Kalyanaraman
Shankari, Katerina Sotiraki, Sijun Tan, Mark Theis, Tenzin Ukyab, Stephanie Wang, Jean-Luc
Watson, Justin Wong, Sarah Wooders, Samyu Yagati, Alice Yeh, Wen Zhang, Wenting Zheng, and
other wonderful folks. Together, they made Berkeley EECS the remarkable environment that it is.
I am fortunate to have had the opportunity to collaborate with some of them on research projects,
and I will look back fondly on the time I could spend with some of them outside of research.

In Fall 2019, I had a wonderful time working with Will Wang when we were the head teaching
assistants for CS 162. As the instructor for CS 162 in Summer 2020, I got to work with a won-
derful group of teaching assistants and readers—Bobby Yan, William Hsu, Jonathan Shi, Kevin
Yu, Ganeshkumar Ashokavardanan, Gillian Chu, and Sean Huang—who kept my course running
smoothly even though classes had just moved online due to the COVID-19 pandemic. I am thank-
ful (once again!) to David Culler and Dan Garcia, who supported me in my teaching interests and
whose advice and guidance helped make these experiences both successful and enjoyable for me.

Finally, I would like to thank my parents and brother for their continuous support and uncon-
ditional love. They have shaped who I am both before and during my time at Berkeley, and I owe
my accomplishments in graduate school, including this dissertation, to them.

∗∗∗

I am fortunate to have been supported by a Berkeley Fellowship for Graduate Study and by
the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-
1752814. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the National Science Founda-
tion. The work in this dissertation was also supported by Intel/NSF CPS-Security Grants 1505773
and 20153754, NSF CPS Grant 1239552, Department of Energy Grant DE-EE0007685, Califor-
nia Energy Commission Grant EPC-15-057, NSF CISE Expeditions Award CCF-1730628, NSF
CAREER 1943347, and gifts from the Sloan Foundation, Bakar Fellows Program, Alibaba, Ama-
zon Web Services, Ant Group, Ericsson, Facebook, Futurewei, Google, Intel, Microsoft, Nvidia,
Scotiabank, Splunk, and VMware.

1

Chapter 1

Introduction

This dissertation shows how to realize the potential of expressive cryptography by building efficient
computer systems. In this chapter, we explain what expressive cryptography is, its potential to
enable transformative applications, its high cost as an obstacle to enabling those applications, and
our approach of using system design to overcome the high cost of expressive cryptography. Then,
we briefly summarize the systems we built that we will describe in this dissertation and provide a
roadmap for the chapters that follow.

1.1 Motivation: Expressive Cryptography and its Potential
Expressive cryptography can be understood in contrast to public-key cryptography. For example,
public-key cryptography guarantees that information encrypted with a public key is only readable
by parties with the corresponding secret key. Expressive cryptography provides more expres-
sive control over who can access what information [82, 213]. Secure Multi-Party Computation
(SMPC), Fully Homomorphic Encryption (FHE), policy-based encryption, and the protocols be-
hind blockchains are all examples of expressive cryptography. For example, certain policy-based
encryption schemes can allow anyone with particular attributes (instead of a single secret key) to
decrypt a message, and SMPC and FHE allow computation on encrypted data, revealing a function
of the input data rather than the original message directly.

To understand the potential of expressive cryptography, public-key cryptography is an apt anal-
ogy. When public-key cryptography was first widely adopted in the 1980s and 1990s, it had a revo-
lutionary impact on computing, enabling new applications that handle sensitive data. For example,
applications like e-commerce (e.g., Amazon, eBay), patient portals and telemedicine (e.g., Epic,
Teladoc), and end-to-end encrypted messaging (e.g., Signal, WhatsApp) depend fundamentally on
public-key cryptography to protect payment information, patient data, and users’ messages, and
they are regularly and widely used in society today.

Expressive cryptography has the potential to be as transformative as public-key cryptography.
The reason is that expressive cryptography can solve important problems that public-key cryptog-
raphy cannot. For example, consider the problem in which multiple hospitals each have patient

CHAPTER 1. INTRODUCTION 2

datasets and would like to perform research using the combined dataset. Due to legal regulations
and privacy concerns, the hospitals cannot directly share patient data. Public-key cryptography, on
its own, does not help with this; a hospital can encrypt its patients’ data with public-key cryptog-
raphy and give another hospital the key to decrypt its data, but this is tantamount to sharing the
data outright. The hospitals need to share patient data such that they can be used for the particular
computation needed in the hospitals’ research, but not in any other way.

A form of expressive cryptography, SMPC, enables exactly that. It enables multiple parties
to run a function f (which all parties agree on) on their combined dataset, while guaranteeing
that each party learns nothing about the other parties’ inputs except for the output of the function
f . This not only solves the problem above regarding collaboration among hospitals, but a larger
class of problems [199], which we call secure collaborative data analytics. For example, multiple
competing banks cannot directly share their customers’ transaction data with one another, but they
may need to combine their transaction datasets to look for fraudulent transaction patterns across
the banks (e.g., money laundering); SMPC could allow them to detect fraud while keeping their
customers’ transaction data private. In fact, the chief risk officer of Scotiabank stated that “collab-
oration will be vital” for anti-money-laundering and that the “ability to put together our data sets
and collaborate on typologies of attack—and the use of both advanced-encryption methods and
analytics methods to mine the data—will enhance yields by orders of magnitude,” [161] indicating
industry interest in such solutions. As another example, researchers at Boston University col-
laborated with several organizations to apply SMPC to societal problems, such as addressing the
gender wage gap and ensuring economic inclusion of minority-owned businesses [387]. SMPC
helps to tackle these societal problems by enabling companies to combine their private datasets
(e.g., employee salaries and corporate spending patterns), which are too sensitive to share directly,
for analysis to track progress toward addressing these societal issues. Separately, in the advertising
space, SMPC allows an advertiser to measure the effectiveness of an ad campaign in a privacy-
preserving way—for example, the parties may learn how many ad views resulted in customer
acquisitions without the advertiser learning who viewed the ad and the advertising agency (e.g.,
Google or Meta) learning who the advertiser’s customers are [432]. This application of SMPC is
seeing industry deployment; Meta offers a product for it, namely Private Lift [396], and Google
has open-sourced an SMPC tool, Private Join and Compute [465], designed with this application in
mind [246]. Other industry applications of SMPC abound; Fireblocks provides SMPC-based wal-
lets used to secure digital assets [173, 174], and an industry consortium, the MPC Alliance [354],
has formed to promote SMPC-based technologies.

Other kinds of expressive cryptography also enable compelling new applications, though for
brevity we do not explain them in as much detail as we did for SMPC. Just as end-to-end encryp-
tion is widely deployed in chat applications like WhatsApp and Signal, policy-based encryption
schemes could bring end-to-end encryption to data lakes and the emerging Internet of Things
(IoT) [200]. The cryptographic protocols behind blockchains could transform finance, supply
chains, and healthcare [288]. Given the potential impact of expressive cryptography, its widespread
adoption could be transformative for society.

CHAPTER 1. INTRODUCTION 3

1.2 Problem: Systems Built on Expressive Cryptography are
Inefficient

Despite its enormous potential, expressive cryptography has not seen widespread use. While tech-
nologies like SMPC have enormous potential and are seeing intense industry interest, actual de-
ployments remain incipient and isolated. A main reason is that expressive cryptography is usually
much more expensive than widely deployed cryptography like public-key cryptography. In this
case, “expensive” means that the tools are slower than public-key cryptography or that they con-
sume more computing resources (e.g., more CPU time, more memory, more network bandwidth,
etc.). As a result, integrating expressive cryptography into real-world systems may incur unaccept-
able performance overheads.

We can see the impact of this in the expressive cryptographic tools that we have discussed.
SMPC is used in point solutions custom-tailored and hand-built by expert cryptographers [127,
262], but have not resulted in widespread generic computation on encrypted data due to their large
cost [432]. For example, Google’s Private Join and Compute tool uses a specialized SMPC tool for
a particular class of problems called “private set intersection sum with cardinality” [246], likely
because using an SMPC tool for generic computation is almost always much more expensive.
Policy-based encryption has been hailed as potentially transformative for IoT [200], yet its energy
cost can be prohibitive for low-power embedded sensors that are part of IoT. And while blockchains
have undeniably impacted digital currency and payment systems, their impact in other areas that
could benefit from public verifiability, like data storage, has been comparatively limited, due to the
cost of performing a blockchain transaction for each data update.

The work presented in this dissertation addresses this problem by rethinking computer
system design for expressive cryptography. For example, it enables SMPC to scale to large
problem sizes despite its memory overhead (Chapter 4), high-throughput data-sharing systems to
use a blockchain for verifiability despite its transaction overheads (Chapter 6), and ultra low-power
IoT devices to benefit from policy-based encryption despite its energy overhead (Chapter 7).

1.3 Our Approach to Designing Systems for Expressive
Cryptography

In the research presented in this dissertation, we design and build networked systems that allow
expressive cryptography to reach its potential. We believe that this will enable computer users
to benefit from the stronger security (e.g., end-to-end encryption for IoT communication) and
better functionality (e.g., fine-grained access control for sensitive data) afforded by expressive
cryptography. Two high-level approaches pervade the work in this dissertation.

First, we can make expressive cryptography generically more efficient by redesigning the un-
derlying systems that expressive cryptography uses. For example, MAGE [297] observes that
cryptographic protocols like SMPC and FHE have a special structure called obliviousness and
rethinks memory management accordingly. This improves the performance of data-intensive SM-

CHAPTER 1. INTRODUCTION 4

PC/FHE programs by up to an order of magnitude compared to the operating system’s default
memory management. Sometimes, the gains apply beyond expressive cryptography. For example,
TCPlp [295], a performant TCP-based transport layer for low-power wireless networks, allows
the large ciphertexts and signatures associated with policy-based cryptography to be efficiently
sent over extremely resource-constrained network. Yet TCPlp broadly benefits IoT, separate from
cryptography—it enables direct and gateway-free Internet connectivity for IoT devices, making
them first-class citizens of the Internet.

Second, we can efficiently secure systems with expressive cryptography by rethinking how
and when they use the inherently expensive cryptographic components. One way we do this is
to invoke expressive cryptography outside of the critical path of user-facing operations. For ex-
ample, JEDI [298] leverages policy-based encryption and Ghostor [229] uses a blockchain, but
they are carefully designed to use these components in the background—not in the critical path
of sending/receiving data in JEDI or accessing/sharing data in Ghostor. To control the total cost
of using expressive cryptography, we tie expressive cryptographic operations to tunable aspects of
the system’s functionality—for example, the granularity at which JEDI expiry times may be spec-
ified and the delay after which Ghostor may detect an integrity violation. This allows for tuning
cryptographic costs to the application at hand (e.g., energy budget of an IoT device).

Our approach, which focuses on system design, differs from prior research. Most prior efforts
focus on cryptographic design, improving the underlying math [398] or specializing it to the ap-
plication [127, 262]. The two approaches are complementary—our systems would benefit from
cryptographic improvements. In some cases, they are actually highly synergistic. For example,
computational improvements to SMPC and FHE would increase their memory intensity, making
MAGE’s techniques even more relevant. We focus on system design for two reasons. First, cryp-
tographic design has inherent limits. For example, cryptographers made great strides in making
generic SMPC more efficient [398], but such improvements have begun to plateau. For example,
lower bounds on communication in certain SMPC protocols have already been attained [504]. Fur-
thermore, building point solutions—cryptographic protocols tailored to an application or a partic-
ular class of applications—can be effective for certain applications, but is not necessarily possible
for all applications. Second, the theory has advanced so far, in some cases, that the applications
based on expressive cryptography are within striking distance of practicality [213]. In such cases,
significant costs may stem from systems-related inefficiencies rather than from the cryptographic
protocols being fundamentally slow. MAGE, for example, is based on the observation that signifi-
cant costs for large SMPC and FHE workloads stem from memory management in the underlying
system.

1.4 Systems We Built
We demonstrate the validity of the approaches outlined above through the design and implementa-
tion of several systems. This section briefly describes each system; later chapters in this disserta-
tion explain them in greater depth.

CHAPTER 1. INTRODUCTION 5

1.4.1 MAGE [297]
Secure computation (SC) protocols, like SMPC and FHE, allow computation on encrypted data.
Unfortunately, SC often does not scale to large problem sizes. For example, prior research works
that use SMPC to solve data analytics problems have found that SMPC “in practice only scales to
a few thousand input records” [463]. The reason is that, for large computations and large inputs,
SC protocols quickly run out of memory and become prohibitively slow due to the overhead of
swapping to secondary storage.

MAGE is an execution engine for SC that mitigates this problem. Our key observation is that
SC protocols have a property called obliviousness that opens new opportunities for managing
memory. That SC protocols are oblivious means that their memory access patterns are independent
of the program’s inputs. This is necessary because of SC protocols’ security guarantees; otherwise,
a party executing SC could learn about the inputs by observing how it accesses memory. Because
an SC program is oblivious, MAGE can compute its memory access pattern in advance and use it
to preplan memory management. In this paradigm, which we call memory programming, MAGE
can make better policy decisions than the operating system. First, while the operating system must
use heuristics to decide which page to evict on a page fault, MAGE directly uses MIN, Belady’s
optimal paging algorithm. Second, MAGE prefetches according to the access pattern, with no false
positives or false negatives.

MAGE outperforms Linux by up to an order of magnitude. Despite the costs of swapping
memory, MAGE runs SC programs at nearly the same speed as if they had unbounded memory to
fit the entire computation, providing virtual memory at nearly zero cost. This makes it easier to
scale data-intensive SC workloads, such as secure collaborative data analytics, to large, real-world
datasets.

1.4.2 TCPlp [294, 295, 280]
Ultra low-power IoT devices and networked sensors typically use low-power and lossy networks
(LLNs), like IEEE 802.15.4, rather than Wi-Fi. Since LLN research began, TCP has generally
been considered unsuitable for LLNs. As a result, standard LLN network stacks either do not
support TCP, or provide simplified TCP implementations that perform poorly. This is an obstacle
for expressive cryptography, as it is difficult to transfer large keys/ciphertexts without TCP. Yet
the lack of TCP has farther-reaching consequences. Because LLN devices often do not run TCP,
communication with external TCP/IP-based services requires application-layer gateways. As a
result, IoT applications tend to develop as vertically integrated silos, with little to no interoper-
ability across ecosystems. For example, different manufacturers’ smart light bulbs (e.g., Phillips
Hue and Sengled) require separate gateway devices for Internet connectivity. Contrast this with
Wi-Fi; accessing a new web application from a laptop does not require a new Wi-Fi access point.

We implemented TCPlp, a full-scale TCP implementation for LLNs [294], and used it to re-
examine TCP in LLNs [295] after two decades of evolution. We found that the reasons for poor
TCP performance differ from the expected reasons in the literature and developed a set of non-
intrusive techniques to make TCP perform well. This has significant implications for IoT system

CHAPTER 1. INTRODUCTION 6

design, allowing low-power embedded devices to be first-class Internet citizens. The conclusions
of our study have already had impact: they significantly influenced the Thread network standard,
developed by a consortium of companies [451] in the IoT space, including Google/Nest, Apple,
Qualcomm, and others. TCPlp has been adopted as the TCP stack in OpenThread [363], an open-
source implementation of the Thread standard used in some of these companies’ products.

1.4.3 Ghostor [229]
Consider a data-sharing system that allows doctors and their patients to share access to files. An
adversary who compromises the storage server can not only learn sensitive information, but also
modify file contents, causing patients to receive incorrect medical information. Ghostor is a data-
sharing system that protects against such an adversary by empowering users to (1) detect server-
side integrity violations, and (2) encrypt their files and use the system anonymously. Ghostor
achieves (1) by leveraging a blockchain, relying on decentralized trust. This is preferable to prior
solutions that rely on two central servers and assume that at most one is compromised. Alas, the
high cost and throughput limitations of blockchain transactions are a serious challenge. Using the
blockchain as the second server in an existing two-server design [264] would result in unacceptable
overhead, as a blockchain transaction would be required on each data update.

We designed Ghostor to rethink how the system uses the blockchain. In Ghostor, clients interact
with the server, not the blockchain, for reading, writing, creating, and sharing files. Periodically,
the server posts a cryptographic hash to the blockchain. The hash captures the edit histories of
all files, and because the blockchain is a verifiable, append-only ledger, all clients see the same
hash. Clients check the server’s integrity by verifying that the results of their file operations until
that point are consistent with the posted hash. We designed Ghostor, like JEDI, to be inherently
flexible. For example, a Ghostor server might post hashes less frequently, to reduce the cost of
blockchain transactions at the expense of less timely integrity verification.

1.4.4 JEDI [298]
JEDI provides end-to-end encryption for communication among IoT devices while preserving the
semantics of existing, unencrypted, IoT communication. Two aspects of IoT communication sys-
tems make this difficult. First, IoT devices often use publish-subscribe systems that decouple
senders from receivers. Second, IoT systems manage fine-grained access control via decentralized
delegation—a principal/device with access to resources can delegate access to a subset of those
resources to another principal/device for a limited duration.

Policy-based encryption, such as Attribute-Based Encryption (ABE), can support these se-
mantics. Unfortunately, applying ABE-like encryption to all messages is unacceptably energy-
intensive for low-power embedded sensors. To address this, we carefully designed JEDI to use
coarse-grained timestamps for expiry times (e.g., hour granularity), and to only require expensive
ABE-like encryption/signatures when the timestamp changes (e.g., once per hour). We also
identify a policy-based encryption scheme that is more efficient than ABE yet suitable for JEDI
and use it in a non-black-box way, tailored to how JEDI encrypts data. As a result, a sense-and-

CHAPTER 1. INTRODUCTION 7

send application, sending one reading every 30 seconds on an ultra low-power low-cost Cortex-
M0+-based platform, can encrypt its data with JEDI and still achieve several years of battery life.
Importantly, our design is inherently flexible in its resource demands. For example, on an even
more energy-constrained platform, one can use JEDI with coarser-granularity timestamps (e.g.,
six-hour granularity), to use ABE-like cryptography even more rarely.

1.5 Thesis Statement and Roadmap for This Dissertation
The thesis of this dissertation is that rethinking the way that we design and build systems can help
to achieve expressive cryptography’s full potential. This should be viewed as an initial version
of the thesis statement; Chapter 2 concludes with a refined version of this dissertation’s thesis
statement based on the background provided in that chapter.

The rest of this dissertation is organized as follows.

• Chapter 2 provides background on expressive cryptography, including what expressive cryp-
tography is and how it can be used. It also provides general observations about expressive
cryptography’s efficiency and existing techniques for making it more efficient. This knowl-
edge forms the basis for our techniques and explanations later in this dissertation.

• Chapter 3 describes our approach to designing systems for expressive cryptography as a sys-
tematization of system design techniques. This systematization of techniques constitutes a
framework for understanding and analyzing systems for expressive cryptography. By distill-
ing our system design ideas into this framework, we aim to provide generalizable insights
that help others design systems for expressive cryptography.

• Chapter 4, Chapter 5, Chapter 6, and Chapter 7 describe the design and implementation
of MAGE, TCPlp, Ghostor, and JEDI, respectively. These systems are designed using the
techniques in Chapter 3 and provide evidence for the validity and effectiveness of those
techniques.

• Chapter 8 discusses related work, with a focus on how the system design techniques in
Chapter 3 generalize to existing systems other than the ones described in this dissertation.
We use the framework from Chapter 3 to analyze existing systems, pointing out cases where
existing systems exemplify our techniques and cases where our techniques could be applied
to existing systems. This provides additional evidence for the applicability and effectiveness
of our techniques in Chapter 3.

• Chapter 9 describes the impact that our work has had, discusses future research directions,
and concludes this dissertation.

8

Chapter 2

Background

This chapter describes what expressive cryptography is and provides background on it. This in-
cludes examples of expressive cryptography and how it can be used, observations about its effi-
ciency, and techniques for making expressive cryptography more efficient. Building on that back-
ground, this chapter concludes with a precise thesis statement for this dissertation.

2.1 Expressive Cryptography
An important application of cryptography is to control access to information. Public-key cryptog-
raphy was revolutionary because it allowed one to cryptographically specify which party is allowed
to access a message by encrypting the message under that party’s public key [83]. In this context,
the “expressivity” of a cryptographic scheme refers to expressivity of the control it provides over
who can access what data. We use the term “expressive cryptography” to refer to cryptographic
schemes that are more expressive than public-key cryptography.

A universal definition of expressive cryptography, like the one above, is useful but arguably
imprecise, partly because not all cryptographic schemes aim to control access to information. For
example, some cryptographic schemes (e.g., digital signatures) aim to provide integrity guarantees
(i.e., guarantees that an adversary has not tampered with data). To clarify this, this section will
discuss, through examples, various different types of expressive cryptography.

The term “expressive cryptography” has been used before. For example, Boyen used the term
“expressive cryptography” in a 2012 lecture series [82] and a 2013 invited lecture [83]. More
recently, Halevi used the term “advanced cryptography” to refer to a similar set of cryptographic
schemes [213]. In this dissertation, we prefer the term “expressive cryptography” because “ex-
pressive” more accurately captures what makes these schemes interesting from the standpoint of
system design. Importantly, some cryptographic advances improve security, but not functionality,
and we do not consider the resulting schemes to be expressive cryptography. For example, Regev’s
encryption scheme [395] is advanced in that it provides protection against quantum adversaries,
but not expressive because it is semantically identical to standard public-key encryption. Using a
quantum-secure public-key encryption scheme in a system instead of regular public-key encryp-

CHAPTER 2. BACKGROUND 9

tion can make the system secure against a quantum adversary (i.e., it can strengthen the security
guarantees) but it cannot enable new functionality under the existing threat model. In contrast,
expressive cryptography can enable, under the same threat model, support for richer applications
(i.e., more functionality) compared to standard public-key cryptography. Where applicable, our
descriptions below include explanations of how each type of expressive cryptography enables new
kinds of systems.

2.1.1 Expressive Cryptography for Protecting Confidentiality
Boyen describes expressivity as the ability to “express, in increasingly powerful and flexible ways,
the exact beneficiaries of the right to decrypt a given ciphertext” [83]. This description applies
well to encryption schemes, which aim to protect the confidentiality of encrypted data. We refer
to these expressive encryption schemes, collectively, as policy-based encryption to reflect the fact
that the recipients of a message may be specified as a policy rather than as a public-key known at
the time of encryption. Below, we will see how expressive cryptography allows the encryptor to
more flexibly describe who can decrypt a ciphertext.

2.1.1.1 Identity-Based Encryption

An identity-based encryption (IBE) scheme [423, 65] works as follows. When encrypting a mes-
sage, a party identifies the intended recipient as an arbitrary string of bytes called an ID. A party
is given the secret key for her ID, which allows her to decrypt any message encrypted for her ID.
This is orchestrated by a party called the authority who creates an IBE system, which consists of
public parameters (sometimes called a master public key) and a master secret key. The authority
can use the master secret key to generate a secret key for any ID and give it to the party with that
ID.

An important difference between identity-based encryption and public-key cryptography is that
IBE allows the encryptor to specify the intended recipient as a string of bytes rather than as a public
key. This makes IBE more flexible than public-key cryptography in two ways. First, it allows the
encryptor to specify the recipient of the message without having to look up the recipient’s public
key; once a party obtains the public parameters for an IBE system, she can encrypt messages for
any ID in that system. Second, it allows the encryptor to encrypt a message for an ID even if the
secret key for that ID has not yet been created. In contrast, public-key encryption only allows
encrypting a message for a recipient after the recipient has generated her keypair and the encryptor
has learned the recipient’s public key.

2.1.1.2 Attribute-Based Encryption

Attribute-based encryption (ABE) [206] has a similar setup to IBE, but is more flexible, in the
following sense. When encrypting a message, a party chooses multiple arbitrary strings of bytes
called attributes. Secret keys no longer correspond to a single ID; they correspond to access
policies represented as logical expressions checking for the presence of certain attributes. A secret

CHAPTER 2. BACKGROUND 10

key can decrypt a ciphertext if the attributes associated with the ciphertext satisfy the access policy
associated with the secret key.

The type of ABE described above is sometimes called key-policy ABE, or KP-ABE, to reflect
the fact that secret keys are associated with policies and ciphertexts are associated with attributes.
In another type of ABE, called ciphertext-policy ABE [50], or CP-ABE, secret keys are associated
with attributes and ciphertexts are associated with policies. In CP-ABE, a secret key can decrypt a
ciphertext if the attributes associated with the secret key satisfy the access policy associated with
the ciphertext.

IBE can be understood as a special case of KP-ABE where only one attribute can be used per
ciphertext and policies are restricted to checking for the presence of a single attribute. In that
sense, ABE subsumes IBE and is strictly more expressive. To intuitively understand how ABE
enables new functionality from the standpoint of system design, consider an application where
multiple parties must be given access to a single message. With public-key encryption or IBE,
the encryptor would have to enumerate the IDs or public keys of all recipients when encrypting a
message. In contrast, CP-ABE allows the encryptor to specify a policy of who is allowed to access
it, without having to know exactly who the recipients are. If a new user joins the system, they
will automatically be able to decrypt the ciphertext if their combination of attributes matches the
policy associated with the ciphertext, even if no previous user had that particular combination of
attributes.

Over the years, increasingly expressive variants of ABE have been developed. Schemes like
Hierarchical IBE (HIBE) [227, 189, 63] and Fuzzy IBE [404] predate the term “attribute-based
encryption,” but they can be considered primitive ABE schemes that only support a limited set of
policies—checking for the presence of attributes restricted to a hierarchical structure and check-
ing that the number of matching attributes is above a certain threshold, respectively. The first
schemes that were called ABE [206, 50], allowed monotonic access policies—informally, policies
that check for the presence, but not the absence, of certain attributes. Newer ABE schemes support
more general access policies including support for non-monotonic formulas [366] and Boolean
circuits [203].

Multiple system design proposals in the context of cloud computing leverage ABE [469, 501].
In the context of cloud computing, ABE allows users to bake access control policies directly into
ciphertexts of their data and enforce those policies cryptographically. This gives users control of
access policies governing their data, without placing users at the mercy of the cloud provider to
respect and enforce those access policies. Another compelling application of ABE is in the Internet
of Things (IoT) space [358, 200]. Cryptographically enforced access control is compelling in the
IoT space because IoT devices typically do not have trusted storage and the complex access policies
supported by ABE are attractive in the context of IoT applications.

2.1.1.3 Predicate Encryption

While ABE can allow complex policies to be attached to keys or ciphertexts, ABE only hides
the message contents, not the policies or attributes attached to a ciphertext. Predicate encryption
schemes can be thought of as an extension of ABE where the policies and attributes attached to

CHAPTER 2. BACKGROUND 11

a ciphertext are also cryptographically hidden. To emphasize this distinction, some of the litera-
ture refers to ABE as public-index predicate encryption or ABE’s security guarantee as payload
hiding, and to schemes that hide the policies and attributes attached to a ciphertext as private-
index predicate encryption or the corresponding security guarantee as attribute hiding [267, 68].
This dissertation uses the term “predicate encryption” to refer to private-index, attribute-hiding
schemes.

As with ABE, increasingly powerful predicate encryption schemes have been developed over
time. Anonymous IBE [64, 1] and anonymous HIBE [84] predate the term “predicate encryp-
tion,” but they can be considered primitive predicate encryption schemes that support the simple
policies of IBE and HIBE—checking equality on a single attribute and checking for the presence
of attributes restricted to a hierarchical structure, respectively. In the following years, more so-
phisticated predicate encryption schemes, like Hidden Vector Encryption [70] and Inner Product
Encryption [267], emerged. These schemes support more sophisticated policies, including con-
junctions and disjunctions over attributes, but cannot support arbitrary combinations of conjunc-
tions and disjunctions over many attributes as efficiently as classical ABE schemes [206]. Later,
the community developed more advanced schemes [403, 204], including Worry-Free Encryption,
that support more general policies. These schemes additionally generalize predicate encryption
into functional encryption [68], in which policies do not merely dictate whether a message can be
decrypted, but transform the message obtained by decryption.

2.1.2 Expressive Cryptography for Protecting Integrity
A number of cryptographic techniques, including digital signatures, aim to protect message in-
tegrity. In the context of such techniques, “expressivity” refers to increasingly powerful and flex-
ible guarantees about data being delivered correctly. That said, expressivity can also be used in
other ways, to refer to the other information revealed by the scheme. For example, group signa-
tures [106] are more expressive than standard digital signatures in the sense that the signer of a
message remains anonymous within a group of signers, even to parties who can verify her signa-
ture.

2.1.2.1 Transparency Logs

Transparency logs, sometimes referred to as verifiable data structures, are public, authenticated
data structures that provide integrity guarantees for the operations performed on a data structure.
For example, Certificate Transparency [306] is a log data structure that guarantees that data will
only be appended, never removed, and that all users see a consistent view of the log. As another
example, Key Transparency [343] is a map data structure that guarantees that the results of multiple
users’ queries are consistent with one another. Transparency logs often derive their cryptographic
security guarantees from on cryptographic data structures like Merkle trees.

To understand the value of transparency logs, consider the problem of HTTPS certificates. Cer-
tificate Transparency is designed to be used with HTTPS certificates; clients only use an HTTPS
certificate if they can find it in a trusted Certificate Transparency log. The data structure guarantees

CHAPTER 2. BACKGROUND 12

that the organizer of the web domain sees the same certificates as the user, assuring users that a
fraudulent certificate would be promptly detected and dealt with.

2.1.2.2 Blockchains

A blockchain [284] is an append-only log consisting of items called transactions. They are de-
signed to only accept transactions into the log that are valid, in a sense particular to the blockchain.
For example, a blockchain for a cryptocurrency, like Bitcoin, may only accept transactions in which
a user spends a token (i.e., “Bitcoin”) still in her possession. Blockchains achieve this by relying
on users (i.e., “miners”) to decide, in a decentralized manner, on which transactions to include.
This procedure is similar to a probabilistic vote of sorts; to protect against Sybil attacks, users’
votes are weighted based on their computational power (i.e., “proof of work”) or wealth in tokens
(i.e., “proof of stake”).

At a high level, blockchains are similar to transparency logs. Each is a data structure together
with a protocol that make guarantees about the operations that are performed on the data structure.
However, there are important differences. First, while transparency logs are hosted by a single,
centralized party, blockchains are fully decentralized. Second, while transparency logs guarantee
merely that users can detect if an invalid operation is performed, blockchains can deny invalid
transactions outright. One consequence of this is that, while a transparency log’s availability de-
pends on the party hosting the log, blockchains do not require trust in a central party for availability.
As a result of these differences, blockchains may be considered more expressive than transparency
logs.

The original application of blockchains was cryptocurrency [356]. Due to their ability to pro-
vide consensus and consistency in an open-membership setting, blockchains have become a sys-
tem design primitive in their own right and have evolved into a substrate for decentralized ap-
plications [93]. For example, there have been proposals to leverage blockchains to build fully
decentralized systems for data storage [444] and virtual reality [364]. Closed-membership ver-
sions of blockchains, sometimes called “private blockchains,” have also been developed. Private
blockchains give up true decentralization in exchange for other useful properties like efficiency,
privacy, and central oversight. An important application of private blockchains is to improve trans-
parency and auditability in business supply chains [138].

2.1.3 Expressive Cryptography for Protecting Computation
Some cryptographic techniques not only protect data, but also incorporate computation in some
way. In the context of expressive cryptography for protecting computation, an important measure
of “expressivity” is the generality and flexibility of computation that can be protected. We focus
in this section on tools that allow for computing on encrypted data. Predicate encryption and func-
tional encryption are listed in Section 2.1.1 due to their relationship to ABE, but they can also be
considered as protecting computation and could be listed in this section. Other cryptographic tech-
niques like Zero-Knowledge Proofs [197] and Oblivious RAM [196] do not allow for computation
on encrypted data but provide other cryptographic guarantees relating to computation. They are

CHAPTER 2. BACKGROUND 13

also forms of expressive cryptography, but we do not focus on them in this section because they
are not directly related to the work in this dissertation.

2.1.3.1 Secure Multi-Party Computation

Secure Multi-Party Computation (SMPC) [496, 195, 45] allows n parties, with secret inputs x1, . . . ,
xn (where party i has secret input xi), to work together to compute an arbitrary function f of their
choice on their secret inputs. SMPC allows the parties to learn f (x1, . . . ,xn), but guarantees that
they will learn nothing else about the other parties’ secret inputs.

Early SMPC protocols, such as Yao’s Garbled Circuits [496], GMW [195], and BGW [45]
could support functions representing any fixed-size computation. They achieved this by represent-
ing f as a logical circuit—for example, f may be a circuit where wires contain bits and gates
represent boolean operations, or f may be a circuit where wires contain integers in a Galois Field
and gates represent addition or multiplication operations.

Later schemes built on these in several ways. Some later schemes improve expressivity by
supporting SMPC for more parties. For example, while Yao’s Garbled Circuits protocol originally
supported only two parties (n = 2), the BMR protocol [39] supports SMPC for more than two
parties (n> 2) using a generalization of Yao’s Garbled Circuits that preserves its round complexity.
Others improve security but not expressivity, supporting stronger threat models. For example,
although the original Yao’s Garbled Circuits construction is secure only against a semi-honest
adversary, it can be augmented with cut-and-choose techniques to be secure against a malicious
adversary [320]. Finally, some actually reduce expressivity by supporting only a few specific
kinds of functions f , rather than general functions. For example, specialized SMPC protocols
exist for set intersection [181, 379] and digital signature generation [429], even though generic
SMPC protocols, like Yao’s Garbled Circuits, are capable of the same functionality [232]. The
advantage of specialized SMPC protocols is that they may be more performant for the functions
that they support than generic SMPC protocols, as we discuss later in Section 2.2.2.

A compelling application of SMPC is to enable secure collaborative data analytics. In many
cases, data analytics jobs require data that reside across multiple organizations, yet organizations
cannot directly share data due to legal regulations and privacy concerns. We discussed secure
collaborative data analytics applications in Section 1.1 to motivate our work—such applications
include collaboration among hospitals for research, collaboration among financial institutions to
detect fraud, and measurement of social issues like the gender wage gap. SMPC provides a solution
to such problems, allowing n organizations to compute a data analysis of their choice, described
by a function f , over their private datasets x1, . . . ,xn. Research proposals like SMCQL [37] and
Conclave [463] are systems based on SMPC that directly target secure collaborative data analytics.

Secure collaborative data analytics has seen real-world adoption and significant industry in-
terest [199]. As we explained in Section 1.1, Google is exploring using SMPC to compute ad
conversions—how many users who viewed an ad become customers [465, 246]. SMPC is needed
because Google does not want to reveal the viewership of an ad, and the company running ads
on Google does not want to reveal who their customers are; SMPC allows them to compute ad
conversions without revealing additional information. Two of Meta’s products, Private Lift and

CHAPTER 2. BACKGROUND 14

Private Attribution, are based on SMPC and are actively used by advertisers [396]. These products
solve a similar problem to the “ad conversions” problem addressed by Google—they allow users
to perform randomized controlled trials to assess the impact of advertising on the conversion rate.
Another example of real-world usage of SMPC, which we explained in Section 1.1, is the deploy-
ment of SMPC in the Boston area to measure social issues like the gender wage gap and economic
inclusion of minority-owned businesses [387].

SMPC also enables distributed trust. A class of systems aims to avoid trusting a single server
by splitting trust across n servers (for n > 1) [126, 111]. For example, instead of a user storing
her signing key (or some other secret) on a single device, she may instead store secret shares of
her signing key on n devices. In order to use her signing key, the user would have those n devices
run an SMPC protocol to produce the desired signature. This approach is used in the cryptocur-
rency space; companies like Fireblocks provide SMPC-based wallets used to secure millions of
dollars in digital assets [173, 174]. Researchers have also used distributed trust based on SMPC
to enable more complex systems than digital signature generation. For example, researchers have
designed SMPC-based distributed trust systems for collection of aggregate statistics [127] and for
data storage and sharing [112].

2.1.3.2 Homomorphic Encryption

Homomorphic encryption allows a party who holds Enc(x) to directly compute Enc(f (x)), for cer-
tain types of functions f , without first decrypting Enc(x). Multiple ciphertexts encrypted with the
same key can also be combined; a party who holds Enc(x) and Enc(y) can compute Enc(f (x,y)).
Importantly, the party who computes this does not need to know the secret key to decrypt the
ciphertext and never sees x, y, or f (x,y) in plaintext—the data remain encrypted throughout the
computation.

Early homomorphic encryption schemes supported only simple types of functions. For ex-
ample, the ElGamal encryption scheme [163] supports multiplication and the Paillier encryption
scheme [370] supports addition. A more expressive encryption scheme, developed by Boneh et
al. [67], supports logical circuits of additions and multiplications with a multiplicative depth of
1—enough to support functions described by 2-DNF formulas, but not general functions.

A breakthrough was Gentry’s development of Fully Homomorphic Encryption (FHE) [185],
a type of homomorphic encryption that supports general functions. As Gentry’s scheme supports
general functions, later works on homomorphic encryption do not aim to improve the generality of
the computation—they aim to simplify the design, improve performance, or improve expressivity
in ways other than the generality of computation (e.g., creating an FHE scheme that supports poli-
cies like those in ABE [188]). Performance has been a particular focus of followup work [86, 147,
116, 115]. Some of these works alter the computation model; for example, leveled FHE schemes
like BGV can efficiently evaluate add-multiply circuits but require the depth to be relatively small
and known at setup time [86], and FHE schemes like CKKS support approximate arithmetic [115].

Homomorphic encryption has been used in systems designed to compute on encrypted data,
usually to support computing aggregates such as the sum of a dataset [383, 421, 372, 420]. To
compute a particular aggregate, simple Partially Homomorphic Encryption schemes that support

CHAPTER 2. BACKGROUND 15

a simple type of function, such as the Paillier encryption scheme (or a symmetric-key equivalent),
are typically sufficient. For more complex computations over encrypted data, such as machine
learning inference, leveled FHE schemes are sometimes useful [79]. Homomorphic encryption is
also a useful building block as part of other cryptographic protocols. For example, specialized
SMPC protocols, such as those used for neural network inference, sometimes use homomorphic
encryption for part of the computation [262].

2.2 Efficiency and Overheads of Expressive Cryptography
Cryptographic operations like encryption can require a significant amount of computing resources.
We use the term “cryptographic overhead,” or simply “overhead,” to refer to the extra resources
required due to cryptography. This section presents more details on the overhead of using expres-
sive cryptography. As we will see, the overhead of expressive cryptography is, in many cases, a
significant obstacle to applying it in systems.

2.2.1 Types of Cryptographic Overhead
Systems developers often think of cryptographic overhead in terms of computation time—for ex-
ample, the CPU time required to encrypt or decrypt messages. Expressive cryptography, however,
is expensive not only in terms of CPU time, but also in terms of other computing resources like
memory and networking. This section explores the ways in which expressive cryptography can be
expensive.

2.2.1.1 CPU Overhead

Expressive cryptography consumes a significant amount of CPU time, typically more than regu-
lar, non-expressive cryptography. For example, ABE encryption with a single attribute can require
two orders of magnitude more CPU time than encryption with public-key cryptography [478]. Fur-
thermore, the CPU time for ABE encryption increases linearly in the number of attributes. Other
expressive encryption schemes, like predicate encryption and fully homomorphic encryption, also
have high overheads for encryption.

For expressive cryptography that supports computing on encrypted data, there is also a signifi-
cant overhead to running a computation on encrypted data compared to running the same compu-
tation on plaintext data. FHE and SMPC primitives that support generic computation can require
orders of magnitude more CPU time than computing directly on plaintext. To get a sense of how
much slower, consider JustGarble [44], a system for evaluating Yao’s Garbled Circuits that is op-
timized for efficiency. JustGarble can evaluate a gate in 7.25 ns, amortized, based on a circuit
consisting of 82% XOR gates (where XOR gates are particularly efficient to execute). Based on
this measurement, adding two 32-bit integers would take about 1 microsecond (assuming 4 XOR
gates and 1 AND gate per bit of the addition). This is about three orders of magnitude slower
than adding two 32-bit integers directly in the processor. Computation over encrypted data in FHE

CHAPTER 2. BACKGROUND 16

schemes is also much slower than computation over plaintext data. For example, TFHE [116]
requires about 10 milliseconds to execute a binary gate, which is about 10,000× slower than
JustGarble and therefore about seven orders of magnitude slower than computing directly in the
processor. Leveled FHE schemes can be faster than TFHE, as they can operate on batches of data
in a SIMD fashion and can perform integer operations directly instead of just binary operations.
In these schemes, addition can be very fast, but multiplication can still take about 10 milliseconds
(rounded to order of magnitude) [460]. When accounting for SIMD-style batches of approxi-
mately 1,000 to 10,000 elements, multiplication in these schemes may be approximately three to
four orders of magnitude slower than operating on plaintext. While the above overheads apply to
the computation itself, there can be additional overhead associated with transforming the desired
function to a logical circuit representation suitable for cryptographic computation.

Blockchains are a special case. Miners in a proof-of-work-based blockchain incur significant
CPU overhead due to the proof of work mechanism for mining blocks. Yet a faster CPU would
not make mining faster, as the difficulty of the proof-of-work problems is adjusted to keep the time
between blocks fairly constant. It would merely increase the profitability of mining for miners with
the faster CPU, enabling those miners to more effectively compete with other miners.

2.2.1.2 Memory Overhead

Expressive cryptography can have high memory overhead because ciphertexts are large. For ex-
ample, when using 2048-bit RSA (standard, non-expressive public-key cryptography), a cipher-
text is 256 bytes. Elliptic-curve-based ciphertexts (e.g., with ElGamal encryption) can be even
smaller, just tens of bytes. In contrast, an ABE ciphertext can be kilobytes in size. While a few
kilobytes per ciphertext may not seem large in an absolute sense, it can be very significant for
resource-constrained embedded devices. For example, ultra low-power wireless sensing platforms
may have only several tens of kilobytes of RAM, so encrypting sensed data points with expressive
cryptography may be a significant memory burden.

For schemes like IBE and ABE, this matters most for small messages, which become much
larger when encrypted. This is because, for large messages, one can use hybrid encryption. With
hybrid encryption, one randomly samples a symmetric key k, uses IBE or ABE (or standard public-
key encryption) to encrypt k, and then uses k to encrypt the actual message. Thus, the size of the
ciphertext can be amortized by the size of the message itself, for large messages.

Hybrid encryption is not suitable, however, for expressive cryptography that supports computa-
tion on encrypted data. This means that ciphertext expansion applies to all inputs and intermediate
results when performing the desired computation on encrypted data. For example, in Yao’s Gar-
bled Circuits protocol [496], each wire in the circuit represents one bit of plaintext but corresponds
to a 16-byte label during execution of the protocol. This means that evaluating the garbled circuit
for a function f will require 128× more memory than evaluating f in plaintext. Secret-sharing-
based SMPC protocols [195] do not have an inherent expansion factor, since secret shares are, in
principle, the same size as plaintext data. Integer-based secret sharing schemes [45], however, still
have an expansion factor because all data items, even bits or small integers, must be represented
as full-size secret shares. FHE schemes also have a large expansion factor. In TFHE [116], for

CHAPTER 2. BACKGROUND 17

example, a ciphertext represents a single bit but may be multiple kilobytes in size. This repre-
sents a memory overhead of 10,000× or more compared to plaintext computation. Leveled FHE
schemes (e.g., CKKS [115]) may have ciphertexts that are tens or hundreds of kilobytes. This may
be amortized by using batching, but memory overheads may still be an order of magnitude or more
if the application at hand does not allow using batching to its fullest.

2.2.1.3 Networking Overhead

Network overhead can manifest in two forms: bandwidth and latency. We explore each below.
Systems based on expressive cryptography often transfer ciphertexts over the network. For

example, a resource-constrained device might encrypt data with FHE and send the ciphertexts to a
more powerful computer to offload computation to it, or it might encrypt data with ABE to allow
rich, cryptographically-enforced access control policies and send the ciphertexts to a database for
later retrieval by users. For such systems, large ciphertext sizes not only cause memory overhead
(as described in Section 2.2.1.2), but can also result in network bandwidth overheads when trans-
ferring ciphertexts over the network. For example, just as an ABE ciphertext that is kilobytes in
size may present significant memory overhead for an ultra low-power embedded sensing device,
it may also present significant networking overhead for such a device. In particular, such devices
may use low-power wireless networks, which have limitations, such as low bandwidth, that make
it difficult to perform bulk data transfer. Even for server-class devices with plenty of provisioned
network bandwidth, a bulk transfer of many ciphertexts may present significant network bandwidth
overhead.

SMPC protocols inherently require multiple parties and can consume significant amounts of
network bandwidth among these parties. For example, we saw that JustGarble can evaluate Yao’s
Garbled Circuits while spending just 7.25 ns per gate, on average, in a workload where ≈ 80%
of the gates are AND gates. With the half gates optimization [504], each AND gates requires
transferring 32 B between the two parties. Thus, Yao’s Garbled Circuits requires about 8 Gbit/s of
network bandwidth to fully utilize a single CPU core of the party evaluating a garbled circuit.

Other types of SMPC protocols add overhead in the form of network latency. For example,
secret-sharing-based SMPC protocols require a round of communication per nonlinear operation
(e.g., AND of bits or multiplication of integers). Because each round of communication involves a
network round-trip between pairs of parties, these operations may incur significant overhead in the
form of network latency, particularly when the network round-trip time between parties is large.
The overhead can be particularly high when evaluating functions that, when represented in circuit
form for SMPC, have a high depth in nonlinear operations.

Transparency logs and blockchains also incur network overhead. Participants in a blockchain
incur network overhead to discover newly mined blocks. Systems like Certificate Transparency
require users to “gossip” to ensure that the log server presents the same view of the log to all users.
Other transparency log schemes (e.g., key transparency) require users to monitor the log to ensure
that its state is consistent with their expectations (leveraging the fact that the log guarantees that
all users’ views of the log will be consistent).

CHAPTER 2. BACKGROUND 18

2.2.2 Trade-Off Between Expressivity and Efficiency
As a general rule, more expressive cryptographic schemes tend to be less efficient. Stated differ-
ently, when choosing a cryptographic scheme, there is usually a trade-off between expressivity and
efficiency.

For example, consider expressive cryptographic schemes that protect confidentiality. KP-ABE
is strictly more expressive than HIBE, and HIBE is strictly more expensive than IBE. Accordingly,
KP-ABE requires more CPU time and has larger ciphertexts than HIBE, and HIBE requires more
CPU time and has larger ciphertexts than IBE.

As discussed in Section 2.1.2, blockchains may be considered more expressive than trans-
parency logs due to their fully decentralized nature and ability to outright deny invalid transactions.
This comes, however, at significant performance costs—blockchains like Bitcoin have low trans-
action throughput and high transaction latency (e.g., tens of minutes to an hour for a transaction to
be accepted in the blockchain).

The same applies to cryptography for computing on encrypted data. Generic SMPC proto-
cols can execute any function f , but it may be possible to compute f more efficiently using a
specialized SMPC protocol for that task. For example, the specialized SMPC protocols for set
intersection are more efficient, in some settings, than using generic SMPC protocols to compute
those functions [379]. Similarly, homomorphic encryption schemes that support only simple types
of functions can be more lightweight than FHE.

2.3 Techniques for Making Expressive Cryptography Efficient
Given the enormous potential of expressive cryptography, there has been much effort to make
the cryptography more efficient. There have been three main approaches to doing so. The first
approach is to create generic theoretical improvements that improve the efficiency of generic
schemes. The second approach is to create specialized cryptographic schemes that improve the
performance of expressive cryptography by specializing it to the particular application at hand.
The third approach is to apply systems techniques to make expressive cryptography more efficient.
We describe these approaches below.

2.3.1 Generic Theoretical Improvements
An important approach to making an expressive cryptographic scheme efficient is to improve the
underlying mathematics to make the scheme more efficient. This approach is particularly powerful
because any system that uses the relevant cryptographic scheme will benefit from the resulting
improvements.

Yao’s Garbled Circuits protocol [496] is one example of expressive cryptography that has
benefited from this. Generic theoretical improvements, such as Point-and-Permute [39], Free
XOR [286, 285], and Half Gates [504] have significantly improved the computation, memory,
and network bandwidth required by the protocol. Oblivious Transfer [388], the first step in using
garbled circuits for SMPC, has also seen generic theoretical improvements [247, 85, 493]. Because

CHAPTER 2. BACKGROUND 19

these improvements did not change the syntax (i.e., interface) of the cryptographic scheme, they
fall under the category of “generic improvements.”

Sometimes, it is necessary to make small changes to the interface in order to obtain perfor-
mance gains. The resulting improvements can still be considered “generic” if they do not sig-
nificantly diminish the space of applications that can benefit from them. For example, Gentry’s
initial FHE scheme [185] was followed by leveled FHE schemes [86, 115]. These leveled FHE
schemes changed the syntax of the schemes to require the maximum multiplicative depth to be
known at setup time, but this minor syntactic change resulted in significant performance improve-
ments, since applications whose multiplicative depth is relatively shallow and known in advance
can avoid bootstrapping. As another example, early HIBE schemes [189] were followed by the
BBG HIBE scheme [63], which requires the maximum hierarchical depth to be known at setup
time (as in certain prior works [62]) but allows for smaller ciphertexts than prior schemes.

2.3.2 Specialized Cryptographic Schemes
An alternative to developing generic improvements is to leverage the “expressivity vs. efficiency”
trade-off Section 2.2.2 to trade generality for efficiency. Simply put, we can specialize the crypto-
graphic scheme to the application at hand in order to improve its performance.

One clear example of this is the development of SMPC for specialized functions. For example,
specialized Private Set Intersection (PSI) protocols implement SMPC for a particular function that
takes as inputs a set of values from each party and outputs the intersection of those sets. While it
is possible to implement PSI by evaluating a function f for set intersection using a generic SMPC
protocol like garbled circuits [232], state-of-the-art specialized PSI protocols [379, 56] outperform
such approaches based on generic SMPC. As a result, designer who needs to run a workload based
on Private Set Intersection (PSI) would, in many cases, be better off leveraging a specialized PSI
protocol than instantiating PSI with a generic SMPC protocol.

One can specialize cryptographic protocols not only for useful functions, but also directly for
applications. The research community has developed specialized SMPC protocols for data ana-
lytics [380] and for machine learning algorithms like k-means [253], linear models [361, 515],
and neural networks [347, 262, 293, 392, 307, 359]. Some of these efforts not only specialize the
cryptography, but also make changes to the model to admit more efficient cryptographic construc-
tions [397, 346].

2.3.3 Systems Techniques
One can also improve the performance of expressive cryptography by building systems to better
support it. This approach can bring efficiency improvements without the need for theoretical ad-
vances or changes to the underlying mathematics of expressive cryptography. A classical approach
to making cryptography faster in this way is to manually write assembly code to optimize the rel-
evant procedures. While this remains a useful approach, expressive cryptography necessitates a
more holistic approach, as its overheads manifest not only in CPU time, but also in memory and
network usage.

CHAPTER 2. BACKGROUND 20

One example of how systems techniques can improve the performance of expressive cryp-
tography is the development of execution frameworks for Yao’s Garbled Circuits. Early systems
for executing garbled circuits, like Fairplay [333], required a large amount of memory because
they would materialize the entire garbled circuit in memory at each party. Later, the HEKM sys-
tem [233] improved memory consumption significantly by avoiding materializing the entire gar-
bled circuit at either party. This reduced the memory overhead significantly, as each party only
had to allocate memory for all of the wires in the circuit, not all of the garbled gates. Subsequent
garbled circuit frameworks [290, 289] improved on HEKM further, allocating memory for just the
live wires rather than all wires in the circuit. TinyGarble [437] applied logic synthesis techniques
to optimize the boolean circuit representation of the function f to execute. These systems improve-
ments significantly improved the performance of garbled circuits, at times producing comparable
improvements to developing specialized cryptographic protocols [232].

In concurrent work, researchers applied systems to help navigate the performance trade-offs
among cryptographic protocols. Tools like EzPC [103], Cerebro [514], and Silph [108] help to
automate the design of specialized cryptographic protocols for applications like machine learn-
ing. This is enabled by cryptographic work like ABY [139], which provides flexible ways to
combine different SMPC techniques with different performance trade-offs, and systems work like
CostCo [166], which provides cost models for SMPC protocols that these tools can use to identify
the most efficient designs. We discuss these techniques in greater depth in Chapter 8.

Concurrently with the work presented in this dissertation, systems techniques have also been
applied to help applications use expressive cryptography in an efficient way. For example, DeepSe-
cure [399] improves the performance of deep learning inference with Yao’s Garbled Circuits by
performing preprocessing outside of SMPC. SMCQL [37] and Conclave [463] improve the per-
formance of data analytics in SMPC in a similar way, by identifying portions of the computation
that can happen in a preprocessing phase, to minimize the computation that must be protected
cryptographically with SMPC. These works leverage some of the techniques that this dissertation
develops, so we discuss them in greater depth in Chapter 8.

Another line of work concurrent with this dissertation aims to make expressive cryptogra-
phy faster by leveraging hardware accelerators. For SMPC protocols for neural network infer-
ence and training, researchers have designed cryptographic protocols that can be accelerated using
GPUs [447] and designed the necessary systems support to effectively leverage GPUs to accel-
erate these protocols end-to-end [480]. For FHE protocols, researchers developed F1 [169] and
CraterLake [406], hardware accelerators that can provide orders of magnitude of speedup for FHE
workloads compared to relying only on the CPU.

2.4 Conclusion and Thesis Statement Revisited
Expressive cryptography provides useful functionality for many real applications and has enor-
mous potential. SMPC, for example, is seeing significant industry interest, with deployment by
Google and Meta and the potential to solve important, real-world problems. Unfortunately, expres-

CHAPTER 2. BACKGROUND 21

sive cryptography can be expensive—it consumes lots of computing resources. This is a significant
obstacle to realizing expressive cryptography’s full potential.

A natural question is how we can overcome the efficiency-related challenges of expressive
cryptography and allow it to fulfill its enormous potential. One approach where we have seen
significant progress, and where we will continue to see progress, is in making theoretical ad-
vances. Such approaches include generic improvements to the underlying mathematics to make
cryptographic schemes inherently faster and specializations of cryptographic schemes to particular
functionalities or applications to trade off generality for efficiency. The theory has advanced so
far, however, that important applications of expressive cryptography are within striking distance
of practicality. In many cases, performance bottlenecks emerged not because the cryptography
was inherently slow, but because the systems built around expressive cryptography had not kept up
with the theoretical advances. This has led to advances in systems relating to expressive cryptog-
raphy, both for systems that use expressive cryptography and for systems that provide frameworks
for executing expressive cryptography. As an example, frameworks for executing garbled circuits
have improved tremendously, with state-of-the-art garbled circuit frameworks capable of execut-
ing hundreds of millions of boolean gates per second on a single CPU core. SMPC schemes for
particular functionalities and applications are even more efficient. Many of the advances in system
design were developed concurrently with the work in this dissertation.

The thesis of this dissertation, refined from our initial statement in Chapter 1, is that rethinking
the way that we design and build systems can help make expressive cryptography less expensive
to use, making expressive cryptography practical for more applications and thereby helping to
achieve expressive cryptography’s full potential. While we are not the first to explore how systems
should use expressive cryptography or how system design might make expressive cryptography
more efficient, we systematically study the interplay between expressive cryptography and system
design to provide practical insights and guidance on how to design systems for expressive cryptog-
raphy. The results are two-fold. First, we develop new system design techniques and explore them
through the design, implementation, and evaluation of four new systems: MAGE, TCPlp, Ghostor,
and JEDI. Second, our insights and guidance provide a framework for understanding and analyz-
ing systems for expressive cryptography. This framework can, of course, be applied to the four
systems presented in this dissertation. But it can also be used to analyze systems for expressive
cryptography developed independently of this dissertation, as we do in Chapter 8.

22

Chapter 3

System Design Techniques for Expressive
Cryptography

This chapter describes system design techniques for expressive cryptography. In doing so, we
provide a framework to understand, analyze, and design systems for expressive cryptography. We
identify two distinct high-level approaches that one could take to rethink system design for ex-
pressive cryptography. First, one can rethink how to design the underlying systems that support
expressive cryptography to do so efficiently. Second, one can rethink how applications, and the
systems that directly support those applications, should use expressive cryptography to bring secu-
rity guarantees to users. We present system design techniques for expressive cryptography divided
into two classes (Section 3.1 and Section 3.2), one for each of these two approaches. The chapter
concludes with a discussion of when to apply each class of techniques when designing a system.

We explain the techniques primarily using examples from the work in this dissertation, in
effect applying our framework to our own work. That said, we do not claim that the system design
techniques presented in this section are novel. Some of these techniques have been used before
in work prior to and concurrent with ours; we include pointers to other systems where they are
particularly relevant. Our framework can also be applied to analyze systems relating to expressive
cryptography developed independently of this dissertation, as we explore in Chapter 8.

3.1 Designing Systems that Support Expressive Cryptography
The first class of techniques applies to designing the underlying systems on which expressive
cryptography depends. An example of such a system is the operating system (e.g., Linux), which
provides the process abstraction inside which expressive cryptography runs and which gives ex-
pressive cryptography access to hardware resources like CPUs, memory, and the network. This
section focuses on techniques for designing the underlying system in such a way that expressive
cryptography becomes more efficient. In some cases, the techniques presented here benefit ap-
plications beyond just expressive cryptography, and therefore may be of broader interest to the
systems research community. In our explanations below, we discuss when this is the case.

CHAPTER 3. SYSTEM DESIGN TECHNIQUES FOR EXPRESSIVE CRYPTOGRAPHY 23

3.1.1 Manage Resources According to the Structure of the Computation
The first technique is to manage resources according to the structure of the computation. Whereas
standard, off-the-shelf systems manage resources in order to support general programs, expres-
sive cryptography may use resources in a special way that admits more efficient forms of resource
management. By designing the underlying system to leverage the structure of cryptographic com-
putation, one can significantly improve resource management, which can in turn make expressive
cryptography more efficient to use.

We applied this technique in MAGE to make it more efficient to compute on encrypted data.
Schemes for computing on encrypted data can have very high memory overhead. This can be
a significant obstacle for using these schemes in applications—if the application does not fit in
memory, then the operating system starts paging data to a storage device (e.g., an SSD), which
makes the application run much more slowly. Applications like secure collaborative data analytics
are particularly problematic because they compute on large amounts of data, which expand mul-
tiplicatively when applying the relevant cryptographic schemes. Our key observation in MAGE
is that, although FHE and generic SMPC schemes support general computation, they require the
computation f over encrypted data to be structured in a particular way that admits a fundamen-
tally more efficient form of memory management. Specifically, they require f to be expressed as a
logical circuit, where each gate corresponds to an operation on encrypted data directly supported
by the cryptographic scheme. As a result, the sequence of memory accesses in evaluating f is (1)
deterministic, and (2) independent of the values of the inputs to f . This allows MAGE to analyze
the code for the function f and precompute the sequence of memory accesses that will be issued
when evaluating f . Thus, MAGE can manage memory with foreknowledge of f ’s future memory
accesses, allowing it to make more accurate and timely decisions about which pages to prefetch
from storage into memory and which pages in memory to evict to storage.

A key property that MAGE relies on—that the memory access pattern of f is independent
of f ’s inputs—is called obliviousness. Obliviousness is inherent to the security guarantees of
computing on encrypted data. If a scheme for computing on encrypted data were to work with
non-oblivious programs, then the party executing the program over encrypted data could infer
something about the inputs to the program from the memory accesses, undermining the security
of the cryptographic scheme. Thus, we expect MAGE’s techniques to generalize beyond the spe-
cific cryptographic schemes that we explore in our work. In fact, the techniques may generalize
to workloads beyond just cryptographic schemes, as certain plaintext workloads, such as matrix
multiplication and neural network inference, are also oblivious and deterministic. We discuss this
further in Section 9.2.1.

Another example of this technique is to write assembly code by hand to optimize a particular
cryptographic routine. It is often possible to do better than the underlying system (the compiler,
in this case) due to knowledge of the structure of the relevant cryptographic routines, even though
the compiler, in principle, could obtain this knowledge from analyzing the source code. For ex-
ample, we used this technique in JEDI to optimize the bilinear group implementation underlying
WKD-IBE. By writing assembly code for big integer arithmetic specialized to the relevant inte-
ger sizes, we significantly improved performance compared to compiler-generated assembly code.

CHAPTER 3. SYSTEM DESIGN TECHNIQUES FOR EXPRESSIVE CRYPTOGRAPHY 24

For example, our implementation optimizes the number of data transfers between registers and the
cache, which contributes to our overall performance improvement.

MAGE demonstrates that even generic cryptographic schemes may have particular structures
that admit specialized resource management strategies in the underlying system. Specialized cryp-
tographic schemes may admit more opportunities for specialized resource management.

3.1.2 Identify the Bottleneck and Generically Optimize It
The second technique is to identify the bottleneck and generically optimize it. Sometimes, cryp-
tographic applications place additional strain on certain resources. As a result, the underlying
system’s resource management is burdened in ways that do not arise for non-cryptographic sys-
tems. Any improvement to the underlying system that improves resource management for strained
resources, therefore, can benefit cryptographic systems. As such improvements are not necessar-
ily cryptography-specific, they often broadly benefit applications beyond those that use expressive
cryptography.

For example, network overheads can be significant for expressive cryptography. Part of this
is due to larger ciphertext sizes—a number of proposals for IoT security involve using expressive
encryptions schemes like ABE, and these proposals often involve sending ciphertexts over the
network. Due to the expansion factor of expressive encryption schemes, the network overheads
can be significant. TCPlp addresses this by providing a means for reliable, high-throughput data
transfer over low-power wireless networks, making it easier to transfer large ciphertexts. Network
overheads are significant for other kinds of expressive cryptography as well, including SMPC.
Techniques that improve network performance in general will benefit SMPC.

In general, this technique results in improvements not only to expressive cryptography, but to
systems in general. For example, gateway-free Internet connectivity, provided by TCPlp, broadly
benefits low-power wireless systems, beyond its applications to expressive cryptography. In ap-
plying this technique, the role of expressive cryptography is as a guide to find which resources are
a significant bottleneck for expressive cryptography and which aspects of the underlying system
tend to govern the performance of applications based on expressive cryptography. Once expressive
cryptography draws one’s focus to the appropriate aspects of the underlying system’s design, the
approach used to redesign the system is the same as in general systems research.

3.2 Designing Systems that Use Expressive Cryptography
The second class of techniques applies to designing applications, and systems that directly sup-
port applications, that are secured using expressive cryptography. Designing such applications and
systems can be challenging because expressive cryptography can be very expensive. This section
focuses on techniques that can make the overall application efficient, even it uses expressive cryp-
tographic techniques that are inefficient. We present four such techniques below, focusing on how
the system should use expressive cryptography. These techniques can be viewed as ways to design
a system to make it “efficiently securable” via expressive cryptography.

CHAPTER 3. SYSTEM DESIGN TECHNIQUES FOR EXPRESSIVE CRYPTOGRAPHY 25

3.2.1 Use Expressive Cryptography Rarely and Off of the Critical Path
The third system design technique is to use expressive cryptography rarely and off of the critical
path.

Finding ways to use cryptography rarely is a widely-used technique. Hybrid-encryption-based
techniques are an example of this. For example, TLS uses public-key cryptography during the
TLS handshake, but uses exclusively symmetric-key encryption thereafter. Similarly, PGP uses
public-key encryption to encrypt a symmetric key, and then uses the symmetric key to encrypt the
actual message, which may be long. Such techniques naturally extend to the realm of expressive
cryptography. For example, to encrypt a messages with key-policy attribute-based encryption (KP-
ABE), one can first encrypt a symmetric key with KP-ABE, and then encrypt the actual message
with the symmetric key. Clearly, finding ways to use expressive cryptography rarely can reduce
costs for the application using it. It should be noted, however, that expressivity sometimes gets in
the way. If the attributes change from one message to the next, then one cannot directly apply hy-
brid encryption with KP-ABE. Similarly, using hybrid encryption with homomorphic encryption,
would preclude the ability to compute on encrypted data.

To understand the idea of using cryptography off of the critical path, we must consider the set
of user-facing operations in a system. For example, a system for file storage and sharing may have
user-facing operations like reading a file, writing a file, and sharing a file. In an IoT sensor ap-
plication in which a sensor periodically collects sensor data (i.e., a “sense-and-send” application),
collecting a physical reading from the transducers and sending over the network is a user-facing
operation, since a user may be monitoring data as it is collected or may initiate collection of a
particular sensor reading. Performing an expressive cryptographic operation as part of user-facing
operations may degrade user-perceived performance because expressive cryptographic operations
may have high latency. For example, a blockchain like Bitcoin requires minutes for a transaction
to be accepted by the blockchain; as a result, a blockchain-based file system that requires a block-
chain transaction to update a file would have a user-facing “write” operation that takes minutes
to complete. Similarly, a single encryption with ABE might take several seconds or minutes to
complete on a resource-constrained embedded device; encrypting each sensor reading in the afore-
mentioned IoT application with ABE would, therefore, result in delays of seconds to minutes in
obtaining a sensor reading.

Through careful system design, we can sometimes secure the entire system, including user-
facing operations, with expressive cryptography, without using expressive cryptography in the
critical path of user-facing operations. For example, Ghostor (Chapter 6), our data storage and
sharing system, derives its integrity guarantees from a blockchain, yet ensures that all blockchain
transactions are issued by the server in the background, separately from any user-facing opera-
tion. Similarly, JEDI (Chapter 7), our end-to-end encryption system for IoT, uses ABE with hybrid
encryption, but is designed such that the encryption of the symmetric key can happen in the back-
ground, without being tied to any particular user-facing operation. This is because the attributes
for a stream of data depend on the current time, which changes independently of sensor readings
or user requests. Although these invocations of expressive cryptography can have a high latency,
none of them directly affect the latency of any individual user operation.

CHAPTER 3. SYSTEM DESIGN TECHNIQUES FOR EXPRESSIVE CRYPTOGRAPHY 26

Finding ways to use cryptography rarely can reduce the overall cost of expressive cryptography.
Using if off of the critical path, however, cannot. For example, invoking ABE off of the critical path
in JEDI can mask the long latency of invoking ABE, but it does not reduce CPU utilization or the
problems associated with high CPU utilization (e.g., high power consumption, longer scheduling
delays). The greatest benefits are derived from finding ways to use expressive cryptography both
rarely and off of the critical path.

3.2.2 Make the Frequency of Expressive Cryptographic Operations
Tunable

The fourth system design technique is to make the frequency of expressive cryptographic opera-
tions tunable. The idea is to find some aspect of the system’s functionality or security that can be
traded off, in return for being able to use expressive cryptography less frequently. This makes the
system design inherently flexible, allowing one to tune the cryptographic overhead according to
the needs of the application at hand.

We applied this technique in JEDI to control the frequency with which the protocol encrypts
data with expressive cryptography. In JEDI, data producers (e.g., IoT devices) produce streams
of data, and data consumers (e.g., users or applications) are granted access to streams of data. A
user’s access to data is usually granted with an expiry time, which is enforced cryptographically.
In JEDI, the frequency with which a data producer must invoke expressive cryptography is tied
to the granularity at which a data consumer’s expiry time may be specified. For example, if the
system is configured to allow a data consumer’s expiry time to be specified as a timestamp with
hour granularity, then a data producer must invoke expressive cryptography for a data stream once
per hour; if the system is configured to allow a data consumer’s expiry time to be specified as a
timestamp with minute granularity, then a data producer must invoke expressive cryptography for
a data stream once per minute. This adds a “knob” to the system configuration, allowing one to
tune the overhead of expressive cryptography in JEDI according to the resource constraints of the
application scenario by configuring the granularity at which expiry times may be specified. For
the IoT sensing devices we considered in our study evaluating JEDI, we found that we can specify
expiry times at one-hour granularity and achieve several years of battery life. To support IoT
sensing devices that are even more energy-constrained, we could easily reconfigure the system (i.e.,
“turn the knob”) to use coarser (e.g., six-hour granularity) expiry times. Conversely, if deploying
JEDI on more powerful data producers without strict energy constraints, it may be feasible to
support finer-grained (e.g., minute-granularity) expiry times.

We also applied this technique in Ghostor to control the frequency of blockchain transactions.
Blockchain transactions are expensive not only because blockchains like Bitcoin have limited
transaction throughput, but also because issuing a transaction on a blockchain has a monetary
cost paid in cryptocurrency. Ghostor is a system for storing and sharing data that uses a blockchain
to provide a verifiable integrity guarantee. Periodically, the server posts a small checkpoint to the
blockchain. After interacting with a Ghostor server to access data, a user can wait until the next
checkpoint and run a procedure to verify that the server correctly carried out operations before

CHAPTER 3. SYSTEM DESIGN TECHNIQUES FOR EXPRESSIVE CRYPTOGRAPHY 27

the checkpoint. This means that if a Ghostor server posts checkpoints with a certain delay (e.g.,
once per three hours), then users will be able to detect any integrity violations on the server within
that delay (e.g., within three hours). As a result, the frequency with which the server must issue
blockchain transactions is tied to the delay within which users can detect integrity violations. This
makes Ghostor, like JEDI, inherently flexible. For example, applications that can tolerate a longer
delay to detect integrity violations can be supported with a lower-cost server configuration that
posts checkpoints more rarely.

This technique can be understood as a generalization of using cryptography rarely. The effi-
ciency gains come from being able to invoke expressive cryptography less frequently. The differ-
ence is that invoking expressive cryptography less frequently, with this technique, does not come
for free—some aspect of the system’s functionality or security (e.g., granularity of expiry times in
JEDI or delay before integrity violations are detected in Ghostor) is traded off. Still, this technique
can provide the needed flexibility to navigate the functionality-performance trade-off and tune the
system’s use of expressive cryptography according to the application scenario at hand. Such tuning
can significantly impact efficiency; for example, changing the granularity of expiry times in JEDI
from minute-level granularity to hour-level granularity reduces the cost of expressive cryptogra-
phy by 60×, since there are 60 minutes in an hour. For application scenarios for which hour-level
granularity is sufficient, these efficiency gains can be considered essentially free.

3.2.3 Identify and Use the Cheapest Cryptographic Primitive
The fifth system design technique is to identify and use the cheapest cryptographic primitive that
provides the needed functionality and security. Due to the expressivity-efficiency trade-off (Sec-
tion 2.2.2), this generally involves identifying the least expressive cryptographic tool that can sup-
port the desired application. Sometimes, the most widely known and studied cryptographic tools
are more expressive than necessary for an application. Identifying a scheme that is less expressive
yet expressive enough for the application can yield substantial performance gains.

For example, we applied this technique when choosing the expressive cryptographic scheme
to use to encrypt data in JEDI. It is widely recognized that IoT applications stand to benefit from
the complex access policies supported by Attribute-Based Encryption (ABE) schemes [358, 200].
Indeed, ABE supports the functionality that JEDI needs—it allows a data producer to encrypt a
data stream according to a policy describing which data consumers should be able to receive it.
In designing JEDI, we studied existing IoT systems, which do not encrypt data, to understand the
kinds of policies that IoT systems must support. We found that ABE supports more general policies
than existing IoT systems, unconstrained by cryptography, actually use. We identified that WKD-
IBE [2], an encryption scheme that is less expressive than ABE, is sufficient to support the policies
that IoT systems need. Yet WKD-IBE, being less expressive than ABE, is also more efficient than
ABE—it is an order of magnitude faster to encrypt data and has significantly smaller ciphertexts.
JEDI, by virtue of using WKD-IBE instead of ABE, inherits these performance benefits.

Note that, in general, no cryptographic scheme will exactly capture the needs of the application.
Thus, it is often necessary to choose a scheme that is slightly more general. For example, even
WKD-IBE, while closer to the needed functionality than ABE, still supports more general policies

CHAPTER 3. SYSTEM DESIGN TECHNIQUES FOR EXPRESSIVE CRYPTOGRAPHY 28

than existing IoT systems unconstrained by cryptography need. As a result, it is not always clear
that a cheaper, less expressive scheme that still provides the needed functionality and security even
exists. In designing JEDI, we found that, while ABE supports more general policies than IoT
systems need, prior expressive encryption schemes, like IBE and HIBE, are not expressive enough
to support the needed policies. Furthermore, WKD-IBE is not an obvious choice, as it is less
widely known than IBE, HIBE, or ABE. Identifying a cheaper encryption scheme, therefore, may
be nontrivial, and it may even require custom design of a new cryptographic scheme specialized to
the application at hand.

Ghostor’s privacy design is not an application of this technique, but it is instructive to analyze
it from the standpoint of this technique. Ghostor protects user privacy by delinking user identities
from data accesses—that is, preventing the storage server from learning which users access a given
data object. Some existing systems attain this property by achieving obliviousness—hiding from
the storage server the data object to which each access corresponds. Unfortunately, this requires
a linear scan over the data or multi-client variations of ORAM [30, 328], which are expensive.
Ghostor takes a different approach—it hides the user identity corresponding to each access instead
of which data object is accessed. This can be viewed as identifying the most efficient cryptographic
primitive to achieve the desired security goal (i.e., identifying that ORAM is not necessary to
delink user identities from accessed data); in this sense, Ghostor’s privacy design is in the spirit of
this technique. That said, we do not consider Ghostor’s privacy design to be a direct application
of this technique because it affects the security guarantees of the overall system—as we explain
in Section 6.1.1, anonymity and obliviousness are different security guarantees that are largely
orthogonal to one another. In contrast, using WKD-IBE instead of ABE in JEDI requires carefully
choosing the system’s functionality but does not affect security.

3.2.4 Develop Application-Specific Cryptographic Interfaces
The sixth system design technique is to develop application-specific cryptographic interfaces.
Cryptographic schemes are often written with generic interfaces that allow them to be used in
flexible ways. However, the way in which a particular system or application uses the scheme may
allow an application-specific interface that admits additional algorithmic optimizations.

We applied this technique to JEDI to optimize the way in which it encrypts data. The WKD-
IBE Encrypt function gives an algorithm to produce a ciphertext given public parameters, a list of
attributes, and a message. We can represent this interface as Encrypt(params,attrs,msg)→ ct.
In our JEDI protocol, a device repeatedly encrypts data with similar sets of attributes—adjacent
encryptions usually only differ in one attribute. This allows us to develop an optimized encryption
algorithm that uses an intermediate result from each encryption operation to accelerate the next
encryption. Our new interface can be represented as Encrypt(params,Q,attrs,msg) → ct,Q′,
where Q is the intermediate result from the previous encryption and Q′ is the intermediate result
to use in the next encryption.1 Computing the ciphertext from the intermediate result is 2–3×

1When we explain this technique in greater depth in Section 7.3.6.2, we split up the new Encrypt interface into
two routines: EncryptPrepared, which outputs ct, and AdjustPrecomputed, which outputs Q′.

CHAPTER 3. SYSTEM DESIGN TECHNIQUES FOR EXPRESSIVE CRYPTOGRAPHY 29

Applications

System

Hardware

Figure 3.1: Classical system design: the system provides applications with access to the hardware.

faster than computing the ciphertext from scratch. At a high level, this particular optimization
has similarities to caching—we are, in effect, caching the intermediate result Q and reusing it to
accelerate the subsequent encryption.

Note that we are not proposing to develop new cryptographic schemes. While effective, de-
veloping a new cryptographic scheme would constitute a cryptographic technique, not a system
design technique. Instead, we are proposing to develop new application-specific interfaces that
provide faster algorithms to compute the same cryptographic objects (e.g., ciphertexts). In JEDI,
for example, the ciphertexts resulting from our optimized Encrypt interface have exactly the same
form as ciphertexts produced through the ordinary WKD-IBE Encrypt interface. The optimization
merely provides a faster encryption algorithm for the existing WKD-IBE scheme, enabled by a
new, JEDI-specific encryption interface to WKD-IBE.

3.3 When to Use Each Class of Techniques
The classical view of systems is as follows. Applications need to make use of computer hardware
(i.e., computing resources) in order to function. The term system usually refers to the layer of soft-
ware that manages computer hardware for users and their applications, providing applications with
access to hardware and mediating their access as necessary to provide properties like protection
and isolation. As shown in Figure 3.1, this can be visualized as a software stack with applications
on top, hardware on the bottom, and the system in the middle.

On first glance, however, it is unclear exactly where expressive cryptography fits in this picture.
On the one hand, expressive cryptography may be considered as part of the application; expres-
sive cryptography consumes resources, and the techniques in Section 3.1 apply to systems that

CHAPTER 3. SYSTEM DESIGN TECHNIQUES FOR EXPRESSIVE CRYPTOGRAPHY 30

Applications

System
rethinking how to use

expressive crypto

Hardware

System
rethinking how to support

expressive crypto

Expressive Cryptography

Figure 3.2: With expressive cryptography, there are two system layers: one providing applications
with access to expressive cryptography, and another providing expressive cryptography with access
to the hardware.

manage how expressive cryptography makes use of the underlying resources. On the other hand,
expressive cryptography may itself be considered a resource; although expressive cryptography
is not hardware, the techniques in Section 3.2 show how systems manage how applications make
use of expressive cryptography. Clearly, expressive cryptography and system design are closely
intertwined. We capture this with the software stack shown in Figure 3.2. Note that the classical
software stack in Figure 3.1 remains relevant, as applications still need to access hardware for rea-
sons other than using expressive cryptography. Thus, the two software stacks in Figure 3.1 and
Figure 3.2 should be considered parallel stacks that co-exist side by side for applications that use
expressive cryptography.

With the software stack in Figure 3.2, it is clear how each class of system design techniques
is applicable. The first class of techniques (Section 3.1) applies to the underlying systems that
expressive cryptography depends on—the lower system layer in Figure 3.2. The second class
of techniques (Section 3.2) applies to systems that make use of expressive cryptography to sup-
port an application—the upper system layer in Figure 3.2. That said, some systems span both
layers, and therefore benefit from both classes of techniques. As an example, consider systems
that enable secure collaborative data analytics based on SMPC, such as SMCQL [37] and Con-
clave [463]. To minimize the overhead of SMPC, these systems should do two things. First, they
should execute SMPC as efficiently as possible. The first class of techniques addresses this. Sys-
tems like MAGE can allow them to do so, by reducing the memory-related performance overheads
of SMPC. Second, they should use SMPC in as efficient a way as possible. The second class of
techniques addresses this. For example, both SMCQL and Conclave have cryptographic planners

CHAPTER 3. SYSTEM DESIGN TECHNIQUES FOR EXPRESSIVE CRYPTOGRAPHY 31

(Section 8.1.2) that aim to produce executions plans that use SMPC in a minimal way, relying on
non-cryptographic computation wherever possible. An individual research project may focus on
one of these layers, and therefore draw primarily from only one class of techniques—for example,
the SMCQL and Conclave publications focus primarily on the respective systems’ cryptographic
planners. But the overall system has both a cryptographic planner and execution engine, and there-
fore benefits from both classes of techniques. Research projects that take a holistic view of the
system may also draw from both classes of techniques. For example, JEDI not only presents tech-
niques for using an expressive encryption scheme in an efficient way (second class of techniques),
but also includes hand-written assembly for executing the expressive encryption scheme (first class
of techniques). Both aspects of JEDI’s design contributed to performance improvements compared
to a naı̈ve baseline design.

The next four chapters demonstrate the validity of these techniques through the design, imple-
mentation, and evaluation of systems designed using them. The chapters are organized roughly
according to the order of the techniques above. Chapter 4 describes MAGE, which can be under-
stood as an application of the first technique (Section 3.1.1). Chapter 5 describes TCPlp, which
is an application of the second technique (Section 3.1.2). Chapter 6 describes Ghostor, which is
based on the third and fourth techniques (Section 3.2.1 and Section 3.2.2). Chapter 7 describes
JEDI, which applies all of the techniques except the first, in particular including the fifth and sixth
techniques (Section 3.2.3 and Section 3.2.4).

32

Chapter 4

Supporting Secure Computation with
Nearly Zero-Cost Virtual Memory

This is the first of two chapters exploring the techniques in Section 3.1. We focus in this chapter on
tools for computing on encrypted data, like Secure Multi-Party Computation (Section 2.1.3.1) and
Homomorphic Encryption (Section 2.1.3.2). As described in Sections 2.1.3 and 2.2, these tools
enable compelling applications like secure collaborative data analytics, but a significant obstacle
is the memory overhead of the underlying cryptography.

This chapter presents the design, implementation, and evaluation of MAGE, an execution en-
gine for computing on encrypted data. By applying the technique from Section 3.1.1, MAGE
addresses the high memory overhead of these tools, efficiently running encrypted computations
that do not fit in memory. MAGE significantly outperforms the OS virtual memory system, and in
many cases, runs encrypted computations that do not fit in memory at nearly the same speed as if
the underlying machines had unbounded physical memory to fit the entire computation.

4.1 Introduction
As described in Section 2.1.3, a variety of expressive cryptographic tools exist for directly protect-
ing computation. We use the term Secure Computation (SC) to refer to the subset of those tools
that enable computation on encrypted data, like Secure Multi-Party Computation (SMPC) and Ho-
momorphic Encryption (HE). Recently, the use of SC in industry has burgeoned. Companies offer
services based on SC [244, 146, 122, 98, 374, 272] (from secure collaborative learning to decentral-
ized authentication and custody), large financial enterprises have added SC-based products [375],
and cryptocurrencies secure billions of dollars with SC [506].

As described in Section 2.2, SC not only has high CPU overhead, but also requires high mem-
ory usage and, in the case of SMPC, high network usage. For example, a 64-bit integer, which
requires only 8 B of memory when computing in plaintext, takes up 1 KiB of memory when using
garbled circuits, a type of SMPC. Efficiently running SC requires careful attention to not only CPU
efficiency, but also memory and network demands.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 33

CPU overheads can be reduced using hardware accelerators (e.g., GPUs, FPGAs) or special-
ized hardware (e.g., AES-NI). Network bandwidth continues to grow exponentially according to
Nielsen’s Law [360], and recent cryptographic improvements have relaxed network bandwidth de-
mands for some SC protocols [85, 109]. But memory management remains problematic. Many
recent cryptographic systems based on SC report that SC systems quickly run out of memory [463,
380, 515, 516]. Once they do, the computation becomes prohibitively slow because the OS in-
efficiently swaps the large memory footprint to secondary storage. For example, the authors of
Conclave [463] report that Obliv-C, an SMPC framework, can run a join on only 30,000 records
before running out of memory, and state that SMPC “in practice only scales to a few thousand
input records.” Similarly, Senate [380], a secure collaborative analytics engine based on SMPC,
can run a 16-party private set intersection on only 10,000 integers per party.

In this context, we address the research question: Can SC execute efficiently when it does not
fit in memory? We answer this in the affirmative with our system MAGE, an execution engine for
SC. MAGE stands for Memory-Aware Garbling Engine, but it is not limited to garbled circuits.

A natural starting point for MAGE is to specialize the OS page replacement policy to SC
workloads. Unsurprisingly, this design suffers from some of the same pitfalls as classic virtual
memory systems. Pages may not be fetched until a page fault occurs, requiring multiprogramming
to keep the CPU busy [140]. Furthermore, classic page replacement algorithms perform poorly on
some workloads [40], and a policy specialized to SC would likely be no different.

To mitigate these issues, we observe that SC is inherently oblivious. In particular, many SC
protocols have no data-dependent memory accesses. This is because an SC protocol must not leak
any information about the data contents via its memory access pattern. Our key insight in MAGE
is that SC’s inherent obliviousness allows us to calculate the access pattern for any computation
in advance and use it to manage memory in a fundamentally more efficient way than classic OS
paging. This is an application of the technique from Section 3.1.1 to manage memory according to
the structure of the computation (i.e., its obliviousness). Unlike paging, which typically responds
to page faults reactively, MAGE can proactively produce a memory management plan based on
the program’s memory access pattern. To highlight this distinction, we call our approach mem-
ory programming and the resulting plan a memory program. MAGE preplans the exact sequence
of memory-storage transfers to issue at runtime, given a target memory consumption. Enabled
by memory programming and the compute-to-memory ratio of SC workloads, MAGE executes
certain SC programs that do not fit in memory at nearly in-memory speeds, as if memory were
unbounded—in effect, virtual memory at nearly zero cost.

To understand the power of MAGE’s preplanning based on SC’s obliviousness, consider Be-
lady’s theoretically optimal paging algorithm (MIN) [40]. MIN, being a clairvoyant algorithm, is
not realizable in the classic formulation of paging; it is typically used as a point of comparison
to other realizable heuristics. But in the context of memory programming, MAGE can use MIN
directly, because it knows the access pattern in advance. Memory programming allows MAGE to
use an algorithm that is well-grounded in theory, instead of a heuristic (e.g., LRU or LFU) that
sometimes performs poorly.

Yet memory programming also raises the bar for possible memory management strategies.
For example, although MIN is an optimal paging algorithm, it unfortunately does not produce an

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 34

optimal memory program. The reason is that MIN, like other demand paging algorithms, brings
a page into memory only at the moment it is needed, thereby causing the program to stall while
transferring the page. We can overcome this by leveraging SC’s obliviousness once again, to
prefetch according to the access pattern (i.e., with no false positives or false negatives) so that the
program never stalls.

At its core, our approach to memory management is quite simple: MAGE optimizes storage
bandwidth by evicting pages using MIN, and optimizes latency via prefetching and asynchronous
eviction. Whereas classic paging algorithms typically rely on heuristics and empirical observations
of what works well in practice [80], our memory programming approach is simple, well-grounded,
robust, and performant.

While conceptually simple, the above strategy is challenging to instantiate efficiently. The
reason is that MIN requires the entire memory access pattern to be materialized at once; it cannot
be applied in a streaming fashion. Using Intel Pin [326], we found that an SC workload that runs
in under an hour can issue trillions of memory accesses. Thus, materializing the access trace could
require terabytes of space.

To address this, we leverage the strong precedent for using DSLs to specify SC programs [218,
460]. MAGE’s planner represents the program as a bytecode recording higher-level operations
specified in the DSL program. This is more succinct than recording individual memory accesses.
For example, consider a program that adds two integers using garbled circuits, an SMPC protocol.
Garbled circuits support only AND and XOR operations on encrypted bits, so the integer addition
is ultimately decomposed into encrypted AND and XOR operations, each of which comprises
many memory accesses. Yet, MAGE records the entire addition operation as a single entry in
the bytecode. This works well because most of the addition operation’s memory accesses are
“uninteresting”—they are accesses to temporary variables (e.g., on the stack) that fit easily in
memory, or to SC protocol state that should remain in memory for the entire program. The only
consequential accesses for memory management—reading the two input integers and writing the
output integer—are captured in the single entry MAGE records.

Once MAGE allows SC to efficiently expand beyond the physical memory limit, another lim-
ited resource (e.g., storage/network bandwidth or CPUs) of a single machine could become the
bottleneck. Thus, we design MAGE to support parallel SC execution across multiple network
flows, CPU cores, or machines. To do so, we observe that a distributed memory programming
model allows SC to be parallelized in this way, without requiring MAGE’s planner to reason about
threads executing concurrently in the same address space.

Finally, we aim to support a variety of applications and protocols, including new ones that
may emerge in the coming years. The challenge is that different SC protocols may be very differ-
ent cryptographically and may support different operations efficiently. Fortunately, our memory
programming approach allows us to build MAGE entirely in userspace on a Linux system, help-
ing to make MAGE extensible to new applications and protocols. We carefully design a layered
architecture for MAGE so that the DSL, bytecode, and interpreter can be extended for new SC
protocols.

We implemented MAGE in C++ and apply it to two SC protocols: (1) garbled circuits, a type
of SMPC, and (2) CKKS, a type of HE. We evaluated MAGE using 10 workloads, sized such

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 35

that they do not fit in memory. MAGE outperforms the operating system’s virtual memory for all
10 workloads, and outperforms it by 4–12× for 7 of them. Additionally, MAGE executes all 10
workloads at within 60% of in-memory speeds, and runs 7 of them at within 15% of in-memory
speeds.

Even with our techniques, SC remains orders of magnitude slower than plaintext computation
due to CPU and network overheads. That said, various applications like federated data analyt-
ics [37, 380], coopetitive machine learning [515], and privacy-preserving recommendation [361]
require SC. Due to privacy constraints, running these applications in plaintext is not an option.
By bringing memory management overhead for SC to nearly zero, MAGE helps make SC more
practical and potentially enables more SC-based applications.

4.2 Secure Computation Background
In this section, we augment the background provided in Section 2.1.3 with details that will help
the reader understand our system MAGE.

4.2.1 Circuit Representation
As explained earlier, SC is inherently oblivious, meaning that any function f computed using SC
cannot have data-dependent memory accesses. Thus, it is natural to describe the function f as a
circuit C [333, 233, 99, 134]. C is a combinational circuit that accepts the arguments to f as inputs
and produces the result of f applied to those arguments as its output. We write C = (W,G), where
W is a set of wires and G is a set of gates. Each wire represents a datum whose type is the unit of
computation in the SC scheme (in most cases, it is the information stored in a single ciphertext).
We denote the subset of W storing C’s input as I, and the subset of W storing C’s output as O. Each
gate represents a computation supported by the SC scheme. We will typically assume that each
gate has exactly one output wire, and that each w ̸∈ O is the input wire of at least one gate. Thus,
|W |= |G|+ |I|.

The particular data types represented in the wires and the types of supported gates depend on
the particular SC scheme of interest. For the CKKS homomorphic encryption scheme [115], each
wire represents a vector of real numbers and each gate represents an element-wise addition or
multiplication of those vectors. For garbled circuits [496], each wire represents a single bit and
each gate represents a binary AND operation or XOR operation on those bits. Other SC schemes
can be similarly formulated this way. Below, we explain CKKS and garbled circuits in greater
depth.

4.2.2 CKKS Homomorphic Encryption
In the CKKS scheme [115], each ciphertext encodes a vector of real or complex numbers (stored
with limited precision). Given ciphertexts c1 = Enc(v⃗1) and c2 = Enc(v⃗2), one can compute
Enc(v⃗1 + v⃗2) and Enc(v⃗1 ◦ v⃗2) (where ◦ is element-wise multiplication). The dimension of each

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 36

vector depends on parameters chosen during key generation. Each ciphertext is assigned a level,
which is a nonnegative integer. When performing the element-wise multiplication operation, both
input ciphertexts must have the same level; the level of the output ciphertext is one less than the
level of the inputs. Performing element-wise addition does not reduce the ciphertext level the
way element-wise multiplication does. A ciphertext at level 0 cannot be used for element-wise
multiplication. The maximum level of a ciphertext depends on the parameters chosen during key
generation. While one can run a bootstrapping procedure to increase the level of a ciphertext, it is
very expensive, and therefore not implemented by all libraries.

4.2.3 Garbled Circuits
Yao’s garbled circuit protocol [496] (referred to simply as garbled circuits) allows two parties,
called the garbler and the evaluator, to jointly compute a function f over their private inputs x1
and x2. The protocol requires f to be represented as a boolean circuit C. Unlike CKKS, there are
no restrictions on C’s depth. However, both parties have to execute the circuit.

First, the two parties run a protocol called oblivious transfer to obtain the (encrypted) wire
values for their inputs without revealing their inputs. Then the garbler encrypts C in a special
way called garbling to obtain C̃, called a garbled circuit. The process of garbling is analogous to
executing the circuit; a gate cannot be garbled until the (encrypted) values of both input wires are
obtained, and garbling a gate produces, as a side effect, the (encrypted) value of the output wire.
Then, the garbler sends C̃ to the evaluator. The evaluator executes the circuit, executing each gate
using the gate’s garbled information in C̃. Finally, the two parties communicate to decipher the
plaintext values of the output wires.

If the parties would like to repeat the computation again with different inputs, they must re-
garble C. It is insecure to reuse the same garbled circuit C̃ with different sets of inputs.

More comprehensive explanations of garbled circuits, their underlying cryptography, and their
state-of-the-art optimizations are available in other resources [398, 52, 494].

4.2.4 Efficiently Executing Circuits
In this section, we give background on existing techniques for efficiently executing cryptographic
circuits. Although many of these techniques were developed for garbled circuits, they mostly apply
to homomorphic encryption as well.

4.2.4.1 Naı̈ve Baseline

Early garbled circuit systems, like Fairplay [333], JKS [257], and PSPW [378], allocate memory
for all wires and store the entire garbled circuit in memory. The memory overhead isO(|W |+ |G|).
Because, for a well-formed circuit, |G|+ |I|= |W |, this is equivalent to O(|W |).

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 37

4.2.4.2 Pipelining Garbling and Evaluation

After the garbler garbles a gate to include in C̃, the garbler does not use that gate’s garbled data.
Similarly, once the evaluator evaluates a gate, it never again uses that garbled gate. Based on
this observation, the HEKM system [233] operates without keeping the entire garbled circuit in
memory, as follows. The garbler and the evaluator first agree on an order in which to execute the
gates in C. Then, the garbler garbles each gate and streams the garbled gates to the evaluator, who
evaluates the gates in the same order. In this way, all gates are garbled and evaluated, without
materializing the full set of garbled gates at any one time. Because space is allocated for all wires
in the circuit, the memory overhead is still O(|W |).

4.2.4.3 Reclaiming Wire Memory

When executing a circuit, one can discard the memory for a wire once all gates it feeds into have
been executed. Only wires whose values have been computed and will be used in the future—the
live wires—must be kept in memory. The KSS system [290] takes advantage of this by dynami-
cally attaching a reference count to each wire; PCF [289] statically calculates when to reuse wire
memory. Using interpretation techniques developed in PCF [289] and refined in Frigate [351], not
even the plaintext circuit is materialized in memory. TinyGarble [437], EMP-toolkit [474] (for
semi-honest SMPC), and EVA [134] also use variants of this technique. With this optimization,
the memory demand isO(w), where w is the size of the largest set of live wires when executing the
circuit. MAGE builds on this line of work by exploring how to efficiently swap to storage when w
wires do not fit in memory.

4.3 Memory Overhead of Secure Computation
First, we discuss the memory overhead of SC. Then, we discuss the memory overhead for collab-
orative applications.

4.3.1 Analysis of the Memory Demand
The size of the circuit, for a computation, is proportional to the size of the computation. But
in many cases, the memory demand is substantially smaller than the circuit size; only w wires
need to be stored, where w is the size of the largest set of live wires when executing the circuit
(Section 4.2.4.3).

In practice, circuits are often described in a programming language [218, 460] and gates are
executed in the same order as the program is interpreted. In this execution order, live wires corre-
spond to in-scope variables in the program. Thus, the memory usage of running an SC program
has the same order of growth as running the same algorithm in plaintext.

The memory cost of SC lies in the constant factors. When executing a secure computation
protocol, the wire values are encrypted. Thus, a key parameter is the expansion factor of the
encryption. In garbled circuits using a 128-bit block cipher, including state-of-the-art optimizations

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 38

Program
...
while	(...)	{
		a[i]=b[i]+c[i]
}
...

Memory Program
add	32,64,96
issue-swap-in	6,8
add	108,120,152
finish-swap-in	6

MAGE's Planner
(memory

programming)

Memory Program
add	32,64,96
issue-swap-in	6,8
add	108,120,152
finish-swap-in	6

MAGE's
Interpreter

(engine+protocol)
Output

Input

(can be reused)

Figure 4.1: Overview of MAGE. It consists of two phases: planning (top) and execution (bottom).

(Point-and-Permute [39], Free XOR [286], Half Gates [504], and Fixed-Key Block Cipher [44,
209]), each wire value is 16 bytes. Each wire represents only 1 bit of plaintext, so this is a 128×
expansion factor. For CKKS, ciphertexts at higher levels are larger than ciphertexts at lower levels.
For the parameters we used in our evaluation, each ciphertext is hundreds of kilobytes and encodes
a vector of dimension up to 4,096.

4.3.2 Scaling Collaborative Applications
SMPC supports collaborative applications over secret data, such as federated data analytics [37]
and cooperative machine learning [347]. A common technique to reduce SMPC’s overhead is to
use SMPC in a minimal way. For example, some approaches aim to use SMPC for only a small part
of the overall computation [37, 323, 262, 463, 515]. Others carefully choose algorithms that can
be executed efficiently in SMPC or use approximations that incur less overhead [347, 397, 346].
But even with these approaches, the SMPC computation often has high memory demands [380].
Thus, it remains important to efficiently execute SMPC computations that do not fit in memory.

4.4 System Overview
SC workloads are oblivious by nature. Thus, MAGE can work out the program’s memory access
pattern in advance, and use this information to produce a memory management plan, called a

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 39

memory program, tailored to the particular access pattern. Importantly, obliviousness is not merely
an artifact of certain existing SC schemes; it is inherent to SC. Otherwise, an adversary could
potentially infer information about secret data based on the memory access pattern.

To support this paradigm, MAGE’s workflow has two phases, as shown in Figure 4.1. An SC
application is written in a DSL internal to C++. MAGE’s planner unrolls the DSL code to produce
a bytecode, and then performs transformations on the bytecode to produce a memory program.
In MAGE, the memory program is a bytecode that includes swap directives describing when to
transfer data between storage and memory. Finally, the memory program is given to MAGE’s
interpreter, which executes it using the SC protocol.

For multi-party protocols, the parties run separate instances of MAGE’s interpreter. In the case
of garbled circuits, garbled gates are streamed from the garbler to the evaluator, as described in
Section 4.2.4.2. Both the garbler and evaluator use MAGE to follow a memory program and run
with constrained memory.

Our approach of including swap directives in the memory program relies on the planner know-
ing how much memory will be available at runtime. An alternative approach is for memory pro-
grams to be agnostic to the amount of available memory. This would add runtime overhead, as
MAGE’s interpreter would need to decide which pages to evict. In contrast, our approach moves
this overhead to the planning phase, keeping the execution phase as lightweight as possible.

4.4.1 Address Translation
The application programmer should not have to manage paging, so it is natural to write DSL
programs in a virtual address space that is, in effect, infinitely large. Central to designing MAGE
is deciding at which point in Figure 4.1 to translate this address space into a physical address space
that fits in RAM.

One possibility (which MAGE does not use) is to perform address translation at runtime, using
standard operating system mechanisms for prefetching and address translation. At runtime, swap
directives in the memory program would ask the operating system to page parts of the virtual
address space out to storage or in to RAM. Unfortunately, the existing way for a Linux process
to do this—the madvise system call—is too limited. As of Linux 5.10, pages brought into RAM
using the MADV WILLNEED hint are not mapped in the page table, so a minor page fault is incurred
on the first subsequent access. Similarly, the MADV PAGEOUT hint merely marks pages as inactive;
it does not swap out pages immediately.

In contrast, MAGE does not rely on OS address translation for demand paging. MAGE’s engine
moves data between memory and storage via explicit I/O operations, so that its resident set size
never exceeds the available RAM. At the surface, this is similar to buffer management in a DBMS.
But unlike a DBMS, MAGE’s planner can be viewed as solving an address translation problem in
advance. The DSL variables declared by the programmer exist in a MAGE-virtual address space,
and the final memory program output by the planner references data (i.e., wire values) in a MAGE-
physical address space that fits within RAM. MAGE’s planner creates these address spaces and
performs their translation in software during the planning phase. It includes swap directives in the
memory program so that the interpreter does not run out of RAM.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 40

To avoid confusion, we will refer to the addresses created by the OS and sent over the memory
bus as OS-virtual addresses and OS-physical addresses. At runtime, MAGE’s interpreter stores
the program’s memory in an array, and each MAGE-physical address in the memory program is
treated as an index into this array. Thus, MAGE-physical addresses roughly correspond to the
OS-virtual addresses of MAGE’s interpreter.

MAGE’s approach to address translation has several advantages. First, unlike an madvise-
based approach, MAGE’s planner has nearly complete control over when pages are brought into
memory and evicted to storage. Second, by translating addresses in the planner, MAGE avoids
address-translation-related overheads at runtime. In contrast, relying on OS address translation
would mean minor page faults, page table updates, and TLB invalidations at runtime.

MAGE’s approach also has a few drawbacks, however. First, the planning phase takes longer
because MAGE’s planner must translate all addresses in software. Second, memory programs are
considerably larger because they must contain not only swap directives, but also a copy of the
program translated to operate on MAGE-physical addresses. In particular, the memory program’s
length is proportional to the program’s execution time because a variable local to a function or loop
could be assigned different physical addresses each time the function is called or on each iteration
of the loop.

Overall, we felt that the advantages of this design outweighed its drawbacks. Longer planning
times seemed reasonable because planning can happen offline and the resulting memory program
can be used repeatedly. The larger memory program size was an acceptable trade-off because
MAGE’s planner materializes an unrolled form of the program anyway to run Belady’s algorithm.
Meanwhile, MAGE’s planner is afforded nearly full control of page eviction and replacement and
MAGE’s runtime overheads remain relatively small.

4.4.2 Bytecode Representation
Recall that MAGE’s planner expresses the program as an unrolled (branch-free) bytecode, and
performs transformations on it to compute the memory program bytecode. What operations should
the bytecode instructions support?

One possibility would be for the bytecode to describe low-level operations similar to those
supported by a CPU, excluding control flow instructions. Unfortunately, such a bytecode includes
the raw memory trace of the program, which, as discussed in Section 4.1, can be impractically
large.

One alternative, used by PCF [289] and Frigate [351]1 (but not MAGE), is to have each instruc-
tion correspond to a gate in the circuit C being executed. This approach would require a protocol
driver in MAGE’s interpreter that executes each gate using the SC protocol. To understand why
this is inefficient, consider garbled circuits, for which gates are binary and wires represent bits. The
programmer specifies the circuit in terms of operations on high-level types such as integers, which
are then compiled into bit-level operations. Thus, each time the program performs a high-level

1Unlike MAGE, these systems also include control flow operations.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 41

MAGE's Planner

Integer to
AND/XOR

Integer to
Binary

Garbled
Circuits WRK CKKS

Integer
DSL

Batched
Real DSL

Analytics (Sort,
Join, etc.)

Machine Learning
(Matrix-Vector
Multiply, etc.)

Application

DSL

Planner

Engine

Protocol
Ops supported by protocol

Instruction types output by DSL

Instruction formats output by DSL

Features provided by DSL

Figure 4.2: MAGE’s envisioned ecosystem, with planning as the narrow waist.

operation (e.g., adding two integers), the same subcircuit (e.g., describing integer addition in terms
of binary gates) is repeated in the bytecode.

To eliminate this repetition, MAGE has each instruction describe a high-level operation di-
rectly. This requires not only a protocol driver, but also an engine in MAGE’s interpreter that
expands each instruction into the relevant subcircuit at runtime. MAGE’s planner does not need
to materialize the subcircuits because wires internal to the subcircuits are very short-lived and
therefore can be ignored.

4.4.3 Ecosystem and Extensibility
An important consideration in MAGE’s design is to be applicable to a range of SC protocols. For
example, garbled circuits and homomorphic encryption (CKKS) have quite different computation
models, yet we show how MAGE captures both. MAGE’s envisioned ecosystem can be understood
as a set of layers with a narrow waist, as shown in Figure 4.2. The narrow waist is MAGE’s planner;
MAGE’s core planning algorithms can be used with a variety of applications and interpreters.

MAGE’s interpreter has two layers. The upper layer, called the engine, decomposes each
instruction into a subcircuit of gates supported by the target SC protocol (Section 4.4.2). The
lower layer, called the protocol driver, evaluates gates with the SC protocol. For example, when
using a protocol that supports only binary AND and XOR operations (e.g., garbled circuits), one
must use an engine that decomposes each instruction into a circuit of AND and XOR gates. In
contrast, when using a protocol that supports all types of binary gates (e.g., TFHE [116]), one can
use an engine that uses all types of gates.

One must choose compatible implementations at each layer. For example, once one has se-
lected an SC protocol, one should choose an engine that executes each instruction using operations

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 42

supported by that protocol. Then, one should select a DSL that outputs instructions that the chosen
engine understands. Finally, one must write the application in that DSL.

MAGE’s planner, however, is universally compatible, allowing it to be the “narrow waist” of
the ecosystem. The first reason is that MAGE’s planner does not have to understand what each
instruction does, only what memory it accesses. Thus, even if a new instruction is introduced
into a DSL, extending a header file to specify its format (which includes which fields are memory
addresses) is enough for the planner to understand that instruction. The second reason is that
MAGE’s planner does not introduce any new instructions except for swap directives, which all
engines understand. Thus, if an engine understands the instruction types output by MAGE’s DSL,
then the engine will also be able to interpret the planner’s output (i.e., the memory program).

A number of frameworks and DSLs for SC [218, 460] aim to make it easier for non-SC-experts
to use SC. In contrast, MAGE is an efficient SC execution engine; its DSLs are not necessarily
geared toward non-experts, do not optimize the resulting circuit, and might expose low-level SC
operations. We discuss how these frameworks fit into Figure 4.2 in Section 4.9.

4.5 Engine
MAGE’s execution engine is an interpreter for the final memory program. First, it allocates an
array to store the program’s data. Each MAGE-physical address is an index into this array. To
execute an instruction, MAGE reads the instruction’s arguments from this array, makes calls to the
protocol layer to compute the output, and writes the output back to the array. Each instruction in
the memory program references its input and output data directly by MAGE-physical address; the
engine sees no MAGE-virtual addresses. Some instructions, such as those requesting pages to be
transferred between storage and memory, are handled directly by the engine, without calling the
protocol. We call such instructions directives.

4.5.1 Parallel/Distributed Engine
SC is resource-intensive, so it is natural to scale SC by executing the protocol in a distributed
fashion across multiple CPU cores or multiple machines. The multiple-machine case is useful to
overcome resource constraints associated with a single machine such as limited CPU cores, limited
storage I/O, or, in the case of SMPC, limited network bandwidth. This is different from having
multiple parties in SMPC. Here, we are parallelizing a single trust domain—for example, a single
logical party in SMPC may execute using multiple machines.

MAGE’s engine supports distributed execution across multiple workers. Each worker is a
thread of computation, running MAGE’s engine, operating on its own memory region (a MAGE-
physical address space). Workers differ from OS processes as follows: (1) each worker contains ex-
actly one thread, (2) workers are not necessarily isolated by hardware such as an MMU—multiple
workers in a MAGE computation could, in principle, run within the same process, and (3) memory
is statically partitioned among the workers.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 43

W

W W

W

W

W W

W
Party 1's MAGE

Computation
Party 2's MAGE

Computation

Figure 4.3: Example of distributed SMPC with MAGE. Workers are denoted as circles with W.
Solid lines indicate connections managed by MAGE’s engine; dashed lines indicate connections
managed by the protocol driver.

MAGE’s planner does not automatically infer how to parallelize the computation. Rather, the
programmer writes DSL code in a distributed memory model, explicitly indicating asynchronous
network operations to transfer data among the different workers. The resulting memory program
bytecode contains network directives that the engine interprets. Similarly, the protocol driver must
be written to function properly when the computation is distributed over multiple workers.

Programs for MAGE are parameterized by the Worker ID. MAGE’s planner is run once for
each worker. To generate the memory program for a worker, the planner processes only the ac-
cesses for that worker—it does not need to consider other workers’ accesses, because each worker
can only access its own memory region. Thus, the workers’ memory programs can be generated
independently and in parallel.

Using a distributed memory model provides two benefits. First, it allows MAGE to be agnostic
to whether workers are placed on a single machine or across multiple machines. Second, it guaran-
tees that the access pattern for each region of memory consists of a single well-defined sequence,
simplifying planning. To ease the difficulty of explicitly specifying network transfers, one can
build easier-to-use DSL libraries for common communication patterns (e.g., our implementation
provides a ShardedArray<T> abstraction).

4.5.2 Distributed SMPC
Some SC protocols, like SMPC, require interaction over the network between mutually distrusting
parties. For such protocols, each party runs a separate MAGE computation, with its own set of
workers. Whereas the MAGE engine handles intra-party communication between workers in the
same party, the protocol implementation handles inter-party communication among workers in
different parties. The inter-party topology is up to the protocol driver; our protocol driver for
garbled circuits uses a one-to-one inter-party topology (Figure 4.3).

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 44

Program
...
while (...) {
 a[i]=b[i]+c[i]
}
...

Virtual Bytecode
...
add 160,192,224
add 256,288,320
...

Memory Program
add 32,64,96
issue-swap-in 6,8
add 108,120,152
finish-swap-in 6

Placement

Execute DSL

Annotations
...
Page 1 next used
at Instr. 12
...

Replacement
Belady's
Algorithm

Physical Bytecode
...
add 32,64,96
add 108,120,152
swap-in 6,8
...

Scheduling
Add

Prefetching

Reverse
Pass

Figure 4.4: MAGE’s planner’s workflow, with its three stages.

4.6 Planner
Our memory programming approach is to calculate the memory access pattern in advance and use
it to preplan memory management. One can potentially preplan the following:

• Placement. How should we divide up a circuit into pages?

• Ordering. In what order should we evaluate the gates in the SC circuit to result in the best
memory behavior?

• Scheduling. When should pages that will be used in the future be swapped in from storage?

• Replacement. How should we choose pages to evict when making room for pages from
storage?

MAGE produces an approximate solution, using a heuristic for placement and optimizing schedul-
ing and replacement. Note that MAGE does not optimize ordering; it evaluates gates in the order
implicit in the DSL program for the circuit.2

4.6.1 Organization of the Planner
We organize MAGE’s planner into stages (Figure 4.4):

2Optimizing ordering may be NP-hard [302]. A system that does so would be very powerful—for example, it
would automatically block a loop join or tile a matrix multiplication. It is beyond the scope of this work.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 45

1. Placement. This stage accepts a DSL program and organizes wires into MAGE-virtual
pages. It outputs instructions referencing wires by MAGE-virtual address.

2. Replacement. This stage adds instructions to swap pages to/from storage, deciding which
pages to evict. It outputs instructions referencing wires by MAGE-physical address.

3. Scheduling. This stage moves swap instructions within the instruction stream and relocates
wires to mask the latency of moving data between memory and storage.

For a parallel/distributed program, MAGE’s planner is invoked separately for each worker, with
separate MAGE-virtual and MAGE-physical address spaces. Network directives in the program
transfer data among those address spaces.

MAGE’s planner does not benefit from MAGE’s memory programming techniques, so it is im-
portant that planning does not consume an unreasonable amount of memory. We keep the planner’s
memory usage lightweight by (1) writing/reading the intermediate bytecodes to/from files instead
of keeping it all in memory, (2) designing the DSLs to be lightweight, and (3) keeping track of
pages instead of individual bytes.

4.6.2 First Stage: Placement
MAGE’s placement module is, in effect, a page-aware memory allocator for the DSL. It unrolls the
DSL, allocating space for each variable and intermediate value in the MAGE-virtual address space.
It outputs a bytecode for the program in which each variable is referenced by its MAGE-virtual
address.

4.6.2.1 Unrolling the DSL Code

MAGE’s DSLs are internal to C++. This means that the DSL is a set of convenient C++ APIs to
specify the program’s behavior, often involving operator overloading. The program is specified as
a C++ function that uses these APIs.

Figure 4.5 shows a program that solves Yao’s Millionaire’s problem [495]. Integer<width>
describes an Integer datum with the specified width in bits. Bit is an alias for Integer<1>.

MAGE’s planner does not parse the DSL program’s source code or manipulate its AST. Instead,
it simply calls the C++ function containing the DSL program. As the DSL code executes, it
produces a bytecode describing the computation. For example, the overloaded + operator for
Integer emits an Add instruction in the output bytecode; it does not actually add integers using
secure computation. Each output instruction references its operands by MAGE-virtual address.
Thus, the DSL (e.g., the Integer class) calls MAGE’s placement module to allocate memory in
the MAGE-virtual address space for intermediate results, including those stored in variables.

For example, see Figure 4.5. On the mark input and >= operations, an allocation request
is made to MAGE’s placement module to obtain a MAGE-virtual address, and an instruction is
emitted to perform that operation (obtain input or integer comparison) and store the result at that
MAGE-virtual address. Once an Integer’s destructor is called, or if an Integer is reassigned to

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 46

void millionaire(const ProgramOptions& args) {

Integer<32> alice_wealth, bob_wealth;

alice_wealth.mark_input(Party::Garbler);

bob_wealth.mark_input(Party::Evaluator);

Bit result = alice_wealth >= bob_wealth;

result.mark_output();

}

Figure 4.5: Example code in an Integer-based DSL internal to C++ to solve Yao’s Millionaire’s
problem.

a new MAGE-virtual address, a deallocation request is made to MAGE’s placement module for the
MAGE-virtual address previously held by that Integer.

For a parallel/distributed program, the worker ID and total number of workers are provided via
the ProgramOptions structure. The C++ code can branch on these variables, to have each worker
operate differently and exchange data appropriately to perform the parallel/distributed computa-
tion.

Each Integer object contains only the MAGE-virtual address of its contents; other attributes,
such as width, are template arguments and do not consume memory. Thus, Integers and other
DSL-provided data types are typically smaller than the encrypted data items they represent. For
example, a 32-bit integer encrypted for the garbled circuit protocol is 1 KiB in size, whereas an
Integer<32> object used during planning is just 8 B (a single MAGE-virtual pointer). This helps
keep the memory cost of the planning phase small.

4.6.2.2 Memory Allocation Strategy

When MAGE’s placement module allocates memory for a variable, it ensures that the variable is
contained in a single MAGE-virtual page; a variable must never straddle two pages. The reason
is that two adjacent MAGE-virtual pages may not be adjacent in the OS-virtual address space at
runtime.

A key issue in designing the placement module’s memory allocator is internal fragmenta-
tion [391, 142]. Some fragmentation, which we call classic fragmentation, arises from the inability
to pack variables onto pages (e.g., part of a page’s space cannot store any variable). Another type
of fragmentation, which we call effective fragmentation, arises from the page’s lifetime exceeding
some of the variables it stores; if even one wire on a page is alive, the entire page remains alive.

To reduce classic fragmentation, MAGE’s placement stage uses techniques from slab alloca-
tors [74]. Each page contains only variables of a particular size. When a variable goes out of scope
in the DSL, its “slot” in its page is marked as free. When a space for a variable must be allocated,
MAGE’s placement module looks for a free slot in a page containing variables of that size; if no
such pages have free slots, it allocates a new page for variables of that size. The slab size is one

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 47

MAGE-virtual page. This ensures that no variable will straddle a page boundary. Just as in slab
allocators, some leftover space at the end of a page may be unusable, but this can be controlled by
tuning the page size. Unlike slab allocators, MAGE’s placement module does not preserve object
state across allocations.

To reduce effective fragmentation, MAGE’s placement stage uses the following heuristic when
allocating memory for a variable. If multiple pages, for the specified variable size, have free slots
available, then MAGE uses the candidate page with the fewest free slots. This allows the number of
live pages to decrease if the number of live variables decreases, by giving a chance for all variables
on a page to die.

4.6.3 Second Stage: Replacement
We apply Belady’s MIN algorithm [40]. MIN is theoretically optimal in the number of SWAP-
IN operations, but it does not minimize the number of swap operations if SWAP-OUT operations
are also considered. The reason is that only dirty pages need to be written back to storage (i.e.,
“swapped out”). Minimizing the number of swaps when taking this into account is NP-hard [167].
Regardless, MIN produces a solution with at most 2× as many swaps as the theoretical optimum,3

so it is useful in MAGE’s replacement stage.
To use MIN, we first make a backward pass over the program to determine, each time a page

is used, the time (instruction ID) at which it is used next. Then we make a forward pass over the
program, using the annotated next use time to determine which page to swap out. This requires
us to maintain a priority queue of resident pages, so that we can quickly identify which one’s next
use is farthest in the future. Each instruction, even if its arguments are already resident, requires
us to also perform a decrease key operation on the priority queue to adjust pages’ next use time.
Therefore, if N is the number of instructions and T is the number of pages that fit in memory,
applying Belady’s MIN algorithm is O(N logT).

This stage outputs an instruction stream that contains swap directives and references wires by
MAGE-physical address. To support this, MAGE’s planner maintains a data structure that maps
MAGE-virtual page numbers to MAGE-physical frame numbers, similar to a page table.

When planning a parallel/distributed program, the planner must be careful to not steal a page
that is currently being used for network I/O. Thus, MAGE’s replacement phase reads the network
directives to infer the outstanding asynchronous network operations. When stealing pages, it issues
network barrier directives, as necessary, to ensure that the engine waits for the relevant network
I/Os to complete.

4.6.4 Third Stage: Scheduling
We introduce a parameter ℓ called the lookahead. To prefetch data, MAGE’s scheduling algorithm
attempts to move SWAP-IN directives ℓ instructions earlier in the instruction stream. However, this

3This occurs in the worst case where it evicts only dirty pages, but there is an optimal solution that evicts the same
number of clean pages.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 48

does not work if one of the ℓ intervening instructions uses the page frame into which we are bring-
ing in data. We solve this by budgeting B extra physical page frames, called the prefetch buffer;
the replacement stage is now run with a capacity of T −B frames, not T frames. Data is brought
asynchronously into a free slot in the prefetch buffer. Only when it is finally needed is it copied
from the prefetch buffer into its destination physical page frame. Instead of SWAP-IN directives,
the memory program contains ISSUE-SWAP-IN directives, which initiate the transfer of a page
into memory, and FINISH-SWAP-IN directives, which block execution until a swap operation has
completed. Ideally, swap operations will be scheduled such that FINISH-SWAP-IN never blocks,
but it serves as an important fallback to prevent old/corrupt data from being used if the transfer is
unpredictably delayed.

We use the prefetch buffer similarly to swap out pages. The page to be swapped out is copied
into a free slot in the prefetch buffer and then swapped out to storage with an ISSUE-SWAP-OUT

directive while execution of subsequent instructions continues. Unlike SWAP-IN operations, there
is no clear deadline by which the write to storage must complete. Thus, we delay issuing a FINISH-
SWAP-OUT directive for as long as possible; we only issue it when allocating a slot in the prefetch
buffer fails. In such a situation, we identify the oldest ISSUE-SWAP-OUT operation, issue the
FINISH-SWAP-OUT directive for it, and reclaim its page in the prefetch buffer.

One could eliminate the copying of pages to/from the prefetch buffer by rewriting future in-
structions. We did not implement this optimization because it would introduce additional com-
plexity and MAGE performs well without it.

A natural question is how large B must be. SSDs have bandwidths less than 10 GB/s and
latencies that are usually less than 1 ms. Based on these measurements, Little’s Law gives:
B = 10 GB/s · 1 ms = 10 MB. For server-class machines, this is < 1% of physical memory. In
practice, we use 16–32 MiB to account for burstiness/queuing, still only a small fraction of avail-
able memory. Thus, MAGE’s scheduling promises to mask storage latency with only a small
memory penalty.

4.7 Implementation
We implemented a prototype of MAGE in C++, including support for two protocols: garbled
circuits and CKKS. Using cloc, we found that our implementation is ≈ 11,000 lines of code,
excluding comments and blank lines, broken down as follows: ≈ 2,800 for common libraries
used throughout MAGE (e.g., data buffering for I/O, configuration file parsing, etc.); ≈ 1,300 for
MAGE’s planner;≈ 900 for protocol drivers (not including the underlying cryptography);≈ 1,000
for MAGE’s DSLs and libraries for those DSLs (e.g., for sharding data); ≈ 1,100 for MAGE’s
engines; ≈ 1,600 for SC programs written in MAGE’s DSLs, used for testing and evaluating
MAGE; ≈ 1,900 for the underlying cryptography for garbled circuits, much of which is based on
EMP-toolkit [474]; and ≈ 400 for in-progress (not yet complete) support for a third protocol. We
build MAGE using clang++ version 10.0.0 with the optimization flags -Ofast -march=native.
MAGE runs as a Linux process, with no changes to kernel code.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 49

4.7.1 Interpreter
Engine. The Engine class implements common functionality for the engine layer, including sup-
port for directives. It establishes pairwise TCP connections among workers within a single party,
to support network directives. Swap directives are implemented using the aio facility provided by
the kernel (not to be confused with POSIX aio); the swap file/device is opened with the O DIRECT

flag. MAGE engines are implemented as class templates that extend (inherit from) the Engine

class. The protocol driver class is provided to the engine as a template argument, so the engine can
make calls to it. We avoided using virtual functions for this, as their overhead can be significant
(e.g., for free XORs).
Protocol Driver. The protocol driver exposes the SC protocol’s native operations to the engine as
a set of methods. When the engine invokes these methods, it provides pointers to data to operate
on, stored in a large array representing the MAGE-physical address space. The protocol driver
specifies the type of entries in the engine’s array, in effect dictating what each MAGE-physical
address actually corresponds to for its protocol (plaintext bits, ciphertext bytes, etc.), and provides
a plugin to the DSL so it can allocate MAGE-virtual memory accordingly. The protocol driver
must not store pointers to dynamically allocated memory in the array. The reason is that the engine
swaps out only the contents of the array, not including any dynamically-allocated memory it points
to. In addition to the SC protocol’s cryptographic routines, the driver manages all protocol-specific
operations. This includes sharing protocol-specific state among workers within a party, obtaining
input data, writing output data, and managing intra-party communication where necessary (e.g.,
sending garbled gates from the garbler to the evaluator).

4.7.2 Extending MAGE with New Protocols
To extend MAGE with a new protocol, one must, at minimum, write a protocol driver to support it.
If the operations exposed by the new protocol driver are identical to those exposed by an existing
protocol driver, then one can use the same engine that works with the existing protocol. Otherwise,
one must implement a new engine or modify an existing engine. This involves deciding which
instruction types the new engine will be compatible with. If the supported instruction types differ
from what existing DSLs produce, then one may have to implement a new DSL or modify an
existing DSL.

We implemented protocol drivers for garbled circuits and CKKS. Garbled circuits and CKKS
support different operations, so we implemented a separate DSL (Integers vs. Batches) and en-
gine (AND-XOR vs. Add-Multiply) for each protocol. This conveniently allows us to showcase
MAGE’s ability to support different implementations of each layer. That said, it is not uncommon
for related SC protocols to expose similar interfaces. For example, the WRK protocol [475, 476]
exposes the same interface as garbled circuits (AND-XOR), so support for WRK, if added, could
reuse our Integer DSL and AND-XOR engine.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 50

4.7.3 Garbled Circuit Protocol Driver
For garbled circuits, wires have uniform size, so we allow MAGE address spaces to be wire-
addressed; the DSL is unaware of the size of wires in bytes. Some subcircuits used by the AND-
XOR engine are based on those used by Obliv-C [503]. Our garbled circuit driver uses crypto-
graphic kernels from EMP-toolkit [474]. We implement oblivious transfer (OT) using multiple
background threads. Concurrently with our work, EMP-toolkit was updated to use the MiTCCRH
hash function [209]; our implementation is based on an older version of EMP-toolkit based on
fixed-key AES [44]. When we compare MAGE to EMP-toolkit in Section 4.8, we use the older
version of EMP-toolkit so the comparison is fair. This is not a limitation of MAGE; our driver
could be changed to use MiTCCRH.

4.7.4 CKKS Protocol Driver
CKKS ciphertexts vary in size depending on their level, so for CKKS’ DSL and engine, MAGE
address spaces are byte-addressed. The protocol driver provides a plugin to the DSL describing
the particular wire sizes in bytes. It uses the CKKS implementation in Microsoft SEAL [411].
We chose parameters for CKKS that allow a multiplicative depth of 2. A challenge was that
SEAL ciphertext objects contain pointers and dynamically-allocated memory. MAGE cannot swap
such objects to storage (see Section 4.7.1). Thus, the protocol driver serializes ciphertexts using
SEAL’s built-in serialization methods when they are not in use; each operation (e.g., add, multiply)
deserializes the arguments, computes the result, and then serializes the result. We quantify the cost
of serialization in Section 4.8. This overhead is not fundamental; CKKS ciphertexts could be
implemented as flat buffers, or homomorphic operations could be implemented to operate directly
on serialized ciphertexts.

After a multiplication, CKKS ciphertexts are typically relinearized and rescaled before the next
multiplication. But if two products are added (e.g., ab+ cd), one can perform relinearization once
for the overall result instead of for each multiplication separately (e.g., ab and cd). MAGE’s DSL
supports this optimization, which is crucial to achieve good performance on rstats and the linear
algebra workloads.

4.8 Evaluation
In this section, we measure the performance impact of using MAGE.

4.8.1 Workloads
We now establish a set of SC workloads for our evaluation. Garbled circuits and CKKS support
different operations—bitwise operations for garbled circuits, and add-multiply circuits of low mul-
tiplicative depth for CKKS—so we design separate workloads for each protocol. These workloads
are data-intensive “kernels” that may be used as part of larger SC applications. We discuss larger
SC applications in Section 4.8.8.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 51

4.8.1.1 SMPC Collaborative Applications

One application of SMPC is federated data analytics [463, 380]. Aggregations (GROUP BY opera-
tions) and joins are particularly memory-intensive. A federated data analytics system may express
equi-joins as set intersections (SI) and aggregations as set unions (SU), both of which can be im-
plemented by merging sorted lists [380]. This inspires our first benchmark, merge: merging sorted
lists of records. In some cases, the input lists may not be already sorted. This inspires our second
benchmark, sort: sorting a list of records. For joins other than equi-joins, the system must fall
back to a classic loop join. This is our third benchmark, ljoin: loop join. For concreteness, we
assume that each record is 128 bits long, and that the first 32 bits are the key used for sorting or
joining; the problem size n is the number of records per party.

Privacy-preserving machine learning inspires our fourth benchmark, mvmul: matrix-vector
multiply with 8-bit integers. A proposal for secure neural network inference, XONN [397], sug-
gests binarizing the neural network. This inspires our fifth benchmark, binfclayer: binary fully-
connected layer. It consists of a series of XNOR and PopCount operations similar to multiplying
a binary matrix by a binary vector, followed by a binary activation function. For simplicity, we do
not include batch normalization.

4.8.1.2 CKKS Homomorphic Encryption

We restrict ourselves to workloads for which CKKS is efficient—workloads that can be expressed
as arithmetic circuits of low multiplicative depth. The sixth workload is rsum: sum of a list of real
numbers, which requires no multiplications. The seventh workload is rstats: computing the mean
and variance of real numbers, which requires a multiplicative depth of 2. These represent simple
data analytics workloads; the problem size n is the number of elements.

Our remaining workloads are inspired by machine learning and linear algebra. The eighth
workload is rmvmul: matrix-vector multiply with real numbers. Finally, we consider two variants
of matrix multiplication. The ninth workload is n rmatmul: matrix-matrix multiply with a naı̈ve
nested for loop. The tenth workload is t rmatmul: tiled matrix-matrix multiply. The problem
size n is the length of one side of the matrix (also for mvmul and binfclayer).

4.8.1.3 Implementation of Workloads

For simplicity, our implementations of some of these workloads only support power-of-two sizes
and power-of-two number of workers, but this is not a fundamental limitation of MAGE. Some
workloads can, in principle, be optimized through streaming. For example, rsum could read each
input one at a time, add the result to an accumulator, and then output the accumulator, instead of
holding the entire input dataset in memory. We deliberately avoided such “optimizations,” as they
would not be possible if the workload were part of a larger computation whose intermediate results
are held in memory. Thus, each workload operates in three non-overlapping phases: (1) the inputs
are read into memory, (2) the computation is performed, materializing the output in memory, and
(3) the output is written to a file.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 52

For the parameters we chose, the CKKS scheme encrypts vectors of dimension 4096. Thus,
each of our workloads for CKKS could be applied to 4096 instances of the problem in a SIMD
fashion with no additional overhead. There are ways to use the 4096 slots in the vector to speed
up a single problem, for example, by vectorizing matrix multiplication [258]. Our workloads, for
simplicity, do not apply such techniques, but MAGE is not incompatible with them.

4.8.2 Empirical Methodology
We compare MAGE’s performance to an upper bound and a lower bound. The upper bound, OS
Swapping, is the performance when relying on the operating system’s paging. The lower bound,
Unbounded, is the performance when the entire computation fits in memory. We measure these
three scenarios as follows.

1. Unbounded. MAGE’s planner is run assuming enough memory to fit the program. Thus,
MAGE’s planner does not insert swap directives in the memory program. Finally, MAGE’s
engine executes the memory program outside of any cgroup.

2. OS Swapping. A memory program is generated in the same way as for the Unbounded
solution. However, it is executed in a cgroup that limits physical memory to a fixed amount.

3. MAGE. MAGE’s planner is run assuming a fixed physical memory capacity, minus the
prefetch buffer and the interpreter’s overhead. The resulting plan is run within a cgroup

that limits physical memory to 1 GiB or 16 GiB, to ensure that the memory overhead fits in
the limit.

All three scenarios execute the SC protocol using MAGE’s interpreter. The benefit of this is that
the same code executes SC in all three scenarios, giving us confidence that performance differences
among the scenarios indeed stem from memory management behavior, not the implementation of
SC. A downside, however, is that running MAGE’s interpreter with OS Swapping may incur more
page faults than an equivalent program that directly uses the corresponding cryptography library
and incurs paging/swapping. In particular, when MAGE’s interpreter allocates the array storing
the program’s data (Section 4.5), it prefaults it using the MAP POPULATE flag. This interacts poorly
with Linux paging when the array does not fit in memory—it forces pages in the array to be written
out to swap space when the array is allocated and then faulted back in when they are later accessed.
This should be kept in mind when interpreting our results.

Except where stated otherwise, we used D16d v4 instances on Microsoft Azure [345]. We
chose this instance type for a few reasons. First, it has enough memory to fit the entire compu-
tation for most experiments, necessary for the Unbounded scenario. Second, it contains a local
“temporary” SSD. We use it for swap space (one of its recommended uses [339]) and for the file
containing the memory program. Third, it provides enough network bandwidth so as not to be a
bottleneck for garbled circuits (we explore the WAN setting in Section 4.8.7).

We set MAGE’s parameters as follows. For garbled circuits, we used a page size of 64 KiB,
lookahead ℓ of 10,000 instructions, and prefetch buffer size B of 256 pages. For CKKS, we used a

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 53

page size of 2 MiB, lookahead ℓ of 100 instructions, and a prefetch buffer size B of 16 pages. Be-
cause CKKS ciphertexts are large, we used a larger page size (slab size) than for garbled circuits to
reduce external fragmentation. Additionally, we left an additional 32–64 MiB of memory unused,
to accommodate the memory used by MAGE’s interpreter.

4.8.3 Comparison to Existing Frameworks
We compare MAGE’s garbled circuits performance to that of EMP-toolkit. Our goal is to demon-
strate that MAGE’s techniques do not limit the performance of garbled circuits compared to an
existing system. We use merge for the comparison. We implemented merge in EMP-toolkit’s
DSL, and used EMP-toolkit’s library for merging sorted arrays.

We discovered that EMP-toolkit is an order of magnitude slower than MAGE. This was because
EMP-toolkit performs a separate invocation of OT extension, which involves a network round-trip,
each time an Integer input is read for the evaluator. Our garbled circuits implementation for MAGE
does not have this problem because it performs OTs in larger batches using background threads,
regardless of the units by which the program reads the input. To eliminate this effect, we exclude
the time to read the input, for both EMP-toolkit and MAGE, for this experiment only; we measured
the time to merge the two arrays once they are materialized in memory.

We also compare MAGE’s CKKS performance on rstats to a C++ program that uses SEAL
directly. The main source of overhead in MAGE is the need to deserialize the input ciphertexts and
serialize the output ciphertext, for each instruction.

The results are shown in Figure 4.6 and Figure 4.7. The graphs on the left are zoomed in
to smaller problem sizes to show the point where memory demand exceeds available physical
memory. “OS” refers to scenario 2 in Section 4.8.2; “EMP” and “SEAL” refer to those systems
similarly running in a cgroup. EMP performs about 3× worse than OS when the problem fits in
memory; when it does not, the relative overhead is small (≈ 33%). We found that EMP performs
worse than OS primarily due to (1) the overhead of its “real-time circuit optimization” feature,
(2) inefficient data buffering when using the network, and (3) virtual function overhead when
executing the circuit. OS uses MAGE’s runtime, so it does not have these issues. SEAL is faster
than OS when the problem fits in memory, but only slightly (less than 20%), indicating that the
serialization overhead is not large. When the problem size does not fit in memory, SEAL improves
further compared to OS but remains less than 2× faster than OS. An explanation for why SEAL
improves further compared to OS when the problem size does not fit in memory is the inefficiency
of running MAGE’s interpreter with OS Swapping (Section 4.8.2).

4.8.4 Overhead of Swapping Pages
We ran the three scenarios on all 10 workloads, using a 1 GiB memory limit. The results are
shown in Figure 4.8. We ran 8 trials on different Azure instances (8 different pairs of instances, for
garbled circuits) and plot the median; error bars are the quartiles. We additionally ran experiments
using a 16 GiB memory limit. We increased the problem sizes so that their memory use exceeded
16 GiB (necessary for the OS scenario) but fit within the 64 GiB available on the virtual machines

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 54

0 200000 400000
Problem Size (Records Per Party)

0

50

100

150

200

Ti
m

e
(s

)

Unbounded
OS 1 GiB
MAGE 1 GiB
EMP 1 GiB

0 500000 1000000
Problem Size (Records Per Party)

0

200

400

600

800

1000

Ti
m

e
(s

)

Unbounded
OS 1 GiB
MAGE 1 GiB
EMP 1 GiB

Figure 4.6: Comparison of MAGE and EMP-toolkit.

0 1000 2000 3000 4000
Problem Size (Number of Elements)

0

2

4

6

8

10

Ti
m

e
(s

)

Unbounded
OS 1 GiB
MAGE 1 GiB
SEAL 1 GiB

0 5000 10000 15000
Problem Size (Number of Elements)

0

50

100

150

200

250
Ti

m
e

(s
)

OS 1 GiB
Unbounded
MAGE 1 GiB
SEAL 1 GiB

Figure 4.7: Comparison of MAGE and SEAL.

(necessary for the Unbounded scenario). Our methodology is the same as for the 1 GiB memory
limit. We do not include sort in our results for the 16 GiB memory limit, because the intermediate
bytecodes produced while planning were too large for the local SSD. The results are shown in
Figure 4.9. MAGE outperforms OS swapping by at least 4× on 7 of the workloads, with improve-
ments of ≈ 12× for ljoin and ≈ 10× for rsum. Its performance is within 15% of Unbounded for
7 of the workloads (including sort from Figure 4.8).

MAGE’s improvement compared to OS is higher for binfclayer and rmvmul than for mvmul;
although all three have similar access patterns, mvmul has lower memory intensity because mul-
tiplying integers in a garbled circuit has high overhead. For complex access patterns, like merge
and sort, MAGE’s improvement is not markedly higher than for simple scans like ljoin, rsum,
and rstats (note that both input tables for ljoin fit in memory; it is the output, populated in order,
that does not fit). MAGE is less affected by high memory intensity than OS, allowing it to perform
well.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 55

merge
n = 1048576

sort
n =

1048576

ljoin
n = 2048

mvmul
n = 8192

binfclayer
n = 16384

rsum
n = 65536

rstats
n = 16384

rmvmul
n = 256

n_rmatmul
n = 128

t_rmatmul
n = 128

0

5

10

15

Ti
m

e
(N

or
m

al
ize

d
by

 U
nb

ou
nd

ed
)

16
3.

7

13
50

50
.4

31
0.

9

27
.1

22
.7

38
.8

98
.4

14
96

15
10

17
4.

5

13
60

58
.3

31
3.

9

33
.7

31
.7

42
.1

10
5.

6

15
80

15
44

69
8.

1

21
42

43
5.

4

42
9.

4 13
4.

0

22
4.

3

18
9.

8

59
3.

3

71
48

24
13

Unbounded
MAGE 1 GiB

OS 1 GiB

Figure 4.8: Performance of Unbounded, OS Swapping, and MAGE, normalized by the time for
Unbounded; absolute times, in seconds, are printed at the upper left corner of each bar.

merge
n = 8388608

ljoin
n = 3840

mvmul
n = 20480

binfclayer
n = 57344

rsum
n = 458752

rstats
n = 147456

rmvmul
n = 448

n_rmatmul
n = 256

t_rmatmul
n = 224

0

5

10

15

20

25

Ti
m

e
(N

or
m

al
ize

d
by

 U
nb

ou
nd

ed
)

11
89

12
6.

7

14
47

27
2.

2

13
8.

6

33
4.

8

30
9.

0

11
58

4

78
34

12
61

16
0.

0

15
58

35
5.

6

22
0.

2

37
7.

1

32
8.

8

11
73

3

79
12

66
45

18
89

32
65

18
54

21
87

24
02 25
90

52
58

3

13
95

5

Unbounded
MAGE 16 GiB

OS 16 GiB

Figure 4.9: Repeat of Figure 4.8, with larger problem sizes and a 16 GiB memory limit (note the
larger y-axis scale).

4.8.5 Overhead of Planning
The time and peak memory use for planning each workload for the MAGE scenario in Fig-
ure 4.8 and Figure 4.9 is shown in Table 4.1. These measurements were collected by running
/usr/bin/time -v when invoking MAGE’s planner. Note that MAGE’s planning is outside of
the critical path: for a given circuit, MAGE’s planner can be run before the parties’ inputs are
known. For garbled circuits, although the garbled circuit C̃ cannot be reused if the computation is
re-run, MAGE’s memory program can be safely reused.

The planning time and final memory program size are linear in the size of the computation
(size of C), not in the size of the memory demand. Nevertheless, the planning times are generally
less than the time to perform the execution and the planner’s memory consumption is significantly
smaller than the available memory at runtime for all experiments.

Generating memory programs for CKKS is more efficient than for garbled circuits. This is be-
cause each instruction for CKKS operates on more memory than for garbled circuits, which means
that the problem sizes that fill a given physical memory size tend to require smaller bytecodes for
CKKS than for garbled circuits. For example, an instruction operating on integers in a garbled cir-
cuit program may operate on a few kilobytes of memory (each bit of each integer is 16 bytes), but

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 56

merge
n = 4194304

sort
n =

4194304

ljoin
n = 4096

mvmul
n = 16384

binfclayer
n = 32768

rsum
n =

262144

rstats
n = 65536

rmvmul
n = 512

n_rmatmul
n = 256

t_rmatmul
n = 256

0

5

10

15

Ti
m

e
(N

or
m

al
ize

d
by

 U
nb

ou
nd

ed
)

20
5.

3

16
87

50
.5

31
1.

7

29
.7

23
.0

39
.6

99
.9

33
07

30
55

22
4.

7

20
75

58
.5

31
4.

3

36
.5

31
.9

42
.7

10
6.

7

33
62

31
04

14
42

51
75

48
9.

2

45
8.

3 13
5.

5

22
3.

5

19
1.

0

58
4.

1

14
33

7

47
36

Unbounded
MAGE 1 GiB

OS 1 GiB

Figure 4.10: Normalized performance of Unbounded, OS Swapping, and MAGE, parallelized over
p = 4 workers (per party).

Problem Time, Figure 4.8 Mem., Figure 4.8 Time, Figure 4.9 Mem., Figure 4.9
merge 38.0 42.6 291.6 299.4
sort 367.3 42.7 N/A N/A
ljoin 6.7 121.0 23.6 411.4

mvmul 56.0 527.5 298.2 3268
binfclayer 77.2 19.1 1041 165.7

rsum 0.04 9.6 0.29 30.2
rstats 0.04 10.9 0.34 48.5

rmvmul 0.09 16.4 0.24 36.9
n rmatmul 2.2 246.1 18.6 1927
t rmatmul 2.3 246.5 12.9 1246

Table 4.1: Planning times (s) and peak memory use of the planner (MiB) for workloads in Fig-
ure 4.8 and Figure 4.9.

for CKKS, each instruction operates on a vector of real numbers, whose encrypted size is hundreds
of kilobytes.

For CKKS, the final memory programs were < 100 MiB for Figure 4.8 and < 1 GiB for Fig-
ure 4.9. For garbled circuits other than sort, they were < 5 GiB for Figure 4.8 and < 65 GiB for
Figure 4.9. For sort, it was less than < 25 GiB for Figure 4.8. MAGE’s planner requires about
4–5× times more storage space than the final memory program due to the need to materialize in-
termediate bytecodes of similar size, but this could be optimized by pipelining stages of MAGE’s
planner where it is possible to do so (e.g., replacement and scheduling in Figure 4.4).

4.8.6 Impact of Parallelism
We now explore how the relative performance of Unbounded, OS, and MAGE are affected by par-
allelizing the computation. We did experiments parallelizing the computation across four workers

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 57

0 100 200
OT Concurrency

500

1000

1500

Ti
m

e
(s

)

us-west1

(a) Time to run merge vs. number of concurrent OTs.

1 2 3 4
Number of workers

0

250

500

750

1000

Ti
m

e
(s

)

Local (US West 2)
us-west1
us-central1

(b) Time to run merge vs. number of workers.

Figure 4.11: Wide-area garbled circuit performance in MAGE.

(per party, for garbled circuits). We place each worker on a separate VM instance, each with a
separate SSD.

We ran each experiment three times, using the same cluster of machines for all trials, and report
the median in Figure 4.10. Most experiments follow a similar pattern as Figure 4.8, indicating that
MAGE’s performance gains persist when we parallelize the computation. For two experiments,
merge and sort, MAGE’s improvement over OS Swapping visibly increases. Whereas the other
workloads are parallelized by splitting the input among the workers in a communication phase at
the beginning and then computing independently thereafter, merge and sort have a communica-
tion phase in the middle of the computation (several such phases in the case of sort). That OS
Swapping performs worse for these workloads, but MAGE does not, suggests that the OS virtual
memory system might be introducing jitter, which interacts poorly with the communication phase
and induces stragglers.

4.8.7 SMPC in Wide-Area Networks
SC does not always require significant data transfer over the wide area. In HE, computation is
done by a single logical party. Even in SMPC, there may be ways for multiple parties to co-locate
for an SMPC computation while remaining physically and logically distinct. But in some cases, it
is desirable to run SMPC over a wide-area network. We explore this below.

We measure performance of garbled circuits with the two parties hosted on different cloud
providers. The garbler was always on Azure in West US 2 (Washington). The evaluator was on
Google Cloud (n2-highcpu-2 [202]). We compare two setups: one where the evaluator was in
us-west1 (Oregon) and one where it was in us-central1 (Iowa).

Initially, higher latencies and limited single-flow bandwidth limited performance. For example,
the round-trip time in the Oregon setup was ≈11 ms, which made OTs a bottleneck.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 58

First, we tuned the local TCP stack, increasing the maximum window size to 32 MiB. Then,
we increased the number of OT rounds performed concurrently, pipelining multiple OT rounds
over a single connection, which significantly improved performance (Figure 4.11a). Additionally,
we explore parallelizing the computation, assigning multiple workers to the same machine, so that
multiple TCP flows are used. The results are in Figure 4.11b. The dashed line at the bottom is the
time to run the experiment with both the garbler and evaluator on Azure (taken from Figure 4.8).
For the Oregon setup, we can come close to the Local performance using two flows. The Iowa
setup is more challenging because less bandwidth is available per flow. Using multiple parallel
flows helps, but the performance improvement in the Iowa setup is limited by variation in wide-
area flow performance, which induces stragglers.

In both cases, the performance overhead of operating in the wide area is less than the perfor-
mance overhead of swapping (Figure 4.8), indicating that MAGE’s techniques confer substantial
benefit even in wide-area settings.

4.8.8 Applications
For these experiments, we did not use cgroups to limit RAM. The OS and MAGE setups ran using
all of the available RAM.

4.8.8.1 Detecting Password Reuse

When users reuse a password across multiple websites, they become prone to “credential stuffing”
attacks, in which an attacker uses a user’s password leaked by one site to compromise that user’s
account on other sites. To address this problem, sites may wish to identify which of their users
reuse their passwords on other sites [473]. Senate [380, Query 2 in Section 2] proposes a protocol
for this. First, the sites arrange to assign user IDs and hash passwords such that they will match
across sites. Then, they use SMPC to detect which user IDs are shared between the sites and have
the same password hash. Note that user IDs and password hashes cannot be shared directly, since
they are sensitive (the hashes can be reversed).

We write a two-party version of the password reuse program in MAGE’s DSL for garbled
circuits, based on Senate’s password reuse program. Senate uses a different SMPC protocol, so its
results are not directly comparable to ours.

We use MAGE to scale the password reuse program to 227 users per party, which requires 1.125
TiB on each party. A single D16d v4 instance does not have enough swap space. Thus, we use four
D16d v4 instances on Azure for the garbler party, and four n2-highmem-4 instances on Google
Cloud [202] for the evaluator party. As explored in Section 4.8.7, we use two workers per instance
(total of eight workers per party) to efficiently use wide-area network bandwidth. The results are
shown in Figure 4.12. For a given time budget, MAGE increases the number of user-password
records by ≈ 3×. This improvement may have been larger had we been able to obtain Ddv4-series
instances with a greater swap-space-to-RAM ratio.

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 59

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Number of Users/Passwords Per Party 1e8

0

2

4

6

8

Ex
ec

ut
io

n
Ti

m
e

(h
ou

rs
)

MAGE with all available RAM
OS with all available RAM

Figure 4.12: Scaling password reuse detection with MAGE.

0.0 0.5 1.0 1.5 2.0
Number of Batches (4096 Real Numbers Per Batch) 1e6

0

20

40

60

80

Ex
ec

. T
im

e
(m

in
ut

es
)

MAGE with all available RAM
OS with all available RAM

Figure 4.13: Scaling computational PIR with MAGE.

4.8.8.2 Private Information Retrieval

Private Information Retrieval (PIR) is a family of protocols that allow a user to retrieve a data item
at a particular index from a database without the database learning which item was accessed. PIR
can be used to support private queries on public data [470]. We evaluate MAGE by using CKKS to
instantiate the classic Kushilevitz-Ostrovsky single-server computational PIR scheme [301, Sec-
tion 3]. PIR’s access pattern is particularly simple—a linear scan over the database—so ad-hoc
approaches to prefetching, or multi-threading to improve swap performance, may be quite effec-
tive. Our focus is on what MAGE optimizes automatically, so we do not include such ad-hoc op-
timizations in the OS baseline. We use a single worker (thread) to compute the PIR. The database
consisted of plaintext data pre-encoded into batches to use with CKKS. We wrote a DSL program
that populates the database (with hardcoded elements) and then performs a PIR query on it; the
reported measurements are the time to perform the PIR query, not including the time to populate
the database. The results are in Figure 4.13. For a given time budget, MAGE allows for ≈ 5× as

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 60

many database elements to be processed.

4.9 Related Work
Much existing work has looked at high-performance algorithms for SMPC [476, 133, 132, 268,
269] and HE [116, 187]. These works focus on the cryptography, not how to manage a computer’s
resources to perform large computations efficiently.

A complementary line of work explores tailoring SMPC computations to a specific applica-
tion [262, 515, 397, 109]. The goal of MAGE is to perform the same computation more efficiently,
so its techniques generalize across different applications. For an application, one may first simplify
the computation using application-specific observations, and then execute the resulting computa-
tion as efficiently as possible.

Research works including Fairplay [333], HEKM [233], KSS [290], MLB [352], PCF [289],
and TinyGarble [437] are frameworks for garbled circuit execution. We described many of them in
Section 4.2.4. One work [90] explores parallelizing execution of a garbled circuit, using program-
ming language tools to automatically extract parallelism. None of them explore how to efficiently
swap memory to storage, as MAGE does.

There already exist many DSLs and compilers for SMPC [224, 474, 322, 503, 351, 218, 514]
and HE [99, 134, 460]. These tools often aim to make SC more accessible to non-expert develop-
ers, by automatically optimizing the SC program. MAGE addresses the complementary problem
of executing the resulting SC circuit more efficiently. To use an existing tool with MAGE (as in
Figure 4.2), one could modify it to output its optimized circuits in one of MAGE’s DSLs, and
then run MAGE’s planner on that DSL code. Alternatively, one could modify the tool to output a
bytecode directly usable by MAGE’s planner (e.g., the “Virtual Bytecode” in Figure 4.4).

AIFM [402] uses similar C++ language features as MAGE’s DSLs. AIFM uses them at runtime
for fine-grained memory management. In contrast, MAGE (1) executes DSL programs only to
extract the memory access pattern during the planning phase and (2) manages memory at the
granularity of pages.

There is an extensive literature concerning memory management in traditional operating sys-
tems [40, 141, 41, 142, 140]. A related line of work looks at how operating systems can give
memory-intensive applications, such as scientific simulations, more control over paging [216].
While these works focus primarily on paging in the classic sense, our work explores memory
programming. Additionally, our work, unlike scientific simulations, is capable of general com-
putations within SC. Scheduling page movement according to real-time constraints imposed by
computation also draws from the real-time scheduling literature [321]. These techniques do not
manage memory directly and are complementary to ours.

Some systems in other domains, like neural network training, formulate memory management
problems as an integer linear program and use an exponential-time solver [255]. This approach
exploits the high-level structure of the application to coarsen the dataflow graph. For MAGE, the
dataflow graph is much larger because general SC computations do not conform to any particu-
lar high-level structure. By operating on a program representation of the circuit (Section 4.4.2),

CHAPTER 4. SUPPORTING SECURE COMPUTATION WITH NEARLY ZERO-COST
VIRTUAL MEMORY 61

MAGE does coarsen the graph, but it nevertheless remains enormous. Thus, we use our staged
approach (Section 4.6) to find a good approximation.

Some systems use compiler-generated hints or observations of past memory accesses or past
working sets (e.g., from prior invocations of a program) to perform targeted prefetching [353, 511,
219, 217, 336, 458] and approximate Belady’s algorithm (MIN) [436]. SC’s obliviousness and our
memory programming approach allow MAGE to compute the memory access pattern for the full
program without first running it and apply these techniques by using the memory access pattern
directly.

The recent DEMAND-MIN [254] algorithm combines MIN with prefetching. DEMAND-MIN
tells which item to evict given an access pattern sequence and prefetch sequence fixed in advance.
It is not directly applicable to MAGE because MAGE’s prefetch sequence is not fixed in advance.

At a technical level, MAGE’s planning is similar to register allocation in compiler theory [102,
125, 454, 484]—variables, registers, and memory in register allocation correspond to wire values,
slots in memory, and storage swap space in the context of MAGE. The key difference is that
register allocators must deal with conditional branches whose outcomes cannot be predicted at
compile time. From the perspective of register allocation, the entire circuit that MAGE operates on
would be viewed as a single basic block. We discussed a result from register allocation theory for
a single basic block in Section 4.6.3. Another result is that, for a fixed number of registers, there
is a linear-time algorithm that can reorder instructions within a structured program to optimize its
register allocation [60, Section 3.2] (though the time is exponential in the number of registers).

4.10 Conclusion
This chapter explores how to efficiently execute SC computations that do not fit in memory. Our
key observation is that SC is inherently oblivious. This enables memory programming, in which
one computes the access pattern of an SC program in advance and uses it to produce a memory
management plan. Memory programming is an application of the technique in Section 3.1.1—it
allows for memory management according to the structure of the computation, namely its oblivi-
ousness. In applying this technique, MAGE runs SC up to an order of magnitude faster than the
OS virtual memory system and can execute some SC programs that do not fit in memory at nearly
in-memory speeds. This demonstrates the potential of the technique in Section 3.1.1 to make
expressive cryptography, such as SMPC and FHE, practical for more applications.

62

Chapter 5

Supporting Cryptography in Low-Power
Wireless Systems with Performant TCP

This is the second of two chapters exploring the techniques in Section 3.1. We focus in this chap-
ter on how to provide networking support for cryptography for applications that run on low-power,
resource constrained, wireless embedded devices. Such devices have been used in scientific ap-
plications, such as environmental monitoring and structural monitoring, but also in the Internet of
Things (IoT) space, where data is sensitive in nature and expressive cryptography is particularly
relevant. For example, the Thread Group [452] is an industry consortium in the home automation
space formed around interoperability of low-power wireless technology based on IEEE 802.15.4.
As described in Section 2.2.1.3, expressive cryptography can have significant networking costs,
for example, due to the need to transfer large ciphertexts among devices. Unfortunately, support-
ing expressive cryptography for resource-constrained wireless embedded devices is particularly
challenging. The reason is that the standard network protocols for reliable, high-throughput data
delivery, like TCP, used to support expressive cryptography in regular networks, are seen as un-
suitable for ultra low-power wireless networks like those based on IEEE 802.15.4.

This chapter studies TCP for resource-constrained wireless embedded devices, with particular
attention to the interaction between the transport layer and the link layer. We apply the tech-
nique in Section 3.1.2, generically improving the underlying network to make it easier to support
applications built on expressive cryptography. We identify subtle but important modifications to
both, achieving TCP goodput within 25% of an upper bound (5–40% higher than prior results)
and low-power operation commensurate to CoAP, a simpler alternative to TCP used in these net-
works. In doing so, we show that TCP can be made viable and performant in networks based on
IEEE 802.15.4, making it easier to meet the networking demands of expressive cryptography in
this space. That said, as we explain in Section 5.3, performant TCP over IEEE 802.15.4 broadly
benefits the Internet of Things beyond just making it easier to run expressive cryptography, as is
expected for systems based on the technique in Section 3.1.2.

We aim to explain our study and its conclusions in the broad context of the low-power wireless
space, without restricting our attention to only its implications for expressive cryptography. To that
end, this chapter provides background and context on low-power wireless networks and describes

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 63

and evaluates our proposed system, TCPlp, independently of expressive cryptography. In doing so,
we hope to bring out the full value and generality of our conclusions and contributions.

5.1 Introduction
Research on wireless networks of low-power, resource-constrained, embedded devices—in IETF
terms, low-power and lossy networks (LLNs) [459]—blossomed in the late 1990s. To obtain free-
dom to tackle the unique challenges of LLNs, researchers initially departed from the established
conventions of the Internet architecture [164, 223]. As the field matured, however, researchers
found ways to address these challenges within the Internet architecture [236]. Since then, it has
become commonplace to use IPv6 in LLNs via the 6LoWPAN [348] adaptation layer. IPv6-
based routing protocols, like RPL [6], and application-layer transport protocols over UDP, like
CoAP [100], have become standards in LLNs. Most wireless sensor network (WSN) operating
systems, such as TinyOS [223, 309], RIOT [28], and Contiki [152], ship with IP implementations
enabled and configured. Major industry vendors offer branded and supported 6LoWPAN stacks
(e.g., TI SimpleLink, Atmel SmartConnect). A consortium, Thread [452], has formed around
6LoWPAN-based interoperability.

Despite these developments, transport in LLNs has remained ad-hoc and TCP has received little
serious consideration. Many embedded IP stacks (e.g., OpenThread [363]) do not even support
TCP, and those that do support TCP implement only a subset of its features (Section 5.5.1). The
conventional wisdom is that IP holds merit, but TCP is ill-suited to LLNs. This view is represented
by concerns about TCP such as the following.

• “TCP is not light weight ... and may not be suitable for implementation in low-cost sensor
nodes with limited processing, memory and energy resources.” [371] (Similar argument in
[149], [250].)

• That “TCP is a connection-oriented protocol” is a poor match for WSNs, “where actual data
might be only in the order of a few bytes.” [389] (Similar argument in [371].)

• “TCP uses a single packet drop to infer that the network is congested.” This “can result in
extremely poor transport performance because wireless links tend to exhibit relatively high
packet loss rates.” [369] (Similar argument in [150], [151], [250].)

Such viewpoints have led to a plethora of WSN-specialized protocols and systems [371, 393,
468] for reliable data transport, such as PSFQ [466], STCP [250], RCRT [369], Flush [281],
RMST [439], Wisden [492], CRRT [5], and CoAP [77], and for unreliable data transport, like
CODA [467], ESRT [408], Fusion [237], CentRoute [440], Surge [310], and RBC [510].

As LLNs become part of the emerging Internet of Things (IoT), it behooves us to re-examine
the transport question, with attention to how the landscape has shifted: (1) As part of IoT, LLNs
must be interoperable with traditional TCP/IP networks; to this end, using TCP in LLNs simplifies
IoT gateway design. (2) Popular IoT application protocols, like MQTT [355] and ZeroMQ [507],

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 64

Challenge Technique Observed Improvement
Resource Zero-Copy Send Send Buffer: 50% less memory

Constraints In-Place Reassembly Receive Buffer: 38% less memory
Link-Layer Large Maximum Segment Size TCP Goodput: 4–5× higher
Properties Link Retry Delay TCP Segment Loss: 6%→ 1%

Energy Adaptive Duty Cycle HTTP Latency: ≈ 2× lower
Constraints Link-Layer Queue Management TCP Radio Duty Cycle: 3%→ 2%

Table 5.1: Impact of techniques to run full-scale TCP in LLNs.

assume that TCP is used at the transport layer. (3) Some IoT application scenarios demand high
link utilization and reliability on low-bandwidth lossy links. Embedded hardware has also evolved
substantially, prompting us to revisit TCP’s overhead. In this context, this chapter seeks to deter-
mine: Do the “common wisdom” concerns about TCP hold in a modern IEEE 802.15.4-based
LLN? Is TCP (still) unsuitable for use in LLNs?

To answer this question, we leverage the fully-featured TCP implementation in the FreeBSD
Operating System (rather than a limited locally-developed implementation) and refactor it to work
with the Berkeley Low-Power IP Stack (BLIP), Generic Network Stack (GNRC), and OpenThread
network stack, on two modern LLN platforms (Section 5.5). Naı̈vely running TCP in an LLN
indeed results in poor performance. However, upon close examination, we discover that this is
not caused by the expected reasons, such as those listed above. The actual reasons for poor TCP
performance include (1) small link-layer frames that increase TCP header overhead, (2) hidden
terminal effects over multiple wireless hops, and (3) poor interaction between TCP and a duty-
cycled link. Through a systematic study of TCP in LLNs, we develop techniques to resolve these
issues (Table 5.1), uncover why the generally assumed problems do not apply to TCP in LLNs,
and show that TCP performs well in LLNs once these issues are resolved:

We find that full-scale TCP fits well within the CPU and memory constraints of modern
LLN platforms (Section 5.5, Section 5.6). Owing to the low bandwidth of a low-power wireless
link, a small window size (≈ 2 KiB) is sufficient to fill the bandwidth-delay product and achieve
good TCP performance. This translates into small send/receive buffers that fit comfortably within
the memory of modern WSN hardware. Furthermore, we propose using an atypical Maximum
Segment Size (MSS) to manage header overhead and packet fragmentation. As a result, full-
scale TCP operates well in LLNs, with 5–40 times higher throughput than existing (relatively
simplistic) embedded TCP stacks (Section 5.6).

Hidden terminals are a serious problem when running TCP over multiple wireless hops. We
propose adding a delay d between link-layer retransmissions, and demonstrate that it effectively
reduces hidden-terminal-induced packet loss for TCP. We find that, because a small window size
is sufficient for good performance in LLNs, TCP is quite resilient to spurious packet losses, as
the congestion window can recover to a full window quickly after loss (Section 5.7).

To run TCP in a low-power context, we adaptively duty-cycle the radio to avoid poor interac-

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 65

tions with TCP’s self-clocking behavior. We also propose careful link-layer queue management
to make TCP more robust to interference. We demonstrate that TCP can operate at low power,
comparable to alternatives tailored specifically for WSNs, and that TCP brings value for real
IoT sensor applications (Section 5.8).

We conclude that TCP is entirely capable of running on IEEE 802.15.4 networks and low-cost
embedded devices in LLN application scenarios (Section 5.9). Since our improvements to TCP
and the link layer maintain seamless interoperability with other TCP/IP networks, we believe that
a TCP-based transport architecture for LLNs could yield considerable benefit.

In summary, this chapter’s contributions are:

1. We implement a full-scale TCP stack for low-power embedded devices and reduce its re-
source usage.

2. We identify the actual issues causing poor TCP performance and develop techniques to ad-
dress them.

3. We explain why the expected insurmountable reasons for poor TCP performance actually do
not apply.

4. We demonstrate that, once these issues are resolved, TCP performs comparably to LoWPAN-
specialized protocols.

Table 5.1 lists our techniques to run TCP in an LLN. Although prior LLN work has already used
various forms of link-layer delays [488] and adaptive duty-cycling [499], our work shows, where
applicable, how to adapt these techniques to work well with TCP, and demonstrates that they can
address the challenges of LLNs within a TCP-based transport architecture.

5.2 Background and Related Work
Since the introduction of TCP, a vast literature has emerged, focusing on improving it as the Inter-
net evolved. Some representative areas include congestion control [252, 165, 207, 3], performance
on wireless links [35, 407], performance in high-bandwidth environments [76, 175, 259, 211, 7],
mobility [433], and multipath operation [390]. Below, we discuss TCP in the context of LLNs and
embedded devices.

5.2.1 Low-Power and Lossy Networks (LLNs)
Although the term LLN can be applied to a variety of technologies, including LoRa and Bluetooth
Low Energy, we restrict our attention in this chapter to embedded networks using IEEE 802.15.4.
Such networks are called LoWPANs [350]—Low-Power Wireless Personal Area Networks—in
contrast to WANs, LANs (802.3), and WLANs (802.11). Outside of LoWPANs, TCP has been
successfully adapted to a variety of networks, including serial [251], Wi-Fi [35], cellular [33, 349],
and satellite [33, 407] links. While an 802.15.4 radio can in principle be added as a NIC to any

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 66

device, we consider only embedded devices where it is the primary means of communication,
running operating systems like TinyOS [223], RIOT [28], Contiki [152], or FreeRTOS. These de-
vices are currently built around microcontrollers with Cortex-M CPUs, which lack MMUs. Below,
we explain how LoWPANs are different from other networks where TCP has been successfully
adapted.

5.2.1.1 Resource Constraints

When TCP was adopted by ARPANET in the early 1980s, Internet citizens—typically minicom-
puters and high-end workstations, but not yet personal computers—usually had at least 1 MiB of
RAM. 1 MiB is tiny by today’s standards, yet the LLN-class devices we consider in this work
have 1-2 orders of magnitude less RAM than even the earliest computers connected with TCP/IP.
Due to energy constraints, particularly SRAM leakage, RAM size in low-power MCUs does not
follow Moore’s Law. For example, comparing Hamilton [276], which we use in this work, to
TelosB [382], an LLN platform from 2004, shows only a 3.2× increase in RAM size over 16
years. This has caused LLN-class embedded devices to have a different balance of resources than
conventional systems, a trend that is likely to continue well into the future. For example, whereas
conventional computers have historically had roughly 1 MiB of RAM for every MIPS of CPU, as
captured by the 3M rule, Hamilton has ≈ 50 DMIPS of CPU but only 32 KiB of RAM.

5.2.1.2 Link-Layer Properties

IEEE 802.15.4 is a low-bandwidth, wireless link with an MTU of only 104 bytes. The research
community has explored using TCP with links that are separately low-bandwidth, wireless [35],
or low-MTU [251], but addressing these issues together raises new challenges. For example,
RTS-CTS, used in WLANs to avoid hidden terminals, has high overhead in LoWPANs [488, 237]
due to the small MTU—control frames are comparable in size to data frames. Thus, LoWPAN re-
searchers have moved away from RTS-CTS, instead carefully designing application traffic patterns
to avoid hidden terminals [281, 381, 237]. Unlike Wi-Fi/LTE, LoWPANs do not use physical-
layer techniques like adaptive modulation/coding or multi-antenna beamforming. Thus, they are
directly impacted by link quality degradation due to varying environmental conditions [445, 381].
Additionally, IEEE 802.15.4 coexists with Wi-Fi in the 2.4 GHz frequency band, making Wi-Fi
interference particularly relevant in indoor settings [318]. As LoWPANs are embedded networks,
there is no human in the loop to react to and repair bad link quality.

5.2.1.3 Energy Constraints

Embedded nodes—the “hosts” of an LLN—are subject to strict power constraints. Low-power
radios consume almost as much energy listening for a packet as they do when actually sending or
receiving [276, 325]. Therefore, it is customary to duty-cycle the radio, keeping it in a low-power
sleep state, in which it cannot send or receive data, most of the time [498, 381, 236]. The radio
is only occasionally turned on to send/receive packets or determine if reception is likely. This
requires Media Management Control (MMC) protocols [498, 381, 236] at the link layer to ensure

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 67

that frames destined for a node are delivered to it only when its radio is on and listening. Similarly,
the CPU also consumes a significant amount of energy [276], and must be kept idle most of the
time.

Over the past 20 years, LLN researchers have addressed these challenges, but only in the con-
text of special-purpose networks highly tailored to the particular application task at hand. The
remaining open question is how to do so with a general-purpose reliable transport protocol like
TCP.

5.2.2 TCP/IP for Embedded LLN-Class Devices
In the late 1990s and early 2000s, developers attempted to bring TCP/IP to embedded and resource-
constrained systems to connect them to the Internet, usually over serial or Ethernet. Such sys-
tems [78, 117] were often designed with a specific application—often, a web server—in mind.
These TCP/IP stacks were tailored to the specific applications at hand and were not suitable for
general use. uIP (“micro IP”) [149], introduced in 2002, was a standalone general TCP/IP stack
optimized for 8-bit microcontrollers and serial or Ethernet links. To minimize resource consump-
tion to run on such platforms, uIP omits standard features of TCP; for example, it allows only
a single outstanding (unACKed) TCP segment per connection, rather than a sliding window of
in-flight data.

Since the introduction of uIP, embedded networks have changed substantially. With wireless
sensor networks and IEEE 802.15.4, various low-power networking protocols have been devel-
oped to overcome lossy links with strict energy and resource constraints, from S-MAC [498],
B-MAC [381], X-MAC [91], and A-MAC [157], to Trickle [311] and CTP [192]. Researchers
have viewed TCP as unsuitable, however, questioning end-to-end recovery, loss-triggered conges-
tion control, and bi-directional data flow in LLNs [151]. Furthermore, WSNs of this era typically
did not even use IP; instead, each WSN was designed specifically to support a particular appli-
cation [331, 492, 282]. Those that require global connectivity rely on application-specific “base
stations” or “gateways” connected to a TCP/IP network, treating the LLN like a peripheral inter-
connect (e.g., USB, bluetooth) rather than a network in its own right. This is because the prevailing
sentiment at the time was that LLNs are too different from other types of networks and have to op-
erate in too extreme conditions for the layered Internet architecture to be appropriate [164].

In 2007, the 6LoWPAN adaptation layer [348] was introduced, enabling IPv6 over IEEE
802.15.4. IPv6 has since been adopted in LLNs, bringing forth IoT [236]. uIP has been ported to
LLNs [155], and IPv6 routing protocols, like RPL [6], and UDP-based application-layer transports,
like CoAP [100], have emerged in LLNs. Representative operating systems, like TinyOS and Con-
tiki, implement UDP/RPL/IPv6/6LoWPAN network stacks with IEEE 802.15.4-compatible MMC
protocols for 16-bit platforms like TelosB [382].

TCP, however, is not widely adopted in LLNs. The few LLN studies that use TCP [154, 222,
236, 241, 279, 513, 198] generally use a simplified TCP stack (Section 5.5.1), such as uIP.

In summary, despite the acceptance of IPv6, LLNs remain highly tailored at the transport layer
to the application at hand. They typically use application-specific protocols on top of UDP; of
such protocols, CoAP [77] has the widest adoption. In this context, this chapter explores whether

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 68

adopting TCP—and more broadly, the ecosystem of IP-based protocols, rather than IP alone—
might bring value to LLNs moving forward.

5.3 Motivation
We first describe the benefits of TCP in LLNs in general terms and then describe anemometry, a
candidate application of TCP in LLNs.

5.3.1 The Case for TCP in LLNs
As explained in Section 5.2, LLN design has historically been highly tailored to the specific ap-
plication task at hand, for maximum efficiency. For example, PSFQ broadcasts data from a single
source node to all others, RMST supports “directed diffusion” [245], and CoAP is tied to REST
semantics. But embedded networks are not just isolated devices (e.g., peripheral interconnects like
USB or Bluetooth)—they are now true Internet citizens, and should be designed as such.

In particular, the recent megatrend of IoT requires LLNs to have a greater degree of interoper-
ability with regular TCP/IP networks. Yet, LLN-specific protocols lack a clear separation between
the transport and application layers, requiring application-layer gateways to communicate with
TCP/IP-based services. This has encouraged IoT applications to develop as vertically-integrated
silos, where devices cooperate only within an individual application or a particular manufacturer’s
ecosystem, with little to no interoperability between applications or with the general TCP/IP-based
Internet. This phenomenon, sometimes called the “CompuServe of Things,” is a serious obstacle to
the IoT vision [502, 312, 183, 340, 485]. In contrast, other networks are seamlessly interoperable
with the rest of the Internet. Accessing a new web application from a laptop does not require any
new functionality at the Wi-Fi access point, but running a new application in a gateway-based LLN
does require additional application-specific functionality to be installed at the gateway.

In this context, TCP-enabled LLN devices would be first-class citizens of the Internet, natively
interoperable with the rest of the Internet via TCP/IP. They could use IoT protocols that assume
a TCP-based transport layer (e.g., MQTT [355]) and security tools for TCP/IP networks (e.g.,
stateful firewalls), without an application-layer gateway. In addition, while traditional LLN ap-
plications like environment monitoring can be supported by unreliable UDP, certain applications
do require high throughput and reliable delivery. Some examples are high-throughput sensing ap-
plications like anemometry (Section 5.3.2) and vibration monitoring [261]. Even low-throughput
sensing applications could benefit from high throughput and reliability for firmware updates and
for configuration and management (e.g., over Telnet or SSH). Applications built on expressive
cryptography (e.g., JEDI in Chapter 7) would also benefit from high throughput and reliability to
transfer large keys and ciphertexts over the network. TCP, if it performs well in LLNs, could benefit
these applications.

Adopting TCP in LLNs may also open an interesting research agenda for IoT. TCP is the de-
fault transport protocol outside of LLNs, and history has shown that, to justify other transport pro-
tocols, application characteristics must offer substantial opportunity for optimization (e.g., [486,

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 69

(a) Anemometer.
(b) Hamilton-based PCB (bottom and top).

Figure 5.1: Hamilton-based ultrasonic anemometer.

487, 179]). If TCP becomes a viable option in LLNs, it would raise the bar for application-specific
LLN protocols, resulting in some potentially interesting alternatives.

Although adopting TCP in LLNs could yield significant benefit and an interesting agenda, its
feasibility and performance remain in question. This motivates our study.

5.3.2 Anemometry: An Example TCP-Based LLN Application
To demonstrate the benefits of TCP in LLNs, we describe anemometry in buildings, an LLN appli-
cation that benefits from high throughput and reliable delivery.

An anemometer is a sensor that measures air velocity. Anemometers may be deployed in a
building to diagnose problems with the Heating, Ventilation, and Cooling system (HVAC), and
also to collect air flow measurements for improved HVAC control. This requires anemometers in
difficult-to-reach locations, such as in air flow ducts, where it is infeasible to run wires. There-
fore, anemometers must be battery-powered and must transmit readings wirelessly, making LLNs
attractive.

We used anemometers based on the Hamilton platform [17], each consisting of four ultrasonic
transceivers arranged as vertices of a tetrahedron (Figure 5.1). To measure the air velocity, each
transceiver, in turn, emits a burst of ultrasound, and the impulse is measured by the other three
transceivers. This process results in a total of 12 measurements.

Calculating the air velocity from these measurements is computationally infeasible on the
anemometer itself, because Hamilton does not have hardware floating point support and the com-
putations require complex trigonometry. Measurements must be transmitted over the network to a
server that processes the data. Furthermore, a specific property of the analytics is that it requires
a contiguous stream of data to maintain calibration (a numerical integration is performed on the
measurements). Thus, the application requires a high sample rate (1 Hz), and is sensitive to data
loss. A protocol for reliable delivery, like TCP or CoAP, is therefore necessary.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 70

We note that the 1 Hz sample rate for this application is much higher than the sample rate of
most sensors deployed in buildings. For example, a sensor measuring temperature, humidity, or
occupancy in a building typically only generates a single reading every few tens of seconds or
every few minutes. Furthermore, each individual reading from the anemometer is quite large (82
bytes), given that it encodes all 12 measurements (plus a small header). Given the higher data rate
requirements of the anemometer application, it is natural to use a higher-capacity battery than the
standard AA batteries used in most motes. The higher cost of such a battery is justified by the
higher cost of the anemometer transducers.

5.4 Empirical Methodology
This section presents our methodology, carefully chosen to ground our study of full-scale TCP in
LLNs.

5.4.1 Network Stack
Transport layer. That only a few full-scale TCP stacks exist, with a body of literature covering
decades of refining, demonstrates that developing a feature-complete implementation of TCP is
complex and error-prone [10]. Using a well-tested TCP implementation would ensure that results
from our measurement study are due to the TCP protocol, not an artifact of the TCP implementation
we used. Thus, we leverage the TCP implementation in FreeBSD 10.3 [180] to ground our study.
We ported it to run in embedded operating systems and resource-constrained embedded devices
(Section 5.4.2).

To verify the effectiveness of full-scale TCP in LLNs, we compare with CoAP [427], Co-
CoA [51], and unreliable UDP. CoAP is a standard LLN protocol that provides reliability on top of
UDP. It is the most promising LLN alternative to TCP, gaining momentum in both academia [123,
461, 287, 409, 51, 414] and industry [158, 260], with adoption by Cisco [148, 434], Nest/-
Google [363], and Arm [426]. CoCoA [51] is a recent proposal that augments CoAP with RTT
estimation.

It is attractive to compare TCP to a variety of commercial systems, as has been done by a num-
ber of studies in LTE/WLANs [487, 179]. Unfortunately, multihop LLNs have not yet reached the
level of maturity to support a variety of commercial offerings; only CoAP has an appreciable level
of commercial adoption. Other protocols are research proposals that often (1) are implemented for
now-outdated operating systems and hardware or exist only in simulation [250, 281, 5], (2) target
a very specific application paradigm [466, 439, 492], and/or (3) do not use IP [466, 250, 281, 369].
We choose CoAP and CoCoA because they are not subject to these constraints.
Layers 1 to 3. Because it is burdensome to place a border router with LAN connectivity within
wireless range of every low-power host (e.g., sensor node), it is common to transmit data (e.g.,
readings) over multiple wireless LLN hops. Although each sensor must be battery-powered, it

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 71

TelosB Hamilton Firestorm Raspberry Pi
CPU MSP430 Cortex-M0+ Cortex-M4 Cortex-A53
RAM 10 KiB 32 KiB 64 KiB 256 MB
ROM 48 KiB 256 KiB 512 KiB SD Card

Table 5.2: Comparison of the platforms we used (Hamilton and Firestorm) to TelosB and Rasp-
berry Pi.

is reasonable to have a wall-powered LLN router node within transmission range of it.1 This
motivates Thread2 [452, 280], a recently developed protocol standard that constructs a multihop
LLN over IEEE 802.15.4 links with wall-powered, always-on router nodes and battery-powered,
duty-cycled leaf nodes. We use OpenThread [363], an open-source implementation of Thread.

Thread decouples routing from energy efficiency. Among routers, it provides a mesh topology,
frequent route updates, and asymmetric bidirectional routing for reliability. Each leaf node duty
cycles its radio and simply chooses a router with good link quality, called its parent, as its next
hop to all other nodes. The duty cycling uses listen-after-send [410]. A leaf node’s parent stores
downstream packets destined for that leaf node, until the leaf node sends it a data request message.
A leaf node, therefore, can keep its radio powered off most of the time; infrequently, it sends a
data request message to its parent, and turns on its radio for a short interval afterward to listen for
downstream packets queued at its parent. Leaf nodes may send upstream traffic at any time. Each
node uses CSMA-CA for medium access.

5.4.2 Embedded Hardware
We use two embedded hardware platforms: Hamilton [276] and Firestorm [13]. Hamilton uses a
SAMR21 SoC with a 48 MHz Cortex-M0+, 256 KiB of ROM, and 32 KiB of RAM. Firestorm uses
a SAM4L 48 MHz Cortex-M4 with 512 KiB of ROM and 64 KiB of RAM. While these platforms
are more powerful than the TelosB [382], an older LLN platform widely used in past studies,
they are heavily resource-constrained compared to a Raspberry Pi (Table 5.2). Both platforms use
the AT86RF233 radio, which supports IEEE 802.15.4. We use its standard data rate, 250 kb/s.
We use Hamilton/OpenThread in our experiments; for comparison, we provide some results from
Firestorm and other network stacks in Section 5.5 and Section 5.6.3.
Handling automatic radio features. The AT86RF233 radio has built-in hardware support for
link-layer retransmissions and CSMA-CA. However, it automatically enters low-power mode dur-
ing CSMA backoff, during which it does not listen for incoming frames [325]. This behavior,
which we call deaf listening, interacts poorly with TCP when radios are always on, because TCP

1The assumption of powered “core routers” is reasonable for most IoT use cases, which are typically indoors.
Recent IoT protocols, such as Thread [452] and BLEmesh [59], take advantage of powered core routers.

2Thread has a large amount of industry support with a consortium already consisting of over 100 members [451],
and is used in real IoT products sold by Nest/Google [450]. Given this trend, using Thread makes our work timely.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 72

Figure 5.2: Snapshot of uplink routes in OpenThread topology at transmission power of -8 dBm
(5 hops). Node 1 is the border router with Internet connectivity.

requires bidirectional flow of packets—data in one direction and ACKs in the other. This may
initially seem concerning, as deaf listening is an important power-saving feature. Fortunately,
this problem disappears when using OpenThread’s listen-after-send duty-cycling protocol, as leaf
nodes never transmit data when listening for downstream packets. For experiments with always-
on radios, we do not use the radio’s capability for hardware CSMA and link retries; instead, we
perform these operations in software.
Multihop Testbed. We construct an indoor LLN testbed, depicted in Figure 5.2, with 15 Hamiltons
where node 1 is configured as the border router. OpenThread forms a 3-to-5-hop topology at
transmission power of -8 dBm. Embedded TCP endpoints (Hamiltons) communicate with a Linux
TCP endpoint (server on Amazon EC2) via the border router. During working hours, interference
is present in the channel, due to people in the space using Wi-Fi and Bluetooth devices in the 2.4
GHz frequency band. At night, when there are few/no people in the space, there is much less
interference.

5.5 Implementation of TCPlp
We seek to answer the following two questions: (1) Does full-scale TCP fit within the limited
memory of modern LLN platforms? (2) How can we integrate a TCP implementation from a
traditional OS into an embedded OS? To this end, we develop a TCP stack for LLNs based on
the TCP implementation in FreeBSD 10.3, called TCPlp [294], on multiple embedded operating
systems, RIOT OS [28] and TinyOS [309]. We use TCPlp in our measurement study in future
sections.

Although we carefully preserved the protocol logic in the FreeBSD TCP implementation,
achieving correct and performant operation on sensor platforms was a nontrivial effort. We had to

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 73

uIP BLIP GNRC TCPlp
Flow Control Yes Yes Yes Yes
Congestion Control N/A No Yes Yes
RTT Estimation Yes No Yes Yes
MSS Option Yes No Yes Yes
OOO Reassembly No No Yes Yes
TCP Timestamps No No No Yes
Selective ACKs No No No Yes
Delayed ACKs No No No Yes

Table 5.3: Comparison of features among embedded TCP stacks: uIP (Contiki), BLIP (TinyOS),
GNRC (RIOT), and TCPlp (our work).

modify the FreeBSD TCP implementation according to the concurrency model of each embedded
network stack and the timer abstractions provided by each embedded operating system. We also
made other modifications to the FreeBSD TCP implementation to reduce its memory footprint.

We first discuss the TCP features supported by our implementation. Then we discuss and
describe our changes to the FreeBSD TCP implementation below, with attention to the resulting
memory overhead of TCP.

5.5.1 Supported TCP Features
TCPlp includes features from FreeBSD that improve standard communication, like a sliding win-
dow, New Reno congestion control, zero-window probes, delayed ACKs, selective ACKs, TCP
timestamps, and header prediction. Table 5.3 compares the feature set of TCPlp to features in
embedded TCP stacks. The TCP implementations in uIP and BLIP lack features core to TCP.
uIP allows only one unACKed in-flight segment, eschewing TCP’s sliding window. BLIP does
not implement RTT estimation or congestion control. The TCP implementation in GNRC lacks
features such as TCP timestamps, selective ACKs, and delayed ACKs, which are present in most
full-scale TCP implementations. Another comparison of features in TCP stacks is available in the
slides from an OpenThread developer meeting [296].

In addition to supporting the protocol-level features summarized in 5.3, TCPlp is likely more
robust than other embedded TCP stacks because it is based on a well-tested TCP implementation.
While seemingly minor, some details, implemented incorrectly by TCP stacks, have had important
consequences for TCP’s behavior [10]. TCPlp benefits from a thorough implementation of each
aspect of TCP.

For example, TCPlp, by virtue of using the FreeBSD TCP implementation, benefits from a
robust implementation of congestion control. TCPlp implements not only the basic New Reno
algorithm, but also Explicit Congestion Notification [176], Appropriate Byte Counting [8, 9] and
Limited Transmissions [177]. It also inherits from FreeBSD heuristics to identify and correct “bad

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 74

retransmissions” (as in Section 2.8 of [11]): if, after a retransmission, the corresponding ACK is
received very soon (within RTT

2 of the retransmission), the ACK is assumed to correspond to the
originally transmitted segment as opposed to the retransmission. The FreeBSD implementation
and TCPlp recover from such “bad retransmissions” by restoring cwnd and ssthresh to their
former values before the packet loss. Aside from congestion control, TCPlp benefits from header
prediction [120], which introduces a “fast code path” to process common-case TCP segments
(in-sequence data and ACKs) more efficiently, and Challenge ACKs [442], which make it more
difficult for an attacker to inject an RST into a TCP connection.

Enhancements such as these make us more confident that our observed results are fundamental
to TCP, as opposed to artifacts of poor implementation. Furthermore, they allow us to focus on
performance problems arising from the challenges of LLNs, as opposed to general TCP-related
challenges that the research community has already solved in the context of traditional networks
and operating systems.

TCPlp, however, omits some features in FreeBSD’s TCP/IP stack. We omit dynamic window
scaling, as buffers large enough to necessitate it (≥ 64 KiB) would not fit in memory. We omit the
urgent pointer, as it not recommended for use [201] and would only complicate buffering. Certain
security features, such as host cache, TCP signatures, SYN cache, and SYN cookies are outside
the scope of this work. As mentioned above, however, we do retain Challenge ACKs [442].

5.5.2 Concurrency Model
We describe how the concurrency model of the underlying system interacts with TCPlp.

5.5.2.1 GNRC and OpenThread (RIOT OS)

RIOT OS provides threads as the basic unit of concurrency. Asynchronous interaction with hard-
ware is done by interrupt handlers that preempt the current thread, perform a short operation in
the interrupt context, and signal a related thread to perform any remaining operation outside of
interrupt context. Then the thread is placed on the RIOT OS scheduler queue and is scheduled for
execution depending on its priority.

The GNRC network stack for RIOT OS runs each network layer (or module) in a separate
thread. Each thread has a priority and can be preempted by a thread with higher priority or by
an interrupt. The thread for a lower network layer has higher priority than the thread for a higher
layer.

The port of OpenThread for RIOT OS on which we implemented TCPlp handles received
packets in one thread and sends packets from another thread, where the thread for received packets
has higher priority [276]. The rationale for this design is to ensure timely processing of received
packets at the radio, which is especially important in the context of a high-throughput flow.

To adapt TCPlp for GNRC, we run the FreeBSD implementation as a single TCP-layer thread,
whose priority is between that of the application-layer thread and the IPv6-layer thread. To adapt
TCPlp for OpenThread on RIOT OS, we call the TCP protocol logic (tcp input()) at the appro-
priate point along the receive path, and send packets from the TCP protocol logic (tcp output())

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 75

using the established send path. As explained in Section 5.5.3, we also use an additional thread for
timer callbacks in RIOT OS.

Given that TCP state can be accessed concurrently from multiple threads—the TCP thread
(GNRC) or receive thread (OpenThread), the application threads, and timer callbacks—we needed
to synchronize access to it. The FreeBSD implementation allows fine-grained locking of con-
nection state to allow different connections to be serviced in parallel on different CPUs. Given
that low-power embedded sensors typically have only one CPU, however, we opted for simplicity,
instead using a single global TCP lock for TCPlp.

5.5.2.2 BLIP (TinyOS) and Standalone OpenThread

TinyOS uses an event-driven concurrency model based on split-phase operations, consisting of
an event loop that executes on a single stack. For concurrency, TinyOS provides three types of
unique operations: commands and events, which are executed immediately, and tasks, which are
scheduled for execution after all preceding tasks are completed. An interrupt handler may preempt
the current function, perform a short operation in the interrupt context using asynchronous events
and commands, and post a task to perform any remaining computation later. To adapt the thread-
based FreeBSD implementation to the event-driven TinyOS, we execute the primary functions
of FreeBSD, such as tcp output() and tcp input(), within tasks outside of interrupt context.
Because tasks in TinyOS cannot preempt each other, we remove the locking present in the FreeBSD
TCP implementation.

Later, we integrated TCPlp directly into OpenThread. This implementation is capable of run-
ning in a standalone OpenThread-based system without RIOT OS (Section 9.1.1). OpenThread
uses event-driven concurrency similar to TinyOS, exposed to the network stack as Tasklets, so
our concurrency design for TCPlp in OpenThread is similar to our concurrency design for TCPlp
in TinyOS.

5.5.3 Timer Event Management
Given that many TCP operations are based on timer events, achieving correct timer operation is
important. For example, if an RTO timer event is dropped by the embedded operating system, the
RTO timer will not be rescheduled, and the connection may hang.

For a simple and stable operation, many existing embedded TCP stacks, including the uIP,
lwIP, and BLIP TCP stacks, rely on a periodic, fixed-interval clock in order to check for expired
timeouts. Instead, TCPlp uses one-shot tickless timers as FreeBSD 10.3 does [249], which is
beneficial in two ways: (1) When there are no scheduled timers, the tickless timers allow the
CPU to sleep, rather than being needlessly woken up at a fixed interval, resulting in lower energy
consumption [276]. (2) Unlike fixed periodic timers, which can only be serviced on the next tick
after they expire, tickless timers can be serviced as soon as they expire. To obtain these advantages,
however, an embedded operating system must robustly manage asynchronous timer callbacks.

TinyOS has a single event queue maintained by the scheduler. The semantics of TinyOS guar-
antee that a task can exist in the event queue only once, even if it is posted (i.e., scheduled for

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 76

Protocol Event Scheduler User Library
ROM 21352 B 1696 B 5384 B
RAM (Per Active Socket) 488 B 40 B 36 B
RAM (Per Passive Socket) 16 B 16 B 36 B

Table 5.4: Memory usage of TCPlp on TinyOS. Our TCPlp implementation spans three modules:
(1) protocol implementation, (2) event scheduler that injects callbacks into userspace, and (3) user
library.

execution) multiple times before executing. Therefore, the event queue can be sized appropriately
at compile-time to not overflow. Furthermore, TinyOS handles received packets in a separate queue
than tasks. This ensures that TCP timer callbacks will not be dropped.

This is not the case for RIOT OS. Timer callbacks either handle the timer entirely in interrupt
context, or put an event on a thread’s message queue, so that the thread performs the required
callback operation. Each network protocol supported by RIOT OS has a single thread. Because a
thread’s message queue in RIOT OS is used to hold both received packets and timer events, there
is no guarantee when a timer expires that there is enough space in the thread message queue to
accept a timer event; if there is not enough space, RIOT OS drops the timer event. Furthermore,
if a timer expires multiple times before its event is handled by the thread, multiple events for the
same timer can exist simultaneously in the queue; we cannot find an upper bound on the number of
slots in the message queue used by a single timer. To provide robust TCP operation on RIOT OS,
we create a second thread used exclusively for TCP timers. We handle timers similarly to TinyOS’
post operation, by preventing the message queue from having multiple callback events of a single
timer. This eliminates the possibility of timer event drops.

5.5.4 Connection State for TCPlp
We use separate structures for active sockets used to send and receive bytes, and passive sockets
used to listen for incoming connections, as passive sockets require less memory.

Table 5.4 and Table 5.5 depict the memory footprint of TCPlp on TinyOS and RIOT OS. The
memory required for the protocol and application state of an active TCP socket fits in a few hundred
bytes, less than 1% of the available RAM on the Cortex-M4 (Firestorm) and 2% of that on the
Cortex-M0+ (Hamilton). Although TCPlp includes heavyweight features not traditionally included
in embedded TCP stacks, it fits well within available memory.

5.5.5 Memory-Efficient Data Buffering
Existing embedded TCP stacks, such as uIP and BLIP, allow only one TCP packet in the air,
eschewing careful implementation of send and receive buffers [279]. These buffers, however, are
key to supporting TCP’s sliding window functionality. We observe in Section 5.6.2 that TCPlp
performs well with only 2-3 KiB send and receive buffers, which comfortably fit in memory even

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 77

Protocol Socket Layer posix sockets

ROM 19972 B 6216 B 5468 B
RAM (Per Active Socket) 364 B 88 B 48 B
RAM (Per Passive Socket) 12 B 88 B 48 B

Table 5.5: Memory usage of TCPlp on RIOT OS. We also include RIOT’s posix sockets module,
used by TCPlp to provide a Unix-like interface.

when naı̈vely preallocated at compile time. Given that buffers dominate TCPlp’s memory usage,
however, we discuss techniques to optimize their memory usage.

5.5.5.1 Send Buffer: Zero-Copy

Zero-copy techniques [48, 145, 449, 317, 327] are typically used in situations where the time for
the CPU to copy memory is a significant bottleneck. Our situation is very different; the radio, not
the CPU, is the bottleneck, owing to the low bandwidth of IEEE 802.15.4. By using a zero-copy
send buffer, however, we can avoid allocating memory to intermediate buffers that would otherwise
be needed to copy data, thereby reducing the network stack’s total memory usage.

In TinyOS, for example, the BLIP network stack supports vectored I/O; an outgoing packet
passed to the IPv6 layer is specified as an iovec. Instead of allocating memory in the packet
heap for each outgoing packet, TCPlp simply creates iovecs that point to existing data in the send
buffer. This decreases the required size of the packet heap.

Unfortunately, zero-copy optimizations were not possible for the OpenThread implementation,
because OpenThread does not support vectored I/O for sending packets. The result is that the
TCPlp implementation requires a few kilobytes of additional memory for the send buffer on this
platform.

5.5.5.2 Receive Buffer: In-Place Reassembly Queue

Not all zero-copy optimizations are useful in the embedded setting. In FreeBSD, received packets
are passed to the TCP implementation as mbufs [489]. The receive buffer and reassembly buffer are
mbuf chains, so data need not be copied out of mbufs to add them to either buffer or recover from
out-of-order delivery. Furthermore, buffer sizes are chosen dynamically [415], and are merely a
limit on their actual size. In our memory-constrained setting, such a design is dangerous because
its memory usage is nondeterministic; there is additional memory overhead, due to headers, if the
data are delivered in many small packets instead of a few large ones.

We opted for a flat array-based circular buffer for the receive buffer in TCPlp, primarily owing
to its determinism in a limited-memory environment: buffer space is reserved at compile time.
Head/tail pointers delimit which part of the array stores in-sequence data. To reduce memory
consumption, we store out-of-order data in the same receive buffer, at the same position as if they
were in-sequence. We use a bitmap, not head/tail pointers, to record where out-of-order data are

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 78

(a) Naı̈ve receive buffer. Note that size of advertised window+size of buffered data= size of receive buffer.

(b) Receive buffer with in-place reassembly queue. In-sequence data (yellow) is kept in a circular buffer,
and out-of-order segments (red) are written in the space past the received data.

Figure 5.3: Naı̈ve and final TCP receive buffers.

Fast Ethernet Wi-Fi Ethernet IEEE 802.15.4
Capacity 100 Mb/s 54 Mb/s 10 Mb/s 250 kb/s
MTU 1500 B 1500 B 1500 B 104–116 B
Transmission Time 0.12 ms 0.22 ms 1.2 ms 4.1 ms

Table 5.6: Comparison of TCP/IP links.

Header IEEE 802.15.4 6LoWPAN IPv6 TCP Total
1st Frame 11–23 B 5 B 2–28 B 20–44 B 38–107 B
nth Frame 11–23 B 5–12 B 0 B 0 B 16–35 B

Table 5.7: Header overhead with 6LoWPAN fragmentation.

stored, because out-of-order data need not be contiguous. We call this an in-place reassembly
queue (Figure 5.3).

5.6 TCP in a Low-Power Network
In this section, we characterize how full-scale TCP interacts with a low-power network stack,
resource-constrained hardware, and a low-bandwidth link.

5.6.1 Reducing Header Overhead using MSS
In traditional networks, it is customary to set the Maximum Segment Size (MSS) to the link MTU
(or path MTU) minus the size of the TCP/IP headers. IEEE 802.15.4 frames, however, are an
order of magnitude smaller than frames in traditional networks (Table 5.6). The TCP/IP headers

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 79

consume more than half of the frame’s available MTU. As a result, TCP performs poorly, incurring
more than 50% header overhead.

Earlier approaches to running TCP over low-MTU links (e.g., low-speed serial links) have
used TCP/IP header compression based on per-flow state [251] to reduce header overhead. In con-
trast, the 6LoWPAN adaptation layer [348], designed for LLNs, supports only flow-independent
compression of the IPv6 header using shared link-layer state, a clear departure from per-flow tech-
niques. A key reason for this is that the compressor and decompressor in an LLN (host and border
router) are separated by several IP hops,3 making it desirable for intermediate nodes to be able to
determine a packet’s IP header without per-flow context (see Section 10 of [348]).

That said, compressing TCP headers separately from IP addresses using per-flow state is a
promising approach to further amortize header overhead. There is preliminary work in this direc-
tion [25, 26], but it is based on uIP, which has one in-flight segment, and does not fully specify
how to resynchronize compression state after packet loss with a multi-segment window. It is also
not officially standardized by the IETF.

Therefore, we take an approach orthogonal to header compression. We instead choose an MSS
larger than the link MTU admits, relying on fragmentation at the lower layers to decrease header
overhead. Fragmentation is handled by 6LoWPAN, which acts at Layer 2.5, between the link and
network layers. Unlike end-to-end IP fragmentation, the 6LoWPAN fragments exist only within
the LLN, and are reassembled into IPv6 packets when leaving the network.

Relying on fragmentation is effective because, as shown in Table 5.7, TCP/IP headers consume
space in the first fragment, but not in subsequent fragments. Using an excessively large MSS,
however, decreases reliability because the loss of one fragment results in the loss of an entire
packet. Existing work [24] has identified this trade-off and investigated it in simulation in the
context of power consumption. We investigate it in the context of goodput in a live network.

Figure 5.4a shows the bandwidth as the MSS varies. As expected, we see poor performance at
a small MSS due to header overhead. Performance gains diminish when the MSS becomes larger
than 5 frames. We recommend using an MSS of about 5 frames, but it is reasonable to decrease it
to 3 frames if more wireless loss is expected. Despite the small frame size of IEEE 802.15.4, we
can effectively amortize header overhead for TCP using an atypical MSS. Adjusting the MSS
is orthogonal to TCP header compression. We hope that widespread use of TCP over 6LoWPAN,
perhaps based on our work, will cause TCP header compression to be separately investigated and
possibly used together with a large MSS.

5.6.2 Impact of Buffer Size
Whereas simple TCP stacks, like uIP, allow only one in-flight segment, full-scale TCP requires
complex buffering (Section 5.5.5). In this section, we vary the size of the buffers (send buffer
for uplink experiments and receive buffer for downlink experiments) to study how it affects the
bandwidth. In varying the buffer size, we are directly affecting the size of TCP’s flow window. We

3Thread deliberately does not abstract the mesh as a single IP link. Instead, it organizes the LLN mesh as a set of
overlapping link-local scopes, using IP-layer routing to determine the path packets take through the mesh [236].

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 80

1 2 3 4 5 6 7 8 9
Maximum Segment Size (No. Frames)

0

20

40

60

80

TC
P

Go
od

pu
t (

kb
/s

)

uplink
downlink

(a) Effect of varying MSS.

1 2 3 4 5 6 7 8
Buffer Size (No. Segments)

0

20

40

60

80

TC
P

Go
od

pu
t (

kb
/s

)

uplink
downlink

(b) Effect of varying buffer size.

Figure 5.4: TCP goodput over one IEEE 802.15.4 hop.

expect throughput to increase with the flow window size, with diminishing returns once it exceeds
the bandwidth-delay product (BDP). The result is shown in Figure 5.4b. Goodput levels off at
a buffer size of 3 to 4 segments (1386 B to 1848 B), indicating that the buffer size needed to
fill the BDP fits comfortably in memory. Indeed, the BDP in this case is about 125kb/s ·0.1s ≈
1.6KiB.4

Downlink goodput at a buffer size of one segment is unusually high. This is because FreeBSD
does not delay ACKs if the receive buffer is full, reducing the effective RTT from ≈ 130 ms to
≈ 70 ms. Indeed, goodput is very sensitive to RTT when the buffer size is small, because TCP
exhibits “stop-and-wait” behavior due to the small flow window.

5.6.3 Direct TCP Connection
We also consider TCP goodput between two embedded nodes over the IEEE 802.15.4 link, over
a single hop without any border router. Using the OpenThread network stack with RIOT OS on
Hamilton, we are able to achieve 75 kb/s over a single TCP connection. For comparison, we
are able to achieve 63 kb/s goodput over a TCP connection between two Hamilton motes using
RIOT’s GNRC network stack, and 71 kb/s using the BLIP stack on Firestorm. Later, we integrated
TCPlp directly into OpenThread (Section 9.1.1); with the resulting implementation, we are able
to achieve approximately 80 kb/s between two nRF52840-DK boards. This suggests that our
results are reproducible across multiple platforms and embedded network stacks. The minor
performance degradation in GNRC is possibly explained by its greater header overhead due to
implementation differences, and by its IPC-based thread-per-layer concurrency architecture, which

4We estimate the bandwidth as 125 kb/s rather than 250 kb/s to account for the radio overhead identified in
Section 5.6.4.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 81

0 1 2 3 4 5 6 7
Time (ms)

0

5

10

15

20

Cu
rre

nt
 D

ra
w

(m
A)

Init

SPI Xfer
CSMA

Backoff
Tx Frame

Rx L2
ACK

(a) Unicast of a single frame, measured with an
oscilloscope.

Ideal Empirical
0.000

0.005

0.010

0.015

In
ve

rs
e

Gp
ut

 (s
/k

b)
[L

ow
er

 is
 B

et
te

r]

95 kb/s
75 kb/s TCPlp

L4 Hdr
Unused
L3 Hdr
L2 Hdr
L4 ACKs
Radio
Link

(b) TCPlp goodput compared with raw link bandwidth
and overheads.

Figure 5.5: Analysis of overhead limiting TCPlp’s goodput.

has known inefficiencies [119]. This suggests that the implementation of the underlying network
stack, particularly with regard to concurrency, could affect TCP performance in LLNs.

5.6.4 Upper Bound on Single-Hop Goodput
We consider consider TCP goodput over a single hop without any border router, as we did in
Section 5.6.3. Figure 5.5b lists various sources of overhead that limit TCPlp’s goodput, along with
the ideal upper bounds that they admit. Link overhead refers to the 250 kb/s link capacity. Radio
overhead includes SPI transfer to/from the radio (i.e., packet copying [365]), CSMA, and link-
layer ACKs, which cannot be pipelined because the AT86RF233 radio has only one frame buffer.
A full-sized 127-byte frame spends 4.1 ms in the air at 250 kb/s, but the radio takes 7.2 ms to send
it (Figure 5.5a), almost halving the link bandwidth available to a single node. This is consistent
with prior results [365]. Unused refers to unused space in link frames due to inefficiencies in the
6LoWPAN implementation. Overall, we estimate a 95 kb/s upper bound on goodput (100 kb/s
without TCP headers). Our 75 kb/s measurement is within 25% of this upper bound, substantially
higher than prior work (Table 5.8). The difference from the upper bound is likely due to network
stack processing and other real-world inefficiencies.

5For this study, we list aggregate goodput over multiple TCP flows.
6One study [154] achieves ≈ 16 kb/s over multiple hops using the Linux TCP stack. We do not include it in

Table 5.8 because it does not capture the resource constraints of LLNs (it uses traditional computers for the end hosts)
and does not consider hidden terminals (it uses different wireless channels for different wireless hops). It uses TCP to
evaluate link-layer burst forwarding.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 82

[513] [25] [222] [279]5 [236, 235] Our Work
(Hamilton
Platform)

TCP Stack uIP uIP uIP BLIP Arch Rock TCPlp
(RIOT OS,

OpenThread)
Maximum
Segment Size

1 Frame 1 Frame 4 Frames 1 Frame 1024 bytes 5 Frames

Window Size 1 Segment 1 Segment 1 Segment 1 Segment 1 Segment 1848 bytes
(4 Segments)

Goodput
(One Hop)

1.5 kb/s ≈ 13 kb/s ≈ 12 kb/s ≈ 4.8 kb/s 15 kb/s 75 kb/s

Goodput
(Multi-Hop)

≈ 0.55 kb/s ≈ 6.4 kb/s ≈ 12 kb/s ≈ 2.4 kb/s 9.6 kb/s 20 kb/s

Table 5.8: Comparison of TCPlp to existing TCP implementations used in network studies over
IEEE 802.15.4 networks.6 Goodput figures obtained by reading graphs in the original paper (rather
than stated numbers) are marked with the ≈ symbol.

5.7 TCP Over Multiple Wireless Hops
We instrument TCP connections between Hamilton nodes in our multi-hop testbed, without using
the EC2 server.

5.7.1 Mitigating Hidden Terminals in LLNs
Prior work over traditional WLANs has shown that hidden terminals degrade TCP performance
over multiple wireless hops [190]. Using RTS/CTS for hidden terminal avoidance has been shown
to be effective in WLANs. This technique has an unacceptably high overhead in LLNs [488], how-
ever, because data frames are small (Table 5.6), comparable in size to the additional control frames
required. Prior work in LLNs has carefully designed application traffic, using rate control [281,
237] and link-layer delays [488], to avoid hidden terminals.

But prior work does not explore these techniques in the context of TCP. Unlike protocols like
CoAP and simplified TCP implementations like uIP, a full-scale TCP flow has a multi-segment
sliding window of unacknowledged data, making it unclear a priori whether existing LLN tech-
niques will be sufficient. In particular, rate control seems sufficient because of bi-directional packet
flow in TCP (data in one direction and ACKs in the other). So, rather than applying rate control,
we attempt to avoid hidden terminals by adding a delay d between link-layer retries in addition to
CSMA backoff. After a failed link transmission, a node waits for a random duration between 0 and
d, before retransmitting the frame. The idea is that if two frames collide due to a hidden terminal,
the delay will prevent their link-layer retransmissions from colliding.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 83

Seg. Loss

0 25 50 75 100
Maximum Link Delay (ms)

0.00

0.02

0.04

0.06

0.08

0.10

Se
gm

en
t L

os
s (

1
Ho

p)

Goodput
Model Goodput (§7.4)

0

20

40

60

80

Go
od

pu
t (

kb
/s

)

(a) TCP goodput, one hop.

Seg. Loss

0 25 50 75 100
Maximum Link Delay (ms)

0.00

0.02

0.04

0.06

0.08

0.10

Se
gm

en
t L

os
s (

3
Ho

ps
)

Goodput
Ideal Goodput (§7.2)

Model Goodput (§7.4)

0

20

40

60

80

Go
od

pu
t (

kb
/s

)

(b) TCP goodput, three hops.

0 5 10 15 20 25 30 40 50 60 80 100
Maximum Link Delay (ms)

0

500

1000

1500

2000

2500

Ro
un

d-
Tr

ip
 T

im
e

(m
s)

(c) RTT, three hops (outliers omitted).

0 50 100
Maximum Link Delay (ms)

0

100000

200000

300000

Fr
am

es
 T

ra
ns

m
itt

ed

(d) Total frames sent, three hops.

Figure 5.6: Effect of varying time between link-layer retransmissions. Reported “segment loss” is
the loss rate of TCP segments, not individual IEEE 802.15.4 frames. It includes only losses not
masked by link-layer retries.

We modified OpenThread, which previously had no delay between link retries, to implement
this. As expected, single-hop performance (Figure 5.6a) decreases as the delay between link retries
increases; hidden terminals are not an issue in that setting. Packet loss is high for the multihop
experiment (Figure 5.6b) when the link retry delay is 0, as is expected from hidden terminals.
Adding a small delay between link retries, however, effectively reduces packet loss. Making
the delay too large raises the RTT (Figure 5.6c).

We prefer a smaller frame/segment loss rate, even if goodput stays the same, in order to make
more efficient use of network resources. Therefore, we prefer a moderate delay (d = 40 ms) to
a small delay (d = 5 ms), even though both provide the same goodput, because the frame and
segment loss rates are smaller when d is large (Figures 5.6b and 5.6d).

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 84

5.7.2 Upper Bound on Multi-Hop Goodput
Comparing Figures 5.6a and 5.6b, goodput over three wireless hops is substantially smaller than
goodput over a single hop. Prior work has observed similar throughput reductions over multiple
hops [279, 365]. It is due to radio scheduling constraints inherent in the multihop setting, which
we describe in this section. Let B be the bandwidth over a single hop.

Consider a two-hop setup: S→ R1 → D. R1 cannot receive a frame from S while sending a
frame to D, because its radio cannot transmit and receive simultaneously. Thus, the maximum
achievable bandwidth over two hops is B

2 .
Now consider a three-hop setup: S→ R1→ R2→D. By the same argument, if a frame is being

transferred over R1→ R2, then neither S→ R1 nor R2→ D can be active. Furthermore, if a frame
is being transferred over R2→D, then R1 can hear that frame. Therefore, S→ R1 cannot transfer a
frame at that time; if it does, then its frame will collide at R1 with the frame being transferred over
R2→ D. Thus, the maximum bandwidth is B

3 . We depict this ideal upper bound in Figure 5.6b,
taking B to be the ideal single-hop goodput from Section 5.6.4.

In setups with more than three hops, every set of three adjacent hops is subject to this constraint.
The first hop and fourth hop, however, may be able to transfer frames simultaneously. Therefore,
the maximum bandwidth is still B

3 . In practice, goodput may fall slightly because transmissions
from a node may interfere with nodes multiple hops away, even if they can only be received by its
immediate neighbors.

We made empirical measurements with d = 40 ms to validate this analysis. Goodput over one
hop was 64.1 kb/s; over two hops, 28.3 kb/s; over three hops, 19.5 kb/s; and over four hops, 17.5
kb/s. This roughly fits the model.

This analysis justifies why the same window size works well for both the one-hop experi-
ments and the three-hop experiments in Section 5.7.1. Although the RTT is three times higher, the
bandwidth-delay product is approximately the same. Crucially, this means that the 2 KiB buffer
size we determined in Section 5.6.2, which fits comfortably in memory, remains applicable
for up to three wireless hops.

5.7.3 TCP Congestion Control in LLNs
Recall that small send/receive buffers of only 1848 bytes (4 TCP segments) each are enough to
achieve good TCP performance. This profoundly impacts TCP’s congestion control mechanism.
For example, consider Figure 5.6b. It is remarkable that throughput is almost the same at d = 0 ms
and d = 30 ms, despite having 6% packet loss in the first case and less than 1% packet loss in the
second.

Figure 5.7a depicts the congestion window over a 100 second interval during the d = 0 ms
experiment.7 Interestingly, the cwnd graph is far from the canonical sawtooth shape (e.g., Figure

7All congestion events in Figure 5.7a were fast retransmissions, except for one timeout at t = 569 s. cwnd is tem-
porarily set to 1 MSS during fast retransmissions due to an artifact of FreeBSD’s implementation of SACK recovery.
For clarity, we cap cwnd at the size of the send buffer, and we remove fluctuations in cwnd which resulted from “bad
retransmissions” that the FreeBSD implementation corrected in the course of its normal execution.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 85

500 520 540 560 580 600
Time (seconds)

0

500

1000

1500

2000

Si
ze

 (b
yt

es
)

cwnd ssthresh

(a) TCP cwnd for d = 0, three hops.

0 25 50 75 100
Maximum Link Delay (ms)

0

100

200

300

Co
un

t

Timeouts
Fast Retransmissions

(b) TCP loss recovery, three hops.

Figure 5.7: Congestion behavior of TCP over IEEE 802.15.4.

11(b) in [34]); cwnd is almost always maxed out even though losses are frequent (6%). This is spe-
cific to small buffers. In traditional environments, where links have higher throughput and buffers
are large, it takes longer for cwnd to recover after packet loss, greatly limiting the sending rate
with frequent packet losses. In contrast, in LLNs, where send/receive buffers are small, cwnd
recovers to the maximum size quickly after packet loss, making TCP performance robust to
packet loss.

Congestion behavior also provides insight into loss patterns, as shown in Figure 5.7b. Fast
retransmissions (used for isolated losses) become less frequent as d increases, suggesting that they
are primarily caused by hidden-terminal-related losses. Timeouts do not become less frequent as
d is increased, suggesting that they are caused by something else.

5.7.4 Modeling TCP Goodput in an LLN
Our findings in Section 5.7.3 suggest that, in LLNs, cwnd is limited by the buffer size, not packet
loss. To validate this, we analytically model TCP performance according to our observations in
Section 5.7.3, and then check if the resulting model is consistent with the data. Comprehensive
models of TCP, which take window size limitations into account, already exist [368]; in contrast,
our model is intentionally simple to provide intuition.

Observations in Section 5.7.3 suggest that we can neglect the time it takes the congestion
window to recover after packet loss. So, we model a TCP connection as binary: either it is sending
data with a full window, or it is not sending new data because it is recovering from packet loss.
According to this model, we can think of a TCP flow as a sequence of bursts. A burst is a sequence
of full windows of data successfully transferred, which ends in a packet loss. After this loss, the
flow spends some time recovering from the packet loss, which we call a rest. Then, the next burst
begins. Burst lengths depend on the packet loss rate p and rest lengths depend on the RTT.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 86

Let w be the size of TCP’s flow window, measured in segments (for our experiments in Sec-
tion 5.7.3, we would have w = 4). Define b as the average number of windows sent in a burst.
The goodput of TCP is the number of bytes sent in each burst, which is w ·b ·MSS, divided by the
duration of each burst. A burst lasts for the time to transmit b windows of data, plus the time to
recover from the packet loss that ended the burst. The time to transmit b windows is b ·RTT. We
define trec to be the time to recover from the packet loss. Then we have

B =
w ·b ·MSS

b ·RTT+ trec
. (5.1)

The value of b depends on the packet loss rate. We define a new variable, pwin, which denotes the
probability that at least one packet in a window is lost. Then b = 1

pwin
.

To complete the model, we must estimate trec and pwin.
The value of trec depends on whether the retransmission timer expires (called an RTO) or a fast

retransmission is performed. If an RTO occurs, the total time lost is the excess time budgeted to
the retransmit timer beyond one RTT, plus the time to retransmit the lost segments. We denote the
time budgeted to the retransmit timer as ETO. So the total time lost due to a timeout, assuming
it takes about 2 RTTs to recover lost segments, would be (ETO−RTT)+2 ·RTT = ETO+RTT.
After a fast retransmission, TCP enters a “fast recovery” state [55, 210]. Fast recovery requires
buffer space to be effective, however. In particular, if the buffer contains only four TCP segments,
then the lost packet, and three packets afterward which resulted in duplicate ACKs, account for the
entire send buffer; therefore, TCP cannot send new data during fast recovery, and instead stalls for
one RTT, until the ACK for the fast retransmission is received. In contrast, choosing a larger send
buffer will allow fast recovery to more effectively mask this loss [415].

As discussed in Section 5.7.3, these two types of losses may be caused by different factors.
Therefore, we do not attempt to distinguish them on basis of probability. Instead, we use a very
simple model: trec = ℓ ·RTT. The constant ℓ can be chosen to describe the number of “productive”
RTTs lost due to a packet loss. Based on the estimates above, choosing ℓ= 2 seems reasonable for
our experiments in Section 5.7 which used a buffer size of four segments.

To model pwin, we assume that, in each window, segment losses are independent. This gives
us pwin = 1− (1− p)w, where p is the probability of an individual segment being lost (after link
retries). Because p is likely to be small (less than 20%), we apply the approximation that (1−x)a≈
1−ax for small x. This gives us pwin ≈ wp.

Applying these equations for trec and pwin, along with some minor algebraic manipulation to
put our equation in a similar form to Equation 5.4, we obtain a model for TCP performance in
LLNs, for small w and p.

B =
MSS
RTT

· 1
1
w + ℓp

(5.2)

Taking ℓ= 2, as discussed above, we obtain the following model.

B =
MSS
RTT

· 1
1
w +2p

(5.3)

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 87

where B, the TCP goodput, is written in terms of the maximum segment size MSS, round-trip time
RTT, packet loss rate p (0 < p < 1), and window size w (sized to BDP, in packets). Figures 5.6a
and 5.6b include the predicted goodput as dotted lines, calculated according to Equation 5.3 using
the empirical RTT and segment loss rate for each experiment. Our model of TCP goodput closely
matches the empirical results.

An established model of TCP outside of LLNs is the following [300, 337].

B =
MSS
RTT

·

√
3

2p
(5.4)

Equation 5.4 fundamentally relies on there being many competing flows, so we do not expect
it to match our empirical results from Section 5.7.3. But, given that existing work examining
TCP in LLNs makes use of this formula to ground new algorithms [241], the differences between
Equations 5.3 and 5.4 are interesting to study. In particular, Equation 5.3 has an added 1

w in the
denominator and depends on p rather than

√
p, explaining, mathematically, how TCP in LLNs is

more robust to small amounts of packet loss. We hope that Equations 5.2 and 5.3 will provide a
foundation for future research on TCP in LLNs.

5.8 TCP in LLN Applications
To demonstrate that TCP is practical for real IoT use cases, we compare its performance to that of
CoAP, CoCoA, and unreliable UDP in three workloads inspired by real application scenarios: web
server, sense-and-send, and event detection. We evaluate the protocols over multiple hops with
duty-cycled radios and wireless interference, present in our testbed in the day (Section 5.4.2). In
our experiments, nodes 12–15 (Figure 5.2) send data to a server running on Amazon EC2. The
RTT from the border router to the server was ≈ 12 ms, much smaller than within the low-power
mesh (≈ 100-300 ms).

In our preliminary experiments, we found that in the presence of simultaneous TCP flows,
tail drops at a relay node significantly impacted fairness. Implementing Random Early Detection
(RED) [178] with Explicit Congestion Notification (ECN) support solved this problem. Therefore,
we use RED and ECN for experiments in this section with multiple flows. While such solutions
have sometimes been problematic since they are implemented in routers, they are more natural in
LLNs because the intermediate “routers” relaying packets in an LLN typically also participate in
the network as hosts.

We generally use a smaller MSS (3 frames) in this section, because it is more robust to inter-
ference in the day (Section 5.6). Furthermore, duty-cycling increases the RTT. It is natural to ask
whether our conclusions in Section 5.7, including the model developed in Section 5.7.4, still hold
in this setting. With a sleep interval of 100 ms, we qualitatively observed that, although cwnd tends
to recover more slowly after loss, due to the smaller MSS and larger RTT, it is still “maxed out”
past the BDP most of the time. Therefore, we expect our conclusion, that TCP is more resilient to
packet loss, to also apply in this setting. One may consider adapting our model from Section 5.7.4

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 88

CoAP HTTP
0

1000
2000
3000
4000

La
te

nc
y

(m
s)

(a) No duty cycling.

CoAP HTTP
0

1000
2000
3000
4000

La
te

nc
y

(m
s)

(b) 1 s sleep interval.

CoAP HTTP
0

1000
2000
3000
4000

La
te

nc
y

(m
s)

(c) 1 s sleep interval with adaptive
duty cycle.

Figure 5.8: Latency of web request: CoAP vs. HTTP/TCP.

to this setting by choosing a larger value of ℓ to reflect the fact that cwnd recovers from loss less
quickly due to the smaller MSS. It is possible, however, that one could derive a better model by
explicitly modeling the phase when cwnd is recovering, similar to other existing TCP models (in
contrast to our model above, where we assume that the TCP flow is binary—either transmitting at
a full window, or in backoff after loss). We leave a rigorous treatment of how these changes might
affect the model, including an exploration of this idea, to future work.

Running TCP in these workloads motivates Adaptive Duty Cycle and Finer-Grained Link
Queue Management, which we introduce below as they are needed.

5.8.1 Web Server Application Scenario
To study TCP with multiple wireless hops and duty cycling, we begin with a web server hosted on
a low-power device. We compare HTTP/TCP and CoAP/UDP (Section 5.4.1).

5.8.1.1 Latency Analysis

An HTTP request requires two round-trips: one to establish a TCP connection, and another for re-
quest/response. CoAP requires only one round trip (no connection establishment) and has smaller
headers. Therefore, CoAP has a lower latency than HTTP/TCP when using an always-on link
(Figure 5.8a). Even so, the latency of HTTP/TCP in this case is well below 1 second, not so large
as to degrade user experience.

We now explore how a duty-cycled link affects the latency. Recall that leaf nodes in Open-
Thread (Section 5.4.1) periodically poll their parent to receive downstream packets, and keep their
radios in a low-power sleep state between polls. We set the sleep interval—the time that a node
waits between polls—to 1 s and show the latency in Figure 5.8b. Interestingly, HTTP’s minimum
observed latency is much higher than CoAP’s, more than is explained by its additional round trip.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 89

0 2500 5000 7500 10000
Response Size (bytes)

0

2000

4000

6000

8000

Re
sp

on
se

 T
im

e
(m

s) CoAP
HTTP

(a) Response time vs. size.

CoAP HTTP
0

20

40

60

80

100

Re
sp

on
se

 T
im

e
(s

)

(b) 50 KiB response size.

Figure 5.9: Goodput: CoAP vs. HTTP/TCP.

Upon investigation, we found that this is because the self-clocking nature of TCP [252] in-
teracts poorly with the duty-cycled link. Concretely, the web server receives the SYN packet
when it polls its parent, and sends the SYN-ACK immediately afterward, at the beginning of the
next sleep interval. The web server therefore waits for the entire sleep interval before polling its
parent again to receive the HTTP request, thereby experiencing the worst-case latency for the sec-
ond round trip. We also observed this problem for batch transfer over TCP; TCP’s self-clocking
behavior causes it to consistently experience the worst-case round-trip time.

To solve this problem, we propose a technique called Adaptive Duty Cycling. After the web
server receives a SYN, it reduces the sleep interval in anticipation of receiving an HTTP request.
After serving the request, it restores the sleep interval to its old value. Unlike early LLN link-layer
protocols like S-MAC [499] that use an adaptive duty cycle, we use transport-layer state to inform
the duty cycle. Figure 5.8c shows the latency with adaptive duty cycling, where the sleep interval
is temporarily reduced to 100 ms after connection establishment. With adaptive duty-cycling,
the latency overhead of HTTP compared to CoAP is small, despite larger headers and an
extra round trip for connection establishment.

Adaptive duty cycling is also useful in high-throughput scenarios, and in situations with per-
sistent TCP connections. We apply adaptive duty cycling to one such scenario in Section 5.8.2.

5.8.1.2 Throughput Analysis

In Section 5.8.1.1, the size of the web server’s response was 82 bytes, intentionally small to focus
on latency. In a real application, however, the response may be large (e.g., it may contain a batch
of sensor readings). In this section, we explore larger response sizes. We use a short sleep interval
of 100 ms. This is realistic because, using adaptive duty cycling, the sleep interval may be longer
when the node is idle, and reduced to 100 ms only when transferring the response.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 90

Figure 5.9a shows the total time from dispatching the request to receiving the full response, as
we vary the size of the response. It plots the median time, with quartiles shown in error bars. HTTP
takes longer than CoAP when the response size is small (consistent with Figure 5.8), but CoAP
takes longer when the response size is larger. This indicates that while HTTP/TCP has a greater
fixed-size overhead than CoAP (higher y-intercept), it transfers data at a higher throughput (lower
slope). TCP achieves a higher throughput than CoAP because CoAP sends response segments one-
at-a-time (“stop and wait”), whereas TCP allows multiple segments to be in flight simultaneously
(“sliding window”).

To quantify the difference in throughput, we compare TCP and CoAP when transferring 50
KiB of data in Figure 5.9b. TCP achieves 40% higher throughput compared to CoAP, over
multiple hops and a duty-cycled link.

5.8.1.3 Power Consumption

TCP consumes more energy than CoAP due to the extra round-trip at the beginning. In practice,
however, a web server is interactive, and therefore will be idle most of the time. Thus, the idle
power consumption dominates. For example, TCP keeps the radio on 35% longer than CoAP for a
response size of 1024 bytes, but if the user makes one request every 100 seconds on average, this
difference drops to only 0.35%. Thus, we relegate in-depth power measurements to the sense-and-
send application (Section 5.8.2), which is non-interactive.

5.8.2 Sense-and-Send Application Scenario
We turn our focus to the common sense-and-send paradigm, in which devices periodically col-
lect sensor readings and send them upstream. For concreteness, we model our experiments on the
deployment of anemometers in a building, a real-world LLN use case described in Section 5.3.2.
Anemometers collect measurements frequently (once per second), making heavy use of the trans-
port protocol; given that our focus is on transport performance, this makes anemometers a good
fit for our study. Other sensor deployments (e.g., temperature, humidity, building occupancy, etc.)
sample data at a lower rate (e.g., 0.05 Hz), but are otherwise similar. Thus, we expect our results
to generalize to other sense-and-send applications.

Nodes 12–15 (Figure 5.2) each generate one 82-byte reading every 1 second, and send it to the
cloud server using either TCP or CoAP. We use most of the remaining RAM as an application-
layer queue to prevent data from being lost if CoAP or TCP is in backoff after packet loss and
cannot send out new data immediately. We make use of adaptive duty cycling for both TCP and
CoAP, with a base sleep interval of four minutes (OpenThread’s default) and decreasing it to 100
ms8 when a TCP ACK or CoAP response is expected.

We measure a solution’s reliability as the proportion of generated readings delivered to the
server. Given that TCP and CoAP both guarantee reliability, a reliability measurement of less
than 100% is caused by overflow of the application-layer queue due to poor network conditions

8100 ms is comparable to ContikiMAC’s default sleep interval of 125 ms.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 91

CoAP CoCoA TCPlp
0

2

4

6

Ra
di

o
Du

ty
 C

yc
le

 (%
)

No Batching
Batching

(a) Radio duty cycle.

CoAP CoCoA TCPlp
0

2

4

6

CP
U

Du
ty

 C
yc

le
 (%

) No Batching
Batching

(b) CPU duty cycle.

Figure 5.10: Effect of batching on power consumption.

preventing data from being reliably communicated as fast as they are generated. Generating data
more slowly would result in higher reliability.

5.8.2.1 Performance in Favorable Conditions

We begin with experiments in our testbed at night, when there is less wireless interference. We
compare three setups: (1) CoAP, (2) CoCoA, and (3) TCPlp. We also compare two sending scenar-
ios: (1) sending each sensor reading right away (“No Batching”), and (2) sending sensor readings
in batches of 64 (“Batching”) [282]. We ensure that packets in a CoAP batch are the same size as
segments in TCP (five frames).

All setups achieved 100% reliability due to end-to-end acknowledgments (figures are omitted
for brevity). Figures 5.10a and 5.10b also show that all the three protocols consume similar power;
TCP is comparable to LLN-specific solutions.

Both the radio and CPU duty cycle are significantly smaller with batching than without
batching. By sending data in batches, nodes can amortize the cost of sending data and waiting for
a response. Thus, batching is the more realistic workload, so we use it to continue our evaluation.

5.8.2.2 Resilience to Packet Loss

In this section, we inject uniformly random packet loss at the border router and measure each
solution. The result is shown in Figure 5.11. Note that the injected loss rate corresponds to the
packet-level loss rate after link retries and 6LoWPAN reassembly. Although we plot loss rates up
to 21%, we consider loss rates > 15% exceptional; we focus on the loss rate up to 15%. A number
of WSN studies have already achieved > 90% end-to-end packet delivery, using only link/routing
layer techniques (not transport) [153, 277, 278]. In our testbed environment, we have not observed
the loss rate exceed 15% for an extended time, even with wireless interference.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 92

0.00 0.05 0.10 0.15 0.20
Injected Loss Rate

0

25

50

75

100

Re
lia

bi
lit

y
(%

)

TCPlp
CoCoA
CoAP

(a) Reliability.

TCPlp
TCPlp RTOs
CoCoA
CoAP

0.00 0.05 0.10 0.15 0.20
Injected Loss Rate

0

20

40

60

Re
tra

ns
m

its
 p

er
 1

0
M

in
.

(b) Transport-layer retries.

TCPlp
CoCoA
CoAP
Ideal

0.00 0.05 0.10 0.15 0.20
Injected Loss Rate

0

2

4

6

8

Ra
di

o
Du

ty
 C

yc
le

 (%
)

(c) Radio duty cycle.

0.00 0.05 0.10 0.15 0.20
Injected Loss Rate

0

2

4

6

8
CP

U
Du

ty
 C

yc
le

 (%
) TCPlp

CoCoA
CoAP

(d) CPU duty cycle.

Figure 5.11: Performance with injected packet loss.

Both CoAP and TCP achieve nearly 100% reliability at packet loss rates less than 15%, as
shown in Figure 5.11a. At loss rates greater than 9%, CoCoA performs poorly. The reason is that
CoCoA attempts to measure RTT for retransmitted packets, and conservatively calculates the RTT
relative to the first transmission. This results in an inflated RTT value that causes CoCoA to delay
longer before retransmitting, causing the application-layer queue to overflow. Full-scale TCP is
immune to this problem despite measuring the RTT, because the TCP timestamp option allows
TCP to unambiguously determine the RTT even for retransmitted segments.

Figures 5.11c and 5.11d show that, overall, TCP and CoAP perform comparably in terms of
radio and CPU duty cycle. At 0% injected loss, TCPlp has a slightly higher duty cycle, consistent
with Figure 5.10. At moderate packet loss, TCPlp appears to have a slightly lower duty cycle. This
may be due to TCP’s sliding window, which allows it to tolerate some ACK losses without retries.
Additionally, Figure 5.11b shows that, although most of TCP’s retransmissions are explained by

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 93

timeouts, a significant portion were triggered in other ways (e.g., duplicate ACKs). In contrast,
CoAP and CoCoA rely exclusively on timeouts, which has intrinsic limitations [512].

With exceptionally high packet loss rates (>15%), CoAP achieves higher reliability than TCP,
because it “gives up” after just 4 retries; it exponentially increases the wait time between those
retries, but then resets its RTO to 3 seconds when giving up and moving to the next packet. In
contrast, TCP performs up to 12 retries with exponential backoff. Thus, TCP backs off further
than CoAP upon consecutive packet losses, witnessed by the smaller retransmission count in Fig-
ure 5.11b, causing the application-layer queue to overflow more. This performance gap could be
filled by parameter tuning.

We also consider an ideal “roofline” protocol to calculate a fairly loose lower bound on the
duty cycle. This ideal protocol has the same header overhead as TCP, but learns which packets
were lost for “free,” without using ACKs or running MMC. Thus, it turns on its radio only to send
out data and retransmit lost packets. The real protocols have much higher duty cycles than the
ideal protocol would have (Figure 5.11c), suggesting that a significant amount of their overhead
stems from determining which packets were lost—polling the parent node for downstream TCP
ACKs/CoAP responses. This gap could be reduced by improving OpenThread’s MMC protocol.
For example, rather than using a fixed sleep interval of 100 ms when an ACK is expected, one
could use exponential backoff to increase the sleep interval if an ACK is not quickly received. We
leave exploring such ideas to future work.

5.8.2.3 Performance in Lossy Conditions

We compare the protocols over the course of a full day in our testbed, to study the impact of real
wireless interference associated with human activity in an office. We focus on TCPlp and CoAP
since they were the most promising protocols from the previous experiment. To ensure that TCPlp
and CoAP are subject to similar interference patterns, we (1) run them simultaneously, and (2)
hardcode adjacent TCPlp and CoAP nodes to have the same first hop in the multihop topology.
Improving Queue Management. OpenThread’s queue management interacts poorly with TCP
in the presence of interference. When a duty-cycled leaf node sends a data request message to its
parent, it turns its radio on and listens until it receives a reply (called an “indirect message”). In
OpenThread, the parent finishes sending its current frame (which may require link retries in the
presence of interference), and then sends the indirect message. The duty-cycled leaf node keeps its
radio on during this time, causing its radio duty cycle to increase. This is particularly bad for TCP,
as its sliding window makes it more likely for the parent node to be in the middle of sending a frame
when it receives a data request packet from a leaf node. Thus, we modified OpenThread to allow
indirect messages to preempt the current frame in between link-layer retries, to minimize the
time that duty-cycled leaf nodes must wait for a reply with their radios on. Both TCP and CoAP
benefited from this; TCP benefited more because it suffered more from the problem to begin with.
Power Consumption. To improve power consumption for both TCP and CoAP, we adjusted
parameters according to the lossy environment: (1) we enabled link-layer retries for indirect mes-
sages, (2) we decreased the data request timeout and performed link-layer retries more rapidly for

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 94

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
Hour

0

2

4

6

8

10

Ra
di

o
Du

ty
 C

yc
le

 (%
)

TCPlp
CoAP

Figure 5.12: Radio duty cycle of TCP and CoAP in a lossy wireless environment, in one represen-
tative trial (losses are caused by natural human activity).

Protocol Reliability Radio Duty Cycle CPU Duty Cycle
TCPlp 99.3% 2.29% 0.973%
CoAP 99.5% 1.84% 0.834%
Unreliable, no batching 93.4% 1.13% 0.52%
Unreliable, with batching 95.3% 0.734% 0.30%

Table 5.9: Performance in the testbed over a full day, averaged over multiple trials. The ideal
protocol (Section 5.8.2.2) would have a radio duty cycle of ≈ 0.63%–0.70% under similarly lossy
conditions.

indirect messages, to deliver them to leaves more quickly, and (3) given the high level of daytime
interference, we decreased the MSS from five frames to three frames (as in Section 5.8).

Figure 5.12 depicts the radio duty cycle of TCP and CoAP for a trial representative of our
overall results. CoAP maintains a lower duty cycle than TCPlp outside of working hours,
when there is less interference; TCPlp has a slightly lower duty cycle than CoAP during
working hours, when there is more wireless interference. TCPlp’s better performance at a
higher loss rate is consistent with our results from Section 5.8.2.2. At a lower packet loss rate,
TCP performs slightly worse than CoAP. This could be due to hidden terminal losses; more retries,
on average, are required for indirect messages for TCP, causing leaf nodes to stay awake longer.
Overall, CoAP and TCPlp perform similarly (Table 5.9).

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 95

5.8.2.4 Unreliable UDP

As a point of comparison, we repeat the sense-and-send experiment using a UDP-based protocol
that does not provide reliability. Concretely, we run CoAP in “nonconfirmable” mode, in which
it does not use transport-layer ACKs or retransmissions. The result is in the last two rows of
Table 5.9. Compared to unreliable UDP, reliable approaches increase the radio/CPU duty cycle
by 3×, in exchange for nearly 100% reliability. That said, the corresponding decrease in battery
life will be less than 3×, because other sources of power consumption (reading from sensors, idle
current) are also significant.

For other sense-and-send applications that sample at a lower rate, TCP and CoAP would see
higher reliability (less application queue loss), but UDP would not similarly benefit (no application
queue). Furthermore, the power consumption of TCP, CoAP, and unreliable UDP would all be
closer together, given that the radio and CPU spend more time idle.

5.8.3 Event Detection Application Scenario
Finally, we consider an application scenario where multiple flows compete for available bandwidth
in an LLN. One such scenario is event detection: sensors wait until an interesting event occurs, at
which point they report data upstream at a high data rate. Because such events tend to be correlated,
multiple sensors send data simultaneously.

Nodes 12-15 in our testbed simultaneously transmit data to the EC2 instance (Figure 5.2),
which measures the goodput of each flow. We use the same duty-cycling policy as in Section 5.8.2.
We divide each flow into 40-second intervals, measure the goodput in each interval, and compute
the median and quartiles of goodput across all flows and intervals. The median gives a sense of
aggregate goodput, and the quartiles gives a sense of fairness (quartiles close to the median are
better).

Figure 5.13 shows the median and quartiles (as error bars) as the offered load increases. For
small offered load, the per-flow goodput increases linearly. Once the aggregate load saturates the
network, goodput declines slightly and the interquartile range increases, due to inefficiencies in
independent flows competing for bandwidth. Overall, TCP performs similarly to CoAP and
CoCoA, indicating that TCP’s congestion control remains effective despite our observations
in Section 5.7.3 that it behaves differently in LLNs.

5.9 Conclusion
TCP is the de facto reliability protocol in the Internet. Over the past 40 years, new physical-,
datalink-, and application-layer protocols have evolved alongside TCP, and supporting good TCP
performance was a consideration in their design. TCP is the obvious performance baseline for new
transport-layer proposals. To warrant adoption, novel transports must be much better than TCP in
the intended application domain.

In contrast, when LLN research flourished two decades ago, LLN hardware could not run full-
scale TCP. The original system architecture for networked sensors [223], for example, targeted an

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 96

0 1 2 3 4 5
Offered load per flow (kb/s)

0

1

2

3

4

5

Go
od

pu
t p

er
 fl

ow
 (k

b/
s)

CoAP

0 1 2 3 4 5
Offered load per flow (kb/s)

0

1

2

3

4

5

Go
od

pu
t p

er
 fl

ow
 (k

b/
s)

CoCoA

0 1 2 3 4 5
Offered load per flow (kb/s)

0

1

2

3

4

5

Go
od

pu
t p

er
 fl

ow
 (k

b/
s)

TCP

Figure 5.13: CoAP, CoCoA, and TCP with four competing flows.

8-bit MCU with only 512 bytes of memory. It naturally became taken for granted that TCP is too
heavy for LLNs. Furthermore, contemporary research on TCP in WLANs [35, 32] suggested that
TCP would perform poorly in LLNs even if the resource constraints were surmounted.

In revisiting the TCP question, after the resource constraints relaxed, we find that the expected
pitfalls of wireless TCP actually do not carry over to LLNs. Although naı̈ve TCP indeed performs
poorly in LLNs, this is not due to fundamental problems with TCP as were observed in WLANs.
Rather, it is caused by incompatibilities with a low-power link layer, which likely arose because
canonical LLN protocols were developed in the absence of TCP considerations. We show how to
fix these incompatibilities while preserving seamless interoperability with other TCP/IP networks.
This enables a viable TCP-based transport architecture for LLNs.

5.9.1 Implications for Applications Relating to Cryptography
Applications based on expressive cryptography often incur networking overhead (Section 2.2.1.3).
Networking overhead can be particularly significant when using an extremely constrained network
like an LLN. For example, a protocol like JEDI, which we will explore in Chapter 7, is designed
to be practical on LLN devices, but requires sending policy-based encryption ciphertexts, which
are hundreds of bytes in size, over the network. Performant TCP, enabled by the work in this
chapter, facilitates such applications by providing high throughput and reliability for transferring
large cryptographic objects. In that sense, our work in this chapter is an application of the technique
in Section 3.1.2—we provide a generic improvement to transport-layer networking in LLNs that
facilitates applications based on expressive cryptography. Additionally, our work makes it easier to
secure LLNs using widely used network security protocols like HTTPS and TLS, without relying
on less widely used alternatives like DTLS.

CHAPTER 5. SUPPORTING CRYPTOGRAPHY IN LOW-POWER WIRELESS SYSTEMS
WITH PERFORMANT TCP 97

5.9.2 Broader Implications for Networking
As our improvements to transport-layer networking in LLNs in this chapter are generic, they also
benefit non-cryptographic applications. In particular, our results have several implications for
LLNs moving forward. First, the use of lightweight protocols that emulate part of TCP’s
functionality, like CoAP, needs to be reconsidered. Protocol stacks like OpenThread should
support full-scale TCP as an option. TCP should also serve as a benchmark to assess new LLN
transport proposals.

Second, full-scale TCP will influence the design of networked systems using LLNs. Such
systems are presently designed with application-layer gateways in mind (Section 5.3). Using
TCP/IP in the LLN itself would allow the use of commodity network management tools, like
firewalls and NIDS. TCP would also allow the application-layer gateway to be replaced with a
network-layer router, allowing clients to interact with LLN applications in much the same way as a
Wi-Fi router allows users to interact with web applications. This is much more flexible than the sta-
tus quo, where each LLN application needs application-specific functionality to be installed at the
gateway [502]. In cases where a new LLN transport protocol is truly necessary, the new protocol
may be wise to consider the byte-stream abstraction of TCP. This would allow the application-
layer gateway to be replaced by a transport-layer gateway. The mere presence of a transport layer,
distinct from the application layer, goes a long way to providing interoperability with the rest of
the Internet.

Third, UDP-based protocols will still have a place in LLNs, just as they have a place in the
Internet. UDP is used for applications that benefit from greater control of segment transmission
and loss response than TCP provides. These are typically real-time or multimedia applications
where losing information is preferable to late delivery. It is entirely seemly for some sensing appli-
cations in LLNs, particularly those with similar real-time constraints, to transfer data using UDP-
based protocols, even if TCP is an option. But TCP still benefits such applications by providing a
reliable channel for control information. For example, TCP may be used for device configuration,
or to provide a shell for debugging, without yet another reliability protocol.

In summary, LLN-class devices are ready to become first-class citizens of the Internet. To this
end, we believe that TCP should have a place in the LLN architecture moving forward, and that it
will help put the “I” in IoT for LLN-class devices.

98

Chapter 6

Using Cryptography Efficiently for
Anonymous and Verifiable Data Sharing

This is the first of two chapters exploring the techniques in Section 3.2. We focus in this chapter
on systems for storing and sharing data—systems in which users can store data, retrieve it later,
and mark it as accessible to other users. A longstanding problem, in this context, is that of secure
storage—providing useful security guarantees even when the storage server, and some users, are
compromised by an adversary. To provide integrity guarantees when the server is compromised,
it is natural to leverage a blockchain (Section 2.1.2.2). Unfortunately, blockchains are costly to
use—they have high transaction latency and low transaction throughput (Section 2.2).

In this chapter, we design, implement, and evaluate Ghostor, a storage system that provides
a notion of privacy that we call anonymity and a notion of integrity that we call verifiable lin-
earizability, even when the storage server is compromised. By choosing anonymity as its privacy
guarantee, Ghostor delinks user identities from data accesses while avoiding the need for expensive
cryptographic tools that hide memory access patterns (e.g., multi-client ORAM). This is similar
in spirit to the technique in Section 3.2.3. Ghostor leverages a blockchain (more generally, a
ledger) to achieve its integrity guarantee, but we leverage the techniques from Section 3.2.1 and
Section 3.2.2 to do so efficiently. These techniques (1) allow Ghostor use the blockchain rarely, so
that the latency of issuing a blockchain transaction does not make any user-facing operation slow,
and (2) make the frequency of blockchain transactions tunable based on the available transaction
bandwidth and budget for issuing transactions, with a gradual degradation in security guarantee as
blockchain transactions are less frequent. Ghostor incurs only a 4–5× overhead compared to an in-
secure baseline. Although significant, this cost may be worth it for security- and privacy-sensitive
applications.

6.1 Introduction
Systems for remote data storage and sharing have seen widespread adoption over the past decade.
Every major cloud provider offers it as a service (e.g., Amazon S3, Azure Blobs), and it is estimated

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 99

that 39% of corporate data uploaded to the cloud is related to file sharing [270]. Given the relentless
attacks on servers storing data [240], the secure storage problem has seen much interest in both
academia [316, 168, 430, 275, 264, 57, 193, 220, 305, 384] and industry [131, 243, 271, 386, 462].

Early systems addressing the secure storage problem [193, 263] have users encrypt and sign
files. However, a sophisticated adversary can still:

• observe metadata about users’ identities [110, 208, 248, 482]. Even if the files are encrypted,
the adversary sees which users are sharing a file, which user is accessing a file at a given
time, and the list of users in the system. Figure 6.1 shows an example where the attacker can
conclude that Alice has cancer from such metadata. Further, this allows the attacker to learn
the graph of user social relations [412, 438].

• perform active attacks. Despite the signatures, an adversary can revert a file to an earlier state
as in a rollback attack, or hide users’ updates from each other as in a fork attack, without
being detected. These are dangerous if, for example, the shared file is Alice’s medical profile,
and she does not learn that her doctor changed her treatment.

Research over the past 15 years has striven to mitigate these attacks by providing anonymity—
hiding users’ identities from the storage server—or verifiable consistency—enabling users to detect
rollback and fork attacks. In achieving these stronger security guarantees, however, state-of-the-
art systems employ weaker threat models that rely on centralized trust: a trust assumption on a
few specific machines. For example, they rely on a trusted party [441, 328], split the server into
two components assuming one is honest [274, 367, 264], or assume the adversary is honest-but-
curious (not malicious) [505, 89, 329, 30] meaning the attacker does not change the server’s data
or execution.

Attackers have notoriously performed highly targeted attacks, spreading malware with the abil-
ity to modify software, files, or source code [509, 508, 308]. In such attacks, a determined attacker
can compromise any few central servers. Ideally, we would avoid any trust in the server or other
clients, but unfortunately, that is impossible: Mazières and Shasha [338] proved that, if one can-
not assume that clients are reliably online [275], clients cannot detect fork attacks without placing
some trust in the server. Tools from expressive cryptography, such as multi-client ORAM and
blockchains, provide an avenue to achieving strong privacy and integrity guarantees without cen-
tral trust, but they are expensive to use. Hence, this chapter asks the question: Can we achieve
strong privacy and integrity guarantees in a data-sharing system with practical overhead,
without relying on centralized trust?

To answer this question, we design and build Ghostor, an object store based on decentralized
trust that achieves anonymity and verifiable linearizability (abbreviated VerLinear). At a high level,
anonymity1 means that the protocol does not reveal directly to the server any user identity with any
request, as previously defined in the secure storage literature [505, 274, 367, 329]. As shown in
Figure 6.1, the server does not see which user owns which objects, which users have read or write

1Outside of secure storage, anonymity is sometimes defined differently. In secure messaging, for example, an
anonymous system is expected to hide the timing of accesses [225] and which files/mailboxes are accessed, but not
necessarily the system’s membership [128].

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 100

E2EE Systems Ghostor's Anonymous E2EE
Alice and BobMD have accounts This system has unknown users
Alice owns medical profile file F
Alice and BobMD have access to F
Alice reads F at 2pm
BobMD writes to F at 3pm

File F exists with unknown owner
F's Access Control List is unknown
Unknown reads F at 2pm
Unknown (could be same as
above) writes to F at 3pmGoogle search says BobMD

is an oncologist. Each of
these tells me that Alice
might suffer from cancer.

Figure 6.1: An example of what a server attacker sees in a typical end-to-end encrypted (E2EE)
system versus Ghostor’s Anonymous E2EE.

Hides which users are part of the system

Hides which user makes each access

Hides the ACL of each object

Hides which object is accessed

Hides the data in each object

Hides the type of each access (read or write)G
lo

ba
l

O

bl
iv

io
us

ne
ss

E2
EE

An
on

ym
ity

An
on

ym
ity

 +
 E

2E
E

(G
ho

st
or

)

M
et

ad
at

a-
H

id
in

g
(G

ho
st

or
-M

H
)

Hides the timing of accesses

Figure 6.2: Information leakage in a data-sharing system and associated privacy properties.

permissions to a given object, or even who are the users of the system. The server essentially
sees ghosts accessing the storage, hence the name “Ghostor.” VerLinear means clients can verify
that each write is reflected in later reads, except for benign reordering of concurrent operations as
formalized by linearizability [221]. To achieve these properties, we build Ghostor’s integrity on
top of a consistent storage primitive based on decentralized trust, like a blockchain [356, 93, 506]
or verifiable ledger [238, 160], while using it only rarely (technique from Section 3.2.1).

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 101

 Practical
systems

Theoretical
schemes

E2EE Systems:
CFS, SiRiUS, Plutus,
Sieve, ShadowCrypt,

Keybase, etc.

Ghostor's
techniques

Anonymous, E2EE,
VerLinear System:

Ghostor

Globally Oblivious
Schemes:

 AnonRAM, PANDA,
etc.

Metadata-Hiding File-
Sharing Scheme:

Ghostor-MH

Ghostor's
techniques

Figure 6.3: Ghostor’s contributions. Ghostor’s techniques can be applied to both oblivious and
non-oblivious systems.

6.1.1 Hiding User Identities
Achieving anonymity in practical data-sharing systems like Ghostor is difficult because common
system design paradigms, like user login, per-user mailboxes on the server, and client-side caching,
let the server track users. As we explain in Section 6.4, even using user-specific keys to sign
updates to data objects can reveal to the server which user performed the update, and requires
knowledge of the ACL to check that the signer is an authorized user. We re-architect the system
to avoid these paradigms (Section 6.4), using data-centric key distribution and encrypted key lists
instead of server-side ACLs. Like prior systems [184, 4, 298], Ghostor uses cryptographic keys
as capabilities, allowing the server and other users to verify that each access is performed by an
authorized user. Ghostor also leverages this technique to achieve anonymity by having all users au-
thorized to perform a particular operation on an object (e.g., all users with read access to an object)
share the same capability for performing that operation on that object, and by distributing these
capabilities to users without revealing ACLs to the server. We find this technique, anonymously
distributed shared capabilities, interesting because anonymity is not typically a goal of public-key
access control [184, 4] or capability-based systems [313, 424, 344].

An additional challenge is to guard against resource abuse while preserving anonymity. This
is typically done by enforcing per-user resource quotas (e.g., Google Drive requires users to pay
for additional space), but this is incompatible with Ghostor’s anonymity. One solution is for users
to pay for each operation via an anonymous cryptocurrency (e.g., Zcash [506]), but this puts an
expensive blockchain operation in the critical path. To avoid this, Ghostor leverages blind signa-
tures [95, 105, 104] to allow a user to pay the Ghostor server for service in bulk and in advance,
while removing the linkage between payments and operations.
Relationship to obliviousness. Figure 6.2 positions Ghostor’s anonymity with respect to other
privacy properties. Global obliviousness [30, 328], which hides which object is accessed across
all uncompromised objects and users in the system, is orthogonal to Ghostor’s anonymity, which

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 102

hides which user performs each access. Obliviousness and anonymity are also complementary:
(1) In some cases, without obliviousness, users may be identified based on access patterns. (2)
Without anonymity, knowing which user issued a request may reveal information about what data
that request may access. Ghostor’s techniques for anonymity are a transformation (Figure 6.3):

• If applied to an E2EE system, we obtain Ghostor, an anonymous E2EE system.

• If applied to a globally oblivious scheme, we obtain Ghostor-MH, a data-sharing scheme
that hides all metadata.

Hiding metadata from a malicious adversary, as in Ghostor-MH, is a very strong guarantee—
existing globally oblivious schemes inherently reveal user identities [328] or assume the adversary
is honest-but-curious [329, 30]. However, globally oblivious data-sharing schemes, like Ghostor-
MH, are theoretical schemes that are far from practical. Thus, Ghostor-MH is only a proof of
concept demonstrating the power of Ghostor’s techniques to lift a globally oblivious scheme all
the way to virtually zero leakage for a malicious adversary. As such, we do not include a full
description of Ghostor-MH in this dissertation; we relegate it to our full Ghostor paper [230].

An important similarity between anonymity and global obliviousness, in the context of Ghos-
tor, is that both prevent the adversary from being able to link user identities to which data items
are accessed. Anonymity achieves this by preventing the adversary from learning user identi-
ties, and global obliviousness achieves this by preventing the adversary from learning which data
items are accessed. Given this similarity, Ghostor’s privacy design is in the spirit of the technique
in Section 3.2.3. Specifically, anonymity is a cheaper way than global obliviousness to delink
user identities from accessed data in Ghostor’s setting, leading us to design Ghostor to provide
anonymity but not global obliviousness. That said, we do not consider this to be an application
of the technique in Section 3.2.3 because it affects Ghostor’s security guarantees—as described
above, anonymity and global obliviousness are different from one another.

6.1.2 Verifiable Consistency
To provide VerLinear, prior work either has clients sign hashes [275] so that clients can verify that
they see the same hash, or store hashes on a separate hash server [264], trusted not to collude with
the storage server. Neither technique can be used in Ghostor: client signatures are at odds with
anonymity, and the hash server is a trusted party, which Ghostor aims to avoid.

One way to adapt the prior designs to Ghostor’s decentralized trust is to store hashes on a block-
chain, which can be accomplished by running the hash server in a smart contract. Unfortunately,
this design is too slow to be practical. The client posts a hash on the blockchain for every object
write, which is expensive: blockchains incur high latency per transaction, have low transaction
throughput, and require cryptocurrency payment for each transaction [93, 356, 506].

To sidestep the limitations of a blockchain, we design Ghostor to only use the blockchain rarely
and outside of the critical path. Ghostor divides time into intervals called epochs. At the end of
each epoch, the Ghostor server publishes to the blockchain a small checkpoint, which summarizes
the operations performed during that epoch for all objects and users in the system. Each user can

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 103

Goal Technique
Anonymous user access control Anonymously distributed shared capabilities

(Section 6.4)
Anonymous server integrity verification Verifiable anonymous history (Section 6.5)
Concurrent operations on a single object Optimized GETs, two-phase protocol for PUTs

(Section 6.5.4)
Anonymous resource abuse prevention Blind signatures and proof of work (Sec-

tion 6.6)
Hiding user IP addresses Anonymous network, e.g., Tor (Section 6.9)

Table 6.1: Our goals and how Ghostor achieves each one.

then verify that the results of their accesses during the epoch are consistent with the checkpoint.
The consistency properties of a blockchain ensure all clients see the same checkpoint, so the server
is committed to a single history of operations and cannot perform a fork attack. The epoch time
is a tunable system parameter; increasing it decreases the frequency of blockchain operations,
reducing the cost of the system, but also increases the time that clients must wait before running the
verification procedure. This gives flexibility to strike the right balance between cost and security
for each application or deployment scenario (technique in Section 3.2.2). Commit chains [273]
and monitoring schemes [73, 453] are based on similar checkpoints, but Ghostor applies them to
object storage while maintaining users’ anonymity.

A significant obstacle is that a hash-chain-based history is not amenable to concurrent appends.
Each entry in the history contains the hash of the previous entry, causing one operation to fail
if a concurrent operation appends a new entry. Existing techniques for concurrent operations,
such as SUNDR’s VSLs [316], reveal per-user version numbers that would undermine Ghostor’s
anonymity. Our insight in Ghostor is to have the server, not the client, populate the hash of the
previous entry when appending a new entry. To make this safe despite a malicious adversary, we
carefully design a conflict resolution strategy, involving multiple linked entries in the history for
each write, that prevents attackers from manipulating data via replay or time-stretch attacks.

We call the resulting design a verifiable anonymous history.

6.1.3 Summary of Contributions
Our goals and techniques are summarized in Table 6.1. Overall, this chapter’s contributions are:

• We design an object store providing anonymity and verifiable linearizability based only on
decentralized trust.

• We develop techniques to (1) share capabilities for anonymity and distribute them anony-
mously, (2) create and checkpoint a verifiable anonymous history, and (3) support concurrent
operations on a single object with a hash-chain-based history.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 104

• We combine these with existing building blocks to instantiate Ghostor, an object store with
anonymity and VerLinear.

• We also apply these to a globally oblivious scheme to instantiate Ghostor-MH, which hides
nearly all metadata.

We also implemented Ghostor and evaluated it on Amazon EC2. Overall, Ghostor brings a 4–5×
throughput overhead on top of a simplistic and completely insecure baseline. There are two types
of latency overhead. Completing an individual operation takes several seconds. Afterward, it may
take several minutes for a checkpoint to be incorporated into the blockchain, to confirm that no
active attack has occurred for a batch of operations. We explain how these latencies play out in the
context of a particular application, EHR Sharing (Section 6.8).

6.2 System Overview
Ghostor is an object store, which stores unstructured data items (“objects”) and allows shared
access to them by multiple users. We instantiate Ghostor as an object store (as in Amazon S3 or
Azure Blobs) because it is a basic primitive on top of which more complex systems can be built.
Figure 6.4 illustrates Ghostor’s architecture. Multiple users, with separate clients, have shared
access to objects on the Ghostor server.
Server. The Ghostor storage server processes requests from clients. At the end of each epoch, the
server generates a single small checkpoint and publishes it to the blockchain.
Client. The client software consists of a Ghostor library, linked into applications, and a verification
daemon, which runs as a separate process. The Ghostor library receives requests from the appli-
cation and interacts with the server to satisfy each request. Upon accessing an object, the library
forwards a digest summarizing the operation to the verification daemon. At the end of each epoch,
the daemon (1) fetches object histories from the server, (2) verifies that they are consistent with the
server’s checkpoint on the blockchain, and (3) checks that the digests collected during the epoch
are consistent with the object histories, as explained in Section 6.5.

The daemon stores the user’s keypair. If a user loses her secret key, she loses access to all
objects that she created or was granted access to. Similarly, an attacker who steals a user’s secret
key can impersonate that user. To securely back up her key on multiple devices, a user can use
standard techniques like secret sharing [422, 469, 413]. A user who accesses Ghostor from multiple
devices uses the same key on all devices.

Application developers interact with Ghostor using the API below. Developers can work with
usernames, ACLs, and object IDs, but Ghostor clients will not expose them to the Ghostor server.
Below is a high-level description of each API call; a step-by-step technical description is in Sec-
tion 6.7.
♢ create user(): Creates a Ghostor user by generating keys for a new user. This operation runs
entirely in the Ghostor client—the server does not know this operation was invoked.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 105

Ghostor Server

Blockchain checkpointscheckpoints

Verification Daemon

Ghostor
Library

digests

Ghostor Client

Application

alarm

StorageServer SideUser Side

verifiable
anonymous history

root
hash

…
…
…

Figure 6.4: System overview of Ghostor. Shaded areas indicate components introduced by Ghos-
tor.

♢ user.pay(sum): Users pay the server through an anonymous cryptocurrency such as Zcash [506],
and obtain tokens from the server proportional to the amount paid. These tokens can later be
anonymously redeemed and used as proof of payment when invoking the below API functions.
♢ user.create object(id): Creates an object with ID id, owned by user who invokes this. The client
expends one token obtained from a previous call to pay. The id can be a meaningful name (e.g.,
a file path). It lives only within the client—the server receives some cryptographic identifier—so
different clients can assign different ids to the same object.
♢ user.set acl(id, acl): The user who invokes this must be the owner of the object with ID id. This
function sets a new ACL for that object. For simplicity, only the owner of an object can set its
ACL, but Ghostor can be extended to permit other users as well. The client encodes acl into an
object header that hides user identities, as in Section 6.4. If new users are given access, they are
notified via an out-of-band channel. Existing data-sharing systems also have this requirement; for
example, Dropbox and Box send an email with an access URL to the user. In Ghostor, all keys
are transferred in-band; the out-of-band channel is used only to inform the user that she has been
given access. Ghostor does not require a specific out-of-band channel; for example, one could use
Tor [143] or secure messaging [456, 225].
♢ user.get object(id), user.put object(id, content): The user can GET or PUT an object if permitted
by its ACL.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 106

6.3 Threat Model and Security Guarantees
Against a malicious attacker who has compromised the server, Ghostor provides:

• verifiable linearizability, as described in Section 6.3.2, and

• a notion of user anonymity, described in Section 6.3.3: briefly, it does not reveal user identi-
ties, but reveals object access patterns. Ghostor-MH additionally hides access patterns.

Ghostor does not protect against attacks to availability. Nevertheless, its anonymity makes it more
difficult for the server to selectively deny service to (or fork views of) certain users. Users, and the
Ghostor client instances running on their behalf, can be malicious and can collude with the server.

Formal definitions and proofs for these properties require a large amount of space, so we rele-
gate them to Appendix A. In this section, we include only informal definitions.

6.3.1 Assumptions
Ghostor is designed to derive its security from decentralized trust. Thus, our threat model assumes
an adversary who can compromise any few machines, as described below.
Blockchain. Ghostor makes the standard assumption that the blockchain is immutable and consis-
tent (all users see the same transaction history). This is based on the assumption that, in order to
attack a blockchain, the adversary cannot simply compromise a few machines, but rather a signifi-
cant fraction of the world’s computing power. Ghostor’s design is not tied to a specific blockchain.
Our implementation uses Zcash [506] because it supports both public and private transactions; we
use Zcash’s private transactions for Ghostor’s anonymous payments. The privacy guarantees of
Zcash can be implemented on top of other blockchains as well [46].
Network. We assume clients communicate with the server in a way that does not reveal their
network information. This can be done using mixnets [107] or secure messaging [456, 225] based
on decentralized trust. Our implementation uses Tor [143].

6.3.2 Verifiable Linearizability
If an attack is immediately detectable to a user—for example, if the server fails to honor payment
or provides a malformed response (e.g., bad signature)—we consider it an attack on availability,
which Ghostor does not prevent.

Clients should be able to detect active attacks, including fork and rollback attacks. Some
reordering of concurrent operations, however, is benign. We use linearizability [221] to define
when reordering at the server is considered benign or malicious. Informally, linearizability requires
that after a PUT completes, all later GETs return the value of either (1) that PUT, (2) a PUT that
was concurrent with it, or (3) a PUT that comes after it. We provide a more formal definition in
Appendix A.2. Ghostor provides verifiable linearizability (abbreviated VerLinear). This means
that if the server deviates from linearizability, clients can detect it at the end of the epoch. We

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 107

discuss how to choose the epoch length in Section 6.10. Ghostor does not provide consistency
guarantees for malicious user, or for objects for which a malicious user has write access.

Guarantee 1 (Verifiable linearizability). For any object F and any list E of consecutive epochs,
suppose that, for each epoch in E, the set of honest users who ran the verification procedure
includes all writers of F in that epoch (or is nonempty if F was not written). If the server did not
linearizably execute the operations that verifying clients performed in the epochs that they verified,
then at least one of the verifying clients will encounter an error in the verification procedure and
can generate a proof that the server misbehaved.

6.3.3 Anonymity
As explained in Section 6.1.1, Ghostor’s anonymity means that the server sees no user identities
associated with any action. In particular, an adversary controlling the server cannot tell which user
accesses each object, which users are authorized to access each object, or which users are part of
the system.

We informally define Ghostor’s privacy via a leakage function: what the server learns when
a user makes each API call (Section 6.2). For create object – put object, the server learns the
object ID, the type of operation, and whether the user is authorized according to the object’s ACL
(past and present). The server also sees the time of the operation, and the size of the encrypted
ACL and encrypted object, which can be hidden via padding at an extra cost. create user leaks
no information to the server, and pay reveals the sum paid and when. The server learns no user
identities, no object contents, and no ACLs. If the attacker has compromised some users, he learns
the contents of objects those users can access, including prior versions encrypted under the same
key. Collectively, the verification daemons leak the number of clients performing verification for
each object. If all clients in an object’s ACL are honest and running, this equals the ACL size. If
the ACL is padded to a maximum size, the owner should run verification more times to hide the
ACL size. Ghostor does not hide access patterns or timing (Figure 6.2). An adversary who uses
this information cannot see the contents of files and ACLs because they are encrypted. But such
an adversary could try to deduce correlations between which users issue different operations based
on access patterns and timing, and in some cases, identify the user based on that information. This
can be partially mitigated by carefully designing the application using Ghostor (Section 6.4.5). In
contrast, Ghostor-MH does hide access patterns. In Appendix A.1, we formally define Ghostor’s
privacy guarantee in the simulation paradigm of SMPC.

6.4 Hiding User Identities
System design paradigms used in typical data-sharing systems are incompatible with anonymity.
We identify the incompatible system design patterns and show how Ghostor replaces them. Ulti-
mately, we arrive at anonymously distributed shared capabilities, which allow Ghostor to enforce
access control for anonymous users without server-visible ACLs.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 108

Keypair or Key Description
(PVK, PSK) Signing keypair used to set

ACL
(RVK, RSK) Signing keypair used to get

object
(WVK, WSK) Signing keypair used to put

object
(OSK) Symmetric key for object

contents

Table 6.2: Per-object keys in Ghostor. The server uses the global signing keypair (SVK,SSK) to
sign digests for objects.

6.4.1 No User Login or User-Specific Mailboxes
Data-sharing systems typically have some storage space on the server, called an account file, ded-
icated to a user’s account. For example, Keybase [271] has a user account and Mylar [384] has a
user mailbox where the user receives a key to a new file. Accesses to the account file, however,
can be used to link user operations. As an example, suppose that when a user accesses an object,
her client first retrieves the decryption key from a user-specific mailbox. This violates anonymity
because the server can tell whether or not two accesses were made by the same user, based on
whether the same mailbox was accessed first. Instead, Ghostor’s anonymity requires that any se-
quence of API calls (Section 6.2) with the same inputs, when performed by any honest user, results
in the same server-side accesses.

Ghostor does not have any user-specific storage as in existing systems. To allow in-band key
exchange, Ghostor associates a header with each object. The object header functions like an
object-specific mailbox, in that it is used to distribute the object’s keys among users who have
access to the object. Unlike a user-specific mailbox, it preserves anonymity because, for a given
object, each user reads the same header before accessing it.

6.4.2 No Server-Visible ACLs
An honest server must be able to prevent unauthorized users from modifying objects, and users
must be able to verify that objects returned by the server were produced by authorized writers.
This is typically accomplished by having writers sign objects, and having the server check that the
user who signed the object is on the object’s ACL. However, this requires the ACL to be visible to
the server, which violates anonymity.

We observe that by switching to a design based on shared capabilities, we can allow the server
and other users to verify that writes are indeed made by authorized users, without requiring the
server or other users to know the ACL of the object, or which users are authorized. Every Ghostor
object has three associated signing keypairs (Table 6.2). All users of the object (and the server)

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 109

Enc(Object Content) OSK

Object Header
• (RVK, WVK)
• SignatureHeader

KeyList
• Enc(RSK, WSK, OSK) User1

• Enc(RSK, OSK) User2
•

Object Name: PVK

Figure 6.5: Object layout in Ghostor.

know the verifying keys PVK, RVK, and WVK because PVK is the name of the object, and RVK
and WVK are in the object header; the associated signing keys PSK, RSK, and WSK are capabilities
that grant access to set the ACL, get the object, and put the object, respectively. To distribute these
capabilities to users in the object’s ACL, the owner places a key list in the object header. The key list
contains, for each user in the ACL, a list of capabilities encrypted under that user’s public key. The
owner randomly shuffles the key list and, optionally, pads it to a maximum size to hide each user’s
position. If a user has read/write access to an object, her entry in the key list contains WSK, RSK,
and OSK; a user with only read access is given a dummy key instead of WSK. Crucially, different
users with the same permission share the same capability, so the server cannot distinguish between
users on the basis of which capability they use. When accessing an object, a user downloads the
header and decrypts her entry in the key list to obtain OSK (used to decrypt the object contents)
and her capabilities for the object.

Users sign updates to the object with WSK, allowing the server and other users to verify that
each update is made by a user with write access. PSK is stored locally by the owner and is used
to sign the header. The owner can set the object’s ACL by (1) freshly sampling (RVK,RSK),
(WVK,WSK), and OSK, (2) re-encrypting the object with OSK and signing it with WSK, (3)
creating a new object header with an updated key list, (4) signing the new header with PSK, and
(5) uploading it to the server. (RVK,RSK) will be relevant in Section 6.5.

Ghostor’s object layout is summarized in Figure 6.5.

6.4.3 No Server-Visible User Public Keys
Prior systems [316] reveal the user’s public key to the server when the client interacts with it.
For example, SUNDR requires users to provide a signature along with each operation. First, the
signature itself could leak the user’s public key. Second, to check the legitimacy of writes, the

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 110

server needs to know the user’s public key to verify the signature. The server can use the public
key as a pseudonym to track users.

The key list in Section 6.4.2, however, potentially leaks users’ public keys: each entry in the
key list is a set of capabilities encrypted under a user’s public key, but public-key encryption is
only guaranteed to hide the message being encrypted, not the public key used to encrypt it. For
example, an RSA ciphertext leaks which public key was used for encryption. Therefore, Ghostor
uses key-private encryption [43], which is guaranteed to hide both the message and the public key.

In summary, Ghostor has users share capabilities for anonymity, and then distributes the ca-
pabilities anonymously, without revealing ACLs to the server. We call the resulting technique
anonymously distributed shared capabilities.

6.4.4 No Client-Side Caching
Assuming that an object’s ACL changes rarely, it may seem natural for clients to locally cache
an object’s keypairs (RVK,RSK) and (WVK,WSK), to avoid downloading the header on future
accesses to that object. Unfortunately, the mere fact that a client did not download the header
before performing an operation tells the server that the same user recently accessed that object.
As a result, Ghostor’s anonymity prohibits user-specific caching. That said, server-side caching of
commonly accessed objects is allowed.

6.4.5 Careful Application Design
Ghostor does not hide access patterns or timing information from the server. A sophisticated
adversary could, for example, deny or delay accesses to a particular object and see how access
patterns shift, to try and deduce which user made which accesses. Therefore, one should carefully
design the application using Ghostor to avoid leaking user identities in its access patterns. For
example, just as Ghostor has no client-side caching or user-specific mailboxes, an application
using Ghostor should avoid caching data locally to avoid requests to the server or using an object
as a user-specific mailbox. Note that Ghostor-MH hides these access patterns.

6.5 Achieving Verifiable Consistency
Ghostor’s verifiable anonymous history achieves the “verifiable equivalent” of a blockchain for
critical-path operations, while using the underlying blockchain rarely. It consists of: (1) a hash
chain of digests, (2) periodic checkpoints on a real blockchain, and (3) a verification procedure
that does not require knowledge of user identities.

6.5.1 Hash Chain of Digests
We now achieve fork consistency for a single object in Ghostor using techniques inspired from
SUNDR [316], but modified because SUNDR is not anonymous. Each access to an object, whether

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 111

Field Description
Epoch epoch when operation was committed
PVK, WVK, RVK permission/writer/reader verifying key
Hashprev hash of previous digest in chain
Hashkeylist hash of key list
Hashdata hash of object contents
Sigclient client signature with RSK, WSK, or PSK
Sigserver server signature using SSK
nonce random nonce chosen by client

Table 6.3: A digest for an operation in Ghostor.

a GET or a PUT, is summarized by a digest shown in Table 6.3. The object’s history is stored as a
chain of digests.

To access the object, a client first produces a digest summarizing that operation as in Table 6.3.
This requires fetching the object header from the server, so that the client can obtain the secret key
(RSK, WSK, or PSK) for the desired operation. Then the client fetches the latest digest for the
object and computes Hashprev in the new digest. To GET the object, the client copies Hashdata from
the latest digest; to PUT it, the client hashes the new contents to obtain Hashdata. If the client is
changing permissions, then Hashkeylist is calculated from the new header; otherwise, it is copied
from the latest digest.

Then the client signs the digest with the appropriate key and provides the signed digest to the
server. The server signs the digest using SSK, appends it to a log, and returns the signed digest and
the result of the operation. At the end of the epoch, the client downloads the digest chain for that
object and epoch, and verifies that (1) it is a valid history for the object, and that (2) it contains the
operations performed by that client. We specify protocol details in Section 6.7.

Ghostor’s digests differ from SUNDR in two main ways. First, for anonymity, a client does not
sign digests using the user’s secret key, but instead uses RSK, WSK, or PSK, which can be verified
without knowing the user’s public key. When inspecting the digest, the server no longer learns
which user performed the operation, only that the user has the required permission. Second, each
digest is signed by the server. Thus, if the server violates linearizability, the client can assemble
the offending digests into a proof of misbehavior.

6.5.2 Checkpoint and Verification
The construction so far is susceptible to fork attacks [316], in which the server presents two users
with different views over the same object. To detect fork attacks, Ghostor requires the server to
produce a checkpoint at the end of each epoch, consisting of the hash of the object’s latest digest
and the epoch number, and publish the checkpoint to the blockchain. The verification procedure
run by a client consists of fetching the checkpoint from the blockchain, checking it corresponds to

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 112

the hash for the last digest in the list of digests obtained from the server, and running the verification
in Section 6.5.1. The blockchain guarantees that all users see the same checkpoint. This prevents
the server from forking two users’ views, as the latest digests for two different views cannot both
match the published checkpoint. In this way, we bootstrap the blockchain’s consistency guarantees
to achieve verifiable consistency over an entire epoch of operations.

6.5.3 Multiple Objects per Checkpoint
So far, the server puts one checkpoint in the blockchain per object, which is undesirable when there
are many objects. We address this as follows. The server computes the hash of the final digest of
each object, builds a Merkle tree over those hashes, and publishes the root hash in the blockchain
as a single checkpoint for all objects. To verify integrity at the end of an epoch, a Ghostor client
fetches the digest chain from the server for objects that are either (1) accessed by the client during
the epoch or (2) owned by the client’s user. It verifies that all operations that it performed on those
objects are included in the objects’ digest chains. Then, it requests Merkle proofs from the server
to check that the hash of the latest digest is included in the Merkle tree at the correct position based
on the object’s PVK. Finally, it verifies that the Merkle root hash matches the published checkpoint.

Although we maintain a separate digest chain for each object, the collective history of opera-
tions, across all objects, is also linearizable. This follows from the classical result that linearizabil-
ity is a local property [221]. Thus, Ghostor provides verifiable linearizability across all objects,
while supporting full concurrency for operations on different objects.

6.5.4 Concurrent Operations on a Single Object
As explained in Section 6.5.1, the client must fetch the latest digest from the server to construct a
digest for a new GET or PUT. If two clients attempt to GET or PUT an object concurrently, they may
retrieve the same latest digest for that object, and therefore construct new digests that both have the
same Hashprev. An honest server can only accept one of them; the other operation must be aborted.
A naı̈ve fix is for clients to acquire locks (or leases) on objects during network round trips, but this
limits single-object throughput according to client round-trip times. How can we allow concurrent
operations on a single object without holding server-side locks during round trips? We explain our
techniques at a high level below; Section 6.7 contains a full description of our protocol.

6.5.4.1 GETs

We optimize GETs so that clients need not fetch the latest digest, obviating the need to lock for a
round trip. When a client submits a GET request to the server, the client need not include Hashprev,
Hashdata, or Hashkeylist in the digest presented to the server. The client includes the remaining
fields and a signature over only those fields. Then, the server chooses the hashes for the client and
returns the resulting digest, signed by the server. Although the server can replay operations, this is
harmless because GETs do not affect data. When the verification daemon verifies a GET, it checks
the client signature without including Hashprev, Hashdata, or Hashkeylist.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 113

6.5.4.2 PUTs

The above technique does not apply to PUTs, because the server can roll back objects by replaying
PUTs. Simply using a client-provided nonce to detect replayed PUTs is not sufficient, because the
server can delay incorporating a PUT (which we call a time-stretch attack) to manipulate the final
object contents. For PUTs, Ghostor uses a two-phase protocol. In the PREPARE phase, the client
operates in the same way as GET, but signs the digest with WSK; the server fills in the hashes,
signs the resulting digest, appends it to the object’s digest chain, and returns it to the client. In
the COMMIT phase, the client creates the final digest for the operation—omitting Hashprev and
appending an additional field Hashprep, which is the hash of the server-signed digest obtained in
the PREPARE phase—and uploads it to the server with the new object contents. The server fills
in Hashprev based on the object’s digest chain (which could have changed since the PREPARE

phase), signs the resulting digest, appends it to the object’s digest chain, and returns it to the
client. The server can replay PREPARE requests, but it does not affect object contents. The server
cannot generate a COMMIT digest for a replayed PREPARE request, because the client signed the
COMMIT digest including the hash of the server-signed PREPARE digest, which includes Hashprev.
The server can replay a COMMIT request for a particular PREPARE request, but this is harmless
because of our conflict resolution strategy described below.

6.5.4.3 Resolving Conflicts

If two accesses are concurrent (i.e., neither commits before the other prepares), then linearizability
does not require any particular ordering of those operations, only that all clients perceive the same
ordering. If a GET is concurrent with a PUT (GET digest between the PREPARE and COMMIT digests
for a PUT), Ghostor linearizes the GET as happening before the PUT. This allows the result of the GET
to be served immediately, without waiting for the PUT to finish. For concurrent PUTs, it is unsafe for
the linearization order to depend on the COMMIT digest, because the server could perform a time-
stretch or replay attack on a COMMIT digest, to manipulate which PUT wins. Therefore, Ghostor
chooses as the winning PUT the one whose PREPARE digest is latest. The server can still delay
PREPARE digests, but the client can choose not to COMMIT if the delay is unacceptably large. To
simplify the implementation of this conflict resolution procedure, we require that the PREPARE and
COMMIT phases happen over the same session with the client, during which the server can keep
in-memory state for the relevant object. This allows the server to match PREPARE and COMMIT

digests without additional accesses to secondary storage.

6.5.4.4 Verification Complexity

To verify PUTs, the verification daemon must check that Hashdata only changes on COMMIT digests
for winning writes. Thus, it must keep track of all PREPARE digests since the latest PREPARE

digest whose corresponding COMMIT has been seen. We can bound this state by requiring that
PUT requests do not cross an epoch boundary.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 114

6.5.4.5 ACL Updates

We envision that updates to the ACL will be rare, so our implementation does not allow set acl
operations to proceed concurrently with GETs or PUTs. It may be possible to apply a two-phase
technique, similar to our concurrent PUT protocol, to allow set acl operations to proceed concur-
rently with other operations. We leave exploring this to future work.

6.6 Mitigating Resource Abuse
To prevent resource abuse, commercial data-sharing systems, like Google Drive and Dropbox,
enforce per-user resource quotas. Ghostor cannot do this, because Ghostor’s anonymity prevents
it from tracking users. Instead, Ghostor uses two techniques to prevent resource abuse without
tracking users: anonymous payments and proof of work.

6.6.1 Anonymous Payments
A strawman approach is for users to use an anonymous cryptocurrency (e.g., Zcash [506]) to pay
for each expensive operation (e.g., operations that consume storage). Unfortunately, this requires
a separate blockchain transaction for each operation, limiting the system’s overall throughput.

Instead, Ghostor lets users pay for expensive operations in bulk via the pay API call (Sec-
tion 6.2). The server responds with a set of tokens proportional to the amount paid via Zcash,
which can later be redeemed without using the blockchain to perform operations. Done naı̈vely,
this violates Ghostor’s anonymity; the server can track users by their tokens (tokens issued for a
single pay call belong to the same user).

To circumvent this issue, Ghostor uses blind signatures [95, 105, 104]. A Ghostor client gen-
erates a random token and blinds it. After verifying that the client has made a cryptocurrency
payment, the server signs the blinded token. The blind signature protocol allows the client to un-
blind it while preserving the signature. To redeem the token, the client gives the unblinded signed
token to the server, who can verify the server’s signature to be sure it is valid. The server cannot
link tokens at the time of use to tokens at the time of issue because the tokens were blinded when
the server originally signed them.

6.6.2 Proof of Work (PoW)
Another way to mitigate resource abuse is proof of work (PoW) [29]. Before each request from
the client, the server sends a random challenge to the client, and the client must find a proof such
that Hash(challenge,proof, request)< diff. diff controls the difficulty, which is chosen to offset the
amplification factor in the server’s work. Because of the guarantees of the hash function, the client
must iterate through different proofs until it finds one that works. In contrast, the server efficiently
checks the proof by computing one hash.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 115

6.6.3 Using Anonymous Payments and Proof of Work Together
Ghostor uses anonymous payments and PoW together to mitigate resource abuse. Our implemen-
tation requires anonymous payment only for create object, which requires the server to commit
additional storage space for the new object. This is analogous to systems like Google Drive or
Dropbox, which require payment to increase a user’s storage limit but do not charge based on the
count or frequency of object accesses. Implicit in this model are hard limits on object size and
per-object access frequency, which Ghostor can enforce. Although our implementation requires
payment only for create object, an alternate implementation may choose to require payment for
every operation except pay. Ghostor requires PoW for all API calls. This includes pay and cre-
ate object, to offset the cost of Zcash payments and verifying blind signatures.

6.7 Full Protocol Description
Below, we describe the client-server protocol used by Ghostor.

6.7.1 GET Protocol
1. Server sends a PoW challenge to the client (Section 6.6).
2. Client sends the server the PoW solution, PVK of the object that the user wishes to access, and

the server returns the object header and current epoch.
3. The client assembles a digest for the GET operation, including the epoch number, PVK, RVK,

WVK, and a random nonce, and signs it with RSK (obtained from the header). It sends the
signed digest to the server.

4. Server reads the latest digest and checks that the client’s candidate digest is consistent with it. If
not (for example, if the header was changed in-between round trips), the server gives the client
the object header, and the protocol returns to Step 3.

5. Server adds Hashprev, Hashheader, and Hashdata to the digest (according to the order in which
it commits operations on the object). Then it signs it and adds it to the log of digests for that
object.

6. Server returns the object contents and the digest, including the server’s signature, to the client.
7. Client checks that the signed digest matches the object contents and digest that the client pro-

vided. If so, it returns the object contents to the user and sends the signed digest to the verifica-
tion daemon.

6.7.2 PUT Protocol
1. Server sends a PoW challenge to the client (Section 6.6).
2. Client sends the server the PoW solution and PVK of the object to PUT, and the server returns

the object header, current epoch, and latest server-signed digest for that object.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 116

3. The client assembles a PREPARE digest for the write operation, including the epoch number,
PVK, RVK, WVK, and a random nonce, and signs it with WSK (obtained from the header). It
sends the signed digest to the server.

4. Server reads the latest digest and checks that the client’s candidate digest is consistent with it.
If not, then the server gives the client the object header, and the protocol returns to Step 3.

5. Server adds Hashprev, Hashheader, and Hashdata to the digest (according to the order in which
it commits operations on the object). Then it signs it and adds it to the log of digests for that
object.

6. Server returns the signed digest to the client.
7. Client assembles a COMMIT digest for the write operation, including the same fields as the

PREPARE digest, and also Hashprep and Hashdata according to the new data. Then it signs it and
uploads it to the server, including the new object contents.

8. Server decides if this PUT “wins.” It wins as long as no other PUT whose PREPARE digest is after
this PUT’s PREPARE digest has already committed. If this PUT wins, then the server performs
the write, signs the digest, and adds it to the log of digests for that object. If not, it still signs
the digest and adds it to the log, but it replaces Hashdata with the current hash of the data,
including the value provided by the client as an “addendum” so that the verification daemon
can still verify the client’s signature. The server may also reject the COMMIT digest if the key
list changed meanwhile due to a set acl operation.

9. Server returns the digest, including the server’s signature, to the client.
10. Client checks that the signed digest matches the object contents and digest that the client pro-

vided. If so, it sends the signed digest to the verification daemon.

6.7.3 Access Control
1. Server sends a PoW challenge to the client (Section 6.6).
2. Client sends the server the PoW solution and PVK of the object, and the server returns the object

header, current epoch, and latest server-signed digest for that object.
3. Client samples fresh keys for the file (including RSK, WSK, and OSK, but not PSK), encrypts

the object contents with OSK, and assembles a new header according to the new ACL, randomly
shuffling the key list in the header and padding it to a maximum size if desired. The client
assembles a digest for the operation, including all fields in Table 6.3, and signs it with PSK.
It sends the signed digest to the server. The client also signs PVK with PSK and includes that
signature in the request.

4. Server acquires a lock (lease) on the object for this client (unless it is already held for this
client), reads the latest digest, and checks that the client’s candidate digest is consistent with
it. If not, then the server gives the client the object header, and the protocol returns to Step 3.
When returning to Step 3, the server checks if the client’s signature over PVK is correct. If so,
the server holds the lock on the object during the round trip. If not, the server releases it.

5. Server updates the header and object contents, signs the digest, adds it to the log of digests for
that object, and releases the lock.

6. Server returns the digest, including the server’s signature, to the client.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 117

7. Client checks that the signed digest matches the object contents and digest that the client pro-
vided. If so, it returns the object contents to the user and sends the signed digest to the verifica-
tion daemon.

6.7.4 Object Creation
1. Server sends a PoW challenge to the client (Section 6.6)
2. Client sends the server the PoW, PVK of the object that the user wishes to create, a token signed

by the server for proof of payment (Section 6.2), the header for the new object, and the object’s
first digest (for which Hashprev is empty). This involves generating all the keys in Figure 6.5)
for the new object.

3. Server verifies the signature on the token, and checks that it has not been used before.
4. Server “remembers” the hash of the token by storing it in permanent storage.
5. Server writes the object header. It signs the digest and creates a log for this object containing

only that digest.
6. Server returns the digest, including the server’s signature, to the client.
7. Client checks that the signed digest matches the object contents and digest that the client pro-

vided. If so, it returns the object contents to the user and sends the signed digest to the verifica-
tion daemon.

6.7.5 Verification Procedure
At the end of each epoch, the verification daemon downloads the digest chain and checkpoints to
verify operations performed in the epoch.
1. Server sends a PoW challenge to the daemon (Section 6.6). (The server will request additional

PoWs for long lists of digests as it streams them to the daemon in Step 3.)
2. Daemon responds with PoW and requests the object’s digest chain from the server for that

epoch. It sends the server a signed digest for that object, so the server knows this is a legitimate
request.

3. Server returns the digest chain for that object, along with a Merkle proof.
4. Daemon retrieves the Merkle root from the checkpoint in Zcash, and verifies the server’s Merkle

proof to check that the last digest in the digest chain is included in the Merkle tree at the correct
position based on the object’s PVK.

5. Daemon verifies that all digests corresponding to the user’s operations are in the digest chain,
and that the digest chain is valid.

To check that the digest chain is valid, the daemon checks:
1. Hashprev for each digest matches the previous digest. If this digest is the first digest in this

epoch, the previous digest is the last digest in the previous epoch. The daemon knows this
previous digest already since the daemon must have checked the previous epoch. If this is the
first epoch, then Hashprev should be empty.

2. Hashprep in each COMMIT digests matches an earlier PREPARE digest in the same epoch, and
each PREPARE digest matches with at most one COMMIT digest.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 118

3. Hashdata only changes in winning COMMIT digests, which are signed with WSK.
4. WVK, RVK, and Hashkeylist only change in digests signed with PSK, and PVK never changes.
5. The epoch number in digests matches the epoch that the client requested, and never decreases

from one digest to the next.
6. Sigclient is valid and signed using the correct signing key. For example, if this operation is read,

Sigclient must be signed using RSK.

6.7.6 Payment
First, the user pays the server using an anonymous cryptocurrency such as Zcash [506], and obtains
a proof of payment from Zcash. Then, the client obtains tokens from the server, as follows:

1. Server sends a PoW challenge to the client (Section 6.6).
2. Client sends the server the PoW, proof of payment, and t blinded tokens, where t corresponds

to the amount paid.
3. Server checks that the proof of payment is valid and has not been used before.
4. Server “remembers” the proof of payment by storing it in persistent storage.
5. Server signs the blinded tokens, ensuring that t indeed corresponds to the amount paid, and

sends the signed blinded tokens to the client.
6. Client unblinds the signed tokens and saves them for later use.

6.8 Applying Ghostor to Applications
In this section, we discuss applying Ghostor to an EHR Sharing application. In the full Ghostor
paper, we also discuss how to combine Ghostor’s anonymity techniques with a globally oblivious
scheme, AnonRAM [30], to obtain a metadata-hiding object-sharing scheme, Ghostor-MH. This
dissertation does not include an in-depth discussion of Ghostor-MH because Ghostor-MH is a
theoretical scheme, not a practical system.

Our goal in this section is to show how a real application may interface with Ghostor’s se-
mantics (e.g., ownership, key management, error handling) and how Ghostor’s security guarantees
might benefit a real application. To make the discussion concrete, we explore a particular use case:
multi-institutional sharing of electronic health records (EHRs). It has been of increasing interest to
put patients in control of their data as they move between different healthcare providers [205, 425,
226]. As it is paramount to protect medical data in the face of attackers [135], various proposals
for multi-institutional EHR sharing use a blockchain for access control and integrity [341, 27].
Below, we explore how to design such a system using Ghostor to store EHRs in a central object
store, using only decentralized trust. We also implemented the system for Open mHealth [362].

Each patient owns one or more objects in the central Ghostor system representing their EHRs.
Each patient’s Ghostor client (on her laptop or phone) is responsible for storing the PSKs for these
objects. The PSKs could be stored in a wristband, as in [341], in case of emergency situations
for at-risk patients. When the patient seeks treatment from a healthcare provider, she can grant
the healthcare provider access to the objects containing the relevant information in Ghostor. Each

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 119

healthcare provider’s Ghostor client maintains a local metadata database, mapping patient identi-
ties (object IDs, Section 6.2) to PVKs. This mapping could be created when a patient checks in to
the office for the first time (e.g., by sharing a QR code).
Benefits. Existing proposals leverage a blockchain to achieve integrity guarantees [341, 27] but
use the blockchain more heavily than Ghostor: for example, they require a blockchain transac-
tion to grant access to a healthcare provider, which results in poor performance and scalability.
Additionally, Ghostor provides anonymity for sharing records.
Epoch Time. An important aspect of Ghostor’s semantics is that one has to wait until the next
epoch before one can verify that no fork has occurred. It is reasonable to fetch a patient’s record
at the time that they check in to a healthcare facility, but before they are called in for treatment.
This allows the time to wait until the end of an epoch to overlap with the patient’s waiting time.
In the case of scheduled appointments, the record can be fetched in advance so that integrity can
be verified by the time of the appointment. An epoch time of 15–30 minutes would probably be
sufficient. By tying the frequency of blockchain operations to a tunable parameter (the epoch time),
Ghostor allows the cost of using expressive cryptography to be tuned, to strike the right balance
between cost and verification delay for each application.
Error Handling. If a healthcare provider detects a fork when verifying an epoch, it informs other
healthcare providers of the integrity violation out-of-band of the Ghostor system. Ghostor does not
constrain what happens next. One approach, used in Certificate Transparency (CT), is to abandon
the Ghostor server for which the integrity violation was detected. We envision that there would
be a few Ghostor servers in the system, similar to logs in CT, so this would require affected users
to migrate their data to a new server. Another approach is to handle the error in the same way
that blockchain-based systems [341, 27] handle cases where the hash on the blockchain does not
match the hash of the data—treat it as an availability error. While neither solution is ideal, it
is better than the status quo, in which a malicious adversary is free to perform fork or rollback
attacks undetected, causing patients to receive incorrect treatments based on old or incorrect data,
potentially resulting in serious physical injury.

6.9 Implementation
We implemented a prototype of Ghostor in Go. It consists of three parts, as in Figure 6.4, server
(≈ 2100 LOC), client library (≈ 1000 LOC), and verification daemon (≈ 1000 LOC), which all
depend on a set of core Ghostor libraries (≈ 1400 LOC).

Our implementation uses Ceph RADOS [481] for consistent, distributed object storage. We
use SHA-256 for the cryptographic hash and the NaCl secretbox library (which uses XSalsa20 and
Poly1305) for authenticated symmetric-key encryption. For key-private asymmetric encryption
(to encrypt signing keys in the object header), we implemented the ElGamal cryptosystem, which
is key-private [43], on top of the Curve25519 elliptic curve. We use an existing blind signature
implementation [401] based on RSA with 2048-bit keys and 1536-bit hashes. We use Ed25519 for
digital signatures.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 120

As discussed in Section 6.3, Ghostor uses external systems for anonymous communication and
payment. In our implementation, clients use Tor [143] to communicate with the server and Zcash
1.0.15 for anonymous payments. We build a Zcash test network, separate from the Zcash main
network. Ghostor, however, could also be deployed on the Zcash main chain. Zcash is also used as
the blockchain to post checkpoints. Our implementation runs as a single Ghostor server that stores
its data in a scalable, fault-tolerant, distributed storage cluster. We discuss how to scale to multiple
servers in Section 6.11.2.

6.10 Evaluation
We run experiments on Amazon EC2. Except in Section 6.10.3, Ghostor’s storage cluster consists
of three i3en.xlarge servers. Additionally, we configure Ceph to replicate each object (key-value
pair) on two SSDs on different machines, for fault-tolerance.

6.10.1 Microbenchmarks
Basic Crypto Primitives. We measured the latency of crypto operations used in Ghostor’s critical
path. En/decryption of object contents varies linearly with the object size, and takes ≈ 2 ms for
1 MiB. Key-private en/decryption for object headers and signing/verification of digests takes less
than 150 us.
Blind Signatures. We also measure the blind signature scheme used for object creation, which
consists of four steps. (1) The client generates a blinded hash of a random number. (2) The server
signs the blinded hash. (3) The client unblinds the signature, obtaining the server’s signature over
the original number. (4) The server verifies the signature and the number during object creation.
Results are shown in Figure 6.6.
Verification Procedure. In Figure 6.8, we measure the overhead of verification for digests in a
single epoch. For client verification time, we perform an end-to-end test, measuring the total time
to fetch digests and to verify them. The client has 1,000 signed digests for operations the client
performed during the epoch that the client needs to check were included in the history of digests.
We vary the total number of digests in the object’s history for that epoch. The reported values in
Figure 6.8a are the total time to verify the object, divided by the total number of operations on the
object, indicating the verification time per digest. The trend indicates a constant overhead when the
total number of operations on the object is small, that is amortized when the number of operations
is large.

Figure 6.8b shows the server’s overhead to compute the Merkle root. We inserted objects using
YCSB (Section 6.10.2.2) during an epoch, and measured the time to compute the Merkle root at
the end of that epoch. For 10,000 objects, this takes about 2.5 seconds; for 1,000,000 objects,
it takes about 280 seconds. Reading the latest digest for each object (leaves of the Merkle tree)
dominates the time to compute the Merkle root (2 seconds for 10,000 objects, 272 seconds for
1,000,000 objects). The reason is that our on-disk data structures are optimized for single-object

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 121

Generate Sign Unblind Verify
0

1

2

3

4

5

La
te

nc
y

(m
s)

Figure 6.6: Blind signature.

A 50% R, 50% W
B 95% R, 5% W
C 100% R
D 95% R, 5% Insert
E 95% R, 5% Range
F 50% R, 50% R-Modify-W

Figure 6.7: YCSB workloads (R: read, W:
write).

10000 20000 100000
Total Operations on Object

0
100
200
300
400

Ve
rif

ica
tio

n
Ti

m
e

pe
r D

ig
es

t (
us

)

(a) Run verification procedure.

104 105 106

Number of Objects

101

102

Ti
m

e
to

 C
om

pu
te

M
er

kl
e

Ro
ot

 (s
)

(b) Compute Merkle root.

Figure 6.8: Operations for verification.

operations, which are in the critical path. In particular, each object’s digest chain is stored as a
separate batched linked list, so reading the latest digests requires a separate read for each object.

6.10.2 Server-Side Overhead
This section measures to what extent anonymity and VerLinear affect Ghostor’s performance. To
ensure that the bottleneck was on the server, we set proof of work to minimum difficulty and do not
use anonymous communication (Section 6.3), but we return to evaluating these in Section 6.10.3.

We measure the end-to-end performance of operations in Ghostor, both as a whole and for

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 122

instantiations of Ghostor having only anonymity or VerLinear. We compare these to an insecure
baseline as well as to competitive solutions for privacy and verifiable consistency, as we now
describe.
1. Insecure system (“Insec”). This system uses the traditional ACL-based approach for serving
objects. Each object access is preceded by a read to the object’s ACL to verify that the user has
permission to access the object. Similarly, creating an object requires a read to a per-user account
file. It provides no security against a compromised server.
2. End-to-End Encrypted system (“E2EE”). This system encrypts objects placed on the server
using end-to-end encryption similarly to SiRiUS [193]. Such systems have an encrypted KeyList
similar to Ghostor’s, but clients can cache their keys locally on most accesses unlike Ghostor.
3. Ghostor’s anonymity system (“Anon”). This is Ghostor with VerLinear disabled. This fits a
scenario where one wants to hide information from a passive server attacker. Unlike the E2EE
system above, this system cannot cache keys locally—every operation incurs an additional round
trip to fetch the KeyList from the server. In addition, every operation incurs yet another round trip
at the beginning for the client to perform a proof of work. On the positive side, the server does not
maintain any per-user ACL.
4. Fork Consistent system (“ForkC”). This system maintains Ghostor’s digest chain (Section 6.5.1),
but does not post checkpoints. Each operation appends to a per-object log of digests, using the
techniques in Section 6.5.4. This system also performs an ACL check when creating an object.
5. Ghostor’s VerLinear system (“VLinear”). This system corresponds to the VerLinear mechanism
in Section 6.5 (including Section 6.5.2). This matches a use case where one wants integrity, but
does not care about privacy. We do not include the verification procedure, already evaluated in
Section 6.10.1.
6. Ghostor. This system achieves both anonymity and VerLinear, and therefore incurs the costs of
both guarantees.

6.10.2.1 Object Accesses

In each setup, we measured the latency for create, GET, and PUT operations (Figure 6.9a), through-
put for GETs/PUTs to a single object (Figure 6.10a), and the throughput for creating objects and for
GETs/PUTs to multiple objects (Figure 6.10b).

Fork consistency adds substantial overhead, because additional accesses to persistent storage
are required for each operation, to maintain each object’s log of digests. Ghostor, which both
maintains a per-object log of digests and provides anonymity, incurs additional overhead because
clients do not cache keys, requiring the server to fetch the header for each operation. In contrast,
for Anon, the additional cost of reading the header is offset by the lack of ACL check. For 1 MiB
objects, en/decryption adds a visible overhead to latency.

End-to-end encryption adds little overhead to throughput; this is because we are measuring
throughput at the server, whereas encryption and decryption are performed by clients. The only
factor affecting server performance is that the ciphertexts are 40 bytes larger than plaintexts.

Single-object throughput is lower for ForkC, VLinear, and Ghostor, because maintaining a di-
gest chain requires requests to be serialized across multiple accesses to persistent storage. In

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 123

Create
Object

Read
1 KiB

Write
1 KiB

Read
1 MiB

Write
1 MiB

Operation and Object Size

0

10

20

30

40

50

La
te

nc
y

(m
s)

Insec.
E2EE
Anon
ForkC
VLinear
Ghostor

(a) Latency benchmarks.

Operation Latency (ms)
Proof of Work 0.57
Read Header 1.1
Client Processing 0.68
Check Client Digest 0.14
Read/Fill Digest 3.2
Append Digest 1.5
Read Data 2.1
Client Processing 9.1

(b) Latency Breakdown for Ghostor, Read
1 MiB.

Figure 6.9: Latency measurements.

contrast, Insec, E2EE, and Anon serve requests in parallel, relying on Ceph’s internal concurrency
control.

In the multi-object experiments, in which no two concurrent requests operate on the same ob-
ject, this bottleneck disappears. For small objects, throughput drops in approximately an inverse
pattern to the latency, as expected. For large objects, however, all systems perform commensu-
rately. This is likely because reading/writing the object itself dominated the throughput usage for
these experiments, without any concurrency overhead at the object level to differentiate the setups.

6.10.2.2 Yahoo! Cloud Serving Benchmark

In this section, we evaluate our system using the Yahoo! Cloud Serving Benchmark (YCSB).
YCSB provides different workloads representative of various use cases, summarized in Table 6.7.
We do not use Workload E because it involves range queries, which Ghostor does not support.
As shown in Figure 6.10c, anonymity incurs up to a 25% overhead for benchmarks containing
insertions, owing to the additional accesses to storage required to store used object creation tokens.
However, it shows essentially no overhead for GETs and PUTs. Fork consistency adds a 3–4×
overhead compared to the Insec baseline. VerLinear adds essentially no overhead on top of fork
consistency; this is to be expected, because the overhead of VerLinear is outside of the critical
path (except for insertions, where the overhead is easily amortized). Ghostor, which provides both
anonymity and VerLinear, must forgo client-side caching, and therefore incurs additional overhead,
with a 4–5× throughput reduction overall compared to the Insec baseline.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 124

Read
1 KiB

Write
1 KiB

Read
1 MiB

Write
1 MiB

Operation and Object Size

0

2000

4000

6000

Si
ng

le
-O

bj
ec

t T
pu

t (
op

/s
)

Insec.
E2EE
Anon
ForkC
VLinear
Ghostor

(a) Single-Object Throughput.

Create
Object

Read
1 KiB

Write
1 KiB

Read
1 MiB

Write
1 MiB

Operation and Object Size

0

5000

10000

M
ul

ti-
Ob

je
ct

 T
pu

t (
op

/s
)

(b) Multi-Object Throughput.

Insert A B C D F
YCSB Workload

0

2500

5000

7500

10000

12500

Th
ro

ug
hp

ut
 (o

p/
s)

(c) Throughput for YCSB.

Figure 6.10: Benchmarks comparing throughput of the six setups described in Section 6.10.2.

6.10.3 End-to-End Latency
We analyze Ghostor’s performance from the client’s perspective, including PoW and anonymous
communication (Section 6.3). In these experiments, we use three m4.10xlarge instances each
with three gp2 SSDs for Ghostor’s storage cluster.

6.10.3.1 Microbenchmarks

The latency experienced by a Ghostor client is the latency measured in Figure 6.9, plus the ad-
ditional overhead due to the proof of work mechanism and anonymous communication. The dif-
ficulty of the proof of work problem is adjustable. For the purpose of evaluation, we set it to a
realistic value to prevent denial of service. Figure 6.9b indicates that it takes ≈ 32 ms for a Ghos-
tor operation; therefore, we set the proof of work difficulty such that it takes the client, on average,
100 times longer to solve (≈ 3.2 s). Figure 6.11 shows the distribution of latency for the client to
solve the proof of work problem. As expected, the distribution appears to be memoryless.

In our implementation, a client connects to a Ghostor server by establishing a circuit through
the Tor [143] network. The performance of the connection, in terms of both latency and throughput,
varies according to the circuit used. Figure 6.11 shows the distribution of (1) circuit establishment

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 125

0 5 10 15 20
Latency (s)

Solve
PoW

0.0 2.5 5.0 7.5 10.0
Latency (s)

Tor
Connect

Tor RTT

0.0 2.5 5.0 7.5
Bandwidth (Mb/s)

Tor Conn.
Bandwidth

Figure 6.11: Microbenchmarks of PoW mechanism and Tor.

time, (2) round-trip time, and (3) network bandwidth. We used a fresh Tor circuit for each mea-
surement. Based on our measurements, a Tor circuit usually provides a round-trip time less than 1
second and bandwidth of at least 2 Mb/s.

6.10.3.2 Macrobenchmarks

We now measure the end-to-end latency of each operation in Ghostor’s client API (Section 6.2),
including all overheads experienced by the client. As explained in Section 6.10.3.1, the overhead
due to proof of work and Tor is quite variable; therefore, we repeat each experiment 1000 times,
using a separate Tor circuit each time, and report the distribution of latencies for each operation in
Figure 6.12. Comparing Figure 6.12 to Figure 6.9, the client-side latency is dominated by the cost
of PoW and Tor; Ghostor’s core techniques in Figure 6.9 have relatively small latency overhead.
For the pay operation, we measure only the time to redeem a Zcash payment for a single token, not
the time for proof of work or making the Zcash payment (see Section 6.10.4 for a discussion of this
overhead). GET and PUT for large objects are the slowest, because Tor network bandwidth becomes
a bottleneck. The create user operation (not shown in Figure 6.12) is only 132 microseconds,
because it generates an ElGamal keypair locally without any interaction with the server.

6.10.4 Zcash
In our implementation, we build our own Zcash test network to avoid the expense from Zcash’s
main network. Since our system leverages Zcash in a minimal way, the overhead of Zcash is not
on the critical path of our protocol. According to the Zcash website [506] and block explorer [54],
the block size limit is about 2 MiB, and block interval is about 2.5 minutes. In the past six months,
the maximum block size has been less than 150 KiB and the average transaction fee has been much
less than 0.001 ZEC (0.05 USD at the time of writing). Hence, even with shorter epochs (less time

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 126

0 20 40 60 80 100 120 140
Latency (s)

create_object
set_acl

pay
get_object (10 KiB)
put_object (10 KiB)
get_object (1 MiB)
put_object (1 MiB)

Figure 6.12: End-to-end latencies of client-side operations.

for misbehavior detection), the price of Ghostor’s checkpoints is modest since there is a single
checkpoint per epoch for the whole system.

6.11 Extensions
We briefly discuss two possible extensions to our Ghostor design. The first has to do with support-
ing a hierarchical directory structure, and the second has to do with scaling Ghostor to multiple
servers.

6.11.1 Files and Directories
Our design of Ghostor can be extended to support a hierarchy of directories and files. Each di-
rectory or file corresponds to a PVK and associated Ghostor object; the PVK has a similar role
to an inode number in a traditional file system. The Ghostor object corresponding to a directory
contains a mapping from name to PVK as a list of directory entries. Given the PVK of a root
directory and a filepath, a client iteratively finds the PVK of each directory from left to right; in
the end, it will have the PVK of the file, allowing it to access the Ghostor object corresponding to
a file. The procedure is analogous to resolving a filepath to an inode number in a traditional file
system. The Ghostor object corresponding to a file may either contain the file contents directly, or
it may contain the PVKs of other objects containing the file data, like an inode in a traditional file
system.

The “no user-side caching” principle in Section 6.4 applies here, in the sense that clients may
not cache the PVK of a file after resolving it once. A client must re-resolve a file’s PVK on each
access; caching the PVK and accessing the file without first accessing all parent directories would
reveal that the same user has accessed the file before.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 127

6.11.2 Scalability
Our implementation of Ghostor that we evaluated in Section 6.10 consists of a single Ghostor
server, which stores data in a storage cluster that is internally replicated and fault-tolerant (Ceph
RADOS). In this section, we discuss techniques to scale this setup by replicating the Ghostor server
as well.

Given that we consider a malicious adversary, it may seem natural to use PBFT [101]. PBFT,
however, is neither necessary nor sufficient in Ghostor’s setting. It is not necessary because we al-
ready post checkpoints to a ledger based on decentralized trust (Section 6.5.2) to achieve verifiable
integrity. It is not sufficient because we assume an adversary who can compromise any few ma-
chines across which we replicate Ghostor, which is incompatible with Byzantine Fault Tolerance.

The primary challenge to replicating the Ghostor server is synchronization: if multiple opera-
tions on the same object may be handled by different servers, the servers may concurrently mutate
the on-disk data structure for that object. A simple solution is to use object-level locks provided
by Ceph RADOS. This is probably sufficient for most uses. But, if server-side caching of objects
in memory is implemented, caches in the Ghostor servers would have to be kept coherent.

Alternatively, one could partition the object space among the servers, so each object has a single
server responsible for processing operations on it. A set of load balancer servers run Paxos [304,
303] to arrive at a consensus on which servers are up and running, so that requests meant for one
server can be re-routed to another if it goes down. Note that Paxos is outside of the critical path;
it only reacts to failures, not to individual operations. Based on the consensus, the load balancers
determine which server is responsible for each object. Because all objects are stored in the same
storage pool, the objects themselves do not need to be moved when Ghostor servers are added or
removed, only when storage servers are added or removed (which is handled by Ceph). Object-
level locks in Ceph RADOS would still be useful to enforce that at most one server is operating on
a Ghostor object at a time.

6.12 Related Work
Existing work has looked at providing integrity in the presence of a malicious server. We have
already compared extensively with SUNDR [316]. Venus [430] achieves eventual consistency;
however, Venus requires some clients to be frequently online and is vulnerable to malicious clients.
Caelus [275] has a similar requirement and does not resist collusion of malicious clients and the
server. Verena [264] trusts one of two servers. SPORC [168], which combines fork consistency
with operational transformation, allows clients to recover from a fork attack, but does not resist
faulty clients. Depot [330] can tolerate faulty clients, but achieves a weaker notion of consistency
than VerLinear. Furthermore, its consistency techniques are at odds with anonymity. Ghostor and
these systems use hash chains [212, 335] as a key building block.

Many systems provide end-to-end encryption (E2EE), but leak significant user information as
discussed in Section 6.3.3. These include academic systems such as Persona [31], DEPSKY [49],
CFS [57], SiRiUS [193], Plutus [263], ShadowCrypt [220], M-Aegis [305], Mylar [384] and

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 128

Sieve [469] and industrial systems such as Crypho [131], Tresorit [243], Keybase [271], Pre-
Veil [385], Privly [386] and Virtru [462].

Some systems, such as Haven [38] and A-SKY [124], protect against a malicious server by
using trusted hardware. Such systems require trust in the hardware provider (e.g., Intel, if using
Intel SGX). Furthermore, existing trusted hardware, like Intel SGX, is susceptible to side-channel
attacks [92].

A complementary line of work to Ghostor aims to hide access patterns: which object was
accessed. Standard Oblivious RAM (ORAM) [196, 428, 477] works in the single-client setting.
Multi-client ORAM [30, 215, 265, 328, 329, 405, 441] extends ORAM to support multiple clients.
These works either rely on central trust [405, 441] (either a fully trusted proxy or fully trusted
clients) or provide limited functionality (not providing global object sharing [30], or revealing
user identities [328]). GORAM [329] assumes the adversary controlling the server does not collude
with clients. Furthermore, it only provides obliviousness within a single data owner’s objects, not
global obliviousness across all data owners.

AnonRAM [30] and PANDA [215] provide global obliviousness and hide user identity, but
they are slow. They do not provide for sharing objects or mitigating resource abuse. One can
realize these features by applying Ghostor’s techniques to these schemes, as we do in our full
Ghostor paper [230] to build Ghostor-MH. Unlike these schemes, Ghostor-MH is a metadata-
hiding object-sharing scheme providing both global obliviousness and anonymity without trusted
parties or non-collusion assumptions.

Peer-to-peer storage systems, like OceanStore [292], Pastry [400], CAN [394], and IPFS [47],
allow users to store objects on globally distributed, untrusted storage without any coordinating cen-
tral trusted party. These systems are vulnerable to rollback/fork attacks on mutable data by mali-
cious storage nodes (unlike Ghostor’s VerLinear). While some of them encrypt objects for privacy,
they do not provide a mechanism to distribute secret keys while preserving anonymity, as Ghos-
tor does. Recent blockchain-based decentralized storage systems, like Storj [443], Swarm [455],
Filecoin [172], and Sia [431], have similar shortcomings.

As discussed in Section 6.1, blockchain-based and BFT-based systems [101, 500, 356, 93] and
verifiable ledgers [306, 343] can serve as the source of decentralized trust in Ghostor. Another line
of work aims to provide efficient auditing mechanisms. EthIKS [73] leverages smart contracts [93]
to monitor key transparency systems [343]. Catena [453] builds log systems based on Bitcoin
transactions, which enables efficient auditing by low-power clients. It may be possible to apply
techniques from those works to optimize our verification procedure in Section 6.5.2. However,
none of them aim to build secure data-sharing systems like Ghostor.

Secure messaging systems [128, 456, 225] hide network traffic patterns, but they do not support
object storage/sharing as in our setting. Ghostor can complementarily use them for its anonymous
communication network.

CHAPTER 6. USING CRYPTOGRAPHY EFFICIENTLY FOR ANONYMOUS AND
VERIFIABLE DATA SHARING 129

6.13 Conclusion
Ghostor is a data-sharing system that provides anonymity and verifiable linearizability in a strong
threat model that assumes only decentralized trust. Ghostor’s decision to provide anonymity as
its privacy guarantee is similar in spirit to the technique in Section 3.2.3, as it allows Ghostor to
delink user identities from accessed data without using expensive cryptographic tools like multi-
client ORAM. Although Ghostor leverages a blockchain in order to achieve its integrity guarantee,
we apply techniques from Section 3.2.1 and Section 3.2.2 to use the blockchain in an efficient way.
These techniques allow Ghostor to provide strong privacy and integrity guarantees with practical
overhead.

130

Chapter 7

Using Cryptography Efficiently for
Many-to-Many End-to-End Encryption for
IoT

This is the second of two chapters exploring the techniques in Section 3.2. We focus in this
chapter on publish-subscribe communication for industrial Internet of Things (IoT) deployments.
Given that IoT deployments collect physical information, which is often privacy-sensitive, it is a
natural goal to encrypt data end-to-end during transit. As we will see, policy-based encryption
like Attribute-Based Encryption (ABE) (Section 2.1.1.2) is a natural fit for such deployments, as
it would allow an end-to-end encrypted publish-subscribe system to support similar semantics to
unencrypted IoT publish-subscribe systems. Unfortunately, ABE is too expensive, particularly for
ultra low-power embedded devices with limited energy budgets.

In this chapter, we present the design, implementation, and evaluation of JEDI, an end-to-end
encryption protocol for such IoT deployments. In designing JEDI, we apply all four techniques
from Section 3.2 to reduce the cost of cryptography and arrive at a solution that supports similar
semantics to unencrypted systems while being cheap enough to be practical even on ultra low-
power deeply embedded sensor devices. We apply JEDI to an existing IoT messaging system,
bw2, and demonstrate that its overhead is modest.

7.1 Introduction
As the Internet of Things (IoT) has emerged over the past decade, smart devices have become
increasingly common. This trend is only expected to continue, with tens of billions of new IoT
devices deployed over the next few years [118]. The IoT vision requires these devices to com-
municate to discover and use the resources and data provided by one another. Yet, these devices
collect privacy-sensitive information about users. A natural step to secure privacy-sensitive data is
to use end-to-end encryption to protect it during transit.

Existing protocols for end-to-end encryption, such as SSL/TLS and TextSecure [182], focus

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 131

on one-to-one communication between two principals: for example, Alice sends a message to
Bob over an insecure channel. Such protocols, however, appear not to be a good fit for large-
scale industrial IoT systems. These IoT systems demand many-to-many communication among
decoupled senders and receivers, and require decentralized delegation of access to enforce which
devices can communicate with which others. This chapter presents JEDI, an end-to-end encryption
protocol for such IoT systems.

7.1.1 Requirements for JEDI
We investigate existing IoT systems, which currently do not encrypt data end-to-end, to understand
the requirements on an end-to-end encryption protocol like JEDI. We use smart cities as an exam-
ple application area, and data-collecting sensors in a large organization as a concrete use case. We
identify three central requirements, which we treat in turn below.

7.1.1.1 Decoupled Senders and Receivers

IoT-scale systems could consist of thousands of principals, making it infeasible for consumers of
data (e.g., applications) to maintain a separate session with each producer of data (e.g., sensors).
Instead, senders are typically decoupled from receivers. Such decoupling is common in publish-
subscribe systems for IoT, such as MQTT, AMQP, XMPP, and Solace [435]. In particular, many-
to-many communication based on publish-subscribe is the de-facto standard in smart buildings,
used in systems like BOSS [137], VOLTTRON [464], Brume [342] and bw2 [15], and adopted
commercially in AllJoyn and IoTivity. Senders publish messages by addressing them to resources
and sending them to a router. Recipients subscribe to a resource by asking the router to send them
messages addressed to that resource.

Many systems for smart buildings/cities, like sMAP [136], SensorAct [18], bw2 [15], VOLT-
TRON [464], and BAS [291], organize resources as a hierarchy. A resource hierarchy matches
the organization of IoT devices: for instance, smart cities contain buildings, which contain floors,
which contain rooms, which contain sensors, which produce streams of readings. We represent
each resource—a leaf in the hierarchy—as a Uniform Resource Indicator (URI), which is like
a file path. For example, a sensor that measures temperature and humidity might send its read-
ings to the two URIs buildingA/floor2/roomLHall/sensor0/temp and buildingA/floor2/

roomLHall/sensor0/hum. A user can subscribe to a URI prefix, such as buildingA/floor2/
roomLHall/*, which represents a subtree of the hierarchy. He would then receive all sensor read-
ings in room “LHall.”

1Image credits: https://tweakers.net/pricewatch/1275475/asus-f540la-dm1201t.html, https://
www.lg.com/uk/mobile-phones/lg-H791, https://www.bestbuy.com/site/nest-learning-thermostat-
3rd-generation-stainless-steel/4346501.p?skuId=4346501, https://www.macys.com/shop/product/
fitbit-charge-2-heart-rate-fitness-wristband?ID=2999458

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 132

Laptop, Server,
Workstation

Intel Core i7
100,000 DMIPS

10 GiB RAM

Smartphone,
Raspberry Pi

ARM Cortex-A53
10,000 DMIPS

1 GiB RAM

Smart Home
Appliance

ARM Cortex-A8
1,000 DMIPS
100 MiB RAM

Wearable Device,
Embedded Appliance

ARM Cortex-M3/M4
100 DMIPS

100 KiB - 1 MiB RAM

Ultra Low-Power Deeply
Embedded Sensor

ARM Cortex-M0/M0+
50 DMIPS

32 KiB RAM

More
Powerful

Less
Powerful

JEDI is capable of running on all of these IoT devices

Figure 7.1: IoT comprises diverse devices that span more than four orders of magnitude of com-
puting power (estimated in Dhrystone MIPS).1

7.1.1.2 Decentralized Delegation

Access control in IoT needs to be fine-grained. For example, if Bob has an app that needs access
to temperature readings from a single sensor, that app should receive the decryption key for only
that one URI, even if Bob has keys for the entire room. In an IoT-scale system, it is not scalable
for a central authority to individually give fine-grained decryption keys to each person’s devices.
Moreover, as we discuss in Section 7.2, such an approach would pose increased security and pri-
vacy risks. Instead, Bob, who himself has access to readings for the entire room, should be able
to delegate temperature-readings access to the app. Generally, a principal with access to a set of
resources can give another principal access to a subset of those resources.

Vanadium [446] and bw2 [15] introduced decentralized delegation (SPKI/SDSI [121] and Mac-
aroons [53]) in the smart buildings space. Since then, decentralized delegation has become the
state-of-the-art for access control in smart buildings, especially those geared toward large-scale
commercial buildings or organizations [171, 239]. In these systems, a principal can access a re-
source if there exists a chain of delegations, from the owner of the resource to that principal, grant-
ing access. At each link in the chain, the extent of access may be qualified by caveats, which add
restrictions to which resources can be accessed and when. While these systems provide delegation
of permissions, they do not provide protocols for encrypting and decrypting messages end-to-end.

7.1.1.3 Resource Constraints

IoT devices vary greatly in their capabilities, as shown in Figure 7.1. Some IoT devices, such as
wearable devices and low-cost sensor platforms, are constrained in CPU, memory, and energy. In
particular, ultra low-power deeply embedded sensing devices, at the far right of Figure 7.1, operate
within the extreme resource constraints that we considered in the context of TCPlp in Chapter 5
(Section 5.2.1). An application of interest involving such devices is indoor environmental sensing

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 133

Building
Manager

Campus
Manager

Lab
Director

Alice

(Root)

buildingB

floor1

lecture_hall

buildingA

floor1

lobby

floor2

roomLHall alice_office

Never
Expires

Expires
Jun 2020

Expires
Jun 2020

Expires
Aug 2019

Figure 7.2: JEDI keys can be qualified and delegated, supporting decentralized, cryptographically-
enforced access control via key delegation. Each person has a decryption key for the indicated
resource subtree that is valid until the indicated expiry time. Black arrows denote delegation.

in smart buildings/cities. Sensors that measure temperature, humidity, or occupancy may be de-
ployed in a building; such sensors are battery-powered and transmit readings using a low-power
wireless network (i.e., LLNs). To see ubiquitous deployment, they must cost only tens of dollars
per unit and have several years of battery life. To achieve this price/power point, sensor platforms
are heavily resource-constrained, with mere kilobytes of memory (farthest right in Figure 7.1) [214,
373, 170, 315, 88, 14, 13]. The power consumption of encryption is a serious challenge, even more
so than its latency on a slower CPU; the CPU and radio must be used sparingly to avoid consum-
ing energy too quickly [498, 276]. For example, on the sensor platform used in our evaluation, an
average CPU utilization of merely 5% would result in less than a year of battery life, even if the
power cost of using the transducers and network were zero.

7.1.2 Overview of JEDI
This chapter presents JEDI, a many-to-many end-to-end encryption protocol compatible with the
above three requirements of IoT systems. JEDI encrypts messages end-to-end for confidentiality,
signs them for integrity while preserving anonymity, and supports delegation with caveats, all
while allowing senders and receivers to be decoupled via a resource hierarchy. JEDI differs from
existing encryption protocols like SSL/TLS, requiring us to overcome a number of challenges:

1. Formulating a new system model for end-to-end encryption to support decoupled senders
and receivers and decentralized delegation typical of IoT systems (Section 7.1.2.1)

2. Realizing this expressive model while working within the resource constraints of IoT de-
vices (Section 7.1.2.2)

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 134

3. Allowing receivers to verify the integrity of messages, while preserving the anonymity of
senders (Section 7.1.2.3)

4. Extending JEDI’s model to support revocation (not described in this dissertation; see our
extended paper [299])

Below, we explain how we address each of these challenges.

7.1.2.1 JEDI’s System Model (Section 7.2)

Participants in JEDI are called principals. Any principal can create a resource hierarchy to repre-
sent some resources that it owns. Because that principal owns all of the resources in the hierarchy,
it is called the authority of that hierarchy.

Due to the setting of decoupled senders and receivers, the sender can no longer encrypt
messages with the receiver’s public key, as in traditional end-to-end encryption. Instead, JEDI
models principals as interacting with resources, rather than with other principals. Herein lies the
key difference between JEDI’s model and other end-to-end encryption protocols: the publisher of
a message encrypts it according to the URI to which it is published, not the recipients subscribed to
that URI. Only principals permitted to subscribe to a URI are given keys that can decrypt messages
published to that URI.

IoT systems that support decentralized delegation (Vanadium, bw2), as well as related non-
IoT authorization systems (e.g., SPKI/SDSI [121] and Macaroons [53]) provide principals with
tokens (e.g., certificate chains) that they can present to prove they have access to a certain resource.
Providing tokens, however, is not enough for end-to-end encryption; unlike these systems, JEDI
allows decryption keys to be distributed via chains of delegations. Furthermore, the URI prefix and
expiry time associated with each JEDI key can be restricted at each delegation. For example, as
shown in Figure 7.2, suppose Alice, who works in a research lab, needs access to sensor readings in
her office. In the past, the campus facilities manager, who is the authority for the hierarchy, granted
a key for buildingA/* to the building manager, who granted a key for buildingA/floor2/* to
the lab director. Now, Alice can obtain the key for buildingA/floor2/alice_office/* directly
from her local authority (the lab director).

7.1.2.2 Encryption with URIs and Expiry (Section 7.3)

JEDI supports decoupled communication. The resource to which a message is published acts as a
rendezvous point between the senders and receivers, used by the underlying system to route mes-
sages. Central to JEDI is the challenge of finding an analogous cryptographic rendezvous point
that senders can use to encrypt messages without knowledge of receivers. A number of IoT sys-
tems [419, 377] use only simple cryptography like AES, SHA2, and ECDSA, but these primitives
are not expressive enough to encode JEDI’s rendezvous point, which must support hierarchically-
structured resources, non-interactive expiry, and decentralized delegation.

Existing systems [469, 471, 472] with similar expressivity to JEDI use Attribute-Based En-
cryption (ABE) [206, 50]. Unfortunately, ABE is not suitable for JEDI because it is too expensive,

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 135

especially in the context of resource constraints of IoT devices. Some IoT systems rule it out due
to its latency alone [419]. In the context of low-power devices, encryption with ABE would also
consume too much power. JEDI circumvents the problem of using ABE or basic cryptography
with two insights: (1) Even though ABE is too heavy for low-power devices, this does not mean
that we must resort to only symmetric-key techniques. We show that certain IBE schemes [2] can
be made practical for such devices. (2) Time is another resource hierarchy: a timestamp can
be expressed as year/month/day/hour, and in this hierarchical representation, any time range
can be represented efficiently as a logarithmic number of subtrees. With this insight, we can si-
multaneously support URIs and expiry via a nonstandard use of a certain type of IBE scheme:
WKD-IBE [2]. Like ABE, WKD-IBE is based on bilinear groups (pairings), but it is an order-of-
magnitude less expensive than ABE as used in JEDI. This is an application of the technique from
Section 3.2.3—we are leveraging the expressivity-efficiency trade-off (Section 2.2.2) to choose
a cryptographic scheme that is cheaper but less expressive than ABE, yet expressive enough to
provide similar semantics to IoT systems that do not encrypt data. To make JEDI practical on low-
power devices, we design it to invoke WKD-IBE rarely, while relying on AES most of the time,
much like session keys—an application of the technique from Section 3.2.1. The session keys
must change, requiring another invocation of WKD-IBE, whenever the hierarchical representation
of the timestamp changes—an application of the technique from Section 3.2.2, since it allows the
frequency of WKD-IBE operations to be adjusted based on the granularity with which the times-
tamp is encoded. Additionally, we apply the technique from Section 3.2.4 Thus, JEDI achieves
expressivity commensurate to IoT systems that do not encrypt data—significantly more expressive
than AES-only solutions—while allowing several years of battery life for low-power low-cost IoT
devices.

7.1.2.3 Integrity and Anonymity (Section 7.4)

In addition to being encrypted, messages should be signed so that the recipient of a message can
be sure it was not sent by an attacker. This can be achieved via a certificate chain, as in SPKI/SDSI
or bw2. Certificates can be distributed in a decentralized manner, just like encryption keys in
Figure 7.2.

Certificate chains, however, are insufficient if anonymity is required. For example, consider an
office space with an occupancy sensor in each office, each publishing to the same URI buildingA/
occupancy. In aggregate, the occupancy sensors could be useful to inform, e.g., heating/cooling
in the building, but individually, the readings for each room could be considered privacy-sensitive.
The occupancy sensors in different rooms could use different certificate chains, if they were au-
thorized/installed by different people. This could be used to deanonymize occupancy readings. To
address this challenge, we adapt the WKD-IBE scheme that we use for end-to-end encryption to
achieve an anonymous signature scheme that can encode the URI and expiry and support decen-
tralized delegation. We apply the four techniques from Section 3.2 to signatures in analogous ways
as we do for encryption, starting with using WKD-IBE, rather than a more costly cryptographic
scheme, for anonymous signatures. As a result, anonymous signatures in JEDI are practical even
on low-power embedded IoT devices.

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 136

7.1.2.4 Revocation

As stated above, JEDI keys support expiry. Therefore, it is possible to achieve a lightweight
revocation scheme by delegating each key with short expiry and periodically renewing it to extend
the expiry. To revoke a key, one simply does not renew it. We expect this expiry-based revocation
to be sufficient for most use cases, especially for low-power devices that “sense and send.”

In our extended paper [299], we provide a protocol for revoking keys immediately, without
relying on expiry. As we discuss in Section 7.3.9, any cryptographically-enforced scheme that
provides immediate revocation (i.e., keys can be revoked without waiting for them to expire) is
subject to the fundamental limitation that the sender of a message must know which recipients
are revoked when it encrypts the message. In our extended paper [299], we provide a protocol
for immediate revocation in JEDI, subject to this constraint. We use techniques from tree-based
broadcast encryption [357, 144] to encrypt in such a way that all decryption keys for that URI,
except for ones on a revocation list, can be used to decrypt. Achieving this is nontrivial because
we have to combine broadcast encryption with JEDI’s semantics of hierarchical resources, expiry,
and delegation. First, we modify broadcast encryption to support delegation, in such a way that
if a key is revoked, all delegations made with that key are also implicitly revoked. Then, we
integrate broadcast revocation, in a non-black-box way, with JEDI’s encryption and delegation, as
a third resource hierarchy alongside URIs and expiry. Our protocol for immediate revocation is
not described in this dissertation; see our extended paper [299] for details.

7.1.3 Summary of Evaluation
For our evaluation, we use JEDI to encrypt messages transmitted over bw2 [15, 94], a deployed
open-source messaging system for smart buildings, and demonstrate that JEDI’s overhead is small
in the critical path. We also evaluate JEDI for a commercially available sensor platform called
“Hamilton” [214], and show that a Hamilton-based sensor sending one sensor reading every 30
seconds would see several years of battery lifetime when sending sensor readings encrypted with
JEDI. As Hamilton is among the least powerful platforms that will participate in IoT (farthest to
the right in Figure 7.1), this validates that JEDI is practical across the IoT spectrum.

7.2 System Model and Threat Model
A principal can post a message to a resource in a hierarchy by encrypting it according to the
resource’s URI, hierarchy’s public parameters, and current time, and passing it to the underlying
system that delivers it to the relevant subscribers. Given the secret key for a resource subtree and
time range, a principal can generate a secret key for a subset of those resources and subrange of
that time range, and give it to another principal, as in Figure 7.2. The receiving principal can use
the delegated key to decrypt messages that are posted to a resource in that subset at a time during
that subrange.

JEDI does not require the structure of the resource hierarchy to be fixed in advance. In Fig-
ure 7.2, the campus facilities manager, when granting access to buildingA/* to the building man-

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 137

Existing IoT System

Data

JEDI

Data(e.g., bldg/flo
or/room/sens
or/reading)

(e.g., Publish/Subscribe
on URI-based Resources)

Encrypt

URI

URI Data

JEDI

Data

Decrypt

URI

Message Message

SubscriberPublisher

(e.g., indoor
sensor)

(e.g., user's
app)

Figure 7.3: Applying JEDI to a smart buildings IoT system. Components introduced by JEDI are
shaded. The subscriber’s key is obtained via JEDI’s decentralized delegation (Figure 7.2).

ager, need not be concerned with the structure of the subtree rooted at buildingA. This allows the
building manager to organize buildingA/* independently.

7.2.1 Trust Assumptions
A principal is trusted for the resources it owns or was given access to (for the time ranges for which
it was given access). In other words, an adversary who compromises a principal can read all re-
sources that principal can read and forge new messages as if it were that principal. In particular, an
adversary who compromises the authority for a resource hierarchy gains control over that resource
hierarchy.

JEDI allows each principal to act as an authority for its own resource hierarchy in its own
trust domain, without a single authority spanning all hierarchies. In particular, principals are not
organized hierarchically; a principal may be delegated multiple keys, each belonging to a different
resource hierarchy. In the example in Figure 7.2, Alice might also receive JEDI keys from her
landlord granting access to resources in her apartment building, in a separate hierarchy where her
landlord is the authority. If Alice owns resources she would like to delegate to others, she can
set up her own hierarchy to represent those resources. Existing IoT systems with decentralized
delegation, like bw2 and Vanadium, use a similar model.

7.2.2 Applying JEDI to an Existing System
As shown in Figure 7.3, JEDI can be applied as a wrapper around existing many-to-many commu-
nication systems, including publish-subscribe systems for smart cities. The transfer of messages
from producers to consumers is handled by the existing system. A common design used by such
systems is to have a central broker (or router) forward messages; however, an adversary who com-

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 138

promises the broker can read all messages. In this context, JEDI’s end-to-end encryption protects
data from such an adversary. Publishers encrypt their messages with JEDI before passing them to
the underlying communication system (without knowledge of who the subscribers are), and sub-
scribers decrypt them with JEDI after receiving them from the underlying communication system
(without knowledge of who the publishers are).

7.2.3 Comparison to a Naı̈ve Key Server Model
To better understand the benefits of JEDI’s model, consider the natural strawman of a trusted key
server. This key server generates a key for every URI and time. A publisher encrypts each message
for that URI with the same key. A subscriber requests this key from the trusted key server, which
must first check if the subscriber is authorized to receive it. The subscriber can decrypt messages
for a URI using this key, and contact the key server for a new key when the key expires. JEDI’s
model is better than this key server model as follows:

• Improved security. Unlike the trusted key server, which must always be online, the authority
in JEDI can delegate qualified keys to some principals and then go offline, leaving these
principals to qualify and delegate keys further. While the authority is offline, it is more
difficult for an attacker to compromise it and easier for the authority to protect its secrets
because it need only access them rarely. This reasoning is the basis of root Certificate Au-
thorities (CAs), which access their master keys infrequently. In contrast, the trusted key
server model requires a central trusted party (key server) to be online to grant/revoke access
to any resource.

• Improved privacy. No single participant sees all delegations in JEDI. An adversary in JEDI
who steals an authority’s secret key can decrypt all messages for that hierarchy, but still does
not learn who has access to which resource, and cannot access separate hierarchies to which
the first authority has no access. In contrast, an adversary who compromises the key server
learns who has access to which resource and can decrypt messages for all hierarchies.

• Improved scalability. In the campus IoT example above, if a building admin receives access
to all sensors and all their different readings for a building, the admin must obtain a poten-
tially very large number of keys, instead of one key for the entire building. Moreover, the
campus-wide key server needs to grant decryption keys to each application owned by each
employee or student at the university. Finally, the campus-wide key server must understand
which delegations are allowed at lower levels in the hierarchy, requiring the entire hierarchy
to be centrally administered.

7.2.4 IoT Gateways
Low-power wireless embedded sensors, due to power constraints, often do not use network pro-
tocols like Wi-Fi, and instead use specialized low-power protocols such as Bluetooth or IEEE
802.15.4. It is common for these devices to rely on an application-layer gateway to send data to

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 139

computers outside of the low-power network [502]. This gateway could be in the form of a phone
app (e.g., Fitbit), or in the form of a specialized border router [517, 6]. In some traditional setups,
the gateway is responsible for performing encryption/authentication [377]. JEDI accepts that gate-
ways may be necessary for Internet connectivity, but does not rely on them for security—JEDI’s
cryptography is lightweight enough to run directly on the low-power sensor nodes. This approach
prevents the gateway from becoming a single point of attack; an attacker who compromises the
gateway cannot see or forge data for any device using that gateway.

7.2.5 Generalizability of JEDI’s Model
Since JEDI decouples senders from receivers, it has no requirements on what happens at any
intermediaries (e.g., does not require messages to be forwarded from publishers to subscribers in
any particular way). Thus, JEDI works even when messages are exchanged in a broadcast medium,
e.g., multicast. This also means that JEDI is more broadly applicable to systems with hierarchically
organized resources. For example, URIs could correspond to filepaths in a file system, or URLs in
a RESTful web service.

7.2.6 Security Goals
JEDI’s goal is to ensure that principals can only read messages from or send messages to resources
they have been granted access to receive from or send to. In the context of publish-subscribe, JEDI
also hides the content of messages from an adversary who controls the router.

JEDI does not attempt to hide metadata relating to the actual transfer of messages (e.g., the
URIs on which messages are published, which principals are publishing or subscribing to which
resources, and timing). Hiding this metadata is a complementary task to achieving delegation and
end-to-end encryption in JEDI, and techniques from the secure messaging literature [113, 128,
225] will likely be applicable.

7.3 End-to-End Encryption
A central question answered in this section is: How should publishers encrypt messages before
passing them to the underlying system for delivery (Section 7.3.4)? As explained in Section 7.1.2.2,
ABE, the obvious choice, is too heavy for low-power devices. Therefore, we apply the technique
from Section 3.2.3 and identify WKD-IBE, a more lightweight identity-based encryption scheme,
as sufficient to achieve JEDI’s properties. The primary challenge is to encode a sufficiently ex-
pressive rendezvous point in the WKD-IBE ID (called a pattern) that publishers use to encrypt
messages (Section 7.3.4).

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 140

7.3.1 Building Block: WKD-IBE
We first explain WKD-IBE [2], the encryption scheme that JEDI uses as a building block. We
denote the security parameter as κ .

7.3.1.1 WKD-IBE Scheme

In WKD-IBE, messages are encrypted with patterns, and keys also correspond to patterns. A
pattern is a list of values: P = (Z∗p ∪{⊥})ℓ. The notation P(i) denotes the ith component of P,
1-indexed. A pattern P1 matches a pattern P2 if, for all i ∈ [1, ℓ], either P1(i) =⊥ or P1(i) = P2(i).
In other words, if P1 specifies a value for an index i, P2 must match it at i. Note that the “matches”
operation is not commutative; “P1 matches P2” does not imply “P2 matches P1”.

We refer to a component of a pattern containing an element of Z∗p as fixed, and to a component
that contains ⊥ as free. To aid our presentation, we define the following sets:

Definition 1. For a pattern S, we define:

fixed(S) = {(i,S(i)) | S(i) ̸=⊥}
free(S) = {i | S(i) =⊥}

A key for pattern P1 can decrypt a message encrypted with pattern P2 if P1 = P2. Furthermore, a
key for pattern P1 can be used to derive a key for pattern P2, as long as P1 matches P2. In summary,
the following is the syntax for WKD-IBE.

• Setup(1κ ,1ℓ)→ Params,MasterKey;

• KeyDer(Params,KeyPatternA ,PatternB)→ KeyPatternB , derives a key for PatternB, where
either KeyPatternA is the MasterKey, or PatternA matches PatternB;

• Encrypt(Params,Pattern,m)→ CiphertextPattern,m;

• Decrypt(KeyPattern,CiphertextPattern,m)→ m.

We use the WKD-IBE construction in Section 3.2 of [2], based on BBG HIBE [63]. Like the
BBG construction, it has constant-size ciphertexts, but requires the maximum pattern length ℓ to
be known at Setup time. In this WKD-IBE construction, patterns containing ⊥ can only be used
in KeyDer, not in Encrypt; we extend it to support encryption with patterns containing ⊥.

7.3.1.2 WKD-IBE Construction

We present the WKD-IBE construction in Section 3.2 of [2], including our extension to support
encryption with patterns containing ⊥.

The construction is based on bilinear groups. G and GT are cyclic groups of prime order p,
and they are related by a bilinear map e : G×G→GT . The security parameter κ is related to the
number of bits of p. We implemented WKD-IBE using BLS12-381, an asymmetric bilinear group

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 141

whose bilinear map is of the form e : G1×G2→GT . We denote G1 the smaller and faster of the
two source groups (elliptic curve over Fp). The construction of WKD-IBE was originally defined
for symmetric bilinear groups. Our description below shows how we mapped the construction onto
an asymmetric bilinear group.

Setup(1ℓ): Select g $← G2 and g2,g3,h1, . . . ,hℓ,hs
$← G1. Then select α

$← Zp and let g1 = gα .
Output:
Params= (g,g1,g2,g3,h1, . . . ,hℓ,hs) and MasterKey = gα

2 .
Note that, although hs is not used for encryption below, hs will be used in Section 7.4.

KeyDer(K,S): If K is the master key, take K = gα
2 . Select r $← Zp. The private key for the pattern

S is the following triple:(
gα

2 ·

(
g3 · ∏

(i,ai)∈fixed(S)
hai

i

)r

, gr,
{
(j,hr

j)
}

j∈free(S)

)
.

If K is not the master key, then parse K as (k0,k1,B), where B = {(i,bi)}. Select t $← Zp. The
private key for S is:(

k0 ·

(
g3 · ∏

(i,ai)∈fixed(S)
hai

i

)t

· ∏
(i,ai)∈fixed(S)

(i,bi)∈B

bai
i , gt · k1,

{
(j,ht

j ·b j)
}

j∈free(S)

)
.

Observe that the resulting key is identically distributed, regardless of whether or not the input key
K is the master key.

Encrypt(S,m): Here, m ∈GT . Select s $← Zp and output(
e(g1,g2)

s ·m, gs,

(
g3 · ∏

(i,ai)∈fixed(S)
hai

i

)s)
.

Decrypt(K,C): Parse the key K as (k0,k1,B), and the ciphertext C as (X ,Y,Z). Output

X · e(k1,Z) · e(Y,k0)
−1.

To support encryption over arbitrary patterns that may contain⊥, we only compute the product
over fixed slots, just as is done in the BBG HIBE construction [63]. In contrast, the original
WKD-IBE construction requires all slots in the pattern to be fixed, and iterates over all slots. The
proof technique from [63], namely padding the selected ID with zeros, can be used here to modify
the proof of WKD-IBE [2] to account for our optimization that allows free slots to be used in
encryption.

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 142

7.3.2 Concurrent Hierarchies in JEDI
WKD-IBE was originally designed to allow delegation in a single hierarchy. For example, the
original suggested use case of WKD-IBE was to generate secret keys for a user’s email addresses
in all valid subdomains, such as sysadmin@*.univ.edu [2].

JEDI, however, uses WKD-IBE in a nonstandard way to simultaneously support multiple hier-
archies, one for URIs and one for expiry (and, as explained in the extended paper [299], one for
revocation), each in the vein of HIBE. We think of the ℓ components of a WKD-IBE pattern as
“slots” that are initially empty, and are progressively filled in with calls to KeyDer. To combine
a hierarchy of maximum depth ℓ1 (e.g., the URI hierarchy) and a hierarchy of maximum depth ℓ2
(e.g., the expiry hierarchy), one can Setup WKD-IBE with the number of slots equal to ℓ= ℓ1+ℓ2.
The first ℓ1 slots are filled in left-to-right for the first hierarchy and the remaining ℓ2 slots are filled
in left-to-right for the second hierarchy (Figure 7.4).

7.3.3 Overview of Encryption in JEDI
Each principal maintains a key store containing WKD-IBE decryption keys. To create a resource
hierarchy, any principal can call the WKD-IBE Setup function to create a resource hierarchy. It
releases the public parameters and stores the master secret key in its key store, making it the au-
thority of that hierarchy. To delegate access to a URI prefix for a time range, a principal (possibly
the authority) searches its key store for a set of keys for a superset of those permissions. It then
qualifies those keys using KeyDer to restrict them to the specific URI prefix and time range (Sec-
tion 7.3.5), and sends the resulting keys to the recipient of the delegation.2 The recipient accepts
the delegation by adding the keys to its key store.

Before sending a message to a URI, a principal encrypts the message using WKD-IBE. The
pattern used to encrypt it is derived from the URI and the current time (Section 7.3.4), which are
included along with the ciphertext. When a principal receives a message, it searches its key store,
using the URI and time included with the ciphertext, for a key to decrypt it.

In summary, JEDI provides the following API:
Encrypt(Message,URI,Time)→ Ciphertext
Decrypt(Ciphertext,URI,Time,KeyStore)→Message
Delegate(KeyStore,URIPrefix,TimeRange)→ KeySet
AcceptDelegation(KeyStore,KeySet)→ KeyStore′

Note that the WKD-IBE public parameters are an implicit argument to each of these functions.
Finally, although the above API lists the arguments to Delegate as URIPrefix and TimeRange,
JEDI actually supports succinct delegation over more complex sets of URIs and timestamps (see
Section 7.3.10).

2JEDI does not govern how the key set is transferred to the recipient, as there are existing solutions for this. One
can use an existing protocol for one-to-one communication (e.g., TLS) to securely transfer the key set. Or, one can
encrypt the key set with the recipient’s (normal, non-WKD-IBE) public key, and place it in a common storage area.

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 143

H("𝚊") H("𝚋") H($) ⊥ H("𝟷𝟽") H("𝙹𝚞𝚗") H("𝟶𝟾") H("𝟶𝟼")
1 2 3 4 5 6 7 8i

S(i)

= 4 slots for URI Hierarchyℓ1 = 4 slots for Time Hierarchyℓ2

Figure 7.4: Pattern S used to encrypt message sent to a/b on June 08, 2017 at 6 AM. The figure
uses 8 slots for space reasons; JEDI is meant to be used with more slots (e.g., 20).

7.3.4 Expressing URI/Time as a Pattern
A message is encrypted using a pattern derived from (1) the URI to which the message is addressed,
and (2) the current time. Let H : {0,1}∗→Z∗p be a collision-resistant hash function. Let ℓ= ℓ1+ℓ2
be the pattern length in the hierarchy’s WKD-IBE system. We use the first ℓ1 slots to encode the
URI, and the last ℓ2 slots to encode the time.

Given a URI of length d, such as a/b/c (d = 3 in this example), we split it up into individual
components, and append a special terminator symbol $: ("a", "b", "c", $). Using H, we map
each component to Z∗p, and then put these values into the first d + 1 slots. If S is our pattern, we
would have S(1) = H("a"), S(2) = H("b"), S(3) = H("c"), and S(4) = H($) for this example.
Now, we encode the time range into the remaining ℓ2 slots. Any timestamp, with the granularity
of an hour, can be represented hierarchically as (year, month, day, hour). We encode this
into the pattern like the URI: we hash each component, and assign them to consecutive slots. The
final ℓ2 slots encode the time, so the depth of the time hierarchy is ℓ2. The terminator symbol $
is not needed to encode the time, because timestamps always have exactly ℓ2 components. For
example, suppose that a principal sends a message to a/b on June 8, 2017 at 6 AM. The message
is encrypted with the pattern in Figure 7.4.

7.3.5 Producing a Key Set for Delegation
Now, we explain how to produce a key set corresponding to a URI prefix and time range. To
express a URI prefix as a pattern, we do the same thing as we did for URIs, without the terminator
symbol $. For example, a/b/* is encoded in a pattern S as S(1) = H("a"), S(2) = H("b"), and
all other slots free. Given the private key for S, one can use WKD-IBE’s KeyDer to fill in slots
3 . . . ℓ1. This allows one to generate the private key for a/b, a/b/c, etc.—any URI for which a/b

is a prefix. To grant access to only a specific resource (a full URI, not a prefix), the $ is included
as before.

In encoding a time range into a pattern, single timestamps (e.g., granting access for an hour) are
done as before. The hierarchical structure for time makes it possible to succinctly grant permission
for an entire day, month, or year. For example, one may grant access for all of 2017 by filling in slot
ℓ2 with H("2017") and leaving the final ℓ2− 1 slots, which correspond to month, day, and year,
free. Therefore, to grant permission over a time range, the number of keys granted is logarithmic
in the length of the time range. For example, to delegate access to a URI from October 29, 2014

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 144

at 10 PM until December 2, 2014 at 1 AM, the following keys need to be generated: 2014/Oct/
29/23, 2014/Oct/29/24, 2014/Oct/30/*, 2014/Oct/31/*, 2014/Nov/*, 2014/Dec/01/*,
and 2014/Dec/02/01. The tree can be chosen differently to support longer time ranges (e.g.,
additional level representing decades), change the granularity of expiry (e.g., minutes instead of
hours), trade off encryption time for key size (e.g., deeper/shallower tree), or use a more regular
structure (e.g., binary encoding with logarithmic split). For example, our implementation uses a
depth-6 tree (instead of depth-4), to be able to delegate time ranges with fewer keys.

In summary, to produce a key set for delegation, first determine which subtrees in the time
hierarchy represent the time range. For each one, produce a separate pattern, and encode the time
into the last ℓ2 slots. Encode the URI prefix in the first ℓ1 slots of each pattern. Finally, generate
the keys corresponding to those patterns, using keys in the key store.

7.3.6 Using WKD-IBE Efficiently
On low-power embedded devices, performing a single WKD-IBE encryption consumes a signifi-
cant amount of energy. Therefore, we design JEDI to use WKD-IBE as efficiently as possible.

7.3.6.1 Hybrid Encryption and Key Reuse

We apply the technique from Section 3.2.1, using WKD-IBE in a hybrid encryption scheme. To
encrypt a message m in JEDI, one samples a symmetric key k, and encrypts k with JEDI to produce
ciphertext c1. The pattern used for WKD-IBE encryption is chosen as in Section 7.3.4 to encode
the rendezvous point. Then, one encrypts m using k to produce ciphertext c2. The JEDI ciphertext
is (c1,c2).

For subsequent messages, one reuses k and c1; the new message is encrypted with k to produce
a new c2. One can keep reusing k and c1 until the WKD-IBE pattern for encryption changes, which
happens at the end of each hour (or other interval used for expiry). At this time, JEDI performs
key rotation by choosing a new k, encrypting it with WKD-IBE using the new pattern, and then
proceeding as before. Therefore, most messages only incur cheap symmetric-key encryption.

This also reduces the load on subscribers. The JEDI ciphertexts sent by a publisher during a
single hour will all share the same c1. Therefore, the subscriber can decrypt c1 once for the first
message to obtain k, and cache the mapping from c1 to k to avoid expensive WKD-IBE decryptions
for future messages sent during that hour.

Thus, expensive WKD-IBE operations are only performed upon key rotation. This not only
happens rarely for each resource—for example, once an hour, if expiry times are encoded with
hour-level granularity—but its frequency is tunable according to the granularity chosen for expiry.
This allows JEDI to be configured to strike the best balance between the value that fine-grained ex-
piry may bring to the application and the costs of invoking WKD-IBE more frequently. Therefore,
using hybrid encryption in this way is an application of both the technique from Section 3.2.1 and
the technique from Section 3.2.2.

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 145

7.3.6.2 Precomputation with Adjustment

Even with hybrid encryption and key reuse to perform WKD-IBE encryption rarely, WKD-IBE
contributes significantly to the overall power consumption on low-power devices. Therefore, this
section explores how to perform individual WKD-IBE encryptions more efficiently. We apply the
technique from Section 3.2.4 to develop a new encryption algorithm for WKD-IBE that is well-
suited to the way in which JEDI uses WKD-IBE.

Most of the work to encrypt a message under a pattern S is in computing the quantity QS =
g3 ·∏(i,ai)∈fixed(S) hai

i , where g3 and the hi are part of the WKD-IBE public parameters. One may
consider computing QS once, and then reusing its value when computing future encryptions under
the same pattern S. Unfortunately, this alone does not improve efficiency because the pattern S
used in one WKD-IBE encryption is different from the pattern T used for the next encryption.

JEDI, however, observes that S and T are similar; they match in the ℓ1 slots corresponding to
the URI, and the remaining ℓ2 slots will correspond to adjacent leaves in the time tree. JEDI takes
advantage of this by efficiently adjusting the precomputed value QS to compute QT . We define the
new WKD-IBE operations as follows (as before, Params is an implicit parameter).
Precompute(S): Output

g3 · ∏
(i,ai)∈fixed(S)

hai
i

AdjustPrecomputed(QS,S,T): QS is the existing precomputed value, S is the pattern it corre-
sponds to, and T is the pattern whose precomputed value QT to compute. Output

QS · ∏
(i,bi)∈fixed(T)

i∈free(S)

hbi
i · ∏

(i,ai)∈fixed(S)
i∈free(T)

h−ai
i · ∏

(i,ai)∈fixed(S)
(i,bi)∈fixed(T)

ai ̸=bi

hbi−ai
i

EncryptPrepared(QS,m): Here, m ∈GT . Select s $← Zp and output

(e(g1,g2)
s ·m, gs, Qs

S) .

The AdjustPrecomputed operation requires one G1 exponentiation per differing slot between
S and T (i.e., the Hamming distance). Because S and T usually differ in only the final slot of
the time hierarchy, this will usually require one G1 exponentiation total, substantially faster than
computing QT from scratch. Additional exponentiations are needed at the end of each day, month,
and year, but they can be eliminated by maintaining additional precomputed values corresponding
to the start of the current day, current month, and current year.

Concretely, JEDI encrypts a new symmetric key when rotating keys as follows. First, we
invoke AdjustPrecomputed to compute QS for the desired attribute set S from QS′ , where S′

is the previous attribute set. Then, we invoke EncryptPrepared to encrypt the symmetric key
under the attribute set S using QS. We can represent this composition of EncryptPrepared and
AdjustPrecomputed as a new encryption interface, Encrypt(QS′,S′,S,m)→C,QS. Here, encryp-
tion outputs not only a ciphertext C but also state QS to accelerate the next encryption, allowing
encryption operations to be “chained together.”

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 146

The protocol remains secure because a ciphertext is distributed identically whether it was com-
puted from a precomputed value QS or via regular encryption—that is, the output of Encrypt(S,m)
and the output of EncryptPrepared(Precompute(S),m) are distributed identically.

7.3.7 Revocation
In this section, we briefly explain below how JEDI keys may be revoked.

7.3.8 Simple Solution: Revocation via Expiry
A simple solution for revocation is to rely on expiration. In this solution, all keys are time-limited,
and delegations are periodically refreshed, according to a higher layer protocol, by granting a new
key with a later expiry time. In this setup, the principal who granted a key can easily revoke it by
not refreshing that delegation when the key expires. We expect this solution to be sufficient for
many applications of JEDI.

7.3.9 Immediate Revocation (Extended Paper)
Some disadvantages of the solution in Section 7.3.8 are that (1) principals must periodically come
online to refresh delegations, and (2) revocation only takes effect when the delegated key expires.
We would like a solution without these disadvantages.

However, any revocation scheme that does not wait for keys to expire is subject to set of inher-
ent limitations. The recipient of the revoked delegation still has the revoked decryption key, so it
can still decrypt messages encrypted in the same way. This means that we must either (1) rely on
intermediate parties to modify ciphertexts so that revoked keys cannot decrypt them, or (2) require
senders to be aware of the revocation, and encrypt messages in a different way so that revoked
keys cannot decrypt them. Neither solution is ideal: (1) makes assumptions about how messages
are delivered, which we have avoided thus far (Section 7.2), and requires trust in an intermediary
to modify ciphertexts, and (2) weakens the decoupling of senders and receivers (Section 7.1.2). In
our extended JEDI paper [299], we present an immediate revocation scheme that adopts the second
compromise: while senders will not need to know who are the receivers, they will need to know
who has been revoked.

7.3.10 Extensions
We present two simple extensions to JEDI’s core encryption protocol: (1) generalized subtrees
with wildcards in the middle of a URI, and (2) forward secrecy.

7.3.10.1 Beyond Simple Hierarchies

Thus far, we have considered only the * wildcard at the end of a URI. With WKD-IBE, we can
also place a + wildcard in the middle of a URI, allowing a single component of the URI to remain

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 147

H("𝚊") ⊥ H("𝚋") ⊥ ⊥ ⊥ ⊥ H("𝟶𝟾")
1 2 3 4 5 6 7 8i

S(i)

= 4 slots for URI Hierarchyℓ1 = 4 slots for Time Hierarchyℓ2

Figure 7.5: Pattern S for a private key granting access to a/+/b/* at 8 AM every day. The figure
uses 8 slots for space reasons; JEDI is meant to be used with more slots (e.g., 20).

unspecified. For example, the URI a/+/b matches all URIs of length 3 where the first component
is a and the third component is b; the second component could be anything. To implement the +

wildcard, we fill in the components corresponding to + with ⊥.
The + wildcard is useful in real applications. For example, in the “smart buildings” setting,

one could imagine a resource hierarchy of the form buildingA/floor2/room/sensor_id/

reading_type, where reading type could be either temp or hum. The + wildcard allows one
to delegate permission to see only the temperature readings in a building, by granting permission
on the URI buildingA/+/+/+/temp. It is also useful for the time hierarchy. An organization
may want to give an employee access to a resource from 8 AM to 5 PM every day, which can be
accomplished by using the + wildcard for the slots corresponding to the year, month, and day. See
Figure 7.5.

7.3.10.2 Forward Secrecy

Forward secrecy is the property that if a subscriber’s decryption key is compromised, the attacker
should only be able to decrypt new messages visible to the subscriber, not old messages sent before
the key was compromised.

Forward secrecy using HIBE has been previously studied [97]. We can apply the same idea to
our construction via a straightforward extension to our mechanism for expiry. In our construction
of expiry, each subscriber has a collection of keys for each URI or URI prefix it can access that give
it access over a time range [t1, t2], which can be qualified to any smaller time range [t3, t4] where
t1 ≤ t3 ≤ t4 ≤ t2. To achieve forward secrecy, each subscriber qualifies the keys for each URI, at
each unit of time, to only be valid starting at the current time until the same expiry time, and then
discards the old keys. This guarantees that, if a key is stolen, it cannot be used to decrypt messages
published before the current time.

7.3.11 Security Guarantee
In this section, we present our formal definitions of JEDI’s security guarantees and the correspond-
ing proofs. Our proofs use the notion of IND-sWKID-CPA security defined in Section 3 of [2].
They also depend on a property of the construction of WKD-IBE called history-independence.
Informally, a WKD-IBE construction is history-independent if, for any fixed pattern S, the result
of KeyDer to produce a key with pattern S, assuming that the starting key is either the master key

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 148

or corresponds to a pattern that matches S, is distributed in exactly the same way regardless of
the particular starting key used. The idea is that, given a key for a specified pattern S, one learns
nothing about the sequence of KeyDer operations that produced the key.

We formally define history-independence below.

Definition 2 (History-Independence). A WKD-IBE construction is said to be history-independent
if, for every pattern S, and for any two well-formed keys k1 corresponding to pattern P1 and k2
corresponding to pattern P2 in the same WKD-IBE system such that P1 matches S and P2 matches
S, it holds that

{KeyDer(k1,S)}= {KeyDer(k2,S)}
where the distributions are over the randomness sampled internally by KeyDer. If k1 (respectively,
k2) is the master key, the pattern P1 (respectively, P2) is one where all slots are free.

Below, we show that the construction of WKD-IBE presented in Section 7.3.1.2, which JEDI
uses, satisfies this property.

Theorem 1. The construction of WKD-IBE presented in Section 7.3.1.2 is history-independent.

Proof of Theorem 1. We will show that for any pattern S and any well-formed key k corresponding
to a pattern P that matches S, it holds that

{KeyDer(k,S)}=

{(
gα

2 ·

(
g3 · ∏
(i,ai)∈fixed(S)

hai
i

)r

, gr,
{
(j,hr

j)
}

j∈free(S)

)}
r $←Zp

Because the formula on the right-hand side of the above equation only depends on S and the public
parameters (not the particular key k), this is sufficient to demonstrate history-independence of the
WKD-IBE construction.

We handle the proof in two cases.
Case 1. Suppose that k is the master key. Then the above result is true by definition, according to
the formula given for KeyDer in Section 7.3.1.2.
Case 2. Suppose that k is not the master key. Then, because k is well-formed, we can write that

k =

(
gα

2 ·

(
g3 · ∏
(i,ai)∈fixed(P)

hai
i

)r0

, gr0,
{
(j,hr0

j)
}

j∈free(P)

)
for some fixed r0 ∈ Zp. By applying the formula for KeyDer in Section 7.3.1.2, we can see that
the key output by KeyDer has the form(

gα
2 ·

(
g3 · ∏
(i,ai)∈fixed(S)

hai
i

)r0+t

, gr0+t ,
{
(j,hr0+t

j)
}

j∈free(S)

)

for t $←Zp. Because r0+t is uniformly distributed in Zp, the output key has the desired distribution
(take r = r0 + t).

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 149

Now, we are ready to state and prove a security guaranatee for JEDI’s encryption. We formalize
the security of JEDI’s encryption below.

Theorem 2. Suppose JEDI is instantiated with a WKD-IBE scheme that is Selective-ID CPA-
secure [62, 2] and history-independent. Then, no probabilistic polynomial-time adversary A can
win the following security game against a challenger C with non-negligible advantage:
Initialization. A selects a (URI, time) pair to attack.
Setup. C gives A the public parameters of the JEDI instance.
Phase 1. A can make three types of queries to C:

1. A asks C to create a principal; C returns a name in {0,1}∗, which A can use to refer to that
principal in future queries. A special name exists for the authority.

2. A asks C for the key set of any principal; C gives A the keys that the principal has. At the
time this query is made, the requested key may not contain a key whose URI and time are
both prefixes of the challenge (URI, time) pair.

3. A asks C to make any principal delegate a key set of A’s choice to another principal (speci-
fied by names in {0,1}∗).

Challenge. When A chooses to end Phase 1, it sends C two messages, m0 and m1, of the same
length. Then C chooses a random bit b ∈ {0,1}, encrypts mb under the challenge (URI, time) pair,
and gives A the ciphertext.
Phase 2. A can make additional queries as in Phase 1.
Guess. A outputs b′ ∈ {0,1}, and wins the game if b = b′. The advantage of an adversary A is∣∣Pr[A wins]− 1

2

∣∣.
Now, we prove Theorem 2. Some intuition behind the proof is that the challenger in the game

in Theorem 2 (which is also the adversary in the IND-sWKID-CPA game [2]), maintains, for each
principal, the set of keys it has. It lazily requests these keys from the IND-sWKID-CPA challenger
as principals are compromised. Therefore, it maintains (1) a key set for each principal, storing
the keys requested from the IND-sWKID-CPA challenger, and (2) a pattern set for each principal,
storing patterns corresponding to additional keys that the principal would have in the normal course
of JEDI, but which have not been requested from the IND-sWKID-CPA challenger yet. Requesting
keys lazily is crucial because an uncompromised principal in Theorem 2 may possess a secret key
capable of decrypting the challenge ciphertext.

Proof of Theorem 2. We show that, given an adversary A with non-negligible advantage in the
game in Theorem 2, one can construct an algorithm B with non-negligible advantage in the IND-
sWKID-CPA security game [2]. We denote as C the IND-sWKID-CPA security challenger. B
maintains the following state: (2) a mapping from principal name (in {0,1}∗) to a key set for that
principal, and (3) a mapping from principal name (in {0,1}∗) to a pattern set for that principal.
These two maps are initialized as follows; each has a single entry for the name corresponding to

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 150

the authority. The authority’s key set is empty, and its pattern set contains one element, namely a
pattern containing ⊥ in all components (i.e., with all slots free).
B first runs the game with A as the challenger. A specifies the pair (URI, time) that it will

attack at the beginning of the game. B parses (URI, time) into the pattern S∗ and gives it to C.
C generates the master key pair (mpk,msk)← Setup and gives B the master public key mpk. B
forwards mpk to A. For any of three queries from A in Phase 1, B processes it as following:

• A asks B to create a principal: B returns a fresh name in {0,1}∗ corresponding to the new
principal. B creates mappings from this name to an empty set, for both the key set and
pattern set, indicating that this new principal has not been delegated any keys.

• A asks B for the key set of a principal p: B finds in its local state the key set and pattern set
for p. For each pattern in p’s pattern set, it queriesA for the corresponding WKD-IBE secret
key. It adds each WKD-IBE secret key to p’s key set, and then replaces p’s pattern set in its
local state with an empty set. Then it returns the keys in p’s key set to A. Note that B will
not query C the secret key for a pattern that matches S∗, because, in the game in Theorem
2, A is not allowed to request a key set containing a key whose URI and time match the
challenge pair (URI, time). Also note that the keys given toA are distributed exactly as they
would be in the JEDI protocol, because the underlying WKD-IBE scheme is assumed to be
history-independent.

• A asks an principal p to make a delegation of A’s choice of another principal q: B finds in
its local state the key set and pattern set for p. B obtains the pattern corresponding to each
key in p’s key set. Let M be the set containing those patterns. B computes the set N, which
is the union of M and p’s pattern set. Based on the patterns in N, B computes the patterns
corresponding to the keys that p would generate and delegate to q. For each such key, B adds
the corresponding pattern to q’s pattern set.

At the end of Phase 1, A outputs two equal-length challenge messages m0 and m1, and sends them
to B. B then forwards m0 and m1 to C. C chooses a random bit b, and sends B the ciphertext of mb.
B then forwards the ciphertext to A.

In Phase 2, A makes additional queries as in Phase 1, and C can process them as before.
Finally,A will return the bit b′. B returns b′ to C. Because every response that B makes toA is

distributed identically to the results of actually playing the game in Theorem 2,A will guess b′ = b
with non-negligible advantage. Thus, B wins the IND-sWKID-CPA game with non-negligible
advantage.

We achieve selective security in the standard model, like much prior work [63, 2]. A natural
question is how to achieve adaptive security. As has been observed for IBE [62], HIBE [63], and
WKD-IBE [2], hashing each component of the ID results in adaptive security, but with a loss of
security exponential in the size of the hash. However, if the hash function is modeled as a random
oracle, and the number of slots in WKD-IBE is logarithmic in the security parameter, then the loss
in security is polynomial [2] (assuming that the number of slots ℓ is logarithmic in the security

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 151

parameter). Given that we use a hash function to map URI/time to a pattern (Section 7.3.4), this
analysis applies to JEDI.

It is sufficient for JEDI to use a CPA-secure (rather than CCA-secure) encryption scheme be-
cause JEDI messages are signed, as detailed below in Section 7.4.

7.4 Integrity
To prevent an attacker from flooding the system with messages, spoofing fake data, or actuating
devices without permission, JEDI must ensure that a principal can only send a message on a URI
if it has permission. For example, an application subscribed to buildingA/floor2/roomLHall/

sensor0/temp should be able to verify that the readings it is receiving are produced by sensor0,
not an attacker. In addition to subscribers, an intermediate party (e.g., the router in a publish-
subscribe system) may use this mechanism to filter out malicious traffic, without being trusted to
read messages.

7.4.1 Starting Solution: Signature Chains
A standard solution in the existing literature, used by SPKI/SDSI [121], Vanadium [446], and
bw2 [15], is to include a certificate chain with each message. Just as permission to subscribe to a
resource is granted via a chain of delegations in Section 7.3, permission to publish to a resource
is also granted via a chain of delegations. Whereas Section 7.3 includes WKD-IBE keys in each
delegation, these integrity solutions delegate signed certificates. To send a message, a principal
encrypts it (Section 7.3), signs the ciphertext, and includes a certificate chain that proves that the
signing keypair is authorized for that URI and time.

7.4.2 Anonymous Signatures
The above solution reveals the sender’s identity (via its public key) and the particular chain of del-
egations that gives the sender access. For some applications this is acceptable, and its auditability
may even be seen as a benefit. For other applications, the sender must be able to send a message
anonymously. See Section 7.1.2.3 for an example. How can we reconcile access control (ensuring
the sender has permission) and anonymity (hiding who the sender is)?

7.4.2.1 Starting Point: WKD-IBE Signatures

Our solution is to use a signature scheme based on WKD-IBE. Abdalla et al. [2] observe that
WKD-IBE can be extended to a signature scheme in the same vein as has been done for IBE [65]
and HIBE [189]. To sign a message m ∈ Z∗p with a key for pattern S, one uses KeyDer to fill in a
slot with m, and presents the decryption key as a signature.

This is our starting point for designing anonymous signatures in JEDI. A message can be signed
by first hashing it to Z∗p and signing the hash as above. Just as consumers receive decryption keys

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 152

via a chain of delegations (Section 7.3), publishers of data receive these signing keys via chains of
delegations.

7.4.2.2 Anonymous Signatures in JEDI

The construction in Section 7.4.2.1 has two shortcomings. First, signatures are large, linear in the
number of fixed slots of the pattern. Second, it is unclear if they are truly anonymous.
Signature size. As explained in Section 7.3, we use a construction of WKD-IBE based on BBG
HIBE [63]. BBG HIBE supports a property called limited delegation in which a secret key can
be reduced in size, in exchange for limiting the depth in the hierarchy at which subkeys can be
generated from it. We observe that the WKD-IBE construction also supports this feature. Because
we need not support KeyDer for the decryption key acting as a signature, we use limited delegation
to compress the signature to just two group elements.
Signature verification. WKD-IBE signatures, as proposed in Section 7.4.2.1 are verified by en-
crypting a random message under the pattern corresponding to the signature, and then attempting
to decrypt it using the key acting as a signature. We provide a more efficient signature verification
algorithm for this construction of WKD-IBE, described below in Section 7.4.2.3.
Anonymity. The technique in Section 7.4.2.1 transforms an encryption scheme into a signature
scheme, but the resulting signature scheme is not necessarily anonymous. For the particular con-
struction of WKD-IBE that we use, however, we prove that the resulting signature scheme is indeed
anonymous. Our insight is that, for this construction of WKD-IBE, keys are history-independent
in the following sense: KeyDer, for a fixed Params and PatternB, returns a private key KeyPatternB
with the exact same distribution regardless of KeyPatternA (see Section 7.3.1 for notation). Because
signatures, as described in Section 7.4.2.1, are private keys generated with KeyDer, they are also
history-independent; a signature for a pattern has the same distribution regardless of the key used to
generate it. This is precisely the anonymity property we desire. In finding a way to use WKD-IBE
for anonymous signatures, rather than a more expressive cryptographic scheme, we are applying
the technique from Section 3.2.3.

7.4.2.3 Construction of WKD-IBE Signatures

We formally describe our signature algorithm below, based on the idea in Section 7.4.2.1 and
including the optimizations in Section 7.4.2.2. Note that the term hs in the public parameters and
an analogous element (s, bs) in the third component of each secret key represent the slot dedicated
to signing messages. They were not present in the original WKD-IBE construction and they are
not used for encryption or decryption in Section 7.3.1.2.
Sign(K,m): Parse the key K as (k0,k1,B), where (s,bs) ∈ B. Let S be the pattern corresponding to

K. Select t $← Zp and output(
k0 ·

(
g3 ·hm

s · ∏
(i,ai)∈fixed(S)

hai
i

)t

·bm
s , gt · k1

)

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 153

Verify(S,σ ,m): Parse the signature σ as (s0,s1). Check:

e(s0,g)
?
= e(g1,g2) · e

(
g3 ·hm

s · ∏
(i,ai)∈fixed(S)

hai
i , s1

)

In contrast to optimized procedures above, the naı̈ve signature algorithm has Sign(K,m) =

KeyDer(K,T), and Verify(S,σ ,m) = (Decrypt(σ ,Encrypt(T,m∗)) ?
= m∗) for m∗ $← Z∗p, where

T is the same as S except that T (s) = m, the message being signed. The modification we make
is that (1) the signature contains only the first two components of KeyDer(K,T) (since the third
component is not used for decryption), and (2) the verification procedure checks that σ is a private
key corresponding to T more efficiently than encrypting and decrypting a random message.

Finally, note that the Sign function can be generalized to allow a key with pattern P to produce
a signature for pattern S if P matches S. This can be done trivially by first applying KeyDer to
obtain a key for S, and calling the Sign on the existing key. Our implementation supports this
GeneralizedSign functionality more efficiently, as follows:

GeneralizedSign(K,S,m): Parse the key K as (k0,k1,B), where (s,bs) ∈ B. Select t $← Zp and
output k0 ·

(
g3 ·hm

s · ∏
(i,ai)∈fixed(S)

hai
i

)t

·bm
s · ∏
(i,ai)∈fixed(S)

(i,bi)∈B

bai
i , gt · k1

7.4.3 Using WKD-IBE for Signatures Efficiently
As we did for encryption (Section 7.3.6), we design JEDI to use WKD-IBE for signatures as
efficiently as possible to reduce its resource overheads, with particular attention to low-power
embedded devices.

7.4.3.1 Using WKD-IBE Rarely

In this section, we apply the techniques from Section 3.2.1 and Section 3.2.2 to JEDI’s signatures,
analogously to how we applied them in Section 7.3.6.1. As in Section 7.3.6.1, we must avoid
computing a WKD-IBE signature for every message. A simple way to do this is to sample a digital
signature keypair each hour, sign the verifying key with WKD-IBE at the beginning of the hour,
and sign messages during the hour with the corresponding signing key.

Unfortunately, this may still be too expensive for low-power embedded devices because it re-
quires a digital signature, which requires asymmetric-key cryptography, for every message. We
can circumvent this by instead (1) choosing a symmetric key k every hour, (2) signing k at the
start of each hour (using WKD-IBE for anonymity), and (3) using k in an authenticated broad-
cast protocol to authenticate messages sent during the hour. An authenticated broadcast protocol,
like µTESLA [377], generates a MAC for each message using a key whose hash is the previous
key; thus, the single signed key k allows the recipient to verify later messages, whose MACs are

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 154

generated with hash preimages of k. In general, this design requires stricter time synchronization
than the one based on digital signatures, as the key used to generate the MAC depends on the time
at which it is sent. However, for the sense-and-send use case typical of smart buildings, sensors
anyway publish messages on a fixed schedule (e.g., one sample every x seconds), allowing the
key to depend only on the message index. Thus, timely message delivery is the only requirement.
Our scheme differs from µTESLA because the first key (end of the hash chain) is signed using
WKD-IBE.

7.4.3.2 Precomputation with Adjustment

Additionally, we apply the technique from Section 3.2.4 to JEDI’s anonymous signatures to de-
velop a new signature algorithm for JEDI, analogously to how we used the technique to develop
a new encryption algorithm in Section 7.3.6.2. Conceptually, KeyDer, which is used to produce
signatures, can be understood as a two-step procedure: (1) produce a key of the correct form and
structure (called NonDelegableKeyDer), and (2) re-randomize the key so that it can be safely
delegated (called ResampleKey), as follows.
NonDelegableKeyDer(K,S): Parse K as (k0,k1,B), where B = {(i,bi)}. Output:k0 · ∏

(i,ai)∈fixed(S)
(i,bi)∈B

bai
i , k1,

{
(j,b j)

}
j∈free(S)

 .

ResampleKey(K,S): Parse K as (k0,k1,B). Sample t $← Zp and output(
k0 ·

(
g3 · ∏

(i,ai)∈fixed(S)
hai

i

)t

,gt · k1,
{
(j,ht

j ·b j)
}

j∈free(S)

)
.

NonDelegableKeyDer and ResampleKey are the “two parts” of KeyDer in the sense that
{KeyDer(K,S)} = {ResampleKey(NonDelegableKeyDer(K,S),S)} where the distributions are
over the sampled randomness.

We can take advantage of these functions to accelerate signing of messages. Note the similarity
between Sign and ResampleKey. The setup we consider is that a principal has a key for some
pattern R representing a URI prefix and time prefix. It will repeatedly sign messages with a pattern
S representing at a fully-qualified URI and specific time, where R matches S. The next signature
will be on pattern T which shares the same URI as S but corresponds to the next leaf in the time
tree. The naı̈ve algorithm is to call QualifyKey to obtain a key for S and then call Sign. The key
idea behind the optimization is to instead call NonDelegableKeyDer to obtain a pseudo-key for
S (which is not safe to delegate), and then create a signature for that. Observe that the resulting
signature is distributed in exactly the same way whether the naı̈ve or optimized method is used.

Now that we have described signing in terms of two calls, one to NonDelegableKeyDer and
another to Sign, we describe how to apply precomputation with adjustment to each of these opera-

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 155

tions. Sign can be accelerated using the same precomputed value we used to accelerate encryption.
We have already shown how to “adjust” this precomputed value from S to T .
SignPrepared(K,QS,m): Parse the key K as (k0,k1,B). Let S be the pattern corresponding to K;

QS must be the precomputed value corresponding to S. Select t $← Z∗p and output:(
k0 · (hm

s ·QS)
t , gt · k1

)
Finally, we explain how the result of NonDelegableKeyDer can be adjusted from pattern S

to pattern T . The procedure also requires the parent key (whose pattern we denote R), on which
NonDelegableKeyDer was called to obtain the key corresponding to pattern S.
AdjustNonDelegable(P,C,S,T): Parse the parent key P as P as (p0, p1,B) where B = {(i,bi)}.
Parse the child key C as C = (k0,k1,Z). S is the pattern corresponding to C, and T is the pattern
that the resulting key will correspond to. Output:(

k0 · ∏
(i,ti)∈fixed(T)

i∈free(S)

bti
i · ∏

(i,si)∈fixed(S)
i∈free(T)

b−si
i · ∏

(i,si)∈fixed(S)
(i,ti)∈fixed(T)

bti−si
i , k1,

{
(j,b j)

}
j∈free(T)

)
.

To sign a message each hour, JEDI maintains the result of Precompute, QS (as it does for
encryption), and also the result of NonDelegableKeyGen, C, derived from its key. Then it adjusts
both values, using AdjustPrecomputed and AdjustNonDelegable, when the pattern used to sign
changes. To sign a message m, it computes SignPrepared(C,QS,m).

Additionally, we only compute the first two elements of the output of NonDelegableKeyDer
and AdjustNonDelegableKeyDer when using it to produce signatures.

7.4.4 Security Guarantee
The integrity guarantees of the method in this section can be formalized using a game very similar
to the one in Theorem 2, so we do not present it here for brevity. We do, however, formalize the
anonymous aspect of WKD-IBE signatures:

Theorem 3. For any well-formed keys k1, k2 corresponding to the same (URI, time) pair in the
same resource hierarchy, and any message m ∈ Z∗p, the distribution of signatures over m produced
using k1 is information-theoretically indistinguishable from (i.e., equal to) the distribution of sig-
natures over m produced using k2.

This implies that even a powerful adversary who observes the private keys held by all principals
cannot distinguish signatures produced by different principals, for a fixed message and pattern. No
computational assumptions are required.

Theorem 3 follows directly from the fact that the WKD-IBE construction used in JEDI is
history-independent: each “signature” in WKD-IBE is the same as a private key generated with
a special slot filled in with the message being signed. Therefore, signatures inherit the history-
independence of keys, resulting in the property in Theorem 3. With the proposed improvement to

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 156

make signatures constant size (Section 7.4.2.2), the signature consists of just the first two terms of
the resulting private key, but it remains history-independent nonetheless.

We now prove Theorem 3, using the same notation for signatures established in Section 7.3.1.2.
The proof is very similar to the proof of Theorem 1.

Proof of Theorem 3. We will show that for any pattern S, key k corresponding to pattern S, and
message m, it holds that

{Sign(k,m)}=

{(
gα

2 ·

(
g3 ·hm

s · ∏
(i,ai)∈fixed(S)

hai
i

)r

, gr

)}
r $←Zp

Because the right-hand side of the above equation depends only on S and the public parameters
(not the particular key k), this is sufficient to prove Theorem 3 (that any two keys corresponding to
S produce the same signature distribution).

Observe that for a well-formed key k,

k =

(
gα

2 ·

(
g3 · ∏
(i,ai)∈fixed(S)

hai
i

)r0

, gr0,
{
(j,hr0

j)
}

j∈free(S)

)

for some fixed r0 ∈ Zp. Applying the formula for Sign in Section 7.3.1.2, the signature has the
form (

gα
2 ·

(
g3 ·hm

s · ∏
(i,ai)∈fixed(S)

hai
i

)r0+t

, gr0+t

)

for t $← Zp. Because r0 + t is uniformly distributed in Zp, the output signature has the desired
distribution (take r = r0 + t).

7.5 Implementation
We implemented JEDI as a library in the Go programming language. We expect that only a few
applications will require the anonymous signature protocol in Section 7.4.2 or the immediate re-
vocation protocol in our extended paper [299]; most applications can use signature chains (Sec-
tion 7.4.1) for integrity and expiry for revocation (Section 7.3.8). Therefore, our implementation
makes anonymous signatures optional and implements revocation separately. We expect JEDI’s
key delegation to be computed on relatively powerful devices, like laptops, smartphones, or Rasp-
berry Pis; less powerful devices (e.g., right half of Figure 7.1) will primarily send and receive
messages, rather than generate keys for delegation. Therefore, our focus for low-power platforms
is on the “sense-and-send” use case [88, 156, 170] typical of indoor environmental sensing, where
a device periodically publishes sensor readings to a URI. Whereas our Go library provides higher-
level abstractions, we expect low-power devices to use JEDI’s crypto library directly.

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 157

7.5.1 C/C++ Cryptography Library
As part of JEDI, we implemented a cryptography library optimized in assembly for three different
architectures typical of IoT platforms (Figure 7.1). It implements WKD-IBE and JEDI’s opti-
mizations and modifications to it. The construction of WKD-IBE is based on a bilinear group
in which the Bilinear Diffie-Hellman Exponent assumption holds. We originally planned to use
Barreto-Naehrig elliptic curves [266, 114] to implement WKD-IBE. Unfortunately, a recent attack
on Barreto-Naehrig curves [283] reduced their estimated security level from 128 bits to at most
100 bits [36]. Therefore, we use the recent BLS12-381 elliptic curve [81].

State-of-the-art cryptography libraries implement BLS12-381, but none of them, to our knowl-
edge, optimize for microarchitectures typical of low-power embedded platforms. To improve en-
ergy consumption, we implemented BLS12-381 in C/C++, profiled our implementation, and re-
wrote performance-critical routines in assembly. We focus on ARM Cortex-M, an IoT-focused
family of 32-bit microprocessors typical of modern low-power embedded sensor platforms [214,
96, 242]. Cortex-M processors have been used in billions of devices, including commercial IoT
offerings such as Fitbit and Nest Protect. Our assembly targets Cortex-M0+, which is among the
least powerful of processors in the Cortex-M series, and of those used in IoT devices (farthest to
the right in Figure 7.1). By demonstrating the practicality of JEDI on Cortex-M0+, we establish
that JEDI is viable across the spectrum of IoT devices (Figure 7.1).

The main challenge in targeting Cortex-M0+ is that the 32-bit multiply instruction provides
only the lower 32 bits of the product. Even on more powerful microarchitectures without this limi-
tation (e.g., Intel Core i7), most CPU time (≥ 80%) is spent on multiply-intensive operations (e.g.,
BigInt multiplication and Montgomery reduction), so the lack of such an instruction was a perfor-
mance bottleneck. As a workaround, our assembly code emulates multiply-accumulate with carry
in 23 instructions. Cortex-M3 and Cortex-M4, which are more commonly used than Cortex-M0+,
have instructions for 32-bit multiply-accumulate which produce the entire 64-bit result; we expect
JEDI to be more efficient on those processors. We also wrote assembly to optimize BLS12-381
for x86-64 and ARM64, representative of server/laptop and smartphone/Raspberry Pi, respectively
(first two tiers in Figure 7.1). We were able to improve performance by minimizing data transfer
between registers and the cache in multiply-intensive operations. Thus, our Go library, which runs
on these non-low-power platforms, also benefits from low-level assembly optimizations. Writ-
ing assembly code by hand to better support cryptography, as we did in JEDI, can be seen as an
application of the technique in Section 3.1.1.

7.5.2 Application of JEDI to bw2
We used our JEDI library to implement end-to-end encryption in bw2, a syndication and autho-
rization system for IoT. bw2’s syndication model is based on publish-subscribe, explained in Sec-
tion 7.1. Here we discuss bw2’s authorization model. Access to resources is granted via certificate
chains from the authority of a resource hierarchy to a principal. Individual certificates are called
Declarations of Trust (DOTs). bw2 maintains a publicly accessible registry of DOTs, implemented
using blockchain smart contracts, so that principals can find the DOTs they need to form DOT

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 158

chains. A trusted router enforces permissions granted by DOTs. Principals must present DOT
chains when publishing/subscribing to resources, and the router verifies them. Note that a compro-
mised router can read messages.

We use JEDI to enforce bw2’s authorization semantics with end-to-end encryption. DOTs
granting permission to subscribe now contain WKD-IBE keys to decrypt messages. By default,
DOTs granting permission to publish to a URI remain unchanged, and are used as in Section 7.4.1.
WKD-IBE keys may also be included in DOTs granting publish permission, for anonymous signa-
tures (Section 7.4.2). Using our library for JEDI, we implemented a wrapper around the bw2 client
library. It transparently encrypts and decrypts messages using WKD-IBE, and includes WKD-IBE
parameters and keys in DOTs and principals, as needed for JEDI. bw2 signs each message with a
digital signature (first alternative in Section 7.4.3).

The bw2-specific wrapper is less than 900 lines of Go code. Our implementation required no
changes to bw2’s client library, router, blockchain, or core—it is a separate module. Importantly,
it provides the same API as the standard bw2 client library. Thus, it can be used as a drop-in
replacement for the standard bw2 client library, to easily add end-to-end encryption to existing
bw2 applications with minimal changes.

7.6 Evaluation
We first compare JEDI’s underlying encryption scheme, WKD-IBE, to alternatives, in order to
evaluate the benefits of choosing WKD-IBE according to the technique in Section 3.2.3. We then
evaluate JEDI via microbenchmarks, determine its power consumption on a low-power sensor,
measure the overhead of applying it to bw2, and compare it to other systems.

7.6.1 Building Block Comparison: HIBE, WKD-IBE, and KP-ABE
We first explore two alternative encryption schemes that we could have used for JEDI: HIBE
and KP-ABE. Then we compare the costs of these two alternatives to WKD-IBE, the encryption
scheme that JEDI uses. Finally, we discuss other HIBE variants. Our purpose in doing this analysis
is to demonstrate the benefits of choosing WKD-IBE according to the technique in Section 3.2.3.

7.6.1.1 Hierarchical Identity-Based Encryption (HIBE)

Given that JEDI represents URIs and time as hierarchies, Hierarchical Identity-Based Encryption
(HIBE) [63] may seem like a natural building block to use. We can encode a URI in an ID for
HIBE, just as we did for WKD-IBE. For example, the URI prefix a/b/* can be encoded into an
ID as ("a", "b"). This preserves the crucial property that the private key for a URI prefix can
be used to generate the private key for any URI with that prefix. The same thing works for expiry:
for example, the timestamp June 08, 2017 at 6 AM could be encoded into an ID as ("2017",

"June", "08", "06").
However, HIBE cannot simultaneously support a URI hierarchy and an expiry hierarchy. A

simple approach would be to concatenate the IDs. For example, the key for the URI prefix a/b/*

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 159

and time prefix 2018/Jun/* would have the ID ("2018", "Jun", "a", "b"). However, this
idea is flawed: only the URI can be extended, not the expiry time. The same problem applies to
the URI, if we put the URI before the time in the ID. Another possible approach is to interleave
the resource hierarchy and time hierarchy, using metadata to distinguish the elements. In this
setup, each (resource, time) pair corresponds to multiple IDs in the HIBE system—all possible
interleavings of the URI the Expiry IDs. However, for a URI of length m and a time of length n,
there are exponentially many IDs, (m+n)!

m!·n! , and each message sent with that URI and time must be
encrypted under all of those IDs. Therefore, this approach is infeasible.

Another strawman is to use two HIBE systems, one for URIs and one for expiry. Each message
is encrypted twice, using the URI ID in the first system and again using the time ID in the second
system. During delegation, each principal is provided with a key from the first system for the URI,
and a set of keys from the second system for the time range. The problem is that this approach is
not collusion-resistant: a principal who is given two delegations, one for the correct URI that has
expired, and one for the wrong URI that has not expired, can decrypt messages by combining keys
from different delegations.

7.6.1.2 Key-Policy Attribute-Based Encryption (KP-ABE)

In Key-Policy Attribute-Based Encryption (KP-ABE), a message is encrypted with a set of at-
tributes. An attribute set is like a string of bits; each attribute is either present in the set (1) or not
present (0). Private keys are generated with an access tree, which can be thought of as a circuit. A
private key can decrypt a message if its access tree, evaluated on the bits representing the attribute
set of the message, evaluates to 1.

We are interested in KP-ABE with two properties:

1. Delegable. Given the private key for an access tree, one can generate a private key for a
more restrictive access key, and delegate it to another principal.

2. Large Universe. The space of attributes A is exponentially large in the security parameter
κ . This is similar to Identity-Based Encryption (IBE) [65], as any string of bytes can be
hashed to an attribute.

The GPSW construction [206] of KP-ABE, based on bilinear groups, satisfies these properties.
In fact, KP-ABE with these two properties subsumes WKD-IBE. A pattern T in WKD-IBE can
be converted to an attribute set in Delegable Large Universe KP-ABE by hashing each non-⊥
component of T , concatenated with its index, to an attribute in KP-ABE. Private keys in WKD-
IBE can be expressed as an access tree consisting of a single many-input AND gate.3

3Ciphertext-Policy ABE (CP-ABE) is not suitable for this construction. This is because attributes cannot be added
to secret keys during delegation, as per the security guarantees of CP-ABE.

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 160

Operation Scheme Pairings Exponentiations
Encrypt HIBE 0 3+ r
Encrypt WKD-IBE 0 3+ r
Encrypt KP-ABE 0 2+ r · (ℓ+3)
Decrypt HIBE 2 ≤ r
Decrypt WKD-IBE 2 ≤ r
Decrypt KP-ABE r+1 2r
KeyDer1 HIBE 0 ℓ+2
KeyDer1 WKD-IBE 0 ℓ+2
KeyDer1 KP-ABE 0 r · (ℓ+5)
KeyDer2 HIBE 0 (r−n)+ ℓ+2
KeyDer2 WKD-IBE 0 (r−n)+ ℓ+2
KeyDer2 KP-ABE 0 2n+ r · (ℓ+5)

Table 7.1: Performance comparison of HIBE, WKD-IBE, and KP-ABE in terms of pairings and
exponentiations. We omit operations that can be precomputed once for all IDs (attribute sets) in
the HIBE/WKD-IBE/KP-ABE system. KeyDer1 indicates deriving the new key from the master
key, and KeyDer2 indicates the other case.

7.6.1.3 Performance Comparison

We compare the performance of KP-ABE, WKD-IBE, and HIBE in terms of the number of ex-
ponentiations and pairings, the most expensive operations in the elliptic curves. This is shown in
Table 7.1. ℓ is the total number of attributes that can be used for a single message (the implicit
argument to Setup). For Encrypt, Decrypt and KeyDer1, r is the number of attributes of the key
or ciphertext. For KeyDer2, n is the number of attributes of the starting key, and r is the number
of attributes of the ending key. This shows that WKD-IBE’s performance is theoretically bet-
ter than KP-ABE’s performance. Furthermore, WKD-IBE is just efficient as HIBE, even though
WKD-IBE is more expressive than HIBE. As discussed in Section 7.6.1.1, HIBE is not expressive
enough to efficiently instantiate JEDI.

7.6.1.4 Size Comparison

We list the size of ciphertexts and private keys in Table 7.2: r is the number of attributes in the
ciphertext or private key, and ℓ is the maximum number of slots or attributes used to encrypt a
message. Note that ciphertexts in WKD-IBE are constant size, whereas ciphertexts in KP-ABE are
linear.

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 161

Object Scheme G1 G2 GT

Ciphertext HIBE 1 1 1
Ciphertext WKD-IBE 1 1 1
Ciphertext KP-ABE r 1 1
Private Key HIBE ℓ− r+1 1 0
Private Key WKD-IBE ℓ− r+1 1 0
Private Key KP-ABE r r 0

Table 7.2: Size comparison of HIBE, WKD-IBE, and KP-ABE in terms of number of group ele-
ments. For elliptic curves that we used, elements of G1 are 48 B each, elements of G2 are 96 B
each, and elements of GT are 576 B each.

Operation Laptop Raspberry Pi Sensor
G1 Multiplication (Chosen Scalar) 109 µs 1.33 ms 509 ms
G2 Multiplication (Chosen Scalar) 343 µs 3.86 ms 1.44 s
GT Multiplication (Random Scalar) 504 µs 5.47 ms 1.90 s
GT Multiplication (Chosen Scalar) 507 µs 5.48 ms 2.81 s
Pairing 1.29 ms 14.0 ms 4.99 s

Table 7.3: Latency of JEDI’s implementation of BLS12-381.

7.6.1.5 Variants of HIBE Other Than WKD-IBE

Existing work [497] has proposed extending HIBE to MHIBE, which supports ID-based encryp-
tion for multiple concurrent hierarchies. We could use MHIBE in JEDI to combine the URI hi-
erarchy with the expiry hierarchy. However, the proposed MHIBE schemes are significantly less
performant than WKD-IBE: for two hierarchies, they have quadratically-sized private keys and ci-
phertexts. Size and performance degrade exponentially in the number of hierarchies. Furthermore,
a formal treatment of MHIBE is not provided.

Another extension is forward secure HIBE [497, 63], or fs-HIBE for short. The BBG con-
struction of fs-HIBE [63] has linear size and performance. We considered using its mechanism
for forward security in reverse, to achieve expiry with HIBE. However, the fs-HIBE construction
has linear-size ciphertexts and linear-time decryption in the depth of the time hierarchy, whereas
WKD-IBE has constant-size ciphertexts and constant-time decryption. In the context of a real
system, this is important: Encrypt and Decrypt are used in the critical path, so encryption time,
decryption time, and ciphertext size must be as small as possible. In contrast, Delegate is only
used occasionally, so the size of private keys is less important.

Most importantly, WKD-IBE is a more powerful primitive than either MHIBE or fs-HIBE. In
particular, WKD-IBE supports the + wildcard for URIs and timestamps (Section 7.3.10.1), which
MHIBE and fs-HIBE do not.

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 162

Laptop Raspberry Pi
Encrypt 3.08 ms 37.3 ms
Decrypt 3.61 ms 43.9 ms
KeyDer 4.77 ms 58.5 ms
Sign 4.80 ms 61.2 ms
Verify 4.78 ms 56.3 ms

Figure 7.6: Latency of Encrypt, Decrypt, KeyDer, Sign, and Verify with 20 attributes.

7.6.2 Microbenchmarks
Benchmarks labeled “Laptop” were produced on a Lenovo T470p laptop with an Intel Core i7-
7820HQ CPU @ 2.90 GHz. Benchmarks labeled “Raspberry Pi” were produced on a Raspberry Pi
3 Model B+ with an ARM Cortex-A53 @ 1.4 GHz. Benchmarks labeled “Sensor” were produced
on a commercially available ultra low-power environmental sensor platform called “Hamilton”
with an ARM Cortex-M0+ @ 48 MHz. We describe Hamilton in more detail in Section 7.6.4.

7.6.2.1 Performance of BLS12-381 in JEDI

Table 7.3 compares the performance of JEDI’s BLS12-381 implementation on the three platforms,
with our assembly optimizations. As expected from Figure 7.1, the Raspberry Pi performance is
an order of magnitude slower than Laptop performance, and performance on the Hamilton sensor
is an additional two-to-three orders of magnitude slower.

7.6.2.2 Performance of WKD-IBE in JEDI

Figure 7.6 depicts the performance of JEDI’s cryptography primitives. Figure 7.6 does not include
the sensor platform; Section 7.6.4 thoroughly treats performance of JEDI on low-power sensors.

In Figure 7.6, we used a pattern of length 20 for all operations, which would correspond to,
e.g., a URI of length 14 and an Expiry hierarchy of depth 6. To measure decryption and signing
time, we measure the time to decrypt the ciphertext or sign the message, plus the time to generate
a decryption key for that pattern or ID. For example, if one receives a message on a/b/c/d/e/f,
but has the key for a/*, he must generate the key for a/b/c/d/e/f to decrypt it.

Figure 7.6 demonstrates that the JEDI encrypts and signs messages and generates qualified
keys for delegation at practical speeds. On a laptop, all WKD-IBE operations take less than 10
ms with up to 20 attributes. On a Raspberry Pi, they are 10× slower (as expected), but still run at
interactive speeds.

7.6.3 Performance of JEDI in bw2
In bw2 (Section 7.5.2), the two critical-path operations are publishing a message to a URI, and
receiving a message as part of a subscription. We measure the overhead of JEDI for these opera-

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 163

Unmodified bw2
JEDI (usual)
JEDI anon. sig. (usual)
JEDI (1st msg)
JEDI anon. sig. (1st msg)
Trusted Key Server

1 KiB 32 KiB 1 MiB
Size of Message

0

50

100

150

200

Ti
m

e
to

 E
nc

. &
 P

ub
lis

h
(m

s)

(a) Encrypt/publish message.

1 KiB 32 KiB 1 MiB
Size of Message

0

5

10

15

20

Ti
m

e
to

 R
ec

ei
ve

 &
 D

ec
. (

m
s)

(b) Receive/decrypt message.

Figure 7.7: Critical-path operations in bw2, with/without JEDI.

tions because they are core to bw2’s functionality and would be used by any messaging application
built on bw2. Our methodology is to perform each operation repeatedly in a loop, to measure the
sustained performance (operations/second), and report the average time per operation (inverse).
To minimize the effect of the network, the router was on the same link as the client, and the link
capacity was 1 Gbit/s. In our experiments, we used a URI of length 6 and an Expiry tree of depth
6. We also include measurements from a strawman system with pre-shared AES keys—this rep-
resents the critical-path overhead of an approach based on the Trusted Key Server discussed in
Section 7.2. Our results are in Figure 7.7.

We implement the optimizations in Section 7.3.6.1, so only symmetric key encryption/decryp-
tion must be performed in the common case (labeled “usual” in the diagram). However, the sym-
metric keys will not be cached for the first message sent every hour, when the WKD-IBE pattern
changes. A WKD-IBE operation must be performed in this case (labeled “1st message” in the
diagram). For large messages, the cost of symmetric key encryption dominates. JEDI has a partic-
ularly small overhead for 1 MiB messages in Figure 7.7b, perhaps because 1 MiB messages take
several milliseconds to transmit over the network, allowing the client to decrypt a message while
the router is sending the next message.

We also consider creating DOTs and initiating subscriptions, which are not in the critical path
of bw2. These results are in Figure 7.8 (note the log scale in Figure 7.8a). Creating DOTs is
slower with JEDI, because WKD-IBE keys are generated and included in the DOT. Initiating a
subscription in bw2 requires forming a DOT chain; in JEDI, one must also derive a private key
from the DOT chain. Figure 7.8a shows the time to form a short one-hop DOT chain, and in the

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 164

Create DOT Build DOT
Chain

10−2

100

102

104

Ru
nn

in
g

Ti
m

e
(m

s) Unmodified bw2
JEDI

(a) Create DOT, build chain.

1 KiB 32 KiB 1 MiB
Size of Message

0

20

40

60

80

100

Ti
m

e
to

 1
st

 M
es

sa
ge

 (m
s) Unmodified bw2

JEDI
JEDI anon. sig.
Trusted Key Server

(b) Time to query/subscribe.

Figure 7.8: Occasional bw2 operations, with and without JEDI.

case of JEDI, includes the time to derive the private key. For JEDI’s encryption (Section 7.3), these
additional costs are incurred only by DOTs that grant permission to subscribe. With anonymous
signatures, DOTs granting permission to publish incur this overhead as well, as WKD-IBE keys
must be included. Figure 7.8b puts this in context by measuring the end-to-end latency from initi-
ating a subscription to receiving the first message (measured using bw2’s “query” functionality).

For a DOT to be usable, it must be inserted into bw2’s registry. This requires a blockchain
transaction (not included in Figure 7.8). An important consideration in this regard is size. In the
unmodified bw2 system, a DOT that grants permission on a/b/c/d/e/f is 198 bytes. With JEDI,
each DOT also contains multiple WKD-IBE keys, according to the time range. In the “worst case,”
where the start time of a DOT is Jan 01 at 01:00, and the end time is Dec 31 at 22:59, a total of
45 keys are needed. Each key is approximately 1 KiB (Table 7.2), so the size of this DOT is
approximately 45 KiB.

Because bw2’s registry of DOTs is implemented using blockchain smart contracts, the band-
width for inserting DOTs is limited. Using JEDI would increase the size of DOTs as above, result-
ing in an approximately 100–400× decrease in aggregate bandwidth for creating DOTs. However,
this can be mitigated by changing bw2 to not store DOTs directly in the blockchain. DOTs can be
stored in untrusted storage, with only their hashes stored in the blockchain-based registry. Such a
solution could be based on Swarm [455] or Filecoin [172].

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 165

Operation Time Average Current
Sleep (Idle) N/A 0.0063 mA
WKD-IBE Encrypt 6.50 s 10.2 mA
WKD-IBE Encrypt and Sign 9.89 s 10.2 mA

Table 7.4: CPU and power costs on the Hamilton platform.

7.6.4 Feasibility on Ultra Low-Power Devices
We use a commercially available sensor platform called “Hamilton” [214, 14] built around the
Atmel SAMR21 system-on-chip (SoC). The SAMR21 costs approximately $2.25 per unit [162]
and integrates a low-power microcontroller and radio. The sensor platform we used in this study
costs $18 to manufacture [276]. For battery lifetime calculations, we assume that the platform is
powered using a CR123A Lithium battery that provides 1400 mAh at 3.0 V (252 J of energy). Such
a battery costs $1. The SAMR21 is heavily constrained: it has only a 48 MHz CPU frequency based
on the ARM Cortex-M0+ microarchitecture, and a total of only 32 KiB of data memory (RAM).
Our goal is to validate that JEDI is practical for an ultra low-power sensor platform like Hamilton,
in the context of a “sense-and-send” application in a smart building. Since most of the platform’s
cost ($18) comes from the on-board transducers and assembly, rather than the SAMR21 SoC, using
an even more resource-constrained SoC would not significantly decrease the platform’s cost. An
analogous argument applies to energy consumption, as the transducers account for more than half
of Hamilton’s idle current [276].

Hamilton/SAMR21 is on the lower end of platforms typically used for sense-and-send appli-
cations in buildings. Some older studies [170, 315] use even more constrained hardware like the
TelosB; this is because those studies were constrained by hardware available at the time. Mod-
ern 32-bit SoCs, like the SAMR21, offer substantially better performance at a similar price/power
point to those older platforms [276].

7.6.4.1 CPU Usage

Table 7.4 shows the time for encryption and anonymous signing in JEDI on Hamilton. The results
use the optimizations discussed in Section 7.3.6 and Section 7.4.3, and include the time to “adjust”
precomputed state. They indicate that symmetric keys can be encrypted and anonymously signed
in less than 10 seconds. This is feasible given that encryption and anonymous signing occur rarely,
once an hour, and need not be produced at interactive speeds in the normal “sense-and-send” use
case.

7.6.4.2 Power Consumption

To calculate the impact on battery lifetime, we consider a “sense-and-send” application, in which
the Hamilton device obtains readings from its sensors at regular intervals, and immediately sends
the readings encrypted over the wireless network. We measured the average current consumed for

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 166

AES Only JEDI (Encrypt) JEDI (Encrypt and Sign)
10 s 32 µA / 5.1 y 50 µA / 3.2 y 60 µA / 2.6 y
20 s 20 µA / 8.1 y 38 µA / 4.2 y 48 µA / 3.3 y
30 s 15 µA / 10 y 34 µA / 4.7 y 44 µA / 3.6 y

Table 7.5: Average current and expected battery life (for 1400 mAh battery) for sense-and-send,
with varying sample interval.

varying sample intervals, when each message is encrypted with AES-CCM, without using JEDI
(“AES Only” in Table 7.5). We estimate JEDI’s average current based on the current, duration, and
frequency (once per hour, for these estimates) of JEDI operations, and add it to the average current
of the “AES Only” setup. Our estimates assume that the µTESLA-based technique in Section 7.4.3
is used to avoid attaching a digital signature to each message. We divide the battery’s energy
capacity by the result to compute lifetime. As shown in Table 7.5, JEDI decreases battery life by
about 40-60%. Battery life is several years even with JEDI, acceptable for IoT sensor platforms.

JEDI’s overhead depends primarily on the granularity of expiry times (one hour, for these
estimates), not the sample interval. To improve power consumption, one could use a time tree with
larger leaves, allowing principals to perform WKD-IBE encryptions and anonymous signatures
less often. This would, of course, make expiry times coarser.

7.6.4.3 Memory Budget

Performing WKD-IBE operations requires only 6.5 KiB of data memory, which fits comfortably
within the 32 KiB of data memory (RAM) available on the SAMR21. The code space required for
our implementation of WKD-IBE and BLS12-381 is about 74 KiB, which fits comfortably in the
256 KiB of code memory (ROM) provided by the SAMR21.

A related question is whether storing a hash chain in memory (as required for authenticated
broadcast, Section 7.4.3) is practical. If we use a granularity of 1 minute for authenticated broad-
cast, the length of the hash chain is 60. At the start of an hour, one computes the entire chain,
storing 10 hashes equally spaced along the chain, each separated by 5 hashes. As one progresses
along the hash chain, one re-computes each set of 5 hashes one additional time. This requires stor-
age for only 15 hashes (< 4 KiB memory) and computation of only 105 hashes per hour, which is
practical. One could possibly optimize performance further using hierarchical hash chains [228].

7.6.4.4 Impact of Techniques from Chapter 3

JEDI’s cryptographic optimizations (Section 7.3.6.2, Section 7.4.2.2, Section 7.4.3), which apply
the technique from Section 3.2.4 to use WKD-IBE in a non-black-box manner, provide a 2–3×
performance improvement. Our assembly optimizations (Section 7.5), which can be seen as an
application of the technique from Section 3.1.1, provide an additional 4–5× improvement. Hy-
brid encryption and key reuse (Section 7.3.6.1), which apply the techniques from Section 3.2.1

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 167

and Section 3.2.2 are also crucial because they allow JEDI to use WKD-IBE rarely, with a fre-
quency tied to the granularity of expiry times rather than to the frequency with which messages
are sent. And of course, it is crucial for JEDI to use WKD-IBE instead of ABE (technique from
Section 3.2.3), which is much more expensive (likely an order of magnitude more expensive), as
discussed in Section 7.6.1. All of these techniques contribute to making JEDI practical on ultra
low-power embedded sensing devices.

7.6.5 Comparison to Other Systems

Crypto Scheme /
System

Avoids
Central
Trust?

Expressivity Performance

Trusted Key
Server (Sec-
tion 7.2)

– No + Supports arbitrary policies
(beyond hierarchies)

– No delegation

+ ≈ 10 µs to encrypt 1 KiB
message (same as JEDI in
common case, faster for first
message after key rotation)

– Trusted party generates one
key per resource

PRE (Lattice-
Based), as used in
PICADOR [75]

– No + Supports arbitrary policies
(beyond hierarchies)

– No delegation

+ ≈ 5 ms encrypt, ≈ 3 ms de-
crypt (similar to JEDI: 3–4
ms)

– Trusted party must generate
one key per sender-receiver
pair

PRE (Pairing-
Based), as used in
Pilatus [420]

+ Yes – Delegation is single-hop
– Delegation is coarse (all-or-

nothing)
+ Can compute aggregates on

encrypted data

+ 0.6 ms encrypt, 1.3 ms
re-encrypt, 0.5 ms decrypt
(faster than JEDI: 3–4 ms)

+ Practical on constrained IoT
device with crypto accelera-
tor

CP-ABE [50] + Yes + Good fit for RBAC policies
– Cannot support JEDI’s hier-

archy abstraction with dele-
gation

+ Only symmetric crypto in
common case

– 14 ms encrypt for first time
after key rotation (4–5×
slower than JEDI: 3 ms)

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 168

KP-ABE, as used
in Sieve [469]

+ Yes + Succinct delegation based
on attributes

– Delegation is single-hop

+ Only symmetric crypto in
common case

– 25 ms encrypt for first time
after key rotation (8–9×
slower than JEDI: 3 ms)

Delegable Large
Univ. KP-
ABE [206] (used
in Alternative
JEDI Design)

+ Yes + Generalizes beyond hierar-
chies and supports multi-
hop delegation (subsumes
JEDI)

+ Only symmetric crypto in
common case

– 60 ms encrypt for first
time after key rotation (20×
slower than JEDI: 3 ms)

– Impractical for low-power
sense-and-send

Our work: WKD-
IBE [2] with Opti-
mizations, as used
in JEDI

+ Yes + Delegation is multi-hop
+ Succinct delegation of

subtrees of resources
(or more complex sets,
Section 7.3.10)

+ Non-interactive expiry

+ After key rotation (e.g.,
once per hour), 3 ms en-
crypt, 4 ms decrypt (Fig-
ure 7.6)

+ Only symmetric crypto in
common case

+ Practical for ultra low-
power “sense-and-send”
without crypto accelerator

Table 7.6: Comparison of JEDI with other crypto-based IoT/cloud systems.

Table 7.6 compares JEDI to other systems and cryptographic approaches, particularly those
geared toward IoT, in regard to security, expressivity and performance. We treat these existing
systems as they would be used in a messaging system for smart buildings (Section 7.1). Table 7.6
contains quantitative comparisons to the cryptography used by these systems; for those schemes
based on bilinear groups, we re-implemented them using our JEDI crypto library (Section 7.5.1)
for a fair comparison.

7.6.5.1 Security

The owner of a resource is considered trusted for that resource, in the sense that an adversary
who compromises a principal can read all of that principal’s resources. In Table 7.6, we focus on
whether a single component is trusted for all resources in the system. Note that, although Trusted
Key Server (Section 7.2) and PICADOR [75] encrypt data in flight, granting or revoking access to
a principal requires participation of an online trusted party to generate new keys.

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 169

7.6.5.2 Expressivity

PRE-based approaches, which associate public keys with users and support delegation via proxy re-
encryption, are coarse-grained—a re-encryption key allows all of a user’s data to be re-encrypted.
While PICADOR [75], a PRE-based system, allows more fine-grained semantics, but does not
enforce them cryptographically. In short, the underlying encryption schemes are not expressive
enough to capture the semantics of fine-grained access control. While certain ABE schemes are ex-
pressive enough to support delegation, ABE-based approaches typically do not support delegation
beyond a single hop, whereas JEDI achieves multi-hop delegation. An advantage of ABE-based
schemes is that attributes/policies attached to keys can describe more complex sets of resources
than JEDI, because ABE is more expressive than WKD-IBE. In JEDI, we use WKD-IBE instead
of ABE in order to leverage the expressivity-efficiency trade-off (Section 2.2.2)—WKD-IBE is
less expressive than ABE, but it is more efficient than ABE. In the context of JEDI’s intended use
case, namely smart cities, this decision is well-grounded; existing syndication systems for smart
cities, which do not encrypt data and are unconstrained by the expressiveness of crypto schemes,
choose a hierarchical rather than attribute-based representation (Section 7.1), providing evidence
that our WKD-IBE-based construction is expressive enough to capture IoT use cases.

7.6.5.3 Performance

The Trusted Key Server (Section 7.2) is the most naı̈ve approach, requiring an online trusted party
to enforce all policy. Even so, JEDI’s performance in the common case is the same as the Trusted
Key Server (Figure 7.7), because of JEDI’s hybrid encryption—JEDI invokes WKD-IBE rarely.
Even when JEDI invokes WKD-IBE, its performance is not significantly worse than PRE-based
approaches. An alternative design for JEDI uses the GPSW KP-ABE construction instead of
WKD-IBE, but it is significantly more expensive. Based Table 7.5, the power cost of a WKD-
IBE operation even when only invoked once per hour contributes significantly to the overall energy
consumption on the low-power IoT device; using KP-ABE instead of WKD-IBE would increase
this power consumption by an order of magnitude, reducing battery life significantly.

7.6.5.4 Summary

In summary, existing systems fall into one of three categories. (1) The Trusted Key Server allows
access to resources to be managed by arbitrary policies, but relies on a central trusted party who
must be online whenever a user is granted access or is revoked. (2) PRE-based approaches, which
permit sharing via re-encryption, cannot cryptographically enforce fine-grained policies or support
multi-hop delegation. (3) ABE-based approaches, if carefully designed, can achieve the same
expressivity as JEDI or even greater expressivity than JEDI, but are substantially less performant
and are not suitable for low-power embedded devices.

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 170

7.7 Related Work
SiRiUS [193] and Plutus [263] are encrypted filesystems based on traditional public-key cryptog-
raphy, but they do not support delegable and qualifiable keys like JEDI. Akl et al. [4] and further
work [129, 130] propose using key assignment schemes for access control in a hierarchy. A line
of work [457, 231, 21, 20] builds on this idea to support both hierarchical structure and temporal
access. Key assignment approaches, however, require the full hierarchy to be known at setup time,
which is not flexible in the IoT setting. JEDI does not require this, allowing different subtrees of
the hierarchy to be managed separately (Section 7.1.2, “Delegation”).

Tariq et al. [448] use Identity-Based Encryption (IBE) [65] to achieve end-to-end encryption
in publish-subscribe systems, without the router’s participation in the protocol. However, their
approach does not support hierarchical resources. Further, encryption and private keys are on a
credential-basis, so each message is encrypted multiple times according to the credentials of the
recipients. Wu et al. [490] use a prefix encryption scheme based on IBE for mutual authentication
in IoT. Their prefix encryption scheme is different from JEDI, in that users with keys for identity
a/b/c can decrypt messages encrypted with prefix identity a, a/b and a/b/c, but not identities
like a/b/c/d.

Since the original proposal of Hierarchical Identity-Based Encryption (HIBE) [189], there have
been multiple HIBE constructions [62, 63, 186] and variants of HIBE [497, 2]. Although seem-
ingly a good match for resource hierarchies, HIBE cannot be used as a black box to efficiently
instantiate JEDI. We considered alternative designs of JEDI based on existing variants of HIBE,
but as we elaborate in Section 7.6.1.1, each resulting design is either less expressive or significantly
more expensive than JEDI.

A line of work [501, 469] uses Attribute-Based Encryption (ABE) [206, 50] to delegate per-
mission. For example, Yu et al. [501] and Sieve [469] use Key-Policy ABE (KP-ABE) [206] to
control which principals have access to encrypted data in the cloud. Some of these approaches also
provide a means to revoke users, leveraging proxy re-encryption to safely perform re-encryption
in the cloud. Our work additionally supports hierarchically-organized resources and decentral-
ized delegation of keys, which [501] and [469] do not address. As discussed in Section 7.6.1
and Section 7.6.5, WKD-IBE is substantially more efficient than KP-ABE and provides enough
functionality for JEDI. WKD-IBE could be a lightweight alternative to KP-ABE for some appli-
cations. Other approaches prefer Ciphertext-Policy ABE (CP-ABE) [50]. Existing work [471,
472] combines HIBE with CP-ABE to produce Hierarchical ABE (HABE), a solution for sharing
data on untrusted cloud servers. The “hierarchical” nature of HABE, however, corresponds to the
hierarchical organization of domain managers in an enterprise, not a hierarchical organization of
resources as in our work.

NuCypher KMS [159] allows a user to store data in the cloud encrypted under her public key,
and share it with another user using Proxy Re-Encryption (PRE) [58]. While NuCypher assumes
limited collusion among cloud servers and recipients (e.g., m of n secret sharing) to achieve prop-
erties such as expiry, JEDI enforces expiry via cryptography, and therefore remains secure against
any amount of collusion. Furthermore, NuCypher’s solution for resource hierarchies requires a
keypair for each node in the hierarchy, meaning that the creation of resources is centralized. Fi-

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 171

nally, keys in NuCypher are not qualifiable. Given a key for a/*, one cannot generate a key for
a/b/* to give to another principal.

PICADOR [75], a publish-subscribe system with end-to-end encryption, uses a lattice-based
PRE scheme. However, PICADOR requires a central Policy Authority to specify access control,
by creating a re-encryption key for every permitted pair of publisher and subscriber. In contrast,
JEDI’s access control is decentralized.

Broadcast encryption (BE) [357, 144, 66, 69, 314, 71, 72] is a mechanism to achieve revo-
cation, by encrypting messages such that they are only decryptable by a specific set of users.
However, these existing schemes do not support key qualification and delegation, and therefore,
cannot be used in JEDI directly. Another line of work builds revocation directly into the underly-
ing cryptography primitive, achieving Revocable IBE [61, 319, 418, 479], Revocable HIBE [416,
417, 324] and Revocable KP-ABE [23]. These papers use a notion of revocation in which URIs
are revoked. In contrast, JEDI supports revocation at the level of keys. If multiple principals have
access to a URI, and one of their keys is revoked, then the other principal can still use its key
to access the resource. Some systems [159, 42] rely on the participation of servers or routers to
achieve revocation.

Secure Reliable Multicast [332, 334] also uses a many-to-many communication model, and
ensures correct data transfer in the presence of malicious routers. JEDI, as a protocol to encrypt
messages, is complementary to those systems.

JEDI is complementary to authorization services for IoT, such as bw2 [15], Vanadium [446],
WAVE [16], and AoT [358], which focus on expressing authorization policies and enabling prin-
cipals to prove they are authorized, rather than on encrypting data. Droplet [419] provides encryp-
tion for IoT, but does not support delegation beyond one hop and does not provide hierarchical
resources.

An authorization service that provides secure in-band permission exchange, like WAVE [16],
can be used for key distribution in JEDI. JEDI can craft keys with various permissions, while
WAVE can distribute them without a centralized party by including them in its attestations. As we
describe in Section 9.1.2, we integrated JEDI into WAVE and used the resulting system to collect
sensor data from buildings in California.

7.8 Conclusion
In this chapter, we presented JEDI, a protocol for end-to-end encryption for IoT. JEDI provides
many-to-many encrypted communication on complex resource hierarchies, supports decentralized
key delegation, and decouples senders from receivers. It provides expiry for access to resources,
reconciles anonymity and authorization via anonymous signatures, and, as described in our ex-
tended paper [299], allows revocation via tree-based broadcast encryption. Importantly, it can
provide similar semantics as unencrypted IoT systems that are not constrained by cryptography.
While policy-based encryption, like ABE, enables these semantics, a naı̈ve solution that invokes
ABE for each message would have been far from practical for resource-constrained IoT devices.
The techniques from Section 3.2 were crucial to making JEDI practical for such devices. They led

CHAPTER 7. USING CRYPTOGRAPHY EFFICIENTLY FOR MANY-TO-MANY
END-TO-END ENCRYPTION FOR IOT 172

us to (1) use WKD-IBE, a cheaper encryption scheme than ABE, (2) use WKD-IBE rarely and off
of the critical path of individual messages, (3) tie the frequency of WKD-IBE operations to the
granularity of expiry times to make JEDI’s costs flexible, and (4) develop a specialized interface
to WKD-IBE to produce WKD-IBE ciphertexts and signatures for JEDI more efficiently. Addi-
tionally, we applied the technique from Section 3.1.2 to write custom assembly routines to further
reduce JEDI’s overhead. As a direct result of our techniques from Chapter 3, JEDI’s encryption
and integrity solutions are capable of running on embedded devices with strict energy and resource
constraints, making it suitable for the Internet of Things.

173

Chapter 8

Related Work

This chapter describes previous and concurrent work related to this dissertation’s focus on design-
ing and building systems to help achieve expressive cryptography’s full potential. We focus here
on related work as it applies to the dissertation as a whole; work related to a particular chapter is
discussed at the end of that chapter. Throughout this chapter, our goal is not to be exhaustive; we
simply aim to provide examples of how prior work relates to this dissertation. Specifically, we aim
to show (1) how existing work can be seen as applying our techniques from Chapter 3, and (2)
how our techniques could potentially be applied to systems in existing work to provide additional
benefit. In doing so, our purpose is to demonstrate the utility and relevance of our techniques in
Chapter 3 beyond the four systems that we presented in the previous four chapters.

8.1 Other Systems that Exemplify Our System Design
Principles

This section describes related work that exemplifies our system design principles set forth in Chap-
ter 3.

8.1.1 Messaging and Storage Systems
A classic technique used in prior systems, particularly in messaging and storage systems, is hybrid
encryption. The technique in Section 3.2.1 can be seen as a generalization of this idea. With
hybrid encryption, instead of encrypting an entire message with public-key cryptography, one can
(1) randomly sample a symmetric key, and (2) encrypt the message with the symmetric key, and
(3) encrypt the symmetric key with public-key cryptography. This approach is widely deployed,
for example, in protocols like TLS and PGP. Over time, this basic approach has been adapted to
other settings. For example, Sieve [469] applies it to Attribute-Based Encryption (ABE), using a
specialized symmetric-key encryption scheme that enables in situ re-encryption of user data.

The same idea has been applied in the context of cryptographic protocols other than encryption.
For example, the authenticated broadcast protocol TESLA [376] applies a similar idea to digital

CHAPTER 8. RELATED WORK 174

signatures, enabling one to cheaply extend a digital signature using cryptographic hashes. In the
blockchain space, a system that wishes to leverage a blockchain’s integrity guarantees may store the
hash of a document, instead of the document outright, on the blockchain [483]. Another example
in the blockchain space is commit chains, which handle transactions off-chain and commit them to
the blockchain later, using the blockchain rarely and off of the critical path [273].

µTESLA [377] makes TESLA practical for resource-constrained embedded sensing devices.
To do so, one of its techniques is to change the symmetric key once per epoch instead of once per
message as in TESLA, tying key disclosure to a tunable, time-based epoch rather than to messages
sent. This is an example of the technique in Section 3.2.2, and it is similar to using coarser-grained
expiry times in JEDI or posting a checkpoint to the blockchain once per epoch in Ghostor. By
changing the symmetric key using an epoch of tunable duration, µTESLA trades off the delay after
which the receiver can verify a message’s authenticity for lower cryptographic costs.

8.1.2 Cryptographic Planners
A number of systems are designed with a component that chooses, for a particular workload, which
cryptographic tools to use and how to apply them. We refer to this component as a cryptographic
planner. Cryptographic planners enable these systems to perform well across a variety of work-
loads, by dynamically planning how to use cryptography according to the workloads that arrive at
runtime.

Cryptographic planners can be seen as a mechanism to apply our techniques for designing sys-
tems that use expressive cryptography (Section 3.2). More concretely, the cryptographic planner
might, for a given workload and desired security guarantees, determine how to use the chosen cryp-
tographic tools as rarely and cheaply as possible (Section 3.2.1) or determine the cheapest possible
cryptographic tools to use in the first place (Section 3.2.3). The “design,” however, should be un-
derstood as being performed, at least partially, by the cryptographic planner at runtime when the
workload arrives. As a result, cryptographic planners can also be understood as applying the tech-
nique from Section 3.1.1—the planners analyze the structure of the computation to decide how and
when to use cryptography. This brings the most value when targeting a broad range of workloads,
where (1) the “best” cryptographic design may vary considerably from one workload to another,
and (2) the workloads are so diverse that it would be too labor-intensive for a cryptography expert
to manually determine the best design for each one.

We note that, while MAGE also uses a planner and applies the technique from Section 3.1.1,
MAGE’s planner is not a cryptographic planner in the sense described here. The key difference
is that MAGE’s planner decides how to manage memory to support the application, not which
cryptographic tools to use or when to use those cryptographic tools.

We now describe systems built with cryptographic planners in greater depth.

8.1.2.1 Planners for Using a Chosen Cryptographic Tool Minimally

SMCQL [37], Conclave [463], and Senate [380] support analytical SQL queries over datasets
federated over multiple parties. Each of these systems uses a planner to determine, for a particular

CHAPTER 8. RELATED WORK 175

choice of SMPC scheme, how to use it as minimally and cheaply as possible. This can be seen as
an application of the technique in Section 3.2.1.

A naı̈ve approach to supporting analytical SQL over a federated dataset would be to use an
SMPC protocol to execute the entire SQL query. SMCQL and Conclave observe that it is possible
to securely execute an analytical SQL query by applying SMPC to only part of the query execution,
and use cryptographic planners to minimize the use of SMPC. For example, it may be possible to
split query execution into two phases, where the first phase can be run in plaintext and SMPC is
only needed in the second phase. SMCQL and Conclave use cryptographic planners to analyze
SQL queries and identify which parts of query execution can be run in plaintext, without SMPC.

Senate focuses on federated data analytics problems involving n > 2 parties in a malicious
threat model. It observes that, rather than executing the entire computation using an n-party SMPC
protocol, it can be more efficient to execute parts of the computation with fewer-party SMPC,
minimizing the amount of computation involving n-party SMPC. For example, to compute a 4-way
join across four parties’ datasets, it is more efficient for two pairs of parties to each compute joins
over their datasets using 2-party SMPC, followed by a short 4-party SMPC step to combine those
results, than to execute the entire join using a monolithic 4-party SMPC step. Senate proposes a
planning algorithm to identify such opportunities.

8.1.2.2 Planners for Determining the Cheapest Cryptographic Tools

Systems like Cerebro [514], EzPC [103], and Silph [108] aim to support SMPC workloads that
are not necessarily natural to express as SQL queries (e.g., collaborative machine learning). These
systems use planners to determine, for a given workload, which cryptographic tools to use so that
the workload can execute as efficiently as possible within the required security guarantees. This
can be seen as an application of the technique in Section 3.2.3.

The performance of SMPC protocols varies according to not only the expressivity-efficiency
trade-off (Section 2.2.2), but also the function f that the parties choose to compute (i.e., the work-
load). For example, SMPC protocols that model f as an arithmetic circuit over integers in a Galois
field (e.g., SPDZ [133]) and SMPC protocols that model f as a boolean circuit (e.g., Yao’s Garbled
Circuits [496]) may each be preferable for different sets of workloads. Cerebro’s compiler plays
the role of a cryptographic planner, analyzing the workload and deciding which SMPC protocol to
use. This requires the compiler to have an accurate cost model so that it can estimate, for a given
workload, which SMPC protocol would be cheapest to use; another related work, CostCO [166],
provides a framework for developing such a cost model. Cerebro’s compiler also applies tech-
niques similar to SMCQL and Conclave (e.g., identifying parts of the computation that parties can
compute locally in plaintext). Additionally, Cerebro focuses on collaborative machine learning
applications, allowing an end-to-end approach including support for release policies and auditing
for a trained model.

EzPC and Silph take this approach a step further. While Cerebro is limited to choosing a single
SMPC protocol for the entire computation, EzPC and Silph can use different SMPC protocols for
different parts of a single program. This approach depends on two important factors. First, it
depends on the existence of generic, hybrid SMPC protocols like ABY [139] that allow one to

CHAPTER 8. RELATED WORK 176

securely and efficiently switch between different primitive SMPC protocols. Second, it requires
an increased degree of sophistication from the planner, as it must take into account the cost of
switching between different SMPC protocols.

8.1.3 Performance-Oriented Systems
As described in Section 2.2, expressive cryptography consumes a wide range of computing re-
sources, including CPU, memory, and network bandwidth. In general, any systems work that
improves the efficiency or performance with which an application can make use of these com-
puting resources benefits expressive cryptography. This can be seen as applying the technique in
Section 3.2.4.

There is a vast literature on systems that improve efficiency or performance of using computing
resources—resource management, after all, is central to the field of computer systems. As a con-
crete example, we Skyplane [256] is a tool that helps cloud users navigate the trade-off between
price and performance for data transfer in the cloud. While Skyplane focuses on the use case of
transferring data from the object store (e.g., Amazon S3) in one cloud region to the object store
in another cloud region, its core techniques—to use cloud regions as nodes in an overlay network,
together with using parallel TCP connections and cloud VMs—applies broadly to data transfer,
including to data transfer needed for SMPC. Skyplane’s techniques apply naturally to constant-
round SMPC protocols like Yao’s Garbled Circuits, which involve transferring significant amounts
of data between the two parties, when deployed in a cloud setting.

8.2 Applying Our System Design Principles to Other Systems
Our techniques set forth in Chapter 3 are applicable beyond just the four systems presented in this
dissertation. This section demonstrates this by explaining how our techniques can be applied to
existing systems that use expressive cryptography.

8.2.1 Applicability of Techniques for Supporting Expressive Cryptography
The techniques in Section 3.1, which apply to systems that support expressive cryptography, are
broadly applicable to cryptography-based applications and systems. The reason is that they apply
to a lower layer of the system stack (Figure 3.2) than expressive cryptography and are complemen-
tary to the way in which the application makes use of expressive cryptography. For example, as
explained in Section 3.3, a platform for collaborative data analytics, such as SMCQL or Conclave,
could directly benefit from the techniques from MAGE; while the planners in SMCQL and Con-
clave minimize the application’s use of SMPC, MAGE allows the application’s remaining use of
SMPC to be as efficient as possible. Similarly, using techniques from Skyplane (Section 8.1.3) to
improve network bandwidth performance would benefit Yao’s Garbled Circuits in a generic way,
regardless of the workload that is run with that SMPC protocol.

CHAPTER 8. RELATED WORK 177

In some cases, techniques for better supporting expressive cryptography are complementary
and can be used together. For example, DIZK [491] is a system that distributes the generation of a
zero-knowledge proof across multiple machines. Its techniques fit in the lower “System” layer in
Figure 3.2. Yet DIZK could also benefit from other kinds of system-level techniques for support-
ing expressive cryptography. For example, memory programming techniques from MAGE could
potentially benefit DIZK by allowing the computation on each machine to exceed the available
memory, making zero-knowledge proof generation problems of a given size practical with fewer
computing resources. That said, applying memory programming to zero-knowledge proof genera-
tion may not be straightforward, as zero-knowledge proof generation is not necessarily oblivious—
it may require on-the-fly planning with a fast planning algorithm, or potentially manual adaptation
to the structure of the particular zero-knowledge proof generation algorithm.

8.2.2 Applicability of Techniques for Using Expressive Cryptography
While JEDI provides end-to-end encryption for publish-subscribe IoT systems using WKD-IBE,
alternative designs are possible. For example, PICADOR [75], which we described in Section 7.7,
is a publish-subscribe system that uses a different kind of cryptography called Proxy Re-Encryption
(PRE) [58, 22]. In PICADOR, publishers encrypt messages according to their own public key.
PRE allows the broker, using re-encryption keys, to securely re-encrypt those messages to the
subscribers’ public keys without the broker learning the message. To demonstrate the wide appli-
cability of our techniques in Section 3.2, we demonstrate how we can apply them to a system like
PICADOR, just as we did to JEDI and Ghostor.

Given that PRE operations (encryption, decryption, re-encryption) are relatively expensive, our
first step is to apply the technique from Section 3.2.1 to use PRE rarely. A natural way to do this is
to use hybrid encryption. A publisher encrypts a symmetric key with PRE, sends it to the broker,
and then encrypts the actual messages with that symmetric key. The broker stores the encrypted
symmetric key. When a subscriber joins the system and needs to access the publisher’s messages,
the broker re-encrypts the encrypted symmetric key to the subscriber, who can then decrypt the
symmetric key and use it decrypt the messages. This technique allows the system to avoid using
PRE for most messages.

While this design makes the system more efficient by reducing the frequency with which PRE
operations must be invoked, it still requires fresh symmetric keys to be sampled and PRE to be
invoked whenever a new user is granted permissions (since they should not be able to see old
messages) or a user is revoked access (since they should not be able to see new messages). As
a result, PRE-related costs may be high in a system with many users where permissions change
frequently. If this is an issue, it can potentially be mitigated by applying the technique from
Section 3.2.2. The idea is to rotate keys on a time-based schedule rather than an event-based
schedule. For example, a publisher may place an upper bound on the frequency with which it
changes symmetric keys (for example, changing symmetric keys no more frequently than once per
five minutes). This would add a delay to when changes in permissions take effect, but it could
potentially reduce the cost of PRE in environments where permissions are changed frequently.
As the delay is tunable, it could potentially be chosen according to resources available to devote

CHAPTER 8. RELATED WORK 178

to PRE. For example, in an IoT environment where publishers are constrained in CPU time and
energy budget, a longer delay may be appropriate.

The PICADOR authors mention that, as an extension to their system, one could leverage the
homomorphic properties of their PRE scheme to compute directly on published data in encrypted
form [75]. A downside to applying our techniques to PICADOR as described above is that the
resulting design cannot be extended in this way due to its use of symmetric-key cryptography.

179

Chapter 9

Conclusion

This chapter describes the real-world impact and usage of the systems we built, outlines directions
for future work, and summarizes the key points of this dissertation.

9.1 Impact
Some of the work in this dissertation has been adopted by industry or used in deployments to
collect and secure real-world data. This section describes the real-world impact that the work in
this dissertation has had.

9.1.1 Integration of TCPlp into Thread and OpenThread
Both our conclusions in Chapter 5 and our implementation, TCPlp, have had impact in the Thread-
/OpenThread industrial ecosystem.

Thread [452] is a standard for low-power wireless mesh networks designed for smart home
products. It is developed by a consortium of companies in the IoT space, including Google, Apple,
Qualcomm, and others [451], and it is used in a variety of products sold by these companies [450].
Originally, Thread specified support for IPv6, UDP, and UDP-based protocols like CoAP, but not
TCP. This was consistent with the widely held perception before our work in Chapter 5 that IPv6
has merit in LLNs, but that TCP is not capable of working within the constraints of LLNs and their
associated resource-constrained platforms.

The conclusions of Chapter 5, that TCP is capable of running in LLNs (Section 5.9) and brings
value to LLN applications, significantly influenced the Thread network standard. The Thread 1.3.0
White Paper [234] notes the benefits of TCP for applications requiring bulk data transfer, as we
observed in Section 5.3. Furthermore, as described in the white paper, Thread 1.3.0 requires Thread
Certified Components to implement TCP and provide a well-defined API to use it, and provides
recommendations for supporting TCP in a Thread network. Some of these recommendations, such
as guidance on the MSS mentioned in the white paper, were informed by our study in Chapter 5.

CHAPTER 9. CONCLUSION 180

The OpenThread network stack [363] is the leading open-source implementation of the Thread
network standard. Originally, OpenThread did not support TCP, but OpenThread adopted TCPlp as
its TCP stack. Because TCPlp is based on the FreeBSD TCP implementation, it benefits from the
maturity and full-scale TCP features that TCPlp inherits from the FreeBSD implementation (Sec-
tion 5.5.1). It also benefits from our modifications in Section 5.5 that reduce its memory footprint
for low-power embedded devices. As OpenThread is used in smart home products currently on the
market [363], TCPlp’s adoption in OpenThread paves the way for its deployment in commercial
smart home products.

9.1.2 Integration of JEDI into WAVE and WAVEMQ
As described in Section 7.5, JEDI can be applied to bw2. The successor systems to bw2 are
WAVE [16], the successor to bw2’s authorization layer, and WAVEMQ [12, Chapter 8], the suc-
cessor to bw2’s syndication layer. We integrated JEDI into WAVE and WAVEMQ, adding support
for including JEDI keys in WAVE’s attestations and securing publish-subscribe communication in
WAVEMQ with JEDI.

An example application of WAVE and WAVEMQ is XBOS [171], a microservice-oriented ex-
tensible operating system for the built environment. Although early versions of XBOS were based
on bw2, XBOS later adopted WAVE for authorization and WAVEMQ as the platform for commu-
nication among devices and services [12, Section 7.2]. XBOS was deployed in approximately 20
buildings in California to manage and collect data from smart devices in the built environment.
Once we integrated JEDI into WAVEMQ, JEDI was used for secure data collection from a subset
of those buildings.

9.2 Future Research Directions
We envision a future in which expressive cryptography can be used pervasively. This would not
only bring stronger security to existing applications, but also enable exciting new applications. For
example, widespread use of SC would enable organizations (e.g., banks, hospitals) to routinely
compute collaboratively on data that they otherwise cannot share due to privacy concerns. We
discuss opportunities for additional research to work toward this future, classified according to the
two approaches from Chapter 3.

9.2.1 Future Systems that Support Expressive Cryptography
Expressive cryptographic tools increasingly consume multiple types of computing resources. For
example, SMPC is simultaneously CPU-, memory-, and network-intensive. Efficiently supporting
such components (Section 3.1) requires systems thinking to manage and balance the use of all of
these resources.

CHAPTER 9. CONCLUSION 181

9.2.1.1 Memory Programming

As discussed in Section 4.4 and Section 4.6.2.1, MAGE requires SC applications to be rewritten
in MAGE’s framework. A natural question is: Can we allow cryptographic applications to benefit
from memory programming without manually rewriting them? Ideally, memory programming
would be as easy to use as valgrind. Just as one can check for undefined behavior in a program
a.out by running valgrind ./a.out, one should be able to enable memory programming by
running mage ./a.out, with only minor code changes to the application to support this.

MAGE’s techniques could also be applied to systems not based on expressive cryptography.
For example, some plaintext applications, like neural network inference and certain linear alge-
bra workloads (e.g., matrix multiplication), are also oblivious. 3PO [87] explores applying similar
ideas to such workloads in the context of memory disaggregation and far memory; a natural follow-
up question is how the results may be different for such workloads in the context of paging to an
SSD, as in MAGE. Programs designed for hardware enclaves, like Intel SGX, are sometimes writ-
ten to be oblivious to avoid leaking sensitive information through side channels. Such programs
could also be a good fit for applying MAGE’s techniques.

9.2.1.2 Networking for SMPC

Mutually distrustful parties using SMPC may be hosted in geographically separate infrastruc-
tures (e.g., different cloud providers in different geographic regions). How can we support high-
performance network transfer between geographically separate parties? As described in Sec-
tion 8.1.3, Skyplane [256], which uses cloud-aware network overlays to optimize cloud bulk trans-
fers, is a natural starting point. The research lies in generalizing Skyplane to accelerate multi-round
SMPC protocols, considering both latency and throughput.

9.2.1.3 Execution Frameworks for zkSNARKs

zkSNARKs have drawn interest due to their applications to decentralized finance and privacy-
preserving blockchains. zkSNARK generation is both compute- and memory-intensive, surfacing
an opportunity to bring systems expertise to the design of zkSNARK frameworks. The opportunity
to leverage GPUs and FPGAs for parts of the computation makes the system design space particu-
larly rich. For example, it may be possible to apply memory programming techniques to optimize
data transfer among the memories of CPUs, GPUs, and FPGAs, and to page out to storage as
needed.

9.2.2 Future Systems that Use Expressive Cryptography
As applications grow increasingly feature-rich and complex, we must use cryptography expressive
enough to capture applications’ rich functionality and enable cryptographic security. Achieving
good performance, however, requires systems thinking to use expressive cryptography carefully
and as efficiently as possible (Section 3.2).

CHAPTER 9. CONCLUSION 182

9.2.2.1 Cryptographic Access Control for Data Lakes

To support modern data analytics, many organizations have transitioned away from the classic
“data warehouse” model in favor of “data lakes” [19]. Data lakes decouple computing and stor-
age [19], enabling new opportunities for achieving cryptographic security. Just as we did in JEDI,
it is natural to consider bringing end-to-end encryption with cryptographically enforced access
control to the data lake model, ensuring that data scientists can decrypt only what they are allowed
to access. The challenge is to allow access to be specified as data-dependent views, as unencrypted
systems do. Expressive cryptographic schemes like predicate encryption and functional encryption
can capture this model but are heavyweight. A promising approach is to rely on fast block ciphers
(e.g., AES) for the bulk of the design, falling back to expressive cryptography only for views that
demand particular functionality and security.

9.2.2.2 Applications Using Secure Neural Network Inference

As described in Section 2.3.2, specialized SMPC algorithms have been developed for privacy-
preserving neural network inference [347, 262, 397, 293, 346, 392, 307, 359]. A natural question
is whether applications that need secure neural network inference can be optimized to make use of
cryptography in a more efficient way. For example, some applications may use a model obtained
by taking an open-source model and fine-tuning it using proprietary data. Depending on how
the fine-tuning is done, it may be possible to protect the privacy of such models during inference
more efficiently than for models trained from the beginning using proprietary data. Intuitively, this
may be the case because the original open-source model is public and only the changes made in
fine-tuning based on proprietary data must be hidden.

9.3 Summary
In this dissertation, we described expressive cryptography and explained its potential to enable
transformative new applications. For example, Secure Multi-Party Computation (SMPC), a type
of expressive cryptography, enables secure collaborative data analytics. This allows multiple hos-
pitals to combine their sensitive patient datasets for research, competing banks to combine their
transaction datasets to look for fraud, and regulators to aggregate sensitive data (e.g., data on wages
or economic diversity) to benefit society. The technology is receiving some adoption (e.g., by Meta
and Google in the advertising space) due to its transformative potential.

Despite its transformative potential, SMPC, and expressive cryptography more broadly, have
only been adopted in incipient and isolated use cases. A significant reason for this is that expressive
cryptography can be very expensive—it is much slower than regular cryptography and consumes
more computing resources (e.g., more CPU time, more RAM, more network bandwidth, etc.). For
example, researchers who tried applying SMPC to data analytics tasks have found that it does
not scale beyond a few thousand input records because it runs out of memory [463]. In short,
the high resource overheads of expressive cryptography are preventing it from reaching its full
transformative potential.

CHAPTER 9. CONCLUSION 183

This dissertation shows how to use system design to allow expressive cryptography to reach
its full potential. We take two high-level approaches to achieve this. First, we redesign the under-
lying systems that expressive cryptography uses. Second, we rethink how and when applications
should make use of expressive cryptography. Based on these two high level approaches, we pro-
pose, in Chapter 3, six system design techniques for making expressive cryptography efficient.
In the next four chapters, we design and implement four different systems using these techniques:
MAGE, TCPlp, Ghostor, and JEDI. We validate the effectiveness of our six proposed techniques by
demonstrating that the resulting systems perform well and can make applications built on expres-
sive cryptography more efficient. In Chapter 8, we present further evidence for the effectiveness
of our techniques by pointing out how the designs of existing systems can be understood as appli-
cations of our techniques, and demonstrating how other existing systems could potentially benefit
from our techniques. Finally, this chapter describes the real-world impact of the systems we built
and how our techniques can guide future work on enabling expressive cryptography to reach its
full potential.

By making expressive cryptography more efficient, we hope to enable computer users to benefit
from the transformative new applications that expressive cryptography enables. A useful analogy,
with which we began Chapter 1, is the development and deployment of public-key cryptography
in the 1980s and 1990s. Public-key cryptography enabled widespread adoption of applications
like e-commerce, telehealth, and end-to-end encrypted messaging. We believe that expressive
cryptography can be as transformative as public-key cryptography, enabling widespread adoption
of applications that were not previously possible. By helping expressive cryptography reach its
full potential, we hope to enable computer users to benefit from the stronger security and more
expressive functionality afforded by the resulting computer systems based on expressive cryptog-
raphy. This, in turn, will help enable cryptographic security for all devices, all applications, and,
ultimately, for all people.

184

Bibliography

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eiki Kiltz, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. “Searchable Encryp-
tion Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions”. In:
CRYPTO. Springer, 2005.

[2] Michel Abdalla, Eike Kiltz, and Gregory Neven. “Generalized Key Delegation for Hierar-
chical Identity-Based Encryption”. In: ESORICS. Springer, 2007.

[3] Alexander Afanasyev, Neil Tilley, Peter Reiher, and Leonard Kleinrock. “Host-to-Host
Congestion Control for TCP”. In: IEEE Communications Surveys & Tutorials 12.3 (2010).

[4] Selim G. Akl and Peter D. Taylor. “Cryptographic solution to a problem of access control
in a hierarchy”. In: TOCS 1.3 (1983).

[5] Muhammad Mahbub Alam and Choong Seon Hong. “CRRT: Congestion-Aware and Rate-
Controlled Reliable Transport in Wireless Sensor Networks”. In: IEICE Transactions on
Communications 92.1 (2009).

[6] Roger Alexander, Anders Brandt, JP Vasseur, Jonathan Hui, Kris Pister, Pascal Thubert,
Philip Levis, Rene Struik, Richard Kelsey, and Tim Winter. RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks. RFC 6550. 2012.

[7] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel,
Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. “Data Center TCP (DCTCP)”.
In: SIGCOMM. ACM, 2010.

[8] Mark Allman. “TCP Byte Counting Refinements”. In: SIGCOMM-CCR 29.3 (1999).

[9] Mark Allman. TCP Congestion Control with Appropriate Byte Counting (ABC). RFC 3465.
2003.

[10] Mark Allman, Bill Fenner, Jim Griner, Ian Heavens, Kevin Lahey, Vern Paxson, Jeff
Semke, and Bernie Volz. Known TCP Implementation Problems. RFC 2525. 1999.

[11] Mark Allman and Vern Paxson. “On Estimating End-to-End Network Path Properties”. In:
SIGCOMM. ACM, 1999.

[12] Michael P Andersen. “Decentralized Authorization with Private Delegation”. PhD thesis.
University of California, Berkeley, 2019.

BIBLIOGRAPHY 185

[13] Michael P Andersen, Gabe Fierro, and David E. Culler. “System Design for a Synergistic,
Low Power Mote/BLE Embedded Platform”. In: IPSN. IEEE, 2016.

[14] Michael P Andersen, Hyung-Sin Kim, and David E. Culler. “Demo Abstract: Hamilton -
A Cost-Effective, Low Power Networked Sensor for Indoor Environment Monitoring”. In:
BuildSys. ACM, 2017.

[15] Michael P Andersen, John Kolb, Kaifei Chen, David E. Culler, and Randy Katz. “Democ-
ratizing Authority in the Built Environment”. In: BuildSys. ACM, 2017.

[16] Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John Kolb, Hyung-
Sin Kim, David E. Culler, and Raluca Ada Popa. “WAVE: A Decentralized Authorization
Framework with Transitive Delegation”. In: USENIX Security. USENIX, 2019.

[17] Edward Arens, Ali Ghahramani, Richard Przybyla, Michael Andersen, Syung Min,
Therese Peffer, Paul Raftery, Megan Zhu, Vy Luu, and Hui Zhang. “Measuring 3D
indoor air velocity via an inexpensive low-power ultrasonic anemometer”. In: Energy and
Buildings 211 (2020).

[18] Pandarasamy Arjunan, Nipun Batra, Haksoo Choi, Amarjeet Singh, Pushpendra Singh, and
Mani B. Srivastava. “SensorAct: A Privacy and Security Aware Federated Middleware for
Building Management”. In: BuildSys. ACM, 2012.

[19] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. “Lakehouse: A New
Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics”. In:
CIDR. CIDR, 2021.

[20] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken. “Dynamic and
Efficient Key Management for Access Hierarchies”. In: TISSEC 12.3 (2009).

[21] Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken. “Incorporating temporal capa-
bilities in existing key management schemes”. In: ESORICS. Spring-Verlag Berlin Heidel-
berg, 2007.

[22] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. “Improved Proxy
Re-Encryption Schemes with Applications to Secure Distributed Storage”. In: NDSS. In-
ternet Society, 2005.

[23] Nuttapong Attrapadung and Hideki Imai. “Conjunctive Broadcast and Attribute-Based En-
cryption”. In: ICPBC. Springer, 2009.

[24] Ahmed Ayadi, Patrick Maillé, and David Ros. “TCP over low-power and lossy networks:
tuning the segment size to minimize energy consumption”. In: NTMS. IEEE, 2011.

[25] Ahmed Ayadi, Patrick Maillé, David Ros, Laurent Toutain, and Tiancong Zheng. “Imple-
mentation and Evaluation of a TCP Header Compression for 6LoWPAN”. In: IWCMC.
IEEE, 2011.

[26] Ahmed Ayadi, David Ros, and Laurent Toutain. TCP header compression for 6LoWPAN.
Tech. rep. draft-aayadi-6lowpan-tcphc-01. Internet Engineering Task Force, 2010. URL:
https://datatracker.ietf.org/doc/draft-aayadi-6lowpan-tcphc/01/.

BIBLIOGRAPHY 186

[27] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. “MedRec: Using
Blockchain for Medical Data Access and Permission Management”. In: OBD. IEEE,
2016.

[28] Emmanuel Baccelli, Cenk Gündoğan, Oliver Hahm, Peter Kietzmann, Martine S. Lenders,
Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias Wählisch. “RIOT:
an Open Source Operating System for Low-end Embedded Devices in the IoT”. In: IEEE
Internet of Things Journal 5.6 (2018).

[29] Adam Back. Hashcash - A Denial of Service Counter-Measure. http://hashcash.org
/hashcash.pdf. 2002.

[30] Michael Backes, Amir Herzberg, Aniket Kate, and Ivan Pryvalov. “Anonymous RAM”.
In: ESORICS. Springer, 2016.

[31] Randy Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel Starin. “Per-
sona: An Online Social Network with User-Defined Privacy”. In: SIGCOMM. ACM, 2009.

[32] Hari Balakrishnan. “Challenges to Reliable Data Transport over Heterogeneous Wireless
Networks”. PhD thesis. University of California, Berkeley, 1998.

[33] Hari Balakrishnan, Venkata N. Padmanabhan, and Randy H. Katz. “The Effects of Asym-
metry on TCP Performance”. In: MobiCom. ACM, 1997.

[34] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and Randy H. Katz. “A
Comparison of Mechanisms for Improving TCP Performance over Wireless Links”. In:
IEEE/ACM Transactions on Networking 5.6 (1997).

[35] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz. “Improving TCP/IP
Performance over Wireless Networks”. In: MobiCom. ACM, 1995.

[36] Razvan Barbulescu and Sylvain Duquesne. “Updating Key Size Estimations for Pairings”.
In: Journal of Cryptology 32 (2019).

[37] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie Rogers.
“SMCQL: Secure Querying for Federated Databases”. In: VLDB 10.6 (2017).

[38] Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding applications from an un-
trusted cloud with Haven”. In: OSDI. USENIX, 2014.

[39] Donald Beaver, Silvio Micali, and Phillip Rogaway. “The Round Complexity of Secure
Protocols”. In: STOC. ACM, 1990.

[40] L. A. Belady. “A study of replacement algorithms for virtual storage computers”. In: IBM
Syst. J. 5.2 (1966).

[41] L. A. Belady, R. A. Nelson, and G. S. Shedler. “An Anomaly in Space-Time Characteristics
of Certain Programs Running in a Paging Machine”. In: CACM 12.6 (1969).

[42] Sana Belguith, Shujie Cui, Muhammad Rizwan Asghar, and Giovanni Russello. “Secure
Publish and Subscribe Systems with Efficient Revocation”. In: SAC. ACM, 2018.

BIBLIOGRAPHY 187

[43] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. “Key-Privacy
in Public-Key Encryption”. In: ASIACRYPT. Springer, 2001.

[44] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. “Efficient Gar-
bling from a Fixed-Key Blockcipher”. In: S&P. IEEE, 2013.

[45] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness Theorems for
Non-Cryptographic Faul-Tolerant Distributed Computation”. In: STOC. ACM, 1988.

[46] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. “Zerocash: Decentralized Anonymous Payments from Bit-
coin”. In: S&P. IEEE, 2014.

[47] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System. 2014. arXiv: 1407.3
561 [cs.NI].

[48] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy.
“Lightweight Remote Procedure Call”. In: SOSP. ACM, 1989.

[49] Alysson Bessani, Miguel Correia, Bruna Quaresma, Fernando André, and Paulo Sousa.
“DepSky: Dependable and Secure Storage in a Cloud-of-Clouds”. In: EuroSys. ACM,
2013.

[50] John Bethencourt, Amit Sahai, and Brent Waters. “Ciphertext-Policy Attribute-Based En-
cryption”. In: S&P. IEEE, 2007.

[51] August Betzler, Carles Gomez, Ilker Demirkol, and Josep Paradells. “CoAP congestion
control for the Internet of Things”. In: IEEE Communications Magazine 54.7 (2016).

[52] Osman Biçer. “Efficiency Optimizations on Yao’s Garbled Circuits and Their Practical
Applications”. Chapters 3 and 4. MA thesis. Istanbul Şehir University, 2017.

[53] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson, Ankur Taly, Michael Vrable, and
Mark Lentczner. “Macaroons: Cookies with Contextual Caveats for Decentralized Autho-
rization in the Cloud”. In: NDSS. Internet Society, 2014.

[54] BitInfoCharts. https://bitinfocharts.com/zcash/.

[55] Ethan Blanton, Vern Paxson, and Mark Allman. TCP Congestion Control. RFC 5681. 2009.

[56] Erik-Oliver Blass and Florian Kerschbaum. “Private Collaborative Data Cleaning via Non-
Equi PSI”. In: S&P. IEEE, 2023.

[57] Matt Blaze. “A Cryptographic File System for UNIX”. In: CCS. ACM, 1993.

[58] Matt Blaze, Gerrit Bleumer, and Martin Strauss. “Divertible Protocols and Atomic Proxy
Cryptography”. In: Springer, 1998.

[59] Bluetooth Mesh Working Group. Mesh Profile 1.0. https://www.bluetooth.com/spec
ifications/specs/mesh-profile-1-0/. 2017.

[60] Hans Bodlaender, Jens Gustedt, and Jan Arne Telle. “Linear-Time Register Allocation for
a Fixed Number of Registers”. In: SODA. SIAM, 1998.

BIBLIOGRAPHY 188

[61] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. “Identity-based Encryption with
Efficient Revocation”. In: CCS. ACM, 2008.

[62] Dan Boneh and Xavier Boyen. “Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles”. In: EUROCRYPT. Springer, 2004.

[63] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. “Hierarchical Identity Based Encryption with
Constant Size Ciphertext”. In: EUROCRYPT. Springer, 2005.

[64] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. “Public
Key Encryption with Keyword Search”. In: EUROCRYPT. Springer, 2004.

[65] Dan Boneh and Matt Franklin. “Identity-Based Encryption from the Weil Pairing”. In:
CRYPTO. Springer, 2001.

[66] Dan Boneh, Craig Gentry, and Brent Waters. “Collusion Resistant Broadcast Encryption
with Short Ciphertexts and Private Keys”. In: CRYPTO. Springer, 2005.

[67] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-DNF Formulas on Ciphertexts”.
In: TCC. Springer, 2005.

[68] Dan Boneh, Amit Sahai, and Brent Waters. “Functional Encryption: Definitions and Chal-
lenges”. In: TCC. Springer, 2011.

[69] Dan Boneh and Brent Waters. “A Fully Collusion Resistant Broadcast, Trace, and Revoke
System”. In: CCS. ACM, 2006.

[70] Dan Boneh and Brent Waters. “Conjunctive, Subset, and Range Queries on Encrypted
Data”. In: TCC. Springer, 2007.

[71] Dan Boneh, Brent Waters, and Mark Zhandry. “Low Overhead Broadcast Encryption from
Multilinear Maps”. In: CRYPTO. Springer, 2014.

[72] Dan Boneh and Mark Zhandry. “Multiparty Key Exchange, Efficient Traitor Tracing, and
More from Indistinguishability Obfuscation”. In: CRYPTO. Springer, 2014.

[73] Joseph Bonneau. “EthIKS: Using Ethereum to Audit a CONIKS Key Transparency Log”.
In: FC. Springer, 2016.

[74] Jeff Bonwick. “The Slab Allocator: An Object-Caching Kernel Memory Allocator”. In:
USENIX Summer Technical Conference. USENIX, 1994.

[75] Cristian Borcea, Arnab “Bobby” Deb Gupta, Yuriy Polyakov, Kurt Rohloff, and Gerard
Ryan. “PICADOR: End-to-end encrypted Publish-Subscribe information distribution with
proxy re-encryption”. In: FGCS 71 (2017).

[76] David Borman, Robert T. Braden, Van Jacobson, and Richard Scheffenegger. TCP Exten-
sions for High Performance. RFC 7323. 2014.

[77] Carsten Bormann, Angelo P. Castellani, and Zach Shelby. “CoAP: An Application Protocol
for Billions of Tiny Internet Nodes”. In: IEEE Internet Computing 16.2 (2012).

[78] Gaetano Borriello and Roy Want. “Embedded Computation Meets The World Wide Web”.
In: CACM 43.5 (2000).

BIBLIOGRAPHY 189

[79] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. “Machine Learning
Classification over Encrypted Data”. In: NDSS. Internet Society, 2015.

[80] Daniel P. Bovet and Marco Cesati. “Understanding the Linux Kernel”. In: O’Reilly Media,
2006. Chap. 17, p. 679.

[81] Sean Bowe. BLS12-381: New zk-SNARK Elliptic Curve Construction. https://z.cash
/blog/new-snark-curve/. 2017.

[82] Xavier Boyen. Expressive Cryptography. https://crypto.stanford.edu/~xb/cacr1
2/index.html. Dec. 2012.

[83] Xavier Boyen. “Expressive Cryptography: Lattice Perspectives”. In: Australasian Confer-
ence on Information Security and Privacy. Springer, 2013.

[84] Xavier Boyen and Brent Waters. “Anonymous Hierarchical Identity-Based Encryption
(Without Random Oracles)”. In: CRYPTO. Springer, 2006.

[85] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
“Efficient Pseudorandom Correlation Generators: Silent OT Extension and More”. In:
CRYPTO. Springer, 2019.

[86] Zvika Brakerski, Craig Genry, and Vinod Vaikuntanathan. “(Leveled) Fully Homomorphic
Encryption without Bootstrapping”. In: ITCS. ACM, 2012.

[87] Christopher Branner-Augmon, Narek Galstyan, Sam Kumar, Emmanuel Amaro, Amy
Ousterhout, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. 3PO: Programmed
Far-Memory Prefetching for Oblivious Applications. 2022. arXiv: 2207.07688 [cs.OS].

[88] Davide Brunelli, Ivan Minakov, Roberto Passerone, and Maurizio Rossi. “POVOMON:
an Ad-hoc Wireless Sensor Network for Indoor Environmental Monitoring”. In: EESMS.
IEEE, 2014.

[89] F. Buccafurri, G. Lax, S. Nicolazzo, and A. Nocera. “Accountability-Preserving Anony-
mous Delivery of Cloud services”. In: TrustBus. Springer, 2015.

[90] Niklas Buescher and Stefan Katzenbeisser. “Faster Secure Computation through Automatic
Parallelization”. In: USENIX Security. USENIX, 2015.

[91] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han. “X-MAC: A Short
Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks”. In: SenSys. ACM,
2006.

[92] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”.
In: USENIX Security. USENIX, 2018.

[93] Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized Applica-
tion Platform. https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethe
reum_Whitepaper_-_Buterin_2014.pdf. 2014.

BIBLIOGRAPHY 190

[94] bw2. https://github.com/immesys/bw2.

[95] Jan L. Camenisch, Jean-Marc Piveteau, and Markus A. Stadler. “Blind Signatures Based
on the Discrete Logarithm Problem”. In: EUROCRYPT. Springer, 1994.

[96] Brad Campbell. Introducing Hail. https://www.tockos.org/blog/2017/introducin
g-hail/. 2017.

[97] Ran Canetti, Shai Halevi, and Jonathan Katz. “A Forward-Secure Public-Key Encryption
Scheme”. In: EUROCRYPT. Springer, 2003.

[98] Cape Privacy. Cape Privacy (Formerly Dropout Labs)—Medium. https://medium.com
/dropoutlabs. Accessed: June 21, 2023.

[99] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. “Armadillo: A Compilation Chain for
Privacy Preserving Applications”. In: SCC. ACM, 2015.

[100] A. P. Castellani, M. Gheda, N. Bui, M. Rossi, and M. Zorzi. “Web Services for the Internet
of Things through CoAP and EXI”. In: ICC. IEEE, 2011.

[101] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance”. In: OSDI. USE-
NIX, 1999.

[102] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hop-
kins, and Peter W. Markstein. “Register Allocation via Coloring”. In: Computer Languages
6.1 (1981).

[103] Nishanth Chandran, Divya Gupta, Aseem Rastogi, RAhul Sharma, and Shardul Tripathi.
“EzPC: Programmable and Efficient Secure Two-Party Computation for Machine Learn-
ing”. In: EuroS&P. IEEE, 2019.

[104] David Chaum. “Blind Signature System”. In: CRYPTO. Plenum, 1983.

[105] David Chaum. “Blind Signatures for Untraceable Payments”. In: CRYPTO. Plenum, 1982.

[106] David Chaum and Eugène van Heyst. “Group Signatures”. In: EUROCRYPT. Springer,
1991.

[107] David L. Chaum. “Untraceable Electronic Mail, Return Addresses, and Digital Pseudo-
nyms”. In: CACM 24.2 (1981).

[108] Edward Chen, Jinhao Zhu, Alex Ozdemir, Riad Wahby, Fraser Brown, and Wenting Zheng.
“Silph: A Framework for Scalable and Accurate Generation of Hybrid MPC Protocols”.
In: S&P. IEEE, 2023.

[109] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru, Yongsoo Song, and Sameer
Wagh. “Maliciously Secure Matrix Multiplication with Applications to Private Deep
Learning”. In: ASIACRYPT. Springer, 2020.

[110] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. “Side-Channel Leaks in Web
Applications: A Reality Today, a Challenge Tomorrow”. In: S&P. IEEE, 2010.

[111] Weikeng Chen. “Building Cryptographic Systems from Distributed Trust”. PhD thesis.
University of California, Berkeley, 2022.

BIBLIOGRAPHY 191

[112] Weikeng Chen and Raluca Ada Popa. “Metal: A Metadata-Hiding File-Sharing System”.
In: NDSS. Internet Society, 2020.

[113] Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang, Vipul Goyal, Thomas
Anderson, Arvind Krishnamurthy, and Bryan Parno. “Talek: Private Group Messaging with
Hidden Access Patterns”. In: ACSAC. ACM, 2020.

[114] Jung Hee Cheon. “Security Analysis of the Strong Diffie-Hellman Problem”. In: EURO-
CRYPT. Springer, 2006.

[115] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. “Homomorphic Encryption
for Arithmetic of Approximate Numbers”. In: ASIACRYPT. Springer, 2017.

[116] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. “Faster Fully
Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds”. In: ASIACRYPT.
Springer, 2016.

[117] Mi-Joung Choi, Hong-Taek Ju, Hyun-Jun Cha, Sook-Hyang Kim, and J. Won-Ki Hong.
“An Efficient Embedded Web Server for Web-based Network Element Management”. In:
NOMS. IEEE, 2000.

[118] Cisco. The Internet of Things Reference Model. 2014.

[119] David D. Clark. “The Structuring of Systems Using Upcalls”. In: SOSP. ACM, 1985.

[120] David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. “An Analysis of TCP
Processing Overhead”. In: IEEE Communications Magazine 27.6 (1989).

[121] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos, and
Ronald L. Rivest. “Certificate chain discovery in SPKI/SDSI”. In: Journal of Computer
Security 9.4 (2001).

[122] Coinbase. Coinbase to acquire leading cryptographic security company, Unbound Secu-
rity. https://www.coinbase.com/blog/coinbase-to-acquire-leading-cryptog
raphic-security-company-unbound-security. Accessed: June 21, 2023.

[123] Walter Colitti, Kris Steenhaut, Niccolò De Caro, Bogdan Buta, and Virgil Dobrota. “Eval-
uation of Constrained Application Protocol for Wireless Sensor Networks”. In: LANMAN.
IEEE, 2011.

[124] Stefan Contiu, Sébastien Vaucher, Rafael Pires, Marcelo Pasin, Pascal Felber, and Laurent
Réveillère. “Anonymous and Confidential File Sharing over Untrusted Clouds”. In: SRDS.
IEEE, 2019.

[125] Keith D. Cooper and L. Taylor Simpson. “Live Range Splitting in a Graph Coloring Reg-
ister Allocator”. In: CC. Springer, 1998.

[126] Henry Corrigan-Gibbs. “Protecting Privacy by Splitting Trust”. PhD thesis. Stanford Uni-
versity, 2019.

[127] Henry Corrigan-Gibbs and Dan Boneh. “Prio: Private, Robust and Scalable Computation
of Aggregate Statistics”. In: NSDI. USENIX, 2017.

BIBLIOGRAPHY 192

[128] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. “Riposte: An Anonymous Mes-
saging System Handling Millions of Users”. In: S&P. IEEE, 2015.

[129] Jason Crampton, Naomi Farley, Gregory Gutin, Mark Jones, and Bertram Poettering.
“Cryptographic Enforcement of Information Flow Policies Without Public Information”.
In: ACNS. Springer, 2015.

[130] Jason Crampton, Keith Martin, and Peter Wild. “On Key Assignment for Hierarchical Ac-
cess Control”. In: CSFW. IEEE, 2006.

[131] Crypho. Enterprise communications with end-to-end encryption. https://www.crypho
.com/.

[132] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.
Smart. “Practical Covertly Secure MPC for Dishonest Majority – Or: Breaking the SPDZ
Limits”. In: ESORICS. Springer, 2013.

[133] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. “Multiparty Computation
from Somewhat Homomorphic Encryption”. In: CRYPTO. Springer, 2012.

[134] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and Madan
Musuvathi. “EVA: An Encrypted Vector Arithmetic Language and Compiler for Efficient
Homomorphic Computation”. In: PLDI. ACM, 2020.

[135] Jessica Davis. The 10 Biggest Healthcare Data Breaches of 2019, So Far. https://heal
thitsecurity.com/news/the-10-biggest-healthcare-data-breaches-of-2019

-so-far. Accessed: September 12, 2019.

[136] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David Culler.
“sMAP – a Simple Measurement and Actuation Profile for Physical Information”. In: Sen-
Sys. ACM, 2010.

[137] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar, Gabe Fierro,
Nikita Kitaev, and David Culler. “BOSS: Building Operating System Services”. In: NSDI.
USENIX, 2013.

[138] Deloitte. Using blockchain to drive supply chain innovation. https://www2.deloitte
.com/content/dam/Deloitte/us/Documents/process-and-operations/us-bloc

kchain-to-drive-supply-chain-innovation.pdf. 2017.

[139] Daniel Demmler, Thomas Schneider, and Michael Zohner. “ABY – A Framework for Ef-
ficient Mixed-Protocol Secure Two-Party Computation”. In: NDSS. Internet Society, 2015.

[140] P. J. Denning. “Working Sets Past and Present”. In: IEEE Trans. Softw. Eng. SE-6.1 (1980).

[141] Peter J. Denning. “Thrashing: Its causes and prevention”. In: AFIPS. ACM, 1968.

[142] Peter J. Denning. “Virtual Memory”. In: CSUR 2.3 (1970).

[143] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: The Second-Generation
Onion Router”. In: USENIX Security. USENIX, 2004.

BIBLIOGRAPHY 193

[144] Yevgeniy Dodis and Nelly Fazio. “Public Key Broadcast Encryption for Stateless Re-
ceivers”. In: DRM. Springer, 2002.

[145] Peter Druschel and Larry L. Peterson. “Fbufs: A High-Bandwidth Cross-Domain Transfer
Facility”. In: SOSP. ACM, 1993.

[146] Duality. Duality Technologies - Secure Data Collaboration Products. https://duality
tech.com/. Accessed: June 21, 2023.

[147] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomorphic Encryption in
Less Than a Second”. In: EUROCRYPT. Springer, 2015.

[148] Paul Duffy. Beyond MQTT: A Cisco View on IoT Protocols. https://blogs.cisco.co
m/digital/beyond-mqtt-a-cisco-view-on-iot-protocols. Accessed: September
9, 2018. 2013.

[149] Adam Dunkels. “Full TCP/IP for 8-Bit Architectures”. In: MobiSys. USENIX, 2003.

[150] Adam Dunkels, Juan Alonso, and Thiemo Voigt. Making TCP/IP Viable for Wireless Sen-
sor Networks. Tech. rep. SICS-T-2003/23-SE. Swedish Institute for Computer Science,
2003. URL: http://www.diva-portal.org/smash/record.jsf?pid=diva2:104159
7.

[151] Adam Dunkels, Juan Alonso, Thiemo Voigt, Hartmut Ritter, and Jochen Schiller. “Con-
necting Wireless Sensornets with TCP/IP Networks”. In: WWIC. Springer, 2004.

[152] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. “Contiki - a Lightweight and Flexible
Operating System for Tiny Networked Sensors”. In: LCN. IEEE, 2004.

[153] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas Watteyne. “Orches-
tra: Robust Mesh Networks Through Autonomously Scheduled TSCH”. In: SenSys. ACM,
2015.

[154] Simon Duquennoy, Fredrik Österlind, and Adam Dunkels. “Lossy Links, Low Power, High
Throughput”. In: SenSys. ACM, 2011.

[155] Mathilde Durvy, Julien Abeillé, Patrick Wetterwald, Colin O’Flynn, Blake Leverett, Eric
Gnoske, Michael Vidales, Geoff Mulligan, Nicolas Tsiftes, Niclas Finne, and Adam Dun-
kels. “Poster Abstract: Making Sensor Networks IPv6 Ready”. In: SenSys. ACM, 2008.

[156] Prabal Dutta, David Culler, and Scott Shenker. “Procrastination Might Lead to a Longer
and More Useful Life”. In: HotNets. ACM, 2007.

[157] Prabal Dutta, Stephen Dawson-Haggerty, Yin Chen, Chieh-Jan Mike Liang, and Andreas
Terzis. “Design and Evaluation of a Versatile and Efficient Receiver-Initiated Link Layer
for Low-power Wireless”. In: SenSys. ACM, 2010.

[158] Eclipse Foundation. MQTT and CoAP, IoT Protocols. https://www.eclipse.org/com
munity/eclipse_newsletter/2014/february/article2.php. Accessed: September
9, 2018. 2014.

BIBLIOGRAPHY 194

[159] Michael Egorov, MacLane Wilkison, and David Nunez. NuCypher KMS: Decentralized
key management system. 2017. arXiv: 1707.06140 [cs.CR].

[160] Adam Eijdenberg, Ben Laurie, and Al Cutter. Verifiable Data Structures. https://githu
b.com/google/trillian/blob/master/docs/papers/VerifiableDataStructure

s.pdf.

[161] Erez Eizenman. Scotiabank’s chief risk officer on the state of anti-money laundring. http
s://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/s

cotiabanks-chief-risk-officer-on-the-state-of-anti-money-laundering.
Accessed: June 30, 2023. 2019.

[162] DigiKey Electronics. ATSAMR21E18A-MU Microchip Technology. Accessed: February 8,
2019.

[163] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms”. In: CRYPTO. Springer, 1984.

[164] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. “Next Century
Challenges: Scalable Coordination in Sensor Networks”. In: MobiCom. ACM, 1999.

[165] Kevin Fall and Sally Floyd. “Simulation-based Comparisons of Tahoe, Reno and SACK
TCP”. In: SIGCOMM-CCR 26.3 (1996).

[166] Vivian Fang, Lloyd Brown, William Lin, Wenting Zheng, Aurojit Panda, and Raluca Ada
Popa. “CostCo: An automatic cost modeling framework for secure multi-party computa-
tion”. In: EuroS&P. IEEE, 2022.

[167] Martin Farach and Vincenzo Liberatore. “On Local Register Allocation”. In: SODA. SIAM,
1998.

[168] Ariel J. Feldman, William P. Zeller, Michael J. Feedman, and Edward W. Felten. “SPORC:
Group Collaboration using Untrusted Cloud Resources”. In: OSDI. USENIX, 2010.

[169] Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srini Devadas, Ron Dreslinski,
Christopher Peikert, and Daniel Sanchez. “F1: A Fast and Programmable Accelerator for
Fully Homomorphic Encryption”. In: MICRO. ACM, 2021.

[170] Mark Christopher Feldmeier. “Personalized Building Comfort Control”. PhD thesis. Mas-
sachusetts Institute of Technology, 2009.

[171] Gabriel Fierro and David E. Culler. XBOS: An Extensible Building Operating System.
Tech. rep. UCB/EECS-2015-197. EECS Department, University of California, Berkeley,
2015. URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-1
97.html.

[172] Filecoin. https://filecoin.io. Accessed: January 19, 2018.

[173] Fireblocks. 7 Reasons Why MPC Is the Next Generation of Private Key Security. https:
//www.fireblocks.com/blog/7-reasons-why-mpc-is-the-next-generation-of

-private-key-security/. 2019.

BIBLIOGRAPHY 195

[174] Fireblocks. MPC Wallet As A Service Technology - Fireblocks. Accessed: May 29, 2023.

[175] Sally Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649. 2003.

[176] Sally Floyd. “TCP and Explicit Congestion Notification”. In: SIGCOMM-CCR 24.5
(1994).

[177] Sally Floyd, Hari Balakrishnan, and Mark Allman. Enhancing TCP’s Loss Recovery Using
Limited Transmit. RFC 3042. 2001.

[178] Sally Floyd and Van Jacobson. “Random Early Detection Gateways for Congestion Avoid-
ance”. In: IEEE/ACM Transactions on Networking 1.4 (1993).

[179] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and Keith
Winstein. “Salsify: Low-Latency Network Video Through Tighter Integration Between a
Video Codec and a Transport Protocol”. In: NSDI. USENIX, 2018.

[180] The FreeBSD Foundation. FreeBSD 10.3. https://www.freebsd.org/releases/10.3
R/announce.html. 2016.

[181] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. “Efficient Private Matching and
Set Intersection”. In: EUROCRYPT. Springer, 2004.

[182] Tilman Frosch, Chistian Mainka, Christoph Bader, Florian Bergsma, Jörg Schwenk, and
Thorsten Holz. “How Secure is TextSecure?” In: EuroS&P. IEEE, 2016.

[183] Jonathan Fürst, Kaifei Chen, Mohammed Aljarrah, and Philippe Bonnet. “Leveraging
Physical Locality to Integrate Smart Appliances in Non-Residential Buildings with
Ultrasound and Bluetooth Low Energy”. In: IoTDI. IEEE, 2016.

[184] William C. Garrison III, Adam Shull, Steven Myers, and Adam J. Lee. “On the Practicality
of Cryptographically Enforcing Dynamic Access Control Policies in the Cloud”. In: S&P.
IEEE, 2016.

[185] Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In: STOC. ACM,
2009.

[186] Craig Gentry and Shai Halevi. “Hierarchical Identity Based Encryption with Polynomially
Many Levels”. In: TCC. Springer, 2009.

[187] Craig Gentry, Shai Halevi, and Nigel P. Smart. “Fully Homomorphic Encryption with Poly-
log Overhead”. In: EUROCRYPT. Springer, 2012.

[188] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic Encryption from Learn-
ing with Errors: Conceptually-Simplier, Asymptotically-Faster, Attribute-Based”. In:
CRYPTO. Springer, 2013.

[189] Craig Gentry and Alice Silverberg. “Hierarchical ID-Based Cryptography”. In: ASIA-
CRYPT. Springer, 2002.

[190] Mario Gerla, Ken Tang, and Rajive Bagrodia. “TCP Performance in Wireless Multi-hop
Networks”. In: WMCSA. IEEE, 1999.

BIBLIOGRAPHY 196

[191] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services”. In: SIGACT News 33.2 (2002).

[192] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis.
“Collection Tree Protocol”. In: SenSys. ACM, 2009.

[193] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. “SiRiUS: Securing
Remote Untrusted Storage”. In: NDSS. Internet Society, 2003.

[194] Oded Goldreich. Foundations of Cryptography. Vol. 1. Cambridge University Press, 2007.

[195] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play Any Mental Game, or A
Completeness Theorem for Protocols with Honest Majority”. In: STOC. ACM, 1987.

[196] Oded Goldreich and Rafail Ostrovsky. “Software Protection and Simulation on Oblivious
RAMs”. In: J. ACM 43.3 (1996).

[197] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knolwedge Complexity of
Interactive Proof-Systems”. In: STOC. ACM, 1985.

[198] Carles Gomez, Andrés Arcia-Moret, and Jon Crowcroft. “TCP in the Internet of Things:
From Ostracism to Prominence”. In: IEEE Internet Computing 22.1 (2018).

[199] Kazuhiro Gomi. Multi-Party Computation: Private Inputs, Public Outputs. https://www
.forbes.com/sites/forbestechcouncil/2021/10/26/multi-party-computatio

n-private-inputs-public-outputs/?sh=7e43d5e51bb0. 2021.

[200] Kazuhiro Gomi. Rethinking Encryption To Enhance Security And Utility. https://www.f
orbes.com/sites/forbestechcouncil/2020/06/12/rethinking-encryption-to

-enhance-security-and-utility. Accessed: October 17, 2021. 2020.

[201] Fernando Gont and Andrew Yourtchenko. On the Implementation of the TCP Urgent Mech-
anism. RFC 6093. 2011.

[202] Google Cloud. Machine families resource and comparison guide — Compute Engine Doc-
umentation — Google Cloud. https://cloud.google.com/compute/docs/machine-
types.

[203] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. “Attribute-Based Encryption
for Circuits”. In: STOC. ACM, 2013.

[204] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. “Functional Encryption with
Bounded Collusions via Multi-party Computation”. In: CRYPTO. Springer, 2012.

[205] William Gordon, Aneesh Chopra, and Adam Landman. Patient-Led Data Sharing—A New
Paradigm for Electronic Health Data. https://catalyst.nejm.org/patient-led-h
ealth-data-paradigm/. Accessed: September 12, 2019.

[206] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. “Attribute-Based Encryption
for Fined-Grained Access Control of Encrypted Data”. In: CCS. ACM, 2006.

[207] Luigi A. Grieco and Saverio Mascolo. “Performance Evaluation and Comparison of West-
wood+, New Reno, and Vegas TCP Congestion Control”. In: SIGCOMM-CCR 34.2 (2004).

BIBLIOGRAPHY 197

[208] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and Vitaly
Shmatikov. “Breaking Web Applications Built On Top of Encrypted Data”. In: CCS. ACM,
2016.

[209] Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, and Yu Yu. “Better Concrete Secu-
rity for Half-Gates Garbling (in the Multi-instance Setting)”. In: CRYPTO. Springer, 2020.

[210] Andrei Gurtov, Tom Henderson, Sally Floyd, and Yoshifumi Nishida. The NewReno Mod-
ification to TCP’s Fast Recovery Algorithm. RFC 6582. 2012.

[211] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC: A New TCP-Friendly High-Speed
TCP Variant”. In: ACM SIGOPS Operating Systems Review 42.5 (2008).

[212] Stuart Haber and W. Scott Stornetta. “How to Time-Stamp a Digital Document”. In:
CRYPTO. Springer, 1990.

[213] Shai Halevi. “Advanced Cryptography: Promise and Challenges”. In: CCS. ACM, 2018.

[214] Hamilton IoT. https://hamiltoniot.com/. Accessed: November 30, 2018.

[215] Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. “Private Anonymous Data
Access”. In: EUROCRYPT. Springer, 2019.

[216] Kieran Harty and David R. Cheriton. “Application-Controlled Physical Memory using Ex-
ternal Page-Cache Management”. In: ASPLOS. ACM, 1992.

[217] Milad Hashemi, Kevin Swersky, Jamie A. Smith, Grant Ayers, Heiner Litz, Jichuan Chang,
Christos Kozyrakis, and Parthasarathy Ranganathan. “Learning Memory Access Patterns”.
In: ICML. ML Research Press, 2018.

[218] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. “SoK: General
Purpose Compilers for Secure Multi-Party Computation”. In: S&P. IEEE, 2019.

[219] Jun He, John Bent, Aaron Torres, Gary Grider, Garth Gibson, Carlos Maltzahn, and Xian-
He Sun. “I/O Acceleration with Pattern Detection”. In: HPDC. ACM, 2013.

[220] Warren He, Devdatta Akhawe, Sumeet Jain, Elaine Shi, and Dawn Song. “ShadowCrypt:
Encrypted Web Applications for Everyone”. In: CCS. ACM, 2014.

[221] Marice P. Herlihy and Jeannette M. Wing. “Linearizability: A Correctness Condition for
Concurrent Objects”. In: TOPLAS 12.3 (1990).

[222] Kasun Hewage, Simon Duquennoy, Venkatraman Iyer, and Thiemo Voigt. “Enabling TCP
in Mobile Cyber-physical Systems”. In: MASS. IEEE, 2015.

[223] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister.
“System Architecture Directions for Networked Sensors”. In: ASPLOS. ACM. 2000.

[224] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. “Secure Two-Party
Computations in ANSI C”. In: CCS. ACM, 2012.

[225] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. “Vuvuzela: Scal-
able Private Messaging Resistant to Traffic Analysis”. In: SOSP. 2015.

BIBLIOGRAPHY 198

[226] David Hoppe. Blockchain Use Cases: Electronic Health Records. https://gammalaw.co
m/blockchain_use_cases_electronic_health_records/. Accessed: September 12,
2019.

[227] Jeremy Horwitz and Ben Lynn. “Toward Hierarchical Identity-Based Encryption”. In: EU-
ROCRYPT. Springer, 2002.

[228] Yih-Chun Hu, Markus Jakobsson, and Adrian Perrig. “Efficient Constructions for One-
Way Hash Chains”. In: ACNS. Springer, 2005.

[229] Yuncong Hu, Sam Kumar, and Raluca Ada Popa. “Ghostor: Toward a Secure Data-Sharing
System from Decentralized Trust”. In: NSDI. USENIX, 2020.

[230] Yuncong Hu, Sam Kumar, and Raluca Ada Popa. Ghostor: Toward a Secure Data-Sharing
System from Decentralized Trust. Cryptology ePrint Archive, Paper 2020/648. https://e
print.iacr.org/2020/648. 2020. URL: https://eprint.iacr.org/2020/648.

[231] Hui-Feng Huang and Chin-Chen Chang. “A new cryptographic key assignment scheme
with time-constraint access control in a hierarchy”. In: Computer Standards & Interfaces
26.3 (2004).

[232] Yan Huang, David Evans, and Jonathan Katz. “Private Set Intersection: Are Garbled Cir-
cuits Better than Custom Protocols?” In: NDSS. Internet Society, 2012.

[233] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. “Faster Secure Two-Party Com-
putation Using Garbled Circuits”. In: USENIX Security. USENIX, 2011.

[234] Jonathan Hui, Sujata Neidig, and Alan Collins. Thread 1.3.0 Features White Paper. https
://www.threadgroup.org/Portals/0/documents/support/Thread1.3.0WhitePa

per_07192022_3990_1.pdf. 2022.

[235] Jonathan W. Hui. Personal Communication.

[236] Jonathan W. Hui and David E. Culler. “IP is Dead, Long Live IP for Wireless Sensor
Networks”. In: SenSys. ACM, 2008.

[237] Bret Hull, Kyle Jamieson, and Hari Balakrishnan. “Mitigating Congestion in Wireless Sen-
sor Networks”. In: SenSys. ACM, 2004.

[238] Ryan Hurst and Gary Belvin. Security Through Transparency. https://security.goog
leblog.com/2017/01/security-through-transparency.html.

[239] Jakob Hviid and Mikkel Baun Kjærgaard. “Activity-Tracking Service for Building Oper-
ating Systems”. In: PerFoT. IEEE, 2018.

[240] Identity Theft Resource Center. At Mid-Year, U.S. Data Breaches Increase at Record Pace.
https://www.idtheftcenter.org/post/at-mid-year-u-s-data-breaches-incr

ease-at-record-pace/. 2018.

[241] Heesu Im. “TCP Performance Enhancement in Wireless Networks”. PhD thesis. Seoul
National University, 2015.

BIBLIOGRAPHY 199

[242] imix: Low-Power IoT Research Platform. https://github.com/helena-project/imi
x. 2017.

[243] Tresorit Inc. End-to-end encrypted cloud storage. tresorit.com.

[244] Inpher. Privacy Preserving Maching Learning and Analytics Pioneer — Inpher. https:
//inpher.io/. Accessed: June 21, 2023.

[245] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. “Directed Diffusion:
A Scalable and Robust Communication Paradigm for Sensor Networks”. In: MobiCom.
ACM, 2000.

[246] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova, Shobhit
Saxena, Karn Seth, David Shanahan, and Moti Yung. “On Deploying Secure Computing:
Private Intersection-Sum-with-Cardinality Protocols”. In: EuroS&P. IEEE, 2020.

[247] Yuvan Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. “Extending Oblivious Transfers
Efficiently”. In: CRYPTO. Springer, 2003.

[248] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. “Access Pattern disclo-
sure on Searchable Encryption: Ramification, Attack and Mitigation”. In: NDSS. Internet
Society, 2012.

[249] Davide Italiano and Alexander Motin. “Calloutng: a new infrastructure for timer facilities
in the FreeBSD kernel”. In: AsiaBSDCon. AsiaBSDCon, 2013.

[250] Yogesh G. Iyer, Shashidhar Gandham, and S. Venkatesan. “STCP: A Generic Transport
Layer Protocol for Wireless Sensor Networks”. In: ICCCN. IEEE, 2005.

[251] Van Jacobson. Compressing TCP/IP Headers for Low-Speed Serial Links. RFC 1144.
1990.

[252] Van Jacobson. “Congestion Avoidance and Control”. In: SIGCOMM. ACM, 1988.

[253] Geetha Jagannathan and Rebecca N. Wright. “Privacy-Preserving Distributed k-Means
Clustering over Arbitrarily Partitioned Data”. In: KDD. ACM, 2005.

[254] Akanksha Jain and Calvin Lin. “Rethinking Belady’s Algorithm to Accommodate
Prefetching”. In: ISCA. IEEE, 2018.

[255] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer,
Ion Stoica, and Joey Gonzalez. “Checkmate: Breaking the Memory Wall with Optimal
Tensor Rematerialization”. In: MLSys. https://mlsys.org, 2020.

[256] Paras Jain, Sam Kumar, Sarah Wooders, Shishir G. Patil, Joseph E. Gonzalez, and Ion Sto-
ica. “Skyplane: Optimizing Transfer Cost and Throughput Using Cloud-Aware Overlays”.
In: NSDI. USENIX, 2023.

[257] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. “Towards Practical Privacy for Genomic
Computation”. In: S&P. IEEE, 2008.

[258] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. “Secure Outsourced Matrix
Computation and Application to Neural Networks”. In: CCS. ACM, 2018.

BIBLIOGRAPHY 200

[259] Cheng Jin, David X. Wei, and Steven H. Low. “FAST TCP: Motivation, Architecture,
Algorithms, Performance”. In: INFOCOM. IEEE, 2004.

[260] Sally Johnson. Constrained Application Protocol: CoAP is IoT’s ‘modern’ protocol. htt
ps://internetofthingsagenda.techtarget.com/feature/Constrained-Applic

ation-Protocol-CoAP-is-IoTs-modern-protocol. Accessed: September 9, 2018.
2016.

[261] Deokwoo Jung, Zhenjie Zhang, and Marianne Winslett. “Vibration Analysis for IoT En-
abled Predictive Maintenance”. In: ICDE. IEEE, 2017.

[262] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. “GAZELLE: A Low
Latency Framework for Secure Neural Network Inference”. In: USENIX Security. USE-
NIX, 2018.

[263] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu. “Plutus:
Scalable secure file sharing on untrusted storage”. In: FAST. USENIX, 2003.

[264] Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Capkun. “Verena:
End-to-End Integrity Protection for Web Applications”. In: S&P. IEEE, 2016.

[265] Nikolaos P. Karvelas, Andreas Peter, and Stefan Katzenbeisser. “Using Oblivious RAM in
Genomic Studies”. In: DPM CBT. Springer, 2017.

[266] Akihiro Kato, Michael Scott, Tetsutaro Kobayashi, and Yuto Kawahara. Barreto-Naehrig
Curves. Tech. rep. draft-kasamatsu-bncurves-02. Internet Engineering Task Force, 2016.
URL: https://datatracker.ietf.org/doc/draft-kasamatsu-bncurves/02/.

[267] Jonathan Katz, Amit Sahai, and Brent Waters. “Predicate Encryption Supporting Disjunc-
tions, Polynomial Equations, and Inner Products”. In: EUROCRYPT. Springer, 2008.

[268] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “MASCOT: Faster Malicious Arith-
metic Secure Computation with Oblivious Transfer”. In: CCS. ACM, 2016.

[269] Marcel Keller, Valerio Pastro, and Dragos Rotaru. “Overdrive: Making SPDZ Great
Again”. In: EUROCRYPT. Springer, 2018.

[270] Ben Kepes. Some scary (for some) statistics around file sharing usage. https://www.co
mputerworld.com/article/2991924/some-scary-for-some-statistics-around

-file-sharing-usage.html. 2015.

[271] Keybase.io. Keybase. https://keybase.io/.

[272] Keyless. Privacy Enhancing Frictionless Authentication — Keyless. https://keyless.i
o/. Accessed: June 21, 2023.

[273] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-Sanchez, and Arthur Ger-
vais. Commit-Chains: Secure, Scalable Off-Chain Payments. Cryptology ePrint Archive,
Paper 2018/642. https://eprint.iacr.org/2018/642. 2018. URL: https://eprint
.iacr.org/2018/642.

BIBLIOGRAPHY 201

[274] Safwan Mahmud Khan and Kevin W. Hamlen. “AnonymousCloud: A Data Ownership
Privacy Provider Framework in Cloud Computing”. In: TrustCom. IEEE, 2012.

[275] Beom Heyn Kim and David Lie. “Caelus: Verifying the Consistency of Cloud Services
with Battery-Powered Devices”. In: S&P. IEEE, 2015.

[276] Hyung-Sin Kim, Michael P Andersen, Kaifei Chen, Sam Kumar, William J. Zhao, Kevin
Ma, and David E. Culler. “System Architecture Directions for Post-SoC/32-bit Networked
Sensors”. In: SenSys. ACM, 2018.

[277] Hyung-Sin Kim, Hosoo Cho, Hongchan Kim, and Saewoong Bahk. “DT-RPL: Diverse
bidirectional traffic delivery through RPL routing protocol in low power and lossy net-
works”. In: Computer Networks 126 (2017).

[278] Hyung-Sin Kim, Hosoo Cho, Myung-Sup Lee, Jeongyeup Paek, JeongGil Ko, and Sae-
woong Bahk. “MarketNet: An Asymmetric Transmission Power-based Wireless System
for Managing e-Price Tags in Markets”. In: SenSys. ACM, 2015.

[279] Hyung-Sin Kim, Heesu Im, Myung-Sup Lee, Jeongyeup Paek, and Saewoong Bahk. “A
Measurement Study of TCP over RPL in Low-power and Lossy Networks”. In: Journal of
Communications and Networks 17.6 (2015).

[280] Hyung-Sin Kim, Sam Kumar, and David E. Culler. “Thread/OpenThread: A Compromise
in Low-Power Wireless Multihop Network Architecture for the Internet of Things”. In:
IEEE Communications Magazine 57.7 (2019).

[281] Sukun Kim, Rodrigo Fonseca, Prabal Dutta, Arsalan Tavakoli, David Culler, Philip Levis,
Scott Shenker, and Ion Stoica. “Flush: A Reliable Bulk Transport Protocol for Multihop
Wireless Networks”. In: SenSys. ACM, 2007.

[282] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steven
Glaser, and Martin Turon. “Health Monitoring of Civil Infrastructures Using Wireless
Sensor Networks”. In: IPSN. ACM/IEEE, 2007.

[283] Taechan Kim and Razvan Barbulescu. “Extended Tower Number Field Sieve: A New Com-
plexity for the Medium Prime Case”. In: CRYPTO. Springer, 2016.

[284] John Kolb, Moustafa AbdelBaky, Randy H. Katz, and David E. Culler. “Core Concepts,
Challenges, and Future Directions in Blockchain: A Centralized Tutorial”. In: ACM Com-
puting Surveys 53.1 (2020).

[285] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. “FleXOR: Flexible Garbling
for XOR Gates that Beats Free-XOR”. In: CRYPTO. Springer, 2014.

[286] Vladimir Kolesnikov and Thomas Schneider. “Improved Garbled Circuit: Free XOR Gates
and Applications”. In: ICALP. Springer, 2008.

[287] Matthias Kovatsch, Martin Lanter, and Zach Shelby. “Californium: Scalable Cloud Ser-
vices for the Internet of Things with CoAP”. In: IOT. IEEE, 2014.

BIBLIOGRAPHY 202

[288] RJ Krawiec, Dan Housman, Mark White, Mariya Filipova, Florian Quarre, Dan Barr, Allen
Nesbitt, Kate Fedosova, Jason Killmeyer, Adam Israel, and Lindsay Tsai. Blockchain: Op-
portunities for Health Care. https://www2.deloitte.com/content/dam/Deloitte
/us/Documents/public-sector/us-blockchain-opportunities-for-health-ca

re.pdf. 2016.

[289] Ben Kreuter, Benjamin Mood, abhi shelat, and Kevin Butler. “PCF: A Portable Circuit For-
mat for Scalable Two-Party Secure Computation”. In: USENIX Security. USENIX, 2013.

[290] Benjamin Kreuter, abhi shelat, and Chi-hao Shen. “Billion-Gate Secure Computation with
Malicious Adversaries”. In: USENIX Security. USENIX, 2012.

[291] Andrew Krioukov, Gabe Fierro, Nikita Kitaev, and David Culler. “Building Application
Stack (BAS)”. In: BuildSys. ACM, 2012.

[292] John Kubiatowicz, David Bindel, Steven Czerwinski Yan Chen, Patrick Eaton, Dennis
Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris
Wells, and Ben Zhao. “OceanStore: An Architecture for Global-Scale Persistent Storage”.
In: ASPLOS. ACM, 2000.

[293] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem RAstogi, and
Rahul Sharma. “CRYPTFLOW: Secure TensorFlow Inference”. In: S&P. IEEE, 2020.

[294] Sam Kumar, Michael P Andersen, Hyung-Sin Kim, and David E. Culler. “Demo Abstract:
Bringing Full-Scale TCP to Low-Power Networks”. In: SenSys. ACM, 2018.

[295] Sam Kumar, Michael P Andersen, Hyung-Sin Kim, and David E. Culler. “Performant TCP
for Low-Power Wireless Networks”. In: NSDI. USENIX, 2020.

[296] Sam Kumar, Stuart Cheshire, and others from Apple. Designing a TCP Stack for Open-
Thread. https://github.com/openthread/openthread/files/6400253/openthre
ad_tcp_design_implementation.pdf. See also: https://github.com/openthread
/openthread/issues/6456. Accessed: July 15, 2023. 2021.

[297] Sam Kumar, David E. Culler, and Raluca Ada Popa. “MAGE: Nearly Zero-Cost Virtual
Memory for Secure Computation”. In: OSDI. USENIX, 2021.

[298] Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E. Culler.
“JEDI: Many-to-Many End-to-End Encryption and Key Delegation for IoT”. In: USENIX
Security. USENIX, 2019.

[299] Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E. Culler.
JEDI: Many-to-Many End-to-End Encryption and Key Delegation for IoT. 2019. arXiv:
1905.13369 [cs.CR].

[300] James F. Kurose and Keith W. Ross. “Computer Networking: A Top-Down Approach”. In:
6th. Pearson, 2013. Chap. 3, pp. 278–279.

[301] Eyal Kushilevitz and Rafail Ostrovsky. “Replication Is Not Needed: Single Database,
Computationally-Private Information Retrieval”. In: FOCS. IEEE, 1997.

BIBLIOGRAPHY 203

[302] Laakeri (https://cs.stackexchange.com/users/95646/laakeri). Is there an
algorithm to minimize working set during a topological traversal? Computer Science Stack
Exchange. https://cs.stackexchange.com/q/120274. 2020.

[303] Leslie Lamport. “Paxos Made Simple”. In: SIGACT News (Distributed Computing Col-
umn) 32.4 (2001).

[304] Leslie Lamport. “The Part-Time Parliament”. In: TOCS 16.2 (1998).

[305] Billy Lau, Simon Chung, Chengyu Song, Yeongjin Jang, Wenke Lee, and Alexandra Bol-
dyreva. “Mimesis Aegis: A Mimicry Privacy Shield—A System’s Approach to Data Pri-
vacy on Public Cloud”. In: USENIX Security. USENIX, 2014.

[306] Ben Laurie. “Certificate Transparency: Public, verifiable, append-only logs”. In: Queue
12.8 (2014).

[307] Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, and Raluca Ada Popa. “MUSE:
Secure Inference Resilient to Malicious Clients”. In: USENIX Security. USENIX, 2021.

[308] Robert Lemos. Home Depot estimates data on 56 million cards stolen by cybercriminals.
https://arstechnica.com/information-technology/2014/09/home-depot-e

stimates-data-on-56-million-cards-stolen-by-cybercrimnals/. Accessed:
April 21, 2019.

[309] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M.
Welsh, E. Brewer, and D. Culler. “TinyOS: An Operating System for Sensor Networks”.
In: Ambient Intelligence. Ed. by Werner Weber, Jan M. Rabaey, and Emile Aarts. Springer,
2005.

[310] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. “TOSSIM: Accurate and Scalable
Simulation of Entire TinyOS Applications”. In: SenSys. ACM, 2003.

[311] Philip Levis, Neil Patel, David Culler, and Scott Shenker. “Trickle: A Self-Regulating Al-
gorithm for Code Propagation and Maintenance in Wireless Sensor Networks”. In: NSDI.
USENIX, 2004.

[312] Amit Levy, James Hong, Laurynas Riliskis, Philip Levis, and Keith Winstein. “Beetle:
Flexible Communication for Bluetooth Low Energy”. In: MobiSys. ACM, 2016.

[313] Henry M. Levy. Capability-Based Computer Systems. Digital Press, 1984.

[314] Allison Lewko, Amit Sahai, and Brent Waters. “Revocation Systems with Very Small Pri-
vate Keys”. In: S&P. IEEE, 2010.

[315] Cheng Li, Zhenjiang Li, Mo Li, Forrest Meggers, Arno Schlueter, and Hock Beng Lim.
“Energy Efficient HVAC System with Distributed Sensing and Control”. In: ICDCS. IEEE,
2014.

[316] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. “Secure Untrusted Data
Repository (SUNDR)”. In: OSDI. USENIX, 2004.

BIBLIOGRAPHY 204

[317] Yun-Chen Li and Mei-Ling Chiang. “LyraNET: A Zero-Copy TCP/IP Protocol Stack for
Embedded Operating Systems”. In: RTCSA. IEEE, 2005.

[318] Chieh-Jan Mike Liang, Nissanka Bodhi Priyantha, Jie Liu, and Andreas Terzis. “Surviving
Wi-Fi Interference in Low Power ZigBee Networks”. In: SenSys. ACM, 2010.

[319] Benoı̂t Libert and Damien Vergnaud. “Adaptive-ID Secure Revocable Identity-Based En-
cryption”. In: CT-RSA. Springer, 2009.

[320] Yehuda Lindell and Benny Pinkas. “An Efficient Protocol for Secure Two-Party Computa-
tion in the Presence of Malicious Adversaries”. In: EUROCRYPT. Springer, 2007.

[321] C. L. Liu and James W. Layland. “Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment”. In: J. ACM 20.1 (1973).

[322] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. “ObliVM: A
Programming Framework for Secure Computation”. In: S&P. IEEE, 2015.

[323] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. “Oblivious Neural Network Predictions via
MiniONN Transformations”. In: CCS. ACM, 2017.

[324] Weiran Liu, Jianwei Liu, Qianhong Wu, Bo Qin, David Naccache, and Houda Ferradi.
Compact CCA2-secure Hierarchical Identity-Based Broadcast Encryption for Fuzzy-entity
Data Sharing. Cryptology ePrint Archive, Paper 2016/634. https://eprint.iacr.org
/2016/634. 2016. URL: https://eprint.iacr.org/2016/634.

[325] Low Power, 2.4GHz Transceiver for ZigBee, RF4CE, IEEE 802.15.4, 6LoWPAN, and ISM
Applications. AT86RF233. Preliminary Datasheet. Atmel Corporation. 2014.

[326] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. “Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation”. In: PLDI. ACM, 2005.

[327] Chris Maeda and Brian N. Bershad. “Protocol Service Decomposition for High-
Performance Networking”. In: SOSP. ACM, 1993.

[328] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. “Maliciously
Secure Multi-Client ORAM”. In: ACNS. Springer, 2017.

[329] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. “Privacy and
Access Control for Outsourced Personal Records”. In: S&P. IEEE, 2015.

[330] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi, Mike Dahlin,
and Michael Walfish. “Depot: Cloud storage with minimal trust”. In: OSDI. USENIX,
2010.

[331] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John Anderson.
“Wireless Sensor Networks for Habitat Monitoring”. In: WSNA. ACM, 2002.

[332] Dahlia Malkhi, Michael Merritt, and Ohad Rodeh. “Secure Reliable Multicast Protocols in
a WAN”. In: ICDCS. IEEE, 1997.

BIBLIOGRAPHY 205

[333] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. “Fairplay—A Secure Two-
Party Computation System”. In: USENIX Security. USENIX, 2004.

[334] Dalia Malki and Michael Reiter. “A High-Throughput Secure Reliable Multicast Protocol”.
In: CSFW. IEEE, 1996.

[335] Petros Maniatis and Mary Baker. “Secure History Preservation Through Timeline Entan-
glement”. In: USENIX Security. USENIX, 2002.

[336] Hasan Al Maruf and Mosharaf Chowdhury. “Effectively Prefetching Remote Memory with
Leap”. In: ATC. USENIX, 2020.

[337] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm”. In: SIGCOMM-CCR 27.3 (1997).

[338] David Mazières and Dennis Shasha. “Building secure file systems out of Byzantine stor-
age”. In: PODC. ACM, 2002.

[339] Drew McDaniel. Virtual Machines Best Practices: Single VMs, Temporary Storage and
Uploaded Disks. https://azure.microsoft.com/en-us/blog/virtual-machin
es-best-practices-single-vms-temporary-storage-and-uploaded-disks/.
Accessed: June 21, 2023. 2014.

[340] Adrian McEwen. Risking a Compuserve of Things. https://mcqn.com/posts/wuthe
ring-bytes-slides-risking-a-compuserve-of-things/. Accessed: December 8,
2018. 2013.

[341] Medicalchain - Blockchain for electronic health records. https://medicalchain.com.
Accessed: September 12, 2019.

[342] Almir Mehanovic, Thomas Heine Rasmussen, and Mikkel Baun Kjærgaard. “Brume - A
Horizontally Scalable and Fault Tolerant Building Operating System”. In: IoTDI. IEEE,
2018.

[343] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and Michael J.
Freedman. “CONIKS: Bringing Key Transparency to End Users”. In: USENIX Security.
USENIX, 2015.

[344] Adrian Mettler, David Wagner, and Tyler Close. “Joe-E: A Security-Oriented Subset of
Java”. In: NDSS. Internet Society, 2010.

[345] Microsoft Azure. Ddv4 and Ddsv4-series. https://docs.microsoft.com/en-us/azu
re/virtual-machines/ddv4-ddsv4-series. Accessed: June 21, 2023.

[346] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca
Ada Popa. “DELPHI: A Cryptographic Inference Service for Neural Networks”. In: USE-
NIX Security. USENIX, 2020.

[347] Payman Mohassel and Yupeng Zhang. “SecureML: A System for Scalable Privacy-
Preserving Machine Learning”. In: S&P. IEEE, 2017.

BIBLIOGRAPHY 206

[348] Gabriel Montenegro, Jonathan Hui, David Culler, and Nandakishore Kushalnagar. Trans-
mission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944. 2007.

[349] Gabriel Montenegro, Farid Khafizov, Hiroshi Inamura, Andrei Gurtov, and Ludwig Reiner.
TCP over Second (2.5G) and Third (3G) Generation Wireless Networks. RFC 3481. 2003.

[350] Gabriel Montenegro, Christian Schumacher, and Nandakishore Kushalnagar. IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Prob-
lem Statement, and Goals. RFC 4919. 2007.

[351] Benjamin Mood, Debayan Gupta, Henry Carter, Kevin R. B. Butler, and Patrick Traynor.
“Frigate: A Validated, Extensible, and Efficient Compiler and Interpreter for Secure Com-
putation”. In: EuroS&P. IEEE, 2016.

[352] Benjamin Mood, Lara Letaw, and Kevin Butler. “Memory-Efficient Garbled Circuit Gen-
eration for Mobile Devices”. In: FC. Springer, 2012.

[353] Todd C. Mowry, Angela K. Demke, and Orran Krieger. “Automatic Compiler-Inserted I/O
Prefetching for Out-of-Core Applications”. In: OSDI. USENIX, 1996.

[354] MPC Alliance. https://www.mpcalliance.org/. Accessed: June 30, 2023.

[355] MQTT. http://mqtt.org. Accessed: January 25, 2018.

[356] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.o
rg/bitcoin.pdf. 2008.

[357] Dalit Naor, Moni Naor, and Jeff Lotspiech. “Revocation and Tracing Schemes for Stateless
Receivers”. In: CRYPTO. Springer, 2001.

[358] Antonio L. Maia Neto, Artur L. F. Souza, Italo Cunha, Michele Nogueira, Ivan Oliveira
Nunes, Leonardo Cotta, Nicolas Gentille, Antonio A. F. Loureiro, Diego F. Aranha, Harsh
Kupwade Patil, and Leonardo B. Oliveira. “AoT: Authentication and Access Control for
the Entire IoT Device Life-Cycle”. In: SenSys. ACM, 2016.

[359] Lucien K. L. Ng and Sherman S. M. Chow. “SoK: Cryptographic Neural-Network Com-
putation”. In: S&P. IEEE, 2023.

[360] Jakob Nielsen. Nielsen’s Law of Internet Bandwidth. Accessed: May 26, 2020. URL: %5Cu
rl%7Bhttps://www.nngroup.com/articles/law-of-bandwidth/%7D.

[361] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and Nina
Taft. “Privacy-Preserving Ridge Regression on Hundreds of Millions of Records”. In:
IEEE, 2013.

[362] Open mHealth. http://www.openmhealth.org/. Accessed: September 19, 2019.

[363] OpenThread. https://openthread.io.

[364] Esteban Ordano, Ariel Meilich, Yemel Jardi, and Manuel Araoz. Decentraland: A
blockchain-based virtual world. https://decentraland.org/whitepaper.pdf. 2017.

[365] Fredrik Österlind and Adam Dunkels. “Approaching the Maximum 802.15.4 Multi-hop
Throughput”. In: HotEmNets. ACM, 2008.

BIBLIOGRAPHY 207

[366] Rafail Ostrovsky, Amit Sahai, and Brent Waters. “Attribute-Based Encryption with Non-
Monotonic Access Structures”. In: CCS. ACM, 2007.

[367] Vinicius Pacheco and Ricardo Puttini. “SaaS Anonymous Cloud Service Consumption
Structure”. In: ICDCS. IEEE, 2012.

[368] Jitendra Padhya, Victor Firoiu, Don Towsley, and Jim Kurose. “Modeling TCP Through-
put: A Simple Model and its Empirical Validation”. In: SIGCOMM. ACM, 1998.

[369] Jeongyeup Paek and Ramesh Govindan. “RCRT: Rate-controlled Reliable Transport for
Wireless Sensor Networks”. In: SenSys. ACM, 2007.

[370] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuosity Clas-
ses”. In: EUROCRYPT. Springer, 1999.

[371] Qixiang Pang, Vincent W. S. Wong, and Victor C. M. Leung. “Reliable Data Transport
and Congestion Control in Wireless Sensor Networks”. In: International Journal of Sensor
Networks 3.1 (2008).

[372] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran Ramjee,
Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna Badrinarayanan. “Big
Data Analytics over Encrypted Datasets with Seabed”. In: OSDI. USENIX, 2016.

[373] Particle Mesh. https://www.particle.io/mesh. Accessed: February 2, 2019.

[374] PayPal. PayPal to Acquire Curv. https://newsroom.paypal-corp.com/2021-03-08-
PayPal-to-Acquire-Curv. Accessed: June 21, 2023.

[375] Tony Peng. Shared Machine Learning: Ant Financial’s Solution for Data Privacy. https:
//medium.com/syncedreview/shared-machine-learning-ant-financials-solu

tion-for-data-privacy-8069cffe7bb6. Accessed: June 21, 2023.

[376] Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Song. “Efficient Authentication and
Signing of Multicast Streams over Lossy Channels”. In: S&P. IEEE, 2000.

[377] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Tygar. “SPINS:
Security Protocols for Sensor Networks”. In: MobiCom. ACM, 2001.

[378] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. “Secure Two-
Party Computation Is Practical”. In: ASIACRYPT. Springer, 2009.

[379] Benny Pinkas, Thomas Schneider, and Michael Zohner. “Faster Private Set Intersection
Based on OT Extension”. In: USENIX Security. USENIX, 2014.

[380] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada Popa, and Joseph
M. Hellerstein. “Senate: A Maliciously-Secure MPC Platform for Collaborative Analyt-
ics”. In: USENIX Security. USENIX, 2021.

[381] Joseph Polastre, Jason Hill, and David Culler. “Versatile Low Power Media Access for
Wireless Sensor Networks”. In: SenSys. ACM, 2004.

[382] Joseph Polastre, Robert Szewczyk, and David Culler. “Telos: Enabling Ultra-Low Power
Wireless Research”. In: IPSN. ACM/IEEE, 2005.

BIBLIOGRAPHY 208

[383] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
“CryptDB: Protecting Confidentiality with Encrypted Query Processing”. In: SOSP. ACM,
2011.

[384] Raluca Ada Popa, Emily Stark, Jonas Helfer, Steven Valdez, Nickolai Zeldovich, M. Frans
Kaashoek, and Hari Balakrishnan. “Building Web Applications on Top of Encrypted Data
Using Mylar”. In: USENIX Security. USENIX, 2014.

[385] PreVeil Inc. PreVeil: End-to-end encryption for everyone. preveil.com.

[386] Privly Inc. Privly. priv.ly.

[387] Lucy Qin. Deploying MPC for Social Good. Real World Crypto. https://youtu.be/5p
kDq4sRWyQ?t=2090. 2019.

[388] Michael O. Rabin. How to Exchange Secrets with Oblivious Transfer. Tech. rep. TR-81.
Harvard University, 1981.

[389] Md. Abdur Rahman, Abdulmotaleb El Saddik, and Wail Gueaieb. “Wireless Sensor Net-
work Transport Layer: State of the Art”. In: Sensors: Advancements in Modeling, Design
Issues, Fabrication and Practical Applications. Ed. by Subhas Chandra Mukhopadhyay
and Yueh-Min Huang. Springer, 2008.

[390] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda, Fabien Duch-
ene, Olivier Bonaventure, and Mark Handley. “How Hard Can It Be? Designing and Im-
plementing a Deployable Multipath TCP”. In: NSDI. USENIX, 2012.

[391] B. Randell. “A Note on Storage Fragmentation and Program Segmentation”. In: CACM
12.7 (1969).

[392] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta,
Aseem Rastogi, and Rahul Sharma. “CRYPTFLOW2: Practical 2-Party Secure Inference”.
In: CCS. ACM, 2020.

[393] A. J. Dinusha Rathnayaka and Vidyasagar M. Potdar. “Wireless Sensor Network trans-
port protocol: A critical review”. In: Journal of Network and Computer Applications 36.1
(2013).

[394] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. “A
Scalable Content-Addressable Network”. In: SIGCOMM. ACM, 2001.

[395] Oded Regev. “On Lattices, Learning with Errors, Random Linear Codes, and Cryptogra-
phy”. In: STOC. ACM, 2005.

[396] James Reyes. Building the next generation of digital advertising with MPC. Real World
Crypto. https://youtu.be/6Gb0xO8csVU?t=2533. 2022.

[397] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and Farinaz
Koushanfar. “XONN: XNOR-based Oblivious Deep Neural Network Inference”. In: USENIX
Security. USENIX, 2019.

BIBLIOGRAPHY 209

[398] Mike Rosulek. A Brief History of Practical Garbled Circuit Optimizations. https://sim
ons.berkeley.edu/talks/mike-rosulek-2015-06-09, https://www.youtube.co
m/watch?v=FTxh908u9y8. Accessed: April 27, 2020. 2015.

[399] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. “DeepSecure: Scalable
Provably-Secure Deep Learning”. In: DAC. ACM, 2018.

[400] Antony Rowstron and Peter Druschel. “Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems”. In: Middleware. Springer, 2001.

[401] rsablind. https://github.com/cryptoballot/rsablind.

[402] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. “AIFM: High-
Performance, Application-Integrated Far Memory”. In: OSDI. USENIX, 2020.

[403] Amit Sahai and Hakan A. Seyalioglu. “Worry-Free Encryption: Functional Encryption
with Public Keys”. In: CCS. ACM, 2010.

[404] Amit Sahai and Brent Waters. “Fuzzy Identity-Based Encryption”. In: EUROCRYPT.
Springer, 2005.

[405] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro. “TaoStore:
Overcoming Asynchronicity in Oblivious Data Storage”. In: S&P. IEEE, 2016.

[406] Nikola Samardzic, Alex Feldmann, Aleksandar Krastev, Nathan Manohar, Nicholas
Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel Sanchez. “Crater-
Lake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data”.
In: ISCA. ACM, 2022.

[407] Luis A. Sanchez, Mark Allman, and Dan Glover. Enhancing TCP Over Satellite Channels
using Standard Mechanisms. RFC 2488. 1999.

[408] Yogesh Sankarasubramaniam, Özgür B. Akan, and Ian F. Akyildiz. “ESRT: Event-to-Sink
Reliable Transport in Wireless Sensor Networks”. In: MobiHoc. ACM, 2003.

[409] Danilo F. S. Santos, Hyggo O. Almeida, and Angelo Perkusich. “A personal connected
health system for the Internet of Things based on the Constrained Application Protocol”.
In: Computers and Electrical Engineering 44 (2015).

[410] Thomas Schmid, Roy Shea, Mani B. Srivastava, and Prabal Dutta. “Disentangling Wireless
Sensing from Mesh Networking”. In: HotEmNets. ACM, 2010.

[411] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL. Microsoft Re-
search, Redmond, WA. 2020.

[412] Tara Seals. 17% of Workers Fall for Social Engineering Attacks. https://www.infosec
urity-magazine.com/news/17-of-workers-fall-for-social/. 2018.

[413] Secret Double Octopus — Passwordless High Assurance Authentication. https://doubl
eoctopus.com. Accessed: April 21, 2019.

BIBLIOGRAPHY 210

[414] Klara Seitz, Sebastian Serth, Konrad-Felix Krentz, and Christoph Meinel. “Demo Ab-
stract: Enabling En-Route Filtering for End-to-End Encrypted CoAP Messages”. In: Sen-
Sys. ACM, 2017.

[415] Jeffrey Semke, Jamshid Mahdavi, and Matthew Mathis. “Automatic TCP Buffer Tuning”.
In: SIGCOMM. ACM, 1998.

[416] Jae Hong Seo and Keita Emura. “Efficient Delegation of Key Generation and Revocation
Functionalities in Identity-Based Encryption”. In: CT-RSA. Springer, 2013.

[417] Jae Hong Seo and Keita Emura. “Revocable Hierarchical Identity-Based Encryption:
History-Free Update, Security Against Insiders, and Short Ciphertexts”. In: CT-RSA.
Springer, 2015.

[418] Jae Hong Seo and Keita Emura. “Revocable Identity-Based Encryption Revisited: Security
Model and Construction”. In: PKC. Springer, 2013.

[419] Hossein Shafagh, Lukas Burkhalter, Sylvia Ratnasamy, and Anwar Hithnawi. “Droplet:
Decentralized Authorization and Access Control for Encrypted Data Streams”. In: USENIX
Security. USENIX, 2020.

[420] Hossein Shafagh, Anwar Hithnawi, Lukas Burkhalter, Pascal Fischli, and Simon Duquen-
noy. “Secure Sharing of Partially Homomorphic Encrypted IoT Data”. In: SenSys. ACM,
2017.

[421] Hossein Shafagh, Anwar Hithnawi, Andreas Dröscher, Simon Duquennoy, and Wen Hu.
“Talos: Encrypted Query Processing for the Internet of Things”. In: SenSys. ACM, 2015.

[422] Adi Shamir. “How to Share a Secret”. In: CACM 22.11 (1979).

[423] Adi Shamir. “Identity-Based Cryptosystems and Signature Schemes”. In: CRYPTO.
Springer, 1984.

[424] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. “EROS: a fast capability
system”. In: SOSP. ACM, 1999.

[425] Janae Sharp. Will Healthcare See Ethical Patient Data Exchange? https://www.idigi

talhealth.com/news/healthcare-ethical-patient-data-exchange-cms-rule.
Accessed: September 12, 2019.

[426] Zach Shelby. Java speaks CoAP. https://community.arm.com/iot/b/blog/posts/j
ava-speaks-coap. Accessed: September 9, 2018. 2015.

[427] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Application Protocol
(CoAP). RFC 7252. 2014.

[428] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. “Oblivious RAM with
O((logN)3) Worst-Case Cost”. In: ASIACRYPT. Springer, 2011.

[429] Victor Shoup. “Practical Threshold Signatures”. In: EUROCRYPT. Springer, 2000.

[430] Alexander Shraer, Christian Cachin, Asaf Cidon, Idit Keidar, Yan Michalevsky, and Dani
Shaket. “Venus: Verification for Untrusted Cloud Storage”. In: CCSW. ACM, 2010.

BIBLIOGRAPHY 211

[431] Sia. https://sia.tech. Accessed: April 16, 2019.

[432] Nigel Smart. Multi-Party Computation: A Cryptogrpahic Marvel in SEarch of Its Commer-
cial Sweet Spot. https://www.eeweb.com/multi-party-computation-a-cryptogr
aphic-marvel-in-search-of-its-commercial-sweet-spot/. Accessed: June 30,
2023. 2022.

[433] Alex C. Snoeren and Hari Balakrishnan. “An End-to-End Approach to Host Mobility”. In:
MobiCom. ACM, 2000.

[434] Software Configuration Guide, Cisco IOS Release 15.2(5)EX (Catalyst Digital Building
Series Switches). Accessed: June 21, 2023. Cisco. 2018.

[435] Solace. Advanced Event Broker. An event mesh for connected enterprises — Solace. http
s://solace.com. Accessed: January 17, 2018.

[436] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd. “Learning Relaxed Belady for
Content Distribution Network Caching”. In: NSDI. USENIX, 2020.

[437] Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi, Thomas Schneider, and
Farinaz Koushanfar. “TinyGarble: Highly Compressed and Scalable Sequential Garbled
Circuits”. In: S&P. IEEE, 2015.

[438] Mudhakar Srivatsa and Mike Hicks. “Deanonymizing Mobility Traces: Using Social Net-
works as a Side-Channel”. In: CCS. ACM, 2012.

[439] Fred Stann and John Heidemann. “RMST: Reliable Data Transport in Sensor Networks”.
In: SNPA. IEEE, 2003.

[440] Thanos Stathopoulos, Lewis Girod, John Heidemann, and Deborah Estrin. Mote Herding
for Tiered Wireless Sensor Networks. Tech. rep. 58. Center for Embedded Networked Com-
puting, University of California, Los Angeles, 2005. URL: http://www.isi.edu/%7ejo
hnh/PAPERS/Stathopoulos05a.html.

[441] Emil Stefanov and Elaine Shi. “ObliviStore: High Performance Oblivious Cloud Storage”.
In: S&P. IEEE, 2013.

[442] Randall R. Stewart, Mitesh Dalal, and Anantha Ramaiah. Improving TCP’s Robustness to
Blind In-Window Attacks. RFC 5961. 2010.

[443] Decentralized Cloud Storage — Storj. https://storj.io. Accessed: April 16, 2019.

[444] Swarm Team. Swarm: Storage and Communication Infrastructure for a Self-Sovereign
Digital Society. https://www.ethswarm.org/swarm-whitepaper.pdf. 2021.

[445] Robert Szewczyk, Joseph Polastre, Alan Mainwaring, and David Culler. “Lessons from a
Sensor Network Expedition”. In: EWSN. Springer, 2004.

[446] Ankur Taly and Asim Shankar. “Distributed Authorization in Vanadium”. In: FOSAD VIII.
Springer, 2016.

[447] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. “CryptGPU: Fast Privacy-Preserving
Machine Learning on the GPU”. In: S&P. IEEE, 2021.

BIBLIOGRAPHY 212

[448] Muhammad Adnan Tariq, Boris Koldehofe, and Kurt Rothermel. “Securing Broker-Less
Publish/Subscribe Systems Using Identity-Based Encryption”. In: TPDS 25.2 (2014).

[449] Moti N. Thadani and Yousef A. Khalidi. An Efficient Zero-Copy I/O Framework for UNIX.
Tech. rep. SMLI TR-95-39. Sun Microsystems Laboratories, Inc., 1995.

[450] Thread Benefits. https://www.threadgroup.org/What-is-Thread/Thread-Benefi
ts. Accessed: June 21, 2023.

[451] Thread Group. https://www.threadgroup.org/thread-group. Accessed: June 21,
2023.

[452] Thread Group. https://threadgroup.org.

[453] Alin Tomescu and Srinivas Devadas. “Catena: Efficient Non-equivocation via Bitcoin”. In:
S&P. IEEE, 2017.

[454] Omri Traub, Glenn Holloway, and Michael D. Smith. “Quality and Speed in Linear-scan
Register Allocation”. In: PLDI. ACM, 1998.

[455] Viktor Trón, Aron Fischer, and Nick Johnson. smash-proof: Auditable storage for Swarm
secured by masked audit secret hash. 2016.

[456] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich. “Sta-
dium: A Distributed Metadata-Private Messaging System”. In: SOSP. ACM, 2017.

[457] Wen-Guey Tzeng. “A Time-Bound Cryptographic Key Assignment Scheme for Access
Control in a Hierarchy”. In: TKDE 14.1 (2002).

[458] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris Grot.
“Benchmarking, Analysis, and Optimization of Serverless Function Snapshots”. In:
ASPLOS. ACM, 2021.

[459] JP Vasseur. Terms Used in Routing for Low-Power and Lossy Networks. RFC 7102. 2014.

[460] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. “SoK: Fully Homomorphic Encryp-
tion Compilers”. In: S&P. IEEE, 2021.

[461] Berta Carballido Villaverde, Dirk Pesch, Rodolfo De Paz Alberola, Szymon Fedor, and
Menouer Boubekeur. “Constrained Application Protocol for Low Power Embedded Net-
works: A Survey”. In: IMIS. IEEE, 2012.

[462] Virtru Inc. Virtru: Email Encryption and Data Protection Solutions. www.virtru.com.

[463] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei Lapets, and
Azer Bestavros. “Conclave: secure multi-party computation on big data”. In: EuroSys.
ACM, 2019.

[464] VOLTTRON. https://volttron.org/. Accessed: January 23, 2019.

[465] Amanda Walker, Sarvar Patel, and Moti Yung. Helping organizations do more without
collecting more data. Google Security Blog. https://security.googleblog.com/201
9/06/helping-organizations-do-more-without-collecting-more-data.html.
2019.

BIBLIOGRAPHY 213

[466] Chieh-Yih Wan, Andrew T. Campbell, and Lakshman Krishnamurthy. “PSFQ: A Reliable
Transport Protocol for Wireless Sensor Networks”. In: WSNA. ACM, 2002.

[467] Chieh-Yih Wan, Shane B. Eisenman, and Andrew T. Campbell. “CODA: Congestion De-
tection and Avoidance in Sensor Networks”. In: SenSys. ACM, 2003.

[468] Chonggang Wang, Kazem Sohraby, Yueming Hu, Bo Li, and Weiwen Tang. “Issues of
Transport Control Protocols for Wireless Sensor Networks”. In: ICCCAS. IEEE, 2005.

[469] Frank Wang, James Mickens, Nickolai Zeldovich, and Vinod Vaikuntanathan. “Sieve:
Cryptographically Enforced Access Control for User Data in Untrusted Clouds”. In:
NSDI. USENIX, 2016.

[470] Frank Wang, Catherine Yun, Shafi Goldwasser, and Vinod Vaikuntanathan. “Splinter: Prac-
tical Private Queries on Public Data”. In: NSDI. USENIX, 2017.

[471] Guojun Wang, Qin Liu, and Jie Wu. “Hierarchical Attribute-Based Encryption for Fine-
Grained Access Control in Cloud Storage Services”. In: CCS. ACM, 2010.

[472] Guojun Wang, Qin Liu, Jie Wu, and Minyi Guo. “Hierarchical attribute-based encryption
and scalable user revocation for sharing data in cloud servers”. In: Computers & Security
30.5 (2011).

[473] Ke Coby Wang and Michael K. Reiter. “How to End Password Reuse on the Web”. In:
NDSS. Internet Society, 2019.

[474] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty
computation toolkit. https://github.com/emp-toolkit. 2016.

[475] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Authenticated Garbling and Efficient
Maliciously Secure Two-Party Computation”. In: CCS. ACM, 2017.

[476] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Global-Scale Secure Multiparty
Computation”. In: CCS. ACM, 2017.

[477] Xiao Shaun Wang, T-H. Hubert Chan, and Elaine Shi. “Circuit ORAM: On Tightness of
the Goldreich-Ostrovsky Lower Bound”. In: CCS. ACM, 2015.

[478] Xinlei Wang, Jianqing Zhang, Eve M. Schooler, and Mihaela Ion. “Performance Evaluation
of Attribute-Based Encryption: Toward Data Privacy in the IoT”. In: ICC. IEEE, 2014.

[479] Yohei Watanabe, Keita Emura, and Jae Hong Seo. “New Revocable IBE in Prime-Order
Groups: Adaptively Secure, Decryption Key Exposure Resistant, and with Short Public
Parameters”. In: CT-RSA. Springer, 2017.

[480] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. “Piranha: A GPU Platform for
Secure Computation”. In: USENIX Security. USENIX, 2022.

[481] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn.
“Ceph: A Scalable, High-Performance Distributed File System”. In: OSDI. USENIX,
2006.

BIBLIOGRAPHY 214

[482] WhatsApp. WhatsApp’s Privacy Notice. www.whatsapp.com/legal/?doc=privacy-po
licy. 2012.

[483] Ben Whittle. Storing Documents on the Blockchain: Why, How, and Where. https://co
incentral.com/storing-documents-on-the-blockchain-why-how-and-where/.
Accessed: June 23, 2023.

[484] Christian Wimmer and Hanspeter Mössenböck. “Optimized Interval Splitting in a Linear
Scan Register Allocator”. In: VEE. ACM, 2005.

[485] Phil Windley. The CompuServe of Things. http://www.windley.com/archives/2014
/04/the_compuserve_of_things.shtml. Accessed: December 8, 2018. 2014.

[486] Keith Winstein and Hari Balakrishnan. “Mosh: An Interactive Remote Shell for Mobile
Clients”. In: ATC. USENIX, 2012.

[487] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. “Stochastic Forecasts Achieve
High Throughput and Low Delay over Cellular Networks”. In: NSDI. USENIX, 2013.

[488] Alec Woo and David E. Culler. “A Transmission Control Scheme for Media Access in
Sensor Networks”. In: MobiCom. ACM, 2001.

[489] Gary R. Wright and W. Richard Stevens. “TCP/IP Illustrated”. In: vol. 2. Addison-Wesley
Publishing Company, 1995. Chap. 2.

[490] David J. Wu, Ankur Taly, Asim Shankar, and Dan Boneh. “Privacy, Discovery, and Au-
thentication for the Internet of Things”. In: ESORICS. Springer, 2016.

[491] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica.
“DIZK: A Distributed Zero Knowledge Proof System”. In: USENIX Security. USENIX,
2018.

[492] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan Broad,
Ramesh Govindan, and Deborah Estrin. “A Wireless Sensor Network For Structural Mon-
itoring”. In: SenSys. ACM, 2004.

[493] Vijay Kumar Yadav, Nitish Andola, Shekhar Verma, and S. Venkatesan. “A Survey of
Oblivious Transfer Protocol”. In: ACM Computing Surveys 54.10 (2022).

[494] Sophia Yakoubov. A Gentle Introduction to Yao’s Garbled Circuits. Accessed: April 27,
2020. 2017.

[495] Andrew C. Yao. “Protocols for Secure Computations”. In: FOCS. IEEE, 1982.

[496] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets”. In: FOCS. IEEE, 1986.

[497] Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. “ID-based Encryption
for Complex Hierarchies with Applications to Forward Security and Broadcast Encryp-
tion”. In: CCS. ACM, 2004.

[498] Wei Ye, John Heidemann, and Deborah Estrin. “An energy-efficient MAC protocol for
wireless sensor networks”. In: INFOCOM. IEEE, 2002.

BIBLIOGRAPHY 215

[499] Wei Ye, John Heidemann, and Deborah Estrin. “Medium Access Control with Coordi-
nated Adaptive Sleeping for Wireless Sensor Networks”. In: IEEE/ACM Transactions on
Networking 12.3 (2004).

[500] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham.
“HotStuff: BFT Consensus with Linearity and Responsiveness”. In: PODC. ACM, 2019.

[501] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. “Achieving Secure, Scalable, and
Fine-grained Data Access Control in Cloud Computing”. In: INFOCOM. IEEE, 2010.

[502] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins, Neal Jackson,
and Prabal Dutta. “The Internet of Things Has a Gateway Problem”. In: HotMobile. ACM,
2015.

[503] Samee Zahur and David Evans. Obliv-C: A Language for Extensible Data-Oblivious Com-
putation. Cryptology ePrint Archive, Paper 2015/1153. https://eprint.iacr.org/20
15/1153. 2015. URL: https://eprint.iacr.org/2015/1153.

[504] Samee Zahur, Mike Rosulek, and David Evans. “Two Halves Make a Whole: Reducing
Data Transfer in Garbled Circuits Using Half Gates”. In: EUROCRYPT. Springer, 2015.

[505] Saman Zarandioon, Danfeng (Daphne) Yao, and Vinod Ganapathy. “K2C: Cryptographic
Cloud Storage with Lazy Revocation and Anonymous Access”. In: SecureComm. Springer,
2011.

[506] Zcash. Zcash: All coins are created equal. http://z.cash/.

[507] ZeroMQ. http://zeromq.org. Accessed: January 29, 2019.

[508] Kim Zetter. ‘Google’ Hackers Had Ability to Alter Source Code. https://www.wired.c
om/2010/03/source-code-hacks/. Accessed: April 21, 2019.

[509] Kim Zetter. An Unprecedented Look at Stuxnet, the World’s First Digital Weapon. https
://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/. Accessed: April
21, 2019.

[510] Hongwei Zhang, Anish Arora, Young-ri Choi, and Mohamed G. Gouda. “Reliable Bursty
Convergecast in Wireless Sensor Networks”. In: MobiHoc. ACM, 2005.

[511] Irene Zhang, Alex Garthwaite, Yury Baskakov, and Kenneth C. Barr. “Fast Restore of
Checkpointed Memory using Working Set Estimation”. In: VEE. ACM, 2011.

[512] Lixia Zhang. “Why TCP Timers Don’t Work Well”. In: SIGCOMM. ACM, 1986.

[513] Tiancong Zheng, Ahmed Ayadi, and Xiaoran Jiang. “TCP over 6LoWPAN for Industrial
Applications: An Experimental Study”. In: NTMS. IEEE, 2011.

[514] Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada Popa, Aurojit Panda, and Ion
Stoica. “Cerebro: A Platform for Multi-Party Cryptographic Collaborative Learning”. In:
USENIX Security. USENIX, 2021.

[515] Wenting Zheng, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica. “Helen: Mali-
ciously Secure Coopetitive Learning for Linear Models”. In: S&P. IEEE, 2019.

BIBLIOGRAPHY 216

[516] Ruiyu Zhu, Darion Cassel, Amr Sabry, and Yan Huang. “NANOPI: Extreme-Scale
Actively-Secure Multi-Party Computation”. In: CCS. ACM, 2018.

[517] Zigbee Gateway. https://www.zigbee.org/zigbee-for-developers/zigbee-gate
way/. Accessed: February 13, 2019.

217

Appendix A

Ghostor’s Security Guarantees

This appendix formally describes Ghostor’s privacy and security guarantees.

A.1 Ghostor’s Privacy Guarantee
In this appendix, we use the simulation paradigm of Secure Multi-Party Computation (SMPC) to
define Ghostor’s privacy guarantee. We begin in Appendix A.1.1 by providing an overview of
our definition and proof sketch, along with an explanation of how our simulation-based definition
matches the one in Section 6.3.3.

A.1.1 Overview
We formally define Ghostor’s anonymity by specifying an ideal world. We provided a definition in
Section 6.3.3, but we consider it to be informal because it does not clearly state what the adversary
learns if some users are compromised/malicious. The ideal world is specified such that it is easy to
reason about what information the adversary learns; what the adversary learns in the ideal world
is our definition of what an anonymous object sharing system leaks to an adversary (i.e., what
anonymity does not hide). In contrast, we refer to a setup running the actual Ghostor protocol
as the real world. Below, we refer to the formalized Ghostor protocol as π

Payment
Ghostor ; as we explain

in Appendix A.1.1.2, this includes some minor differences from Section 6.7. The “Payment” in
the notation indicates that we are working in the FPayment-hybrid model, which we also explain in
Appendix A.1.1.2.

In the real world, clients interact directly with the serverA. We denote the server asA because
it is controlled by an adversary. The party P embodies the honest clients. When a client issues an
API call, P interacts with A according to Ghostor’s protocol to perform the API call on behalf of
the client. A cannot directly inspect the clients’ state or secret information, but it may attempt to
infer it through the messages it receives from P as it interacts with P to serve each request.

In the ideal world, clients interact with an incorruptible trusted partyF called an ideal function-
ality. On each API call issued by a client, F provides another party, S, with a well-defined subset

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 218

of information in the API call. The subset of information that F gives to S defines what informa-
tion Ghostor leaks to the adversary, and provides a clear definition of what anonymity means in our
setting. After receiving this information from F , S interacts with A to perform the corresponding
API call. Obviously, S cannot perform the operation exactly as the client specified because it does
not know the entire API call, only the subset of the API call that F gives it. The challenge is for S
to simulate the operation such that whatA sees is cryptographically indistinguishable from what if
would see if the same API call were made in the real world. The existence of S that can properly
simulate π

Payment
Ghostor toward A would show that Ghostor reveals no more to A than what F gives S

on each API call.
We allow A to adaptively choose the API calls issued by honest users, by instructing the client

P which API calls to make in the real world and specifying these API calls to F in the ideal world
(e.g., instructing a particular user to GET a particular object). Once each API call is completed,
A receives the return value of the API call (e.g., the object contents that are the result of a GET)
from P in the real world and F in the ideal world. To capture that Ghostor does not directly leak
this information to the adversary, our ideal world has A specify API calls directly to P in the real
world and F in the ideal world and receive the return values directly from P or F , bypassing
the simulator S to make API calls and receive responses. Thus, A is external to S . Having A
adaptively choose what API calls honest users issue and see their return values strengthens our
definition; it shows that our anonymity guarantees still hold if the adversary happens to observe
the output of some clients’ operations, through some side channel outside of the Ghostor system.
AlthoughA chooses the API calls issued by honest users,A cannot see the internal state of honest
users. In particular, A cannot access honest users’ secret keys.

For malicious and compromised users, A internally interacts with the server on their behalf,
without interacting with P in the real world or F in the ideal world. This is necessary because
a compromised user may collude with the server A and interact with storage in a way that is not
captured by any API call.

Figure A.1 provides a high-level summary and comparison of the real world and ideal world.

A.1.1.1 Map to Definition of Anonymity in Section 6.3.3

In Section 6.3.3, we explained Ghostor’s privacy guarantee in terms of a leakage function. The
leakage function in Section 6.3.3 is largely the same as the information that F gives to S on each
API call (Appendix A.1.3.2). There are a few minor differences, which we now explain. Timing
information is not included in Appendix A.1.3.2 because the model we use in our cryptographic
formalization does not have a notion of time. That said, the order in which the requests are pro-
cessed is given to S; it is implicit in the order in whichF sends messages to it. Finally, although not
explicit in Appendix A.1.3.2, S can infer how many round trips are performed between the client
and server in processing each operation. Because we do not model concurrent operations and there
is no client-side caching of data (Section 6.4.4), the adversary can infer how many round trips
are required from the client-server protocol (Section 6.7), so this does not reveal any meaningful
information.

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 219

(a) Real World. (b) Ideal World.

Figure A.1: Overview of Real World and Ideal World.

Our definition of anonymity matches the everyday use of the word “anonymity” because S
does not receive any user-specific information for operations issued by honest users on objects that
no compromised user is authorized to access. Furthermore, S does not see the membership of
the system (public keys of users) or even know how many users exist in the system, apart from
corrupt/malicious users.

A.1.1.2 Limitations of our Formalization

Although our cryptographic formalization is useful to prove Ghostor’s anonymity, there are some
aspects of Ghostor that it does not model. We use the notation π

Payment
Ghostor to describe our formaliza-

tion of Ghostor’s protocol from Section 6.7, including these differences. First, we do not directly
model the anonymous payment (e.g., Zcash) aspect of Ghostor. Instead, we assume the existence
of an ideal functionality for Zcash, FPayment, that can be queried to validate payment (i.e., learn
how much was paid and when). To denote that we are working in the FPayment-hybrid model, we
denote the Ghostor protocol used in the real world as π

Payment
Ghostor . Second, we do not directly model

network information (e.g., IP addresses) leaked to the server when clients connect, because this is
hidden by the use of an anonymity network like Tor (Section 6.9). Third, whereas the Ghostor sys-
tem allows operations to be processed concurrently (i.e., round trips of different operations may be
interleaved), our formalization π

Payment
Ghostor assumes that the Ghostor server processes each operation

one at a time (because P will only answer one request at a time). Fourth, we do not fully model
Ghostor’s integrity mechanisms, such as epochs, checkpoints, or the return value of obtain dig

ests. This is because Ghostor’s integrity guarantees can only be verified at the end of the epoch;
A may commit arbitrary integrity violations during an epoch. Therefore, it is not meaningful to
provide integrity guarantees for individual Ghostor operations. We analyze Ghostor’s integrity in

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 220

Appendix A.2.
Users may also be malicious (i.e., controlled by the adversary). In our formalization, the ad-

versary may compromise users, but we restrict the adversary to doing so statically. This means
that the adversary compromises users at the time of their creation. Specifically, the adversary may
not create an honest user, have that honest user perform operations, and then later compromise that
user.

A.1.2 Real World
In the real world, the client P interacts directly with the server A according to π

Payment
Ghostor .

To request P to perform an API call, A sends an Initiate message to P. In the Initiate message,
A can request P to perform the following API calls:
• create user()→ userID
• learn pk(userID)→ pk or ⊥
• create object(userID,ACL,contents, token)→ (objectID,digest) or ⊥
• set acl(userID,objectID,ACL,contents)→ digest or ⊥
• PUT(userID,objectID,contents)→ digest or ⊥
• GET(userID,objectID)→ (contents,digest) or ⊥
• obtain tokens(paymentID)→{tokeni}i or ⊥
• obtain digests(objectID)→ data or ⊥
Here, ⊥ is a symbol representing failure. This occurs if P detects an issue and returns an error. For
example, this happens if the server A denies service (e.g., server provides malformed messages or
object data that is not signed according to π

Payment
Ghostor).

In the above API, ACL is represented as a list of tuples, where each tuple contains a user and
a set of permission bits for that user. If padding is desired, additional tuples for the owner can be
added. The user can be identified by either a userID or a pk; allowing the user to be represented by
the pk allows A to add malicious users it created internally (who do not have userIDs) to the ACL
of an object.

The learn pk operation is not part of the Ghostor API (Section 6.2). We use it to model the
out-of-band exchange of public keys in Ghostor. The server A can use this operation to learn an
honest user’s public key, which it can then use to (internally) interact with a malicious user to add
that honest user to an object’s ACL.

In Ghostor, objects are identified by their PVK, so the objectID in Ghostor is the bits of the
PVK. We use objectID so that our definition is not tied to PVKs, which are specific to Ghostor’s
design.

For payment, we model Zcash as an ideal functionality FPayment, which allows A to make a
payment and obtain a paymentID, or validate a paymentID and learn how much was paid and when.

The Initiate message contains an opcode, specifying which operation to perform, and the ar-
guments to that operation. After receiving an Initiate message, P performs the operation. For a
create user operation, P generates a keypair for a user and a uniformly random userID for that
user, locally maintains the mapping from userID to keypair, and returns userID back to A. On a
learn pk operation, P gives A public key pk for the provided userID. For all other operations, P

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 221

interacts with A according to the protocol in Section 6.7, and gives the final result of the API call
(e.g., plaintext object contents in the case of GET) back to A.

A.1.3 Ideal World
We define an ideal functionality F for an anonymous object sharing system in the simulation
paradigm, which captures Ghostor’s privacy guarantee. Our notation and setup are as follows.
A may send an Initiate message to F , specifying an API call to be made on behalf of an honest
user. To perform the operation, F interacts with the simulator S, which simulates π

Payment
Ghostor toward

the server A based on the subset of each API call that F provides to Ghostor. At the end of the
interaction, F obtains a return value, which it gives to A. As in the real world, there exists a party
FPayment in the ideal world with which A can interact.

A.1.3.1 State Maintained by F

As F sees all create user and learn pk operations and their return values, it maintains a list of
all honest users A is aware of and their public keys. We call this structure the user table. Based
on the user table, F can tell whether a public key corresponds to an honest user; if it does not, it
assumes the public key corresponds to a malicious user that A crafted internally.

Similarly, as F sees all create object and set acl operations and their return values, it
maintains a list of all objects created by honest users and all ACLs that have been attempted to be
set for each object. We call this structure the permission table. In the discussion below, we say that
an object is tainted if either (1) it was not created by an honest user (i.e., if it was crafted byA), or
(2) it was created by an honest user but a malicious user has been on the ACL of the object, either
currently or in the past. Crucially, F identifies if an object is tainted or not based on its permission
table.

In general, F does not provide plaintext data to S for objects that are not tainted, but must
give plaintext data in return values given to A. When F receives plaintext object data m from A,
it generates a fresh identifier called a contentID for that data. contentID can, for example, be a
number chosen sequentially. The tuple (m,contentID) is stored by F , allowing F to later recover
m from the contentID. We call the set of tuples of the form (m,contentID) the content table.

Finally, F maintains a mapping from tokens obtained by honest users to an identifier sampled
uniformly at random. We call this mapping the token table and refer to a token’s random identifier
as its anonym. Each anonym is, by definition, unlinkable with the particular token it corresponds
to.

A.1.3.2 Description of F

When F receives an Initiate message from A, it performs some processing and then reveals to S
the opcode (except for create user) and the following information:

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 222

• For create user(), F generates a uniformly random userID for the user and gives it to A. For
this operation only, F gives nothing to S, not even the opcode. F updates its user table with the
new userID.

• For learn pk(userID), F looks in its user table to check if userID corresponds to a user who was
created with create user. If not, F returns ⊥. If so, F gives the message learn pk(userID)
to S. S responds with a pk, which F gives to A.

• For create object(userID,ACL,contents, token), F scans the ACL of the new object and iden-
tifies non-honest users using its user table. Then, it generates ACL′, a randomly shuffled list
consisting of the records from ACL that correspond to non-honest users. It also computes c,
the size (number of records) of the ACL. F looks up token in its token table to obtain a, the
corresponding anonym. If the object is tainted (which occurs if ACL contains at least one ma-
licious user), then F gives the message create object(ACL′,c,contents,a) to S. Otherwise,
F generates a fresh contentID and adds the entry (contents,contentID) to its content table, and
then F gives the message create object(ACL′,c,contentID, ℓ,a) to S, where ℓ is the length of
contents. S responds with the return value, and F checks if the operation was successful (if the
return value is not⊥). If so, F adds a new entry to its permission table with objectID, the creator
userID, and the ACL of the object. Finally, F gives the return value to A.

• For set acl(userID,objectID,ACL,contents), F scans the ACL and identifies non-honest users
using its user table. Then, it generates ACL′, a randomly shuffled list consisting of the records
from ACL that correspond to non-honest users. It also computes c, the size (number of records)
of the ACL. If the object was created by an honest user, F computes a bit b indicating whether
userID corresponds to a user authorized to perform a set acl operation on this object (which
is only true if that user created the object); it can find this information by checking its per-
mission table. If the object was not created by an honest user, then F gives the message
set acl(userID,objectID,ACL′,c,contents) to S. If the object was created by an honest user
but is tainted, then F gives the message set acl(objectID,ACL′,c,contents,b) to S. If the
object was created by an honest user and is not tainted, then F generates a fresh contentID
and adds the entry (contents,contentID) to its content table, and then F gives the message
set acl(objectID,ACL′,c,contentID, ℓ,b) to S, where ℓ is the length of contents. S responds
with the return value and F gives it toA. F adds ACL to its permission table as one of the ACLs
for the object corresponding to objectID.

• For PUT(userID,objectID,contents), F checks if the object corresponding to objectID was cre-
ated by an honest user by checking its permission table. If so, it computes a bit vector p⃗, with
one bit per current and prior ACL for the object, recording if it grants the user correspond-
ing to userID permission to perform a PUT. If the object was not created by an honest user,
then F gives the message PUT(userID,objectID,contents) to S. If the object was created by
an honest user but is tainted, then F gives the message PUT(objectID,contents, p⃗) to S. If the
object was created by an honest user but is not tainted, then F generates a fresh contentID
and adds the entry (contents,contentID) to its content table, and then F gives the message
PUT(objectID,contentID, ℓ, p⃗) to S, where ℓ is the length of contents. S responds with the return
value and F gives it to A.

• For GET(userID,objectID), F checks if the object corresponding to objectID was created by an

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 223

honest user by checking its permission table. If so, it computes a bit vector p⃗, with one bit
per current and prior ACL for the object, recording if it grants the user corresponding to userID
permission to perform a GET. If the object was not created by an honest user, then F gives the
message GET(userID,objectID) to S. If the object was created by an honest user, then F gives
the message GET(objectID, p⃗) to S. S responds with either ⊥ or with a two-element tuple where
the second element is the digest and the first element is either plaintext object contents or a
contentID. If the return value contains a contentID, it is translated to plaintext using the content
table, and the resulting return value is given to A.

• For obtain tokens(paymentID), F gives the message obtain tokens(paymentID) to S. S
responds with the return value, and F gives it to A. If tokens are returned, F adds entries to its
token table for those tokens with fresh anonyms generated uniformly at random.

• For obtain digests(objectID), F gives the message obtain digests(objectID) to S. S re-
sponds with the return value, and F gives it to A.

A.1.4 Security Definition
Now that we have defined the Real and Ideal Worlds, we are ready to precisely state what it means
for Ghostor to be anonymous. We denote the security parameter as κ .

Definition 3 (Anonymous Data-Sharing System). Let π be the protocol for a data-sharing system
(i.e., it provides clients with the API given in Appendix A.1.2). For an adversary A that outputs a
single bit, let REALπ,A(1κ) be the random variable denoting A’s output when interacting with the
real world (Appendix A.1.2). For a simulator S and an adversary A that outputs a single bit, let
IDEALS,A(1κ) be the random variable denoting A’s output when interacting with the ideal world
(Appendix A.1.3).

We say that π is anonymous if there exists a non-uniform algorithm S probabilistic polynomial-
time in κ such that, for every non-uniform algorithm A probabilistic polynomial-time in κ that
outputs a single bit, the probability ensemble of REALπ,A(1κ) over κ is computationally indistin-
guishable from the probability ensemble of IDEALS,A(1κ) over κ .

That is,
∃S ∀A

{
REALπ,A(1κ)

}
κ

c≡
{

IDEALS,A(1κ)
}

κ

Based on this definition, we state the following security guarantee for Ghostor.

Theorem 4 (Privacy in Ghostor). Suppose that in Ghostor, the data encryption scheme is seman-
tically secure [194], the encryption scheme for key list entries in the object header is semantically
secure [194] and key-private [43], payment tokens are blind [105, 95], FPayment is an ideal func-
tionality for Zcash, and signatures are existentially unforgeable [194]. Then π

Payment
Ghostor is anonymous

as defined in Definition 3.

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 224

A.1.5 Proof of Ghostor’s Privacy
We prove Theorem 4 by constructing a simulator S for Ghostor that, given the information pro-
vided by F on each API call, interacts with A in a way A cannot distinguish the real world from
the ideal world. For readability, we use the language “A cannot distinguish the real world from the
ideal world” throughout this section to mean the cryptographic equivalence stated in Definition 3
applied to π

Payment
Ghostor , namely {REAL

π
Payment
Ghostor ,A

(1κ)}κ

c≡ {IDEALS,A(1κ)}κ .
S interacts with A over multiple round trips just like a Ghostor client would. F is designed

not to give S any user identities for untainted objects, yet S needs to interact with A as some user.
The key idea is that S creates a single dummy user keypair, and performs interaction with A on
behalf of honest users on untainted objects using that keypair. Ghostor is designed such that the
server cannot distinguish this from a separate keypair being consistently used for each honest user,
for untainted objects.

A.1.5.1 State Maintained by S

To process a learn pk API call, S generates a keypair (pk,sk) for a particular userID. S must
remember the association between the user and the keypair, so it stores the association in a keypair
table. This structure is similar to F’s user table, but it has two major differences: (1) it includes
the pair (pk,sk) for each user instead of just the public key pk, and (2) it only includes users for
which a learn pk operation has been issued.

On certain API calls (e.g., PUT), S receives a contentID from F , but needs to giveA a message
that is indistinguishable from what it would receive from an actual client. Therefore, S generates a
fake ciphertext fℓ—an encryption of a “zero string” of the same length ℓ as the plaintext message—
and interacts with A using this fake ciphertext. When it does this, S locally stores a tuple of the
form (contentID, fℓ) so that it can later associate that particular fake ciphertext fℓ with the original
content ID (e.g., when performing a GET operation on the object). We call the set of tuples of the
form (contentID, fℓ) the ciphertext table.

To process a create object API call, S receives the anonym a corresponding to the token
that was used, but not the token itself. While tokens are indistinguishable as long as they are used
only once,A may reuse tokens, in which case S will receive the same anonym more than once. To
ensure that the same token is reused when interacting with A, just as A would perceive in the real
world, S maintains an anonym table mapping anonyms to tokens provided by A. This mapping
is different from F’s token table; the same token may correspond to different anonyms in the two
tables. Furthermore, S maintains a free token pool consisting of tokens issued by A that do not
correspond to an entry in the anonym table.

Because S processes create object and set acl operations, it knows the keys (Table 6.2)
associated with each ACL written to each object created by an honest user. S maintains a header
table that maps each object header (consisting of fake and real ciphertexts) that S sends to the
server to the associated keys for interacting with that object.

Finally, S generates the dummy keypair (pk0,sk0) which is used as a stand-in for honest users
that the adversary A cannot identify.

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 225

A.1.5.2 Description of S

We now explain how S interacts with A upon receiving information from S. In the itemization
below, the parameters to each API call are the data that F gives to S, not the data that A gives to
F . For all operations where S interacts withA, if the serverA deviates from the protocol in a way
that is immediately detectable by the client (e.g., a signature does not check) then S chooses ⊥ as
the return value and gives it to F .
• For learn pk(userID), S checks if userID already has an entry in its keypair table. If so, it looks

up the public key pk for userID and gives the return value pk to S. If not, it generates a new user
keypair (pk,sk), adds the entry (userID,(pk,sk)) to its keypair table, and gives the return value
pk to S.

• For create object(ACL′,c,contents,a), S checks its anonym table to see if a already has an
entry. If so, it retrieves the corresponding token. If not, it chooses a token uniformly at random
from the free token pool, removes it from the pool, and adds the entry (a, token) to its anonym
table. S samples fresh keys for the new object header h. To construct h’s key list, it (1) initializes
the key list with entries based on the records in ACL′, (2) pads h’s key list to a length of c by
encrypting zero strings of the same length as a normal key list entry using the dummy public key
pk0, and (3) randomly shuffles the key list entries in h. After constructing h, it adds an entry to
its header table containing h and the freshly sampled keys. Then, it interacts with A to perform
a create object operation, following the real-world protocol with the following changes: (1)
token is used for payment, and (2) h is used as the object header. The contents of the object are
initialized to contents. S updates its header table by adding an entry with the object header and
the object keypairs generated to perform this operation. If the operation completes successfully,
S returns (PVK,digest) to F , where PVK is the permission verifying key that S generated in the
course of interacting with A to create the object and digest is the digest returned by the server.

• For create object(ACL′,c,contentID, ℓ,a), S checks its anonym table to see if a already has
an entry. If so, it retrieves the corresponding token. If not, it chooses a token uniformly at
random from the free token pool, removes it from the pool, and adds the entry (a, token) to its
anonym table. S samples fresh keys for the new object header h. To construct h’s key list, it (1)
initializes the key list with entries based on the records in ACL′, (2) pads h’s key list to a length of
c by encrypting zero strings of the same length as a normal key list entry using the dummy public
key pk0, and (3) randomly shuffles the key list entries in h. After constructing h, it adds an entry
to its header table containing h and the freshly sampled keys. S generates a zero string of length
ℓ, encrypts it with the freshly sampled OSK to obtain fℓ, and adds the entry (contentID, fℓ) to its
ciphertext table. Then, it interacts with A to perform a create object operation, following the
real-world protocol with the following changes: (1) token is used for payment, (2) h is used as
the object header, and (3) fℓ is used as the ciphertext of the object contents. S updates its header
table by adding an entry with the object header and the object keypairs generated to perform this
operation. If the operation completes successfully, S returns (PVK,digest) to F , where PVK is
the permission verifying key that S generated in the course of interacting with A to create the
object and digest is the digest returned by the server.

• For set acl(userID,objectID,ACL′,c,contents), S samples fresh keys for the new object header

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 226

h. To construct h’s key list, it (1) initializes the key list with entries based on the records in ACL′,
(2) pads h’s key list to a length of c by encrypting zero strings of the same length as a normal
key list entry using the dummy public key pk0, and (3) randomly shuffles the key list entries in
h. After constructing h, it adds an entry to its header table containing h and the freshly sampled
keys. Then it looks up the keypair (pk,sk) corresponding to userID in its keypair table. If that
userID is not found in the keypair table, then S interacts withA but aborts after downloading the
object header from A, as would a normal Ghostor client upon failure to find a suitable entry in
the object header. If userID was found in the keypair table, then S interacts with A to perform
a set acl operation on the object corresponding to objectID, following the real-world protocol
with the following changes: (1) h is used as the new object header, and (2) given the existing
header h′ provided byA, S first checks its header table to obtain the object keys (including PSK),
and if that fails, tries to use the keypair (pk,sk) to obtain those keys from h′ (or abort, as before,
if no suitable entry in the object header is found). If the operation completes successfully, S
obtains the return value digest from A and gives it to F .

• For set acl(objectID,ACL′,c,contents,b), S samples fresh keys for the new object header h.
To construct h’s key list, it (1) initializes the key list with entries based on the records in ACL′,
(2) pads h’s key list to a length of c by encrypting zero strings of the same length as a normal
key list entry using the dummy public key pk0, and (3) randomly shuffles the key list entries in
h. After constructing h, it adds an entry to its header table containing h and the freshly sampled
keys. If b indicates that the user is not authorized to perform this operation, then S interacts
withA but aborts after downloading the object header fromA, as would a normal Ghostor client
upon failure to find a suitable entry in the object header. If b indicates that the user is authorized
to perform this operation, then S interacts with A to perform a set acl operation on the object
corresponding to objectID, following the real-world protocol with the following changes: (1) h
is used as the new object header, and (2) after obtaining the previous header from A, S obtains
PSK by looking up the header provided by A in the header table. If the operation completes
successfully, S obtains the return value digest from A and gives it to F .

• For set acl(objectID,ACL′,c,contentID, ℓ,b), S samples fresh keys for the new object header
h. To construct h’s key list, it (1) initializes the key list with entries based on the records in ACL′,
(2) pads h’s key list to a length of c by encrypting zero strings of the same length as a normal
key list entry using the dummy public key pk0, and (3) randomly shuffles the key list entries in
h. After constructing h, it adds an entry to its header table containing h and the freshly sampled
keys. S generates a zero string of length ℓ, encrypts it with the freshly sampled OSK to obtain
fℓ, and adds the entry (contentID, fℓ) to its ciphertext table. If b indicates that the user is not
authorized to perform this operation, then S interacts with A but aborts after downloading the
object header fromA, as would a normal Ghostor client upon failure to find a suitable entry in the
object header. If b indicates that the user is authorized to perform this operation, then S interacts
with A to perform a set acl operation on the object corresponding to objectID, following the
real-world protocol with the following changes: (1) h is used as the new object header, (2) after
obtaining the previous header from A, S obtains PSK by looking up the header provided by A
in the header table, and (3) fℓ is used as the ciphertext of the object contents. If the operation
completes successfully, S obtains the return value digest from A and gives it to F .

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 227

• For PUT(userID,objectID,contents), S looks up the keypair (pk,sk) corresponding to userID in
its keypair table. If that userID is not found in the keypair table, then S interacts with A but
aborts after downloading the object header from A, as would a normal Ghostor client upon
failure to find a suitable entry in the object header. If userID was found in the keypair table, then
S interacts withA to perform a PUT operation on the object corresponding to objectID, following
the real-world protocol with the following change: given the existing header h′ provided byA, S
first checks its header table to obtain the object keys (including WSK and OSK), and if that fails,
tries to use the keypair (pk,sk) to obtain those keys from h′ (or abort, as before, if no suitable
entry in the object header is found). The object contents are set to contents. If the operation
completes successfully, S obtains the return value digest from A and gives it to F .

• For PUT(objectID,contents, p⃗), S interacts with A to perform a PUT operation on the object
corresponding to objectID, following the real-world protocol with the following change. After
the existing object header is provided by A, S checks p⃗ to see if the user has permission to
perform a PUT according to the existing header provided by A. If not, S aborts the operation, as
would a normal Ghostor client upon failure to find a suitable entry in the object header. If so, S
obtains the object keys, including WSK and OSK, by looking up the existing header provided by
A in the header table and then completes the operation, setting the object contents to contents.
If the operation completes successfully, S obtains the return value digest from A and gives it to
F .

• For PUT(objectID,contentID, ℓ, p⃗), S interacts with A to perform a PUT operation on the object
corresponding to objectID, following the real-world protocol with the following change. After
the existing object header is provided by A, S checks p⃗ to see if the user has permission to
perform a PUT according to the existing header provided by A. If not, S aborts the operation, as
would a normal Ghostor client upon failure to find a suitable entry in the object header. If so, S
obtains the object keys, including WSK and OSK, by looking up the existing header provided by
A in the header table. S generates a zero string of length ℓ, encrypts it with the freshly sampled
OSK to obtain fℓ, and adds the entry (contentID, fℓ) to its ciphertext table. Then S completes the
operation, using fℓ as the new object content ciphertext. If the operation completes successfully,
S obtains the return value digest from A and gives it to F .

• For GET(userID,objectID), S looks up the keypair (pk,sk) corresponding to userID in its keypair
table. If that userID is not found in the keypair table, then S interacts with A but aborts after
downloading the object header from A, as would a normal Ghostor client upon failure to find a
suitable entry in the object header. If userID was found in the keypair table, then S interacts with
A to perform a GET operation on the object corresponding to objectID, following the real-world
protocol with the following change: given the existing header h′ provided by A, S first checks
its header table to obtain the object keys (including RSK and OSK), and if that fails, tries to
use the keypair (pk,sk) to obtain those keys from h′ (or abort, as before, if no suitable entry in
the object header is found). If the operation completes successfully, S obtains the return value
(contents,digest) from A and gives it to F .

• For GET(objectID, p⃗), S interacts withA to perform a GET operation on the object corresponding
to objectID, following the real-world protocol with the following changes: (1) After the existing
object header is provided by A, S checks p⃗ to see if the user has permission to perform a GET

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 228

according to the existing header provided by A. If not, S aborts the operation, as would a
normal Ghostor client upon failure to find a suitable entry in the object header. If so, S obtains
the object keys, including RSK and OSK, by looking up the existing header provided by A
in the header table. (2) Once S obtains the ciphertext c of the object contents and digest, S
looks in its ciphertext table to obtain the corresponding contentID, and gives the return value
(contentID,digest) toF . If S fails to find a matching entry in the ciphertext table (which happens
if c is not a fake ciphertext), then S decrypts c using OSK to obtain m, and gives the return value
(m,digest) to F .

• For obtain tokens(paymentID), S interacts with A to perform an obtain tokens operation,
providing paymentID as input. S obtains the return value as a result of interacting with A. If it
is not ⊥, then S adds the tokens to its free token pool. S gives the return value to F .

• For obtain digests(objectID), S interacts with A to perform an obtain digests operation,
providing objectID as input. S obtains the return value as a result of interacting withA and gives
it to F .

A.1.5.3 Remarks

On GET and PUT operations, F reveals to S a bit vector p⃗ indicating whether the user is authorized
according to each ACL, past and present, of the object. But S only uses one bit from this vector,
namely the one corresponding to the header that the server uses in the protocol. We can close this
gap by generalizing our formulation of the ideal world to allow F to participate in the individual
round trips between S and A. Instead of providing S with p⃗ up front, F can wait until S receives
a header from A, and then only reveal one bit to S indicating if the user is authorized according to
the ACL corresponding to the particular header that S received. We decided not to do this in our
formulation for the sake of simplicity.

Additionally, if contentIDs are allocated sequentially, based on the API calls that F has for-
warded to S , then F can avoid giving the contentID to S. This is because S can also keep track of
how many operations it has completed, and calculate the contentID based on this count to match
the one that F would have given it. Again, we did not do this in our formulation for the sake of
simplicity.

A.1.5.4 Proof Sketch of Indistinguishability

Now, we complete the proof of Theorem 4 by showing that, for the simulator S described above,
no adversary A can distinguish the real world from the ideal world.

Proof. We will use a sequence of seven hybrid setups to show that noA can distinguish interacting
with the ideal world from interacting with the real world. H0 is equivalent to the real-world setup,
and H6 is equivalent to the ideal-world setup; below we show that, for all i, A cannot distinguish
interacting withHi from interacting withHi+1 with non-negligible probability (i.e., the probability
ensemble of A’s output when interacting with Hi is computationally indistinguishable from the
probability ensemble of A’s output when interacting with Hi+1). In a true hybrid argument, only

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 229

one operation can be modified at a time; our hybrids in the proof sketch below should be interpreted
as key stages rather than individual hybrids.
HybridH0. This is exactly the real-world setup in Appendix A.1.2.
Hybrid H1. This is the same as H0, except that we rename P to S . S is responsible for running
the real-world protocol to interact with Ghostor based on the full information provided in the API
calls. A interacts with FPayment as before.

The messages observed by A are exactly as before, so A cannot distinguishH0 fromH1.
HybridH2. This is the same asH1, except that we now introduce the ideal functionality F . F , in
this hybrid, just relays messages back and forth between the adversary A and the simulator S.

Again, the messages observed by A are distributed exactly as before, so A cannot distinguish
H1 fromH2.
Hybrid H3. This is the same as H2, except for the following differences: (1) S maintains the
keypair table and header table, (2) F maintains the user table and permission table and gives b
or p⃗ to S instead of userID for objects created by honest users, (3) create user and learn pk

operations are processed as in the ideal world, and (4) S uses the dummy keypair (pk0,sk0) to
interact on behalf of honest users with objects created by honest users.

Although S now relies on lookups in the header table based on headers provided by A to
interact with objects created by honest users, the lookups are guaranteed to succeed because the
object header is signed with PSK, which A does not have for objects created by honest users.
Thus, if the adversary attempts to produce a novel header for which the lookup would fail, for an
object created by an honest user, it would have to forge a signature, which it cannot do except with
negligible probability due to the existential unforgeability of the signature scheme. Recall that, if
A were to produce a header that is not properly signed, S would abort the operation, as would a
real-world client, and return ⊥ to F .

From A’s perspective, all messages it sees are identically distributed with H2, except that
for objects created by honest users, entries in the object header corresponding to ACL entries
corresponding to honest users are encrypted under the dummy key pk0 instead of honest users’
keys. The key-privacy of the encryption scheme used for object header entries guarantees that A
cannot distinguishH2 fromH3.
Hybrid H4. This is the same as H3, except for the following differences: (1) F computes ACL′

and c and gives those to S instead of ACL, and (2) S, when creating the corresponding object
header to use with the real-world protocol, pads the key list to size c using encryptions of zero
under the dummy key pk0. As before, S uses its header table to properly interact with the server
on behalf of honest users.

The semantic security of the encryption scheme used for ACLs guarantees that A cannot dis-
tinguishH3 fromH4.
Hybrid H5. This is the same as H4, except for the following differences: (1) F maintains its
content table and replaces object contents for untainted objects with contentIDs and gives only
contentID and ℓ to S for untainted objects and (2) S maintains its ciphertext table and uses fake
ciphertexts when interacting with A for operations where F gives it only contentID and ℓ.

Although S now relies on lookups in the ciphertext table based on ciphertexts provided byA to
interact with untainted objects, the lookups are guaranteed to succeed because the object contents

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 230

are signed with WSK, whichA does not have for untainted objects. Thus, if the adversary attempts
to produce a novel object content ciphertext for which the lookup would fail, for an untainted
object, it would have to forge a signature, which it cannot do except with negligible probability
due to the existential unforgeability of the signature scheme. Recall that, if A were to produce
an object content ciphertext that is not properly signed, S would abort the operation, as would a
real-world client, and return ⊥ to F .

Once again, semantic security of the encryption scheme used to encrypt object contents guar-
antees that A cannot distinguishH4 fromH5.
Hybrid H6. This is the same as H5, except for the following differences: (1) S maintains its
anonym table and free token pool and (2) F maintains its token table and only reveals the anonym
to S when tokens are spent in API calls.

The blindness property of the blind signature scheme guarantees that A cannot distinguishH5
fromH6.

A.2 Ghostor’s Integrity Guarantee
In this appendix, we state the integrity guarantee provided by Ghostor.

A.2.1 Linearizability
Before we formalize Ghostor’s VerLinear guarantee, we define linearizability as a consistency
property. Linearizability is well-studied in the systems literature [221, 191], and providing a com-
prehensive survey of this literature and a fully general definition is out of scope for this dissertation.
Here, we aim to define linearizability in the context of Ghostor, to help frame our contributions.

Definition 4 (Linearizability). Let F be a set of objects stored on a Ghostor server, and let U be a
set of users who issue read and write operations on those objects. The server’s execution of those
operations is linearizable if there exists a linear ordering L of those operations on F, such that the
following two conditions hold.
1. The result of each operation must be the same as if all operations were executed one after the

other according to the linear ordering L.
2. For every two operations A and B where B was dispatched after A returned, it must hold that B

comes after A in the linear ordering L.

In Ghostor, an object’s digest chain implies a linear ordering L of GET and PUT operations,
as follows.
Linear ordering L implied by a digest chain. The linear ordering L to which the server commits
is based on the digest chain as follows. First, we assign a sequence number to write operations
according to the order of their PREPARE digests in the digest chain. Next, we bind each operation
to a digest in the digest chain as follows:
• Each read is bound to the digest representing that read.

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 231

• A write with sequence number i is bound to the first COMMIT digest corresponding to a write
whose sequence number is at least i. This is either the COMMIT digest for this write, or
the COMMIT digest for a concurrent write that wins over this one based on the conflict
resolution policy in Section 6.5.4.

Assuming the digest chain is well-formed, each write will be bound to a COMMIT digest that
is after its PREPARE digest and before or at its COMMIT digest. Finally, we generate the linear
ordering as follows:
• If two operations are bound to different digests, then they appear in L in the same order as the

digests appear in the digest chain.
• If two writes are bound to the same digest, then they are ordered in L according to their sequence

numbers.
For example, suppose the digest chain contains

(R1,P1,R2,P2,R3,C2,R4,P3,R5,C1,R6,C3,R7,P4,R8,C4,R9)

where R denotes a read digest, P denotes a PREPARE digest, and C denotes a COMMIT digest. The
corresponding linear ordering of operations is

L = (R1,R2,R3,W1,W2,R4,R5,R6,W3,R7,R8,W4,R9)

where R denotes a read operation and W denotes a write operation.

A.2.2 Verifiable Linearizability
We begin by stating and proving Theorem 5 below, which specifies the achieved guarantees when
some users perform the verification procedure for an epoch. Then, we present the VerLinear
property of Ghostor as Corollary 1, a special case of Theorem 5. We use this approach because
Theorem 5, despite being a more general statement, has fewer edge cases than Corollary 1, and
we feel its proof is easier to understand in isolation. The statement of Corollary 1 maps directly to
our informal definition of verifiable linearizability in Section 6.3; the key differences are only that
Corollary 1 is explicit that security depends on collision resistance of Ghostor’s hash function and
existential unforgeability of Ghostor’s signature scheme, introduces variables that are useful in the
proof, and states the security guarantee as the contrapositive of Guarantee 1.

Theorem 5 (Epoch Verification Theorem). Suppose that the hash function H used by Ghostor is
a collision-resistant hash function [194] with security parameter κ and all users see the same list
of checkpoints published to the blockchain. Let B be a non-uniform adversary that is probabilistic
polynomial-time in κ performing an active attack on the server. Let E be a list of consecutive
epochs. For each epoch e ∈ E, let Ue be a set of users for whom the verification procedure for
a particular object F detected no problems during epoch e, and let Oe be the set of operations
performed by those users on F. If Ue ̸= ∅ (i.e., Ue is nonempty) for all e ∈ E, then there exists,
with probability at least 1− µ(κ), where µ denotes a negligible function, a linear ordering L of
operations in O =

⋃
e∈E Oe and possibly some other operations reflected in the digest chain, such

that for the users in U and their operations O, the following two statements hold.

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 232

1. The result of each successful operation is the same as if all operations were executed one after
the other according to L.

2. For every two operations A and B where B was dispatched after A returned, B comes after A in
L.

Proof. We will perform a reduction to show that if there exists an adversary B that can cause one
of the two conditions to be violated, then there exists an adversaryA that can violate the collision-
resistance of H with non-negligible probability. For concreteness, suppose that B performs such
an attack with non-negligible probability δ (κ) (so that the condition in the theorem holds with
probability 1− δ (κ)). We will explain how A can succeed in finding a hash collision with non-
negligible probability.

By the nature of the attack, B is able to violate the property in the theorem statement, while
remaining undetected by users in U . Observe that B’s attack must fall into at one of four cases.
1. There exists at least one object such that B does not commit to a valid digest chain for an epoch,

for some honest user.
2. There exists at least one object such that B commits to a different digest chain for different

honest users.
3. There exists an operation on an object f ∈ F whose result is different from the result that would

be obtained by applying the operations one after the other in the linear ordering implied by f ’s
digest chain.

4. There exist operations a and b on the same object, where a was issued after b completed, but a
precedes b in the linear ordering implied by the digest chain.

In particular, if B’s attack does not fall into one of these cases, then the locality property proved in
Section 3 of [221] guarantees that B’s behavior is consistent with the theorem statement (lineariz-
ability of operations in L). We will show that no matter which of the above four cases describes
B’s attack, A can find a hash collision.
Case 1. In this case, B returns an invalid/malformed linear ordering to a user when the user per-
forms an obtain digests operation. The ordering could be invalid because the digest’s signature
is missing or malformed, or the digests do not form a well-formed chain. This also includes the
case where a user’s operation is missing from the digest chain. Because we require that Ue ̸= ∅
for all e ∈ E, this will be detected with probability 1. Therefore, we do not consider this case.1

Case 2. In this case, the adversary returns different histories to different users. Because the
histories differ, they cannot be the same in all epochs; we consider an epoch e in which they
differ. This allows us to confine our argument to a single epoch. In particular, there exist two obta

in digests operations on the same object during epoch e, for which B returns different histories
in a way that is not detectable.2 We define two subcases.

1For the purpose of this proof, it does not matter which party signs the digest, only that the signature is not missing
or malformed. In the actual Ghostor system, only an authorized user can produce the signature due to the existential
unforgeability of the signature scheme; this theorem does not rely on this fact, but Corollary 1 does.

2If for all e ∈ E where the histories differ, only a single call is made to obtain digests, then the server cannot
commit to multiple histories, and therefore cannot attack the protocol in this way; therefore, we do not consider this
case.

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 233

In the first subcase, the leaf of the Merkle tree, containing the hash of the final digest for the
object in the epoch, is different for each call. However, given our consistency assumption for the
blockchain, each user will see the same Merkle root. Furthermore, because the leaves of the Merkle
tree are sorted and each intermediate node indicates the range of objects in each of its children,
each node in the root-to-leaf path unambiguously specifies the hash of the next node in the path.
Because the first element (root) is the same for the paths returned in each call to obtain digests,
but the last element is different, there must be a hash collision somewhere along the path. A finds
this collision.

In the second subcase, both calls to obtain digests see the same Merkle leaf and therefore
the same hash of the final digest, but see different digest chains regardless. Observe that the last
digest and first digest, for this epoch’s digest chain, are fixed based on the checkpoint for this epoch
and the checkpoint for the previous epoch, which the client can obtain from the server (to make the
argument simpler, we consider the final digest of the previous epoch to also be the first digest of
the current epoch). Furthermore, the user knows the hashes of these digests, from the checkpoints
on the blockchain. Therefore, if first or last digests of the digest chains returned to both calls to ob

tain digests differ, then A can use them to find a hash collision (since their hashes must match
the Merkle leaves). If these digests match, then the intermediate digests must differ. To find a
collision in this case, A walks backwards along the digest chains, until they differ. A can use the
digests on each chain, at the point that they differ, to obtain a hash collision.
Case 3. Observe that the result of any committed write is “Success.” Therefore, we can restrict
this case to reads that return the wrong value.

Suppose that a read operation in Oe (for some e ∈ E) returned a value that is not consistent
with the linear ordering for the object. In order for the operation to be considered successful, the
Hashdata value in the signed digest received by the client must match the hash of the returned
object contents. Furthermore, the verification procedure guarantees that the Hashdata value in each
digest corresponding to a read matches the Hashdata value in the latest write at that time—it does
this by checking that Hashdata never changes as the result of a read, and that it only changes in
the COMMIT digests of winning writes. It follows that the incorrect value returned by the read
operation, and the correct value that should have been returned (which was written by the latest
write), have the same hash. A can present these two values as a hash collision.
Case 4. If an operation is missing from the digest chain entirely, this will be detected by the client
that issued the operation. We now consider the case where the digests appear in the wrong order.
Concretely, let op1 and op2 be two operations, where op2 is issued after op1 completed. If op1 is a
PUT, then d1 is its COMMIT digest; otherwise, if op1 is a GET, d1 is the single digest for that GET.
If op2 is a PUT, then d2 is its PREPARE digest; otherwise, if op2 is a GET, d2 is the single digest for
that GET. Because op2 is issued after op1 completed, their digests should unambiguously appear in
order in the digest chain: d1 appears before d2. Now, suppose d1 appears sometime after d2, so
that the linear ordering is inconsistent with execution order. In this case, A waits until the users
have run the verification procedure, and then rewinds B’s state to a point after B has committed
op1, but before op2 has been issued. The client places a fresh nonce in d2 this time around, but
otherwise execution is resumed as before. A waits until the user runs the verification procedure
again, and it compares the digest chains produced by B’s execution both times. Because all that

APPENDIX A. GHOSTOR’S SECURITY GUARANTEES 234

changed is the client’s nonce in d2, and it is taken from the same uniform random distribution,
B’s probability of performing a successful attack is still non-negligible. So the probability that B
performed a successful attack in both distributions is non-negligible (δ (κ)2). In this case,A walks
the digest chains backward starting at d1; the digest chains must differ at some point, because d2
precedes d1 in the first history, d2 has a different random nonce in the second history, and the digest
for d1 is the same in both histories. This way, A can obtain a hash collision with non-negligible
probability.

Although the two conditions in Theorem 5 are the same as those in Definition 4, Theorem 5
does not guarantee linearizability of operations in O (operations performed by users in U). This
is because the linear ordering L in Theorem 5 includes additional operations in the system beyond
those in O, which could be digests that the server replayed or operations performed by users who
did not run the verification procedure. This motivates us to state Corollary 1, which specifies under
what conditions a set of users can be sure that their operations were processed in a linearizable way.
Because our definition is now in line with linearizability (Definition 4), we can leverage the locality
property of linearizability [221] to state the corollary in terms of a single object.

Corollary 1 (Verifiable Linearizability). Suppose that the hash function H used by Ghostor is
a collision-resistant hash function [194], all users see the same list of checkpoints published to
the blockchain, and the signature scheme is existentially unforgeable [194]. For any adversary
probabilistic polynomial-time in κ , any object F, and any list E of consecutive epochs: suppose
that for each epoch e∈ E, the set Ue of users who ran the verification procedure on F during epoch
e (1) is nonempty (i.e., Ue ̸=∅) and (2) contains all users who wrote the object F during epoch e
(and possibly other users too). With probability at least 1− µ(κ), where µ denotes a negligible
function, if no user detects a problem when running the verification procedure, then the server’s
execution of operations in O=

⋃
e∈E Oe is linearizable, where Oe is the set of operations performed

by users in Ue during epoch e.

Proof. By Theorem 5, we know that there exists a linear ordering L containing all operations in
O plus some other operations on F (that are reflected in the digest chain) such that Properties
#1 and #2 in the statement of Theorem 5 hold for operations in O, with respect to L. Because
each Ue contains all users who wrote f during epoch e, and the signature scheme is existentially
unforgeable, we know that all operations in L that are not in O must be reads. Let ℓ denote the
subset of L consisting only of operations in O. Observe that Properties #1 and #2 in the statement
of Theorem 5 also hold for the operations in O with respect to ℓ. This is because (1) the only
operations in L but not ℓ are reads, so the result of each operation in ℓ, when operations are executed
one after the other, is the same for both L and ℓ, and (2) ℓ preserves the relative ordering of
operations in L (i.e., any two operations that appear in ℓ appear in L in the same order.). Because ℓ
contains only operations in O and it satisfies Properties #1 and #2, it fulfills Definition 4. Therefore,
the execution of operations in O is linearizable.

