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ABSTRACT 
Gorman Engel curves are extended to incomplete systems. The roles of Slutsky symme-
try and homogeneity/adding up are isolated in the rank and functional form restrictions 
for Gorman systems. Symmetry determines the rank condition. The maximum rank is 
three for incomplete and complete systems. Homogeneity/adding up determines the func-
tional form restrictions in complete systems. There is no restriction on functional form in 
an incomplete system. Every full rank and minimal deficit reduced rank Gorman system 
has a representation as a polynomial in a single function of income. This generates a 
complete taxonomy of indirect preferences for Gorman systems. Using this taxonomy, 
we develop models of incomplete Gorman systems that nest rank and functional form and 
satisfy global regularity conditions. All results are completely derived with elementary 
and straightforward methods that should be of wide interest. 
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1. Introduction 

Incomplete information is the rule not the exception. We are almost always interested in a 

small subset of the list of possible items purchased and used by consumers. This has three 

impacts on demand models. The budget constraint is a strict inequality. The demands are 

not 0° homogeneous in the prices of the goods being modeled and income. And if only 

some of the goods are modeled, then there is no compelling reason for the demands for 

the goods we do not model to have the same structure as those that we do. They may or 

may not have the same structure. We simply have no way to know. The upshot is incom-

plete systems are more applicable and in several ways more interesting than complete 

systems. Beyond this, is there any other reason to extend the known results on Gorman 

Engel curves for complete systems to incomplete systems? We offer two simple compel-

ling examples to motivate our interest in this question.  

First, consider a consumer receiving utility over goods, q, and leisure, , with an 

average cost of leisure (or, equivalently, the average wage rate) a function of labor sup-

plied, ( )w , and who is endowed with a unit of total time, [0,1]∈ . Now take the total 

“expenditure” on goods consumption and leisure as given for the moment. Then the con-

sumer’s choice problem can be stated as 

 { }( , ) sup ( , ) : ( ) , , [0,1]v m u w m′≡ + = ≥ ∈p q p q q 0 . (1) 

Assuming an interior solution, it is easy to show that goods demands, ( , )m=q h p , satisfy 

Roy’s identity, 
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 ( , )( , )
( , )

v mm
v m m

∂ ∂
= −

∂ ∂
p ph p
p

 (2) 

but are not 0° homogeneous in (p,m) and do not satisfy adding up.  

Let ( ) ( ) ( )w w w′= +  be the marginal cost of leisure, let [ ]w=p pT T , and ex-

press the inverse Hessian of the Lagrangean for (1) as 

 
1

(2 )m

u u

u u v w w e

−
   
 = =  ′ ′′− +    

qqq

q

C d
H

d

T

T
T

, (3) 

with 
11 1 1 1(2 )mu u v w w u u u u u u u

−− − − − ′ ′′= + − + − q q q qqq qq qq qqC T T T T
T T , 

 
11 1(2 )mu v w w u u u u u

−− − ′ ′′= − − + − q q qqq qqd T T
T , 

and 
11(2 )me u v w w u u u

−− ′ ′′= − + − q qqqT
T , 

with each term evaluated at ( ( , ), ( , ))m mh p p  and subscripts denoting partial derivatives. 

Then the n×n matrix of Slutsky substitution terms, 

 1( ) [ ] [ ]mv
m

−∂ ∂  = + = − ∂∂
h hS h C p Bp C d pp C d
p

T T T T

T
, (4) 

is symmetric, negative semidefinite. Hence, the set of goods demands, ( , )m=q h p , has 

all of the properties of an incomplete demand system. Moreover, even if we assume that 

( , )u q  has the same structure with respect to q and , any joint dependence between the 

average return to labor and labor supply implies that the functional form of the demand 

for leisure will differ from that of the demands for consumption goods. 
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The second example extends the first to a dynamic lifecycle consumption model 

with bequests and an uncertain consumer lifespan. To keep the example as simple as pos-

sible, let ( , )v mp  be as above and interpret it as the optimal periodic utility flow given 

market prices and a total expenditure level on goods and leisure. Given a lifespan of t pe-

riods into the future, let the cumulative lifetime utility of the consumer be 

0
( , ( )) ( ( ))

t te v m d e b W t−ρτ −δτ τ +∫ p , where ρ is the discount rate for periodic utility, δ is the 

(possibly different) discount rate for the benefits of leaving a bequest to the consumer’s 

heirs, W(t) is the value of remaining wealth left at the end of the lifespan, and ( ( ))b W t  is 

the utility generated from leaving the bequest. To simplify matters further, assume that 

the only source of uncertainty is the lifespan of the consumer. 

Let ( )f t  be the probability density function for death at t, so that 1 ( )F t−  is the 

probability of a lifespan no more than t periods into the future. Define the hazard rate of 

death at t as ( ) ( ) [1 ( )] ln[1 ( )]t f t F t d F t dtη = − = − − , equivalently, 01 ( )
t

d
F t e

− η(τ) τ∫− = . 

Then the expected utility flow over all possible lifetimes can be written as 

 
0

( ) ( , ( )) ( ( )) ( )
t tE U e v m d e b W t f t dt

∞
−ρτ −δ

0
 = τ τ +  

⌠
⌡ ∫ p  

 
00

( , ( )) ( ) ( ( )) ( ) ( , ( )) ( )
t t te v m d F t e b W t f t e v m t F t dt

∞ ∞−ρτ −δ −ρ
0

   = τ τ + −   ∫ ∫p p  

 0
( )

0

( , ( )) ( ) ( ( ))
t

d t te v m t e f t b W t dt
∞

− η τ τ−ρ −δ ∫= + 
 

⌠

⌡

p , (5) 
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invoking the natural assumptions (0) 0F =  and lim ( ) 1
t

F t
→∞

= . 

Let N0 be the initial value of nonlabor assets, let r be the certain and constant 

market discount rate, define full initial wealth of the consumer by 0 0 0
rtW N e wdt

∞ −= + ∫ , 

and to simplify the story as much as possible, assume that w is independent of the hours 

worked each period. Then the wealth transition equation is 

 0, fixedW rW m W= − . (6) 

If the consumer maximizes E(U) subject to (6), then the optimal solution path for m can 

be characterized by (6) and the differential equation for consumption expenditures, 

 
(( ) ( )t

m

mm

r v e b W
m

v

ρ−δ) ′η + ρ − − η = . (7) 

If consumers are not more impatient than the market, rη + ρ ≤ , utility is concave 

in consumption and leisure expenditure, 0mmv < , and wealth is no greater than the level 

that maximizes the utility generated from bequests, { }arg max ( )W B x≤ , then consump-

tion and wealth accumulate early in the planning horizon, 0m >  and 0W > , and savings 

is the residual claimant on the unobservable budget constraint, 0W s rW m≡ = − > .  

As in the previous example, we have an incomplete demand system for goods 

consumption. Since bequests are realized only ex post, it is virtually impossible to model 

this aspect of the consumption decision. The issues raised in these examples extend to 

kinks and other nonlinearities in the earnings function due to such issues as overtime 

regulations or income taxes, as well as uncertain future prices, incomes, and rates of re-
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turn, multiple assets held by consuming households, and time-varying discount rates. In 

both cases, and indeed almost all cases we can conceive of, an incomplete system clearly 

seems more appropriate than a complete one. 

The question of interest here, then, is do any of the known results on aggregation 

for complete systems of Gorman Engel curves extend to incomplete demand systems, and 

if they do, in what form? The purpose of this paper is to present a comprehensive exten-

sion of Gorman Engel curves to incomplete systems. In doing so, we isolate the role of 

symmetry from that of homogeneity and adding up in determining the rank and form of 

Gorman systems. Symmetry determines the rank restriction. The maximum rank is three 

for incomplete as well as complete systems. Homogeneity and adding up determine the 

functional form restriction in complete systems. There is no functional form restriction 

for an incomplete system.  

Each full rank or minimal deficit reduced rank Gorman system can be represented 

as a polynomial in a single function of income. This produces a complete taxonomy of 

closed form expressions for the indirect preferences in Gorman systems. We develop two 

classes of incomplete Gorman systems to nest rank and functional form that satisfy global 

regularity, can be estimated with aggregate data, and can be used for inferences on the 

consumption and welfare of identifiable consumer groups. 

Many of our results are constructed from the existing literature by combining and 

synthesizing very different approaches. In particular, we make extensive use of methods 

in Lie (1880; translated with commentary in Hermann 1975), Gorman (1981), van Daal 

and Merkies (1989), Lewbel (1990), and Russell and Farris (1993, 1998). We only use 
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basic calculus and the most elementary of methods from the theory of differential equa-

tions to generate our results in the simplest, most direct, and understandable approach we 

could find, attempting to make the results accessible and of interest to as wide an audi-

ence as possible. 

Our plan for the rest of the paper is as follows. In the next section, we set up the 

model used throughout the paper and briefly review existing results for complete systems 

within the context of this framework. The third section develops and discusses our exten-

sion of these results to incomplete systems, concentrating on the full rank and minimally 

deficit reduced rank cases. We characterize the indirect preference functions in the full 

rank cases, and present and discuss a class of preferences that gives rise to a minimal 

deficit reduced rank model with any number of income terms. The fourth section devel-

ops two classes of incomplete demand systems that nest rank and functional form. The 

final section summarizes these results and discusses some of our applications. To reduce 

the mathematical and notational burden, almost all of the proofs and derivations are con-

tained in the Appendix. 

2. A Review of Complete Gorman Systems 

One of Terence Gorman’s legacies is his contribution to consistent aggregation in de-

mand (Gorman 1953, 1961, 1981). He first derived necessary and sufficient conditions 

for the existence of a representative consumer (Gorman 1953), and then obtained the in-

direct preference functions for this case (Gorman 1961), known as the Gorman polar 

form. Muellbauer (1975, 1976) extended the quasi-homothetic case of Gorman to a single 
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nonlinear function of income, obtaining the price independent generalized linear (PIGL) 

and price independent generalized logarithmic (PIGLOG) demand systems. Gorman 

(1981) then extended these results, deriving the class of functional forms for all complete 

demand systems that can be expressed in terms of a finite number of additive income 

terms each multiplied by a vector of price functions. 

The rank of a system of Gorman Engel curves is the number of linearly independ-

ent columns in the matrix of price functions that multiply the income variables. Every 

complete system of Gorman Engel curves satisfies two conditions. The rank of the sys-

tem is at most three. If the rank of the system is three, when the demands are written with 

budget shares on the left, then the income functions that are not constant (one must be 

constant) are real powers of income, integer powers of log–income, or sine and cosine 

functions of log–income. This is the foundation of an important literature on aggregation 

for complete systems (Deaton and Muellbauer 1980; Lewbel 1987, 1988, 1989, 1990; 

Russell 1983, 1996; Russell and Farris 1993, 1998; and van Daal and Merkies 1989). 

To review, extend, and relate the known results on complete Gorman systems to 

incomplete demand systems in a coherent framework, we need a few definitions, some 

notation, and a convention. Let qn
++∈p  be the vector of market prices for the goods of 

interest, qn
+∈q , let qn

++∈p  be the vector of market prices for all other goods, qn
+∈q , 

let m ++∈  be total consumption expenditure (hereafter, income, for brevity), let 

0z m= = − >p q p qT T  be the total expenditure on all other goods, and let r∈s  be a 

vector of demand shifters. The nominal expenditure function is defined by 
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 { }( , , , ) min : ( , , )E u u u≡ + ≥P P s P q P q q q sT T  (8) 

We assume : q qn n rE ++ ++ ++× × × →  is analytic and has neoclassical properties. In 

particular, it is 1° homogeneous in all prices ( , )P P .  

Now let : qn
+ +π →  be any known, positively linearly homogeneous function 

of the prices of other goods, qn
+∈P , and without any loss in generality, write the de-

flated expenditure function as1 

 ( )( , , , ) ( ) , ( ) , , ( )e u E u≡ π π πp p s P P P P s P . (9) 

If 1qn n≥ + , then ( , , , )e up p s  is increasing in (p,u), concave in p, not 1° homogeneous 

in p, and ( , , , ) ( , , , )e u e u<p p p s p p sT  (LaFrance and Hanemann 1989).2 But if qn n= , 

then P  has no elements and we will adopt the convention that ( ) 1π ≡P , ( , , )e up s  is 1° 

homogeneous in p and satisfies the adding up condition (the system is complete). We as-

sume an interior solution for q so there are no binding non-negativity constraints. Thus, 

                                                 
1Because ( , , , ) ( , , , )e u E u∂ ∂ ∂ ∂≡p p s p P P s P , deflating by ( )π P  does not alter the functional relationship 
between income and P at this level of generality. However, it plays a significant role when we restrict the 
demand equations to be a member of the class of Gorman Engel curves (see the next footnote). 
 
2Lewbel (1989) derived a rank four system when income is deflated by an index of all prices. Russell and 
Farris (1998) showed that Lewbel’s rank four case is somewhat singular. The income functions cannot be 
linearly independent and the log derivative of the price index deflating income must be the negative of one 
of the price functions. In the present model setup, income is deflated by some function of all other prices. 
The second condition identified by Russell and Farris (1998) therefore cannot be met for an incomplete 
system since ( )π P  does not depend on P. As a result, Lewbel’s (1989) rank four case is impossible in this 
framework. The advantage of this restriction is it permits us to identify the connections among incomplete 
deflated income systems, complete nominal income systems, and the theory of Lie transformation groups 
on the real line. 
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symmetry is the main mathematical property of interest, although we also consider curva-

ture later. Within this framework, a system of Gorman Engel curves might be written as 

 ( )
1

( , , , ) ( , , ) ( , , , )
K

k k
k

e u H e u
=

∂
=

∂ ∑p p s p p s p p s
p

β . (10) 

Now let 1 1[ ( ) ( )] ( )
q qn ng p g p= ≡x g pT  be an nq–vector of diffeomorphisms of 

p, so that each ig ∞∈C  is a strictly increasing function with a smooth inverse ( )i ip x , and 

let ( )y f m=  be a diffeomorphism of deflated income with inverse ( )yφ . Then, rather 

than (10), we might write the demand system in terms of the variables x and y as 3 

 ( )
1

( , , , ) ( , , ) ( , , , )
K

i i
i

y u h y u
=

∂
=

∂ ∑x p s x p s x p s
x

α . (11) 

However, since ( )( , , , ) ( ( ), , , )y u f e u≡x p s p x p s , we also can write (10) as 

( )( , , , ) ( ) ( ( ), , , )( ( ), , , )y u e uf e u∂ ∂ ∂′=
∂ ∂ ∂

x p s p x p x p sp x p s
x x p

T

 

 
( )( )

( )( )1

( , , , )( ) ( ( ), , )
( , , , )

K
k

k
k

H y u
y u=

φ∂
=

′∂ φ φ∑
x p sp x p x p s

x x p s
β

T

 

 ( )
1

( , , ) ( , , , )
K

k k
k

h y u
=

≡ ∑ x p s x p sα . (12) 

                                                 
3 Gorman (1981) chose the coordinate system by taking logarithms of prices and income. He invoked add-
ing up early in his argument to deduce that a constant must be one of the income functions. In contrast, 
Russell (1996) and Russell and Farris (1993, 1998) applied the coordinate free methods of exterior differ-
ential calculus and the theory of Lie transformation groups, using adding up only at the end of their argu-
ment to reproduce Gorman’s restriction on functional form. It can be shown that in partial differential equa-
tion systems with the present structure, a change in coordinates can be made so that a constant is always 
one of the functions of y (see Hermann 1975:147-150 and the Appendix). 
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These steps are reversible: functional separability of e from p is equivalent to functional 

separability of y from x and Gorman systems are independent of coordinates. Our first 

result is Lemma 1, showing us that symmetry also is independent of the coordinate sys-

tem, while curvature is not. 

Lemma 1. Let ( , , , )e up p z  be the deflated expenditure function, let ( )y f e= , 
2f ∈ , 0f ′ > , with inverse ( )m y= φ , let ( )i i ix g p= , 2

ig ∈ , 0ig′ > , for 
each 1, , qi n= … , and write the deflated expenditure function as 

 [ ]( , , , ) ( ( ), , )e u y u= φp p z g p z . 

Then (a) 
2e∂

∂ ∂p pT
 is symmetric if and only if 

2 y∂
∂ ∂x xT

 is symmetric; and (b) if 

0′′φ ≤ , 0ig i′′≤ ∀ , and y is concave in x, then e is concave in p. 

Although very simple and completely intuitive, part (a) of this lemma proves to be ex-

tremely useful in the developments below. The reason is that this property lets us freely 

switch from one representation of y or x to another whenever this proves to be convenient 

and informative without a need to reconsider the implications for integrability. 

We also will require a pair of conditions on the number of goods in the demand 

system, the number of income functions, and the functional relationships between the 

price and income functions that will guarantee that the demand system has a unique rep-

resentation and is well-identified. The first of these is that the 1{ ( )}K
k kh y =  are linearly in-

dependent with respect to the constants in K–dimensional space. That is, there can be no 

K∈c  satisfying ≠c 0  and 1( ) 0y =c hT  1 ( )y y∀ ∈ ⊂N , where ( )yN  is an open 

neighborhood of any arbitrary point in the interior of the domain for y. The reason that 



Building Gorman’s Nest 13 

 

we need this condition can be understood best by supposing that it was not satisfied. Then 

K∀ ∈d  we can add ( , , ) ( )
qny ≡A x p s dc h 0T  to the system of demand equations with-

out changing it at all, 

 
1 1 1

( , , ) ( ) ( , , ) ( )
K K K

k k k k
k k

y h y d c h y
= = =

∂
= +

∂ ∑ ∑ ∑x p s x p s
x

α α  

 
1 1

( , , ) ( , , ) ( )
K K

k k k
k

c d h y
= =

 
= + 

 
∑ ∑x p s x p sα α  (13) 

 ( , , ) ( )y= +  A x p s I dc hT . 

The matrix ( , , )A x p s  certainly could not be identified in such a case and the demand 

model would make little sense.  

Similarly, we require the columns of ( , , )A x p s  to be linearly independent with 

respect to the K–dimensional constants. For this, there can be no K∈c  satisfying ≠c 0  

and 1( , , ) =A x p s c 0  1 ( )∀ ∈x xN , where here ( )xN  is an open neighborhood of any 

point in the interior of the domain of x. For, if this did not hold, then K∀ ∈d , if we 

add ( , , ) ( )
qny ≡A x p s cd h 0T  to the system we do not change it, 

 
1 1

( , , ) ( , , ) ( )
K K

k k k
k

y d c h y
= =

 ∂
= + ∂  

∑ ∑x p s x p s
x

α α  

 ( , , ) ( )y= +  A x p s I cd hT . (14) 

Again, the matrix ( , , )A x p s  cannot be identified and the demand system makes no sense. 
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We therefore assume throughout that the dimensions of A and h have been reduced as 

necessary to guarantee a unique representation (Gorman 1981: 358-59; Russell and Farris 

1998: 201-202).  

The rest of this section summarizes and synthesizes what is known about com-

plete systems that have Gorman’s functionally separable structure as given in (10) above. 

Gorman (1981) proved that all complete demand systems in this class must have a rank 

of ( , )A x s  that is at most three. If the rank of ( , )A x s  is three, then the system must take 

one of the following three possible forms: 

 0
1

( , ) ( , ) [ln( )]
K

k
k

k
m m m

=

= + ∑q x s x sα α ; (15) 

 1 1
0 ( , ) ( , ) ( , )

S S
m m m−κ +κ

τ τ
κ∈ κ∈

= + +∑ ∑q x s x s x sα β γ , (16) 

for S a set of nonzero constants; or 

 ( ) ( )0 ( , ) ( , ) sin ln( ) ( , ) cos ln( )
T T

m m m m mτ τ
τ∈ τ∈

= + τ + τ∑ ∑q x s x s x sα β γ , (17) 

for T a set of positive constants.4 This includes PIGLOG models and extensions that are 

polynomials in ln( )m , simple polynomials in income, and PIGL models and extensions 

with power functions of the form mκ , in addition to the trigonometric form (17). 

A Gorman Engel curve system has full rank (Lewbel 1990) if the rank of 

( , , )A x p s  equals the number of columns and therefore also the number of income func-

                                                 
4 Another important implication of Gorman’s (1981) constructive proof, which Lewbel (1990) pointed out 
and exploited to great advantage in deriving the solutions for the full rank three complete system cases, is 
that if the rank of ( , )A x s  is three and there are exactly three income terms, then 2K =  in (15), S has one 
element, κ, appearing once with a negative sign and once with a positive sign in the exponents in (16), and 
T has one element, τ, appearing in one sine and one cosine term in (17). 



Building Gorman’s Nest 15 

 

tions, ( )kh y . Full rank one complete systems are homothetic, 

 0 ( , )m=q x sα , (18) 

due to adding up. In budget share form, all full rank one complete systems are zero–order 

polynomials in income.  

Muellbauer (1975, 1976) showed that full rank two complete systems are either 

PIGL or PIGLOG; either 

 1
0 1( , ) ( , )m m −κ= +q x s x sα α . (19) 

for some κ ≠ 0, or 

 0 1( , ) ( , ) ln( )m m m= +q x s x sα α . (20) 

Note that a Bernoulli first-order differential equation system, 

 1
0 1

( , , ) ( , , )( , , ) ( , ) ( , ) ( , , )e u e ue u e u
κ

κ− κ∂ ∂   = κ + κ   ∂ ∂ 
x s x sx s x s x s x s

x x
= β β , (21) 

has the PIGL form, 

 1
0 1

( , , ) ( , ) ( , , ) ( , ) ( , , )e u e u e u −κ∂
+

∂
x s x s x s x s x s

x
= α α , (22) 

while a logarithmic first-order differential equation system, 

 [ ] [ ]0 1
ln ( , , ) ( , , ) / ( , ) ( , ) ln ( , , )

( , , )
e u e u e u

e u
∂ ∂ ∂

= = +
∂
x s x s x x s x s x s
x x s

α α , (23) 

has the PIGLOG form 
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 [ ]0 1
( , , ) ( , ) ( , , ) ( , ) ( , , ) ln ( , , )e u e u e u e u∂

= +
∂
x s x s x s x s x s x s

x
α α . (24) 

Hence, all full rank two complete systems are first-order polynomials in a single function 

of income. 

Finally, combining and synthesizing some of the results in Gorman (1981), van 

Daal and Merkies (1989), and Lewbel (1990), every full rank three Gorman complete 

system can be represented as a quadratic polynomial in one of three possible functions of 

income. A quadratic Bernoulli first–order differential equation system, 

 1( , , ) ( , , )( , , )e u e ue u
κ

κ−∂ ∂ = κ  ∂ ∂ 
x s x sx s

x x
 

 
2

0 1 2( , ) ( , ) ( , , ) ( , ) ( , , )e u e uκ κ   + κ + κ   x s x s x s x s x s= β β β , (25) 

has the generalized PIGL form, 

 1 1
0 1 2

( , , ) ( , ) ( , , ) ( , ) ( , , ) ( , ) ( , , )e u e u e u e u−κ +κ∂
+ +

∂
x s x s x s x s x s x s x s

x
= α α α . (26) 

This includes the quadratic expenditure system of Howe, Pollak and Wales (1979) and 

van Daal and Merkies (1989) as the special case where 1κ = . Second, the quadratic loga-

rithmic first–order differential equation system,  

 [ ]ln ( , , ) ( , , ) /
( , , )

e u e u
e u

∂ ∂ ∂
=

∂
x s x s x
x x s

 

 [ ] [ ]{ }2
0 1 2( , ) ( , ) ln ( , , ) ( , ) ln ( , , )e u e u= + +x s x s x s x s x sα α α , (27) 

has the generalized PIGLOG form, 
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 [ ] ( ){ }2
0 1 2

( , , ) ( , , ) ( , ) ( , ) ln ( , , ) ( , ) ln ( , , )e u e u e u e u∂
= + +   ∂

x s x s x s x s x s x s x s
x

α α α . (28) 

Finally, the quadratic complex exponential first–order differential equation system,5 

 1 1 ( , , )( ) ( , , ) ( , , ) e ue u e u− ιτ ιτ−∂ ∂ ιτ = ∂ ∂
x sx s x s

x x
 

 [ ] [ ] 2
1 2 0 1 2½ ( , ) ( , ) ( , ) ( , , ) ½ ( , ) ( , ) ( , , )e u e uιτ ιτ= + ι + + − ιx s x s x s x s x s x s x sα α α α α , (29) 

has the trigonometric form6 

 ( ) ( ){ }0 1 2
( , , ) ( , , ) ( , ) ½ ( , ) ½ ( , )e u e u m m m m−ιτ ιτ −ιτ ιτ∂

= + ι − + +
∂
x s x s x s x s x s

x
α α α  

 ( ) ( ){ }0 1 2( , , ) ( , ) ( , )sin ln ( , , ) ( , ) cos ln ( , , )e u e u e u= + τ + τ      x s x s x s x s x s x sα α α . (30) 

We make use of de Moivre’s theorem to obtain (30) from (29), 

 1 1 12 3
1! 2! 3!

1 ( ) ( ) ( )ye y y y±ιτ = ± ιτ ± ιτ ± ιτ +  

 1 1 1 1 12 6 3 5
2! 4! 1! 3! 5!

1 ( ) ( ) ( ) ( ) ( )y y y y y   = − τ + τ + ± ι τ − τ + τ +     

 cos( ) sin( )y y= τ ± ι τ , (31) 

with ln[ ( , , )]y e u= x s  and the price functions in (29) chosen to give real solutions in (30). 

                                                 
5Including (ιτ)-1 on the left-hand-side is innocuous, since 1 ι = −ι . The right-hand-side can be multiplied by 
ιτ with this absorbed in the complex conjugate price vectors without changing the nature of the result.  
 
6Expressions (25)–(30) are not derived explicitly and do not appear in the literature on complete Gorman 
systems. We deduced them from a careful reading and synthesis of arguments in Gorman (1981), van Daal 
and Merkies (1989), and Lewbel (1990). It also is clear from the results of Russell and Farris (1993) that 
quadratic forms like these must exist in all full rank three cases. 
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Russell (1983, 1996) and Russell and Farris (1993, 1998) establish the connection 

between Gorman systems and Lie transformation groups on the real line. Russell (1983) 

argues that Gorman’s theorem follows from Sophus Lie’s results on the maximal rank of 

transformation groups (Lie 1880, translated with comments in Hermann 1975). Jerison 

(1993) presents a counterexample based on a polynomial demand system with more than 

three income terms that is not a Lie transformation group. But Russell and Farris (1993) 

prove Russell’s claim in full rank systems by showing that a full rank Gorman system is a 

special case of the quadratic system 

 
2

0 1 2( ) ( )
( )

f m f m
f m

+ +
=

′
q α α α , (32) 

for some smooth, monotone function ( )y f m= . They also show that it is the adding up 

condition that restricts the functional form to those cases identified in Gorman (1981). 

Russell and Farris (1998) extend their earlier results to show that the example presented 

by Jerison (1993) is the only one possible in a generic sense (also, see Russell 1996).7 

That is, if there are 3K ≥  linearly independent income functions and a maximal number 

of the Lie brackets, ( ) ( ) ( ) ( ),k kh y h y h y h y k′ ′− < , are contained in the space spanned by 

the functions { } 1( ) K
k kh y

=
, then a representation of y exists supporting the polynomial form 

 
2 1

1 2 3( ) ( ) ( )
( )

K
Kf m f m f m

f m

−+ + + +
=

′
q α α α α . (33) 

                                                 
7 The sobriquet generic indicates our conjecture that Theorem 4 of Russell and Farris (1998) gives a precise 
meaning to the intriguing last paragraph and footnote in Gorman (1981). 
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Of course, the functional form restrictions found by Gorman (1981) continue apply for 

complete systems in this case as well as the full rank cases. 

In all of the work reviewed here, only Russell and Farris (1993) even mention an 

incomplete system. They argue (page 319) that (32) completely characterizes the class of 

full rank incomplete systems for any smooth and monotone function of income. But this 

is not an entirely correct statement. We show in the Appendix that homogeneity restricts 

the functional form in the full rank one and two cases. All demand equations, whether or 

not they are a complete or a Gorman system, must be 0° homogeneous in all prices and 

income. Many smooth, monotone functions will not become 0° homogeneous after mul-

tiplication by a function of prices, 0meλ ∀ λ >  is a simple example. Income has to be 

deflated by some function of the prices of other goods, as in equation (9), to obtain the 

requisite 0° homogeneity property for an incomplete system. This detail notwithstanding, 

in the next section we extend Gorman Engel curves to incomplete demand systems, start-

ing from equation (11) and making use of expressions almost identical to (32) and (33). 

3. Incomplete Gorman Systems 

For the rest of the paper, we assume 1qn n≥ +  so the demand system is incomplete, 

all prices and income are deflated by ( )π P  as in equation (9), and the demands have 

the functionally separable structure of equation (11). We begin with the main charac-

terization theorem for this class of systems. Proposition 1 converts some of the results 

presented by Russell and Farris (1993, page 317; 1998, Theorem 1, page 189; and 

1998, Theorem 4, page 193) to the current framework, and restates them somewhat 
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differently. Since linear and functional dependencies lead to well-known difficulties 

in empirical applications, we focus only the on full rank and minimal deficit reduced 

rank cases. 

Proposition 1. If the system of demand equations has Gorman’s (1981) function-
ally separable structure, 

 ( )
1

( , , , ) ( , , ) ( , , , ) ,
K

k k
k

y u h y u K
=

∂
= < ∞

∂ ∑x p s x p s x p s
x

α , 

is weakly integrable, and [ ]( , , )rank K=A x p s , then 3K ≤ , and a representation 

for ( )( , , , ) ( ( ), , , )y u f e u≡x p s p x p s  exists such tat 

 

1

1 2

2
1 2 3

, 1

, 2

, 3

K

y y K

y y K

=

∂  + == ∂ 

 + + =

x

α

α α

α α α

. 

If 3K ≥ , and a maximal number of Lie brackets, k kh h h h k′ ′− ∀ < , are locally 
contained in the space spanned by 1{ }Kh h , then [ ]( , , ) 3rank =A x p s , and 
there is a representation for y such that 

 1
1 2

K
K

y y y −∂
= + + +

∂x
α α α . 

In their work on this topic, Russell and Farris (1993, 1998) use the methods of 

differential topology, exterior differential calculus, and the theory of Lie algebras on 

the real line. These subjects of high level mathematics can be very difficult to master 

and apply successfully. In the Appendix, we apply purely elementary methods to de-

rive and explain all of the results stated in this paper. One of our goals is to make the 
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structure of Gorman systems more accessible to and much better understood by a 

wider range of readers. Several of the results stated here are new. Except where oth-

erwise noted, to the best of our knowledge all of the derivations presented in the Ap-

pendix are original.  

We briefly outline the steps involved in proving Proposition 1 here. First, this is a 

purely local result, so we only need to show the stated properties for a small neighbor-

hood of an arbitrary point in the interior of the domain of the demands. Second, we can 

exploit monotonicity of the expenditure function to conclude that at least one income 

function satisfies ( ) 0kh y′ ≠  at least locally. Without loss in generality, let this be 1( )h y  

and define the new variable 1( ) ( )yy ds h sγ ≡ ∫ . Then 1( ) 1 ( )y h y′γ ≡  by the fundamental 

theorem of calculus, which lets us rewrite the system (11) in the rescaled form 

 ( ( , , , )) ( , , , )( ( , , , ))y u y uy u∂γ ∂′= γ
∂ ∂

x p s x p sx p s
x x

 

 
( )

( )
( )1

1 12

( , , , )( , , , ) ( , , ) ( , , )
( , , , ) ( , , , )

K
i

i
i

h y uy u
h y u h y u=

∂ ∂
= = +

′ ∑
x p sx p s x x p s x p s

x p s x p s
α α  

 ( )1
2

( , , ) ( , , ) ( , , , )
K

i i
i

h y u
=

≡ + ∑x p s x p s x p sα α . (34) 

Third, we can now apply Lemma 1, which lets us redefine the transformation y 

without changing the structure of the partial differential equations or integrability. In par-

ticular, the composite function ( ( ))f mγ  is the new definition that follows directly from 

(34) and we can solve the integrability problem for the simpler representation, 
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 ( )1
2

( , , , ) ( , , ) ( , , ) ( , , , )
K

i i
i

y u h y u
=

∂
= +

∂ ∑x p s x p s x p s x p s
x

α α . (35) 

The fourth step is to invoke the symmetry conditions. After some algebra, this can 

be written as a system of ½nq(nq–1) equations in ½K(K–1) Lie brackets, k kh h h h′ ′− , 

 ( )( )
1

2 1 1
, 1 2, ,

K k K
jk ik

ik j jk i k k k q
i jk k

h h h h h j i n
x x

−

= = =

 ∂α ∂α′ ′α α − α α − = − ∀ ≤ < =  ∂ ∂ 
∑∑ ∑ . (36) 

This system is much simpler in matrix form, =Bh Ch , with B ½ ( 1) ½ ( 1)q qn n K K− × − , 

C ½ ( 1)q qn n K− × , h 1K × , and h  ½ ( 1) 1K K − × . Thus, for this to be a well-posed sys-

tem we must have at least as many equations as unknowns, qn K≥ . We assume through-

out that this is the case. Premultiplying both sides by BT  generates an equivalent square 

system, =B Bh B ChT T . This reveals the crux of the rank condition. B BT  inherits its rank 

from A, which is K, but has dimension ½ ( 1) ½ ( 1)K K K K− × − . Existence of a unique so-

lution for h  in terms of h therefore implies that 3K ≤ .  

Now, when B BT  has full rank, the least squares formula gives h  uniquely in 

terms of h as 1( )−= ≡h B B B Ch DhT T . Note that h  and h depend only on y, but not on 

( , , )x p s , while D depends only on ( , , )x p s , but not on y. This implies that the elements 

of D are constant. Linear independence of the income functions and existence of a unique 

solution imply that not all of the elements in any row of D can vanish. Also note that D 

has dimension ½ ( 1)K K K− × . When K = 1, D has zero rows and there are no Lie brack-

ets. When K = 2, D has one row and two columns. When K = 3, D has three rows and 



Building Gorman’s Nest 23 

 

three columns. If K > 3, D has more rows than columns and there are more Lie brackets 

than income functions. Least squares cannot be applied to find h  in terms of h since 

B BT  must then be singular. The main question in this case is whether there are any re-

dundant equations in the under–identified system =B Bh B ChT T , and if so how many. 

We will return to this issue below. 

The fifth step is to identify the representations in each full rank case. This is ac-

complished by combining (35) with the solutions for the Lie brackets h  to obtain a com-

plete system of linear, first-order, ordinary differential equations with constant coeffi-

cients subject to a set of linear side conditions. Rank one follows from (35) with K = 1. 

Rank two is considerably more involved. Starting with the single Lie bracket equation, 

1 2
1 2 1 2 12 1 12 2( ) ( ) ( ) ( ) ( ) ( )h y h y h y h y d h y d h y′ ′− = + , we note that, without loss in generality, we 

can let 1
12 0d ≠ . We then make a change variables to 1 2

1 12 1 12 2( ) ( ) ( )h y d h y d h y= + , so that 

1 2
1 12 1 12 2( ) ( ) ( )h y d h y d h y′ ′ ′= + , and to 1

2 2 12( ) ( )h y h y d= , so that 1
2 2 12( ) ( )h y h y d′ ′= . Note 

that this simply redefines the price vectors with the linear transformations 1
1 1 12d=α α  

and 2 1 1
2 12 12 1 12 2( )d d d= − +α α α , which does not affect the rank of A or the question of 

integrability in any fundamental way by Lemma 1. Some straightforward algebra implies 

1 2 1 2 1( ) ( ) ( ) ( ) ( )h y h y h y h y h y′ ′− =  and integration gives 2 1 1( ) ( ) ( )
y

h y h y ds h s= ∫ . Dropping 

the tildes and applying the above definition of ( )yγ  then produces the representation in 

the proposition for 2K = . 

Rank 3 is even more complicated and we leave many details to the Appendix. 
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However, the main ideas are essentially the same as before. We make a of change vari-

ables with the composite function ( ( ))f mγ  to imply that a representation for y exists that 

includes the constant function as one of the income terms. We then obtain a system of 

three equations in three unknowns for the three unique and nontrivial Lie brackets in the 

form 

 1 2 3
2 12 12 2 12 3( ) ( ) ( )h y d d h y d h y′ = + + , 

 1 2 3
3 13 13 2 13 3( ) ( ) ( )h y d d h y d h y′ = + + , (37) 

 1 2 3
2 3 2 3 23 23 2 23 3( ) ( ) ( ) ( ) ( ) ( )h y h y h y h y d d h y d h y′ ′− = + + . 

The first two constitute a complete system of linear, ordinary, first-order differential 

equations with constant coefficients. These are straightforward to solve for and D. The 

third equation is a constraint on the set of matrices D that are compatible with integrabil-

ity. Solving the first two equations and then checking the third for consistency, the only 

possibility is repeated vanishing roots. The a complete solution then takes the form 

 2( ) , 2,3k k k kh y a b y c y k= + + = , (38) 

for constants 3
2{ , , }k k k ka b c = . Redefining the price functions by 1 1 2 2 3 3a a= + +α α α α , 

2 2 2 3 3b b= +α α α , and 3 2 2 3 3c c= +α α α  gives the representation for 3K = . 

This part of the proposition states that a definition for ( )y f m=  can always be 

found such that every full rank weakly integrable Gorman system is at most a quadratic 

form. This property holds whether or not the system is complete. 
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The proof for the reduced rank case when 3K ≥  is completed in two parts. The 

representation part follows almost exactly the same steps as Russell and Farris (1998). 

Beginning with a full rank three system, if we add a fourth income function, then two out 

of the three new Lie brackets are contained in the vector space spanned by the functions 

2
4{1 ( )}y y h y  if and only if 3

4 ( )h y y= . The arguments are much the same as before, 

though fewer and far simpler. In particular, we add a single linear, first-order, ordinary 

differential equation with constant coefficients in the form 

 1 2 3 2 4
4 14 14 14 14 4( ) ( )h y d d y d y d h y′ = + + + , (39) 

and without loss in generality, a single side condition due to integrability in the form 

 1 2 3 2 4
4 4 24 24 24 24 4( ) ( ) ( )yh y h y d d y d y d h y′ − = + + + . (40) 

Both of these are compatible if and only if 4
14 0d = , which then implies, again without 

any loss in generality (by constructing linear combinations of the αi similar to the ones 

defined above), that 3
4 ( )h y y= . A simple induction completes this part of the proof.  

Closely following Russell and Farris (1998, Theorem 4), this part of the proposi-

tion states that polynomials produce a maximal number of redundancies and a minimal 

number of defects for any Gorman system. The important thing to note is that this result 

is based on a weak necessary condition. It only requires that two of the new Lie brackets 

out of 2K −  candidates, ignoring previous Lie brackets that are outside of any space with 

a lower dimension, are in the vector space spanned by the income functions. Any poly-

nomial Lie bracket of the form 3( ) ,k
k kh h h h k y k+ −′ ′− = − < , will be contained in the 



Building Gorman’s Nest 26 

 

vector space spanned by the basis 2 1{1 }Ky y y −  if and only if 2k K+ ≤ + . In all 

cases, the difference between the number of spanned and redundant brackets is the num-

ber of income terms. The relationships among the number of income terms, Lie brackets, 

Lie brackets in the vector space spanned by 2 1{1 }Ky y y − , defects (Lie brackets outside 

of this space), and redundancies (Lie brackets inside the space that repeat a power of y) 

are shown in table 1 for all values of K < ∞ .  

Table 1. Number of Income Functions, Lie Brackets, Defects, and Redundancies. 

K Lie Brackets Spanned Brackets Defects Redundancies 

1 0 – – – 

2 1 1 0 0 

3 3 3 0 0 

4 6 5 1 1 

5 10 8 2 3 

6 15 11 4 5 

7 21 15 6 8 

8 28 19 9 11 

9 36 24 12 15 

10 45 29 16 19 

     

K even ½K(K–1) ¼K(K+2)–1 ¼K(K–4)+1 ¼K(K–2)–1 

K odd ½K(K–1) ¼(K+1)2–1 ¼(K+1)(K–5)+2 ¼(K–1)2–1 
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Last we show that any polynomial system with 3K ≥  has [ ( , , )] 3rank ≤A x p s . The ar-

gument is constructive and relies only on continuity of the symmetry conditions for pow-

ers of y from K+1 to 2K–1, demonstrating that if the system has a polynomial representa-

tion of the form 1
1

K k
kky y −

=
∂ ∂ = ∑x α , then the matrix of price vectors must satisfy 

, 3k k K k≡ ϕ ∀ ≥α α , for some : , 3, ,q qn n r
k k Kϕ × × → = … . 

Given Proposition 1 characterizing all full rank Gorman systems, we can identify 

the closed form solutions for the indirect preferences in the full rank cases. For this pur-

pose, it is sufficient to recover the transformed, deflated expenditure function as (com-

plete details are contained in the Appendix),  

 
[ ]

( )

1

1 2

2
1

3

2
1

3

( , , ) ( , , ), 1

( , , ) ( , , ) ( , , ), 2

( , , )( , , , ) ( , , ) , 3, 0
( , , ) ( , , )

( , , )( , , ) , 3, 0
tan ( , , ) ( , , )

u K

u K

y u K
u

K
u

β + θ =


 β + β θ =

 β=  β − = λ ≤ θ −β


 β β − = λ >
 θ − β

x p s p s

x p s x p s p s

x p sx p s x p s
p s x p s

x p sx p s
p s x p s

, (41) 

where 1 2 3, , : q qn n r
+β β β × × → , : qn r

+θ × × → , and λ is the constant term in 

the integral 2( ) (1 )
z

z ds sϕ = + λ∫  taken from Lewbel (1987, 1990) and van Daal and 

Merkies (1989). The cases 0λ ≤  and 0λ >  represent real and complex roots, respec-

tively, in the system of Ricatti partial differential equations,  
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 2 3(1 )z z ∂γ∂
= + λ

∂ ∂x x
. (42) 

Here 2 1( )z y= − γ − γ  and 1 2 3, , : q qn n r
+γ γ γ × × →  are price functions equivalent 

to the corresponding price functions in van Daal and Merkies (1989). When the roots are 

real, the βi and γi satisfy 1 1 3β = γ + κγ , 2 32β = κγ , 22
3 e γβ = , with κ defined by 2−λ = κ , 

while in the complex root case, the βi and γi are related by 1 1β = γ , 2 2β = κπγ , and 

3 3β = κγ , with κ now defined by 2( ) , 1λ = − ικ ι = − .  

In differential topology, the space of all real projective transformation groups is 

commonly associated with the special linear group two, (2)sl , which is generally de-

fined by the set of all 2×2 real matrices,  

 
α β 

=  γ δ 
A ,  

that have unit determinants, 1αδ −βγ = . The associated inverses,  

 1− δ −β 
=  −γ α 

A , 

are members of (2)sl , as well as the identiy map I2.  

Any real projective transformation group can be written in the form 

 , 0yy
y

αθ + β δ −β
= ⇔ θ = ∀ αδ − βγ =

γθ + δ −γ + α
. (43) 

The set of all 2×2 matrix inverses in (2)sl  are one-to-one and onto the inverse functions 

for this group, and I2 defines the identity map in both spaces. Simple algebra gives  
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 2y y y∂ ∂β ∂α  ∂γ ∂β ∂δ ∂α  ∂δ ∂γ       = α − β + β − γ − α − δ + γ − δ        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        x x x x x x x x x
. (44) 

This representation defines a large class of indirect utility functions to generate Gorman 

systems in the form  

 ( ( ), , ) ( ) ( ( ), , )( , , , ) , , , 1
( ( ), , ) ( ) ( ( ), , )

f mv m
f m

 δ −β
= υ αδ −βγ ≡ −γ + α 

g p p s g p p sp p s p s
g p p s g p p s

. (45) 

Equivalently, the deflated and transformed expenditure function for this class of prefer-

ences is 

 ( , , ) ( , , ) ( , , )( , , , ) , 1
( , , ) ( , , ) ( , , )

uy u
u

α θ + β
= αδ −βγ ≡

γ θ + δ
x p s p s x p sx p s
x p s p s x p s

. (46) 

From this we see immediately the connection between the class of full rank three Gorman 

systems and the projective transformation group with real parameters. Note that 0γ ≠  is 

required for a full rank three system, so that we can rescale the price functions to obtain 

 ( , , ) ( , , ) ( , , )( , , , )
( , , ) ( , , )

uy u
u

α θ + β
=

θ + δ
x p s p s x p sx p s

p s x p s
 (47) 

with α = α γ , β = β γ , and δ = δ γ . It is straightforward to convert (47) to the form in 

equation (41) above. In the Appendix, we show that the case of complex roots in the full 

rank three case generates a member of the complex projective transformation group with 

price functions in the deflated, transformed expenditure function that are complex-valued. 

Thus, the primary piece of the puzzle that was missed by Howe, Pollak and Wales (1979) 

in their derivation of a solution to integrability of the quadratic expenditure system is the 

class of expenditure functions with complex-valued price functions.  



Building Gorman’s Nest 30 

 

The results discussed above do not preclude higher order polynomials, only more 

than three income terms with a matrix of linearly independent price functions. We dem-

onstrate this with an example extending Jerison (1993). Let the indirect utility function be  

 ( , , )( , , , ) ( , , ); ,
( , , )

v y
y

η  β
= υ − δ  γ −   

x p sx p s x p s p s
x p s

, (48) 

where we assume ( , , ) yγ >x p s  for monotonicity and let η be any real number in the in-

terval [1,∞). Applying Roy’s identity, we generate an incomplete demand system as 

 
1

1
( )

y y
f m

η+      ∂ ∂γ ∂β γ − β ∂δ γ − = − +     ′ ∂ ∂ ∂ β η ∂ β       

xq
p x x x

T

. (49) 

Under certain restrictions on η, this takes the form of proposition 1 and illustrates the full 

nature of its implications. First note that there are three linearly independent functions of 

y on the right-hand-side of (49). When η = 1, we have a quadratic in y. But the parameter 

η can be any integer in [1,∞) and preferences will remain well-behaved with appropriate 

choices for the functions β, γ, δ. If η is an integer greater than one, expanding the last 

term in square brackets with the binomial formula implies that all powers of y from 0 to 

η+1 appear on the right. The model cannot be reduced to a quadratic for any η > 1. The 

first two terms in square brackets involve the powers 0 and 1 in y and the sub-matrix of 

price vectors on the powers of y from 2 through η+1 has rank equal to one. 

However, η also can assume any real non–integer value in [1,∞) and preferences 

will remain well–behaved with appropriate choices of the functions {β,γ,δ}. In such a 
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case, the last term in square brackets on the right-hand-side of (49) is analytic with a con-

vergent Taylor series expansion over the set of positive values for yγ − . The vectors of 

price functions for all powers of y greater than one are all proportional and the matrix of 

price functions, even with an infinite number of columns, has rank at most three. Thus, if 

there is a finite number of terms with functional separability between the prices of inter-

est and income, then we must have a polynomial in y. But a very large set of well–

defined demand models exists beyond quadratic polynomials, and each element can be 

represented as an irreducible polynomial of higher order than a quadratic, and may even 

have an infinite number of income terms. 

4. Nesting Rank and Functional Form 

In the two decades since its introduction by Deaton and Muellbauer, the AIDS has been 

widely used in demand analysis. The vast majority of empirical applications follows 

Deaton and Muellbauer’s suggestion and replaces the translog price index that deflates 

income with Stone’s index, which generates the LA-AIDS. Although Deaton and Muell-

bauer (1980: 317-320) cautioned against and avoided the practice, most empirical appli-

cations of the LA-AIDS include tests for and the imposition of an approximate version of 

Slutsky symmetry by restricting the log-price coefficient matrix to be symmetric. Exam-

ples include Anderson and Blundell (1983), Buse (1998), Moschini (1995), Moschini and 

Meilke (1989), and Pashardes (1993). In this section, we present conditions for inte-

grability of the LA-AIDS and a simple method for nesting the homothetic solution within 

homothetic PIGL systems. We then extend this to rank two non-homothetic PIGL and 
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rank three QPIGL forms. Finally, we present a similar nesting procedure for a general-

ized quadratic utility function 

If it is integrable, the LA-AIDS can be written as 

 ln ( , , , ) ln ( , , , )( , ) ln ln ( , , , ) (ln )
ln ln

e u e ue u ∂ ∂
= = + + − ∂ ∂ 

p p s p p sw p s B p p p s p
p p

α γ T . (50) 

Let ( , , , ) ln[ ( ( ), , , )]y u e u≡x p s p x p s , ln( )≡x p , with 1( ) [ ]qnxxe e≡p x T , and rewrite 

(50) in the form 

 ) y y∂
( + = + +

∂
I x Bx

x
γ α γT . (51) 

Then we have the following from LaFrance (2004). 

Proposition 2. If the LA-AIDS model is weakly integrable on the open set 
qn⊂N  defined by 1 0+ ≠ ∀ ∈x xγ NT , then either (a) γ ≠ 0 and 0= βB γγT  for 

some 0β ∈ , with logarithmic expenditure function 

0( , , , ) ( , ) (1 ) ln(1 ) (1 ) ( , , )
(1 )

y u u
 

= + β + + − + + θ 
+ 

xx p s p s x x x x p s
x

γ
α γ γ γ

γ

T
T T T T

T
 

or (b) γ = 0 and =B BT , with logarithmic expenditure function, 

 ( , , , ) ( , ) ½ ( , , )y u u= + + θx p s p s x x Bx p sα T T . 

Case (b) is a homothetic demand model with the same structure as the homothetic Linear 

Incomplete Demand System (LIDS) in LaFrance (1985). This provides a mechanism to 

nest the homothetic LA-AIDS and LIDS using Box-Cox transformations. If we define 

( ) ( 1) /m mκκ ≡ − κ , ( ) ( 1) /i ip pλλ ≡ − λ , and 1( ) [ ( ) ( )]
qnp pλ ≡ λ λp T , then we can 
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write a class of weakly integrable, homothetic PIGL-IDS models in budget share form as 

 [ ( )]m−κ λ= + λw P Bpα , (52) 

where [ ]ipλ λ≡P diag . The deflated expenditure function for (52) is 

 { }1
e( , , , ) 1 ( , ) ( ) ½ ( ) ( ) ( , , )u u

κ
 ′≡ + κ λ + λ λ + θ p p s p s p p Bp p sα T , (53) 

The demands in (52) are homothetic, with income elasticities of 1− κ ∀ κ∈ . 

We next extend this mechanism to nest the rank and functional form to a rank 2, 

non-homothetic, integrable AIDS-IDS model, 

 0ln( ) ln( ) ln( ) ½ ln( ) ln( )m = + + − α − − w B p p p B pα γ αT T . (54) 

To do so, we require a third proposition. The next result shows that (54) is a special case 

of a complete class of incomplete demand systems that can be characterized in the fol-

lowing way. We first return to the case where ( )y f m≡  and ( ) 1, ,i i i qx g p i n≡ ∀ = …  are 

arbitrary diffeomorphisms. We then suppose that the demands for q can be written in 

terms of a linear function of y and linear and quadratic functions of x, with no interaction 

terms between x and y, 

 ( , , , ) ½ ( , , , ), 1, ,i i i i q
i

y u y u i n
x

∂
= α + + + γ ∀ =

∂
x p s x x x x p sβ ∆ …T T , (55) 

and, without any loss in generality, we can assume that 1 0γ ≠  and that each nq×nq ma-

trix, ∆i, is symmetric ∀ i. Then we have the following. 
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Proposition 3. The system of partial differential equations,  

 ½ , 1, ,i i i i q
i

y y i n
x

∂
= α + + + γ =

∂
x x xβ ∆ …TT , 

where 1 0γ ≠  and each nq×nq matrix, ∆i is symmetric ∀ i, is weakly integrable if 
and only if it can be written in the form 

 0 ½y y∂  = + + − α − − ∂
Bp x x Bx

x
α γ αT T  

where 0α  is a scalar, 0− αα = α γ  is an nq×1 vector, B  is a symmetric nq×nq ma-

trix satisfying = +B B γαT , where 1 qn =  B β β , and i i i= −γ ∀B∆ . 

When f(⋅) and the gi(⋅) are logarithmic transformations, we have an AIDS-IDS. 

This is the only functional form in this class that can be a complete system, elucidating an 

important difference between complete and incomplete demand systems. In this case add-

ing up determines the functional form in a complete system, while incomplete systems 

with the same structure admit any functional form.  

With the above Box-Cox definitions for m(κ) and p(λ), we can write an integrable 

non-homothetic PIGL-IDS that is linear in the Box-Cox expenditure term and linear and 

quadratic in the Box-Cox price terms as 

 { }1
0 2

( ) ( ) ( ) ( ) ( )m m−κ λ  ′ ′= + λ + κ − α − λ − λ λ w P Bp p p Bpα γ α . (56) 

For all (κ, λ) pairs, this model allows us to estimate the income aggregation function 

through the Box-Cox parameter κ. If κ = λ = 0  we obtain the AIDS-IDS, if κ = λ =1 we 

obtain the linear-quadratic IDS (LQ-IDS) of LaFrance (1990), and for all (κ, λ) pairs we 
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obtain an integrable PIGL-IDS.8 The deflated expenditure function for (56) is 

 { }1
( )

0e( , , , ) 1 ( , ) ( , ) ( ) ½ ( ) ( ) ( , , )u u e
κ

λ ≡ + κ α + λ + λ λ + θ  
pp p s p s p s p p Bp p s γα

TT T . (57) 

Next we extend this to demand models that include linear and quadratic terms in 

the Box-Cox transformation of deflated income (QES-IDS). From proposition 1, we can 

do this with little loss in generality by extending the rank two PIGL-IDS expenditure 

function to a rank three version by applying the QES transformation developed by Howe, 

Pollak, and Wales (1979).  One convenient (and carefully selected) choice in this class is 

the deflated expenditure function, 

 
( )

1
( )

0 ( )
( , , , ) 1 ( ) ½ ( ) ( )

( ) ( , , )

ee u
e u

κ

λ

λ

  
  ≡ + κ α + λ + λ λ −  λ + θ    

p

p
p p s p p Bp

p p s

γ

γ
α

δ

T

T

T T

T
. (58) 

An application of Roy’s identity gives the QPIGL-IDS extension of the AIDS-IDS in 

budget share form as 

 1
0 2

( ) ( ) ( ) ( ) ( )m m−κ λ   ′ ′= + λ + κ − α − λ − λ λ  
w P Bp p p Bpα γ α  

 [ ]
21

0 2
( ) ( ) ( ) ( ) ( )m  ′ ′ ′+ + λ κ − α − λ − λ λ   

I p p p Bpγ δ α . (59) 

So long as α and B do not vanish simultaneously, which is necessary for the model to be 

able to be able to attain rank three, it follows that: (a) γ ≠ 0, δ ≠ 0 is necessary and suffi-

                                                 
8 See Agnew (1998) for a comprehensive development and application of this full rank two PIGL-IDS. 
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cient for a full rank three QPIGL-IDS; (b) γ ≠ 0, δ = 0 is necessary and sufficient for a 

full rank two, non-homothetic PIGL-IDS; (c) γ = 0, δ ≠ 0 is necessary and sufficient for a 

rank two QPIGL-IDS that excludes the linear term in the deflated and transformed super-

lative income variable; and (d) γ = δ = 0 is necessary and sufficient for a rank one homo-

thetic PIGL-IDS. Thus, we obtain a rich class of models that permits nesting, testing and 

estimating the rank and functional form of the income terms in incomplete demand sys-

tems with a generalized AIDS structure. 

We apply the same methods developed above to produce a full rank three general-

ized quadratic-type direct utility function and a generalized translog-type indirect utility 

function (Christensen, Jorgenson, and Lau, 1975). First define the functions  

 ( , ) 2 1′ ′ϕ = + +x p x Bx xγ , (60) 

 0( , , ) ( , ) ( , )η = α −x p s p s p s xα T , (61) 

where ( , )p sα  is a vector of functions of other prices and demographics, 0 ( , )α p s  is a 

scalar function of other prices and demographics, B is an nq×nq matrix of parameters, and 

γ is a vector of parameters. The starting point for this application of Proposition 1 is the 

class of indirect utility functions defined by  

 
( , )

( , , , ) , ,
[ ( , , )] ( , )

v y
y

 ϕ = υ − − − η ϕ  

x p xx p s p s
x p s x p

δT , (62) 

which is equivalent to the transformed and deflated expenditure function in the form 
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 ( , )( , , , ) ( , , )
( , ) ( , , , )

y u
u

 ϕ
= η −   + ϕ θ 

x px p s x p s
x x p x p sδT

 (63) 

 

Roy’s identity gives a rank three QPIGL-IDS in the form 

 
21 ( )1 (

( )
y y y

f m
     ∂ − η − η − η = + − + +     ′ ∂ ϕ ϕ ϕ      

xq x Bx
p

α δ γ) δ
T

T . (64) 

The Box-Cox transformations, ( 1)y mκ= − κ  and ( 1) 1, ,i i qx p i nλ= − λ ∀ = , 

imply that 0κ = λ =  gives a rank three extension of a generalized translog-type indirect 

utility model, 1κ = λ =  gives a rank three extension of a generalized quadratic-type direct 

utility model, and all values of κ and λ give a rank three QPIGL-IDS. Rank two is ob-

tained with 0δ = . If ( , , ) 0η ≡x p s  and 0δ = , we have a rank one homothetic model. We 

again are able to nest both rank and functional form in a single unifying framework. 

An extremely useful view of this incomplete demand system arises from noting 

that the demands for q satisfy the partial differential equations, 

 
2( )1 (y y y y    ∂ − η − η − η

= + − + +    ∂ ϕ ϕ ϕ    
x Bx

x
α δ γ) δT . (65) 

By Lemmas 2 and 3 in the Appendix, model permits us to determine necessary and suffi-

cient conditions for symmetry and sufficient conditions for concavity of y in x, hence of e 

in p, entirely from (65) for this class of models. Calculating the second-order partial de-

rivatives and careful (and tedious) grouping, canceling, and algebraic manipulations give 
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2 11 ( (y y y        ∂ − η − η

= − − + +        ϕ ϕ ϕ∂ ∂         
x B Bx Bx

x x
δ γ) γ)T T

T
 

 
3

2
( ) 1 12 ( ) ( )y       − η

+ − + − +      ϕ ϕϕ       
I Bx x I x Bxγ δδ γT T T , (66) 

so that symmetry of B is necessary and sufficient for symmetry of 2 y∂ ∂ ∂x xT , and 

therefore also for symmetry of 2e∂ ∂ ∂p pT  by Lemma 1 above. 

Recall we use the transformation 1u u−= −  (again taken from Howe, Pollak, and 

Wales 1978) of the Gorman polar form of the quasi-indirect utility function when = 0δ . 

That is, we take the negative reciprocal of ( ) /y − η ϕ , which is the generalized quad-

ratic quasi-indirect utility function.9 In this case y = η  is the bliss point and monotonicity 

requires 0y − η < , while 0ϕ >  is required for the radical to be well-defined in Gorman’s 

choice for normalizing the utility index. When < εδ  for small enough ε > 0, we have 

1 ( ) / 0y− − η ϕ >xδT . This inequality must be satisfied, at least in a neighborhood of each 

point in the interior of the domain of the demand system, if preferences are well-behaved. 

This is equivalent to the condition that if we add / ϕx−δT  to 1u u−= − , then we do not 

change the sign of the (cardinal) utility index. Indeed, this condition is required for the 

Howe, Pollak and Wales (1979) transformation from u to –u-1 to remain well-defined and 

it can be shown that preferences become ill-behaved when it is violated.  

                                                 
9 We use generalized quadratic to refer to the fact that indirect preferences are defined in terms of deflated 
and transformed prices and income, x and y, respectively, rather than directly in terms of p and m. 
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In any case, we would expect the second-order income effects to be small relative 

to the first-order income effects on the demands. In other words xδT  should be small 

relative to ϕ. The upshot is that, so long as 1 ( ) / 0y− − η ϕ >xδT , 0y − η <  and 0ϕ > , 

the second line of (66) will be a symmetric, negative semidefinite, rank one matrix. 

Lemmas 2 and 3 in the Appendix show that =B LLT  is necessary and = +B LL γγT T  is 

sufficient, for 2 y∂ ∂ ∂x xT  to then be symmetric, negative semidefinite. Under the condi-

tions in Lemma 1 above, this in turn is necessary and sufficient for the weak integrability 

of this incomplete demand system throughout the open set  

 { }( , , , ) : 0, 0,1 ( ) / 0q qn n rm y y++ ++ ++ℑ ≡ ∈ × × × ϕ > − η < − − η ϕ >p p s xδT . (67) 

These curvature restrictions apply only to the parameters of the model and are straight-

forward to implement. We recently have experienced success applying them to U.S. food 

consumption (Beatty and LaFrance 2001; LaFrance and Beatty 2003). 

5. Conclusions 

In this paper, we extend the literature on aggregation to incomplete demand systems. In 

stark contrast to complete demand systems, there is no restriction on the class of func-

tional forms for the income variables. On the other hand, the maximal rank of an incom-

plete Gorman system is three. This follows purely from Slutsky symmetry.  

We also use Box-Cox transformations of the prices of the goods of interest and a 

separate Box-Cox transformation on income to generate two large classes of nested func-

tional forms. One makes it possible to test for the rank and functional form of generalized 

AIDS models. The other permits the same analysis to be applied to a generalized trans-
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log-type indirect utility function and a generalized quadratic-type direct utility function.  

We have found both frameworks for nesting incomplete demand systems to be 

empirically tractable as well as substantial improvements over the traditional rank two 

alternatives (Beatty and LaFrance, 2000; LaFrance, Beatty, Pope and Agnew, 2000, 

2002; and LaFrance and Beatty, 2003). In both classes of nested functional forms, rank 

three appears to be essential for most, though not all, of the data sets we have applied this 

framework to. In addition, the point estimates for the Box-Cox parameters on prices and 

income tend to fall much closer to unity than to zero. Lemma 1 suggests that this may be 

a generic circumstance because the logarithmic transformation of income to define y 

makes satisfying curvature difficult. However, both restrictions (κ = λ = 1 or 0, respec-

tively) are rejected at all reasonable levels of significance in every data set we have used 

to empirically investigate this question. This suggests that the generalizations developed 

here to nest the rank and functional form of Gorman systems should become useful tools 

in applied demand analysis. 
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MATHEMATICAL APPENDIX 

A.1 SYMMETRY AND CURVATURE 

Lemma 1. Let ( , , , )e up p z  be the deflated expenditure function, let ( )y f e= , 
2f ∈ , 0f ′ > , with inverse ( )m y= φ , let ( )i i ix g p= , 2

ig ∈ , 0ig′ > , for 
each 1, , qi n= … , and write the deflated expenditure function as 

 [ ]( , , , ) ( ( ), , )e u y u= φp p z g p z . 

Then (a) 
2e∂

∂ ∂p pT
 is symmetric if and only if 

2 y∂
∂ ∂x xT

 is symmetric; and (b) if 

0′′φ ≤ , 0ig i′′≤ ∀ , and y is concave in x, then e is concave in p. 

Proof:  We have 

 [ ]( ) i
e yy g∂ ∂′ ′= φ
∂ ∂p x

diag , (A.1) 

so that 

 [ ] [ ]
2

( ) ( )i i i
i

e y y yy g g y g
x

∂ ∂ ∂ ∂ ′′ ′ ′ ′ ′′= φ + φ  ′∂ ∂ ∂∂ ∂  x xp p
diag diag diag

T
 

 [ ] [ ]
2

( ) i i
yy g g∂′ ′ ′+ φ

∂ ∂x x
diag diag

T
. (A.2) 

The first two terms on the right are automatically symmetric, so that symmetry of the left-
hand-side is equivalent to symmetry of the Hessian matrix on the far right-hand-side. The 
first two matrices on the right are negative semidefinite when 0′′φ ≤  and 0ig i′′≤ ∀ , so 

that if 
2 y∂

∂ ∂x xT
 is negative semidefinite, then 

2e∂
∂ ∂p pT

 is as well. ■ 

A.2 DIFFERENTIAL EQUATIONS FOR PIGL AND PIGLOG FUNCTIONAL FORMS 

Consider the quasi-linear ordinary differential equation 
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 ( ) ( )ln ( )( ) ( ) ( ) ( )
( )

d y xy x x x f y x
y x dx
′

= = α +β . (A.3) 

This differential equation lies at the heart of the functional form question originally posed 
by Muellbauer (1975, 1976). In particular, the simplest form of this question is, “What is 
the class of functions ( )f y  that can satisfy (A.3) and the 0° homogeneity condition, 

 ( ) ( ) ( ) ( ) ( ) 0x x x xf y x f y y′ ′ ′α +β +β ≡ ?” (A.4) 

It turns out that there are only two possibilities: a special case of Bernoulli’s equation, 

 0 0 , 0y y
y x

κ′  = α +β κ ≠ 
 

; (A.5) 

or a special case of the logarithmic transformation, 

 0 0 lny y
y x
′  = α +β  

 
. (A.6) 

The reason for this can be obtained by analyzing the implications of (A.4) directly. First, 
consider the case where ( ) 0x x′α = , so that 0( )xα = α , a constant. Then (A.4) reduces to 

 ( ) ( ) ( ) ( ) 0x xf y x f y y′ ′β +β ≡ , (A.7) 

or equivalently, 

 ln( ) ( ) ( ) ln( )
ln( ) ( ) ( ) ln( )

d f f y x dy x
d y f y x d x

′ ′β β
= = − = − = κ

β
, (A.8) 

where κ is a constant because the left-hand-side is independent of x, while the right-hand-
side is independent of y. Without any loss in generality, the solutions are ( )f y yκ=  and 

0( )x x−κβ = β . 

Now suppose that ( ) 0x x′α ≠ , so that  

 ( ) ( ) ( ) ( ) ( )x xf y x f y y x x′ ′ ′β +β = −α . (A.9) 

Since the right-hand-side is again independent of y, at least one of the terms on the left 
also must be independent of y. If ( ) 0f y′ = , so that 0( )f y f=  is constant, we obtain the 
degenerate case where the functions of y on the right-hand-side of (A.3) are not linearly 
independent. Hence, it must be that ( ) 0x x′β = , i.e., ( )xβ = β , a constant, and 
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 ( ) ( )( )
ln( )

df y x xf y y
d y

′α′ = = − = λ
β

, (A.10) 

where λ is a constant again because the left-hand-side is independent of x and the right-
hand-side is independent of y. Solving the left side gives  

 ( ) ln( )f y y= λ + γ , (A.11) 

while the right-hand-side can be rewritten as  

 ( )
ln( )

d x
d x
α

= −λβ , (A.12) 

which has solution 

 ( ) ln( )x xα = α − λβ . (A.13) 

Combining (A.11) and (A.13), we obtain (A.6), with 0α = α +βγ  and 0β = βλ . 

The implication is that, for ranks one and two demand models in this class, the 
admissible forms of ( )f y  are completely determined by homogeneity. 

When we consider incomplete demand systems, we do not have homogeneity in 
the prices of interest or adding up to restrict the functional form. For Bernoulli’s differen-
tial equation, 

 1( ) ( ) , 0y x y x y −κ′ = α +β κ ≠ , (A.14) 

if we note that ( ) 1d y y y
dx

κ κ− ′κ = , we can rewrite this as the linear ordinary differential 

equation in ( )f y yκ= κ , 

 ( ) ( ) ( )1 ( ) ( )d y y y x y x
dx

κ κ− κ′κ = = κα κ +β , (A.15) 

with complete solution 

 ( ) 1/
( ) ( )( ) ( )

x sxs ds t dty x e e s ds c
κ

∫ κα − ∫ κα = κ β +  ∫ . (A.16) 

Similarly, the logarithmic first-order linear differential equation is 
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 ( )ln( ) ( ) ( ) lnd y y x x y
dx y

′
= = α +β , (A.17) 

with complete solution  

 ( ){ }( ) ( )( ) exp ( )
x sxs ds t dty x e e s ds c∫ β − ∫ β= α +∫ . (A.18) 

The generic nature of both of these differential equations is that they can be written as 
simple linear first-order ordinary differential equations, 

 ( ( )) ( ) ( ) ( ( ))df y x x x f y x
dx

= α +β . (A.19) 

When y is deflated income and the demands do not absorb all of the budget, homogeneity 
and adding up do not impose any restriction on the class of functions ( )f y  that can solve 
this differential equation, and the complete class of solutions is 

 ( )1 ( ) ( )( ) ( )
x sxs ds t dty x f e e s ds c− ∫ κα − ∫ κα = β +  ∫ . (A.20) 

A.3 PROOFS OF THE PROPOSITIONS 

Proposition 1. If the system of demand equations has Gorman’s (1981) function-
ally separable structure, 

 ( )
1

( , , , ) ( , , ) ( , , , ) ,
K

k k
k

y u h y u K
=

∂
= < ∞

∂ ∑x p s x p s x p s
x

α , 

is weakly integrable, and [ ]( , , )rank K=A x p s , then 3K ≤  and there is a repre-
sentation for ( )( , , , ) ( ( ), , , )y u f e u≡x p s p x p s  such that 

 
1

1 2
2

1 2 3

1
2

3

K
y y K

y y K

 =
∂

= + =∂  + + =
x

α
α α

α α α

. 

If 3K ≥  and a maximal number of Lie Brackets, k kh h h h k′ ′− ∀ < , are locally 
contained in the space spanned by 1{ }Kh h , then [ ]( , , ) 3rank =A x p s  and y has 
a representation such that 
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 1
1 2

K
K

y y y −∂
= + + +

∂x
α α α . 

Proof: (Also, see Russell and Farris (1993), Theorem 2, and Russell and Farris (1998), 
Theorem 4 for alternative proofs using exterior differential calculus.) By Young’s theo-
rem, the second-order cross partial derivatives of y with respect to x must be symmetric 
for integrability, 

 
2

1 1
 

K K
ik

k ik k j
i j jk

y h h h
x x x= =

 ∂ ∂α ′= + α α  ∂ ∂ ∂ 
∑ ∑  

 
2

1 1

K K
jk

k jk k i
i j ik

yh h h i j
x x x= =

∂α  ∂′= + α α = ∀ ≠ ∂ ∂ ∂ 
∑ ∑ . (A.21) 

These can be re-expressed in terms of ½nq(nq–1) vanishing differences,  

 ( )
1 1 1

0 1 2, ,
K K K

jkik
k ik j k k q

j ik k
h h h h h j i n

x x= = =

 ∂α∂α ′ ′= − + α α − ∀ ≤ < =  ∂ ∂ 
∑ ∑∑ . (A.22) 

In the double sum on the right-hand-side if (A.22), when k = , the term ik jkα α  is mul-
tiplied by the Lie Bracket, 0k k k kh h h h′ ′− = . On the other hand, when k ≠ , the Lie 
Bracket k kh h h h′ ′−  appears twice, once multiplied by ik jα α  and once multiplied by 

i jk−α α . Therefore, rewrite (A.22) as 

( )( )
1

1 2 1
0 , 1 2, ,

K K k
jkik

k ik j jk i k k q
j ik k

h h h h h j i n
x x

−

= = =

 ∂α∂α ′ ′= − + α α − α α − ≤ < =  ∂ ∂ 
∑ ∑∑ ,(A.23) 

a linear system of ½nq(nq–1) equations in the ½K(K–1) Lie Brackets k kh h h h′ ′− .  

The first step in the proof of the proposition is to restate (A.23) in matrix form. Define 

22 11 12 21 2 2 1 1 1 2 1

2 1 2 1 2 1 1 1 2 1

2 1,1 1,2 1 1, 1, 1, 1 1, 1

2 1 1 K K K K

i j j i ik j ik j K K K K

n n n n n k n n k n n K n K n K n Kq q q q q q q q q q q q

k k − −

− −

− − − − − − − −

α α − α α α α − α α α α − α α

α α − α α α α − α α α α − α α

α α − α α α α − α α α α − α α

 
 
 

=  
 
 
 

B , 
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11 21 1 2

2 1 2 1

11

1 1,1 1

1 1

q q q q

q q q q

K K

j jKi iK

j i j i

n n n K n K

n n n n

x x x x

x x x x

x x x x
− −

− −

∂α ∂α ∂α ∂α − − ∂ ∂ ∂ ∂
 
 
 ∂α ∂α∂α ∂α − −= −  ∂ ∂ ∂ ∂
 
 
 ∂α ∂α ∂α ∂α
 − −
 ∂ ∂ ∂ ∂  

C , 

 [ ]1 Kh h=h T , 

and [ ]2 1 2 1 1 1k k K K K Kh h h h h h h h h h h h− −′ ′ ′ ′ ′ ′= − − −h T . 

B is ½ ( 1) ½ ( 1)q qn n K K− × − , C is ½ ( 1)q qn n K− × , h is 1K × , and h  is ½ ( 1) 1K K − × . 
This gives the symmetry conditions in matrix form as 

 =Bh Ch . (A.24) 

For this to be a well-posed system of equations we must have at least as many equations 
as unknowns, which is equivalent to qn K≥ . Assume this is so. Premultiply both sides of 

(A.24) by BT  to get the square system, =B Bh B ChT T . The rank result of Lie (1880) 
when B has full column rank is that ½ ( 1)K K K− ≤ , equivalently, 3K ≤  (Hermann 
1975: 143-146). The reason is a direct result of linear algebra. The rank of B is inherited 
from the rank of A, and when qn K=  the determinant of B BT  is a multiple of the deter-
minant of A (Hermann 1975: 141). 1 Since B BT  is of order ½ ( 1) ½ ( 1)K K K K− × −  and 
has rank no greater than K (the rank of A), it follows that 3K ≤ , completing the proof of 
the first part of the proposition for the full rank case.  

The next step is to obtain the representation result for the full rank case. Assume that B 
has full column rank. The least squares formula for h  as a function of h is 

 1( )−= ≡h B B B Ch DhT T . (A.25) 

The vectors h  and h depend only on y and not on ( , , )x p s , while the matrix D depends 

                                                 

1 It can be shown (see the Appendix by Robert Bryant in Russell and Farris 1998) that the problem always 
can be reduced through changes in the coordinates for x in such a way that q Kn = . 
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only on ( , , )x p s  and not on y. It follows that the elements of D are absolute constants; a 
fundamental property that we require below. Since B is of order ½ ( 1) ½ ( 1)q qn n K K− × −  
and C is of order ½ ( 1)q qn n K− × , it follows that D is of order ½ ( 1)K K K− × . That is, 
when K = 1, D has zero rows (there are no Lie Brackets), when K = 2, D has one row and 
two columns), and when K = 3, D has three rows and three columns. If K > 3, then D 
would have more rows than columns (i.e., more Lie Brackets than income functions), and 
the full rank condition cannot be satisfied. We address each full rank case in turn. 

Rank 1: 1 1( )y h y∂
=

∂x
α . (A.26) 

Integrability implies that  

 
2

1
1 1 1 1( ) ( )y h y h y∂ ∂ ′= +

∂ ∂ ∂x x x
α

α αT

T T
 (A.27) 

is symmetric. Hence, 1∂ ∂xα T  must be symmetric, which is necessary and sufficient for 

the existence of a function, : q qn n r
++ ++β × × → , such that 1∂β ∂ =x α . Rewrite the 

demands as  

 1( )y h y∂ ∂β
=

∂ ∂x x
, (A.28) 

and separate the variables (recall that 1( ) 0h y ≠  is required for y∂ ∂x 0 ) to obtain 

 1
1( ) ( ) ( , , ) ( , , )

y
y h s ds u−γ ≡ = β + θ∫ x p s p s . (A.29) 

From this we have  

 1
1

1( )
( )

y yy
h y

∂γ ∂ ∂′= γ = =
∂ ∂ ∂x x x

α . (A.30) 

Therefore, a representation for y exists (by composing γ and f ), such that 1y∂ ∂ =x α  and 
( , , , ) ( , , ) ( , , )y u u= β + θx p s x p s p s , with 1 ( , , )= ∂β ∂x p s xα .  

Rank 2: 1 1 2 2( ) ( )y h y h y∂
= +

∂x
α α . (A.31) 

Integrability implies that  
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 ( ) ( )
2

1 2
1 2 1 1 2 2 1 1 2 2

y h h h h h h∂ ∂ ∂ ′ ′= + + + +
∂ ∂ ∂ ∂x x x x

α α
α α α α T

T T T
 (A.32) 

is symmetric. Expanding gives 

 
2

1 2
1 2 1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2

y h h h h h h h h h h∂ ∂ ∂ ′ ′ ′ ′= + + + + +
∂ ∂ ∂ ∂x x x x

α α
α α α α α α α αT T T T

T T T
, (A.33) 

and the terms 1 1 1 1h h′α αT  and 2 2 2 2h h′α αT  are automatically symmetric. Since 1α  and 2α  are 
linearly independent, 2 1c≠α α  for any c∈ . Otherwise, the rank of 1 2( , , ) [ ]=A x p s α α  

is only 1, not 2. Hence, 1 2α αT  is not symmetric. Since 1h  and 2h  are functionally inde-
pendent (equivalently, are locally linearly independent), 1 2 1 2h h h h′ ′≠ . Otherwise, 2 1h ch=  
for some constant c∈ ; a contradiction. Hence, we can premultiply the reduced symme-
try conditions by 1α

T  and postmultiply by 2α  to obtain 

 1 2
1 1 2 1 2 1 2 2 1 2 1 2h h h h h h∂ ∂ ′ ′+ + + = ∂ ∂ x x

α α
α α α α α αT T T

T T
 

 21 2
1 2 1 1 2 2 1 1 2 2 1 2 1 2 2 1( )h h h h h h∂ ∂ ′ ′+ + + =
∂ ∂x x
α α

α α α α α α α α α αT T T T T

T T
 

 21 2
1 2 1 1 2 2 1 2 1 2 1 1 2 2 2 1( )h h h h h h∂ ∂ ′ ′+ + + =
∂ ∂x x
α α

α α α α α α α α α α
T T

T T T T T  (A.34) 

 1 2
1 1 2 2 1 1 2 1 2 2 1 2h h h h h h
 ∂ ∂ ′ ′+ + + ∂ ∂ x x
α α

α α α α α α
T T

T T T . 

Group common terms in the i jα αT  and rearrange to write 

2 1 1 2 2
1 1 2 2 1 2 1 2 1 2 1 2 1 1 2 2( ) ( )h h h h h h

   ∂ ∂ ∂ ∂  ′ ′− − = − + −     ∂ ∂∂ ∂   x xx x
α α α α

α α α α α α α α α α
T T

T T T T T

T T
.(A.35) 

Solving for the Lie Bracket, 1 2 1 2h h h h′ ′− , we have 

 
( ) ( )1 1 1 2 1 2 2 2

1 2 1 2 1 22 2
1 1 2 2 1 2 1 1 2 2 1 2( ) ( )

h h h h h h
   ∂ ∂ − ∂ ∂ ∂ ∂ − ∂ ∂
   ′ ′− = +
   − −   

x x x xα α α α α α α α

α α α α α α α α α α α α

T T T T T T

T T T T T T
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 1 1 1 2c h c h≡ + , (A.36) 

with 1c  and 2c  absolute constants, both of which cannot vanish. Without loss in general-
ity, let 1 0h ≠  (both ih  cannot vanish simultaneously and neither can vanish over an open 
set). Dividing both sides of (A.36) by 1h  and solving for 2h′  gives 

 1 2
2 1 2

1 1

( )( ) ( )
( ) ( )

h y ch y c h y
h y h y
′

′ = − + . (A.37) 

Let 1 0c ≠  (reverse the roles of 1h  and 2h , if necessary) and make a change of variables 

to 1 1 1 1 2h c h c h= + , with 1 1 1 1 2h c h c h′ ′ ′= + , and to 2 2 1h h c= , with 2 2 1h h c′ ′= . Then 

 1 2 1 2 1 1 2 2 2 1 1 1 2 2 2 1 1 2 1 2( )( ) ( )( )h h h h c h c h h c c h c h h c h h h h′ ′ ′ ′ ′ ′ ′− = + − + = − . (A.38) 

We now have 

 1 2 1 2 1 2 1 2 1 1 2 2 1h h h h h h h h c h c h h′ ′ ′ ′− = − = + = . (A.39) 

In other words (abusing notation by dropping the ~’s), we form particular linear combina-
tions of the ih  such that 

 1 2 1 2 1 0h h h h h′ ′− = ≠ , (A.40) 

equivalently, 

 1
2 2

1
1hh h

h
′

′ − = . (A.41) 

Since  

 2 2 1
22

1 1 11

1d h h h h
dy h h hh

  ′ ′
= − = 

 
, (A.42) 

direct integration gives 

 2

1 1

( )
( ) ( )

d h y dydy
dy h y h y

 
= 

 

⌠ ⌠
 ⌡⌡

, (A.43) 

equivalently, 
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 2 1
1

( ) ( )
( )

y dsh y h y
h s

= ⌠

⌡

. (A.44) 

Define 1
1( ) ( )

y
y h s ds−γ = ∫  and rewrite (A.31) as 

 [ ]1 2 1( ) ( )y y h y∂
= + γ

∂x
α α . (A.45) 

Since 1 1
1 1( ) ( ) ( )

ydy h s ds h y
dy

− −′γ = =∫ , this is equivalent to 

 1 2
1

1( ) ( )
( )

y yy y
h y

∂γ ∂ ∂′= γ = = + γ
∂ ∂ ∂x x x

α α . (A.46) 

We thus can change the definition of ( )y f m=  to incorporate ( )yγ  through composi-
tion, and any full rank 2 system has a representation for y such that 1 2y y∂ ∂ = +x α α . 

Rank 3: 1 1 2 2 3 3( ) ( ) ( )y h y h y h y∂
= + +

∂x
α α α  (A.47) 

The derivations in this case are considerably more involved. We make use of several pre-
vious results and techniques from the theory of differential equations to simplify and re-

duce the calculations. Let 1( ) 0h y ≠ , define 1
1( ) ( )

y
y h s ds−γ = ∫ , and rewrite (A.47) as 

 2 3
1 2 3

1 1 1

1 ( ) ( )( )
( ) ( ) ( )

y y h y h yy
h y h y h y

   ∂γ ∂ ∂′= γ = = + +   ∂ ∂ ∂    x x x
α α α  

 1 2 2 3 3( ) ( )h y h y≡ + +α α α  (A.48) 

By Lemma 1 symmetry is coordinate free. Therefore, consider the representation (again 
dropping the ~’s and redefining y if necessary) 

 1 2 2 3 3( ) ( )y h y h y∂
≡ + +

∂x
α α α . (A.49) 

The least squares conversion of the symmetry conditions gives 

 1 2 3
2 12 12 2 12 3( ) ( ) ( )h y c c h y c h y′ = + + , 
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 1 2 3
3 13 13 2 13 3( ) ( ) ( )h y c c h y c h y′ = + + , (A.50) 

 1 2 3
2 3 2 3 23 23 2 23 3( ) ( ) ( ) ( ) ( ) ( )h y h y h y h y c c h y c h y′ ′− = + + , 

where the k
ijc  are constants and cannot all be zero in any given equation. The first two 

equations form a complete system of linear, ordinary differential equations with constant 
coefficients. These would be straightforward to solve if the system were not constrained 
by the third equation (the Lie Bracket for 2( )h y  and 3( )h y ).  

Our plan of attack is to calculate the complete solution to the two-equation system of dif-
ferential equations and then check for consistency with the third equation. This second 
step restricts the set of values that the k

ijc  can assume in an integrable system. Differenti-
ate the first equation with respect to y and substitute out 3( )h y′  and 3( )h y , 

 2 3
2 12 2 12 3( ) ( ) ( )h y c h y c h y′′ ′ ′= +  

 2 3 1 2 3
12 2 12 13 13 2 13 3( ) ( ) ( )c h y c c c h y c h y ′= + + +   

 3 1 2 3 2 3 3
12 13 12 2 12 13 2 12 13 3( ) ( ) ( )c c c h y c c h y c c h y′= + + +  (A.51) 

 3 1 2 3 2 3 1 2
12 13 12 2 12 13 2 13 2 12 12 2( ) ( ) ( ) ( )c c c h y c c h y c h y c c h y ′ ′= + + + − +   

 2 3 3 2 2 3 1 3 1 3
12 13 2 12 13 12 13 2 13 12 12 13( ) ( )( ) ( ) ( )c c h y c c c c h y c c c c′= + + − + − . 

The homogeneous part of this second-order differential equation is 

 2 3 3 2 2 3
2 12 13 2 12 13 12 13 2( ) ( ) ( ) 0( ) ( )h y c c h y c c c c h y′′ ′− + − − = . (A.52) 

Trying 2( ) yh y eλ=  produces the characteristic equation 

 2 2 3 3 2 2 3
12 13 12 13 12 13 0( ) ( )c c c c c cλ − + λ − − = , (A.53) 

with characteristic roots 

 2 3 2 3 2 3 2 2 3
12 13 12 13 12 13 12 13½ 4( ) ( )c c c c c c c c λ = + ± + + −  

. (A.54) 

If 2 3 3
12 12 13 0c c c= = = , then 0λ =  is the only root, and the complete solution has the form 
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 2
2 2 2 2( )h y a b y c y= + + , 

 2
3 3 3 3( )h y a b y c y= + + , (A.55) 

where the 3
2{ , , }k k k ka b c =  are constants. Define 1 1 2 2 3 3a a= +α α + α α , 2 2 2 3 3b b= +α α α , 

and 3 2 2 3 3c c= +α α α . Then we have 

 2
1 2 3

y y y∂
≡ + +

∂x
α α α . (A.56) 

The last step in this part of the proof is to show that this is the only possibility in the full 
rank 3 case. If any of 2

12 0c ≠ , 3
12 0c ≠ , or 3

13 0c ≠ , then we need to consider distinct and 
repeated roots separately. With distinct roots, the complete solution to the two ordinary 
differential equations takes the general form 

 1 2
2 2 2 2( ) y yh y a b e c eλ λ= + + , 

 1 2
2 3 3 3( ) y yh y a b e c eλ λ= + + , (A.57) 

where the 3
2{ , , }k k k ka b c =  again are constants. As before, define 1 1 2 2 3 3a a= +α α + α α , 

2 2 2 3 3b b= +α α α  and 3 2 2 3 3c c= +α α α , and rewrite (A.49) as  

 1 2
1 2 3

y yy e eλ λ∂
≡ + +

∂x
α α α . (A.58) 

The equation for the Lie Bracket 2 3 2 3h h h h′ ′−  now takes the form 

 1 2 1 2( ) 1 2 3
2 1 23 23 23( ) y y ye c c e c eλ +λ λ λλ − λ = + + , (A.59) 

where 2 3 2 3 2 2 3
2 1 12 13 12 13 12 134( ) ( )c c c c c cλ − λ = + + −  and 2 3

2 1 12 13c cλ + λ = + ; a contradiction 
for all 1 2( , ) (0,0)λ λ ≠ , for either real or complex roots. Therefore, the roots must be real 

and equal, 2 3
12 13½( )c cλ = + . Once again form the above linear combinations of the αk’s, 

let 2( ) yh y eλ=  and 3( ) yh y yeλ= , and rewrite (A.49) as 

 1 2 3
y yy e yeλ λ∂

≡ + +
∂x

α α α . (A.60) 

In this case, the equation for the Lie Bracket, 2 3 2 3h h h h′ ′− , takes the form 
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 2 1 2 3
23 23 23

y y ye c c e c yeλ λ λ= + + , (A.61) 

a contradiction for all 0λ ≠ . Hence, only a repeated vanishing root is possible and a rep-
resentation for y exists in any full rank 3 system such that 

 2
1 2 3

y y y∂
≡ + +

∂x
α α α . (A.62) 

This completes the proof of the full rank representation part of the proposition.  

The next step in the proof of the proposition is to show that polynomials constitute the 
class of minimal deficit demand systems when 3K > . This is accomplished by an induc-
tive argument, and we proceed with the induction beginning with 4K = . When 4K =  
there are a total of six Lie Brackets, but the dimension of the vector space spanned by the 
basis 1 2 4{ }h h h  is only four. We know from the theory of Lie algebras on the real line 
that at least one of the Lie Brackets must lie outside of this space. We have shown that by 
redefining y and modifying the αk’s to accommodate the change in y, 2{1 }y y  is the larg-
est Lie algebra on the real line. The structure of this vector space is  

 
2 1

3 2
2

2 3 2 3 3

1 1 0 0
2 0 2 0

0 0 1

h h
h y h

h h h h hy

 ′    
     ′ = =     
 ′ ′−         

. (A.63) 

If we add a fourth income function to this system, the above derivations apply with minor 
modifications. Therefore, add 4( )h y  to 2{1 }y y . The Lie Bracket conditions are 

 

2

3
2

2 3 2 3
1 2 3 4 2
14 14 14 144 4
1 1 1 1

2 4 2 4 4 4 24 24 24 24 4
2 1 1 1 13 4 3 4 4 4 34 34 34 34

1 0 0 01
0 2 0 02 1
0 0 1 0

2

h
yh

yh h h h y
c c c ch h y

h h h h yh h c c c c h
h h h h y h yh c c c c

  ′ 
   ′       ′ ′−   = =   ′ ′    
   ′ ′ ′− −    ′ ′−     ′ −     






 
 

. (A.64) 

At most two of the new Lie Bracket equations can be consistent. Without loss in general-
ity, consider the fourth and fifth, 

 1 2 3 2 4
4 14 14 14 14 4( ) ( )h y c c y c y c h y′ = + + + , 

 1 2 3 2 4
4 4 24 24 24 24 4( ) ( ) ( )yh y h y c c y c y c h y′ − = + + + . (A.65) 
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These are two linear, first-order ordinary differential equations in 4( )h y . The most direct 

route is to solve the first and check the second for consistency. If 4
14 0c = , then integrat-

ing the first equation gives 

 1
3

1 2 2 3 3
4 14 14 14( ) ½h y c c y c y c y= + + + , (A.66) 

where c is a constant of integration. Applying similar modifications to the αk’s as before, 
we have 1( ) , 1,2,3,4k

kh y y k−= = . The second equation becomes 

 3 3 3 2 3
4 4( ) ( ) 3 2 0 1 0 0 2yh y h y y y y y y y′ − = − = = ⋅ + ⋅ + ⋅ + , (A.67) 

which is contained in the vector space spanned by 2 3{1 }y y y . Of course, the Lie Bracket, 
4 4 4

3 4 3 4 3 2h h h h y y y′ ′− = − =  falls outside of this vector space, as it must. 

If 4
14 0c ≠ , integrating by parts twice gives the complete solution as 

 
4
14

1 2 3 2 3 3
214 14 14 14 14 14

4 4 4 2 4 3 4 4 2 4
14 14 14 14 14 14

2( ) ( ) ( ) ( )
c yc c c c c ch y y y ce

c c c c c c
   

= − + + − + − +   
   

, (A.68) 

where c is again a constant of integration. Once more using the above device to adjust the 
αk’s, we have 

4
14

4( ) c yh y e= , and the second equation becomes 

 
4 4
14 144 1 2 3 2 4

4 4 14 24 24 24 24( ) ( ) 1( ) c y c yyh y h y c y e c c y c y c e′ − = − = + + + , (A.69) 

a contradiction. Hence, the structure with four income functions and a maximum number 
of Lie Brackets spanned by the income functions 2 3{1 }y y y  is 

 

2

3
2

4 2
2

2 3 2 3 3
32 4 2 4

1 1 0 0 0 12 0 2 0 0
3 0 0 3 0

0 0 1 0
0 0 0 22

h
yh y

yh
y

h h h h y
yh h h h y

 ′         ′         ′ = =         ′ ′−              ′ ′−      

. (A.70) 

Only one (the minimal possible number) Lie Bracket, 3 4 3 4h h h h′ ′− , out of the total of six, 
falls outside of this vector space. 

The induction is completed by identical steps to show that if a basis with K functions is 
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2 1{1 }Ky y y −  and we add a K+1st function, 1( )Kh y+ , then the maximal increase in the 

number of spanned Lie Brackets occurs when 1( ) K
Kh y y+ = . 

The final step in the proof of this proposition is to show that for the polynomial class of 
Gorman Engel curve systems, [ ( , , )] 3rank ≤A x p s . We proceed constructively by show-
ing that if the system of demands has the polynomial representation,2 

 
0

K
k

k
k

y y
=

∂
=

∂ ∑x
α , (A.71) 

and is weakly integrable, then there exist : , 2, ,q qn n r
k k Kϕ × × → = …  such that 

 2k k K k≡ ϕ ∀ ≥α α . (A.72) 

Integrability is equivalent to symmetry of the matrix 

 1

0 1 0

K K K
k ki

k
k k

y k y + −

= = =

∂
+

∂∑ ∑∑x
α

α αT

T
. (A.73) 

By continuity, symmetry requires that each like power of y has a symmetric coefficient 
matrix, and all of the matrices for powers K+1 through 2K–2 involve nontrivial symmetry 
conditions without involving any of the k∂ ∂xα T  terms. The matrix on y2K–1 only in-

volves K Kα αT  and is symmetric. Combine terms in like powers of y and apply a back-
ward recursion beginning with the matrix on y2K–2, so that 

 1( 1) K K K KK K−− + −1α α α αT T  (A.74) 

is symmetric if and only if 1 1K K K− −≡ ϕα α  for some 1 : q qn n r
K−ϕ × × → . Simi-

larly, 

 2 1 1 2( 2) ( 1)K K K K K KK K K− − − −− + − +α α α α α αT T T  (A.75) 

is symmetric if and only if 2 2K K K− −≡ ϕα α for some 2 : q qn n r
K−ϕ × × → . Apply-

ing the recursive argument, consider the matrix on y2K–4, 

                                                 

2 Switching indexes from {1,…,K} to {0,…,K} greatly simplifies the algebra and notation in this part of the 
proof without affecting the structure of the underlying problem in any way. 
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 3 2 1 1 2 3( 3) ( 2) ( 1)K K K K K K K KK K K K− − − − − −− + − + − +α α α α α α α αT T T T . (A.76) 

The middle two terms are symmetric, because 2 1 2 1 1 2K K K K K K K K− − − − − −= ϕ ϕ =α α α α α αT T T . 

The matrix 3 3( )K K K K− −+α α α αT T  is automatically symmetric. Therefore, the matrix on 

y2K–4 is symmetric if and only if 3K K−α αT  is symmetric, which occurs if and only if 

3 3K K K− −≡ ϕα α for some 3 : q qn n r
K−ϕ × × → . This completes the argument when 

3 ≤ K ≤ 5.  

If K > 5, for each j satisfying 4 ≤ j ≤ K–1, group like terms, substitute K i K i K− −≡ ϕα α  for 

each i < j, and appeal to symmetry of the matrix 1 1K j K K K j+ − + −+α α α αT T . Then symmetry 
sequentially requires that each matrix of the following form is symmetric: 

 
2

1 1
1

( 1) ( )
j

K K j K i K i j K K
i

j K i
−

+ − − + + −
=

− + − ϕ ϕ∑α α α αT T . (A.77) 

This holds if and only if 1 1K j K j K+ − + −≡ ϕα α  for 1 : q qn n r
K j+ −ϕ × × → . When 

4j =  we have the result for 3K−α ; when 1j K= −  we have it for 2α ; and 2K∀ > , we 
have 2, ,k k K k K≡ ϕ ∀ =α α …  so that [ ( , , )] 3rank ≤A x p s .  

Proposition 2. If the LA-AIDS model, 

 ln ( , , , ) ln ( , , , )( , ) ln ln ( , , , ) (ln )
ln ln

e u e ue u ∂ ∂
= + + − ∂ ∂ 

p p s p p sp s B p p p s p
p p

α γ T  

is weakly integrable on the open set qn⊂N  defined by 1 0′+ ≠ ∀ ∈x xγ N , 
then either (a) γ ≠ 0 and B = β0γγ′ for some 0β ∈ , with logarithmic expenditure 
function 

 0( , , , ) ( , ) (1 ) ln(1 )
(1 )

y u
 

= +β + + − + 

xx p s p s x x x
x

γ
α γ γ

γ

T
T T T

T
 

 (1 ) ( , , )u+ + θx p sγT , 

or (b) γ = 0 and B = B′,with logarithmic expenditure function, 

 ( , , , ) ( , ) ½ ( , , )y u u= + + θx p s p s x x Bx p sα T T . 
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Proof: See LaFrance (2004). ■ 

Proposition 3. The system of partial differential equations,  

 ½ , 1, ,i i i i q
i

y y i n
x
∂

= α + + + γ =
∂

x x xβ ∆ …TT , 

where 1 0γ ≠  and each nq×nq matrix, ∆i is symmetric ∀ i, is weakly integrable if 
and only if it can be written in the form 

 0 ½y y∂  = + + − α − − ∂
Bp x x Bx

x
α γ αT T  

where 0α  is a scalar, 0− αα = α γ  is an nq×1 vector, B  is a symmetric nq×nq ma-

trix satisfying = +B B γαT , where 1 qn =  B β β , and i i i= −γ ∀B∆ . 

Proof: Symmetry of the Slutsky substitution terms is equivalent to symmetry of the nq×nq 
matrix with typical element 

 
1 1 1 1

½
q q q qn n n n

ij ij ijk k i j jk k jk k j
k k k

s x x x x y
= = = =

 
= β + δ + γ α + β + δ + γ 

  
∑ ∑ ∑∑ . (A.78) 

To show necessity, we will derive the implications of symmetry, ,ij jis s i j= ∀ . These 
implications can be conveniently grouped into three sets: 

(a) ij i j ji j iβ + γ α = β + γ α ; 

(b) 
1 1
( ) ( )

q qn n

ijk i jk k jik j ik k
k k

x x
= =

δ + γ β = δ + γ β∑ ∑ ; and 

(c) 
1 1 1 1

q q q qn n n n

i jkl k l j ikl k l
k l k l

x x x x
= = = =

γ δ = γ δ∑∑ ∑∑ . 

From (a), it follows that 0ˆ ˆ≡ − αα α γ , where 1 1 1ˆ ( ) /i i iα = β −β γ  and 0 1 1ˆ /α = −α γ . Substi-
tuting the right-hand-side for each αi back into (a) implies ˆ[ ]ij i jB ≡ β + γ α  is symmetric, 

equivalently ij β = −  B γαT  for some symmetric matrix B. Now turning to (b), we will 
use a specialized result of LaFrance and Hanemann (1989, Theorem 2, p. 266) for these 
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kinds of problems to obtain , ,ijk i jk jik j ik i j kδ + γ β = δ + γ β ∀ . We will return to this in a 
moment. First, however, we need to apply the same result of LaFrance and Hanemann to 
(c) to get , , ,i jkl j ikl i j k lγ δ = γ δ ∀ . This, in turn, implies that for each i, the n×n matrix 
[ ]ikl iδ = γ C  where C is a symmetric matrix with typical element 1 1/kl klc = δ γ . Combin-
ing this with (b) gives ( ) ( ) , ,i jk jk j ik ikc b c b i j kγ + = γ + ∀ . Exploiting 1 0γ ≠  and the 

symmetry of both B and C then give 2
11 11 1( ) ( ) /ij ij i jb c b c+ = + γ γ γ , so that B and C are 

related by ( )′= − + εC B γγ , where 2
11 11 1( ) /b cε = − + γ . Combining all of these implica-

tions, the transformed demands can be written in matrix notation as 

 0ˆ ˆ ˆ( ) ½ ( )y y∂
= − α + − − + ε +

∂
B x x B x

x
α γ γα γ γγ γT T T  

 0ˆ ˆ ˆ ½ ( )y = + + − α − − + ε Bx x x B xα γ α γγT T T . (A.79) 

Adding and subtracting εγ  and ′ε xγγ  has no affect on the transformed demands. There-
fore, let ˆ= + εα α γ , ′= + εB B γγ , and 0 0ˆα = α + ε , and rewrite the partial differential 
equations in the equivalent form 

 ( )0 ½y y∂ ′= + + − α − −
∂

Bx x x Bx
x

α γ α T . (A.80) 

Finally, the integrating factor e− xγT  makes the partial differential equations exact, 

 ( )0e ½ ey − −∂    = + − α +  ∂
x xBx x x Bx

x
γ γα γ + α
T TT T  

 ( )0 ½ e−∂  = α +
 ∂

xx x Bx
x

γ+ α
TT T . (A.81) 

The complete class of solutions to this system of partial differential equations is 

 0( , , , ) ( , ) ( , ) ½ ( , , )ey u u= α + + + θ xx p s p s p s x x Bx p s γα
TT T . (A.82) 

Sufficiency is shown by applying Hotelling’s/Shephard’s lemma. ■ 

A.4 CHARACTERIZING INDIRECT PREFERENCES 

In this section, we characterize the class of indirect preferences for each of the full rank 
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cases and present and discuss an example of indirect preferences that gives rise to a rank 
three demand model with more than three income terms. 

Rank 1: y∂ ∂β
=

∂ ∂x x
. (A.83) 

Simply integrating gives 

 ( , , , ) ( , , ) ( , , )y u u= β + θx p s x p s p s . (A.84) 

This is the translation group representation of indirect preferences for the rank one case. 
Solving for the deflated expenditure function gives 

 ( )( , , , ) ( ( ), , ) ( , , )e u u= ϕ β + θp p s g p p s p s , (A.85) 

where ϕ(⋅) is the inverse of f(⋅). Equivalently, the indirect utility function has the form 

 ( )( , , , ) ( ) ( ( ), , ), ,v m f m= ψ −βp p s g p p s p s , (A.86) 

where ψ is the inverse of θ with respect to u. Since ( )[ ]ig f′ ′= × ∂β ∂q diag x , the de-
mands for q in the rank 1 case are homothetic with income elasticity ( ) ( )mf m f m′′ ′− . If 

( )f m mκ= , the common income elasticity 1–κ is constant, but only equals one in the 
limiting case ( ) ln( )f m m= . More general transformations do not result in a constant in-
come elasticity, although it must be independent of all prices and demographic variables 
in this class of demand systems. 

Rank 2: 1 2
y y∂
= +

∂x
α α . (A.87) 

Symmetry in this case implies 

 
2

1 2 1 2
2 1 2 2 1 2 2 2

y y y y y∂ ∂ ∂ ∂ ∂
= + + + = + + +

∂ ∂∂ ∂ ∂ ∂ x xx x x x
α α α α

α α α α α α α α
T T

T T T T

T T T
. (A.88) 

Eliminating the symmetric matrix 2 2 yα αT  from both sides and equating the matrices that 
multiply like powers of y implies  

 1 1
2 1 1 2

∂ ∂
+ = +

∂∂ xx
α α

α α α α
T

T T

T
, (A.89) 

and that 2∂ ∂xα T  is symmetric. The latter property implies the existence of a function 
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: q qn n r
++ ++β × × →  such that 2∂β ∂ =x α . It follows that ( )1 1∂ ∂ + ∂β ∂x xα αT T  is 

symmetric. Equivalently, we can rewrite (A.87) in the form 

 1
y y∂ ∂β
= +

∂ ∂x x
α , (A.90) 

with 1 1
1 1

∂ ∂β ∂ ∂β
− = −

∂ ∂∂ ∂ x xx x
α α

α α
T

T

T T
, symmetric. We can apply the integrating factor e−β  by 

noting that  

 ( ) yye y e−β −β∂ ∂ ∂β = − ∂ ∂ ∂ x x x
, (A.91) 

and 

 ( ) 1
1 1e e−β −β∂ ∂ ∂β = − ∂ ∂ ∂ x x x

α
α α

T T T
 (A.92) 

is symmetric. This implies the existence of a function : q qn n r
++ ++γ × × →  such that 

1e
−β∂γ ∂ =x α , and integrating gives the transformed deflated expenditure function as  

 ( , , ) ( , , )( , , , ) ( , , ) ( , , )y u e e uβ β= γ + θx p s x p sx p s x p s p s . (A.93) 

Let ( , , ) ( , , )eβ ≡ δx p s x p s , abuse notation and relabel ( , , ) ( , , )eβ γx p s x p s  as ( , , )γ x p s , and 
rewrite (A.93) in the form 

 ( , , , ) ( , , ) ( , , ) ( , , )y u u= γ + δ θx p s x p s x p s p s . (A.94) 

This quasi-linear form is the translation and scaling group representation of indirect 
preferences in the full rank two case. From this we can write the deflated expenditure 
function as 

 ( )( , , , ) ( , , ) ( , , ) ( , , )e u u= ϕ γ + δ θx p s x p s x p s p s , (A.95) 

and the indirect utility function as  

 ( ) ( , , )( , , , ) , ,
( , , )

f mv m  − γ
= ψ δ 

x p sp p s p s
x p s

. (A.96) 
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Rank 3: 2
1 2 3

y y y∂
≡ + +

∂x
α α α . (A.97) 

We present two equivalent closed form expressions for the solution to this case. One es-
tablishes the connection to the projective transformation group. The other applies when 
(A.97) has a pair of purely complex roots and provides a direct solution for the trigono-
metric form of indirect preferences. 

First, we note that the methods of van Daal and Merkies (1989) for solving integrability 
of the complete quadratic expenditure system apply without change to our problem. The 
only difference is that the homogeneity properties they identified do not apply here. Thus, 
there is no need to reproduce their steps. They show that (A.97) is integrable if and only 
if there exist functions, 1 2 3, , : q qn n r

++ ++β β β × × → , and :γ →  such that 

 
2

1 2 3 1 2 1
2 2 3

3 3

( ) ( )( )y y y∂ ∂β ∂β ∂β −β ∂β −β
= + γ β β + +

∂ ∂ ∂ ∂ β ∂ βx x x x x
. (A.98) 

This can be rewritten in the form 

 
2

1 1 1 3 1 2
2 22 2

3 3 3 3

1 ( ) ( )( )y y y y  ∂ −β ∂ ∂β −β ∂β −β ∂β = − − = γ β +    ∂ β β ∂ ∂ ∂ ∂β β    x x x x x
. (A.99) 

We can simplify this even further by making two simple changes of variables. First, let 
1 3( )w y= −β β , so that 

 2 2
2 2( )w w∂ ∂β = γ β + ∂ ∂x x

 (A.100) 

Second, let 1z w= − , so that 

 2 2
2 21 ( )z z∂ ∂β = + γ β ∂ ∂x x

. (A.101) 

Now, if 2( )γ β ≡ λ  is constant, then we can separate the variables so that 

 2
2 1, ,

1 q
i

dz i n
xz

∂β
= ∀ =
∂+ λ

. (A.102) 

This is an exact system of partial differential equations and the solution is found by direct 
integration, 
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3 1( )

3
22

1 (1 )

y dz
y z

−β −β −β
φ ≡ = β + θ −β + λ 

⌠

⌡

, (A.103) 

where ( , , )uθ p s  is the “constant of integration.” This is readily recognized as the solution 
obtained by van Daal and Merkies (1989) and applied by Lewbel (1990) to full rank three 
QPIGL and QPIGLOG complete systems.  

But we can go considerably further. One reason for doing this is to obtain closed form 
expressions for the indirect preferences. A second reason is to show the connection be-
tween this representation and the projective transformation group representation of indi-
rect preferences that is standard in the theory of Lie groups. A third reason is that in one 
case we obtain the trigonometric form of indirect preferences that is implied by Gorman 
(1981) and is presented without derivation in Lewbel (1990), but heretofore has not been 
obtained explicitly from the structure of a set of demand equations with complex roots. 

Suppose that 0λ > , define 2 2( )λ = − ικ = κ , with 1ι = − , let τ = ικ  be a purely com-
plex constant, write 21 (1 )(1 )z z z+ λ = + τ − τ , and apply the method of partial fractions to 
obtain  

 2
1 ½ ½

(1 ) (1 )1 ( ) z zz
= +

− τ + τ− τ
. (A.104) 

This implies that  

 
3 1 3 1 3 1( ) ( ) ( )

2 ½ ½
(1 ) (1 )(1 )

y y ydz dz dz
z zz

−β −β −β −β −β −β

= +
− τ + τ+ λ

⌠ ⌠ ⌠
 
⌡ ⌡⌡

 

 1
2

1

1+
=½ln

1

y

y

3

3

  −βτ  −β   = β + θ
  −β− τ  −β   

. (A.105) 

Exponentiating and abusing notation by relabeling 22e β  as β2 and 2e θ  as θ gives, 

 1
2

1

y
y

3

3

−β − τβ
= β θ

−β + τβ
. (A.106) 

Solving for the deflated and transformed expenditure function then gives 
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 2
1

2

1 ( , , ) ( , , )( , , , ) ( , , ) ( , , )
1 ( , , ) ( , , )

uy u
u3

 +β θ
= β + τβ  −β θ 

x p s p sx p s x p s x p s
x p s p s

. (A.107) 

This is an element of the complex projective transformation group in θ. Alternatively, 
solving for the quasi-indirect utility function,  

 
[ ]
1

2 1

( , , ) ( , , )( , , , )
( , , ) ( , , ) ( , , )

yy
y

3

3

−β − τβ
θ = υ =

β −β + τβ
x p s x p sx p s

x p s x p s x p s
. (A.108) 

In this case, (A.108) is an element of the complex projective transformation group in y.  

In the case where 0λ > , we also can derive an alternative, but equivalent, expression for 
the indirect preferences by using a third change of variables to s z= κ , where 2 0λ = κ > , 
so that  

 
3 1 3 1

( ) ( )
1 3

222
1

1 tan
(1 )1 ( )

y ydz ds
ysz

−β −β −κβ −β
−  −κβ

= = = β + θ κπ −β  κ ++ κ   

⌠ ⌠
 ⌡⌡

.(A.109) 

The indirect utility function therefore can be written as 

 1 3
2

1

1 ( ( ), , )( , , , ) tan ( ( ), , ), ,
( ) ( ( ), , )

v m
f m

−  −κβ = ψ −β  κπ −β   

g p p sp p s g p p s p s
g p p s

 (A.110) 

Alternatively, the deflated and transformed expenditure function can be written as 

 
[ ]{ }2

1
3

cot ( , , ) ( , , )
( , , , ) ( , , )

( , , )
u

y u
κπ β + θ

= β −
κβ

x p s p s
x p s x p s

x p s
. (A.111) 

Clearly (A.109)–(A.111) have the associated trigonometric form for indirect preferences 
that we wished to find and identify. 

Now assume 0λ < , define 2−λ = κ , and write 21 (1 )(1 )z z z+ λ = + κ − κ , so that partial 
fractions imply 

 2 2
1 1 ½ ½

(1 ) (1 )1 1 ( ) z zz z
= = +

− κ + κ+ λ − κ
. (A.112) 

Integrating as before now gives 
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3 1 3 1 3 1( ) ( ) ( )

2 ½ ½
(1 ) (1 )(1 )

y y ydz dz dz
z zz

−β −β −β −β −β −β

= +
− κ + κ+ λ

⌠ ⌠ ⌠
 
⌡ ⌡⌡

 

 1
2

1

1+
=½ln

1

y

y

3

3

  −βκ  −β   = β + θ
  −β− κ  −β   

. (A.113) 

Notice, in particular, that the only difference between (A.105) and (A.113) is the purely 
complex root τ and the purely real root κ, respectively. Therefore, proceeding precisely 
as before, we obtain (A.107) and (A.108) with κ simply replacing τ everywhere. Hence, 
the class of indirect utility functions in both cases is 

 
[ ]

1

2 1

( ) ( ( ), , ) ( ( ), , )( , , , ) , ,
( ( ), , ) ( ) ( ( ), , ) ( ( ), , )

f mv m
f m

3

3

 −β − κβ = ψ β −β + κβ  

g p p s g p p sp p s p s
g p p s g p p s g p p s

, (A.114) 

where ψ is once again the inverse of θ with respect to y, and where κ is either purely real 
or purely complex. The part of v that is associated with (p,m) is an element of the (either 
real or complex) projective transformation group over ( )y f m= . 

To finalize our characterization and exposition, without loss in generality, we can abuse 
notation further by relabeling 1 3β + κβ  as 1β  and 1 3 2( )−β + κβ β  as 3β , for κ either real 
or complex. Then we have the three–parameter relationship 

 1 1 3

2 3 21
y y
y
−β β +β θ

θ = ⇔ =
β +β −β θ

. (A.115) 

Thus, the closed form solutions that can be found in all full rank three cases are members 
of the projective transformation group. The quasi-indirect utility function, θ, is the in-
verse group transformation of the (deflated and transformed) expenditure function, y. No 
additional flexibility in income or prices is obtained with a complex κ even though the 
trigonometric form in (A.111) is an interesting case. Therefore, for the rest of this section, 
we assume that κ is real. 

When κ is real, the space of all projective transformation groups is referred to in differen-
tial topology as special linear group two and is denoted by (2)sl . It is standard practice 
in Lie group theory to identify the space (2)sl  with the set of 2×2 real matrices 

α β 
=  γ δ 

A  with unit determinant, 1αδ −βγ = . Indeed, we have 1− δ −β 
=  −γ α 

A  as a 
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member of this group, and if we write 

 yy
y

αθ+β δ −β
= ⇔ θ =
γθ + δ −γ + α

, (A.116) 

we can see immediately that 2×2 matrix inverses in this set are one-to-one and onto with 
the inverse functions of the projective transformation group, while I2 is the identity map 
in both spaces. Simple algebra then shows that  

 2y y y∂ ∂β ∂α ∂γ ∂β ∂δ ∂α ∂δ ∂γ        = α −β + β − γ − α − δ + γ − δ        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        x x x x x x x x x
. (A.117) 

The usefulness of this representation is that integrablity is represented clearly, concisely, 
and simply in the form of a subset of four out of a total of six possible Lie brackets be-
tween the {α,β,γ,δ} functions with respect to x. A (very large) set of full rank three indi-
rect utility functions generating members of Gorman’s class of functionally separable 
demand systems is therefore given by  

 ( ( ), , ) ( ) ( ( ), , )( , , , ) , , , 1
( ( ), , ) ( ) ( ( ), , )

f mv m
f m

 δ −β
= υ αδ −βγ ≡ −γ + α 

g p p s g p p sp p s p s
g p p s g p p s

. (A.118) 

Equivalently, we can represent this class of preference systems in terms of the deflated 
and transformed expenditure function, 

 ( , , ) ( , , ) ( , , )( , , , ) , 1
( , , ) ( , , ) ( , , )

uy u
u

α θ +β
= αδ −βγ ≡
γ θ + δ

x p s p s x p sx p s
x p s p s x p s

. (A.119) 

Finally, it is worth noting that 0γ ≠  is required for a full rank three system, and we can 
define this class of preferences in terms of Lie’s (1880) rank three transformation group, 

 ( , , ) ( , , ) ( , , )( , , , )
( , , ) ( , , )

uy u
u

α θ +β
=

θ + δ
x p s p s x p sx p s

p s x p s
 (A.120) 

where α = α γ , β = β γ , and δ = δ γ . We have established equivalence of full rank three 
demand systems of Gorman (1981), the rank three transformation group of Lie (1880), 
and the projective transformation group (2)sl  using elementary methods.  

A.5 A CLASS OF GORMAN SYSTEMS WITH MORE THAN THREE INCOME TERMS 

The results above do not preclude higher order polynomials, only more than three income 
terms with a matrix of linearly independent price functions. We illustrate this with an ex-
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ample motivated by Jerison (1993). Let the indirect utility function be given by 

 ( , , )( , , , ) ( , , ); ,
( , , )

v y
y

η  β
= υ − δ  γ −   

x p sx p s x p s p s
x p s

, (A.121) 

where we assume ( , , ) yγ >x p s  for monotonicity and let η be any real number in the in-
terval [1,∞). Applying Roy’s identity, we generate an incomplete demand system as 

 [ ] 1( )
( )

i ig p y y
f m

η+ ′      ∂γ ∂β γ − β ∂δ γ −
= − +      ′ ∂ ∂ β η ∂ β       

q
x x x

diag
. (A.122) 

Under certain conditions on η, this has the form of proposition one and illustrates the full 
nature of its implications. First note that there are three linearly independent functions of 
y on the right-hand-side of (A.122). When η = 1, we have a quadratic in y. But the pa-
rameter η can be any integer in [1,∞) and preferences will remain well-behaved with ap-
propriate choices for the functions β, γ, δ. If η is an integer greater than one, expanding 
the last term in square brackets with the binomial formula implies that all powers of y 
from 0 to η+1 appear on the right. The model cannot be reduced to a quadratic for any η 
> 1. The first two terms in square brackets involve the powers 0 and 1 in y. The matrix of 
price functions on the powers of y from 2 through η+1 has rank at most equal to one. 

However, η also can assume any real non–integer value in [1,∞) and preferences will re-
main well–behaved with appropriate choices of the functions {β,γ,δ}. In such cases, the 
last term in square brackets on the right-hand-side of (A.122) is analytic with a conver-
gent Taylor series expansion over the set of positive values for yγ − . The vectors of 
price functions for all powers of y greater than one are all proportional and the matrix of 
price functions, even with an infinite number of columns, has rank at most three. Thus, if 
there is a finite number of terms with functional separability between the prices of inter-
est and income, then we must have a polynomial in y. But a very large set of well–
defined demand models exists beyond quadratic polynomials, and each element can be 
represented as an irreducible polynomial of higher order than a quadratic, and may even 
have an infinite number of income terms.  

A.6 SEMIDEFINITE MATRICES 

Lemma 2. Let the n×n real-valued matrix A be symmetric and positive semidefi-
nite. Then : 0n∀ ∈ >x x AxT , the matrix 1( )−−A x Ax Axx AT T  is symmetric 
and positive semidefinite, with x contained in its null space. 
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Proof:  Since 0>x AxT  by hypothesis, n∀ ∈z , 1( ) 0− − ≥ z A x Ax Axx A zT T T  if and 

only if 2( ) ( )≥z Az x Ax x AzT T T . Let the matrix Q satisfy =A QQT  and define =v Q zT  
and =w Q xT . Then 2( ) ( )≥z Az x Ax x AzT T T  if and only if 2( ) ( )≥v v w w v wT T T . The latter 
is an n–dimensional statement of the Cauchy-Schwarz inequality, and this inequality con-
tinues to apply when some of the elements of v and or w vanish, which can occur if A has 
less than full rank. Finally, inspection verifies that  

 1( )− − = − = A x Ax Axx A x Ax Ax 0T T ,  

so that x is contained in the null space of the matrix 1( )− − A x Ax Axx AT T . ■ 

Lemma 3: A necessary condition for the symmetric matrix 
1

 
 
 

B γ

γT
 to be posi-

tive semidefinite is =B LLT , where L is (upper) triangular, while a sufficient 
condition is = +B LL γγT T . 

Proof: For necessity, note that if the complete matrix is positive semidefinite, then the 
upper left nq×nq submatix B must be as well. This implies the existence of a (possibly re-
duced rank) Choleski factorization B in the form LLT . For sufficiency, note that 
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