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ABSTRACT OF THE DISSERTATION

Growth and Characterization of
Skyrmion-hosting Magnetic Thin Films

By

Brian J. Youngblood

Doctor of Philosophy in Physics

University of California, Irvine, 2015

Professor Ilya N. Krivorotov, Chair

Magnetic skyrmions are particle-like knots of magnetization which are both highly

stable under the proper conditions and at the same time very easy to move and ro-

tate. These properties make them very promising as a basis for future spin electronic

information storage and manipulation. At the same time, these structures exhibit

interesting fundamental physics including emergent mass and electrodynamics and

phase transitions including a crystalline state as well as being low-dimensional ana-

logues of a model of low-energy sub-atomic particles. Accessibility to studying these

objects is hampered by the fact that most skyrmion-hosting materials have to be

grown either as single crystals or by molecular beam epitaxy (MBE). Also, predictive

studies are currently mostly restricted to full numerical simulations because of the

intractability of the equation describing skyrmion structure and a dearth of analytical

approximations.

In this dissertation, I present work on the sputter deposition of the skyrmion host-

ing chiral magnetic material MnSi. MnSi was the first material observed to ex-

hibit a skyrmion state but it has not been made by sputtering until now. I demon-

strate by x-ray diffractometry and electrical measurements that the sputter-deposited

x



MnSi exhibits properties similar to those of MBE-grown thin films including hosting

skyrmions. This will hopefully improve the accessibility of experimental studies of

MnSi and skyrmions. I also present an approximation for skyrmion spatial profiles

which can predict skyrmion structure in a physically interesting range of material pa-

rameters and external magnetic fields. Using this structural approximation it should

be possible to predict skyrmion stability and behavior under different conditions more

rapidly than is possible with numerical simulations.
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Chapter 1

Introduction

As consumer devices approach the physical limits of silicon technology in terms of

miniaturization and efficient operation [1, 2] there has been strong and steadily grow-

ing interest in alternatives to semiconductor-based transistor logic and fast-access

storage [3]. Due to the prevalence and continued popularity of mobile devices and

the importance of energy conservation, one key feature of any competitive technology

will be low energy consumption. Two principal ways of accomplishing this goal are to

have memory or logic elements which do not require continuous or rapidly repeated

application of power to maintain their state (such elements are often referred to as

“non-volatile”) and/or elements which require little power to switch from one mea-

sureable state to another. A problem arises in that these two characteristics appear

at first glance to be antithetical: A low energy barrier for state switching or manipu-

lation typically implies low stability and conversely a system in a stable state almost

by definition requires a significant amount of energy to change.

One way around this fundamental problem is to use manipulable, stable objects and

describe the state of the system in terms of spatial arrangements of these objects. A

1



good example of this is the magnetic domain wall “racetrack memory” invented by

S.S.P. Parkin [4, 5, 6] and currently pursued by him and other researchers at IBM. In

this design, data is stored as the presence or absence of a domain wall in a magnetic

nanowire. These domain walls are written and read by current induced spin transfer

torques applied to the nanowire via (e.g.) ferromagnetic leads. The whole sequence

of domain walls can be moved at high speeds by currents in the nanowire resulting in

orders of magnitude faster data access than in current magnetic hard drive storage

technology.

The downside of this impressive technology is the relatively high current density

required to induce domain wall motion (of order 1012 Am−2 [5]). This high current

density results in undesirably large power consumption and heat dissipation, even in

an all metal device, since both increase as the square of the current density. The

problem of high current densities plagues many other spintronic technologies such as

spin valve and magnetic tunnel junction based ST-MRAM (magnetic random access

memory, examples of which are already produced commercially [7]) that share the

property of non-volatility (one of their main attractions) with the racetrack memory

but require of order 1010 Am−2 to switch the magnetization direction of their free

magnetic layer [8].

A very promising alternative to a magnetic domain wall for the “stable object” dis-

cussed above is a magnetic skyrmion [9, 10], a long predicted [11] but only recently

realized [12] magnetic structure. Skyrmions are arrangements of electron spins (see

Fig. 1.1) which share features with both magnetic vortices and domain walls. They

take their name from particle physicist T.H.R. Skyrme who developed a model for

hadronic particles in which hadrons were three dimensional skyrmions [13]. In the

context of magnetic materials, and in particular thin films, skyrmions are treated

as two dimensional structures though some research indicates that they have out of

2



plane structure in thicker samples [14]. They will be considered 2D objects for the

purposes of this thesis.

Figure 1.1: A skyrmion spin structure.

Skyrmions are stable in the sense that the skyrmion number given by Eq. (2.1) is

an invariant quantity. Skyrmions are therefore essentially indestructible once formed

except under direct and specific interactions as long as the general conditions for their

stability are maintained and they are not annihilated by an anti-skyrmion (which typ-

ically cannot form under the same conditions). This excellent stability is part of what

makes skyrmions so promising for information storage and processing applications.

In extended samples, skyrmions are typically observed as elements of skyrmion crys-

tals (see Fig. 1.2) over much of their regime of stability [15]. These skyrmion crystals

are quite similar to Abrikosov vortex crystals in type-II superconductors. They pos-

sess a similar hexagonal structure and can melt into individual dissociated solitons

at the edges of their region of stability. However, unlike vortices, the radial profile

of a skyrmion is not singular at the center. As a consequence, skyrmion stability is

improved in comparison to vortices in ferromagnets, to which they are also similar,

and they are easier to move and less susceptible to pinning by impurities or defects

[16]. Skyrmions are also considerably easier to manipulate and move than magnetic

3



(a) (b)

Figure 1.2: Skyrmion lattice magnetization structure: (a) Angled view showing magne-
tization structure. (b) Projection with view along the axis perpendicular to the skyrmion
crystal plane, color represents the component of magnetization along the viewing axis. The
darkest color represents magnetization fully out of the plane of the page and the lightest
color represents magnetization fully into the plane.

domain walls of all kinds, requiring only of order 105 Am−2 to move or rotate in some

materials [17].

From a physics standpoint, skyrmions in magnetic materials have many fascinating

properties and are accessible analogues to many other important physical systems.

Firstly, they are known to exist in sizes ranging from atomic scales to nearly 100nm,

and the long-range (skyrmion crystal) order of the larger ones (>1nm in size), though

clearly associated with particular underlying crystal structures, can also apparently

be completely decoupled from them [18]. Individual skyrmions are emergent (from a

generally well understood background field) particle-like objects, possess an emergent

mass [19, 20] and produce emergent effective magnetic and electric fields [21] which

are detectable via accessible electrical measurements. Magnetic skyrmion crystals

are also predicted [22] to exhibit an analogue of the quantum anomalous Hall effect

observed in magnetic topological insulators [23, 24]. Magnetic skyrmions are also

analogous to the skyrmions observed in quantum Hall effect systems [25] and some-

4



what more experimentally accessible. Finally, they are low-dimensional analogues of

their original incarnation as low-energy approximations to baryons [13].

Currently, very costly and low through-put single crystal and MBE growth methods

are the norm for producing chiral ferromagnets which can host magnetic skyrmions

(with the notable exception of FeGe). This limits opportunities for study and makes it

impractical, in a commercial sense, to develop information technology systems based

on skyrmions. If the full potential applications of skyrmions are to be realized, and

their interesting physical properties explored efficiently, then it is necessary to have

accessible, lower-cost means of producing skyrmion-hosting materials.

In this thesis, I explore the deposition of the original and prototypical skyrmion-

hosting compound MnSi by DC magnetron sputtering at elevated temperatures. First,

successful deposition techniques were developed and secondly it was demonstrated by

electrical measurements that MnSi thin films produced by sputtering are capable of

hosting skyrmions and are in fact comparable to MBE-grown MnSi in this regard.

In addition to the availability of materials, the development of technology based on

skyrmions depends on being able to model their behavior under various conditions.

At the time of this writing, this is accomplished either by approximating skyrmions

as rigid, structureless particles [16] or by carrying out full micromagnetic calculations

numerically [26]. This last approach can be challenging and time-consuming because

of the relatively large size and complexity of skyrmions and the need to model their

behavior in quite large structures if one is to simulate (e.g.) a racetrack structure.

In Chapter 7 I present an approximation for the spatial profile of a skyrmion, demon-

strate its consistency with numerical solutions, and then present a means of approx-

imating the energy integral for this structure analytically. The result is a useful

analytical approximation that should both capture more of the skyrmion behavior

5



than the particle model and be quicker and easier to apply than the micromagnetic

simulations.
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Chapter 2

Skyrmions

2.1 History and General Description

Skyrmions are magnetization structures characterized by a double winding of local

spin orientation which are topologically protected, meaning that they cannot be de-

stroyed by continuous, low-energy deformation. This protection is encapsulated in

the topologically invariant skyrmion number given by

Nsk =
1

4π

∫
~m ·
(
∂ ~m

∂x
× ∂ ~m

∂y

)
dΩ (2.1)

where ~m(~r) is the orientation of the magnetization at position ~r and Ω is the solid

angle, is a conserved quantity (as well as being quantized due to the particle-like

nature of the skyrmions).

As soliton (particle-like in structure and interaction behavior [27, 28]) solutions to

nonlinear sigma models [29] in particle physics, skyrmions were introduced by Skyrme

[13] as a proposal for the nature and structure of fundamental particles prior to

7



the development of quantum chromodynamics. The Heisenberg model describing

magnetic materials is also one of this type of mathematical model.

These structures first arose in the context of condensed matter physics in the course of

studies of the quantum Hall effect [30, 31, 25]. Here the skyrmions are stabilized by the

Coulomb interaction and to a lesser extent the Zeeman interaction with the applied

magnetic field [32]. The question of whether skyrmions in magnetic materials also

possess electric charge as the QHE skyrmions do remains open because while there

are theoretical arguments supporting the possibility [33], there is no experimental

evidence either way.

In magnetic materials, skyrmions were found to be solutions to a modified Heisen-

berg model by Belavin and Polyakov [34] with the explicit connection to the ear-

lier particle physics model made by Bogdanov and Hubert [35]. In this model the

Skyrme term is contributed by the Dzyaloshinskii-Moriya interaction (DMI), a form

of spin-orbit interaction. Recently, among bulk (weak) chiral ferromagnets (a fer-

romagnet whose crystal structure cannot be superimposed on its mirror image, see

Chapter 4), skyrmions have been observed directly and indirectly in all compositions

of Mn1−xFexGe, most compositions of Fe1−xCoxSi (including semiconducting ones),

and those of Mn1−xFexSi with x ≤0.1, as well as the insulator Cu2OSeO3.

In this chapter we will describe the theory of the DMI beginning with spin-orbit

interaction in general and following recent developments in this area, culminating in

a description of static skyrmions and relying throughout on the concepts of geometric

or Berry phase [36, 37, 38] and holonomy [39, 40].
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2.2 Spin-Orbit Interaction

The spin-orbit coupling in condensed matter systems arises because the spin angular

momentum of an electron ~S = ±1
2
~ [41] in a material interacts with the (orbital)

angular momentum ~L = me~r × ~v resulting from the electron’s motion in response to

the background fields it experiences in the material at position ~r as it moves with

velocity ~v. This begs the question of why the two angular momenta (intrinsic and

extrinsic) should interact.

In the simplest case, we can think in terms of the Bohr picture where the electron is

“orbiting” the nucleus of a hydrogen-like atom and is affected by that orbital motion.

For this model we follow the derivation by Jackson [42]. Lorentz transformation of

electromagentic fields gives (to first order) a total magnetic field experienced by the

electron (in its rest frame) of

~B′ ≈ ~B − ~v

c
× ~E (2.2)

We take the externally applied magnetic field ~B to be 0 and the electric field ~E expe-

rienced by the electron to be entirely due to the charge of the nucleus (for a hydrogen

atom) and so written as ~E = −1
e
∇V (r) where V (r) is a spherically symmetric electric

potential. The presence of the second term in Eq. (2.2) means that the electron’s

magnetic moment ~µ = ge
mec

~s experiences a torque (as observed in its rest frame)

d~s

dt
= ~µ×

(
−~v
c
× −1

e

~r

r

dV

dr

)
(2.3)

Which can be rewritten as

d~s

dt
=

g

2m2c2
~s× ~L1

r

dV

dr
(2.4)
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The corresponding interaction energy is

ESOI =
g

2m2c2
~s · ~L1

r

dV

dr
(2.5)

This already demonstrates an interaction between spin and orbital angular momen-

tum but the derivation is incomplete, and the magnitude of this spin-orbit expression

disagrees with experimental results. It was pointed out by Thomas [43] that since

the electron’s rest frame is in fact traveling in a circular path about the nucleus (in

the laboratory and nucleus’ rest frame), and therefore accelerating (and so not in an

inertial frame) the electron spin precesses and there is an additional spin-orbit term

produced [42] so that

d~s

dt
=

g

2m2c2
~s× ~L1

r

dV

dr
+ ωT × ~s (2.6)

This is a purely kinematic result, even nonrelativistic objects observed from a rotating

frame of reference have such an additional component in their motion (e.g. Coriolis

effect [44]).

In this situation the additional term arises because the circular motion of the electron

can be thought of as being made up of a sequence of noncollinear Lorentz boosts.

A sum of two such boosts is equivalent to a single boost plus a rotation [45, 46]. If

we consider the instantaneous laboratory-frame velocity of the electron to be ~v+~adt

(where ~a is the electron’s acceleration) rather than just ~v as we have been so far, then

we have exactly this situation and each infinitesimal time step dt will contribute a

rotation of the electron spin vector ~s by

∆~s =
γ2

γ + 1

1

c2
~a× ~vdt× ~s (2.7)

and for v � c this gives ~ωT = 1
2c2
~a×~v. This rotation is the Thomas precession of the

10



spin. Since ~a comes from the electrical force due to the nucleus 1
m
~r
r
V (r) the correction

to the energy of Eq. (2.5) is

∆ET =
−1

2m2c2
~s · ~L1

r

dV

dr
(2.8)

Allowing the correct and experimentally confirmed spin-orbit interaction energy to

be obtained.

Ultimately, this term arises because the Lorentz transformation is not commutative

under direction changes and Thomas’s precessional term is a measure of that non-

commutativity. This was shown by Wigner [46]. This fact connects the Thomas

precession to the concept of holonomy which can be thought of as the measure of

non-commutativity of a transformation. This in turn connects to other examples of

holonomy which go under the heading of geometric phase.

The background field acting on the electron need not be the simple, spherically sym-

metric field due to a single nucleus. In materials the field experienced by the moving

electron is often best described by the electronic band structure of the material. As

we will see in the following sections, in all cases relevant to this thesis, it can be shown

that spin-orbit interaction is itself a geometric phase effect.

2.3 Geometric Phase

2.3.1 Classical

A classical, real space example of a geometric phase effect can be seen in the parallel

transport of a vector along a closed path on the surface of a sphere (Fig. 2.1). The

idea of parallel transport is that the vector remains constant in the sense that its
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Figure 2.1: A vector parallel transported (counter-clockwise) along a closed path on the
surface of a sphere. The path begins and ends at the north pole, where the angle between
the vector at the start and at the end of its travel can be seen.

local orientation with respect to the surface of the sphere never changes. When the

vector returns to its starting point it is rotated with respect to its initial absolute

orientation by an angle equal to the solid angle enclosed by the path traveled, which

for a sphere is also the total curvature enclosed. This change in angle is a geometric

phase.

The acquisition of a geometric phase angle is not restricted to motion on spherical

surfaces, but only requires a curved surface. The magnitude of the change in angle is

the amount of “bending” of the path:

∆α =
S

R2
=

∮
C

~A · d~l (2.9)

where S is the area enclosed and R is the radius of curvature. This is equivalent (via
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|un−1〉

|u2〉

|u1〉 = |un〉

Figure 2.2: A closed path in an abstract state space with an adiabatic parameter indicated
by subscripts.

Stokes’ theorem) to the total curvature enclosed by the path:

∆α =

∫
S

d~S · (~∇× ~A) =

∫
S

d~S · ~Ω (2.10)

In these expressions ~A is a vector field which in this case represents the orientation

of the unit vector normal to the sphere’s surface.

2.3.2 Quantum Geometric Phase

When studying the quantum dynamics of electrons the analogous phase angle is often

referred to as Berry’s phase after M.V. Berry who first realized its physical significance

in this context [36]. Here it is important to consider the adiabatic evolution of the

system being studied as it traverses a closed path (Fig. 2.2) in momentum space

(Fig. 2.3). The adiabatic theorem [36] requires that for a sufficiently slow evolution

the system remains in the same eigenstate and over the complete closed path is only

modified by a phase ∆α so that:

|un〉 = ei∆α |u1〉 (2.11)
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The full phase is just the sum of the individual phase changes corresponding to each

step of the closed-cycle evolution of the system:

∆α = i (ln[〈u1|u2〉 〈u2|u3〉 ... 〈un−1|un〉]) (2.12)

Since the eigenstate remains unchanged, we can make the path continuous by making

the momentum space separation between adjacent steps of the system’s evolution

infinitesimally small so that:

∆α = i

∮
dk 〈uk|∂kuk〉 (2.13)

We can also write this integration over adiabatic changes in momentum space as:

∆α = i

∮
d~k · 〈~k| ∇k |~k〉 (2.14)

The integrand in Eq. (2.14) is a vector potential often referred to as the Berry

connection

~A = 〈~k| i∇k |~k〉 (2.15)

The elements of this vector potential are the overlap integrals of two wave functions

at infinitesimally separated points in k-space.

As in the classical version above, Stokes’ theorem lets us rewrite Eq. (2.14) as a

surface integral of the (Berry) curvature Ω(~k) = ∇× ~A.

∆α =

∫ ∫
S

Ωz(~k)d2~k =

∫ ∫
S

i 〈 du
dkx
| × | du

dky
〉 d2~k (2.16)

This is the total curvature, but in quantized momentum space rather than real space.

For concreteness it is useful to think of u as the wave functions of Bloch electrons
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ky

kx0 2π
a

|~k〉

Figure 2.3: A path in a Brillouin zone, it is closed because the left and right edges are
identified with each other.

in a crystal (especially since this is the case that will be important for the transport

measurements in this thesis) so that the appropriate region of integration is a Bril-

louin zone (BZ) (Fig. 2.3), assuming that the path in momentum space bounds the

entire BZ, which Bloch electrons typically will because their wave functions have a

component periodic in k and the BZ has the topology of a flat torus (edges identified

with each other) [47, 48]. To get the total Berry phase the integral over the Brillouin

zone also has to be summed over the occupied states n, all of which contribute. The

momentum space distribution of the electrons is also important (see below).

In order to obtain the ∂ki |unk〉 we begin by working in a gauge such that the local

Berry connection is zero (〈~k| ∇k |~k〉 = 0) on some small portion of a closed path in

k-space. It should be stressed that this can never be the case over any whole closed

path because the total Berry phase (Eq. (2.13)) is gauge invariant. This is akin to

the classical case on the sphere discussed above where it was possible for the vector

to remain unchanged relative to the surface in a local sense while still acquiring a

finite absolute rotation with respect to its initial orientation. Within this gauge we
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can take a set of starting |unk̃〉 at an arbitrarily chosen starting momentum k̃ and

form the basis states for an infinitesimally nearby k̃+ε using perturbation theory [49]

|un,k+ε〉 = |unk〉+
∑
m 6=n

〈unk|H(k + ε)−H(k) |umk〉
(Enk − Emk)

|umk〉 (2.17)

Where for this section H(~k) is the Hamiltonian of the system, satisfying H(k) |unk〉 =

Enk |unk〉. If we then subtract |unk〉 from both sides, divide by ε and take the limit as

ε0 we have defined the derivative of |unk〉 with respect to k (or a component thereof)

along a path. So the derivatives on the right hand side of Eq. (2.16) can now be

written as

∂ki |unk〉 =
∑
m 6=n

〈unk| ∂kiH |umk〉
(Enk − Emk)

|umk〉 (2.18)

And the components of the curvature tensor (for the n-th band) are now given by

Ωn
ij(
~k) = 2i

∑
m6=n

〈unk| ∂kiH |umk〉 〈umk| ∂kjH |unk〉
(Emk − Enk)2

(2.19)

The denominator in this expression shows that the largest contributions to the geo-

metric phase arise when two Bloch bands are near each other. The geometric phase

angle acquired by Bloch electrons is the source of the intrinsic component of the

anomalous Hall effect [50] and the spin Hall effect [51]. Because the Berry curvature

Eq. (2.19) acts as an effective magnetic field ~Beff , we write

~JHall =
e2

~
~E × 〈 ~Beff〉 =

e2

~
E〈Ω〉 (2.20)

With ~JHall the Hall current of electrons or spins. So that

σxy =
e2

~
〈Ω〉 (2.21)
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Therefore, in both cases the transverse conductivity of interest can be expressed as

σxy =
1

~
〈Ωn

xy(
~k)〉 =

1

~
∑
~k,n

f(En(~k))Ωn
xy(
~k) (2.22)

where to obtain the average we sum over occupied bands n and momenta k weighted

by the electron distribution function f(En(~k)). For the anomalous Hall effect case the

operators of interest replacing ∂ki,jH in Eq. (2.19) are the charge current operators

Jx,y = evx,y, where e is the electron charge (this accounts for modifications of the

equations by factors of e). For the spin Hall case we use instead a spin current

operator jzs,x [52] and a perpendicular charge current operator Jy.

2.4 Dzyaloshinskii-Moriya Interaction

The necessity of a spin-orbit coupling term of the form D ~M ·
(
∇× ~M

)
was first

realized on the basis of symmetry arguments by Dzyaloshinskii [53] and later given a

microscopic basis by Moriya [54]. However, it has recently been shown by Freimuth

et al. that the DMI can be given a semiclassical [33] or perturbation theory [55]

explanation in terms of the geometric phase discussed above.

The semiclassical explanation begins with consideration of a combined real-momentum

space vector potential ~A(~x,~k). The curvature of such a vector field is described by a

6 × 6 curvature tensor

Ωij = ∇× ~A =

 Ωxx Ωxk

Ωkx Ωkk


ij

(2.23)

The diagonal elements of this tensor are the matrices representing the pure real and

momentum-space contributions to the vector potential curvature, which are the types
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discussed in the preceding two sections. When considering the DMI we are concerned

with the geometric phase acquired by electrons as they traverse a path that is closed

when considered in the combined space (~x,~k), which is governed by the off-diagonal

elements of Eq. (2.23). In chiral magnets like those studied in this dissertation, it is

only these mixed-space contributions which are nonzero to first order in the spatial

and momentum gradients of the system energy [33].

The change in free energy density due to the DMI can be written as

δF = Dij êi ·
(
m̂× ∂m̂

∂xj

)
(2.24)

where repeated indices are to be summed over, m̂ is the magnetization direction,

and ~x is the position vector. Omitting (or obscuring by a f̃), for the sake of clarity,

important terms and factors relating to the modification of energy levels and density

of states by the geometric phase (see [33]) Eq. (2.24) becomes

ê ·
∑
n

∫
d3k

(2π)3
f̃(En(k))Ωxk

n,ij (2.25)

where now the Berry curvature is given by

Ωxk
n,ij = 2i~

∑
m 6=n

〈umk|Ti′ |unk〉 〈unk| vj |umk〉
(Emk − Enk)2

(
m̂× ∂m̂

∂xi

)
i′

(2.26)

with Ti the torque operator ~T (~x) = m̂ × ∂H
∂n̂

(notice the summation over torque

components). This result shows that the DMI coefficient is connected to the geometric

phase in much the same way as the Hall conductivities in the previous section.
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2.5 Skyrmions

2.5.1 General Model for Skyrmions

Adding the Dzyaloshinskii-Moriya term to the Heisenberg model for a ferromagnet

with exchange and an external field gives an energy density [10]:

w = A(∇ ~M)2 − ~M · ~H +D ~M · (∇× ~M) (2.27)

If we consider a single skyrmion and treat its center as the center of a spherical

coordinate system restricted to a plane with a radial coordinate ρ, we can write the

direction of the magnetization at ρ as

~m(ρ) = x̂ cosφ(ρ) sin θ(ρ) + ŷ sinφ(ρ) cos θ(ρ) + ẑ cos θ(ρ) (2.28)

where φ(ρ) and θ(ρ) are the polar and azimuthal angles of the magnetization. The

polar angle is directly related to the azimuthal angle. For the materials studied in this

thesis, φ = π/2 + θ so fully describing the magnetization structure of the skyrmion

requires only knowledge of its profile θ(ρ). With the coordinate system defined by

Eq. (2.28), the energy density given by Eq. (2.27) can be written in the form [10]

w = 2πM2

[
A

(
θ2
ρ +

sin2 θ

ρ2

)
+D

(
θρ +

sin 2θ

2ρ

)
+
H

M
(1− cos θ)

]
ρ (2.29)

The Euler-Lagrange equation for θ(ρ) corresponding to this energy density is [56]

A

(
θρρ +

1

ρ
θρ −

1

2ρ2
sin 2θ

)
− H

2M
sin θ − D

ρ
sin2 θ = 0 (2.30)
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Defining h = H/AM and d = D/A lets us write

θρρ +
1

ρ
θρ −

1

2ρ2
sin 2θ =

h

2
sin θ +

d

ρ
sin2 θ (2.31)

The boundary condition is that θ(0) must differ from θ(∞) by π. This equation is

not integrable and there is no known exact analytical solution for θ(ρ). Currently,

numerical methods are used to obtain the skyrmion profile function. However, it is

possible to make simple approximations to the magnetization profile as ρ approaches 0

or∞ and there are expressions which approximate the full profile, including one which

has been overlooked previously (discussed in Chapter 7) in the context of the radially

symmetric skyrmions relevant for chiral magnetic materials and thin ferromagnets.

2.5.2 Approximations to the Skyrmion Profile

First, it is illuminating to consider Eq. (2.31) with its right-hand side set to 0:

θρρ +
1

ρ
θρ −

1

2ρ2
sin 2θ = 0 (2.32)

In this case it constitutes a system called an O(3) nonlinear sigma model without any

potential terms. It possesses exact radially symmetric soliton [57, 27] solutions, first

discovered in the context of isotropic ferromagnets by Belavin and Polyakov, whose

profiles have the form [34]:

θ(ρ)L = 2 arctan

(
R

r

)
(2.33)

where R determines the size of the soliton.

It is clear from physical arguments that these solitons cannot be stable structures in

20



a (classical) magnetic system because the sigma model under discussion describes a

Heisenberg model with magnetic exchange only, so that the state of minimum energy

must have all spins aligned (θ equal to π or 0 for all ρ). A question arises in that

the skyrmion number (Eq. (2.1)) of the lump soliton is 1 (cos θ(∞) − cos θ(0) = 2)

so one might think that it should be topologically protected in the same way that

the skyrmion is. However, since the size of the soliton is arbitrary (Eq. (2.33) solves

Eq. (2.32) for any R) there is nothing preventing it from expanding to infinity or

shrinking to zero size, making it unstable. This instability has been demonstrated

numerically (e.g. [58]).

Despite the possibility of obtaining numerical solutions to the skyrmion profile equa-

tion Eq. (2.31), it is often preferable to seek analytic approximations both to save

time and to obtain physical insight that may not be available from the numerical

solution. Sometimes the expression [59]

θ(ρ)L = arccos

(
(r/R)2n − 1

(r/R)2n + 1

)
(2.34)

where n is the number of skyrmions has been used as an approximation for the profile

function of 2D skyrmions in analogy with the rational map ansatz/approximation for

full 3-dimensional skyrmions. However, for single skyrmions (n = 1) the approxima-

tion is equivalent to Eq. (2.33) and therefore has a power law rather than exponential

approach to 0 as ρ→∞. The stability is improved for the approximation compared

to the exact solution for the O(3) model discussed above because generally the right

hand side of Eq. (2.31) is not zero. The approximation Eq. (2.34) was shown numer-

ically [59] to be more suitable for multiskyrmion (n > 1) solutions than for the single

skyrmion case.

Another approximation, which prioritizes the large ρ behavior of the skyrmion profile
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is given by [60]:

θ(ρ)B = K1(ρ/R) (2.35)

Where K1(x) is the order one modified Bessel function of the second kind (also known

as a Macdonald function). Since the ρ� R behavior of this approximation is incor-

rect, it is only used as a starting point for numerical approximations or to model

behavior far from the skyrmion center (which it does well [16]). Another common

approach is to model the skyrmion profile as strictly linear near the center and ex-

ponential far away as was done in (e.g.) [35]. In Chapter 7 I present an improved

approximation for the profile of a single skyrmion.
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Chapter 3

Electrical Detection of Skyrmions

3.1 Other Observation Approaches

The original studies which confirmed the existence of a skyrmion crystal structure in

B20 materials were small angle neutron scattering (SANS) measurements [12]. Such

measurements are restricted to either bulk samples or relatively thick films to pro-

vide sufficient signal and, importantly, SANS is a reciprocal space measurement so

while it does probe magnetization it only does so for a crystal of skyrmions and is

not suitable for studying nanodevices. Magnetic force microscopy, which relies on

the measurement of stray magnetic fields rather than directly probing magnetiza-

tion structure has so far [61] exhibited barely sufficient spatial resolution to indicate

the presence of skyrmions but cannot image (and confirm) their novel structure.

High spatial resolution scanning probe magnetometry [62] of the stray fields due to

a skyrmion using a diamond nitrogen-vacancy sensor is very promising but has not

yet been realized. A magnetization-sensitive scanning-probe measurement technique

which has been applied to study skyrmions in real space is spin polarized scanning
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tunneling microscopy (SP-STM) [63]. These measurements, while highly resolved,

are very delicate and difficult and the equipment is costly to operate, it would prob-

ably not be suitable for even moderate volume testing of materials and devices for

skyrmion-based technological applications. Additionally, since they have only been

applied to very thin (one or two monolayer) ferromagnetic layers, their suitability for

measurements on thicker B20 helimagnets at higher temperatures is unknown. This

brings us to consideration of Lorentz transmission electron microscopy (LTEM) [64],

the most convincing current technique for studying skyrmions in real space as well

as the first to have provided real space images of them [15]. The problems with this

technique stem from intrinsic difficulty and the sample preparation needed. LTEM

observations of skyrmions have typically been carried out on thinned single crystals of

B20 helimagnet materials though the technique has been used on an MBE deposited

thin film [65] and chemical vapor deposited (CVD) single-crystal nanowires [66] of

MnSi (after thinning by focused ion beam). In all cases LTEM requires both very

thin and very flat samples making it problematic for studying skyrmions in devices

with structures more complicated than a wire and requiring painstaking thinning and

preparation of samples using additional equipment. Also, transmission electron mi-

croscopes with sufficient flexibility to carry out the measurement are not very common

and in particular the software needed to reconstruct the Lorentz TEM images can be

costly and challenging to implement, to the point that only one group [15, 66, 67] has

consistently performed the measurement.

3.2 Electrical Measurements

Electrical measurements are relatively accessible and most (though not all [68, 69, 70])

agree that they can provide convincing evidence for the presence of skyrmions in thin
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films. In this thesis (Chapter 6), work on measuring the topological Hall effect and

longitudinal transverse magnetoresistance, both described below, in thin films of MnSi

is presented.

3.2.1 Topological Hall Effect

A skyrmion lattice (Fig. 1.2) is an extended smoothly varying magnetization struc-

ture. When a current of conduction electrons passes through this background it

experiences an effective magnetic field due to the geometric phase acquired by the

electrons during their passage. In terms of the local magnetization vector and its

spatial derivatives this effective field is given by [71]:

Beff = PR0
h/e

4π

∫
~m ·
(
∂ ~m

∂x
× ∂ ~m

∂y

)
dΩ (3.1)

Where P is the polarization of the electron current (relative to the background mag-

netization outside of the skyrmions) and R0 is the normal Hall effect coefficient. This

is just a constant factor multiplying the topologically invariant skyrmion number Nsk

of Section 2.1. The factor P is present because oppositely polarized electrons acquire

opposite real-space geometric phases during their passage.

It is best to think of the whole many-electron current interacting with this effective

field because in chiral ferromagnets (Ch. 4) the skyrmion is much larger than an

electron (accounting for the adiabatic nature of the interaction between the magneti-

zation and the electron current which is a condition for the acquisition of a geometric

phase) so that the effects of the field are seen as the average of many individual

scattering events. The net result of these events is the addition of a perpendicular

component to the electron transport. This is on top of the ordinary Hall effect due

to the applied field which is typically needed to stabilize the skyrmion lattice and the
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anomalous Hall effect which is the dominant contribution to perpendicular electrical

transport at low magnetic fields in chiral ferromagnets like MnSi. Typically, it is

easiest to consider measurements in terms of a Hall resistivity which can be written

out in terms of its components as [71]

ρxy = R0H + ρAHExy + ρtxy (3.2)

Where H is the applied magnetic field, R0 is the normal Hall resistance, ρAHExy is the

anomalous Hall effect contribution, and ρtxy is the topological term arising from the

effective magnetic field Beff of Eq. (3.1). In MnSi, the second term can be taken to

have the form [72]

ρAHExy = SHρ
2
xxM (3.3)

The way in which ρtxy is usually extracted [65] is to measure ρxy over a wide field

range and use knowledge of ρxx and M to obtain the values of R0 and SH by fitting

the data above the critical field for the existence of skyrmions where ρtxy is expected

to be zero.

The first electrical detection of skyrmions [71] was accomplished in this way. Trans-

port experiments [73] have shown the stepped change in the topological Hall resis-

tance as skyrmions are added to and removed from a nanowire of FeGe so it is clear

that electrical transport measurements of this kind are sensitive to the number of

skyrmions present as expected from Eq. (3.1).

3.2.2 Longitudinal Magnetoresistance

A less established indicator of the presence of skyrmions is a minimum in the longitu-

dinal magnetoresistance measured in the plane of the sample with the magnetic field
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applied perpendicular to that plane. The origin of this minimum is not fully under-

stood but is suspected to be topological in nature just as the topological Hall effect

is [74, 75]. What is clearly observed is that in each case where both electrical and

LTEM measurements have been carried out, whether in bulk single crystals [75, 76],

single crystal nanowires [77, 66], or epitaxial thin films [65], a minimum in magne-

toresistance always coincides with the presence of skyrmions. For the measurements

described in this thesis (as well as the studies just mentioned) the applied magnetic

field is always perpendicular to the plane of the film, or nanowire (in the <111>

direction, and also in this direction in single crystal samples). The current is in the

plane of the sample, so this is a transverse magnetoresistance measurement, and the

voltage is measured parallel to the applied current so it is a longitudinal resistance

measurement.

Yi et al. [74] found that in chiral ferromagnetic materials

σxx =
1

~
∑
~k,n

f(En(~k))Ωn
xx(
~k) (3.4)

Where the curvature Ωn
xx(
~k) is given by

Ωn
xx(
~k) = 2iη

∑
m6=n

|〈unk| Jx |umk〉|2

η2 + (Emk − Enk)2
· 1

Emk − Enk
(3.5)

This is very similar to Eq. (2.19) except that for the longitudinal case the relaxation

parameter η ∼ 1
τ

[50] (where τ is the transport lifetime) cannot be ignored, and is

in fact required for a finite longitudinal conductivity. This can be thought of as a

Berry curvature dependent contribution that can only arise from scattering of the

electrons into states with momenta parallel to the original (longitudinal) current (i.e.

it arises from conduction electrons slowing down). This contribution is even more

dependent on the energy separation between bands than the Hall currents. Like the
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Hall current, it should be sensitive to a Berry phase arising from the presence of

skyrmions. Unfortunately, testing this would require band structure calculations for

MnSi and quantitative comparison with transport measurements which is beyond the

scope of this thesis.

The work of Demishev et al. [78] on anisotropy of magnetoresistance in single crys-

tals of MnSi supports the contention that this measurement can provide accurate

information about the presence of skyrmions.
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Chapter 4

Chiral Ferromagnets

4.1 B20 Crystal Structure

(a) (b)

Figure 4.1: B20 cubic Crystal Structure: (a) Arbitrary side view. (b) View along the
<111> axis showing the structure’s intrinsic chirality. We take MnSi as a prototypical
example and label the atoms.

The B20 crystal structure (see Figure 4.1) is a non-centrosymmetric cubic structure of
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the P213 space group. By re-orienting one’s view of the crystal (Fig. 4.2(b)) the helical

structure along the<111> axis becomes clear. The broken symmetry arising from this

structure is the cause of the strong bulk Dzyaloshinskii-Moriya interaction. The unit

cell of the crystal (Fig. 4.2) can be thought of as consisting of two interpenetrating

tetrahedra of the transition metal(s) and the Group IV (only Ge or Si for the magnetic

materials we study, but (e.g.) PtAl also has the B20 structure) atoms. These two

tetrahedra are counter-rotated with respect to each other resulting in the break in

symmetry. For the magnetic behavior of these materials which is focused on here, we

are always concerned with the magnetic atoms only.

(a) (b)

Figure 4.2: Unit cell of a B20 cubic structure. (a) Arbitrary side view. (b) Along <111>
direction.

Initially, skyrmions were only observed in P213 space group materials though very

recently materials with a different type of structure [79] and thin ferromagnetic films

taking advantage of interfacial DM interaction [80] have apparently exhibited the

presence of skyrmions.
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4.2 States in B20 Ferromagnets

There are three states which can arise in helical magnets at ambient pressure: a weakly

ferromagnetic state in which the spins are arranged helically, a high temperature

paramagnetic state where the spins align with any external field, and in some sense

“between” these, a skyrmion phase, arising from a competition between helical and

ferromagnetic alignment.

(a) (b)

Figure 4.3: (a) Helical magnetization configuration. (b) Conical magnetization configu-
ration.
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4.2.1 Helimagnet

The Dzyaloshinskii-Moriya interaction favors the formation of a helical magnetic state

with its axis oriented along the <111> direction and diameter A/ |D| and pitch

k = |D| /2A where D is the Dzyaloshinskii constant and A is the exchange constant.

The helical magnetization structure is given by

~M = M
[
~n1 cos(~k · ~r) + ~n1 cos(~k · ~r)

]
(4.1)

Here ~ni are orthogonal unit vectors in the plane of the magnetization. A short por-

tion of such a structure is shown in Fig. 4.3(a). This is the typical ground state

configuration of B20 ferromagnets and so it is the zero-field, low-temperature (below

the Curie temperature) phase.

4.2.2 Conical Phase

As the applied magnetic field is increased the spins in the initially helimagnetic ma-

terial are rotated out of the plane and toward the <1l1> axis (see Fig. 4.3(b)). The

opening angle θ between the magnetization vector and the applied field H is given

by cos θ = H/HD where HD = D2M/(2A) is the saturation field for the helimagnetic

state [56].

4.2.3 Paramagnet

Above the Curie temperature these materials behave as paramagnets and all spins

will align to any applied field. This phase is topologically trivial.
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4.2.4 Skyrmion

A skyrmion is a knot of magnetization which to a good approximation can be thought

of as a cross or combination between a domain wall and a vortex, perhaps best

explained by an image of their structure (Fig. 1.1). Further details and properties

of individual skyrmions were discussed in Chapter 2 and here we are most concerned

with the behavior of the skyrmion state of chiral ferromagnets.

In bulk, single crystal samples of B20 ferromagnets, skyrmions only arise in a very

restricted region of T-H space, just below the Curie temperature. The period of this

lattice is the same as the pitch of the helical magnetic state which precedes it and

this crystal of magnetization is therefore much larger than the atomic lattice which

underlies it. In an extreme case, the skyrmion lattice in FeGe has a period of 70nm

while the lattice parameter of cubic FeGe is 4.68 Å. The skyrmions form lattices of

such regularity that they can be observed in neutron diffraction [12]. These hexagonal

lattices greatly resemble the Abrikosov lattice [81] of vortices in high-temperature

superconductors.

The transitions both from cone phase to skyrmion crystal and from skyrmion crystal

to paramagnet are first order. As field or temperature is increased, the skyrmion

crystal “melts” into clusters and eventually individual skyrmions [15]. It is currently

unclear how the three intersecting helix model, which has been used so successfully

to explain neutron diffraction data pertaining to skyrmion crystals, appropriately

describes their behavior as these crystals break up. Unfortunately there are no di-

rect observations of the skyrmion lattice “freezing” into place. However, individual

skyrmions and clusters have been observed at junctions of helical domain walls in the

helimagnet FeGe [67].
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Chapter 5

Material Deposition and Device

Fabrication

5.1 Magnetron Sputtering

Sputtering works by using an argon plasma to strike (sputter) surface material from

targets. The mixed plasma then deposits on a stage which holds a substrate on

which the material of interest is grown (as well as the walls of the vacuum chamber).

Deposition time is controlled via shutters over the targets. The stage is usually

rotated to promote uniformity of deposition and may also be heated (as it was for the

samples grown in this research). The advantages of this deposition method are a high

degree of uniformity and the possibility of thoroughly mixing co-deposited materials

as well as relatively high deposition rates while still maintaining the possibility of

highly textured (ordered), low material stress, and even epitaxial growth.

In the DC case (used for the materials described in this thesis), the Ar ions are drawn

to the metallic target because it is held at a constant negative voltage. A magnetron
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consisting of permanent magnets incorporated in the structure supporting and charg-

ing the target (together called a “source”) with one magnetic pole in the center and

the other pole distributed under the outer edge of the target (all discrete cylindrical

permanent magnets) was used in all the depositions described. This configuration

produces crossed electric (perpendicular to target surface) and magnetic (radial from

target center) fields near the surface of the target resulting in a drift velocity (known

as the ~E × ~B drift in plasma physics [82])

~̄v⊥ =
~E × ~B

B2
(5.1)

Which with the present field orientations will tend to produce a circulation of the

plasma near the surface of the target, resulting in more sputtering.

The particular sputtering system used (an AJA International ATC Orion with A300

series sputtering sources) was also equipped with the capability of igniting an RF

Argon plasma on the stage, providing a means of cleaning or even etching away the

surface of the substrate.

The main parameters available to control the characteristics of the deposition and

the material produced are substrate temperature, argon gas pressure, and voltage

(or equivalently power) applied to the target. The RF cleaning time and power can

also be important for achieving particular substrate characteristics. In all growth

procedures described below the sputtering system base pressure was 1×10−8 Torr or

less.
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5.2 Material Deposition

5.2.1 MnSi

For growth of MnSi, a substrate of <111> oriented undoped Si (MTI Inc.) was used.

The surface oxidation layer was removed by RF sputtering with a power of 40W and

an Ar pressure of 20 mTorr for 7 minutes. After this the stage was heated, with

temperature stabilized in 100 ◦C steps and finally stabilized at a target temperature

between 275◦C and 375◦C with an optimal temperature of 325◦C. The growth did

not require high temperature reconstruction of the Si surface structure in order to

succeed. The substrate was held at this temperature while MnSi was deposited from

a stoichiometric target (Kurt J. Lesker). The MnSi deposition characteristics were

15W deposition power, and 2 mTorr Ar pressure. The heating was then turned off

and the sample was allowed to cool to room temperature in vacuum.

MnSi on AlOx

It can be desirable to protect an etched Si<111> surface from natural oxidation in

air with some material that would still allow B20-structured MnSi to be deposited.

This was accomplished by depositing 3nm of Al at 45W on the Si surface after it

had been etched by Ar plasma as described above. The etching and deposition were

carried out at room temperature. The coated substrate was then removed from the

vacuum chamber and allowed to oxidize in air for >3 days. Afterwards, the MnSi

was deposited on the resulting amorphous aluminum oxide using the same procedure

as above with only light RF plasma cleaning (15W, 40s). The entire sample then had

to be annealed at 700◦ to produce the structured MnSi film.
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MnSi on Ta

Since it turned out to be possible to deposit cubic MnSi (albeit only structured

in-plane (see Ch. 6)), many other underlayers were tried. The most successful of

these was a 5nm layer of tantalum deposited at a DC power of 75W on Si<111>

substrate etched as described above. Ta deposition was done at room temperature

and MnSi was deposited according the process described above and without the need

for additional high-temperature annealing.

5.2.2 FeGe

Depositing cubic (B20) FeGe directly on Si<111> was not successful under any of

various conditions attempted (Ar pressures of as little as 1 mTorr, substrate temper-

atures from room temperature to 700◦C, and DC power from 15W to 45W, with and

without attempted Si surface reconstruction) in all cases there was significant ( 50%)

mixture of hexagonal FeGe. This is in contrast to the results of Huang and Chien [83]

who were able to deposit high-quality FeGe at 500◦C directly on Si<111>. This may

indicate that HF chemical etching as used in [83] is beneficial for FeGe growth when

compared to Ar plasma etching for Si substrate preparation. Depositing this material

was also not successful on a thin layer of FeSi grown on the Si<111> substrate.

Instead, B20 FeGe was deposited on Ar plasma thinned layers of the MnSi films whose

deposition was described in the preceding subsection. Films of 20nm thickness were

etched by RF sputtering at 40W with an Ar pressure of 20 mTorr for 8 minutes

at room temperature. FeGe from a stoichiometric target was deposited at 425◦C

after step by step substrate heating and temperature stabilization. The deposition

conditions were 45W source power and 2 mTorr Ar pressure. Again the sample was

allowed to cool freely in vacuum.
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Neither of the targets (MnSi and FeGe) are very good conductors so the targets con-

sisted of .125” thick × 2” diameter of the desired material in stoichiometric mixture

mounted with indium on a .125” thick × 2” diameter copper piece. It is very impor-

tant that the applied DC power be kept low (≤ 60W for MnSi and ≤ 45W for FeGe)

to avoid the possibility of damaging the target and/or melting indium and shorting

the source.

5.3 X-Ray Diffractometry

Here we will briefly describe the XRD characterization techniques used to study the

materials deposited. The results of these studies of our samples will be presented in

the next chapter. For ideal (nondispersive), unpolarized X-rays of angular frequency

ω incident on a crystal, the fraction of incident light intensity diffracted into an angle

dΩ is [84](Ch.15)

dσ =
1

2

(
e2

mc2

)2
(

1 +
c4

ω4
(~k′ · ~k)2

∣∣∣∣∫ ne−i(
~k′−~k)·~rdV

∣∣∣∣2
)
dΩ (5.2)

where ~k and ~k′ are the incident and scattered wave vectors respectively and n is the

local electron density at position ~r which can be expanded over the periods ~b of the

reciprocal lattice as

n =
∑
b

nbe
2πi~b·~r (5.3)

showing that dσ decreases exponentially except where

~k′ − ~k = 2π~b (5.4)
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Figure 5.1: Schematic of X-ray diffraction measurement for 2θ-ω or grazing incidence.

is satisfied. This gives an indication of the utility of the X-ray diffraction pattern for

determining the crystal structure in reciprocal space as defined by the various ~b. This

result was due to von Laue and can be rewritten (because k = ω/c = pi/λ) as the

Bragg equation:

k sin θ =
nπ

d
⇒ 2d sin θ = nλ (5.5)

where θ is the angle between ~k′ and the crystal plane (perpendicular to ~k′−~k) and d =

1/b is the distance between lattice planes in the family defined by ~b [85]. The output

of an X-ray diffractometer is a diffraction pattern consisting of an intensity versus θ or

2θ curve possessing various peaks which correspond to values of θ for which the Bragg

condition for some lattice spacing d is satisfied. In powdered samples, crystallites are

present in all orientations so all possible crystal peaks are obtained for all scans.

For the thin film samples studied here, which may be at least partly epitaxial, the

orientation of the sample with respect to the x-ray beams can be important because

peaks from crystal planes parallel to the incident x-ray will never be resolved.

5.3.1 2Theta-Omega Measurements

One useful technique for phase (crystal structure) identification in thin films is referred

to as a 2θ−ω scan and is carried out by moving both the X-ray source and the detector

(see Fig. 5.1) through various angles with respect to the plane of the sample. In this

configuration, the incident beam reaches relatively large angles and so probes deeply
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into the sample, obtaining significant information about crystal planes parallel to

the surface. One downside of this approach is that the substrate material is heavily

sampled and is both thicker and usually more perfectly ordered than the thin film

deposited on it so that substrate peaks can dominate over the signal of interest. Also,

the orientation is incorrect for studying crystal planes perpendicular to the sample

surface and will return little signal from them.

5.3.2 Grazing Incidence Measurement

One way to deal with the problems inherent in the 2θ−ω measurement is to carry out

a complementary Grazing Incidence X-Ray Diffraction (GIXRD) measurement on the

sample. In this type of measurement the orientation of the incident X-ray remains

fixed at a small angle (θ < 1◦) nearly parallel to the sample while the detector is

scanned through a range of angles. This measurement complements the 2θ−ω scan in

that it mostly misses the substrate and gives information about planes perpendicular

to the sample surface (though not exclusively such planes). GIXRD can also allow

one to obtain data from samples that might be too thin to give enough signal for a

2θ − ω measurement since light can be scattered from sites all along the length of

the sample, though measuring very thin (<5nm) films can be difficult to carry out in

practice.

Usually, a combination of a GIXRD and a 2θ/ω measurement is sufficient to identify

the phase of a material under study or at least to determine if it is indeed a target

material phase.
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Figure 5.2: Schematic showing the coordinates for a pole figure measurement.

5.3.3 Pole Figure Measurement

Once a sample material is identified it can be further characterized by carrying out a

pole figure measurement. This measurement is particularly useful for determining the

sample’s “texture”. By texture we mean the degree to which the crystallites of which

a polycrystalline sample is composed are aligned with each other. This ordering can

differ depending on direction.

In a pole figure measurement [86], a particular crystal plane is selected (so a 2θ/ω

measurement must be carried out first) and its normal is used as the axis of a hemi-

sphere measurement sweeping over a polar angle usually labeled α and azimuthal

angle β (see Fig. 5.2). For this work, the pole figure was measured about the [111]

axis which was well aligned with the film normal (as shown in the figure) but the

measurement is the same even when this is not the case. The detector is fixed at a

specific 2θ position (corresponding to a peak, for our work this was always the <111>

peak of the material of interest). The sample is then rotated in the plane (β-scan) and

tilted out of the plane (α-scan) to record pole figure data. In the Rigaku Smartlab

XRD of the LEXI facility at UC Irvine where these measurements were carried out,
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standard pole figure measurement requires the sample stage to be rotated up to 90

degrees out of plane so that it is necessary to fix the sample to the stage. This was

accomplished by affixing the sample to a glass slide using double-sided carbon tape

and subsequently using scotch tape to attach the slide to the sample stage. This was

sufficient to keep the sample stable throughout the measurement and no additional

distortion was observed in the acquired data. It is also possible to obtain the same

data without tilting the sample by simultaneously varying the out of plane angle of

the source and the in-plane (azimuthal) angle of the detector, while still maintaining

the same fixed 2θ angle. This is known as an in-plane pole figure measurement.

The resulting data is either plotted on a sphere or projected stereographically onto

a polar plot (see Chapter 6). It gives information about the crystal texture, which

can be an indicator of its quality and affects its physical properties. It also provides

additional evidence regarding the overall structure of the crystal being investigated

(e.g. the pole figures of even partially ordered hcp and bcc crystals would be difficult

to confuse with each other).

5.4 Device Fabrication

Devices for transport measurements on MnSi thin films were fabricated by two differ-

ent methods. Early MnSi samples were given a four-contact measurement structure

(see figure in Chapter 6) using a molybdenum shadow mask during deposition. The

mask was fixed to the surface of the substrate using metal clips prior to loading into

the sputtering system.

Later devices were fabricated in a Hall cross pattern in order to make better transverse

conductivity measurements. These devices were patterned by e-beam lithography us-
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ing the negative-tone electron beam resist hydrogen silsesquioxane (HSQ) (DOW

Corning XR-1541). HSQ interlinks relatively quickly under ambient conditions, mak-

ing it impossible to pattern after approximately two to three hours. As time from

spin-coating approaches this limit it becomes increasingly difficult to pattern small

features with high resolution. For relatively large structures like the devices studied in

this thesis, these conditions can still pose problems because HSQ requires high doses

of electrons (>1000µC/cm2), meaning that writing a large device at a low electron

beam current could easily take more than the time available to write on HSQ. The

solution (for large devices) is to carefully go to higher currents. In the course of this

work it became clear that it was possible to use quite large e-beam currents to write

large structures in HSQ with no apparent ill effects.

For the devices measured, resist was spin-coated onto MnSi films at 5000 rpm for 60

seconds followed by a 120 second bake at 250◦C on a hot plate. The coated samples

were loaded into a scanning electron microscope (FEI Magellan 4XHR with e-beam

writing controls by Nabity-NPGS) within 10 minutes of spinning. Hall cross devices of

width 1µm and arm length 5µm were patterned with an SEM beam voltage of 30kV at

a beam current of 100 pA and a dosage of 2500µC/cm2 (Fig. 5.3(a)). Smaller devices

with a width of 300nm and an arm length of 500nm were patterned with a beam

current of 25 pA and a dosage of 1800µC/cm2 (Fig. 5.3(b)). This demonstrates that

the thin film etching technique developed here is suitable for making small devices.

After writing, samples were post-baked for two minutes at 250◦C on a hot plate fol-

lowed by development at room temperature in MF-319 for 30 seconds and rinsed in

HPLC grade water for 60 seconds under a continuous stream from a squeeze bot-

tle. For future researchers who may work with HSQ and this development proce-

dure, I wish to point out that MF-319 is really 2.5% tertmethylammonium hydroxide

(TMAH) which in its more concentrated 25% solution is treated as being almost on
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par with HF in its inherent danger, in that its use is often segregated to particular

equipment/areas in clean rooms and requires special/enhanced protective equipment.

The concentrated form is acutely toxic (occasionally to the point of fatality) with skin

exposure (as well as highly corrosive) and the low concentration we use has demon-

strated acute toxicity with large-area skin exposures. There is no reason that the

concentration we use cannot be used safely within our own lab but like all chemicals

it should be treated with respect.

Following the formation of the HSQ pattern (which becomes essentially glassy SiO2)

on the surface of the film, it is imaged using the same SEM used to write the pattern.

Good imaging conditions for these devices are around 7kV and 25 - 50pA.

The last step in sample fabrication is etching of the sample by ion milling. The sample

is fixed to a piece of carrier wafer using vacuum compatible thermal grease with its

patterned face exposed. This is then loaded onto a sample stage which is tilted to

face an ion beam at a particular angle. In the case of the samples studied in this

thesis, the angle was 45◦. A shutter was used to set up a 25% duty cycle of beam

exposure with every 15 seconds of exposure followed by 45 seconds of shadow. The

device is exposed for a total of 120 seconds to remove the material not protected by

developed HSQ. The beam characteristics were an acceleration voltage of 80V with a

beam voltage of 400V. The resulting devices are shown in Fig. 5.3.

The Hall crosses used for the electrical measurements discussed in Chapter 6 are

fabricated, including leads, following the procedure described above for a large Hall

cross (1µm width) with the addition of lead and contact pad defining steps during

e-beam writing. The inner lead structures are written with a current of 100 pA and

a dosage of 1800 µC/cm2 while the outermost structures (contact pads) are written

at beam currents of 6400 pA and a dosage of 2100µC/cm2. The whole structure is

then developed as described above and ion milled for 135 seconds under the same
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(a) (b)

Figure 5.3: (a) Large Hall cross etched with ion beam. (b) Small Hall cross etched with
ion beam.

conditions described for the crosses alone (25% duty cycle, 80V acceleration voltage

and beam voltage 400V). The device is shown in Figure 5.4.

(a) (b)

Figure 5.4: (a) Before ion milling. (b) After 135s milling.

Later, larger full six-contact Hall bar devices were patterned under the same condi-

tions as the outer portion of the contacts described above (6400 pA and a dosage of

2100µC/cm2) (Fig. 5.5). Ion milling for these structures was the same as for the com-

bined Hall cross/contact structure described above (25% duty cycle, 80V acceleration

voltage and beam voltage 400V) but with a longer etch time (200s).
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Figure 5.5: MnSi Hall bar after 200s ion milling.
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Chapter 6

Results

6.1 XRD Characterization

Characteristics of the films deposited and degree of success in growing the target

materials were determined by x-ray diffractometry (see section 5.3). In particular for

MnSi we especially seek a unique peak for <111> MnSi at 2θ =34◦ and the absence

of contamination by Mn5Si3 and MnSi1.7.

6.1.1 MnSi

Figure 6.1 shows the high angle and grazing-incidence XRD traces for MnSi sputter

deposited as described in Section 5.2.1. For failed growth procedures the competing

phases MnSi1.7 (temperature too high or deposition too slow) or Mn5Si3 (temperature

too low or deposition at too high a power) indicated in the figure will be present. The

presence of a small <210> peak in the 2θ/ω spectrum indicates that while the film

is high ordered in the out of plane direction (see below for pole figure data), there is
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Figure 6.1: MnSi 2θ/ω and GIXRD 2-θ traces.

still some misalignment of crystallites with respect to the sample plane.

One assessment of film quality was made by taking a rocking-curve measurement

about the MnSi peak at 34◦ to accurately characterize its width (Fig. 6.2). By

applying the Scherrer formula

w =
Kλ

∆2θ

· cos θ (6.1)

48



the size of the individual crystallites making up the MnSi film is found to be 15nm.

This is as expected because the film thickness is also 15nm and crystal grain di-

mensions and film thickness are known to be nearly equal in high-quality sputtered

films.

Figure 6.2: Rocking curve for MnSi about the primary peak. The width at half-maximum
is .01 radians.

To determine texture of the film a pole figure measurement (see Section 5.3.3) was

carried out, again centering on the primary <111> peak. The results are shown in

Figure 6.3. The presence of a strong peak in the <111> direction (the north pole for

the pole figure sphere) indicates that the normal vector to the grains is highly aligned

to that axis (and therefore the substrate Si<111>) throughout the film. The absence

of any other peak means that the grains of the film are completely disordered in the

plane, each having a random orientation about the <111> axis.

Taken together these measurements indicate that I have successfully deposited a high-
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Figure 6.3: MnSi Pole figure centered on the <111> axis.

quality polycrystalline film of B20-phase MnSi by sputtering for the first time. The

random orientation of grains in the plane observed in Fig. 6.3 also occurs in MBE-

grown films though the grains in those films are larger [65].

6.1.2 MnSi on AlOx

It was found that MnSi grown and annealed on with a thin ∼3nm layer of amorphous

aluminum oxide between the MnSi and the Si<111> substrate (prepared as described

in Chapter 5) exhibited an XRD spectrum consistent with the presence of pure cubic

B20 MnSi. However, the film produced in this way appears to be partly structured

parallel to the plane of the film but largely disordered perpendicular to it, as shown

by the 2-θ/ω and grazing incidence spectra (Fig. 6.4). The possibility of depositing a

thin film chiral ferromagnet, regardless of increased disorder or imperfect orientation

on something other than a seed layer with the same structure is a new one, and will

add flexibility to studies of skyrmion-hosting materials. In this case, using the AlOx
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Figure 6.4: MnSi deposited on AlOx 2θ/ω and GIXRD 2-θ traces.

protective layer makes it unnecessary to etch the substrate immediately before depo-

sition. In addition, altering the orientation of the MnSi film makes it possible to study

other physics, such as controlling the orientation of surface anisotropy contributions

with respect to the crystal structure or making it easier to form in-plane skyrmion

lattices structures as those studied in [87].
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6.1.3 MnSi on Ta

Various attempts were made to deposit MnSi on top of other thin layers that were

themselves deposited on etched Si<111>. Deposition on a layer of 5nm thick Ta

succeeded (via the procedure described in Chapter 5). The resulting XRD spectra

(Fig. 6.5) are consistent with the presence of cubic β-Ta and B20 MnSi with an in-

plane structure, similar to the result for MnSi deposited on AlOx. Peaks from the Ta

underlayer are observable in the GIXRD spectrum because the layer was relatively

thick and the atomic number of tantalum is high.

The possibility of depositing MnSi on relatively thick layers of tantalum is important

because it improves the chances of studying the behavior of skyrmions under the in-

fluence of spin currents injected by the spin Hall effect [88, 89]. Tantalum has one of

the best conversion rates between normal and spin Hall current of all materials [90]

and generates spin Hall currents of opposite polarity to platinum so that sandwiching

a material between Ta and Pt nearly doubles the amount of spin current that can be

injected. The possibility of depositing MnSi between Ta and Pt also opens the possi-

bility of making multilayers with both bulk and interfacial DMI [80](if the MnSi can

be made thin enough without contamination). In Section 6.3 below, it is shown that

the MnSi deposited on tantalum exhibits signs in its longitudinal magnetoresistance

of hosting skyrmions in a narrow temperature range.

6.1.4 FeGe on MnSi

B20 FeGe was deposited on etched MnSi as described in Section 5.2.2. Confirmation of

this success was made by a 2θ/ω XRD scan shown in Figure 6.6. The main competing

phase is hexagonal FeGe which is not present. Only FeGe and MnSi contribute to

the spectrum and the distinctive <111> peak of cubic FeGe at 2θ =33◦ is clear.
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Figure 6.5: MnSi deposited on AlOx 2θ/ω and GIXRD 2-θ traces.

The pole figure (Fig. 6.7) for FeGe about the <111> axis differs markedly from

that for MnSi, here the signal is concentrated in seven peaks with six surrounding a

stronger central peak aligned with <111>. The six peaks are separated from each

other by 60◦ in the in-plane angle β and are 20 degrees above the equator (α = 20◦ see

Fig. 6.7(b)). Since the central peak is present and we know from Fig. 6.6 that there

is no hexagonal FeGe present, we can interpret this pole figure as showing a texture
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Figure 6.6: FeGe 2θ/ω XRD spectrum.

consisting of just two opposite (rotated 180◦ with respect to each other) orientations

of grains with cubic crystal structure aligned with its corner (the <111> direction).

It is unclear why MnSi has random in-plane orientation while the FeGe grains align

in one of only two directions (though there is also three-fold degeneracy for each of

these two orientations).
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(a) (b)

Figure 6.7: (a) Pole figure for FeGe on MnSi/Si<111>. (b) Projection looking down on
<111>.

6.2 Longitudinal Resistivity vs. Temperature

6.2.1 MnSi

The electrical characterization of the sputtered MnSi films begins with the measure-

ment of the longitudinal resistivity ρxx as a function of temperature. The measure-

ment was made using a Keithley 2400 DC current source and multimeter with a

fixed current of 40µA. The source/multimeter was connected to the four-point elec-

trical measurement structure. The results are shown in figure 6.8 with the relevant

measurement configuration.
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Figure 6.8: MnSi longitudinal resistivity as a function of temperature.

These results are comparable to those obtained for thin films of MnSi grown on

Si<111> by molecular beam epitaxy (MBE) [65, 70] as well as single crystals [91, 92],

though with indications of somewhat diminished film quality compared to MBE

growth. Since the form of the B20 MnSi resistivity versus temperature curve is

distinctive, its successful reproduction in the MnSi films grown for this thesis is en-

couraging.

Ta Underlayer

The presence of a 5nm tantalum underlayer does not significantly alter the shape of

the resistivity versus temperature curve, though the magnitude of the resistivity is

increased (see Figure 6.9). It is important to note that this large resistivity is not the

resistivity of the MnSi alone but rather of the whole Ta[5nm]/MnSi[15nm]/Pt[5nm]

multilayer.

56



Figure 6.9: 15nm MnSi with a 5nm Ta underlayer on Si<111>: longitudinal resistivity
as a function of temperature.
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Figure 6.10: MnSi longitudinal magnetoresistance as function of temperature for different
out-of-plane applied magnetic fields.

6.3 Longitudinal Magnetoresistance

6.3.1 MnSi

The first indication that the sputtered MnSi films possess a skyrmion-hosting state is

obtained from the magnetoresistance of the films and its temperature dependence. As

discussed in Chapter 3, this is not typically considered absolute confirmation of the

presence of skyrmions because the mechanism by which the skyrmion texture could

produce an effect on magnetoresistance does not currently have an accepted explana-

tion. However, a peak in negative magnetoresistance has been found to coincide with

the skyrmion state whenever it occurs in a B20 phase chiral magnet.
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Magnetoresistance

Figure 6.10 shows the dependence of magnetoresistance on temperature at multiple

magnetic fields applied perpendicular to the plane of the film. Here, magnetoresis-

tance is defined as

MR(H) =
ρxx(H)− ρxx(0)

ρxx(0)
. (6.2)

The measurements are made on the same kind of thin film structure and measurement

arrangement shown in Fig. 6.8. Unlike the zero-field resistivity measurements shown

above, these measurements were made using a Keithley 2182A nanovoltmeter and a

Yokogawa GS200 as a current source. The current applied was 150µA.

As with the temperature dependence of the longitudinal resistivity, these results are

consistent with those obtained for bulk single crystal [91], single crystal nanowire [77],

and MBE-grown thin films [70] of MnSi. The magnitude of the magnetoresistance

for all thin films is less than for single crystals at the same applied field. Also, the

applied fields for the measurements presented here are smaller than those presented

in the literature. This may explain the broad minimum in Fig. 6.10 (corresponding

to the presence of skyrmions) which is consistent with the slight broadening of the

minimum for lower fields observed in the single crystal nanowires of [77] (this field

was still four times as high as the highest field shown in Fig. 6.10) but not in the

bulk single crystals of [91].

Below the temperature that we propose corresponds to the initial presence of skyrmions

(∼20K), the MnSi is in a conical state (shown in Chapter 4) where the magnetoresis-

tance depends on the magnetic field applied. Above the critical temperature (∼50K)

the MnSi film is in a paramagnetic state so that the magnetoresistance is zero and

unchanged with applied field strength.
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Figure 6.11: MnSi longitudinal magnetoresistance in the presence of a 5nm tantalum
underlayer as function of temperature for different out-of-plane applied magnetic fields.

Ta Underlayer

When there is a 5nm underlayer of Ta between the Si<111> substrate and the MnSi,

the temperature dependence of the magnetoresistance of the MnSi film (see Fig. 6.11)

is more like that of a single crystal [92] than MBE-grown films. It exhibits a narrow

minimum at the bulk Curie temperature of 29.5K (consistent with the observation

that this minimum approaches the bulk transition temperature as the applied field

is decreased in [92]) rather than the broad minimum of the film sputter deposited

directly on silicon.

6.4 Hall Effect Measurements: MnSi

The standard electrical transport measurement used to confirm the presence of skyrmions

is the extraction of a topological component from the Hall resistivity ρxy. The forms
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and origins of the contributions to the ρxy are discussed in Chapter 3. Here we recall

that the Hall resistivity can be expressed as

ρxy = R0H + SHρ
2
xxM + ρtxy (6.3)

R0 is the ordinary Hall resistance, SH is a magnetic field independent anomalous

Hall coefficient, and the magnetization M is itself dependent on applied field H and

temperature T . SH is negative for MnSi so that for low fields the total Hall resistivity

is negative. We use the convention of [71, 76] and plot −ρxy and its derivatives and

scalings.

The measurements described below were carried out on a Hall cross of the type shown

in Chapter 5 with a width of 1µm and an arm length of 5µm. All measurements were

carried out in a 4He immersion cryostat.

6.4.1 Low Current Density

These measurements were taken using a resistance bridge and lock-in technique. The

lock-in amplifier (A Signal Recovery DSP 7265) was set up in FET mode with 60Hz

and 120Hz line rejection filtering and the lock-in frequency was 2333 Hz. The AC

voltage amplitude applied to the Hall cross corresponded to an applied current of

1µA. Measurement was on the transverse arms.

In the low field (0G - 2kG) regime accessible for this set of measurements the resistivity

versus field data taken at multiple temperatures are well fit by a model with linear

magnetic field dependence. Figure 6.12 shows the dependence of ρxy on temperature.

In order to extract the topological term we first use high-temperature (T>60K) data

to remove the ordinary Hall contribution. At these temperatures the magnetization
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Figure 6.12: Linear coefficient for the fit of Hall resistivity as a function of applied mag-
netic field plotted against temperature.

of MnSi is zero and there are no skyrmions. Therefore the remaining contribution to

∂ρxy/∂H (which is linear in T) is attributed to R0 and is subtracted at all tempera-

tures. The high-temperature data and fit are shown in Figure 6.13.

Next, the resulting data are divided by ρ2
xx at the corresponding temperature (see

Fig. 6.8) and the T dependence of M (which for MnSi is linear in H in this field range

[65]) is approximated by fitting to

b1(1− T

2T0

)b2f(T ) (6.4)

Where

f(T ) = C
coth(C/(1− a(T )

sinh(C/(1− a(T ))

a(T )

(1− a(T ))2
(6.5)

with the constant C = 1
2
ln(cot(π/8)) and a(T ) = (1−T/(2T0)). f(T ) is the effective

critical exponent of the magnetization for the exact solution to a finite 2-dimensional
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Figure 6.13: High temperature ρxy and least-squares fit linear in temperature.

Ising model [93]. There are 3 parameters, b1 is fixed by the low-temperature value

of ∂ρxy/∂H (where ρtxy should be zero). T0 is set by the temperature at which

(∂ρxy/∂H −R0(T )) /ρ2
xx goes to zero. The parameter b2 captures some features corre-

sponding to the finite thickness of the sample, but could be set to one and reasonable

values of ρtxy would still be obtained. However, this would give an unphysically steep

decrease in M as a function of temperature so this single parameter is allowed to

vary to obtain a least squares fit to the data. The results of this fit are shown in

Fig. 6.14. The fit for the anomalous Hall contribution could be improved by further

taking into account the finite thickness of the MnSi film either via a mean-field or

quantum Monte Carlo calculation of the magnetization [94, 95] so that the nonzero

slope of the magnetization at low temperatures [65, 92] is better reproduced. How-

ever the improvement is likely to be incremental and a better strategy would be to

measure the magnetization directly and fit for the single constant SH . The likely

result is that the magnitude of the topological term would be slightly decreased and
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Figure 6.14: Reduced Hall resistivity data and fits for SHM/H plotted against tempera-
ture. ρ̃xy = ρAHExy + ρtxy so that the curves are approximations to SHM/H (M is linear in
H in this field range). The difference between the fit and the observed data is ρtxy (plotted
in Fig. 6.15). See text for the meaning of b2.
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Figure 6.15: Topological component of the magnetic field derivative of the Hall resistivity.
Multiplying by a low field gives the topological Hall resistivity at that field.

the temperature range over which it is non-zero would be slightly narrowed.

Subtracting the anomalous Hall contribution found in this way and multiplying the

remainder by ρ2
xx (and removing the sign that we have been carrying until now)

gives the result for ∂ρtxy/∂H plotted in figure 6.15. Since ρtxy is nearly linear in

this field range (up to approximately 5kG) this result is sufficient for comparison to

existing results for MBE-grown thin-film [65] samples with which agreement both in

terms of temperature range and magnitude of the topological signal is very good. As

with the MBE films, the temperature range over which the topological Hall effect

is present is broadened in comparison to single crystals of MnSi [71]. This is the

primary experimental result of this work: sputtered MnSi films are comparable to

MBE-grown films in their ability to host skyrmions.

In addition, the temperature range in which we observe a finite topological Hall effect
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(and therefore skyrmions) agrees completely with the minimum in the longitudinal

magnetoresistance discussed above. This is therefore another case where the pres-

ence of skyrmions suggested by a magnetoresistance measurement is confirmed by a

different measurement.
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Chapter 7

Approximation of Skyrmions

7.1 sine-Gordon Kinks

Recall the Euler-Lagrange equation for the azimuthal angle of the local magnetization

in an isotropic ferromagnet with a Dzyaloshinkii-Moriya interaction (Eq. (2.31)) from

Chapter 2:

θρρ +
1

ρ
θρ −

1

2ρ2
sin 2θ =

h

2
sin θ +

d

ρ
sin2 θ (7.1)

If rather than setting the entire right hand side to zero, as in Section 2.5, we consider

a case with the Dzyaloshinskii-Moriya coefficient D = 0 in Eq. (2.31) we have

θρρ +
1

ρ
θρ =

1

2ρ2
sin 2θ +

h

2
sin θ (7.2)

This equation is a circularly symmetric double sine-Gordon equation [96, 97] with a

variable coefficient on the sin 2θ term. Unfortunately, there is no known analytical

solution for this equation either. So we have to fall back to the one-dimensional,
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stationary sine-Gordon equation [98, 99]

θxx = sin θ(x) (7.3)

This equation admits an exact soliton solution known as a sine-Gordon kink:

θ(x) = 4 arctan(e−x) (7.4)

Eq. (7.4) for the 2π-soliton is equal to double the Bloch domain wall magnetization

profile θDW (x) = arccos(tanh(x)) derived by Landau and Lifshitz [100, 84]. This is

to be expected because the static Landau-Lifshitz model (with magnetization con-

strained to an “easy” plane) is a static sine-Gordon equation with 1
2

sin 2θ on the

right-hand side. The mathematics of the sine-Gordon kink soliton has long been used

in the study of domain wall properties, stability, and dynamics in one-dimensional

ferromagnetic chains [101, 102] and easy-plane ferromagnets [103, 104, 105] because

of this correspondence [60].

7.2 Kink Approximation in Two Dimensions

The kink solution Eq. (7.4) has an interesting relationship to the skyrmion profile.

Skyrme himself [106] used the sine-Gordon model as precursor and toy version of his

model and was the first to discover the two-soliton sine-Gordon solution. Some time

ago Sutcliffe found [107] that the kink (suitably scaled for size) provides an excellent

approximation to the radial profile of a three-dimensional skyrmion. More recently,

Nitta showed [108] that a two-dimensional skyrmion is topologically equivalent to a

sine-Gordon kink inside (superimposed on a background of) a domain wall.

It turns out that the x > 0 half of the sine-Gordon kink soliton is also a very good
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Figure 7.1: A numerical solution for a skyrmion profile (blue) with its corresponding sine-
Gordon kink approximation Eq. (7.5)(dashed red). Linear and exponential approximations
are shown as dashed black curves.

approximation to the profile function of the two-dimensional skyrmion for the case

of high magnetic fields (relative to the DMI constant). In Figure 7.1 I show the close

match between a kink approximation

θ(ρ) = 4 arctan(e−ρ/δ) (7.5)

where δ is the width or size of the kink, and the solution of Eq. (7.1) obtained

numerically by the shooting method in figure 7.1. In this case δ was used as a fitting

parameter. This fact has not been reported previously in the literature. However,

this approximation fails badly for intermediate and low applied magnetic fields.
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7.3 Two-Parameter Approximations

A two-parameter generalization of the sine-Gordon kink

θ(x) = 2 arctan

(
a

c1 sinhx/c2

)
(7.6)

exactly solves a linear double sine-Gordon equation with constant coefficients [97]

θxx =
1

2

(
1

c2
1

− 1

c2
2

)
sin 2θ +

1

c2
1

sin θ (7.7)

Note that Eq. (7.6) and Eq. (7.4) are equal if c1 = c2 = 1. Various forms of

this solution have been used to study domain walls on 1D ferromagnetic chains with

anisotropy [109]. Particularly relevant to our study of Eq. (7.1) is the discovery of a

static soliton solution for the case of an isotropic ferromagnetic chain [110, 60] and

its explanation [111] as an “untwisted” (achiral) or “twisted” (chiral) bound pair of

two π-Bloch domain walls separated by a distance 2R̃:

θ(x) = 2 arctan e−
x
δ
−R̃ + 2 arctan e−

x
δ

+R̃ (7.8)

The like sign on x for the two domain walls indicates that they have the same sense

of twist (same chirality) defined by

τ =
1

2π

∫ ∞
−∞

dx
df(x)

dx
(7.9)

where f(x) may be either member of the pair or their combination, so that the pair

is chiral with τ = 1. The combination Eq. (7.8) can be rewritten as

θ(x) = 2 arctan

(
cosh R̃

sinh(x/δ)

)
(7.10)
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Where R̃ is still half the separation between the domain walls and δ is their width.

Such a bound pair of two solitons, in this case Bloch walls, is often known as a “bion”

[60] and is itself a soliton. The 1D structure so defined is shown in Figure 7.2.

Figure 7.2: The pair of π domain walls described by Eq. (7.10).

The approximation approach proposed here is to replace x in the twisted Bloch wall

pair discussed above with ρ to describe the radial profile of the (rotationally sym-

metric) approximate two-dimensional skyrmion. This sort of approximation has been

used previously for two-dimensional (vortex) solitons of the dissipative cubic complex

Ginzburg-Landau model of a laser [112] but not in the context of skyrmions, though

it is standard to define skyrmions in three and higher dimensions in terms of their

profile function as is done here.

Though the approximation given by Eq. (7.10) as a function of ρ can be used to

successfully fit numerical solutions for the skyrmion profile via the parameters R =

cosh R̃ and δ, it is more useful to be able to predict the skyrmion profile using the

physical parameters h and d (the reduced magnetic field and Dzyaloshinskii constant

respectively of Section 2.5). To that end we solve Eq. (7.1) numerically using a shoot-

ing method in the Mathematica analysis software package for several combinations

of h and d values (see Appendix A for the code listing and details). One important

71



feature of solutions to Eq. (2.31) is that h and d must have opposite signs. In this

thesis I take h > 0 (corresponding to θ(0) = +π) which implies that d < 0, all future

references to d are shorthand for |d| unless otherwise specified. Values of R and δ

which give the best least squares fits for these profiles were found and used to extract

phenomenological forms for R and δ in terms of h and d. The resulting expressions

are

R = 2.5

(
d

√
1

d2
+

1

h
− 1

)
(7.11)

1/δ = 0.346 + 1.9

1− 1

h
√

1
d

+ 1
h2

 (7.12)

Figure 7.3 shows the degree to which the phenomenological expressions match the

numerical results for R and δ.

(a) (b)

Figure 7.3: (a) Relation between the parameter R and the physical parameters h and d,
the slope of the line is 2.5. (b) Relation between 1/δ and h and d, the line is given by 0.346
+ 1.9f(h,d).

The success of this approximation is shown in Figure 7.4 where the approximation is

shown to be close to the numerical solution over a relatively wide range of ratios of

h to d. The figure is designed for easy comparison to Figure 2(c) of [56]. None of the
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h and d combinations were used to find Eq. (7.11). The approximations were made

using only the value of h/d and do not have any fitting parameters. One limitation

of this approximation is that it does not work for large values of h/d > 2, however

single skyrmions are not considered stable for h/d > 1.6 [16].

Figure 7.4: Numerical shooting method (solid) and approximation Eq. (7.10) and Eq.
(7.11) with x→ ρ (dashed) skyrmion profiles with gray, blue, and orange corresponding to
HA/D2 = 1.4, 0.8, and 0.6

For comparison to other available analytical approximations for 2D skyrmions, in

Fig. 7.5 we show the best possible fit of the approximation Eq. (2.34) from [59] with

two free fitting parameters for one of the cases shown in Fig. 7.4. This is the only

current single approximation which correctly matches the skyrmion profile at both

ρ = 0 and ρ =∞ but the approximation presented in this thesis performs better for

single skyrmions over the whole profile.
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Figure 7.5: Numerical shooting method (solid) and approximation Eq. (7.10) and Eq.
(7.11) with x → ρ (dashed orange) corresponding to HA/D2 = 0.6 as in Fig. 7.4. For
comparison (dashed black) shows the best fit of approximation Eq. (2.34) to the numerical
solution with both parameters (R and p) allowed to vary without restriction.

7.3.1 Approximate Energy Calculation

The utility of such an approximation is that it can allow the calculation of features of

skyrmion structure and dynamics in micromagnetic calculations [26] without requiring

calculation of or “relaxation” into the initial skyrmion structure under the specific

conditions of interest. In order to go further and use the approximation to determine

the stability and features of skyrmions for different values of applied magnetic field

and the material dependent strength of the Dzyaloshinskii-Moriya interaction it is

necessary to calculate the energy of the approximate skyrmion. This is accomplished

by integrating the energy density mentioned in Section 2.5 and reproduced here:

w = 2πAM2

[(
θ2
ρ +

sin2 θ

ρ2

)
+ d

(
θρ +

sin 2θ

2ρ

)
+ h(1− cos θ)

]
ρ (7.13)
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Figure 7.6: (blue) The second term of the energy density Eq. (7.13) (ignoring constant
prefactors) with R and δ both set to one. (orange) The approximation described in the text
with C1=6.83,C2=4,and k = 6.957.

The integration is over the variable ρ and for a single skyrmion the integration limits

are from zero to infinity. For θ(ρ) given by Eq. (7.10) with x→ ρ, all terms with the

exception of the second can be integrated analytically using the symbolic computation

package Mathematica, though most of the resulting expressions are long and are

collected in Appendix B. The second term requires special consideration because

despite appearing innocuous and approaching zero smoothly both at zero and infinity,

the integral of

sin2
(

arctan
(

R
sinh(ρ/δ)

))
ρ

(7.14)

plotted in Fig. 7.6 could not be found symbolically.

Fortunately, it is possible to approximate this integrand with an expression of the

form

C1ρ(1− ρ/C2)k (7.15)
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Which integrates to

∫
C1ρ(1− ρ/C2)kdρ =

C1(ρ− C2)(1− (ρ/C2))k(C2 + ρ+ kρ)

(1 + k)(2 + k)
+ const. (7.16)

This approximation is only real-valued up to ρ = C2 so that C2 must now be used

as the upper limit of integration (or put another way the approximation is defined

piecewise so that it is zero for ρ > C2), giving

∫ C2

0

C1ρ(1− ρ/C2)kdρ =
C1C

2
2

2 + k + k2
(7.17)

The values of C1,C2, and k are determined by R and δ (and therefore indirectly by

h and d) and a method similar to the one used above to find a phenomenological ap-

proximation for the skyrmion profile function can be applied to complete an analytical

approximation for the energy of the (approximate) skyrmion. As a particular example

the best least squares fit for ρ=1, R=1 is given by C1=6.83,C2=4,and k=6.957 (and

shown in Fig. 7.6) and for this case the integral of the approximation differs from the

numerically calculated integral of Eq. (7.14) by less than 0.5%.

This analytical expression for the energy allows the possibility of a continuous phase

diagram for a single approximate skyrmion as well as the possibility of including

additional skyrmions or defects and boundaries to the system and calculating the

dependence of the energy on (e.g.) the separation between skyrmions analytically.

The latter would allow an analytical approximation for the force between skyrmions

to be obtained by taking a derivative.
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7.3.2 Approximate Skyrmion Lattice

An interesting feature of the approximation of a skyrmion by a pair of domain walls is

that rather than the implicitly circularly symmetric construction obtained by simply

replacing the one-dimensional variable x with the radial coordinate ρ (akin to revolv-

ing the domain wall pair about its center), we can instead add three or more domain

wall solitons in the plane equally spaced in the angular coordinate φ. The expression

for such a sum with n (2π/n)-domain walls is given by

n∑
k=1

4

n
arctan

(
(e−r/δ+R(r cos( 2kπ

n ) cosφ+r sin( 2kπ
n ) sinφ)

)
(7.18)

The symmetry is broken on the R term in the exponential so this is not exactly equiv-

alent to the circularly symmetric approximation discussed above and becomes physi-

cally unreasonable for large R (resembling the Belavin-Polyakov soliton discussed in

Section 2.5). However, the multi-solitons constructed in this way are circularly sym-

metric for sufficiently small R and δ and even give a better fit to numerical skyrmion

solutions under conditions corresponding to high applied fields h.

The case n =6 is of particular interest because it corresponds to an intersection of

three of the twisted domain wall pairs discussed above, each pair separated from the

next by 120◦, and possesses hexagonal symmetry as the skyrmion lattice does. This

speaks to an important apparent paradox about the nature of skyrmions. It has

been known since the initial observations of skyrmion lattices [12] that they are well

described by a “triple-Q” magnetization configuration given by

~M(~r) ≈Mb +
3∑
i=1

~MQi(~r + δ~ri) (7.19)
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with

~MQi(~r) = MQi

[
~ni1 cos( ~Qi · ~r) + ~ni2 sin( ~Qi · ~r)

]
(7.20)

This expression describes the intersection of three infinite magnetic helices, with am-

plitudes MQi and relative shifts δ~ri, superimposed on a uniform (out-of-plane) back-

ground ~Mb. The triple-Q nature of the skyrmion lattice in FeGe has been confirmed

by direct observation with Lorentz TEM [67] where skyrmions coexisting with and

arising from helical domain walls were studied. However, it has also been known

since the first real-space observations of skyrmions [15] that they can exist singly on

a uniform ferromagnetic background, which is inconsistent with any requirement for

the presence of (semi-)infinite magnetization helices.

The n =6 version of Eq. (7.18) may provide a bridge between descriptions of a single

skyrmion and a skyrmion in a lattice since it is an intersection of three chiral helical

magnetization structures but with a decay which ensures that like the circularly

symmetric approximation it can be described as a single isolated particle, out of

which a hexagonal lattice can be built. Also, for higher fields (regimes where skyrmion

crystal lattices are stable) the n =6 approximation provides a superior fit to numerical

solutions of the skyrmion profile equation when compared to the circularly symmetric

approximation (See Fig. (7.7)). However, this is not unique, as other values of n >2

also provide a superior fit in this range and so it is important to emphasize that this

is only an approximation and does not perfectly describe the structure of a skyrmion.

It is possible that the model with n =3 is more consistent with the results of [67]

but may be more difficult to reconcile with the picture of an isolated skyrmion. This

may not be a problem because the coexistence of skyrmions and helical domain walls

vs. skyrmions and a uniform ferromagnetic background occurs in different regions of

magnetic field - temperature phase space [15].
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Figure 7.7: Numerical shooting method (solid blue), circular approximation Eq. (7.10)
and Eq. (7.11) with x→ ρ (dashed black), best fit for Eq. (7.10), and best fit for Eq. (7.18)
with n =6, skyrmion profiles for h=0.6,d=-0.3 (HA/D2 = 6.7).
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Chapter 8

Conclusions

8.1 Summary of Results

The main results of this work were the following:

• Deposition of B20 cubic MnSi thin films by magnetron sputtering, both directly

on Si<111> (which is a first for sputtering, all previous films being grown by

MBE) and with a 3nm AlOx or 5nm Ta underlayer between Si<111> and MnSi

(the first time anything other than a few monolayer seed layer was deposited

between).

• Determination that the electrical transport behavior of these films is compara-

ble to that of MBE-grown films. In particular that the electrical behavior is

consistent with the presence of a skyrmion state in the expected temperature

and applied magnetic field range.

• Deposition of cubic FeGe by sputtering onto an MnSi film, this is the first bilayer

of skyrmion-hosting materials.
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• A new analytical approximation for single skyrmions which requires no unde-

termined fitting parameter and uses only physical conditions and properties to

give a close match to time-consuming numerical calculations in the range of

physical interest.

• Development of an analytical means to obtain an energy of the skyrmion (or

combinations thereof) from this approximation.

• An extension of the approximation described above which appears to bridge

the gap between the descriptions of isolated skyrmions against a uniform back-

ground and skyrmions as an intersection of three extended magnetization he-

lices, each of which is very successful in its domain of applicability.

8.2 Future Directions

For the future there are a few important matters to take up. The final confirmation of

the presence of skyrmions in the sputter-deposited films would be by Lorentz TEM,

x-ray magnetic circular dichroism, or perhaps scanning probe techniques as they

develop. Studying the transport properties of FeGe on MnSi in the regime where

both can host skyrmions (of different sizes, 18nm for MnSi and 70nm for FeGe)

should be interesting from the point of view of studying vertical interactions between

the nominally two-dimensional skyrmions. Also, thinner films of MnSi should be

deposited on Ta and the latter used to inject spin Hall currents in order to manipulate

the skyrmions. This has been done for thin “normal” ferromagnets such as CoFeB

but not for a chiral magnetic material like MnSi.

The approximation described in this thesis could be immediately applied to estimating

skyrmion stability under different conditions in different materials and to studying
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skyrmion dynamics. The most immediate problems to approach, beyond stability, are

interactions between skyrmions including when they are close enough to each other

that a rigid particle model for them is no longer appropriate, and the interaction of

a skyrmion with a defect or barrier.
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Appendices

A Appendix A: Numerical Procedure

Numerical solutions of Eq. (2.31) against which to compare the approximations of

Chapter 7 are obtained using a shooting method calculation in the software pack-

age Mathematica. An important consideration for problems such as this with one

boundary condition at infinity when solved by the shooting method is that a finite

boundary point must be chosen and the boundary condition must be applied there. If

the boundary point is too close to the origin then the numerical result will be invalid.

It also introduces a level of approximation because in reality for the skyrmion profile

problem, the profile decays to zero more slowly than any possible numerical approxi-

mation to the profile. When this problem is solved numerically in the literature [113],

the boundary location is set when the solution obtained stops changing significantly.

The program defined below finds the most distant position for a boundary point at

which the numerical solution is stable, thereby approximating a boundary condition

at infinity. In addition, the condition for the stability of the solution is satisfied

because boundary points chosen near the one found (but closer to the origin) give

solutions for the profile function that are only infinitesimally different.

The first line is important because it allows Mathematica’s own error handling rou-
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tines to be used in determining whether a stable solution has been found and to

continue the search if it has not. The expression at the end carries out the numerical

solution procedure on the set of h,d values that was used to create the phenomeno-

logical parameters Eq. (7.11) for the approximation Eq. (7.10) with x→ ρ. Carrying

out these calculations for the thirty-six values represented required five hours of com-

putation on a standard desktop computer. The approximations presented in Chapter

7 are meant to save this time and allow rapid exploration of the physical parameter

space.

1

2 Off[General::stop]

3

4 createLargestRegion [h , d , mult ] :=

5 Block[{bound = Min[mult∗Abs[d]/h, 19], n = 1, result, previous },

6 While[Not[

7 Check[result[ r ] :=

8 Evaluate[

9 First [\[Theta][r ] /.

10 NDSolve[{\[Theta]’’[r] + 1/r \[Theta ]’[ r ] −

11 0.5/(rˆ2) Sin[2 \[Theta][r ]] == (h /2 Sin[\[Theta][r ]] +

12 d /r Sin [\[Theta][r ]]ˆ2 ) , \[Theta][0.0001] ==

13 Pi, \[Theta][bound] == 0}, \[Theta][r ], r ,

14 ”Method” −> {”Shooting”,

15 ” StartingInitialConditions ” −> {\[Theta][.0001] ==

16 Pi, \[Theta ]’[0.0001] == −Pi/1000}}]]], False]] ||

17 FindMaximum[{result[t], t > .0001 && t <= bound}, t] > Pi ||

18 result [0.5] > result [0.0001],

19 bound = bound − 0.1;

20 n++;];

21 result [ r ]]

22

23 hdInterpFuncs =
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24 Table[Table[{i∗0.1, j∗−0.1,

25 Evaluate[createLargestRegion[ i ∗0.1, j∗−0.1, 19.0]]}, {j , 3, 18,

26 3}], { i , 3, 18, 3}]

“newlabelA8528

B Appendix B: Energy Terms

“newlabelB85

1 FirstTerm = (a (aˆ2 Arg[1 + (−I + a Tanh[(b r)/2])/Sqrt[−1 + aˆ2]] −

2 aˆ2 Arg[1 + (I + a Tanh[(b r)/2])/Sqrt[−1 + aˆ2]] −

3 2 aˆ2 Sqrt[−1 + aˆ2] Cosh[b r] +

4 Arg[1 + (−I + a Tanh[(b r)/2])/Sqrt[−1 + aˆ2]] Sinh[b r]ˆ2 −

5 Arg[1 + (I + a Tanh[(b r)/2])/Sqrt[−1 + aˆ2]] Sinh[b r]ˆ2 +

6 Arg[1 + (−I − a Tanh[(b r)/2])/Sqrt[−1 + aˆ2]] (aˆ2 +

7 Sinh[b r ]ˆ2) −

8 Arg[1 + (I − a Tanh[(b r)/2])/Sqrt[−1 + aˆ2]] (aˆ2 +

9 Sinh[b r ]ˆ2)))/((−1 + a) (1 + a) Sqrt[−1 + aˆ2]

10 b (aˆ2 + Sinh[b r]ˆ2))

11

12 ThirdTermA=−1/(2 Sqrt[−aˆ2] b)

13 a d (RootSum[1 − 2 #1ˆ2 + 4 aˆ2 #1ˆ2 + #1ˆ4 &,

14 1/(1 − #1ˆ2 + 2 aˆ2 #1ˆ2) (−b r Log[1 − Eˆ(b r) #1] −

15 PolyLog[2, Eˆ(b r) #1] +

16 Sqrt[−aˆ2] b r Log[1 − Eˆ(b r) #1] #1 +

17 Sqrt[−aˆ2] PolyLog[2, Eˆ(b r) #1] #1 +

18 b r Log[1 − Eˆ(b r) #1] #1ˆ2 −

19 2 aˆ2 b r Log[1 − Eˆ(b r) #1] #1ˆ2 +

20 PolyLog[2, Eˆ(b r) #1] #1ˆ2 −

21 2 aˆ2 PolyLog[2, Eˆ(b r) #1] #1ˆ2 +
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22 Sqrt[−aˆ2] b r Log[1 − Eˆ(b r) #1] #1ˆ3 +

23 Sqrt[−aˆ2] PolyLog[2, Eˆ(b r) #1] #1ˆ3) &] +

24 RootSum[1 − 2 #1ˆ2 + 4 aˆ2 #1ˆ2 + #1ˆ4 &,

25 1/(1 − #1ˆ2 + 2 aˆ2 #1ˆ2) (b r Log[1 − Eˆ(b r) #1] +

26 PolyLog[2, Eˆ(b r) #1] +

27 Sqrt[−aˆ2] b r Log[1 − Eˆ(b r) #1] #1 +

28 Sqrt[−aˆ2] PolyLog[2, Eˆ(b r) #1] #1 −

29 b r Log[1 − Eˆ(b r) #1] #1ˆ2 +

30 2 aˆ2 b r Log[1 − Eˆ(b r) #1] #1ˆ2 −

31 PolyLog[2, Eˆ(b r) #1] #1ˆ2 +

32 2 aˆ2 PolyLog[2, Eˆ(b r) #1] #1ˆ2 +

33 Sqrt[−aˆ2] b r Log[1 − Eˆ(b r) #1] #1ˆ3 +

34 Sqrt[−aˆ2] PolyLog[2, Eˆ(b r) #1] #1ˆ3) &])

35

36 ThirdTermB=−((d R \[Delta] ArcTanh[Cosh[\[Rho]/\[Delta]]/Sqrt[1 − Rˆ2]])/Sqrt[

37 1 − Rˆ2])

38

39 FourthTerm = 1/(8 Sqrt[

40 aˆ2 (−1 + aˆ2)]) (−r Log[

41 1 − Eˆr/Sqrt[1 − 2 aˆ2 − 2 Sqrt[aˆ2 (−1 + aˆ2)]]] −

42 r Log[1 + Eˆr/Sqrt[1 − 2 aˆ2 − 2 Sqrt[aˆ2 (−1 + aˆ2)]]] +

43 r Log[1 − Eˆr/Sqrt[1 − 2 aˆ2 + 2 Sqrt[aˆ2 (−1 + aˆ2)]]] +

44 r Log[1 + Eˆr/Sqrt[1 − 2 aˆ2 + 2 Sqrt[aˆ2 (−1 + aˆ2)]]] −

45 PolyLog[2, −(Eˆr/Sqrt[1 − 2 aˆ2 − 2 Sqrt[aˆ2 (−1 + aˆ2)]])] −

46 PolyLog[2, Eˆr/Sqrt[1 − 2 aˆ2 − 2 Sqrt[aˆ2 (−1 + aˆ2)]]] +

47 PolyLog[2, −(Eˆr/Sqrt[1 − 2 aˆ2 + 2 Sqrt[aˆ2 (−1 + aˆ2)]])] +

48 PolyLog[2, Eˆr/Sqrt[1 − 2 aˆ2 + 2 Sqrt[aˆ2 (−1 + aˆ2)]]])

“newlabelB8652
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