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1 Introduction

Despite the increasing sophistication of Finance in the past 30 years, quantitative tools for building
portfolios remain entrenched in the paradigm proposed by Markowitz in 1952; these tools offer
investors a trade-off between mean return and variance. However, Markowitz himself was not satisfied
with variance, which penalizes gains and losses equally. Instead, he preferred semi-deviation that only
penalizes losses.

Recent work has made downside risk optimization practical, but there has been no reliable non-
Gaussian risk model. This void is filled with Barra Extreme Risk (BxR), an empirical, fundamental factor-
based model that captures features of return beyond variance. BxR reflects persistent characteristics,
such as the higher asymmetry and downside risk of high-yield bonds compared to government bonds, or
Growth stocks compared to Value stocks.

This paper describes an empirical study of shortfall optimization with Barra Extreme Risk. We compare
minimum shortfall to minimum variance portfolios in the US, UK, and Japanese equity markets using
Barra Style Factors (Value, Growth, Momentum, etc.). We show that minimizing shortfall generally
improves performance over minimizing variance, especially during down-markets, over the period 1985-
2010. The outperformance of shortfall is due to intuitive tilts towards protective factors like Value, and
away from aggressive factors like Growth and Momentum. The outperformance is largest for the
shortfall that measures overall asymmetry rather than the extreme losses.

2 Background

In this section we review the definition and motivation for shortfall, the formulation of variance and
shortfall optimization problems, and the Barra Extreme Risk model.

2.1 Volatility and Shortfall as Risk Measures

Volatility, or the square root of variance, measures the average dispersion over the entire distribution of
portfolio gains and losses. Volatility is the central concept in many standard statistics such as risk
contribution, beta, and correlation (Goldberg, et al, 2010). Its usefulness stems from its empirical and
mathematical properties. Empirically, volatility is persistent from one period to another; realized
volatility in one period is generally highly correlated with realized volatility in the next. Mathematically,
volatility is a convex risk measure, amenable to the tools of convex optimization and analysis (Goldberg
and Hayes, 2010). A minimum of a convex risk measure is unique, so once a minimum is found it is
guaranteed to be a global minimum.

Although useful, volatility does not describe every aspect of risk. Even as he proposed volatility as a risk
measure, Markowitz (1952) pointed out that a better risk measure would only penalize losses, and he
proposed semi-deviation as a desirable alternative. An alternative risk measure that has gained
attention in recent years is shortfall, which is the average (or expected) value of the largest losses. The
shortfall confidence level specifies the magnitude of these largest losses. For example, the 95% shortfall
is the average over the 5% largest losses. Given N possible portfolio outcomes, shortfall is formally
defined as

=1 ¥ (1)



where r(;, are the ordered return scenarios and p is the confidence level."

2.2 Variance and Shortfall Optimization

Like variance, shortfall is a convex risk measure and can be efficiently minimized. For asset weights w,
expected returns a, risk aversion A, and covariance matrix Z, the standard mean-variance problem is:

max,, w'a-Aw'zw (2)

Similarly, the mean-shortfall problem is:

max, w'a-As (w) (3)

where s,(w) is the empirical shortfall estimator at confidence level p. Rockafellar and Uryasev (2000,
2002), Krokhmal, et al (2002), and Bertsimas, et al (2004) show how to formulate shortfall optimization
as a linear program (LP) amenable to standard optimization algorithms. In Appendix C we review the
formulation of variance, shortfall, and combined variance-shortfall optimization in more detail.

2.3 The Barra Extreme Risk Model

Although the promise of alternative risk measures has been recognized since variance was first
introduced, the missing link has been a reliable forecast of these risk measures. One approach used for
downside risk has been a Normal (Gaussian) model. However, the Normal model reduces to a variance
model for linear instruments such as equities. This is because any risk measure? is a fixed multiple of
volatility when returns are normally distributed. Therefore, Normal models of risk do not add additional
insight for linear instruments, even when looking at alternative risk measures. To make use of
alternative risk measures, a non-normal risk model is needed.

A non-parametric approach uses historical returns as forecast return scenarios (known in the context of
Value at Risk as Historical VaR). While avoiding any distributional assumptions, Historical VaR assumes
that returns drawn from history are representative of the future. It is widely accepted that volatility (and
covariances) change over time, which constitutes an argument against Historical VaR. Moreover,
Historical VaR generally uses a relatively short return history (e.g., 1 year). Still, certain assets may not
have sufficient history (e.g., newly issued equities), or their history may be irrelevant (companies that
change from growth to value, small cap to large cap, or from one industry to another).

These obstacles to historical estimation are addressed by Barra Extreme Risk (BxR). BxR generates
forecast scenarios using Barra factor return history, which is uniformly available over a long period, and
represents return characteristics based on fundamental company characteristics. Furthermore, in the
reduced dimensionality of Barra factors, it is possible to account for the difference between the current

! Here we assume that N(1-p) is an integer. The general formula for continuous outcomes is conceptually similar; see Acerbi and Tasche (2001) for a detailed
discussion.

% More specifically, any risk measure that is a function of the single-period return distribution.



and historical covariance. By accounting for this difference, history is made relevant to the current risk
climate, and risk forecasts respond quickly to changing market conditions. The BxR approach is reviewed
in Appendix A, and Dubikovsky, et al (2010) present broad out-of-sample tests that show how the BxR
model is more consistent with market behavior than the conditional normal model.

Before endeavoring to construct portfolios based on alternative measures, a basic question must be
answered: can the risk measure be estimated with enough certainty to be useful? Two aspects of
forecast uncertainty are precision, measured by estimation error, and predictability, measured by
persistence (i.e., do historical returns predict future risk?).

3.1 Estimation Error

Optimized weights are subject to error, even for a perfect risk model, because risk is always estimated
with a finite sample. Kondor, et al (2007) explain that estimation error increases with the ratio N/T,
where N is the number of assets and T is the sample length. Naturally, estimation error plays a larger
role in shortfall than in volatility, because a large amount of the input data is only used in aggregate to
define the largest losses.

We briefly study the effect of estimation error using simulated data. Because the true distribution of the
simulated variables is known, the true optimal portfolio is also known. Estimation error is measured in
two ways. First, we compute the average risk of the optimized portfolio divided by the true minimum
risk (risk error). Second, we compute the average angle between the optimized weight vector and the
true optimal weight vector (weight error). Both of these measure the proximity of the optimized
portfolio to the true optimum. The risk error measures the average amount of extra risk that is taken in
optimized portfolios due to random fluctuations. Because it is not obvious how much risk error is
acceptable, we also compute the weight error that has a concrete acceptable upper bound. This upper
bound is defined by the average weight error of a randomly chosen set of positive weights. If the
average weight error is greater than this upper bound, an investor is better off guessing at a random set
of weights rather than trying to compute an optimal portfolio. This upper bound is around 35 degrees;
we compute an analytical formula for the upper bound in Appendix B. The concept of weight error is
illustrated for a two-asset portfolio in Figure 1.
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Figure 1: lllustration of weight-error angle for a two-asset portfolio (left) and its upper bound (right).



We measure these effects using simulated standard normal random variables applied to 10 assets with
sample lengths of 1000, 3000, 5000, and 7000. For each sample length, we simulate returns and
minimize shortfall at several confidence levels using the full, equal-weighted sample. We repeat this
process 100 times and take the average across the optimized portfolios. The results are shown in Figure
2.

We see that for our parameters, in this simplified setting, estimation error is negligible for all confidence
levels tested. While this does not rule out large estimation error for all possible distributions, our
parameters satisfy the baseline normal criterion. We are thus able to control estimation error in this
study by considering a low-dimensional risk space (fundamental factors) and a long history of factor
returns from 1981.

Optimized shortfall / Minimum shortfall Estimation Error Angle (degrees)
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Figure 2: Measures of estimation error using simulated, standard normal random variables.

3.2 Persistence

The complementary question to estimation error is persistence. Even if we were able to exactly measure
the risk in one period, and it does not persist in the next period, then it is of no use in risk forecasting or
portfolio construction. This is especially relevant for the BxR model, which uses up to 30 years of daily
return history to build its forecasts. We postulate that Barra fundamental factors (Size, Growth, Value,
etc.) reflect characteristics that are “fundamental” to stock behavior, and are thus persistent across long
periods of time. To test this hypothesis, we compute BxR forecasts using disjoint 15-year samples.
Because BxR allows for volatility to evolve over time, we focus on a non-normality (NN) statistic that is
independent of volatility.> The NN statistic is a measure of percent deviation from normality, formally
defined as the percent difference between BxR shortfall (xShortfall) and a Normal shortfall forecast:

- xShortfall i
Normal Shortfall

* More specifically, NN is independent of volatility when Normal Shortfall is estimated using the same half-life as that used to normalize the BxR returns.
Mathematically, NN of a factor is the same as NN of a factor times a positive constant.



Positive NN means that the BxR shortfall forecast exceeds the normal estimate; negative NN means that
the normal estimate exceeds the BxR forecast. Zero NN implies that the BxR and Normal estimates
coincide. We compute the NN statistics of Barra USE3 Style factors, on the gain and loss tails, and test
the null hypothesis that the NN statistics persist from one period to the next.* The results are shown in
Figure 3, along with confidence intervals on the difference. If the confidence interval crosses the dashed
diagonal, we cannot reject the null hypothesis that the NN statistics persist across periods. Out of 36
factors, we find only a handful of significant outliers: Size at three confidence levels, and Earnings Yield
at the 60% confidence level. This result shows that Barra fundamental factors display persistent
gain/loss tail features, even over long time periods, supporting the proposition that suitably modified
long histories of fundamental factors are a useful input to portfolio construction. Furthermore, the long
history provides a large number of forecast scenarios, allowing us to control estimation error as
described in the previous section.
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Figure 3: Persistence of non-normality (NN) of loss/gain tails of Style factors in the Barra US factor model (USE3).

4 Optimization Framework

For our empirical study, we consider the active management problem in terms of fundamental factors.
We examine the performance of an active strategy that is long minimum shortfall and short minimum
variance. Alternatively, this performance measures the value added by minimizing shortfall instead of
minimizing variance.

To simplify the analysis, we do not include expected returns (alpha), and seek only to minimize risk. We
further simplify the analysis by considering a small optimization universe consisting of a market index
and a small number of Barra Style Factor portfolios (Size, Growth, Value, etc.; see Table 4).> We carry
out the study in three markets: US, UK, and Japan, during the period 1985-2010.

Each minimum shortfall and minimum variance portfolio is constrained as follows: the weight of the
index is set to 100% to reflect full investment in the market portfolio. Consequently, the index weight of

* Confidence intervals are computed by bootstrapping the BxR scaled returns in each period.

® A factor portfolio return is equivalent to the Barra factor return; some Barra Style factor portfolios are also listed as MSCI indices.



the active strategy is zero. We constrain each individual Style factor exposure to the range [-2, 2]. The
sum of Style factor exposures is set to zero, so that the active bets are dollar-neutral. This enforces a
reasonable level of Style exposure that can be achieved using a moderately sized investment universe.

Inputs to the shortfall optimizer are daily returns prior to the analysis date. The return history begins in
1981 and the backtesting period starts in 1985, so the shortfall optimization is informed by a minimum
history of 4 years. These time-series are adjusted using the BxR methodology as explained in Appendix
A, representing forecast return scenarios in the shortfall objective function. Covariance forecasts are
made using an exponentially weighted moving average (EWMA) of trailing factor returns.

We tested a range of parameters, including: the shortfall confidence level (60% to 99%); the correlation
and volatility half-lives used for BxR covariance rescaling and for the forecast covariance matrix (21, 90,
180 days); and the rebalancing frequency (daily, weekly, monthly, quarterly). With the exception of
confidence level, we find little sensitivity to the optimization parameters. Here we focus on a 21-day
half-life and a monthly rebalancing frequency.

us UK Japan

(MSCI USA) (MSCI UK) (MSCI Japan)

Volatility Size Volatility

Momentum Momentum Size

Size Volatility Momentum

Trading Activity Trading Activity Trading Activity

Growth Leverage Value

Earnings Yield Value Interest Rate Sensitivity
Value Yield Growth

Earnings Variability
Leverage

Currency Sensitivity
Yield

Foreign Sensitivity
Growth

Leverage
Foreign Sensitivity

Table 1: Equity Style factors and “market factors” (MSCI USA, UK, Japan) used in optimization.
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5 Optimization Results

5.1 Optimal Exposures

Style factor exposures of the active portfolio are shown in Figure 5. The active strategy tilts consistently
towards Value in the UK and Japan, and towards the related Earnings Yield factor in the US. It tilts away
from Leverage, Growth, and Earnings Variability in the US, away from Leverage and Growth in the UK,
and away from Trading Activity, Leverage, and Growth in Japan.

The excess exposures can be partly understood in terms of the NN statistics, also shown in Figures 5 and
6. The factors favored by minimum shortfall have smaller (more negative) NN statistics, and those
avoided have larger (more positive) NN statistics. The largest visible exception to this trend is 60%
Growth in the UK, which is under-weighted in spite of its negative NN. This can be partly explained by
the fact that Growth is the fourth riskiest factor in the UK market (as measured by NN). Other
exceptions include Currency Sensitivity in the US and the related Foreign Sensitivity in the UK and Japan,
which can also be explained by their NN relative to the other available factors.

The Volatility, Size, and Trading Activity factors are highly correlated with the market, and are an
attractive hedge of market risk in both minimum variance and minimum shortfall. Consequently, their
exposures consistently approach or coincide with the lower bound of -2. This means that their exposure
in the active portfolio is close to zero. Two exceptions are Trading Activity in Japan and the UK. In Japan,
Trading Activity is one of the riskiest factors (by NN) and therefore favored by the variance optimizer. In
the UK, by contrast, Trading Activity is one of the least risky factors (by NN), so it is favored by the
shortfall optimizer.

BxR captures not only the extremes, but also the overall asymmetry of the distribution. The NN statistics
show that at high confidence levels most factors are riskier than Normal (fat-tailed). However, at the
60% level, where shortfall examines nearly the entire loss side of the distribution, many factors are less
risky than Normal (positively skewed). For the Barra Style factors, the strongest non-Normal risk signal
comes from overall asymmetry rather than the extremes. This leads to larger active bets at lower
confidence levels.
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Figure 5: Relationship of active factor exposure to non-normality (NN); (US — red, UK — green, Japan — blue).



5.2 Optimal Portfolios

Performance

Figure 7 shows the cumulative returns of the active portfolios. The active strategy shows consistently
strong performance during the entire back-testing period, for all confidence levels, and in all three
equity markets. In other words, minimum shortfall consistently outperforms minimum variance. We also
see that the lower the shortfall confidence level, the larger the outperformance. It is worth noting that
in the 1-2 years leading up to a financial crisis (e.g., 1986, 1998-99), minimum variance outperforms
minimum shortfall. This is followed by a large improvement in the minimum shortfall portfolios during
the subsequent turmoil.

When comparing these returns to the market returns, we see that (especially in the US) they are almost
mirror images of one another. When a crisis hits, the active portfolios remain unaffected and even show
gains. This observation suggests that the active portfolios (long minimum shortfall, short minimum
variance) can be used for downside protection that outperforms the market and limits losses during
turbulent times.
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(top right) and Japan (bottom). The corresponding cumulative returns of the market index are shown in grey, with their scale
given by the axis on the right.



The outperformance and downside protection that the minimum shortfall portfolios offer is apparent
when comparing their absolute cumulative returns to those of the market (see Appendix E). In all three
markets, the 60% xShortfall optimal portfolio constantly floats above the market. On the other hand, the
variance optimal portfolio either exceeds the market (UK) or underperforms, especially in down-markets
(US and Japan).

Return Attribution
To understand the outperformance of minimum shortfall, we perform a return attribution on the excess
returns of minimum shortfall over minimum variance. Figure 8 shows the cumulative returns for each
Style factor multiplied by their excess exposures (at the 60% shortfall confidence level). Ignoring
compounding effects, the sum of the cumulative returns of each of these factors equals the excess
returns of minimum shortfall over minimum variance.

Most of the outperformance of minimum shortfall is due to tilts towards Earnings Yield (US), Value (UK
and Japan), and Trading Activity (UK), and tilts away from Growth (US, UK, Japan), Trading Activity
(Japan), Leverage (Japan), and Momentum (Japan). Most of these tilts correspond to conventional
wisdom about stock characteristics: Value is protective, and Growth, Leverage, and Momentum are
aggressive. A notable exception is Trading Activity, which plays little role in the US, but is favored in the
UK and avoided in Japan. This may be partly due to the different definition of Trading Activity in the two
models,® but more likely reflects qualitative differences between the Japanese and UK equity markets.
The Japanese equity market has been bearish for most of the test period, while the UK has followed the
global business cycle.

In Figure 5 we showed that the excess exposures decrease for higher shortfall confidence levels. This is
because the strongest signal of non-normality comes from examining the entire loss side of the
distribution, and not just the tail. Strikingly, the return attribution shows that considering the core of the
return distribution will limit losses more effectively than looking deeper into the loss tail.

Risk Analysis

Having looked at the performance of minimum shortfall portfolios, relative to their minimum variance
counterparts, a remaining question is whether minimizing shortfall reduces extreme risk. To answer this,
we compute the realized volatility, realized Sharpe ratio (realized return/realized volatility), and realized
95% shortfall (the average over the largest losses), for down- and up-markets (see Table 9). For down-
markets we take the crisis periods of 1987-1988, 2000-2002, and 2007-2008, and for up-markets the
remaining years in our backtesting period. When comparing the variance and shortfall optimal portfolios
in absolute terms, we see that realized volatility is similar for all optimal portfolios, and consistently
lower than that of the market. The Sharpe ratio is a little higher than that of the market, and highest for
the 60% shortfall optimal portfolio. All optimized portfolios have significantly lower realized shortfall
compared to the market. The active portfolios have negligible realized risk (volatility and shortfall) and
higher Sharpe ratios, especially during down-markets. We finally see that in the framework of full-
investment in the market, together with an active hedge using our optimal excess portfolios, realized
risk would only decrease by 1%, but realized shortfall would be reduced during down-markets. Analysis
of the realized risk of the optimal portfolios in the UK and Japanese markets shows similar results.

& Trading Activity in UKE7 is a weighted average of monthly, quarterly, and annual share turnover, while in JPE3 it also includes recent growth in trading volume;
however, this descriptor is weighted by only 3%; the remainder of the factor is defined analogously to the UKE7 factor.
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Figure 7: Return attribution for the monthly rebalanced 60% xShortfall optimal portfolio. For each Style factor, its contribution
to the overall return is obtained by multiplying its cumulative returns by the excess optimal exposures.

Realized Volatility Realized Sharpe Ratio Realized 95% Shortfall
Up-markets  Down-markets  Up-markets Down-markets  Up-markets = Down-markets

MSCI USA 15% 27% 0.07 -0.02 2.16% 3.98%
Variance-optimal 11% 19% 0.08 -0.01 1.56% 3.13%
60% xShortfall optimal 11% 19% 0.10 0.01 1.57% 3.00%
95% xShortfall optimal 11% 20% 0.08 0.00 1.59% 3.15%
60% active portfolio 1% 2% 0.05 0.10 0.22% 0.26%
95% active portfolio 1% 2% 0.01 0.02 0.22% 0.25%
MSCI USA + 60% active 14% 26% 0.09 -0.02 1.94% 3.78%
MSCI USA + 95% active 14% 26% 0.09 -0.02 1.96% 3.83%

Table 2: Comparison of average realized volatility, realized Shape ratio (realized return/realized volatility), and realized 95%
shortfall.



The variance- and shortfall-optimal portfolio beta is shown in Figure 10, using a two-year rolling
window.” All optimized portfolios display similar betas over time, which means that the beta of the
active portfolio is nearly zero. Beta is on average significantly smaller than one, going as low as 0.2,
indicating that the returns of our optimized portfolios do not generally follow market returns.
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Figure 8: Evolution of betas for optimal portfolios in the US market. Standard volatility beta with respect to the market is
calculated using a two-year rolling window.

6 Conclusion

Our empirical study has shown that shortfall optimization, combined with Barra Extreme Risk (BxR), can
capture information beyond variance, and that this information can translate to downside protection
and outperformance. The key element of BxR is the Barra fundamental factor model, which provides a
consistent and uniform view of history. Variance has so far been the main risk measure to optimize
against because of its simple quadratic definition and its empirical persistence. With the advent of Barra
Extreme Risk, downside risk optimization has become a viable alternative to variance optimization.

” Beta is computed with respect to the market, represented by the MSCI USA Index.



Appendix A: Barra Extreme Risk Methodology

The Barra Extreme Risk (BxR) model assumes that Barra fundamental factor returns are stationary, but
their covariance evolves with time. For a vector of factor returns f with covariance matrix 2, we have

f=3"%g (4)

where the uncorrelated factor returns (g) are assumed to be identically distributed over time. The
uncorrelated factor returns can be recovered with the transformation

g=2""f (5)

We estimate I using an exponential weighted moving average (EWMA) of trailing factor returns.

Forecast scenarios f1 on analysis date T are given by

fr =3"25:9%f (6)

where t is a historical date preceding T. These covariance-normalized factor returns are the inputs to
shortfall optimization. Further details are given in Dubikovsky, et al (2010).



Appendix B: Estimation Error and Derivation of the Weight-Error Angle

We start by mathematically encapsulating the range of all feasible weight vectors w that satisfies the
given optimization constraints. Consider the two-asset portfolio setting of Figure 1, where the set of all
possible weights lies on the intersection of the dashed line with the first quadrant. We define the
feasibility range in this two-dimensional setting to be the length of this line, which is v2. In three
dimensions, feasible weights lie on the area of an equilateral triangle with edge length equal to v2; in
four dimensions, feasibility is the volume of a tetrahedron with edge length equal to V2. In general,
given n+1 assets and their weights, the feasibility range is the n-dimensional volume of the n-
dimensional simplex with equal-sided edges equal to V2. This volume is equal to

V =ynt (7)

feasible n '

?

Since the assumption is that optimal weights are given by equal weights, the optimal weight vector w,,
for n+1 assets has coordinates w,, = [1/(n+1), ..., 1/(n+1)], and its length is its norm |w]|.

Finding the boundary angle B around the optimal weight vector (beyond which one would be better off
guessing a random set of weights rather than computing the optimal weights) reduces to finding the n-
dimensional object with sub-volume Vyoundary that has half the volume of the total feasibility range (i.e.,
Viboundary = 72 Vreasible). Since we seek an angle rotating around the optimal vector w,,, the object with
volume Vpoungary Must be an n-dimensional hypersphere centered at the coordinates of wy,. Its radius is
unknown, but can be backed out from its volume:

b —
For neven, = _Nn+1 and forn odd, r = —nT1 ,
2(2m)2(ni1) a2my72(nit)

where n!!! is the product of all positive odd integers less than or equal to n, and n!! is the product of all
positive even integers less than or equal to n. With some higher-dimensional imagination, one may now
be able to see that the boundary angle B is adjacent to the optimal vector w,, and has an opposite edge
given by the radius r of the n-dimensional hypersphere (with the right angle being between the vector
and the radius). Therefore, the boundary angle B is given by

B=atan(r/|w,, [) (8)

and can be generated for any number of assets n+1 (dimension n) since it is dependent only on n.



Appendix C: Variance and Shortfall Optimization

In this appendix we review the standard formulation of mean-variance optimization as a quadratic
program (QP) and mean-shortfall optimization as a linear program (LP). Both QPs and LPs can be solved
using standard optimization algorithms.

Variance Optimization. Given a vector of weights w, covariance matrix Z, vector of expected returns a,
and risk aversion parameter A, the mean-variance optimization problem is:

max,, w'a-Aw'zw (9)
subject to any set of linear equality or inequality constraints (long-only, full investment, etc.).

Shortfall Optimization. Given vectors I;,...,I7 of forecast return scenarios, weight vector w, empirical
Tk

shortfall estimator S,(W)=-—) W', for confidence level p, K=|_T(1-p)J, and risk aversion
K i=1

parameter A, we seek weights w minimizing S,(W):

max,, w'a-As (w) (10)

The shortfall estimator Sp(W) is an average of order statistics, and it is not obvious how to solve the

shortfall optimization. However, Rockafellar and Uryasev (2000) and others have shown how to
formulate this as an equivalent linear program with T+1 additional variables and 2T additional
constraints:

17
'a+ -— .
max,, ,,w'a /\(t ” D>z (4
s.t. z>0, z>t-wr
subject to any set of linear equality or inequality constraints (long-only, full investment, etc.). In the next

section (Appendix D), we sketch how to convert the optimization problem (8) into its LP equivalent
formulation.



Variance Shortfall Optimization. Clearly the variance and shortfall terms can be combined into a single
objective function to give another standard quadratic program:

1T
'a+ A\ t-— Cl-AW'Z
max,,,, W'd ( KZMZ'] W'EW (12

s.t. z>0, z>t-wr,

subject to any set of linear equality or inequality constraints (long-only, full investment, etc.).

Appendix D: Linearization of Shortfall Optimization

In this appendix, we begin by considering this shortfall minimization problem:

w

min,, s, (W) (13)
Let ry,..., rr be T vectors of forecast return scenarios for N assets, and w be the weight vector. The
portfolio return at time t is given by p; = w'r.. If the sorted portfolio returns are written in increasing
order as (W'r)) < (W'r)y < =+ < (W'r)), the empirical shortfall estimator is

S, =-RZw'r(i) (14)

where K=\_T(1-p)J. The linearization of this optimization problem is based on two crucial

observations that convert the order statistic into a linear sum that is subject to linear constraints.

Observation I. The sum of the t smallest portfolio returns is always smaller than or equal to the sum of
any other combination of t returns. Formally, for any t < T, we have

t

Do, <> wr, (15)

i=1 ieS

where we are indexing on the right hand side over all possible sets S that contain t portfolio returns (i.e.,
|S|=t, for t=1,..., T). The shortfall optimization problem (13) can therefore be rewritten as

1 K
MmaX., 'R;p(i)

st Zt:pm <D W
i=1

ieS

(16)



Observation Il. The sum of the K smallest portfolio returns Z :;p(i) as it appears in the objective

function of (16) is in fact the value of the linear optimization problem (17)

;
minx zxipi

i=1 (17)
st Y x=K,  0<x<1

This can be proven formally by induction on the number K. However, to help understand why this is
true, notice that for K=1 we get the minimum value of combination of portfolio returns if we assign all
the weight to the smallest return p(y), since any other fraction of weight assigned to a larger return will
yield a larger total value. Similarly, for K=2 we get the minimum combination of portfolio returns if we
assign all weights to the smallest returns. Since each x; cannot be larger than 1, we pick the two smallest
returns. By strong duality, optimization problem (17) is equivalent to

.
max,, Kt+> z
i=1

(18)
s.t. t+z. <p, z<0, i=1,..,T
We use this observation to rewrite optimization (16) as
1 T
min ——max,, Kt+) z
w K tz ; i (19)

s.t. t+z <w'r, z<0, i=1,.T

Using the fact that max(f) = -min(-f), we finally convert optimization problem (18) into the following
linear optimization, which is equivalent to (13):

= (20)



Appendix E: Absolute Cumulative Returns
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