
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Parallel Efficiency of the Lanczos Method for Eigenvalue Problems

Permalink
https://escholarship.org/uc/item/2wr008x8

Authors
Wu, Kesheng
Simon, Horst D.

Publication Date
1998-12-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wr008x8
https://escholarship.org
http://www.cdlib.org/

Parallel EÆciency of the Lanczos Method for Eigenvalue

Problems
y

Kesheng Wu
z
and Horst Simon

z

Abstract

Two of the commonly used versions of the Lanczos method for eigenvalues problems

are the shift-and-invert Lanczos method and the restarted Lanczos method. In this talk,

we will address two questions, is the shift-and-invert Lanczos method a viable option on

massively parallel machines and which one is more appropriate for a given eigenvalue

problem?

1 Introduction

This talk is on how to compute eigenvalues and eigenvectors of large sparse symmetric

matrices on massively parallel machines. One of the the most commonly used algorithms

for this task is the Lanczos method which projects the large eigenvalue problem onto a

low dimensional Krylov subspace [7, 10]. In most cases, the Krylov subspace basis is

built through a series of matrix-vector multiplications, the whole Lanczos method can be

implemented with a matrix-vector multiplication routine and a few simple vector operations.

This algorithm is highly eÆcient on parallel machines and it is e�ective for computing

extreme and well separated eigenvalues.

To compute the interior or not well-separated eigenvalues, the shift-and-invert Lanczos

method is one of the most e�ective methods. Since the eigenvalues of a matrix A are related

to the eigenvalues of (A� �I)�1 by a simple relation �(A) = �+ 1=�((A� �I)�1) and the

corresponding eigenvectors of A and (A � �I)�1 are identical, the shift-and-invert scheme

computes the extreme eigenvalues of (A��I)�1 and deduce the corresponding eigenvalues

of A. With appropriate choice of �, the extreme eigenvalues of (A��I)�1 are well separated

and can be easily computed. The shift-and-invert Lanczos method needs to build a Krylov

subspace basis of (A � �I)�1 which is done by solving a series of linear systems involving

the coeÆcient matrix (A � �I). The linear systems need to be solved accurately and

the only reliable means to accomplish this is by using a direct method [5]. Because it is

diÆcult to implement direct methods on distributed parallel computers, eÆcient parallel

implementation has not been widely available until recently [1, 8]. This talk will present

our study of the parallel eÆciency of the shift-and-invert Lanczos method using these newly

available direct solvers. The study will show that the shift-and-invert Lanczos method is

yThis work was supported by the Director, OÆce of Energy Research, OÆce of Laboratory Policy and

Infrastructure Management, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

This research used resources of the National Energy Research Scienti�c Computing Center, which is

supported by the OÆce of Energy Research of the U.S. Department of Energy.
zLawrence Berkeley National Laboratory/NERSC, Berkeley, CA 94720. Email: fkwu,

hdsimong@lbl.gov.

1

LBNL-42828

2

a viable option for solving large eigenvalue problems on distributed parallel machines but

with signi�cant limitations at the moment.

When the shift-and-invert Lanczos method cannot be used, the standard Lanczos

method may need a large number of steps in order to reach an accurate solution. In

recent years, there have been signi�cantly improvements to the algorithm through restarting

[3, 14]. These restarted methods use almost the same number of Lanczos steps as the non-

restarted versions and they require much less computer memory than their non-restarted

counterparts. In this talk we will also present some comparisons between the restarted

Lanczos method and the shift-and-invert Lanczos method. Through these comparisons, we

would like establish some guidelines on when to use the shift-and-invert scheme and when

to avoid it.

2 The software packages

Before giving the comparison data, this section briey describes the software packages used.

The scopes of the di�erent packages determine how the comparisons can be performed.

SPOOLES This parallel direct method package implements factorization procedures for

symmetric and nonsymmetric, real and complex matrices. The basic algorithm is based on

the fundamental supernode tree [1]. It can perform not only LDU factorization but also

QR factorization. Further description about it can be found in reference [2, 1]. In our

study, this package is only used to solve simple symmetric linear systems. In this case, it

computes a diagonal matrix D and an upper triangular matrix U such that UTDU = A.

It performs pivoting if diagonal element is found to be small. The input matrix to the

factorization routine needs to be in a special data structure. Only half of the o�-diagonal

entries are needed when the input matrix is symmetric or Hermitian.

PSPASES This parallel direct solver software package [8] implements a multifrontal

Cholesky factorization for symmetric positive de�nite matrices, i.e., it computes an upper

triangular matrix U such that UTU = A. Because it assumes the input matrix to be

positive de�nite, there is no need to perform pivoting. In practice, this also prevents it

from factoring some ill-conditioned matrices. Even though the input matrix is symmetric,

it requires the user to provide all nonzero entries. In addition, PSPASES can only be run

on power of 2 number of processors. Compared to SPOOLES, PSPASES accepts limited

type of matrices and provides less functionality. However, because of these limitations, it

is able to perform its tasks more e�ectively in some cases.

PLANSO This is a parallel version of the Lanczos method with partial reorthogonaliza-

tion (available at http://www.nersc.gov/research/SIMON/planso.html). It implements

the standard non-restarted Lanczos algorithm for symmetric generalized eigenvalue prob-

lems. The partial reorthogonalization scheme monitors the loss of orthogonality among the

Lanczos vectors and maintains a minimal orthogonality level that is necessary to compute

the Ritz values accurately. This software package is used as the basis for the shift-and-invert

Lanczos method with either PSPASES or SPOOLES as the linear system solver.

TRLan This software package implements a version of the thick-restart Lanczos method

for eigenvalue problems [14]. In theory, the thick-restart Lanczos algorithm is equivalent to

3

Table 1

Time (seconds) used to factor a series of 3-D 27-point stencil matrices.

of PE

n 1 2 4 8 16 32 64 128 256 512

28 25.2 14.6 8.2 2.4 3.7 3.2 2.8 2.8 3.2 3.3

34 74.4 41.5 23.5 14.3 9.9 8.3 6.8 6.5 6.8 6.9

40 100.9 56.1 32.5 21.8 16.7 14.1 12.9 13.1

48 152.3 87.1 55.5 40.3 32.4 29.2 28.1

56 204.0 125.1 86.6 66.1 58.2

Table 2

The size of matrix A and the triangular factor U .

n N(� n3) NNZ(A) NNZ(U)

28 2:2� 104 5:5� 105 5:7 � 106

34 3:9� 104 1:0� 106 1:3 � 107

40 6:4� 104 1:6� 106 2:5 � 107

48 1:1� 105 2:9� 106 5:4 � 107

56 1:8� 105 4:6� 106 1:0 � 108

the implicitly restarted Lanczos algorithm [3] implemented in ARPACK [9]. The thick-

restart Lanczos algorithm avoid some numerical instabilities of the implicit restarting

scheme and the package TRLan implements the thick-restart Lanczos algorithm with

more sophisticated restarting strategies, therefore TRLan is chosen as the representative of

restarted Lanczos methods.

3 Performance characteristics

Since there are general purpose direct solver packages for distributed parallel machines, the

shift-and-invert Lanczos method is an available option if the matrix is explicitly generated

and the factors can be stored. To answer the question of whether it is an e�ective option,

this section will show its performance characteristics by using PLANSO with SPOOLES

and PSPASES.

In the shift-and-invert Lanczos method, the most time-consuming operation is solving

the linear systems. When using a direct method, solving a linear system involves two steps,

�rst factor the matrix into triangular form and then solve the resulting triangular linear

systems. The factorization step is done once for each matrix and the triangular solution

step is invoked for each right-hand side. Typically, it needs about 3 { 5 Lanczos steps to

compute one eigenvalue. Unless a large number of eigenpairs are wanted, the factorization

time dominates the whole computation. For these reasons, we will discuss the factorization

time and solution time separately.

The �rst set of tests shown in Tables 1 and 3 uses SPOOLES to solve a set of linear

systems with coeÆcient matrices that have the structure of 3-dimensional 27-point stencils,

Table 1 shows the factorization time and Table 3 shows the solution time. The tests are

conducted using a Cray T3E massively parallel computer. The test matrices are generated

on a uniform n � n � n grid. The blank cells in the lower left corner are due to memory

4

Table 3

Time (seconds) used to solve four linear systems with triangular factors of the 3-D 27-point

stencil matrices.

of PE

n 1 2 4 8 16 32 64 128 256 512

28 1.1 0.6 0.4 0.3 0.1 0.1 0.1 0.1 0.1 0.1

34 2.3 1.2 0.6 0.6 0.3 0.3 0.3 0.2 0.2 0.3

40 2.2 1.2 0.9 0.5 0.5 0.4 0.4 0.4

48 2.4 1.4 1.3 0.8 0.8 0.7 0.7

56 3.5 2.3 1.7 1.3 1.2

Table 4

Information about the Harwell-Boeing test matrices.

name N NNZ description

CT20 52329 1375396 an engine block

NASASRB 54870 2677324 shuttle rocket booster structure

limitations of the processors. Each processor of this T3E has only 256 MB(MegaBytes) of

memory. From Table 2, it is clear that the factorized form has many more nonzero entries

than the original matrix (NNZ(A) / n3, NNZ(U) / n4). All the test matrices shown here

can be stored on one processor of the T3E, however, at least eight processors are need to

store the triangular factor of the matrix based on the 56 � 56 � 56 grid. When a sparse

matrix is stored in memory, only a very small amount of additional memory is needed

to perform a distributed matrix-vector multiplication eÆciently. For simple matrices like

these grid matrices, it is even possible not to explicitly store any of the nonzero entries

of a matrix without sacri�cing the eÆciency of the sparse matrix-vector multiplication

operation. Thus, the eigenvalues of a much larger matrix can be computed if only the

matrix-vector multiplication is used.

The blank cells in the lower right corner of Tables 1 and 3 are due to MPI message header

bu�er limitation. The size of this bu�er can be increased to allow more MPI messages being

posted during the factorization. A limitation in the matrix generation routine prevents us

from testing larger grid matrices. This limitation can be removed in the future as well.

From the data in Table 1 and 3 we see that if the minimum number of processors needed

to perform the factorization is p0, the parallel eÆciency of using twice as many processors

is roughly 80 percent. As more and more processors are used, the execution time quickly

approaches a constant value and the parallel eÆciency approaches p0=p where p is the

number of processors used. For these grid matrices, the execution time almost reaches the

minimum when using 16p0 processors. Using more processors does not generate meaningful

additional reduction in computer time. In fact, the time may actually increase.

The second set of test problems are a number of large symmetric matrices in Harwell-

Boeing format [6]. Information about the matrices are listed in Table 4. The time used

to factor these two test matrices by the SPOOLES and PSPASES are shown in Figure 1.

It is clear that as more processors are employed for the factorization, the time does not

proportionally decrease. In fact, as the number of processors change from 2 to 64, the

5

2 4 8 16 32 64
0

20

40

60

80

100

120

Number of processors

fa
ct

or
iz

at
io

n
tim

e
(s

ec
on

ds
)

SPOOLES on CT20
PSPASES on CT20
SPOOLES on NASASRB
PSPASES on NASASRB

Fig. 1. Time to factor the two Harwell-Boeing matrices.

Table 5

Performance information about factorizations using 8 processors.

CT20 NASASRB

SPOOLES PSPASES SPOOLES PSPASES

NNZ(U) 1:0� 107 1:4 � 107 1:0� 107 1:3 � 107

OPS 5:2� 109 1:3� 1010 2:8� 109 5:9 � 109

MFLOPS 59:4 461 81:1 283

time decreased about 20 seconds giving a speedup of 1.3 { 2.1. Because these two matrices

has more complicated nonzero patterns than the simple grid matrices used previously, the

parallel eÆciency of the factorization procedures are worse than before.

Some additional performance information about the factorizations are shown in Table 5.

These data are collected using 8 processors. They are aggregate data, where NNZ(U) is

the total number of nonzero entries in the triangular factor, OPS is the total number of

oating-point operations used during the factorization and MFLOPS is the aggregate speed

of all 8 processors. PSPASES generates about 30-40 percent more nonzero entries in U and

uses about twice as many oating-point operations as SPOOLES. These di�erences are

mainly due to di�erent reordering strategies used. PSPASES employs parMETIS to perform

reordering; SPOOLES performs many independent multi-section ordering and minimal

degree ordering and then chooses the best one. The ordering algorithm in SPOOLES

takes more time. On the two test matrices, the ordering generated by SPOOLES leads

to smaller triangular factors but the ordering generated by PSPASES leads to less data

6

2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

Number of processors

tr
ia

ng
ul

ar
 s

ol
ve

 ti
m

e
(s

ec
on

ds
)

SPOOLES on CT20
PSPASES on CT20
SPOOLES on NASASRB
PSPASES on NASASRB

Fig. 2. Time to solve with the triangular factors of two Harwell-Boeing matrices.

communication. In addition, because PSPASES does not perform pivoting, its internal

data structure and data communication pattern can be completely determined during the

symbolic factorization phase and the numerical factorization phase takes less time than

the corresponding phase in SPOOLES. The aggregate speed of PSPASES is considerably

higher than that of SPOOLES.

The timing results of solving linear systems using the triangular factors of the two

Harwell-Boeing matrices are shown in Figure 2. As the number of processors changes from

2 to 64, the solution time decreases by a factor of 4. The triangular solution stages of the two

packages are more e�ective in taking advantage of more processors than the factorization

stages. Because of di�erences in ordering, PSPASES also uses less time to perform the

triangular solution than SPOOLES on the two test problems. Similar to the factorization

time, the parallel eÆciency for solving these two matrices are lower than solving the grid

matrices test problems.

Figure 3 shows the total time used by PLANSO to take 25 Lanczos steps. The time

shown here include both the factorization, the triangular solution and other operations

needed by the Lanczos method such as the orthogonalization, the Rayleigh-Ritz projection

and so forth. For both test matrices, 25 Lanczos steps is suÆcient to compute 3 smallest

eigenvalues and the corresponding eigenvectors. Comparing Figure 1 and 3, it is clear

that the factorization time dominates the overall execution time. The total time used by

PLANSO does not decrease signi�cantly as the number of processors increases.

When the shift-and-invert scheme is not used, the most time-consuming operation in the

Lanczos method is multiplying the matrix with a vector. Many research have shown that

this operation can be parallelized e�ectively [4, 11, 12] and in turn the restarted Lanczos

7

2 4 8 16 32 64
0

20

40

60

80

100

120

140

Number of processors

P
LA

N
S

O
 ti

m
e

(s
ec

on
ds

)

SPOOLES on CT20
PSPASES on CT20
SPOOLES on NASASRB
PSPASES on NASASRB

Fig. 3. Time to run PLANSO for 25 steps.

method can be run eÆciently on distributed environments [13]. In particular, when using

the uniform grid as the test problem, if the number of grid points is scaled as the number

of processors increases, the perfect parallel eÆciency can be achieved, i.e., the elapsed time

to perform a �xed number of Lanczos steps remain constant as the problem size increases.

Clearly, the direct methods are yet to achieve the same level of parallel eÆciency.

4 E�ectiveness of the restarted method

This section tries to answer the question when is the restarted Lanczos method or the shift-

and-invert Lanczos method preferred? As long as an appropriate shift can be determined

and the factorization can be computed, the shift-and-invert Lanczos method should be

able to compute any eigenvalue and the associated eigenvector. If the goal is to compute

some eigenvalues in the minimal number of Lanczos steps, the shift-and-invert scheme is

usually preferred. However, typically the memory required to store the triangular factors

of a matrix may be used to store hundreds of Lanczos vectors and the time to factor a

matrix may be enough to perform thousands of matrix-vector multiplications. If the goal

is to compute some eigenvalues in the least amount of time, the restarted Lanczos method

may be preferred. This section will give some concrete examples to demonstrate the point.

When trying to compute the largest eigenvalues of the NASASRB matrix, 5 seconds

are needed using the Lanczos method on 2 processors. Clearly, the shift-and-invert scheme

is not appropriate here because the factorization takes about 30 seconds on 2 processors.

On the other hand, as little as 21 seconds are needed to compute the smallest eigenvalues

of NASASRB with shift-and-invert Lanczos method on 32 processors, but 2587 seconds are

needed for PLANSO to compute the same eigenvalue on the same number of processors

8

Table 6

Number of Lanczos steps needed to compute �ve desired eigenvalues of three diagonal matrices

using TRLan.

basis size 25 basis size 50

N Aq Ac Al Aq Ac Al

100 297 527 286 271 511 231

1000 7720 > 10000 1250 2995 > 10000 1032

10000 > 10000 > 10000 13691 > 10000 > 10000 4056

Table 7

The relative gap ratios.

N Aq Ac Al

100 3� 10�4 8� 10�6 2:5� 10�3

1000 3� 10�6 8� 10�9 1:6� 10�4

10000 3� 10�8 8� 10�12 1:2� 10�5

using only the matrix-vector multiplication. In this case, 11619 Lanczos steps are taken

which means that 11619 Lanczos vectors are stored. On many computers, there is not

enough memory to store this many Lanczos vectors. If 1000 Lanczos vectors are stored,

TRLan needs 8546 seconds to compute the smallest eigenvalue of NASASRB on 8 processors

(It uses roughly the same amount of aggregate time as the non-restarted case but uses less

then one tenth of the computer memory). If less than 1000 Lanczos vectors are stored, the

time needed to compute the smallest eigenvalue increases dramatically.

To further illustrate the di�erences between the shift-and-invert Lanczos method and

the restarted Lanczos method, we compare their performance on a sequence of eigenvalue

problems of varying diÆculty. To limit the time required to conduct the experiment, we

have chosen to use only diagonal matrices in this set of tests. Three di�erent test matrices

are used in this set of tests, they are

Aq = diag(12; 22; 32; : : :);

Ac = diag(13; 23; 33; : : :);

Al = diag(log 2; log 3; log 4; : : :):

The tests try to compute the �ve smallest eigenvalues of Aq and Ac and the �ve largest

eigenvalues of Al using TRLan. Table 6 shows the number of Lanczos steps needed to

compute these eigenvalues. If the shift-and-invert Lanczos method were used, the wanted

eigenvalues are computed within 20 Lanczos steps. If general sparse matrices with similar

spectra are actually used and the restarted Lanczos method takes more than 10000 steps,

the shift-and-invert Lanczos method is very likely to use less time. This is the reason why

the restarted Lanczos method is stopped after 10000 steps. If the restarted Lanczos method

completes the task within 10000, it is probably preferred over the shift-and-invert Lanczos

method.

The relative gap ratios shown in Table 7 is a measure of diÆculty of the eigenvalue

problems. Let �1; �2; : : : ; �N denote the eigenvalues of the test matrices in ascending

9

order, the relative gap ratio shown in Table 7 are (�2 � �1)=(�N � �1) for Aq and Ac,

(�N � �N�1)=(�N � �1) for Al. From this set of tests, we see that when the relative gap

is less than 10�6, TRLan cannot compute the eigenvalues in less than 10000 steps. The

smallest eigenvalue of NASASRB has a relative gap ratio of 10�10. The restarted Lanczos

method needs more than 50000 steps using a basis of 1000 vectors. This indicates that it is

possible for TRLan to compute very diÆcult eigenvalues, however it needs to keep a large

number of Lanczos vectors and it may take a large number of Lanczos steps.

The comparison here is only on extreme eigenvalues, if an interior eigenvalue is wanted,

the spectrum needs to be transformed so that the wanted eigenvector corresponds to an

extreme eigenvalue. There are di�erent ways to achieve this, but often the shift-and-invert

scheme is the most e�ective one.

5 Summary

The availability of the general purpose sparse direct methods on distributed parallel

computers makes it possible to easily implement the shift-and-invert Lanczos method for

eigenvalue problems. In this paper we studied the parallel eÆciency of the direct methods

and the shift-and-invert Lanczos method. At the moment, the two sparse direct method

packages tested do not exhibit the same level of parallel eÆciency as a typical sparse matrix-

vector multiplication routine.

The shift-and-invert Lanczos method spent largest portion of its execution time in

factoring the sparse matrix. The eÆciency of the factorization procedure dominates

the overall eÆciency of the shift-and-invert Lanczos method. If the minimal number of

processors needed to perform the factorization is p0, our tests shown that as more and

more processors are used, the factorization time quickly approaches a minimum. It is not

bene�cial to use more than 16p0 processors. Our earlier tests shown that if p0 processors

are needed to store a matrix, the parallel eÆciency is about 80 percent when performing the

matrix-vector multiplication on 16p0 processors (t0=t16p0 � 0:8�16). At each Lanczos step,

a linear system is solved by using the triangular factors generated during the factorization

step. This triangular solution step exhibits higher parallel eÆciency than the factorization

step but its parallel eÆciency is still considerably lower than that of the sparse matrix-vector

multiplication. Overall, the restarted Lanczos method using only sparse matrix-vector

multiplication has higher parallel eÆciency than the shift-and-invert Lanczos method.

The issue of parallel eÆciency is an important one on massively parallel computers.

Given that the minimal elapsed time required by PLANSO with PSPASES to compute the

smallest eigenvalue of NASASRB is 20 seconds. If TRLan can scale perfectly, even though

it took 8546 seconds on 8 processors, it would only need 20 seconds on 3420 processors. As

the direct solver packages mature, we are sure that their parallel eÆciency will be enhanced

to make them more e�ective on massively parallel computers.

On the question of when to use the shift-and-invert Lanczos method, our tests shown

that if the relative gap ratio is greater than 10�6, a restarted Lanczos method can compute

the eigenvalues in a reasonable number of steps which indicates that the shift-and-invert

Lanczos method will not be competitive. It is possible for the restarted Lanczos method

(without shift-and-invert) to compute eigenvalues with relative gap ratio as small as 10�10.

However, because it would use a large amount of memory to store the Lanczos vectors and

take a long time to compute the solutions, the shift-and-invert Lanczos method may be more

e�ective in this case. The major limitation on the shift-and-invert Lanczos method is that

the triangular factors often require signi�cantly more memory to store than the matrices

10

themselves and the currently available software packages can not signi�cantly reduce their

execution time by using more processors. If there is the memory to store the triangular

factors, the shift-and-invert Lanczos method often compute the desired solution in a very

small number of steps.

References

[1] C. C. Ashcraft, R. G. Grimes, D. J. Pierce, and D. K. Wah, The user manual for

SPOOLES, Release 2.0: An Object Oriented Software Library for solving sparse linear

systems of equations, 1998. The latest version of the software is available from NETLIB

at http://www.netlib.org/linalg/spooles/spooles.html.

[2] C. C. Ashcraft and D. K. Wah, The reference manual for SPOOLES, Release

2.0: An Object Oriented Software Library for solving sparse linear systems of equa-

tions, 1998. The latest version of the software is available from NETLIB at

http://www.netlib.org/linalg/spooles/spooles.html.

[3] D. Calvetti, L. Reichel, and D. Sorensen, An implicitly restarted Lanczos method for large

symmetric eigenvalue problems, Electronic Transactions on Numerical Analysis, 2 (1994),

pp. 1{21.

[4] U. V. Catalyurek and C. Aykanat, Decomposing irregularly sparse matrices for parallel matrix-

vector multiplication, in Parallel Algorithms for Irregularly Structured Problems. Proceedins of

Third International Workshop IRREGULAR '96 (Santa Barbara, CA, USA, 19-21 Aug. 1996),

A. Ferreira, J. Rolim, Y. Saad, and T. Yang, eds., Berlin, Germany, 1996, Springer-Verlag,

pp. 75{86.

[5] I. S. Du�, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse matrices, Oxford

University Press, Oxford, OX2 6DP, 1986.

[6] I. S. Du�, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Trans. Math.

Soft., 15 (1989), pp. 1{14.

[7] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press,

Baltimore, MD 21211, third ed., 1996.

[8] M. Joshi, G. Karypic, and V. Kumar, PSPASES: Scalable parallel director solver library for

sparse symmetric positive de�nite linear systems, 1998. The latest version of the software

package is available at http://www-users.cs.umn.edu/�mjoshi/pspases/.

[9] R. Lehoucq, D. Sorensen, and C. Yang, ARPACK USERS GUIDE: solution of large scale

eigenvalue problems with implicitly restarted Arnoldi methods, SIAM, Philadelphia, PA, 1998.

ARPACK Software is available at http://www.caam.rice.edu/software/ARPACK/.

[10] B. N. Parlett, The symmetric eigenvalue problem, Classics in Applied Mathematics, SIAM,

Philadelphia, PA, 1998.

[11] Y. Saad, K. Wu, and S. Petiton, Sparse matrix computations on the CM-5, in Proceedings of

Sixth SIAM Conference on Parallel Processing for Scienti�c Computing, R. Sincovec, D. Keyes,

M. Leuze, L. Petzold, and D. Reed, eds., Philadelphia, 1993, SIAM, pp. 414{420.

[12] R. S. Tuminaro, J. N. Shadid, and S. A. Hutchinson, Parallel sparse matrix-vector multiply soft-

ware for matrices with data locality, Tech. Rep. SAND95-1540J, Sandia National Laboratories,

Albuquerque, NM, 1995.

[13] K. Wu and H. Simon, A parallel Lanczos method for symmetric generalized eigenvalue problems,

Tech. Rep. 41284, Lawrence Berkeley National Laboratory, 1997.

[14] , Thick-restart Lanczos method for symmetric eigenvalue problems, Tech. Rep. 41412,

Lawrence Berkeley National Laboratory, 1998.

