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Abstract Large-eddy simulation provides a feasible route to solutions of higher
physical fidelity than those offered by Reynolds-averaged Navier-Stokes simula-
tions while avoiding the intractable computational expense of direct numerical
simulations. While implicit large-eddy simulations have seen widespread use for
high-speed turbulent flows, it is unclear how the underlying stability techniques
of the computational algorithms interact with added explicit turbulence models.
Specific questions include whether the former can substitute for the latter (im-
plicit large-eddy simulation), whether the latter can by itself regularize an infinite-
Reynolds number calculation, and the effect of simultaneously using both. In the
context of a fourth-order finite-volume method, this study investigates the inter-
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action between the stretched-vortex large-eddy simulation model and both the
piecewise parabolic method for limiting and fifth-order upwinding (or hypervis-
cosity). The stretched-vortex model is shown to simulate the Taylor-Green vortex
and a double-shear-layer in a more satisfactory manner than implicit large-eddy
simulations. Furthermore, the limiter and the fifth-order interpolation alter the
flow field in an undesirable manner even when the explicit turbulence model is
utilized.

Keywords High-Order Finite Volume Methods · Large Eddy Simulation ·
Stretched-Vortex Turbulence Model · High Reynolds Number Flows

1 Introduction

Many flows of engineering interest are turbulent and inherently multiscale. Numer-
ically resolving all scales in a high Reynolds number turbulent flow is challenging
with today’s computational capabilities. However, large-eddy simulation (LES) is
a promising alternative to direct numerical simulations (DNS) in that it solves
large scales but models small scale effects to provide a solution accuracy accept-
able for many engineering requirements. The approach is logical when rate-limiting
processes happen at the larger resolved scales [?]. Even so, defining and modeling
the small scales becomes one of the key issues in LES.

The typical LES definition of small scales begins with the separation of the
fully resolved solution field, φ, into scales representable by the LES, φ̄, and scales
which are unrepresentable, φ′. To perform this separation, a standard LES low-
pass filter operator, the convolution operator, convolves the original field with an
explicitly or implicitly defined filter kernel, G,

G ? φ = φ̄ (x, t) =

∫ ∞
−∞

∫ ∞
−∞

φ (ξ, τ)G (x− ξ, t− τ) dτdξ , (1)

where x and t are space and time respectively. While this filter is almost univer-
sally applied to equations describing LES simulations, explicit definition of the
filter is rare. Rather, an implicit filter arises from the combined effects of the dis-
cretization, the numerical scheme, and any subgrid-scale (SGS) models used. This
study utilizes an implicitly defined Favre-averaged filter where velocity is defined
as mass-weighted momentum, ũ = ρu/ρ̄.

After applying a filter, all unknown quantities must be modeled using known
quantities. Suppose the time advancement of φ̄ and ψ̄ requires φψ which is not au-
tomatically evolved in time. A model for φψ in terms of φ̄ and ψ̄ is then required.
Explicitly modeled LES incorporates models developed for these filtered nonlin-
ear terms, while implicit LES (ILES) relies on characteristics of the numerical
algorithm to provide the necessary modeling.

In recent decades, the LES field has seen increasing application of ILES to
complex flows of engineering interest [18]. As increasingly complex physics is sim-
ulated, the potential for stabilized finite-volume methods (FVMs) to accurately
predict widely varying phenomenon is broadly appealing. Some of the these ILES
methods are based on discrete approximations of forward and inverse explicit LES
filters, closely mimicking generalized, high-order extensions of FVMs, which are
similar to early explicit LES models [12,15,6,21]. If ILES schemes are sufficient to
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accurately predict the evolution of high Reynolds number turbulent flows, explicit
turbulence models could be dispensed with at the benefit of computational cost.
Moreover, one could solve flows featuring discontinuities without worrying about
interactions of the turbulence model with limiters. At the very worst in terms of
computational expense, an explicit turbulence model could augment the stabiliza-
tion features of the FVM if the explicit model is necessary to simulate the correct
evolution of the turbulent flow. This study utilizes the stretched vortex (SV) SGS
model to close the filtered governing equations. This structural model has been
shown to provide results that are consistent with experimental data for Reynolds
number as high as≈ 106. Additionally, extensions to scalar transport, variable den-
sity flows, and compressible flows are natural for the SV model. For this reason,
this structural LES model is used throughout this study. The system is simulated
with a high-order FVM which is optionally stabilized using the piecewise parabolic
method (PPM) or the inherent upwinding of fifth-order face-interpolations.

The goal of the present study is to investigate the necessity of using the
stretched-vortex model in the context of high Reynolds number, unbounded tur-
bulent flows. The FVM algorithm being utilized has been specifically designed for
high-speed, reacting, turbulent flows and will necessarily require strong stabiliza-
tion mechanisms in future simulations of these cases. Steep solution gradients and
even discontinuities such as shocks are present in unresolved, high Reynolds num-
ber turbulence and in high-speed, reacting, turbulent flows. When solving these
flow features, some form of strong stabilization, such as a limiter, is required. Natu-
rally, the impact of the limiter on the LES solution accuracy must be investigated.
Study of the stabilization mechanisms in flows where a rather simple dissipation
mechanism would suffice is useful to provide recommendations for future use when
strong stabilization mechanisms are no longer optional. If an ILES algorithm using
the PPM scheme or fifth-order face-interpolation sufficiently simulates fully tur-
bulent, spatially periodic test cases which lack grid-resolved physical viscosity, it
is assumed the stretched-vortex model will be unnecessary in cases of high-speed,
reacting turbulent flows. If these ILES schemes are insufficient for these test cases,
the present study intends to determine whether simply adding the stretched-vortex
model is sufficient. In the event that this, too, is insufficient or the stretched-vortex
model on its own provides more accurate results, recommendations will be made
for further research.

Throughout this study, the equations describing a compressible fluid flow, i.e.
the conservation of mass (ρ), momentum (ρu), and energy (ρe), will be considered.
These equations are given as follows:

∂ρ

∂t
+∇ · (ρu) = 0 , (2)

∂

∂t
(ρu) +∇ ·

(
ρuu> + Ip

)
=∇ · τ , (3)

∂

∂t
(ρe) +∇ · (ρue+ up) =∇ · (τ · u)−∇ · q , (4)

where I is the identity matrix. The fluid is assumed to be a Newtonian, calorically
perfect, ideal gas and its stress, τ , is modeled by

τ = 2µ

(
S− 1

3
(∇ · u) I

)
, S =

1

2

(
∇u + (∇u)>

)
. (5)
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Heat flux, q, is approximated by Fourier’s law and pressure is computed by,

p = (γ − 1)

(
ρe− 1

2
ρu · u

)
. (6)

Favre-filtering Eqs. (2 - 4) and Eq. (6) results in

∂ρ̄

∂t
+∇ · (ρ̄ũ) = 0 , (7)

∂

∂t
(ρ̄ũ) +∇ ·

(
ρ̄ ũu> + Ip̄

)
=∇ · τ̃ , (8)

∂

∂t
(ρ̄ẽ) +∇ · (ρ̄ũe+ ũp) =∇ ·

(
τ̃ · u

)
−∇ · q̃ , (9)

p̄ = (γ − 1)

(
ρ̄ẽ− 1

2
ρ̄ũ · u

)
. (10)

At this point, the filtered equations must be closed by recasting the nonlinear
terms as functions of the individually filtered constituents. Even though the equa-
tions have been filtered using an unknown, undefined filter and implicit filtering
is used throughout this study, it will be assumed that the implicit filter size is
approximately equal to the spatial discretization size.

The rest of the paper is organized as follows. Section 2 details the stretched-
vortex model and its mathematical form as implemented in the current study.
Section 3 describes the high-order FVM algorithm in which the stretched-vortex
model is implemented and tested. The test cases and data processing details are
presented in Section 4. The results of simulations performed in the current study
and discussion regarding the interpretation of these results are presented in Section
5. Finally, Section 6 wraps up the study with conclusions and recommendations
for future research.

2 Stretched Vortex Turbulence Model

The stretched-vortex (SV) subgrid-scale (SGS) model, is a structural LES SGS
model and is based on the assumption that, at sufficiently high Reynolds num-
bers and sufficiently small length scales, stretched vortex tubes dominate the flow
physics [16,11].

The model closes the filtered momentum equation, Eq. (8), using(
ũu> − ũũ>

)
= K

(
I− ev (ev)>

)
, (11)

through an approximation of the subgrid kinetic energy, K, and the orientation
vector, ev, of the subgrid vortices.

Requiring K to be positive, it is apparent from the model form that the ori-
entation vector is the only factor determining whether this model is dissipative
or anti-dissipative. Many SV SGS papers have utilized an SGS vortex orienta-
tion vector depending solely on the strongest eigenvector of the strain-rate tensor,
ev = e3, which has been shown to be dissipative [2,13,14]. The present work
also utilizes this model in addition to another model originally proposed by Misra
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and Pullin (“model 1b”). This model includes the resolved vorticity vector, ω, in
addition to the strongest eigenvector of the strain-rate tensor and is formulated as(

ũu> − ũũ>
)

= K
[
σ
(
I− e3

(
e3
)>)

+ (1− σ)
(
I− eω (eω)>

)]
, (12)

where σ provides a weighting to the two different orientation vectors. Aligning
with eω makes the model more anti-dissipative. Throughout the current study, σ
is chosen to be 0.5.

Among the various proposed SGS kinetic energy models, [16,20,13,1,2], the
model used by Chung and Pullin is consistently applied within this paper [2]. This
model,

K =
1

2
K′0Γ

(
−1

3
, κ2c

)
, (13)

requires the evaluation of the incomplete gamma function, Γ (·), and the grouped
Kolmogorov constant, K′0

K′0 =
[F2]

[Q (κc, d)]
. (14)

In Eq. (14), [·] is an ensemble average of the variables over a spatial domain, Ω,
encompassing N points, xi, (26 in this study) neighboring x0

[φ] =
1

N

∑
xi∈Ω ; xi 6=x0

φ (x0,xi) . (15)

F2 is the second-order structure function

F2 = (ũ (x0)− ũ (xi)) · (ũ (x0)− ũ (xi)) . (16)

Additionally, Q is a scaling parameter dependent on the grid-cutoff size and is
given by

Q (κc, d) = 4

∫ κc

0

κ−5/3exp
(
−κ2

)
(1− J0 (κ/κc)πd) dκ , (17)

where κ is the wavenumber variable of integration, J0 is the zeroth-order Bessel
function of the first kind, d is the planar distance from the cell center to the SGS
vortex axis

d =
r

∆c
, r = [(x0 − xi) · (x0 − xi)]

1/2 , ∆c = (∆x∆y∆z)1/3 , (18)

and κc is computed using

κc =
π

∆c

√
2ν

3|ã| , ã = (ev)> S̃ev , ν =
µ

ρ̄
. (19)

Efficient means of computing K0, Γ (·), and the eigenvalues/eigenvectors are pre-
sented by Voelkl and others [20,1,19].

In addition to the closure of the filtered momentum equation, Eq. (8), the
current study closes the filtered energy equation, Eq. (9), and the filtered pressure
computation, Eq. (10), following the methodology presented by Kosovic, et al. [10]
and Hill, et al. [9].
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3 Numerical Framework

All results presented in this study are obtained using the high-order finite-volume
method (FVM) algorithm, Chord [5,8,7,6,17], which is built upon Chombo [3].
This numerical framework allows the behavior of SGS models to be studied in
various flow regimes. Moreover, this study will provide quantitative information
on the influence of the algorithm order of accuracy on the SGS model. Specifically,
the effects of and differences between fifth-order, fourth-order, and second-order
accuracy are examined. Additionally, the SV SGS model is compared to the ILES
capabilities already incorporated in Chord in the form of the PPM method. A
brief overview of the Chord numerical framework is presented below.

3.1 Chord

Chord is a finite-volume CFD algorithm solving the system of governing equations
for transient, compressible, turbulent, reacting and non-reacting fluid flows with
complex geometry. It has been designed for achieving superior accuracy and per-
formance for turbulence and combustion simulations on modern high-performance
computing architecture. By design, Chord is fourth-order accurate in space and
time for smooth flows [5,8,7,6,17]. For flows with strong discontinuities (e.g.,
shock or detonation waves), the PPM [4,15] limiter is used for stability. Addition-
ally, Chord is capable of second-order and fifth-order face-value interpolations. In
time, the solution is evolved using the standard four-stage Runge-Kutta method.
Chord is capable of different levels of turbulence modeling, i.e., unsteady Reynolds-
averaged Navier-Stokes (URANS), LES, or DNS. Additionally, Chord features
adaptive mesh refinement (AMR) in space and subcycling in time, accommodates
complex geometry while preserving free-stream conditions using generalized coor-
dinate transformations, and scales to at least 1×105 cores.

3.2 Face Interpolation

In FVMs, flux evaluations at the faces of a computational cell are essential and
require knowledge of face values. Reconstructing solution variables at cell faces
is one of the fundamental operations in the algorithm. The interpolation scheme
directly impacts the order of accuracy of the underlying numerical algorithm.

Interpolating the face-averaged primitive state, 〈W〉i+ 1
2
ed , from the cell-averaged

primitive state, 〈W〉i, follows the process described in previous literature [5,8]. A
cell index is denoted by i on an integer lattice and ed is a unit vector in direction
d. A cell face is reached by a shift of 1/2. A four-point, fourth-order, centered
approximation to 〈W〉i+ 1

2
ed is given by

〈W〉i+ 1
2
ed =

7

12
(〈W〉i + 〈W〉i+ed)− 1

12
(〈W〉i−ed + 〈W〉i+2ed) , (20)

while the right-biased, five-point, fifth-order approximation is provided by

〈W〉i+ 1
2
ed,R =

1

60
(−3〈W〉i−ed + 27〈W〉i + 47〈W〉i+ed − 13〈W〉i+2ed)

+
1

60
(2〈W〉i+3ed) .

(21)
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A reflection of Eq. (21) about the face provides a left-biased interpolation and the
final state on the face is a solution of the Riemann problem. When PPM is not
applied, the second-order and fourth-order stencils are centered; the fifth-order
stencil adds upwinding which appears as an added hyper-viscosity, dissipating the
high-wavenumber content on the grid.

3.3 Numerical Implementation of the SV SGS Model

Within Chord, the SV SGS/SAS model terms are treated as turbulent fluxes and
are evaluated at faces in order to maintain conservation of density, momentum, and
total energy. The face-centered primitive variables Wi+ 1

2
ed , whether computed

using second, fourth, or fifth-order interpolations, are used for the calculation of
intertial fluxes, diffusive fluxes, gradients used in the calculation of SV SGS fluxes,
and other model terms.

4 Test Cases

Throughout this study, two cases test the concepts and algorithms. The first case
uses the Taylor-Green vortex initialization, while the second is a temporally evolv-
ing mixing layer.

4.1 Inviscid Taylor-Green Vortex

The Taylor-Green vortex flow is initialized with a sinusoidal initial condition in a
triply periodic cube [0, D]3 given by

u = −U0 sin
(nπx
D

)
cos
(nπy
D

)
sin
(nπz
D

)
(22)

v = U0 cos
(nπx
D

)
sin
(nπy
D

)
sin
(nπz
D

)
(23)

w = 0 (24)

p = p0 +
ρ0U

2
0

16

(
cos

(
2nπx

D

)
+ cos

(
2nπy

D

))(
cos

(
2nπz

D

)
+ 2

)
(25)

ρ =
p

RT0
=
pρ0
p0

(26)

where U0 is the velocity fluctuation magnitude, D is the domain length, and n
is the number of vortices contained in the domain in each coordinate direction.
The flow has a Mach number of 0.1, and a Prandtl number of 0.71. Cell counts of
1283 were used for all of the Taylor-Green vortex base-cases. Reference cases for
the Taylor-Green vortex were run using 2563 and 5123 meshes. More information
regarding the choices of computational grids can be found in previous work [21]

In the inviscid limit, the Taylor-Green vortex provides an ideal test of algo-
rithmic components examined in this study, including the underlying FVM order
of accuracy, limiters used for numerical stability, and SGS turbulence models.
The vortex evolution begins with “vortex wrap-up”, eventually transitioning to
a turbulent energy cascade process. It is apparent that all initial kinetic energy
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eventually resides at the subgrid-scale even though it is never dissipated in this
inviscid problem. Once the kinetic energy resides at the subgrid-scale, it is in-
distinguishable from internal energy except through a model. As a result, the
numerical algorithm must sufficiently dissipate resolved-scale kinetic energy while
correctly capturing the energy cascade process. This test case will demonstrate
the dissipative characteristics of the algorithms when physical viscosity is absent.

4.2 Time Evolving Mixing Layer

The time evolving mixing-layer considered in the present study is configured as
triply periodic double shear as shown in Fig. 1. The air is assumed ideal, with

U1,rms = −∆U
2

U1,rms = −∆U
2

U2,rms =
∆U
2

U2,rms =
∆U
2

ρ1, P1, T1

ρ1, P1, T1

ρ2, P2, T2

Fig. 1 Configuration of the time-evolving double mixing layers

γ = 1.4, Pr = 0.71, P1 = P2 = 101325 Pa, and ρ1 = ρ2 = 1.225 kg/m3. The root-
mean-square velocities of streams 1 and 2 are U1,rms = 34.03 m/s and U2,rms =
−U1,rms, respectively. The flow has a Mach number, M , of 0.1 based on a velocity
equal to the arithmetic mean of the two stream velocities, U1,rms and U2,rms, and
a Reynolds number of 11650, based on

Reδω,0 =
ρ |Urms| δω

µ
, (27)

where δω is the initial vorticity thickness. The momentum thickness, δθ, is δω/4.
The computational domain size is, Lx × Ly × Lz = 137δθ × 137δθ × 68δθ. The
meshes consist of fine resolutions with 512 × 512 × 256 cells in the streamwise,
shear-layer normal, and spanwise directions respectively and coarse resolutions
with 128× 128× 64 cells.

The velocities in each stream were sinusoidally perturbed and computed from
a stream function in order to achieve an analytically divergence free initial velocity
field. This stream function is defined as

Ψ = ξU1,rmstanh

(
ξ

2δθ

)
, (28)
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where the factor ξ is defined as

ξ = y + exp (−η|y|)

(∑
i

bisin

(
2πωix

L
+ φi

))
, (29)

and the velocities are computed analytically as

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
. (30)

The i-th perturbation mode has phase shift φi, wavenumber ωi, and magnitude
bi. The parameter η is a scaling factor to control how quickly the perturbation
modes decay in the shear-layer normal direction. For the cases simulated in this
study, this scaling factor was chosen as η = 8π/D where D is the domain-length
in the shear-layer normal direction. Perturbation modes with wavenumbers of 8,
4, 2, and 1 were chosen for the streamwise and spanwise directions. The domi-
nant mode with wavenumber 8 was given a magnitude equal to ten percent of the
half-domain height for the streamwise direction and a magnitude equal to five per-
cent of the half-domain height for the spanwise direction. All other perturbations
were randomly provided magnitudes of either three percent or one percent of the
half-domain height. Phase shifts in the streamwise and spanwise direction were
randomly chosen for this study. Density was initialized from the ideal gas law as-
suming constant pressure, identical free-stream density values for both shear-layer
streams, and using the Crocco-Busseman relation for temperature

ρ = ρ0

[
1 +

1

2
(γ − 1)M2

(
1− tanh

(
ξ

2δθ

))(
1 + tanh

(
ξ

2δθ

))]
. (31)

Pressure was initialized assuming a constant pressure profile with correction for
the velocity perturbations

p = p0 −
1

2
ρ0

(
û2 + 2ûU0tanh

(
ξ

2δθ

)
+ v2

)
(γ − 1) , (32)

where û is given by

û = u− U0tanh

(
ξ

2δθ

)
. (33)

The double-shear problem provides an anisotropic turbulent test case in which the
turbulence is fed by a large-scale energy reservoir consisting of the freestream flow.
This energy reservoir allows the problem to temporally evolve until the turbulence
reaches the periodic boundaries, essentially mimicking a forced turbulence prob-
lem. At this point, the energy is able to decay away. Although it is a relatively
simple problem configuration, the double-shear case provides a test of flow fea-
tures commonly encountered in real-world engineering problems. The large-scale
anisotropy is common in almost any wall-bounded or jet-type flow as is the con-
tinual production of turbulent energy from large-scale flow features that persist
for long time-periods.



10 Sean Walters et al.

4.3 Simulations and Data Analysis

A non-dimensional, characteristic time, τ , is utilized for all the results presented.
This “eddy turn-over” time is defined as

τ = t
U

L
, (34)

where U is the turbulent velocity and L is the integral length scale. The decaying
Taylor-Green cases transition to fully developed turbulence by τ ≈ 10. After this
point, the kinetic energy decays away due to the energy cascade process. The
shear-layer spectrum transitions to fully developed turbulence by τ ≈ 20.

The results of interest in this study are presented using the three-dimensional
kinetic energy spectra from each case. All spectral data is computed from instan-
taneous flow data.

5 Results and Discussion

5.1 Infinite Reynolds Number Taylor-Green Vortex

Results of the infinite Reynolds number Taylor-Green vortex case are presented in
Figures 2 - 8. For convenience, the results are grouped into three categories: (1)
the underlying FVMs, (2) the use of the PPM limiter in the underlying FVMs,
and (3) the use of the SV SGS model. The underlying FVMs are second-, fourth-,
and fifth-order accurate in their spatial discretization order of accuracy, respec-
tively. Note that the PPM limiter is not implemented in the second-order scheme.
Results presented in future sections will follow this format. For all of the tests, the
unstabilized centered schemes displayed unbounded solution quantities and, as a
result, are not included in any of the following figures.

As mentioned in section 4.3, spectral data presented throughout this study
is computed from instantaneous simulation data. Figure 2 presents fourth-order
SV results from a range of times. It is noted that the solution does not change
dramatically over the course of ∆τ = 0.4 and time-averaged spectral results are
unnecessary.

The results presented throughout this study do not use the SGS stress cor-
rection for the pressure computation of Eq. (10). Comparisons of inviscid Taylor-
Green vortex simulations with and without the pressure correction showed no ob-
servable difference between the two in globally summed quantities and in energy
spectra. For these low Mach number flows, this observation is expected.

As was also mentioned in section 4.3, the high-frequency information contained
in the inviscid Taylor-Green vortex energy spectrum completely fills in by τ ≈ 10
as shown in Figure 3. After the high-frequency information is fully developed, the
spectrum begins to decay away rather uniformly at the highest frequencies, while
the lowest frequencies decay more rapidly. The straight, temporally self-similar
form of the energy spectrum is expected to continue at higher mesh resolutions
and later simulation times due to the lack of physical viscosity. As the simulation
time progresses, the start of the constant-slope region is expected to push to higher
and higher frequencies as more energy decays from the large scales into the smaller
scales.
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τ = 16.1 τ = 16.2

Fig. 2 Inviscid Taylor-Green vortex time evolution of kinetic energy spectrum
over ∆τ = 0.4 from the fourth-order FVM with SV model on the 1283 grid

The energy spectrum results obtained from all of the various algorithms tested
in this study are presented in Figures 4 - 5. Focusing on the results obtained
using the grid resolution of 1283, it is apparent that when paired with the SV
model, the centered schemes dissipate the highest frequencies significantly less
than any other algorithm tested. Previous studies have noted the overly dissipative
effects of upwind schemes on turbulence [18]. However, it is additionally noted
here that, at 1283 resolution, the strong small-scale dissipation provided by the
upwind scheme distinctly alters the large-scale information over long time periods
as compared with the centered schemes. In a high Reynolds number temporally-
decaying turbulent flow, such as the test case under scrutiny, it is apparent that
changes in near grid-cutoff scales can distinctly change the long-term evolution
of apparently well-resolved scales. This change is attributed to the addition of
the hyperviscosity-equivalent numerical dissipation associated with the upwind
scheme. Merely adding the SV model to the fifth-order interpolation does not
provide an improvement to the results unfortunately. In fact, the result is only
more dissipative while retaining the same profile shape as the fifth-order results
without the SV model.

Although the difference in large-scales between the centered schemes using
the SV model and the upwind schemes is strongly apparent using a mesh size of
1283, it must be noted that this is not the case for a mesh size of 5123. In fact,
the large scale information in both algorithms are extremely similar, even at late
times (τ = 16) as depicted in Figures 4 - 5. If high-frequency information is critical
to the temporal evolution of the large-scales as is apparently the case here, it is
suggested that upwind schemes should be avoided if possible.

While not quite as dissipative as the algorithms using upwinding, the fourth-
order centered algorithm using the PPM limiter shows qualities similar to the
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Fig. 3 Inviscid Taylor-Green vortex energy spectrum time-evolution from the
fourth-order FVM with SV model on the 1283 grid

fifth-order results in high wavenumbers. The long-time evolution of the large scales
does not appear to be impacted by the limiter as much as it is in the case of the
fifth-order scheme. The former provides more accuracy in high frequencies ap-
proaching to the 2∆x mode. If one were only interested in large-scale behavior,
fourth-order PPM might be a viable candidate for ILES. However, if all wavenum-
bers are important, the limiter should be avoided or isolated to only act on true
discontinuities. Even where necessary as in the case of a flow with shocks, isolat-
ing the limiter to only act on true discontinuities would be critical for successfully
representing the energy spectrum at all wavenumbers.

As is visible in Figure 5 and more clearly seen in Figures 6 - 8, the SV model
with the SGS vortex orientation vector aligned with e3 suffers from several defi-
ciencies. Most notably, none of the scales show long-time grid-independence as the
resolution increases. Early times show large-scale grid-independence as displayed
in Figure 6. These early time periods also show an energy pileup at the grid-cutoff
that becomes more prominent with increasing refinement. At later times as pre-
sented in Figures 7 - 8, increasing refinement leads to noticeable differences in
large scales and more dissipation resulting in curved energy spectra near the grid-
cutoff. Straight energy spectra would be expected due to the scale similarity of
the inviscid Taylor-Green vortex. These results suggest that the orientation model
using only e3 provides excessive dissipation and that a slightly less dissipative
orientation vector may provide improved results.

Previous studies have demonstrated that the SGS vortex orientation model
using resolved vorticity in addition to the strongest eigenvector of the strain-rate
tensor is less dissipative than the model solely based on e3 [16,21]. The results in
Figures 4 - 8 bare this out as well. Early times of simulations using this model show
even more pronounced energy pileup at the grid-cutoff than simulations using only



Title Suppressed Due to Excessive Length 13

100 101 102
10−7

10−6

10−5

10−4

10−3

10−2

−5/3

κ (wavenumber)

K
in
et
ic

E
n
er
g
y

2nd-Ord SV

4th-Ord SV 4th-Ord PPM

5th-Ord SV 5th-Ord PPM 5th-Ord

Fig. 4 Inviscid Taylor-Green vortex energy spectrum at τ = 16

e3. While this may be undesirable should the magnitude of the energy pileup reach
a sufficiently large value, turbulence is still developing during the early stages of
the flow and the simulation remains stable. It may even be encouraging that the
model isn’t adding unnecessary dissipation during turbulence development. What
is most encouraging regarding the second orientation model is the fact that the
energy spectra display less variation as the resolution increases and large scales
appear to be converging toward grid-independence at late simulation times. This
study did not investigate the result of using other values of the σ weighting factor,
but future simulations using this particular orientation model may benefit from
such a parameter study.

5.2 Time Evolving Mixing Layer

The double-shear-layer results presented in this section will follow the same general
format as the inviscid Taylor-Green vortex results and will consist of vorticity
contours for demonstration of the flow evolution and three-dimensional kinetic
energy spectra.

As shown in Figure 9, the double-shear-layer problem begins with the devel-
opment of coherent vortices. These vortices rapidly break down and lead to full
development of the kinetic energy spectrum by τ ≈ 20 as seen in Figure 10. The
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Fig. 5 Inviscid Taylor-Green vortex energy spectrum at τ = 16

two layers continue to evolve in a turbulent manner and grow in the shear-layer
normal direction until they begin interacting with one another at τ ≈ 35. Between
τ ≈ 20 and at least τ ≈ 80, the kinetic energy spectrum is in a quasi-steady state,
mimicking artificially forced turbulence quite well. This quasi-steady state allows
for the study of the various algorithms in a distinctly different setting than the
decaying Taylor-Green vortex problem.

Similar to the Taylor-Green results, results from the fifth-order upwind method
both with and without the SV model as well as with the PPM scheme differ
significantly from the centered-scheme results presented in Figure 11. Figure 12
shows that this persists throughout the entire simulation time and is not isolated
to the smallest simulation scales. These results support the conclusion that the
fifth-order scheme should be avoided in simulations of turbulent flows.

The fourth-order PPM results display an energy spectrum “hump” very similar
to that display by the fifth-order results, but the largest scales are in closer agree-
ment with all of the other centered-scheme results, indicating some degree of grid
convergence. Furthermore, the 512×512×256 fourth-order PPM case shows close
agreement with the 128 × 128 × 64 fourth-order SV and second-order SV results
at large simulation scales. It is concluded that the SV model is able to accurately
capture these scales using less resolution than is required by the fourth-order PPM
scheme.
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Fig. 6 Inviscid Taylor-Green vortex energy spectrum comparison using the fourth-
order FVM with the SV model at τ = 5

Examining the difference between the fourth-order and second-order methods
using the SV model with the orientation model based on e3, it is apparent from
Figure 11 and Figure 12 that the second-order algorithm shows significantly more
time-variation, contrary to expectation of what should happen. While the fourth-
order SV energy spectrum time-evolution is certainly more in line with expectation,
it is difficult to say whether or not this is correct. However, the fourth-order SV
results using only e3 appear to be best overall as they provide straight spectra all
the way to the grid cutoff as is expected. Straighter spectra were obtained in the
Taylor-Green results with a less dissipative SV model for the fourth-order schemes.
As a result, it is likely that the difference in apparent dissipation at the highest
frequencies between the second-order SV and fourth-order SV results is due to the
decreased numerical dissipation associated with the fourth-order scheme.

The difference between the fourth-order SV orientation models is also quite
distinctive and suggests that the orientation model based only on e3 is the ap-
propriate model for this particular flow. In particular, the orientation model using
σ = 0.5 shows as significant time-variation as the second-order SV results and pro-
duces spectra that are less straight than either of the fourth-order or second-order
SV algorithms relying only on e3.

6 Conclusions

High Reynolds number, turbulent flows almost certainly require stabilization whether
it be in the form of an explicit turbulence model, a limiter, or an upwind scheme
for finite-volume methods. Low speed cases such as those investigated in this study
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Fig. 7 Inviscid Taylor-Green vortex energy spectrum comparison using the fourth-
order FVM with the SV model at τ = 10

are best simulated using only the stretched-vortex explicit LES model. Both the
PPM scheme and the fifth-order face-interpolation provide excessive dissipation
at the highest frequencies and the resulting impact on the lowest frequency in-
formation is not ameliorated by adding the stretched-vortex model on top of the
stabilization mechanisms already present. While the results obtained with only
the SV model are sensitive to the SGS vortex orientation model utilized, the en-
tire set of results using only SV model, taken as a whole, show more of a trend
toward grid-independence than any of the results using PPM or the fifth-order
interpolation.

In the context of fourth-order finite-volume methods, use of the standard SV
model (σ = 1) provides the best overall prediction of spectrum for both cases.
For the Taylor-Green vortex, there is evidence that a higher value of σ is more
appropriate; however, this result might be specific to the Taylor-Green vortex or
infinite Reynolds-number cases and introduces additional risk of instability in the
code. If only the largest scales are of interest, a fourth-order stencil with PPM is
the best candidate for ILES. The use of fifth-order upwinding negatively affects
all scales and is not recommended.

For cases containing discontinuities, some form of interpolation limiting is re-
quired. Although the fifth-order interpolation effectively dampens the highest fre-
quency content resolved by the mesh, it does so indiscriminately. The PPM scheme,
on the other hand, only limits where it senses a discontinuity. As a result, it is
plausible that the effects of the PPM limiter could be isolated to near-shock regions
while the turbulent regions without shocks could remain free from limiting. The
fifth-order interpolation could not achieve this and so should be avoided if at all
possible. To localize the effects of the PPM limiter in the domain, future research
will investigate the utility of applying an explicit filter to face-interpolated quan-
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Fig. 8 Inviscid Taylor-Green vortex energy spectrum mesh comparison using the
fourth-order FVM with the SV model at τ = 20

tities before applying the limiter to the filtered field. Additionally, future research
will further investigate the SGS vortex orientation model effects on various flows.



18 Sean Walters et al.

(a) τ = 2 (b) τ = 3

(c) τ = 5 (d) τ = 10

(e) τ = 20 (f) τ = 50

Fig. 9 Evolution of double-shear-layer vorticity magnitude from τ = 2 to τ =
50, mesh size 512× 512× 256, fourth-order PPM algorithm. Increasing grayscale
corresponds to increasing vorticity magnitude
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Fig. 10 Double-shear-layer time evolution of kinetic energy spectrum, fourth-order
SV, 128× 128× 64 mesh, shear-layer flow
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Fig. 11 Double-shear-layer energy spectrum at τ = 45.4, 128× 128× 64 mesh
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(b) Fourth-order SV
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(c) Fourth-order SV, σ = 0.5
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(d) Fifth-order

Fig. 12 Time evolution of energy spectrum for second-order SV, fourth-order SV,
fourth-order SV with σ = 0.5, and fifth-order for the shear-layer flow
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