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INTRODUCTION

Electroencephalographic (EEG) signals recorded from the scalp surface are generally highly
correlated. Each channel is a linear mixture of concurrently active brain and non-brain electrical
sources whose activities are volume conducted to the scalp electrodes with broadly overlapping
patterns (Nunez et al., 1997). This property is particularly relevant to connectivity analyses, which
seek to detect and characterize active interactions between brain regions. Therefore, meaningful
connectivity patterns can be derived only from measures of cortical source activities and not
directly from EEG channel activities (Michel and Murray, 2012). However, this poses a serious
problem, since estimating the nature, number, brain (or non-brain) locations, and time courses of
the active sources contributing to the scalp EEG is not straightforward (Baillet et al., 2001).

Several methods have been proposed to estimate source activities from multi-channel EEG
recordings, thereby removing the confounding effects of volume conduction. These methods can
be grouped into three categories: (a) simple spatial filters that seek to reduce correlations between
scalp channels based on idealized assumptions; (b) more complex spatial filters that seek to estimate
net activities within ROIs based on detailed neurophysiological head models; and (c) blind spatial
source separation methods that seek to separately identify source signals by exploiting source signal
information differences. Whereas simple spatial filters such as bipolar derivations and Laplacian
filters can reduce, to some extent, correlations among scalp-recorded channels (Fisch, 2012),
more sophisticated spatial filtering methods use inverse imaging methods to estimate the time
courses of cortical sources in given or estimated region of interest (ROI) (Baillet et al., 2001).
Blind source separation techniques, in particular independent component analysis, by contrast,
learn spatial filters from the EEG time courses that separate the data into constituent independent
source activities. Their corresponding brain (or non-brain) locations can then be estimated using
neurophysiological inverse imaging methods (Makeig et al., 1996; Jung et al., 2001; Delorme et al.,
2012).

Vector autoregressive (VAR) models are versatile tools for analyzing multivariate time series,
including multi-channel EEG or multivariate source activities. VAR models predict current values
of time series from their recent past (Lütkepohl, 2005). Importantly, they can be used to derive
various electrophysiological connectivity measures (Schlögl and Supp, 2006). Volume conduction
in biological tissue can be modeled as instantaneous propagation of activity from sources to
recording channels. The resulting zero-phase connectivity may be treated as noise added to lagged
connectivity patterns of interest. Although some measures, including the imaginary part of the
coherency (Nolte et al., 2004), are insensitive to zero-phase connectivity, measures derived from
VARmodel coefficients do not include such zero-phase terms. Thus, volume conduction effects are
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not accounted for by the model and affect the correlation
structure of the model residuals, which are normally assumed to
be uncorrelated.

Popular connectivity measures derived from VAR models
include the Directed Transfer Function (DTF) (Kaminski
and Blinowska, 1991) and the Partial Directed Coherence
(PDC) (Baccalá and Sameshima, 2001). Whereas the PDC is
defined in terms of the system matrix (a frequency domain
representation of the VAR model), the DTF is based on the
inverse of the system matrix. Viewing lagged dependencies
between source signals as information flow, the DTF may be said
to be normalized by the inflow of information to some sink, while
the PDC is normalized by the outflow of information from some
source.

As we will demonstrate below, both the DTF and the
PDC are indeed adversely affected by volume conduction from
multiple sources to the scalp electrodes, in contrast to the
claim of Kaminski and Blinowska in their recent opinion
article (Kaminski and Blinowska, 2014). Thus, in general direct
application of connectivity measures to scalp EEG signals
produces less than accurate results and also does not allow their
clear interpretation in terms of underlying source dynamics.

DTF IS SENSITIVE TO VOLUME
CONDUCTION

Kaminski and Blinowska (2014) used an example to demonstrate
that the DTF is not affected by volume conduction. In their
example, they compared the DTF between all pairs of 18 scalp
EEG channels to the DTF between the same channels overlaid
with a sinusoid at 20Hz. They interpreted the absence of a peak
at 20Hz in the DTF as evidence for their claim that the DTF is
insensitive to volume conduction.

Upon closer inspection, this conclusion turns out to be based
on questionable assumptions. First, the figure in their example
clearly shows that the DTF obtained from the overlaid sinusoid
are not identical to the original DTF. Not only do most of
the connectivity measures exhibit troughs at 20Hz, but the
morphologies of some channel pairs are markedly different from
the case in which no sinusoid is present. Second, the observed
changes in the DTF can be explained by the fact that adding a
sinusoid to all EEG channels with equal strength does not reflect
volume conduction of a realistic brain source. If anything, their
simulation only demonstrates changes in the channel-wise DTF
when a single unrelated source signal (here artifactual and non-
brain) is present on all channels. Further, their example implicitly
confounds scalp and source signals. As described above, volume
conduction is more accuratelymodeled as amixing process—that
is, producing channel activities that are linear combinations of all
source activities. Our examples in the following sections will use
this model.

ANALYTIC DERIVATION

We will now demonstrate that non-connected cortical sources
generally exhibit spurious connectivity when measured between

EEG channels. In general, a VAR model of order p can be
written as

s(t) =

p
∑

k= 1

Aks(t − k),

where s(t) denotes a multivariate time series, Ak are the model
coefficient matrices, and p is the model order. For the sake of
simplicity, we will use only two sources and a model order of
p = 1 (but note that the result is valid for an arbitrary number
of sources and choice of model order):

s(t) = A1s(t − 1)

We begin by setting both off-diagonal elements in the model
coefficient matrix to zero, imposing zero causal interaction
between the two sources:

A1 =

(

a11 0
0 a22

)

Transforming the model to the frequency domain via the Fourier
transform yields the system matrix

A(ω) =

(

1− a11e
−jω 0

0 1− a22e
−jω

)

,

where ω is the angular frequency and j2 = −1 is the imaginary
unit.

The DTF is based on the transfer matrixH of the VAR model,
which is the inverse of the system matrix A. In our specific
example,H is therefore also a diagonal matrix:

H(ω) = A−1(ω) =

(

1
1−a11e−jω 0

0 1
1−a22e−jω

)

The DTF is just a normalization of the transfer function, which
means that it is also a diagonal matrix. It follows that the DTF
is zero for both off-diagonal elements, correctly indicating two
non-connected sources.

Now we introduce volume conduction via a generic mixing
matrix

M =

(

m11 m12

m21 m22

)

.

This mixing matrix relates the sources s(t) to the observed EEG
signals x(t) such that

x(t) = Ms(t).

Substituting the VAR model into this equation, the mixed model
coefficient matrix thus becomes

Ã1 = MA1M
−1,

and the corresponding mixed system matrix

Ã(ω) = I− Ã1e
−jω,
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where I is the identity matrix. The mixed transfer function is the
inverse of the mixed system matrix

H̃(ω) = Ã−1(ω) =

(

h̃11(ω) h̃12(ω)

h̃21(ω) h̃22(ω)

)

.

Plugging in the specific coefficients, the off-diagonal entries of the
mixed transfer matrix can be written as

h̃12(ω) =
m11m12e

−jω (a22 − a11)
(

a11e−jω − 1
) (

a22e−jω − 1
)

(m11m22 −m12m21)

and

h̃21(ω) =
m21m22e

−jω (a11 − a22)
(

a11e−jω − 1
) (

a22e−jω − 1
)

(m11m22 −m12m21)
.

Since the DTF is a specific normalization of the transfer matrix,
its off-diagonal elements can only be zero if the corresponding
off-diagonal elements of the transfer matrix are zero. In our
example, both elements are only zero if a11 = a22, that is, if
both source activities are exactly equal. This specific case is highly
unlikely to occur for real brain sources, which are separated
by any distance and concomitant neural conduction delay. In
general, the off-diagonal elements will thus be non-zero. This
result demonstrates that given non-connected sources, spurious
apparent connectivity is introduced into the result of VAR-based
connectivity analysis when (as in actual data) volume conduction
is present.

SIMULATION

Although the analytic derivation can be extended to more than
two sources, computing and notating the individual elements of
the mixed transfer matrix becomes quite unwieldy. Therefore,
we simulated three cortical sources and used a realistic forward
model of volume conduction from brain to scalp to numerically
estimate their summed activity at three scalp EEG channels.
For this simulation, we used the freely available Brainstorm
toolbox (Tadel et al., 2011); our analyses are based on the
ICBM152 template brain (Mazziotta et al., 1995) included in
the toolbox. The source code for this analysis can be found in
the Supplementary Material section. Once again, we start by
specifying the ground truth, here the connectivity structure of the
cortical sources consisting of one active connection from Source
1 to Source 3. The corresponding model coefficient matrix is

A1 =





0.9 0 0
0 0.5 0
1 0 −0.5



 .

Next, we assume these three sources exhibit spatially coherent
activity across upward-facing (gyral) cortical patches located just
below electrodes placed at C3, C4, and F4 (see Figure 1). We
compute the forward solution from the realistic template head
model to obtain the mixing matrixM containing the weights that
mix the activities of the three sources to the three scalp channels:

M =





25.62 1.51 −3.77
1.25 19.70 2.68
0.64 7.84 30.95





FIGURE 1 | A single DTF connection, averaged across all frequencies,

between two of the three cortical sources (blue, red, and yellow

patches), is shown by a green arrow. Black arrows indicate DTF

connections estimated between EEG electrode channels C3, C4, and F4. The

widths of the arrows are proportional to their DTF strength.

The matrix of mixed coefficients is

Ã1 = MA1M
−1

=





0.75 −0.08 0.16
0.12 0.52 −0.07
1.23 0.25 −0.37



 .

The corresponding source DTF averaged over all frequencies is
given by

DTFsource =





1 0 0
0 1 0

0.66 0 0.70



 ,

whereas the corresponding channel DTF is given by

DTFchannels =





0.98 0.08 0.16
0.14 0.98 0.08
0.72 0.17 0.62



 .

Figure 1 shows the results of the simulation. The green arrow
indicates the ground truth connection between Source 1 (blue
patch) and Source 3 (yellow patch). The black arrows visualize
the estimated EEG channel connectivities. The width of the
arrows is proportional to the strength of the DTF across all
frequencies. Once again, it is apparent that volume conduction
and summation of the projected signals at the scalp electrodes
produces spurious connectivity results. Whereas there is only
one ground truth source-to-source connection, non-zero values
are produced between all channel pairs by applying DTF
to the channel data. Note that spurious channel-to-channel
connections are caused by volume conduction and not by
indirect connections—similar connectivity patterns can also be

Frontiers in Computational Neuroscience | www.frontiersin.org 3 November 2016 | Volume 10 | Article 121

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Brunner et al. Volume Conduction Influences Scalp-Based Connectivity

observed in PDC estimates of channel-to-channel connections.
Here, the dominant estimated channel-to-channel connectivity
is between simulated electrode channels placed directly above
the coupled sources. In simulations in which the unknown
source locations are more distant from the scalp electrodes,
channel connectivity estimates may not suggest a particular
source connectivity.

DISCUSSION

We have demonstrated both analytically and by numerical
simulation that the DTF is influenced by volume conduction.
In contrast to Kaminski and Blinowska (2014), we argue that
connectivity measures should generally be calculated on cortical
sources, because they are the actual sources of brain activity.
Ideally, source activities can be obtained by separating each
data channel signal into a sum of physically and physiologically
distinct source processes whose interrelationships can also be
modeled in terms of causal connectivity.

It is worth mentioning that we selected highly favorable EEG
channel and source locations in our simulation example. Even
in this best-case scenario, spurious connections arise between all
channel pairs. However, most cortical sources do not necessarily
project radially from cortical gyri to scalp locations just above
them—with different source locations, we could have obtained
a collection of suggested scalp channel connections far from

the originating sources, with no way to determine which source
connections contributed to what extent.

In conclusion, while DTF and other connectivity estimators
can be applied to either scalp channels or to (estimated) source
signals, results are highly likely to be more accurate when the
analysis is based on source activities. In addition, interpreting
the results correctly in terms of regional brain interactions is
also much more straightforward. This is because connectivity
computed between EEG channels is heavily confounded by the
broad volume conduction patterns associated with each regional
EEG source.
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