
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

A Stack Model Based Replacement Policy for a Non-Volatile Write Cache

Permalink

https://escholarship.org/uc/item/2wr7x3vj

Authors

Paris, Jehan-Francois
Haining, Theodore R
Long, Darrell

Publication Date

2000-03-27

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wr7x3vj
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

A Stack Model Based Replacement Policy for a Non-Volatile Write
Cache

Jehan-Franc¸ois Pâris
Department of Computer Science

University of Houston
Houston, TX 77204
+1 713-743-3350

FAX: +1 713-743-3335
paris@cs.uh.edu

Theodore R. Hainingy

Darrell D. E. Long
Computer Science Department

Jack Baskin School of Engineering
University of California
Santa Cruz, CA 95064

+1 831-459-4458
FAX: +1 831-459-4829
haining@cse.ucsc.edu
darrell@cse.ucsc.edu

Abstract

The use of non-volatile write caches is an effective technique to bridge the performance gap be-
tween I/O systems and processor speed. Using such caches provides two benefits: some writes will
be avoided because dirty blocks will be overwritten in the cache, and physically contiguous dirty
blocks can be grouped into a single I/O operation. We present a new block replacement policy that
efficiently expels only blocks which are not likely to be accessed again and coalesces writes to disk.
In a series of trace-based simulation experiments, we show that a modestly sized cache managed
with our replacement policy can reduce the number of writes to disk by75 percent and often did
better. We also show that our new policy is more effective than block replacement policies that take
advantage of either spatial locality or temporal locality, but not both.

1 Introduction

As processors and main memory become faster and cheaper, a pressing need arises to im-
prove the write efficiency of disk drives. Today’s disk drives are larger, cheaper, and faster
than they were 10 years ago, but their access times have not kept pace. The microproces-
sors of today have a clock rate 50 times faster than their predecessors of 10 years ago. At
the same time, the average seek time of a fast hard disk is at best between one half and one
third of its predecessors from the same period. Some technique must be found to bridge
the performance gap if I/O systems are to keep pace with processor speed.

ySupported in part by the Office of Naval Research under grant N00014-92-J-1807 and by the National
Science Foundation under grant PO-10152754.

217

The effects of this huge write latency can be reduced by delaying writes indefinitely in
non-volatile memory before being sent to disk [5]. The longer that data is held in memory,
the more likely it will be overwritten or deleted, reducing the necessity for a write to disk.
It is also more probable that data in the cache can be grouped together to yield larger, more
efficient writes to disk. Therefore, a non-volatile write cache can substantially decrease the
number of reads and writes actually serviced by the disk. This substantially reduces the
amount of disk latency by eliminating some of the time necessary to reposition the disk
head for each write.

A cache replacement policy is required to manage such a cache. Any cache replacement
policy must control two things, namely which entities to expel from the cache (the so-called
victims) and when to expel them. The latter is very important when the processes accessing
the storage cannot be delayed. In this case, any write occurring when the cache is full will
stall and must wait while victims are being cleaned to the disk. If the selection of these
victims is not performed carefully, blocks recently written into the cache will be flushed to
disk. Once flushed to disk, the cleaned blocks can be reused and overwritten as additional
writes are made. If overwritten, the data from victim blocks will not be present in the cache
even though temporal locality dictates that they are the most likely to be accessed again.

The cost of writing from the cache to disk is an important factor in selecting victims.
Each write operation incurs a penalty due to seek time and rotational delay. Single blocks
in the cache are very expensive to reclaim; each requires a write operation. Groups of
blocks that can be coalesced into larger contiguous segments are prime candidates because
they can be written in a single I/O operation.

We propose a block replacement policy that is segment-based. To simplify the presen-
tation of our policy, we define a segment as a set of contiguous blocks located on the same
track. By using a track-based approach, cost is associated with one seek of the disk head
and one rotation of a disk platter. This has the advantage of making the cost of writing an
individual block inversely proportional to the size of the segment to which it belongs.

Our replacement policy is based on the following three observations:

1. Writes to blocks in the cache exhibit spatial locality: blocks with contiguous disk
addresses tend to be accessed together,

2. Writes to blocks in the cache also exhibit temporal locality: the probability that a
block in the cache will be accessed again is a decreasing function of the time interval
elapsed since it was accessed last, and

3. The curve representing the hit ratio of the cache as a function of its size exhibits a
knee: once a given minimum cache size is reached, further increases of its size lead
to much smaller increases in the hit ratio (see Figure 1).

Based on these three reasonable assumptions, we develop a model of cache behavior
that divides segments intohot andcoldgroups. Using this concept of hot and cold groups,
we present a new cache replacement algorithm. The model and algorithm are described
in x2. We experimentally test the algorithm using a trace-based simulation. Experimental
observations and results are found inx3. Section 4 discusses related work. The final section
summarizes our major results.

218

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15
x 10

4

Cache Size (KB)

of

 C
ac

he
 H

its

Writes for snake disk 5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

x 10
5

Cache Size (KB)

of

 C
ac

he
 H

its

Writes for snake disk 6

Figure 1: Simulated hit ratios as non-volatile write cache sizes increase for the two disks
used in our experiments.

2 Cache Behavior

Given a cache exhibiting the properties of temporal locality, spatial locality, and a dimin-
ishing benefit to hit ratio described above, consider them segments inS residing at any
given time in a write cache. Assume that they are sorted in LRU order so that segmentS1 is
the most recently referenced segment. Letni represent the size of segmentSi expressed in
blocks. If accesses to segments in the cache follow the LRU stack model, each segment has
a probabilitypi of being referenced next. This probability will decrease with the rank of
the segment i.e.i < j impliespi > pj. Note thatpi represents the probability that keeping
segmentSi in the cache will avoid a cache miss at the next disk write.

The contribution of each block in segmentSi to the expected benefit of keeping segment
Si in the cache is given by the ratiopi=ni. It makes sense to keep all the segments with
the highestpi=ni ratios in the cache because this strategy makes the most efficient use of
cache space. Conversely the segment with theminimumpk=nk ratio should be expelled.
The blocks of that segment have the lowest probability of avoiding a cache miss during the
next write.

Using these probabilities, we partition the segments residing in the cache into two
groups. The first group contains segments recently written into the cache; these are the
most likely to be accessed again in the near future. Thesehot segments should remain in
the cache. The second group contains the segments not recently accessed and therefore
much less likely to be referenced again. Thesecold segments are all potential victims for
the replacement policy.

We identify these two groups of segments based on the knee in the curve representing
the hit ratio of the cache as a function of its size. Letsknee be the size in blocks of the
cache at the knee and letCj be the sum of the sizes of the firstj segments in the LRU stack
ordering of all segments in the stack:

Cj =

jX

i=1

ni:

219

The hot segments are thek most recently referenced segments that could fit in a cache of
sizesknee, that is, all segmentsSi such thati � k wherek is given by:

maxfj j j � 1 andCj � skneeg:

All cold segments are assumed to be good candidates for replacement. We infer from
the hit ratio curve that thepi=ni ratios for cold segments differ very little from each other.
We would expect to see a greater increase in hit rate where the hit rate is nearly constant
past the knee otherwise. Therefore the most efficient choice is to clean the largest segment
in the cold region. This cleans the most cache blocks for the cost of one disk seek and at
most one rotation of the disk platter.

A replacement policy that never expels segments until the cache is full can often cause
writes to stall for lack of available space in the cache. This can be avoided by setting an
upper threshold on the number of dirty blocks in the cache to force block replacement to
begin. This clean space, say10 percent of the cache, is able to absorb short-term bursts
of write activity and prevent stalls. Our cache replacement policy then has two thresholds:
one to determine when replacement should begin in order to keep a minimum amount of
clean space, and one to determine when it ends based on the location of the knee.

The algorithm to select the segment to be expelled can thus be summarized as follows:

1. Findsknee the size of the cache forx-value of the knee of the hit ratio curve.

2. Order all segments in the cache by the last time they were accessed: segmentS1 is
the most recently accessed segment.

3. Compute successiveCj =
Pj

i=1 ni for all Cj � sknee.

4. Letk = maxfj j j � 1 andCj � skneeg.

5. When90 percent of the cache is full of dirty pages, expel the segmentSv such that
Sv hasmaxfni j i > kg until Sv = Sk.

3 Results

We investigated the effects of new cache replacement policy on the utilization of the disk
with a specific emphasis on the overall activity of the cache and the disk. We measured the
number of times that writes were made to the disk to clean the cache and the size of each
write used to clean the cache. We also recorded the number of cache hits and cache misses
for the non-volatile write cache.

To run our experiments, we implemented our own model of the HP97560 disk drive. We
modeled the components of the I/O subsystem of interest: the disk head, the disk controller,
the data bus, and the read and write caches. We based our models on techniques described
by Ruemmler and Wilkes [7] and an implementation by Kotz, Toh, and Radhakrishnan
[6]. We then used the Snake 5 and Snake 6 file system traces collected by Ruemmler and
Wilkes [8] to drive a detailed simulation of the disk subsystem.

To validate our approach of grouping segments into hot and cold regions, we looked at
the effect of manually varying the size of the hot region of our cache. If this approach is

220

correct, the number of writes to disk should be high when the hot region is small because the
large hot segments are frequently being replaced. As cache size increases and approaches
the knee, the number of writes to disk should decrease rapidly because more hot segments
fit into the hot region. The number of writes should then decrease gradually past the knee as
all the hot segments are now in the hot region. The results (see Figure 2) showed precisely
this type of behavior, with decreases of as much as25 percent in the number of writes
before the knee and as little as4 percent after it.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6
x 10

4

Cache Size (KB)

of

 W
rit

es
 to

 D
is

k

128KB Cache
256KB Cache
512KB Cache

(a) Snake disk 5

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12
x 10

4

Cache Size (KB)

of

 W
rit

es
 to

 D
is

k

128KB Cache
256KB Cache
512KB Cache

(b) Snake disk 6

Figure 2: The effects of varying the size of the hot region of the cache for three different
cache sizes with snake disks 5 and 6. The dotted line indicates the location of the knee in
the hit ratio curve.

We compared the performance of our replacement policy to those that use temporal
locality or spatial locality but not both. We implemented two other policies for points of
comparison: theleast recently used(LRU) replacement policy and thelargest segment per
track(LST) replacement policy. The LRU policy uses temporal locality to replace segments
and always purges the most stale data first. The LST policy replaces the most cost effective
segments based on segment size first.

We expected the LRU and LST policies to perform worse than our policy overall. The
LRU policy handles hot segments well, but makes costly small writes to disk. The LST
policy makes efficient writes of large segments, but this is only useful when the segments
are cold. Since our policy attempts to deal with both hot and cold segments, we expect that
it performs comparably (at least) to the best metrics for LRU and LST. A comparison of
the results showed this was true for the number of writes made to disk and the number of
stalled writes (see Table 1). This comparison also showed that our new policy consistently
overwrote data in the cache more often than the LRU or LST policies.

4 Related work

Systems using non-volatile caches have been discussed in several contexts. The Autoraid
system developed by Hewlett-Packard used an NVRAM cache with a RAID disk array to

221

Table 1: A comparison of three metrics for snake disks 5 and 6 for a 128KB cache.

Snake disk 5 Snake disk 6
LRU LST New LRU LST New

writes to disk 33538 33895 32758 57059 54057 59592
stalled writes 418 85 97 398 0 0
cache overwrites 79678 76061 79980 143191 141814 145871

produce a high performance, high reliability storage device [9]. There has been consider-
able interest in non-volatile caches for use in memory based file systems [3] and in mono-
lithic and distributed disk file systems [1], [2]. The advantages of the use of non-volatile
caches with on-line transaction processing (OLTP) systems has been investigated [4].

Despite a large interest in non-volatile memory, little comparative work has been done
with cache management policies in file system applications [2], [8]. Thresholds were found
to significantly improve the performance of non-volatile caches which only take advantage
of spatial locality [2]. Work by the authors with such policies showed that temporal locality
and large write size can both be used to strongly improve overall write performance [5].

5 Conclusions

Non-volatile disk caches can reduce disk workload more effectively than conventional
caches because they allow disk writes to be safely delayed. This approach has two ben-
efits. First, some writes will be avoided because the blocks will be overwritten or deleted
while they are still in the cache. Second, the remaining disk writes can be organized more
efficiently by allowing contiguous blocks to be written in a single I/O operation.

We have presented a block replacement policy that organizes efficiently disk writes
while keeping the blocks that are the most likely to be accessed again in the cache. Our
policy partitions the blocks in the cache into two groups: the hot blocks that have been
recently referenced and the remaining blocks that are said to be cold. Hot pages are guar-
anteed to stay in memory. Whenever space must be made in the cache, the policy expels
the cold blocks that belong to the largest set of contiguous segments within a single track
until enough free space has been made.

Experimental results showed that by using our replacement policy with a correctly
tuned, modest sized cache, it is possible to reduce writes to disk by75 percent on aver-
age and the policy frequently did better. The results showed the new policy to be more
effective than cache replacement policies which exploited either spatial or temporal local-
ity, but not both. In particular, data was overwritten in the cache more often using our
policy than the others, saving writes to disk. The new replacement policy also gave the
relative benefits of such policies without their unattractive features. It often provided the
least number of writes to disk of any of the policies we used for comparison. At the same
time, it often produced no stalled writes when other policies produced hundreds.

222

Acknowledgements

We are very grateful to John Wilkes and the Hewlett-Packard Company for making their
file system traces and the libraries to read them available to us.

References

[1] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo Seltzer. Non-
volatile memory for fast, reliable file systems.Operating Systems Review, 26(Special
issue):10–22, Oct 1992.

[2] Prabuddha Biswas, K. K. Ramakrishnan, and Don Towsley. Trace driven analysis of
write caching policies for disks.Performance Evaluation Review, 21(1):12–23, Jun
1993.

[3] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher Aycock, Gu-
rushankar Rajamani, and David Lowell. The Rio file cache: surviving operating system
crashes.SIGPLAN Notices, 31(9):74–83, Sep 1996.

[4] G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith. The case for safe RAM.
In Proceedings of the 15th International Conference on Very Large Databases, pages
327–35. Morgan Kaufmann, Aug 1989.

[5] Theodore R. Haining and Darrell D. E. Long. Management policies for non-volatile
write caches. In1999 IEEE International Performance, Computing and Communica-
tions Conference, pages 321–8. IEEE, Feb 1999.

[6] David Kotz, Song Bac Toh, and Sriram Radhakrishnan. A detailed simulation model of
the HP 97560 disk drive. Technical Report PCS–TR94–220, Department of Computer
Science, Dartmouth College, 1994.

[7] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling.IEEE
Computer, 27(3):17–28, Mar 1994.

[8] Chris Ruemmler and John Wilkes. Unix disk access patterns. InUSENIX Technical
Conference Proceedings, pages 405–20. USENIX, Winter 1993.

[9] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP AutoRAID
hierarchical storage system.Operating Systems Review, 29(5):96–108, Dec 1995.

223

