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ABSTRACT 

 

Acute impact of air pollution on fetal and infant death in the San Joaquin Valley, 

California: A time-stratified case-crossover study 

 by 

Sneha Ghimire 

Master of Science in Public Health 

University of California, Merced 2024 

Committee chair: Dr. Sandie Ha 

 

Background: Despite the decrease in overall pollution levels across California, the San 

Joaquin Valley (SJV) remains a non-attainment area for pollutants including PM2.5 and 

O3.  

Objectives: We assessed the association between acute exposure to PM2.5 and O3 and the 

risk of fetal and infant death in the SJV.  

Methods: This time-stratified case-crossover analysis includes 1,343 singleton fetal 

deaths and 1,097 singleton infant deaths in the SJV from 2016 to 2019. Daily O3 and 

PM2.5 data were geospatially linked to the residential zip codes of mothers at delivery. We 

examined critical exposure windows including the day of death (lag 0) and the 14 days 

leading up to it (lag 1 - lag 14). We used conditional logistic regression models to 

calculate the odds ratio (OR) and 95% confidence intervals for each 10-unit increase in 

pollutants.  

Results: PM2.5 during cold (November-April) and O3 during warm seasons (May-

October) were positively associated with higher odds of fetal and infant deaths. O3 was 

positively associated with both fetal and infant deaths across all lags while no significant 

associations were observed between infant death and PM2.5 exposure. Associations also 

varied across racial, and socio-economic divisions and maternal ages.  

Conclusions: As climate change escalates, rising air pollution may contribute to perinatal 

mortality.  
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1. Introduction and Background 

1.1.Public health significance of fetal and infant death 

 Fetal death refers to the demise of a fetus at any point during pregnancy (Barfield 

et al., 2016; Gregory et al., 2022). The categorization of fetal death varies according to 

the timing of the event within the gestational period. Death of a fetus that occurs before 

20 weeks of full gestation is generally classified as pregnancy loss or spontaneous 

abortion. On the other hand, the terminology “stillbirth” is often employed to describe 

fetal death that occurs from the 20th week of gestation until birth, where the fetus 

displays no evidence of life (Barfield et al., 2016; CDC, 2022b). For international 

comparative studies, the World Health Organization standardizes the definition of 

stillbirth as a death of a fetus occurring at a gestational age of 28 weeks or later (World 

Health Organization). In 2020, the US witnessed 20,854 instances of fetal death, 

reflecting a rate of 5.74 per 1,000 live births. This closely aligns with the 2019 rate of 

5.70 per 1,000 live births indicating no significant change. However, a broader look at the 

past three decades reveals a marked improvement, with a 24.3% reduction in fetal death 

rates from 1990 to 2020, dropping from 7.49 to 5.74  per 1,000 live births (Efflein, 2022; 

Gregory et al., 2022). It is crucial to recognize that while most fetal deaths happen early 

in pregnancy, many US states only mandate the reporting of those occurring at 20 weeks 

of gestation or later (Gregory et al., 2022), leading to potential underestimation. Fetal 

death, despite being a serious public health issue, is often underestimated due to a lack of 

understanding about its true incidence, underlying causes, and preventive measures 

(Gregory et al., 2022). The repercussions of fetal death are not constrained to 

economically poor nations but are observed globally (Lawn et al., 2016). Some known 

risk factors for fetal death include pregnancy complications (e.g., preeclampsia), 

complicated childbirth, genetics, fetal growth restriction, and congenital anomalies 

(Gardosi et al., 2013). However, the causes of many fetal deaths are often unclear and 

other risk factors responsible for fetal death remain unexplored (Gardosi, 2001; Williams 

et al., 2018).  

Meanwhile, infant death refers to the decease of an infant during the first year 

following birth (CDC, 2022a). In 2020, the US recorded approximately 20,000 infant 

deaths, corresponding to a rate of 5.4 deaths per 1,000 live births (CDC, 2022a). These 

statistics emphasize the pressing necessity for ongoing initiatives to uncover and confront 

the factors leading to infant death. Some of the known leading causes of infant death in 

the US are birth defects, sudden infant death syndrome (SIDS), premature birth, low birth 

weight, maternal complications during pregnancy, and injuries such as suffocation  

(CDC, 2022a; UNICEF, 2019). Meanwhile, it is important to acknowledge that numerous 

unidentified or under-researched factors contribute to infant deaths. Despite the recent 

reduction in infant deaths, the US still recorded a total of 20,927 infant deaths in 2019, 

corresponding to 5.74 infant deaths per 1,000 live births. This rate remains significantly 

higher than what has been achieved in other developed nations (Figure 1) (OECD, 2023). 

Studies suggest that the decline in infant death rates in recent years is primarily due to a 

reduction in fatalities caused by congenital disorders and SIDS (Khan et al., 2018). 

However, there exist additional possible contributors to infant deaths that necessitate 
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deeper exploration. For instance, the possible impacts of environmental exposures, such 

as exposure to air pollution, have not been fully investigated. 

 

Figure 1: Infant mortality in the US compared to other developed countries in 2017 (Data source: KFF 

analysis of OECD data) 

1.2. Disparities in fetal and infant deaths in the US  

In the US, significant disparities exist in the rates of fetal and infant deaths across 

populations defined by numerous socioeconomic factors including race/ethnicity, 

healthcare access and quality, economic stability, neighborhood and built environment, 

discrimination leading to stress, education, and social and community context (OASH, 

2021).  In 2020, a disparate distribution of both fetal and infant death rates was observed 

across various racial and ethnic groups in the United States. For instance, the fetal death 

rate per 1,000 live births was reported as 4.73 among Non-Hispanic Whites, 10.34 for 

Non-Hispanic Blacks, 4.86 for Hispanics, 3.93 for Asians, 10.59 for Hawaiian/Pacific 

Islander, and 7.84 for American Indians/Alaskan Natives (Gregory et al., 2022). 

Similarly, the infant death rate per 1,000 live births was reported as 4.40 for Non-

Hispanic Whites, 10.38 for Non-Hispanic Blacks, 4.69 for Hispanics, 3.14 for Asians, 

7.17 for Hawaiian/Pacific Islander, and 7.68 for American Indians/Alaskan Natives (Ely 

& Driscoll, 2022). It is noteworthy that Non-Hispanic Black populations exhibited the 

highest mortality rates for both fetal and infant deaths, followed by the Hawaiian/Pacific 

Islander groups. These racial and ethnic disparities underscore the necessity for further 

research to identify the underlying factors contributing to these discrepancies. 

1.3. Air pollution and its potential role 

Population growth, industrialization, and an increasing number of petroleum-

based transportation systems have resulted in increased air pollution and a degraded 

environment worldwide (Zhou, 2009). Ambient air pollution is a mixture of thousands of 



3 

 

components that can harm the environment and human health (Karimi et al., 2019). A 

large body of research has explored the effects of air pollution on both cardiovascular and 

respiratory health, drawing connections to an increased risk of mortality from all causes 

specifically from conditions like cardiovascular disease, respiratory disease, and lung 

cancer (Bevan et al., 2021; Chen & Hoek, 2020; Liu et al., 2019; Orellano et al., 2020; 

Schraufnagel et al., 2019; Shahi et al., 2014). These risks are notably associated with 

exposures to ambient PM2.5 (Brook et al., 2010; Liu et al., 2019; Rajagopalan et al., 

2018). Additionally, air pollution was the fourth-highest contributor to an untimely death 

in 2019, only surpassed by high blood pressure, tobacco consumption, and undernutrition 

(Figure 2) (Health Effects Insititue, 2020). Air pollution contributes to about 6.67 million 

deaths worldwide, accounting for around 12% of total deaths (Health Effects Insititue, 

2020). The State of Global Air 2020 report states that approximately 500,000 infants 

didn't survive their first month in 2019 due to complications from premature birth and 

low birth weight attributed to air pollution exposure (Health Effects Insititue, 2020). This 

represented about 20% of the global 4.2 million infant fatalities within the first month of 

birth. 

 

Figure 2: Global ranking of risk factors by total number of deaths from all causes in 2019 (Data source: 

State of Global Air 2020) 

The United States Environmental Protection Agency (EPA) regulates six air 

pollutants recognized for causing the most harm to human health and the environment. 

These pollutants are commonly known as "criteria pollutants (USEPA, 2022a) and 

include particulate matter (PM), nitrogen oxides (NOx), sulfur oxides (SOx), lead (Pb), 

carbon monoxide (CO), and ground-level ozone (O3).  These criteria pollutants are used 

to set the National Ambient Air Quality Standards (NAAQS) and are updated 

periodically using emerging scientific benchmarks and knowledge regarding health 

effects (USEPA, 2022a). Criteria air pollutants emerge from various sources, 

encompassing automobiles, industrial processes, construction activities, wildfires, and 

other forms of human involvement. PM can be grouped into either primary or secondary 

classification (USEPA, 2022c). Primary PM is directly emitted from sources and can vary 
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in size from coarse to fine. Interestingly, it is the only primary pollutant regulated under 

Section 109 of the Clean Air Act without a specific chemical identity definition (Ullrich, 

2003). PM and O3 are subsets of the criteria air pollutants, and their regulation is vital due 

to their profound effects on public health and the environment, along with the diverse 

origins from which they can emerge (USEPA, 2022b). Despite the strides like 

technological innovation, a shift toward renewable energy, increased air quality 

monitoring, and the implementation of more stringent laws to improve air quality since 

1970, certain regions still consistently observe levels of PM and ground-level O3 

surpassing the NAAQS. As a result, these regions are identified as "nonattainment areas” 

(Congressional Research Service, 2020). Their toxicity and ubiquity make particulate 

matter less than 2.5 micrometers in diameter (PM2.5) and O3 among air pollutants most 

scrutinized with possible effects on health (American Lung Association, 2023b; USEPA, 

2022b) and unfavorable birth outcomes (Ha et al., 2019; Heft-Neal et al., 2018; Nyadanu 

et al., 2022; Siddika et al., 2019). 

1.4. PM2.5 and epidemiologic associations with fetal and infant death 

PM refers to tiny solid or liquid materials dispersed in the air and can originate 

from multiple sources  (USEPA, 2022c). A schematic of the relative sizes of PM is 

presented in Figure 3. The chief constituents of PM2.5 include organic carbonaceous 

mass, ammonium sulfate, ammonium nitrate, elemental carbon, and earthy substances, 

which are primarily derived from sources such as vehicles, power production, and 

airborne soil and metalworking processes (Adams et al., 2015; USEPA, 2022c). PM2.5 

often varies by region depending on local sources (Frank, 2006). Research consistently 

shows that exposures to smaller particles such as PM2.5 are associated with more health 

hazards compared with larger particles (Brook et al., 2010; Rajagopalan et al., 2018). 

This is because these particles are more easily inhaled, can reach deeper into the lungs, 

and potentially access the bloodstream (Anwar et al., 2021). Although there have been 

substantial reductions in the national average concentrations of PM2.5 following the 

implementation of the Clean Air Act, PM2.5 levels in the United States have started to 

exhibit an annual increase of 5.5% since 2016 (Berkley, 2022). This rise can be in part 

attributed to more frequent wildfires (Burke et al., 2022) and other factors such as 

increased dependence on fuel oil or coal in certain areas (Berkley, 2022).  
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Figure 3: The analogy schematic of particulate matters (PM2.5) (Adapted from US EPA) 

PM2.5 presents substantial public health risks globally, including in developed 

nations such as the US, and is particularly pronounced in underdeveloped and developing 

countries in Asia where PM2.5 concentrations are notably higher (Fleischer et al., 2014). It 

was found that every one-unit increase in PM2.5 annually is associated with a 14.5% 

increase in deaths of children under the age of five in Asian countries (Anwar et al., 

2021). In developed nations such as the US, even with structural and regulatory attempts 

to curve PM2.5 levels, climate change, topography, and increased dependence on fossil 

fuel are contributing to high exposures in some regions (Lelieveld et al., 2015). 

PM2.5 represents a toxic hazard to fetal development, impacting not only via 

chronic exposure but also through acute, short-term exposure. Research has demonstrated 

adverse health outcomes in fetuses and infants resulting from transient exposures to air 

pollution (Dastoorpoor et al., 2021; Faiz et al., 2013; Mendola et al., 2017; Sarovar et al., 

2020b). While existing studies demonstrate a positive association, further research is 

required due to variations in geographical context, design methodology, sample size, 

pollution levels, population attributes, exposure metrics, and confounding across studies. 

Current literature primarily targets chronic exposures, with limited studies on the impact 

of transient short-term exposures. Moreover, prior studies on air pollution and fetal 

outcomes are limited from confounding as there are multiple differences between 

exposed and unexposed individuals that can also affect fetal outcomes. A study design 

that can allow us to study short-term exposures and adjust for confounding while 

accommodating time-variable elements like seasons, temperature, and humidity, can 

improve our estimation of the relationship between PM2.5 and fetal/infant death. It is of 

paramount importance to prioritize research in an underserved area, as these locales often 

encompass susceptible racial and ethnic groups such as Black and Hispanic communities 

with low socioeconomic standing. These populations tend to inhabit areas with higher 

pollution levels compared to their White counterparts, resulting in them bearing an 

unequal burden of the harmful effects of air pollution (Woodruff et al., 2003).  



6 

 

Moreover, a systematic review conducted earlier concluded that the evidence 

linking PM with infant death isn't substantial or consistent (Glinianaia et al., 2004). Yet, 

the same study also hinted at the presence of some steady evidence demonstrating a link 

between PM and post-neonatal death. Research assessing the influence of regional 

differences in PM has shown detrimental effects on post-neonatal death, as evidenced in 

specific cohort and case-control studies (Ritz et al., 2006; Woodruff et al., 2008b; 

Woodruff et al., 1997). Nonetheless, research exploring the effects of brief periods of 

exposure to PM on infant death, using methodologies such as time-series and case-

crossover analysis, have also yielded inconclusive findings (Carbajal-Arroyo et al., 2011; 

Ha et al., 2003; Hajat et al., 2007; Loomis et al., 1999; Scheers et al., 2011; Son et al., 

2008; Tsai et al., 2003; Yang et al., 2006). Given the scarcity of existing on this topic, the 

relationship between PM and infant death is still unclear and warrants more attention. 

1.5. Ozone and epidemiologic associations with fetal and infant death 

Another common air pollutant is O3, a gas shown to be harmful to pregnant 

people (Gao et al., 2022). Several studies indicated positive associations between acute 

O3 exposure and adverse birth outcomes.  For instance, in a US multi-center study, short-

term exposure to O3 in the week leading up to delivery was associated with the risk of 

fetal death (Mendola et al., 2017). Similarly, exposure to O3 during the preceding three to 

five days was associated with infant death in Mexico City (Loomis et al., 1999). Even 

after accounting for other pollutants such as PM2.5 and NO2 in the same study, the impact 

of O3 on fetal death remained consistent. Moreover, chronic exposure to O3 was 

associated with a 9% increased risk of fetal death per 3.6-ppb increase in ozone 

concentration (Rammah et al., 2019) . A cohort study conducted in California found that 

exposure to O3 during the third trimester was associated with fetal death risk, but 

exposures during earlier trimesters or averaged over the entire pregnancy did not show an 

association (Green et al., 2015). In contrast, a population-based case-control study in 

Taiwan showed no association between exposure to O3 and fetal death after controlling 

for other pollutants (Hwang et al., 2011). Similar findings were obtained from a 

population-based prospective cohort study conducted in Wuhan, China, which reported 

no association between O3 and fetal death at any stage of pregnancy (Yang et al., 2018).  

Current research predominantly focuses on the effects of chronic exposure to air 

pollutants, often looking the role of short-term increases in O₃ levels. This oversight is 

compounded by the scarcity of studies specifically examining the relationship between O₃ 

exposure and fetal/infant outcomes. Furthermore, existing studies vary in study design, 

exposure and outcome assessments, ambient air pollutant concentrations, and statistical 

methodologies, making comparisons difficult, preventing a clear understanding of the 

role of O3 on early life mortality. Investigating the short-term impacts of spikes in O₃ and 

PM2.5 concentrations is essential for elucidating the mechanisms through which short-

term exposure might induce adverse outcomes. This approach is critical for highlighting 

the pathways of harm that can manifest within brief exposure periods, thereby 

emphasizing the considerable risks and potentially fatal consequences of transient air 

pollution exposure. 



7 

 

1.6. Biological Mechanism   

Mounting data indicates that the biological mechanisms underlying the 

associations between air pollution and adverse pregnancy outcomes encompass various 

processes such as oxidative stress, blood clotting, maternal placental inflammation, 

hypertension, and possibly endocrine disruption (Slama et al., 2007). These processes 

may interfere with placenta growth, transplacental oxygen transport, and nutrient 

transport, which may promote fetal epigenetic changes, delayed growth, or 

increase infection susceptibility (Kannan et al., 2006; Slama et al., 2008) all of which 

have important contribution to both immediate and subsequent offspring health.  

The mechanism by which environmental pollutants induce oxidative stress and 

inflammation is not fully understood, but it is believed that ROS levels can surge 

significantly in response to environmental stressors (Di Meo et al., 2016; Kannan et al., 

2006; Li et al., 2003). Such stressors include exposure to air pollutants, chemicals, or 

toxins, which can trigger inflammation signals, that inhibit the function of antioxidant 

enzymes, resulting in substantial damage to cellular structures (Di Meo et al., 2016; 

Donaldson et al., 2001; Li et al., 2003; Rahman et al., 2006). Moreover, these conditions 

can induce harm to proteins, DNA, and lipids, which in turn can contribute to further 

inflammation and other detrimental biological impacts (Li et al., 2003; Li et al., 2019; 

Maccani & Marsit, 2009).  

Recently it was discovered that PM2.5 can cross the placenta in humans and can 

have direct exposure to the fetus during the most vulnerable stage of development (Bove 

et al., 2019), enter the fetal bloodstream, and harm the developing fetus through oxidative 

stress and inflammation (Janssen et al., 2012; Lodovici & Bigagli, 2011; Slama et al., 

2008). Upon entering the fetal system, these particles can trigger oxidative stress and 

inflammation by amplifying the production of ROS and inflammatory cytokines 

(Dadvand et al., 2013). This can damage fetal tissues and impair normal fetal growth and 

development, potentially leading to adverse health effects such as fetal growth restriction, 

premature birth, and even death of the fetus (Dadvand et al., 2013). Likewise, exposure to 

PM2.5 during the postnatal period may elicit comparable pathophysiological reactions, 

including the impact on oxidative stress, autonomic nervous system, and inflammation in 

mothers (Khadka & Canning, 2021). These adverse physiological changes, coupled with 

the immature immune and respiratory systems of infants, contribute to the risk of infant 

morbidity and mortality (Martinelli et al., 2013).  

Exposure to O3 has also been associated with elevated production of ROS and 

harm to cell structures, which consequently induces inflammation and impairs cellular 

function (Bai et al., 2022; Zhang et al., 2019).  These changes may disrupt placental 

function and alter fetal development (Chung et al., 2021). Consistent with these 

mechanisms, research has indicated a connection between exposure to increased levels of 

O3 during pregnancy and negative birth consequences, including premature birth and 

inhibited fetal growth (Rappazzo et al., 2021).  
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1.7. Windows of susceptibility 

The idea of "windows of susceptibility" implies that the timing of exposure is 

crucial in deciding the influence on subsequent health outcomes (Fudvoye et al., 2014; 

Wells, 2014). It is defined as the windows of exposure specific to certain periods in a 

person's life, such as pregnancy, prenatal, and post-natal periods, during which the 

vulnerability to specific environmental or lifestyle influences is notably higher (Gómez-

Roig et al., 2021). Studies indicate that exposure to environmental factors during key 

developmental stages —in utero, early childhood, puberty, and pregnancy — can elicit 

enduring effects on both mother and offspring (Gómez-Roig et al., 2021; Miguel et al., 

2019; Newkirk, 2017). These phases, often termed "windows of susceptibility," represent 

times of significant bodily changes, thereby increasing sensitivity to environmental 

impacts (Fitzgerald et al., 2020). With the fast progression of fetal development, the 

windows of susceptibility can be overlooked if exposure assessments are not carried out 

within the appropriate timeframe. The most susceptible groups in a population, such as 

children, are the first to feel the impact due to their distinctive physical, biological, and 

social traits (Bearer, 1995). As the boundaries of these windows of exposure are not 

always clear in fetuses and children, researchers are left to speculate about when they 

occur (Wright, 2017).  

Long-term exposures to air pollutants such as PM2.5 and O3 have been linked to 

fatal outcomes in fetuses and infants. Studies focused on exposures during specific 

trimesters suggest that exposure to PM2.5 during the first trimester and throughout 

pregnancy can lead to an increased risk of fetal deaths (Hwang et al., 2011; Wainstock et 

al., 2021). PM2.5 exposures during any or all stages of pregnancy can elevate the 

likelihood of other adverse pregnancy outcomes like preterm births and low birth weights 

(Chersich et al., 2020; Kirwa et al., 2021; MacDorman, 2011; Padula et al., 2014; Rosa et 

al., 2017; Siddika et al., 2019), both of which significantly contribute to infant death 

(Huynh et al., 2006; Mekonnen et al., 2021). Similarly, O₃ levels during the first trimester 

are associated with a greater risk of pre-eclampsia and early delivery (Olsson et al., 

2013). A study by Olsson et al. estimated that O₃ exposure could be responsible for about 

5% of pre-eclampsia instances, which may also cause fetal death before birth (Olsson et 

al., 2013). Additionally, babies born prematurely may face a higher likelihood of infant 

death (Khadka & Canning, 2021). Various studies have examined exposures during 

specific trimesters as potentially vulnerable windows for fetal and infant deaths, with the 

majority indicating that the third trimester is the most sensitive period for exposure 

(deSouza et al., 2022; Mendola et al., 2017; Son et al., 2017). Investigating critical 

exposure windows specific to each trimester is commonly preferred due to its 

straightforward implementation and interpretation. Recently a study suggested that 

associations with trimester-specific exposures may not capture the whole picture because 

biological changes are continuous and do not strictly adhere to these three-month 

intervals (Wilson et al., 2017). In addition, given that some fetal deaths occur before 

reaching the third trimester, the understanding of trimester-specific windows of exposure 

may not always provide an accurate representation for fetal deaths because such analyses 

would exclude those born early without a third trimester. 
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In addition to the long-term chronic exposures, some studies also explored acute 

exposures (Chen et al., 2023; Mendola et al., 2017; Sarovar et al., 2020; Thurston & Ito, 

2001; Yorifuji et al., 2016). Among the few studies on acute exposures to air pollutants, a 

case-crossover study by Sarovar et al., explored the link between short-term exposure to 

air pollutants such as PM10-2.5 and O3 and fetal death (Sarovar et al., 2020). They found 

that the critical windows of exposure were approximately two days and four days before 

fetal death for PM10-2.5 and O3, respectively (Sarovar et al., 2020). These findings suggest 

a relatively quick impact after prenatal exposure. The study by Loomis et al. provides 

additional evidence of the acute effects of prenatal and postnatal exposure to PM2.5 on 

fetal and infant death.  

1.8. Susceptible populations  

Evidence suggests that certain groups within the population may be more 

susceptible to the health impacts of air pollution (Wang et al., 1997; Wilhelm & Ritz, 

2003). For example, at the same level of exposure, males have a higher likelihood of 

having adverse birth outcomes such as premature birth and low birth weight birth in 

comparison to females (Ghosh et al., 2007; Zeitlin, 2002). Research also suggests that 

boys may be more vulnerable to the effects of air pollution on fetal development (Bertin 

et al., 2015). Similarly, the impacts of prenatal exposure to air pollution at 6–12 weeks of 

gestation on forced expiratory volume are more apparent in boys (Bose et al., 2018). The 

differential outcomes observable in intrauterine growth and vulnerability to oxidative 

stress are notably pronounced in male fetuses (Bolton et al., 2014; Jarvis, 2005). This 

disparity may be attributed to the variations in the levels and roles of sex hormones 

(Bertin et al., 2015). A study shows that among preterm cases, specifically those born 

before the 32nd week of gestation, chronic inflammation, measured by molecular 

markers of intrauterine inflammation was more frequently observed in the placentas of 

male fetuses compared with those of females (Goldenberg et al., 2006). Additional 

studies are needed to examine how sex-specific susceptibilities may affect the risk of 

fetal and infant deaths when exposed to air pollution. 

There is also evidence that underserved populations may be affected more by air 

pollution (Bevan et al., 2021; Mekonnen et al., 2021; Woodruff et al., 2003). For 

example, individuals residing in lower-income areas have a higher likelihood of 

encountering detrimental birth outcomes, such as premature birth, restricted fetal growth, 

and shorter gestation periods, even when exposed to comparable levels of air pollution to 

more affluent areas (do Nascimento et al., 2022). Another study found that mothers who 

were Hispanic, Asian, Pacific Islander, and African-American were more vulnerable to 

adverse pregnancy outcomes compared with mothers who were White even at the same 

level of exposure to air pollution (Woodruff et al., 2003). These differences are likely 

attributable to variations in structural differences and socioeconomic characteristics that 

could foster disparities (do Nascimento et al., 2022; Jabin et al., 2022; Jang & Lee, 2022; 

Jbaily et al., 2022), including inadequate healthcare access, discrimination, and other 

social stressors (Horbar et al., 2019). For instance, areas with high pollution often 

coincide with disadvantaged communities, which are simultaneously more likely to have 

limited healthcare, poorer nutrition, fewer job opportunities,  and other stressors 
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(American Lung Association, 2023a). As such, there is a need for more studies focusing 

on the underserved population or groups of the population who are highly affected by air 

pollution. Such studies can contribute to understanding the widening gap in the deaths of 

fetuses and infants in the US.  

1.9. The San Joaquin Valley, California 

The San Joaquin Valley (SJV) is located in the central region of California with a 

population of 4.3 million and is widely recognized as one of the most productive 

agricultural areas globally. The valley stretches southward from San Joaquin County 

across Stanislaus, Merced, Madera, Fresno, Tulare, Kings, and Kern counties which 

constitutes approximately 11% of the total population in the state (Public Policy Institute 

of California, 2020). Meanwhile, it is considered one of California’s most underserved 

areas with marked health and resource disparities. In contrast to the rest of the state, the 

SJV had a 25% higher infant death in 2018 (6 vs. 4 per 1,000) (Finocchio & Paci, 2020). 

In 2018, the median household income in the SJV was significantly lower ($52,621) 

compared with the rest of California ($75,277) (United States Census Bureau, 2018). 

Meanwhile, there are also severe healthcare shortages in the region (Finocchio & Paci, 

2020). The proportion of mothers accessing prenatal care during the first trimester in the 

counties of the SJV is significantly lower when compared to the statewide average in 

California. Specifically, statewide data indicates that 86.8% of mothers receive prenatal 

care in the first trimester. In contrast, the counties within the SJV report lower 

percentages: Merced at 75.6%, Madera at 81.3%, San Joaquin at 81.2%, Kern at 82.1%, 

Tulare at 82.7%, Fresno at 85.3%, Kings at 85.8%, and Stanislaus at 85.9% (KidsData, 

2021). This discrepancy highlights a regional disparity in the access to early prenatal care 

across the state indicating potential barriers to healthcare services for pregnant women.  

The SJV experiences significant levels of PM2.5 and O3 pollution originating from 

various sources including residential wood burning, agricultural activities, and 

transportation (Chen et al., 2014). This is compounded by the presence of two major 

north-south highways (e.g. Interstate 5 (I-5) and State Route 99 (SR-99)) running through 

the region. The topography and weather patterns in the SJV make air pollution worse by 

preventing pollutants from being dispersed. The mountains surrounding the valley trap 

the pollutants, and the still air does not help to move them out of the area (SJVAPD, 

2016). Due to the specific topography of SJV, it experiences some of the worst air quality 

in the states (Padula et al., 2014).. These conditions make it challenging to maintain 

healthy air quality levels in the SJV, particularly for vulnerable populations such as 

pregnant mothers and children.  

1.10. Rationale of the study  

Despite public health concerns, to date, no studies have evaluated the relationship 

between air pollution and fetal/infant death in the SJV. Nevertheless, studies have linked 

air pollution with adverse birth outcomes in this region (Ha, Martinez, et al., 2022; 

Padula et al., 2014; Padula et al., 2019). For example, an investigation was conducted on 

the impact of long-term air pollution on preterm birth in four SJV counties and found that 

being exposed to the highest quarter of air pollution levels was linked to an increased 
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likelihood of early preterm births, particularly during the second trimester and towards 

the end of the pregnancy period. The association was more pronounced for mothers 

residing in neighborhoods characterized by lower socioeconomic status (Padula et al., 

2014, 2019). More recently, our team implemented the case-crossover design to 

investigate the short-term impacts of pollution on preterm birth and found that PM2.5 and 

O3 exposures were associated with preterm birth risks in the cold and warm seasons, 

respectively (Ha et al., 2022).  

Given the lack of existing studies on fetal/infant death, further investigation of the 

risk of fetal and infant death in this highly polluted region is critical. Such knowledge can 

support strategies intended to decrease the burden of early-life fatalities. This 

understanding is also crucial for pollution management and planning strategies for a safer 

environment for vulnerable populations like pregnant women and their offspring 

representing racial minorities and belonging to low socioeconomic status. As mentioned 

above it is difficult to fully comprehend the relationship between air pollution and 

adverse health outcomes due to inconsistent findings, lack of identification of precise 

critical windows of exposure during pregnancy and after birth during early life, varying 

study designs, geographic locations, seasonal and time trends, population differences, and 

differences in the measurement of exposures, outcome, and confounding factors. 

Moreover, confounding is an inevitable issue in observational air pollution studies. To 

address this issue, an epidemiological design such as a time-stratified case-crossover 

analysis would be a significant addition to the literature as it can effectively address time-

invariant and time-variant confounding.  

1.11. Objectives and hypotheses 

Given the knowledge gaps and evidence identified above, the overarching goal of 

this study was to understand the associations between exposure to acute air pollution such 

as PM2.5 and O3 and the odds of fetal and infant death in the SJV in California using a 

time-stratified case-crossover study design. The specific objectives of this study are to: 

Objective 1: Investigate the relationship between acute exposure to air pollutants 

(particularly PM2.5 and O3) and the odds of fetal and infant death in the SJV.  

Hypothesis 1.1: Prenatal and postnatal exposure to air pollutants such as PM2.5 

and O3 increase the risk of fetal and infant death. 

Hypothesis 1.2: PM2.5 in the cold and O3 in the warm seasons are associated with 

an increased risk of fetal and infant death. 

Objective 2: Identify groups who may be more susceptible to the risk of fetal and infant 

death even at the same level of exposure.  

Hypothesis 2.1: The same level of air pollution exposure in communities of color 

and more disadvantaged populations may experience higher risk compared with 

predominantly White or economically more affluent populations.  

Objective 3: Identify prenatal and postnatal critical acute windows of exposures across a 

14-day lag period for fetal and infant death with PM2.5 and O3 exposures. 
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Hypothesis 3.1: Exposures to PM2.5 and O3 increase the risk of fetal and infant 

death within 14 days. 

2. Materials and methods 

2.1. Study design 

The acute effects of air pollution on fetal and infant death were explored using a 

time-stratified case-crossover design, a study design widely and increasingly recognized 

for its utility in studying the association between short-term exposure to air pollution and 

acute health outcomes (Maclure, 1991). This analytical approach is a unique variation of 

the case-control study design and is particularly designed to adjust for confounders that 

do not change over time (Carracedo-Martinez et al., 2010). In contrast to traditional case-

control designs, which compare exposure among cases with that of controls who have not 

encountered a particular outcome of interest, the case-crossover design compares 

exposure during a specific period when the outcome occurred (case period) to exposures 

during several control periods when the outcome did not occur (control periods). Through 

the comparison of an individual's exposure during the case period with their exposure 

during control periods, this approach allows each case to serve as its control and better 

control of time-invariant confounding factors that may impact the exposure-outcome 

relationship including genetic predispositions, chronic health conditions, and personal 

traits that remain stable over a relatively short span of a few weeks. We defined the time 

frame for case periods as the day of event (lag 0), extending back to the preceding 

fourteen days (lag 1–lag 14) following previous studies (Chen et al., 2021). Previous 

research has predominantly employed a lag duration ranging from one to seven days, 

coinciding with the week preceding the event, to explore the impacts of air pollution on 

diverse birth outcomes (Ha, Martinez, et al., 2022; Sarovar et al., 2020; Son et al., 2008) 

highlighting that while biological impacts are seen within a week, the precise timing of 

these effects remains uncertain. The impact of air pollution on birth outcomes may extend 

beyond the traditionally considered one-week window due to pollutants like PM2.5 

causing systemic inflammation and oxidative stress over longer periods. These effects, 

which arise from both direct and indirect exposure, might not manifest within a week as 

physiological changes develop over time. Considering the complexity of air pollution's 

effects, varying exposure levels, and individual differences, it appears reasonable to 

explore a 14-day window for adverse birth outcomes. This approach, advocating for 

expanded research into the timing and mechanisms of air pollution's impact on fetal 

development, suggests that a two-week exposure period could provide a clearer 

understanding of the risks to birth outcomes. 

We used a method called time-stratified control selection to choose control 

periods (Figure S1). In addressing the influence of time-related trends and variations in 

seasons, control intervals were determined for three weeks both before and following 

each instance of fetal and infant death. Acknowledging that the outcomes of case-

crossover analyses can be heavily influenced by how control periods are chosen, we 

employed a two-sided control selection method known as bidirectional control sampling, 

involving the use of three to four varied control periods to accurately determine the 
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relationship between air pollution and fetal and infant death. For each defined case 

period, we selected all additional days within the same month that corresponded to the 

same weekday. For instance, if an event occurred on Friday, August 9th, 2019, then 

control periods would be all the other Fridays in that same month, including August 2nd, 

16th, 23rd, and 30th. This strategy lets us match each case period with three to four control 

periods for the same person (Ha, Martinez, et al., 2022; Janes et al., 2005; Kojima et al., 

2020; Nitta et al., 2010). One might wonder whether it's appropriate to choose control 

periods after the health event because the individuals are no longer at risk. However, this 

technique is considered appropriate and acceptable as individual events are unlikely to 

influence the collective exposure levels in the study group, and exposure to air pollution 

is typically perceived as an external variable to the individual. Therefore, selecting post-

event control periods can still be an effective way to control for potential confounding 

factors (Mittleman & Mostofsky, 2014). 

2.2. Study data and population 

  We obtained linked birth and death certificates of all births born in the state of 

California from 2016 to 2019 from the Office of Vital Records of the California 

Department of Public Health (CDPH). This comprehensive dataset includes all births and 

any subsequent death within one year of a live birth. The vital record files contain 

information about the newborn, mother, and father's demographics, along with some 

obstetric data related to pregnancy and delivery.  

The initial sample included 1,881,390 participants from the state of California 

from 2016 to 2019. After limiting the sample to eight SJV counties (Kern, Kings, Fresno, 

Madera, Merced, Tulare, San Joaquin, and Stanislaus), the sample size was reduced to 

244,140. After excluding observations with missing birth dates (n=141), those with 

gestation weeks <20 and >42 (n=607), multiple gestations (n=7214), and those with no 

zip-code for air pollution linkages (n=767), 235, 411 singleton births remained in our 

eligible population. As case-crossover design only utilizes cases, our final sample 

includes 1,343 fetal and 1,097 infant deaths (Figure S2).  

2.3. Exposure assessment 

We obtained daily PM2.5 (24-hour average) and O3 (maximum 8-hour average) 

concentrations from the Valley (SJVAPCD, 2021). Air District utilizes a method rooted 

in regression analysis to establish the levels of air pollution within each zip code. This 

method integrates data from the Environmental Protection Agency's (EPA) Air Quality 

System monitors, as well as insights derived from the EPA's Community Multiscale Air 

Quality models. The latter considers emission metrics, meteorological data, and readings 

from local air quality monitoring systems. This modeling method has been previously 

validated and is known to replicate historical data effectively. Specifically, the R2 values 

for the correlation between the modeled and observed data exceed 0.90 for both 

pollutants (Dunes D.A, 2015). To estimate individual exposures, we spatiotemporally 

linked participants with the daily air pollution data from the SJVAPCD. This was 

achieved by matching the mother's residential zip code at the time of birth, as stated on 

the birth certificate. 
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Numerous studies reported associations between exposure to temperature and 

fetal and infant death risk (Auger et al., 2015; Ha et al., 2017). We aggregated daily 

weather parameters, such as highest and lowest temperatures and relative humidity, for 

each zip code using data from gridMET (Abatzoglou, 2013). GridMET provides detailed 

weather estimates for 4km x 4km areas throughout the entire US and allows for 

comprehensive coverage in both space and time that is usually hard to achieve with data 

collected from individual weather stations. We then linked these weather variables with 

the zip codes of each participant. To assign these exposure levels, we calculated the 

average temperature and relative humidity exposure across each participant's zip code. 

This study examined the two-week windows of exposure before fetal and infant deaths, 

with "lag 0" representing the day of the event and lags 1-14 representing one to 14 days 

leading up to these events. 

2.4. Time-invariant variables and effect modifiers 

Time-invariant variables included in this study were maternal sociodemographic 

characteristics including educational status, age, maternal race/ethnicity, neighborhood 

income, prenatal care received, Women Infants and Children (WIC) program 

participation, principal source of payment for prenatal care, smoking status during 

pregnancy, maternal predelivery body mass index (BMI), and sex of the child.  

To explore potential differential effects of air pollution across different groups, 

we considered effect modifiers including sex of the child, maternal race/ethnicity, 

maternal age, and neighborhood income. Median neighborhood income was obtained 

from the US American Community Survey 2010 data and linked to birth and death 

certificates at the zip-code level (American Community Survey, 2010). 

2.5. Outcome assessment  

The main outcomes of interest, fetal and infant deaths, were assessed using linked 

birth and death certificates from the California Office of Vital Statistics. We defined fetal 

death as any death of an unborn fetus occurring between 20 to 42 weeks of gestation. 

Infant death was defined as the death of a live-born infant within the first year of life. 

While we were able to follow each live birth to document death within one year, given 

the nature of birth certificate data, it was not feasible to establish a longitudinal 

connection between pregnancies of the same mother. Consequently, the analysis was not 

conducted based on individual women but rather on specific singleton pregnancies/babies 

affected by the outcomes. 

2.6. Statistical analysis 

Descriptive analyses were conducted on all time-invariant variables to provide an 

overview of the characteristics of the cases under study. Following this, an examination 

of the distribution of air pollutants and weather variables during the study period (2016 – 

2019) was undertaken to contextualize the environmental conditions. To extend this 

analysis, we presented the distribution of air pollutants among participants, comparing 

both case and control periods across all lag days. Additionally, we also conducted 

Spearman correlation coefficient analysis to understand relationships between air 
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pollutants in our study across time. This analysis was conducted for all pollutants 

between lags, as well as directly between the air pollutants and weather variables 

themselves across all lags. We tested the normality of our exposure variables. The results 

showed that O3 and temperature had a normal distribution. PM2.5 and relative humidity 

also had a normal distribution, but they were skewed to the right. 

We used conditional logistic regression models to compare air pollution 

exposures during the case and control periods within the same person (Figure S3). For 

each pollutant of interest, we tested square and higher-order polynomial terms and 

visually plotted pollutant concentrations against the odds of the event. These exploratory 

analyses did not yield any indication of a non-linear association between air pollutants 

and the logarithmic odds of fetal and infant death cases. As such, we assumed a linear 

relationship between the pollutants and death onset, and calculated the odds ratio (OR) 

for each 10μg/m3 increase in PM2.5 (Woodruff et al., 2006; Yorifuji et al., 2016) and 10-

ppb increase in O3 exposure (Green et al., 2015) with its respective 95% confidence 

intervals. Due to strong seasonality of air pollution in the SJV, we stratified our analyses 

by season of delivery for fetal death and season of death for infant death. We defined 

cold season as November through April  and the warm season as  May through October 

(Ha, Martinez, et al., 2022). Prior studies have also used these seasonal definitions and 

stratification of pollutants by season under their analysis (Basu et al., 2016; Jhun et al., 

2015). As the case-crossover design already inherently adjusts for time-invariant 

confounding, we only modelled time-varying confounding factors such as temperature, 

humidity, and co-pollutant as covariates. Further analyses included a) whole-year 

analysis model b) a single pollutant model for each of the pollutants c) models stratified 

by neighborhood income, maternal age, race/ethnicity, and sex of the child. These 

stratified analyses aimed to investigate whether contextual and individual characteristics 

had a potential influence in modifying the relationship between air pollution and the 

outcomes. While our analyses did reveal a few effect modifiers for air pollution that were 

statistically significant, the reliability of the odds ratio estimates was compromised due to 

the limited sample size, yielding no coherent pattern of observation. For instance, 

maternal race, an examined variable in this study, had a very small sample size for 

significant race/ethnicity (e.g., Asian and Hawaiian/PI). Despite having statistical 

significance, it did not demonstrate any stable estimates and meaningful observations. 

Thus, stratification by maternal race is not depicted in the results. The final statistical 

model included O3, PM2.5, temperature, humidity, season of birth/death (depending upon 

the outcome in the model), lag effect, interaction terms between each pollutant and lag 

day, interaction terms between each pollutant and season of birth/death. We also 

performed a normality test for the air pollutants and weather variables, it was observed 

that the variables O3 and temperature were normally distributed. Similarly, PM2.5 and 

relative humidity followed normal distribution; however, they were right-skewed. We 

also conducted several additional analyses to further explore the relationship between air 

pollution and fetal and infant death. All analyses were performed utilizing SAS version 

9.4 (Cary, NC). 

file:///C:/Users/sha55/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/RGHQ9O31/(Woodruff%20et%20al.,%202006;%20Yorifuji%20et%20al.,%202016)
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2.6.1. Additional analysis 

We also conducted additional testing adjusting for other lag days to assess the 

temporal dependance between lags, given their high correlation. The estimates were 

found to be consistent with those in the primary model but with wider confidence 

intervals. This analysis confirms that the estimates were indeed independent of the 

temporal dependance between lags within the primary models. 

In our analysis, we observed inverse associations within the models that prompted 

further methodological refinement. We implemented several strategies, including log-

transformation and z-standardization of the pollutants. Despite this exploration, the 

inverse associations persisted. Consequently, we adhered to our original modeling 

approach, as it provided the most consistent and interpretable framework for our study. 

2.7. Missing data  

In the study, participants with missing data on maternal characteristics were 

categorized as 'unknown'. While there was some missing data, the extent was generally 

low below 7%. All observations containing missing data on time-invariant factors were 

retained, as these variables were not required in the model. This approach ensured that 

valuable information could still be obtained from the available data, without 

compromising the integrity of the main analysis. 

2.8. Ethics  

The research protocol of this study was approved by the review board at the UCM 

(IRB number: UCM2017-128 and UCM2022-69). The approval from this ethical review 

board ensured that the study adhered to the requisite ethical principles and regulatory 

guidelines. This study was also approved by the California Committee for the Protection 

of Human Subjects. 

3. Results 

3.1.Population statistics  

The prevalence of fetal death during the study period was 0.57% while that of 

infant death was 0.47%. Table 1 provides an overview of the characteristics of the 

participants (only cases) involved in the study. A higher proportion of cases occurred 

during the warm season and were male. The majority of the babies had mothers between 

26-35 years old, were Hispanic, had some college, had public insurance, and were non-

smokers. In addition, fetal deaths were most likely in neighborhoods with median 

household income in the third quartile, while infant deaths were more likely to come 

from neighborhoods in the lowest quartile (26.89%).  

Table 1: Characteristic of fetal and infant deaths in the SJV, California, 2016-2019 

(N=2440) 

Demographic characteristics 
Fetal death 

(N = 1343) 

Infant death 

(N=1097) 
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Frequency 

 (N) 

Percentage 

 (%) 

Frequency 

(N) 

Percentage  

(%) 

Sex of child 

Male 698 51.97 Missing # here 55.61 

Female 634 47.21 486 44.30 

   Undetermined  11 0.82 1 0.09 

Age of mother 

Less than 18 years 27 2.01 17 1.55 

Between 18-25 years 388 28.89 409 37.28 

Between 26-35 years 628 46.76 478 43.57 

Greater than 35 years 293 21.82 192 17.50 

Missing 7 0.52 1 0.09 

Race of mother 

Non-Hispanic White 308 22.93 238 21.70 

Non-Hispanic Black 109 8.12 92 8.39 

Hispanic 779 58.00 619 56.43 

Asian 111 8.27 76 6.93 

Hawaiian/PI 11 0.82 2 0.18 

AI/AN 8 0.60 8 0.73 

Other  4 0.30 19 1.73 

Missing 13 0.97 43 3.92 

Body Mass Index of mother (BMI) 

Underweight 37 2.76 29 2.64 

Normal  333 24.8 314 28.62 

Overweight  310 23.08 272 24.79 

Obese 456 33.95 375 34.18 

Unknown  207 15.41 107 9.75 

Education of mother  

Less than high school 264 19.66 233 21.24 

HS/GED 439 32.69 335 30.54 

Some college/Bachelor 495 36.86 384 35 

Advanced degree      43 3.2 29 2.64 

Unknown  102 7.59 116 10.57 

Smoking status of mother         

Not a smoker 1106 82.35 1035 94.35 

Smoker  106 7.89 47 4.28 

Unknown  131 9.75 15 1.37 

Prenatal care 
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No prenatal care -  - 59 5.38 

Early prenatal care -  - 858 78.21 

Late prenatal care -  - 102 9.3 

Missing -  - 78 7.11 

Principal source of payment for prenatal care 

No insurance/no prenatal care    73 5.44 59 5.38 

Public 733 54.58 715 65.18 

Private 383 28.52 299 27.26 

Self-pay 16 1.19 17 1.55 

Other 10 0.74  -  - 

Unknown  128 9.53 7 0.64 

WIC         

Yes 539 40.13 667 60.8 

No 595 44.3 407 37.1 

Unknown/Not stated 209 15.56 23 2.1 

Neighborhood household income  

Quartile 1 (<$36025.85) 312 23.23 295 26.89 

Quartile 2 ($36025.85 - $46624.35) 326 24.27 277 25.25 

Quartile 3 ($46624.35 - $53664.82) 373 27.77 252 22.97 

Quartile 4 (=$53664.82) 322 23.98 266 24.25 

Missing  10 0.74 7 0.64 

Season of birth  

Warm season (May-October) 672 50.04 588 53.6 

Cold season (November-April) 671 49.96 509 46.4 

Season of death 

Warm season (May-October) - - 578 52.69 

Cold season (November-April) - - 519 47.31 
Abbreviations: PI=Pacific Islander; AI/AN= American Indian/Alaska Native; 

HS/GED = High School/ General Education Diploma; WIC= Women Infants Children; SJV= San Joaquin 

Valley. 

 

3.2.Exposure statistics 

3.2.1. Exposures statistics for fetal death 

The distribution of air pollutants (PM2.5, O3) and meteorological variables 

(temperature, relative humidity) during the study period is presented in Table S1. The 

average levels of PM2.5 were notably higher during the cold season, while O3 

concentrations were significantly elevated in the warm season. More specifically, the 

mean concentrations of PM2.5 in cold months and O3 in warm months were 13.1 μg/m3 

and 57.5 ppb respectively. The standards set by the United States Environmental 
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Protection Agency for annual mean concentration of PM2.5 is 9mg/m3 and O3 is 70ppb 

(USEPA, 2022a). The distribution of exposures during case and control periods for both 

the pollutants for fetal deaths are presented in Table S2. During the warm season, the 

control period generally exhibited higher PM2.5 concentrations across most lag days 

compared to the case period. In contrast, during the cold season, higher PM2.5 levels 

were observed in the case period for later lag days, while immediate lag days had higher 

concentrations in the control period. In the warm season, ozone (O3) concentrations were 

comparable between the case and control periods. Conversely, during the cold season, 

slightly elevated O3 levels were observed in the control period.  Table S3 provides the 

Pearson correlation coefficients between air pollutants and meteorological variables by 

season. A positive correlation (r = 0.4) was observed between PM2.5 and O3 during the 

warm season, whereas a negative correlation (r = -0.38) was identified during the cold 

season. The correlation coefficient between O3 and temperature was strongly positive 

across both seasons, with a coefficient of r = 0.7. Table S4 illustrates the Pearson 

correlation coefficients between the lags (lag 0 to lag 14) of air pollutants and 

meteorological variables. Correlation coefficients for adjacent lag periods exhibited 

substantially higher values than those for lag periods that were further apart.  

3.2.2. Exposures statistics for infant death 

Table S5 shows the distribution of exposures during case and control periods for 

both the pollutants for infant deaths. In the warm season, higher PM2.5 concentrations 

were observed in the case period during immediate lag days (lag0–lag6), while the 

control period had higher levels during later lag days (lag7–lag14). In contrast, the cold 

season showed slightly elevated PM2.5 concentrations in the case period compared to the 

control period. For ozone (O3), the warm season had consistently higher concentrations in 

the case period across all lag days, while the cold season exhibited slightly higher O3 

levels in the control period. Table S6 displays a positive correlation (r = 0.4) between 

PM2.5 and O3 during the warm season, whereas the cold season reflected a negative 

correlation (r = -0.4). A positive correlation was consistently found between O3 and 

temperature in both warm and cold seasons (r = 0.7). Further, Table S7 presents the 

Spearman correlation coefficients between various lags (from lag 0 to lag 14) of air 

pollutants and weather variables. The correlation coefficients between lags in closer 

proximity were significantly higher compared to those observed between the most distant 

lag days. 

3.3.Main findings 

Table 2 presents the results from the conditional logistic regression models estimating 

the odds ratios for the association between air pollutants and fetal and infant death risk in 

the SJV by seasons of delivery for fetal death and season of death for infant death. 

3.3.1. Associations between air pollutants and fetal death 

In Table 2, PM2.5 exposures during the cold season generally appeared to be 

associated with higher odds of fetal death on the same day and within two weeks.  

However, only the odds associated with six days (lag 6), seven days (lag 7), ten days (lag 
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10), and fourteen days (lag 14) post-exposure were statistically significant. More 

specifically, a 10 mg/m3 increase in PM2.5 concentration was associated with 5-7% 

increased odds of fetal death, with evidence of higher risk estimate with larger lag days 

(aOR lag6 1.05, 95% CI 1.00,1.12); (aOR lag7 1.07, 95% CI 1.01,1.14); (aOR lag10 1.06, 

95% CI 1.00,1.13) and (aOR lag14 1.06, 95% CI 1.00,1.13). Lag 7 had the strongest 

association compared to other significant lag days. The unadjusted model presented 

significant estimates, mirroring those in the adjusted model. Interestingly, inverse 

associations were observed for PM2.5 during the warm season. For example, a 10 mg/m3 

increase in PM2.5 concentration on the day of event (lag 0) in the warm season was 

associated with 23% (aOR lag0 0.77, 95% CI: 0.70,0.83) decrease in risk of having fetal 

death. 

A significant positive association was observed between O3 exposure and fetal 

death in all lag days after adjusting for lag effect, PM2.5, temperature, and relative 

humidity. More specifically, a 10-ppb increase in O3 concentration was associated with 5-

8% increased odds of fetal death. The risk estimates were strongest for exposures one to 

four days before the event (aOR lag1-4 1.03, 95% CI 1.03,1.14) and in the later lag days 

(aOR lag11-12,14 1.08, 95% CI 1.03,1.14) as well as 6% increased odds (aOR lag0 1.06, 

95% CI 1.01,1.12) of fetal death on the day of the event. In comparison to the unadjusted 

model, the adjusted model showcased stronger associations.  

3.3.2. Association between air pollutants and infant death 

We did observe a trend of increased magnitude of association between exposure 

to PM2.5 and infant death on most of the days (lag 0-6, lag 8-11, lag 13-14), preceding the 

event, although these findings lacked statistical significance (Table 2). On the other 

hand, there appeared to be inverse associations between PM2.5 and infant death in all lags 

during the warm season.. 

We found a strong association between exposure to O3 and infant death during the 

warm season. A 10-ppb rise in O3 was linked to a 9-11% increase in the odds of infant 

death within a two-week exposure window across all lag days. Risks were more 

pronounced for exposures on event day (lag 0), three days before (lag 3), and fourteen 

days before (lag 14). More specifically, a 10-ppb increase in exposure to O3 was 

associated with 1.11 (aOR lag0,3,14 1.11, 95% CI: 1.05,1.17) times the odds of fetal death 

on the same day (lag 0), three days (Lag 3) and fourteen days (lag 14) post-exposure. 

However, we also observed an inverse relationship with O3 exposure in the cold season. 

For example, a 10-ppb increase in exposure to O3 was associated with a 7% (aOR lag4 

1.09, 95% CI: 1.04,1.15) decrease in odds of having infant death one day post-exposure. 

Table 2: Association between air pollutants and fetal and infant deaths in the SJV, 

California 2016 - 2019 

Pollutant

  

Season 

 

 Fetal death (20-42weeks) Infant death (< 1 year) 

Lag 

(day) 

Unadjusted OR 

(95% CI)a 

Adjusted OR 

(95% CI)b 

Unadjusted OR 

(95% CI)a 

Adjusted OR 

(95% CI)b 

PM2.5 Warm 
0 0.76 (0.70,0.83) 0.77 (0.70,0.83) 0.90 (0.83,0.99) 0.90 (0.83,0.99) 

 

1 0.80 (0.73,0.87) 0.79 (0.73,0.87) 0.90 (0.83,0.99) 0.90 (0.83,0.99) 
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2 0.78 (0.72,0.86) 0.78 (0.72,0.85) 0.90 (0.83,0.98) 0.90 (0.83,0.98) 
 

3 0.79 (0.72,0.86) 0.78 (0.72,0.86) 0.90 (0.83,0.99) 0.90 (0.83,0.99) 
 

4 0.81 (0.74,0.88) 0.80 (0.74,0.88) 0.89 (0.81,0.96) 0.89 (0.81,0.97) 
 

5 0.82 (0.75,0.89) 0.81 (0.75,0.88) 0.90 (0.83,0.98) 0.90 (0.83,0.98) 
 

6 0.82 (0.75,0.90) 0.81 (0.75,0.89) 0.88 (0.81,0.96) 0.88 (0.81,0.96) 
 

7 0.82 (0.75,0.90) 0.83 (0.76,0.90) 0.85 (0.78,0.93) 0.86 (0.78,0.94) 
 

8 0.82 (0.75,0.90) 0.81 (0.75,0.89) 0.88 (0.81,0.96) 0.88 (0.81,0.96) 
 

9 0.83 (0.75,0.90) 0.82 (0.75,0.89) 0.88 (0.81,0.96) 0.89 (0.81,0.96) 
 

10 0.83 (0.76,0.90) 0.82 (0.75,0.89) 0.89 (0.81,0.96) 0.89 (0.81,0.97) 
 

11 0.82 (0.75,0.89) 0.82 (0.75,0.89) 0.86 (0.78,0.94) 0.87 (0.79,0.95) 
 

12 0.79 (0.73,0.87) 0.79 (0.73,0.87) 0.84 (0.77,0.91) 0.85 (0.78,0.92) 
 

13 0.80 (0.73,0.87) 0.79 (0.73,0.86) 0.86 (0.79,0.94) 0.87 (0.79,0.95) 
 

14 0.83 (0.76,0.90) 0.82 (0.75,0.90) 0.87 (0.80,0.95) 0.87 (0.80,0.95) 
 

  
 

Cold 

0 0.98 (0.92,1.05) 0.99 (0.93,1.06) 1.06 (0.99,1.13) 1.05 (0.98,1.12) 
 

1 1.03 (0.97,1.09) 1.03 (0.97,1.09) 1.06 (0.99,1.13) 1.05 (0.99,1.12) 
 

2 1.02 (0.95,1.08) 1.02 (0.96,1.08) 1.05 (0.98,1.12) 1.04 (0.98,1.12) 
 

3 1.02 (0.96,1.08) 1.02 (0.96,1.09) 1.06 (0.99,1.13) 1.04 (0.98,1.12) 
 

4 1.04 (0.98,1.11) 1.04 (0.98,1.11) 1.03 (0.96,1.11) 1.03 (0.96,1.09) 
 

5 1.05 (0.99,1.12) 1.05 (0.99,1.12) 1.05 (0.98,1.12) 1.04 (0.98,1.12) 
 

6 1.06 (1.00,1.12) 1.05 (1.00,1.12) 1.03 (0.96,1.09) 1.02 (0.95,1.08) 
 

7 1.06 (1.00,1.13) 1.07 (1.01,1.14) 1.00 (0.93,1.06) 0.99 (0.93,1.06) 
 

8 1.05 (0.99,1.12) 1.05 (0.99,1.12) 1.03 (0.96,1.09) 1.02 (0.95,1.08) 
 

9 1.06 (1.00,1.13) 1.06 (0.99,1.13) 1.02 (0.96,1.09) 1.02 (0.96,1.09) 
 

10 1.06 (1.00,1.13) 1.06 (1.00,1.13) 1.03 (0.96,1.11) 1.03 (0.96,1.11) 
 

11 1.05 (0.99,1.12) 1.06 (0.99,1.13) 1.00 (0.93,1.07) 1.00 (0.93,1.07) 
 

12 1.02 (0.97,1.08) 1.03 (0.97,1.09) 0.98 (0.91,1.05) 0.98 (0.91,1.05) 
 

13 1.03 (0.97,1.09) 1.03 (0.97,1.09) 1.01 (0.94,1.08) 1.00 (0.94,1.07) 
 

14 1.07 (1.01,1.13) 1.06 (1.00,1.13) 1.02 (0.95,1.08) 1.01 (0.94,1.08) 
 

  
 

O3 Warm 

0 1.03 (0.99,1.08) 1.06 (1.01,1.12) 1.12 (1.06,1.17) 1.11 (1.05,1.17) 
 

1 1.05 (1.01,1.11) 1.08 (1.03,1.14) 1.11 (1.05,1.16) 1.09 (1.04,1.15) 
 

2 1.06 (1.01,1.11) 1.08 (1.03,1.14) 1.11 (1.05,1.16) 1.09 (1.04,1.16) 
 

3 1.05 (1.00,1.11) 1.08 (1.03,1.14) 1.12 (1.06,1.17) 1.11 (1.04,1.16) 
 

4 1.05 (1.01,1.11) 1.08 (1.03,1.14) 1.11 (1.05,1.16) 1.09 (1.04,1.16) 
 

5 1.04 (1.00,1.09) 1.07 (1.02,1.13) 1.09 (1.04,1.15) 1.09 (1.03,1.15) 
 

6 1.04 (1.00,1.09) 1.07 (1.02,1.13) 1.11 (1.05,1.17) 1.09 (1.04,1.16) 
 

7 1.03 (0.99,1.08) 1.05 (1.00,1.11) 1.09 (1.04,1.15) 1.09 (1.04,1.15) 
 

8 1.03 (0.98,1.07) 1.05 (1.00,1.11) 1.11 (1.05,1.16) 1.09 (1.04,1.16) 
 

9 1.02 (0.98,1.07) 1.05 (1.00,1.11) 1.09 (1.04,1.15) 1.09 (1.03,1.15) 
 

10 1.03 (0.98,1.08) 1.05 (1.01,1.11) 1.09 (1.04,1.15) 1.09 (1.04,1.15) 
 

11 1.05 (1.00,1.11) 1.08 (1.03,1.14) 1.09 (1.04,1.15) 1.09 (1.04,1.16) 
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12 1.05 (1.01,1.11) 1.08 (1.03,1.14) 1.09 (1.04,1.15) 1.09 (1.04,1.16) 
 

13 1.04 (1.00,1.09) 1.07 (1.02,1.13) 1.11 (1.04,1.16) 1.09 (1.04,1.16) 
 

14 1.05 (1.00,1.11) 1.08 (1.03,1.14) 1.12 (1.06,1.17) 1.11 (1.04,1.16) 
 

  
 

Cold 

0 0.91 (0.87,0.96) 0.93 (0.89,0.98) 0.95 (0.90,1.01) 0.94 (0.90,1.00) 
 

1 0.93 (0.89,0.98) 0.94 (0.90,0.99) 0.94 (0.9,1.00) 0.93 (0.89,0.99) 
 

2 0.93 (0.89,0.98) 0.95 (0.90,1.00) 0.94 (0.90,0.99) 0.93 (0.89,0.99) 
 

3 0.93 (0.89,0.98) 0.94 (0.90,0.99) 0.95 (0.90,1.01) 0.94 (0.89,0.99) 
 

4 0.93 (0.89,0.98) 0.94 (0.90,0.99) 0.94 (0.90,0.99) 0.93 (0.89,0.99) 
 

5 0.92 (0.88,0.97) 0.94 (0.90,0.99) 0.94 (0.89,0.99) 0.93 (0.88,0.98) 
 

6 0.92 (0.88,0.97) 0.94 (0.90,0.99) 0.95 (0.90,1.00) 0.93 (0.89,0.99) 
 

7 0.91 (0.87,0.96) 0.92 (0.88,0.97) 0.93 (0.89,0.99) 0.93 (0.89,0.99) 
 

8 0.90 (0.87,0.95) 0.92 (0.88,0.96) 0.94 (0.90,1.00) 0.93 (0.89,0.99) 
 

9 0.90 (0.86,0.95) 0.91 (0.87,0.96) 0.93 (0.89,0.98) 0.93 (0.88,0.98) 
 

10 0.91 (0.87,0.95) 0.92 (0.88,0.97) 0.93 (0.89,0.99) 0.93 (0.89,0.99) 
 

11 0.93 (0.89,0.97) 0.94 (0.90,0.99) 0.93 (0.89,0.99) 0.93 (0.89,0.99) 
 

12 0.93 (0.89,0.98) 0.94 (0.90,0.99) 0.93 (0.89,0.99) 0.94 (0.89,0.99) 
 

13 0.92 (0.88,0.97) 0.93 (0.89,0.98) 0.94 (0.89,0.99) 0.93 (0.89,0.99) 
 

14 0.93 (0.89,0.97) 0.94 (0.90,0.99) 0.95 (0.90,1.00) 0.94 (0.89,0.99) 
 

aModels only adjusted for time invariant confounders by design; and ORs were obtained for 10 units increase in each 

pollutant concentration. 
bModels adjusted for the other pollutant, temperature, and relative humidity; and ORs were obtained for 10 units 

increase in each pollutant concentration. 

Abbreviations: OR, odds ratio; CI, confidence intervals; PM2.5 , particulate matter <2.5 microns; O3, ozone; SJV, San 

Joaquin Valley. 

Note: Bold numbers indicate a significant positive association. 

3.3.3. Effect modification analysis for fetal death.  

We found that the associations between air pollutants and maternal race were 

higher among Asian (N=111) and Hawaiian/PI (N=11). However, due to the limited 

sample size for some racial/ethnic groups, the estimates were unstable with wide 

confidence intervals (not shown in the table). We also observed effect modification by 

neighborhood income and maternal age. But there were no sex-specific differences. 

Table 3 illustrates the associations between air pollutants and fetal death stratified 

by neighborhood income. PM2.5 exposures on low-income group in the cold season 

demonstrated an elevated risk across all the lag days, but significant associations were 

only found for later lag days from nine to fourteen days after exposure. However, there 

were no significant association between PM2.5 and fetal death in higher income 

neighborhoods. The impact of O3 exposures were observed in both low and high-income 

groups in the warm season. In the low-income group, we found a consistently significant 

positive association between O3 exposure and odds of fetal death across all examined lag 

days. However, in the high-income group, these associations were observed only on 

specific immediate (lag 1 – lag 4) and later lag days (lag 11 – lag 14). Comparatively, the 
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associations between O3 exposure and fetal death were more pronounced and stronger in 

low- income groups. 

Table 3: Association between air pollutants and fetal death by neighborhood income in 

the SJV, California, 2016 - 2019 

 Pollutant Season 

 

Lag (day) 

 

Adjusted OR (95% CI)a 

Low income (<50th percentile) 

(N=638) 

High Income (>=50th percentile) 

(N=695) 

PM2.5 

Warm 

0 0.73 (0.64,0.83) 0.78 (0.69,0.89) 

1 0.75 (0.67,0.85) 0.83 (0.74,0.94) 

2 0.74 (0.65,0.83) 0.83 (0.73,0.93) 

3 0.73 (0.64,0.83) 0.84 (0.75,0.95) 

4 0.73 (0.64,0.83) 0.86 (0.76,0.97) 

5 0.74 (0.65,0.83) 0.86 (0.77,0.97) 

6 0.73 (0.64,0.83) 0.87 (0.78,0.98) 

7 0.74 (0.66,0.83) 0.89 (0.78,0.99) 

8 0.74 (0.65,0.83) 0.88 (0.78,0.99) 

9 0.78 (0.69,0.88) 0.86 (0.76,0.97) 

10 0.78 (0.69,0.88) 0.85 (0.75,0.96) 

11 0.78 (0.69,0.88) 0.84 (0.75,0.95) 

12 0.78 (0.69,0.88) 0.80 (0.71,0.90) 

13 0.76 (0.67,0.85) 0.82 (0.72,0.92) 

14 0.78 (0.69,0.88) 0.84 (0.75,0.95) 

  

Cold 

0 1.05 (0.96,1.15) 0.95 (0.87,1.04) 

1 1.08 (0.99,1.18) 1.01 (0.92,1.09) 

2 1.05 (0.96,1.16) 1.00 (0.91,1.09) 

3 1.05 (0.95,1.15) 1.02 (0.93,1.11) 

4 1.04 (0.95,1.15) 1.04 (0.96,1.13) 

5 1.05 (0.96,1.16) 1.04 (0.97,1.13) 

6 1.04 (0.96,1.14) 1.05 (0.97,1.14) 

7 1.06 (0.97,1.15) 1.07 (0.99,1.16) 

8 1.05 (0.96,1.16) 1.06 (0.98,1.15) 

9 1.12 (1.02,1.22) 1.04 (0.95,1.13) 

10 1.12 (1.02,1.22) 1.03 (0.95,1.13) 

11 1.12 (1.02,1.22) 1.02 (0.93,1.11) 

12 1.12 (1.02,1.22) 0.97 (0.89,1.06) 

13 1.08 (1.00,1.17) 0.99 (0.90,1.08) 

14 1.12 (1.03,1.21) 1.02 (0.93,1.11) 

    

O3 Warm 
0 1.11 (1.03,1.18) 1.03 (0.96,1.11) 

1 1.12 (1.04,1.20) 1.07 (1.00,1.15) 



24 

 

2 1.11 (1.03,1.18) 1.08 (1.01,1.16) 

3 1.11(1.03,1.18) 1.07 (1.00,1.15) 

4 1.08 (1.01,1.17) 1.07 (1.00,1.15) 

5 1.07 (1.00,1.15) 1.06 (0.99,1.14) 

6 1.08 (1.01,1.16) 1.06 (0.99,1.14) 

7 1.05 (0.98,1.12) 1.05 (0.98,1.13) 

8 1.07 (1.00,1.15) 1.05 (0.98,1.13) 

9 1.08 (1.01,1.16) 1.05 (0.98,1.13) 

10 1.07 (1.00,1.15) 1.06 (0.99,1.14) 

11 1.09 (1.02,1.17) 1.07 (1.00,1.15) 

12 1.09 (1.02,1.17) 1.08 (1.01,1.16) 

13 1.08 (1.01,1.16) 1.07 (1.00,1.15) 

14 1.09 (1.03,1.17) 1.07 (1.00,1.15) 

    

Cold 

0 0.91 (0.85,0.98) 0.93 (0.87,1.00) 

1 0.92 (0.86,0.99) 0.97 (0.90,1.04) 

2 0.92 (0.86,0.99) 0.98 (0.91,1.05) 

3 0.91 (0.85,0.98) 0.98 (0.91,1.05) 

4 0.90 (0.84,0.97) 0.97 (0.90,1.04) 

5 0.90 (0.83,0.96) 0.97 (0.90,1.04) 

6 0.90 (0.83,0.96) 0.96 (0.90,1.03) 

7 0.87 (0.81,0.93) 0.95 (0.90,1.02) 

8 0.90 (0.83,0.96) 0.95 (0.89,1.02) 

9 0.90 (0.83,0.96) 0.96 (0.90,1.03) 

10 0.89 (0.83,0.95) 0.97 (0.90,1.04) 

11 0.91 (0.85,0.98) 0.97 (0.90,1.04) 

12 0.90 (0.84,0.97) 0.98 (0.91,1.05) 

13 0.90 (0.84,0.97) 0.97 (0.90,1.04) 

14 0.91 (0.85,0.98) 0.97 (0.90,1.04) 
aModels only adjusted for time invariant confounders by design; and ORs were obtained for 10 units increase in each 

pollutant concentration. 
bModels adjusted for the other pollutant, temperature, and relative humidity; and ORs were obtained for 10 units 

increase in each pollutant concentration. 

Abbreviations: OR, odds ratio; CI, confidence intervals; PM2.5, particulate matter <2.5 microns; O3, ozone; SJV, San 

Joaquin Valley. 

Note: Bold numbers indicate a significant positive association.  

Table 4 outlines the association between air pollution and fetal death stratified by 

maternal age. In the colder season, a positive association between PM2.5 exposure and 

fetal death were observed in only mothers aged 18-25 years. Conversely, in warmer 

seasons, the impacts of O3 exposure were more pronounced in mothers between 26-35 

years compared to other age groups. 

Table 4: Association between air pollutants and fetal death by maternal age in the SJV, 

California, 2016 – 2019 
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Pollutant Season 

Adjusted OR (95% CI)a 

Lag 

(day) 

Less than 18 

years 

Between 18-25 

years 

Between 26-35 

years 

Greater than 35 

years 

(N=27) (N=388) (N=628) (N=293) 

PM2.5 

Warm 

0 1.28 (0.75,2.18) 0.83 (0.70,0.98) 0.75 (0.67,0.85) 0.61 (0.50,0.74) 

1 1.23 (0.71,2.14) 0.90 (0.77,1.07) 0.77 (0.68,0.87) 0.62 (0.52,0.76) 

2 1.07 (0.57,1.99) 0.90 (0.76,1.05) 0.76 (0.67,0.86) 0.61 (0.49,0.75) 

3 1.22 (0.70,2.14) 0.90 (0.76,1.05) 0.75 (0.67,0.86) 0.63 (0.52,0.78) 

4 1.36 (0.80,2.30) 0.89 (0.76,1.04) 0.76 (0.67,0.87) 0.66 (0.54,0.80) 

5 1.27 (0.70,2.30) 0.92 (0.79,1.08) 0.76 (0.67,0.86) 0.67 (0.56,0.82) 

6 1.21 (0.68,2.14) 0.92 (0.79,1.08) 0.75 (0.67,0.85) 0.68 (0.56,0.82) 

7 1.20 (0.69,2.08) 0.94 (0.80,1.11) 0.78 (0.70,0.89) 0.68 (0.57,0.83) 

8 1.26 (0.72,2.18) 0.89 (0.75,1.05) 0.78 (0.69,0.89) 0.69 (0.57,0.83) 

9 1.40 (0.83,2.35) 0.89 (0.75,1.04) 0.81 (0.72,0.91) 0.66 (0.54,0.80) 

10 1.44 (0.88,2.35) 0.90 (0.76,1.05) 0.80 (0.71,0.90) 0.67 (0.54,0.81) 

11 1.42 (0.87,2.35) 0.83 (0.69,0.97) 0.83 (0.74,0.93) 0.67 (0.55,0.82) 

12 1.48 (0.91,2.39) 0.83 (0.70,0.97) 0.80 (0.71,0.90) 0.65 (0.54,0.78) 

13 1.36 (0.80,2.28) 0.84 (0.72,1.00) 0.79 (0.71,0.90) 0.64 (0.53,0.78) 

14 1.41 (0.86,2.32) 0.85 (0.72,1.01) 0.82 (0.73,0.92) 0.67 (0.55,0.80) 

  

Cold 

0 0.82 (0.55,1.21) 1.08 (0.96,1.23) 0.96 (0.88,1.05) 0.96 (0.84,1.11) 

1 0.78 (0.52,1.20) 1.18 (1.06,1.33) 0.99 (0.90,1.08) 0.99 (0.87,1.14) 

2 0.69 (0.41,1.14) 1.17 (1.05,1.32) 0.97 (0.89,1.07) 0.97 (0.83,1.13) 

3 0.78 (0.52,1.18) 1.17 (1.05,1.32) 0.96 (0.87,1.06) 1.00 (0.87,1.16) 

4 0.87 (0.61,1.24) 1.17 (1.04,1.31) 0.98 (0.89,1.07) 1.05 (0.91,1.20) 

5 0.81 (0.51,1.28) 1.22 (1.09,1.36) 0.97 (0.88,1.06) 1.07 (0.94,1.22) 

6 0.77 (0.48,1.23) 1.22 (1.09,1.36) 0.97 (0.88,1.06) 1.07 (0.95,1.22) 

7 0.77 (0.49,1.18) 1.23 (1.11,1.38) 1.01 (0.92,1.09) 1.08 (0.96,1.22) 

8 0.80 (0.53,1.21) 1.16 (1.03,1.31) 1.01 (0.92,1.11) 1.08 (0.96,1.22) 

9 0.90 (0.62,1.27) 1.16 (1.03,1.31) 1.04 (0.95,1.13) 1.04 (0.91,1.20) 

10 0.92 (0.69,1.24) 1.17 (1.05,1.32) 1.02 (0.93,1.13) 1.06 (0.92,1.21) 

11 0.91 (0.67,1.23) 1.08 (0.95,1.22) 1.06 (0.97,1.16) 1.06 (0.93,1.21) 

12 0.95 (0.72,1.23) 1.08 (0.97,1.22) 1.02 (0.93,1.12) 1.03 (0.90,1.17) 

13 0.86 (0.59,1.28) 1.11 (0.99,1.24) 1.02 (0.93,1.11) 1.02 (0.90,1.16) 

14 0.90 (0.64,1.27) 1.13 (0.99,1.27) 1.05 (0.96,1.14) 1.05 (0.93,1.20) 

  

O3 Warm 

0 0.90 (0.63,1.28) 1.02 (0.93,1.12) 1.12 (1.04,1.20) 1.02 (0.91,1.14) 

1 0.93 (0.65,1.34) 1.06 (0.97,1.17) 1.13 (1.05,1.21) 1.07 (0.97,1.20) 

2 0.97 (0.67,1.40) 1.07 (0.98,1.17) 1.13 (1.05,1.21) 1.08 (0.97,1.21) 
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3 0.93 (0.64,1.36) 1.07 (0.98,1.17) 1.13 (1.05,1.21) 1.07 (0.96,1.20) 

4 0.91 (0.64,1.31) 1.07 (0.97,1.17) 1.13 (1.05,1.21) 1.06 (0.95,1.18) 

5 0.93 (0.66,1.32) 1.05 (0.96,1.15) 1.13 (1.05,1.21) 1.05 (0.94,1.17) 

6 0.92 (0.64,1.34) 1.05 (0.95,1.15) 1.13 (1.05,1.21) 1.05 (0.95,1.17) 

7 0.94 (0.66,1.33) 1.03 (0.94,1.14) 1.09 (1.02,1.18) 1.05 (0.94,1.16) 

8 0.93 (0.65,1.34) 1.04 (0.95,1.15) 1.11 (1.03,1.18) 1.05 (0.94,1.17) 

9 0.90 (0.63,1.31) 1.04 (0.95,1.15) 1.09 (1.02,1.17) 1.06 (0.95,1.18) 

10 0.90 (0.63,1.31) 1.05 (0.96,1.15) 1.09 (1.02,1.18) 1.06 (0.95,1.17) 

11 0.92 (0.64,1.32) 1.07 (0.98,1.18) 1.12 (1.04,1.20) 1.06 (0.95,1.17) 

12 0.92 (0.65,1.31) 1.07 (0.97,1.17) 1.13 (1.05,1.21) 1.06 (0.96,1.18) 

13 0.92 (0.63,1.33) 1.06 (0.97,1.16) 1.12 (1.04,1.20) 1.07 (0.96,1.18) 

14 0.92 (0.64,1.31) 1.06 (0.97,1.16) 1.12 (1.04,1.20) 1.06 (0.96,1.18) 

  

Cold 

0 1.27 (0.90,1.77) 0.90 (0.81,0.98) 0.90 (0.84,0.98) 0.95 (0.85,1.05) 

1 1.32 (0.93,1.86) 0.93 (0.84,1.02) 0.92 (0.85,0.99) 1.00 (0.90,1.12) 

2 1.37 (0.95,1.95) 0.93 (0.85,1.03) 0.92 (0.86,0.99) 1.00 (0.90,1.12) 

3 1.32 (0.91,1.90) 0.93 (0.85,1.02) 0.92 (0.85,0.99) 0.99 (0.90,1.11) 

4 1.29 (0.90,1.83) 0.93 (0.85,1.03) 0.92 (0.85,0.99) 0.98 (0.89,1.09) 

5 1.31 (0.92,1.84) 0.92 (0.83,1.01) 0.92 (0.85,0.99) 0.98 (0.88,1.08) 

6 1.31 (0.90,1.88) 0.91 (0.83,1.00) 0.91 (0.85,0.99) 0.98 (0.88,1.08) 

7 1.32 (0.94,1.86) 0.90 (0.83,0.99) 0.90 (0.83,0.96) 0.97 (0.88,1.08) 

8 1.32 (0.93,1.86) 0.91 (0.83,1.00) 0.90 (0.83,0.97) 0.98 (0.88,1.08) 

9 1.28 (0.90,1.81) 0.91 (0.83,1.00) 0.90 (0.83,0.96) 0.98 (0.89,1.09) 

10 1.28 (0.90,1.81) 0.92 (0.83,1.01) 0.90 (0.83,0.96) 0.98 (0.89,1.09) 

11 1.29 (0.92,1.83) 0.94 (0.85,1.03) 0.90 (0.84,0.98) 0.98 (0.89,1.09) 

12 1.29 (0.91,1.83) 0.93 (0.85,1.03) 0.91 (0.85,0.99) 0.99 (0.90,1.09) 

13 1.29 (0.90,1.88) 0.93 (0.84,1.02) 0.90 (0.84,0.98) 0.99 (0.90,1.11) 

14 1.29 (0.92,1.81) 0.93 (0.84,1.02) 0.91 (0.84,0.98) 0.99 (0.90,1.09) 
aModels only adjusted for time invariant confounders by design; and ORs were obtained for 10 units increase in each 

pollutant concentration. 
bModels adjusted for the other pollutant, temperature, and relative humidity; and ORs were obtained for 10 units 

increase in each pollutant concentration. 

Abbreviations: OR, odds ratio; CI, confidence intervals; PM2.5, particulate matter <2.5 microns; O3, ozone; SJV, San 

Joaquin Valley. 

Note: Bold numbers indicate a significant positive association. 

3.3.4. Effect modification analysis for infant death. 

Like fetal deaths, the estimates were unstable with wide confidence intervals and 

the observed associations between air pollutants and maternal race were meaningless for 

infant deaths due to the limited sample size for some racial/ethnic groups (not shown). 

We also found no sex-specific differences for infant deaths, but the associations were 

modified by neighborhood income and maternal age.  
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Table 5 represents the association between air pollutants and infant death by 

neighborhood income. PM2.5 did not exhibit significant associations with the low-income 

group but was associated with increased odds of infant death in some lags in the high-

income group. In the high-income group, PM2.5 exposure in the cold season was 

positively associated with higher odds of infant death only five (lag 5) and nine (lag 9) 

days post-exposure. While O3 exposure in the warm season demonstrated statistically 

significant associations across all lags in both low and high-income groups, with slightly 

stronger associations witnessed in the high-income group. 

Table 5: Association between air pollutants and infant death by neighborhood income in 

the SJV, California, 2016 - 2019 

Pollutant 

 

 

 

  

Season 

 

 

 

  

Lag 

(day) 

 

 

  

Adjusted OR (95% CI)a 

 

Low income (<50th 

percentile) 

(N=572)  

High Income (>=50th 

percentile) 

(N=518)  

PM2.5 

Warm 

0 0.89 (0.79,0.99) 0.97 (0.85,1.11) 

1 0.88 (0.78,0.99) 0.97 (0.85,1.11) 

2 0.87 (0.78,0.98) 0.96 (0.85,1.09) 

3 0.88 (0.78,0.99) 0.96 (0.84,1.09) 

4 0.84 (0.75,0.95) 0.99 (0.86,1.14) 

5 0.85 (0.75,0.95) 1.01 (0.88,1.15) 

6 0.84 (0.75,0.95) 0.95 (0.83,1.09) 

7 0.81 (0.72,0.91) 0.94 (0.83,1.07) 

8 0.83 (0.74,0.94) 0.96 (0.85,1.09) 

9 0.82 (0.72,0.92) 0.98 (0.87,1.12) 

10 0.83 (0.74,0.95) 0.97 (0.85,1.12) 

11 0.83 (0.74,0.93) 0.94 (0.83,1.09) 

12 0.82 (0.72,0.92) 0.91 (0.79,1.05) 

13 0.84 (0.75,0.94) 0.93 (0.81,1.06) 

14 0.84 (0.75,0.95) 0.94 (0.83,1.07) 

 

Cold 

0 1.03 (0.95,1.13) 1.08 (0.98,1.20) 

1 1.02 (0.94,1.12) 1.07 (0.98,1.18) 

2 1.01 (0.93,1.11) 1.07 (0.98,1.18) 

3 1.02 (0.93,1.13) 1.07 (0.97,1.18) 

4 0.98 (0.90,1.07) 1.09 (0.99,1.22) 

5 0.99 (0.90,1.08) 1.12 (1.01,1.24) 

6 0.98 (0.90,1.07) 1.06 (0.96,1.17) 

7 0.94 (0.85,1.04) 1.04 (0.94,1.16) 

8 0.97 (0.89,1.06) 1.07 (0.98,1.18) 

9 0.95 (0.87,1.05) 1.09 (1.00,1.20) 
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10 0.97 (0.89,1.07) 1.08 (0.98,1.20) 

11 0.97 (0.88,1.06) 1.05 (0.94,1.17) 

12 0.95 (0.87,1.04) 1.02 (0.91,1.14) 

13 0.98 (0.90,1.07) 1.03 (0.93,1.15) 

14 0.98 (0.90,1.07) 1.05 (0.95,1.16) 

 

O3 

Warm 

0 1.12 (1.04,1.20) 1.13 (1.04,1.23) 

1 1.08 (1.01,1.17) 1.11 (1.02,1.20) 

2 1.08 (1.01,1.17) 1.11 (1.02,1.20) 

3 1.09 (1.01,1.17) 1.11 (1.02,1.20) 

4 1.09 (1.02,1.18) 1.09 (1.00,1.18) 

5 1.08 (1.01,1.17) 1.08 (1.00,1.17) 

6 1.09 (1.02,1.17) 1.09 (1.01,1.18) 

7 1.08 (1.01,1.17) 1.09 (1.01,1.18) 

8 1.08 (1.01,1.17) 1.09 (1.01,1.18) 

9 1.09 (1.01,1.17) 1.08 (1.01,1.17) 

10 1.08 (1.01,1.16) 1.09 (1.01,1.18) 

11 1.08 (1.01,1.16) 1.11 (1.02,1.20) 

12 1.08 (1.01,1.17) 1.11 (1.02,1.20) 

13 1.09 (1.02,1.17) 1.09 (1.01,1.20) 

14 1.09 (1.02,1.17) 1.11 (1.02,1.20) 

 

Cold 

0 0.96 (0.90,1.04) 0.97 (0.90,1.05) 

1 0.94 (0.87,1.01) 0.94 (0.87,1.02) 

2 0.94 (0.87,1.01) 0.94 (0.87,1.02) 

3 0.94 (0.88,1.02) 0.95 (0.88,1.03) 

4 0.95 (0.88,1.02) 0.93 (0.86,1.01) 

5 0.94 (0.87,1.02) 0.93 (0.86,1.01) 

6 0.94 (0.88,1.02) 0.94 (0.87,1.02) 

7 0.94 (0.87,1.02) 0.94 (0.87,1.02) 

8 0.94 (0.87,1.01) 0.94 (0.87,1.02) 

9 0.94 (0.87,1.02) 0.93 (0.86,1.01) 

10 0.94 (0.87,1.01) 0.94 (0.87,1.02) 

11 0.93 (0.87,1.01) 0.95 (0.87,1.03) 

12 0.94 (0.87,1.01) 0.95 (0.88,1.03) 

13 0.94 (0.88,1.02) 0.94 (0.87,1.02) 

14 0.95 (0.88,1.02) 0.94 (0.87,1.02) 
aModels only adjusted for time invariant confounders by design; and ORs were obtained for 10 units increase in each 

pollutant concentration. 
bModels adjusted for the other pollutant, temperature, and relative humidity; and ORs were obtained for 10 units 

increase in each pollutant concentration. 

Abbreviations: OR, odds ratio; CI, confidence intervals; PM2.5, particulate matter <2.5 microns; O3, ozone; SJV, San 

Joaquin Valley. 

Note: Bold numbers indicate a significant positive association. 
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Table 6 represents the association between air pollutants and infant death by 

maternal age. O3 exposure demonstrated increased odds of infant death among mothers 

aged 18-25 and 26-35 years compared to those under 18 years, with particularly 

pronounced associations observed in the age group between 18-25 years. These 

associations were statistically significant across all lags in these two age groups. 

However, PM2.5 exposure did not exhibit any significant associations with infant death 

across maternal age groups. 

 

 

 

 

Table 6: Association between air pollutants and infant death by maternal age in the SJV, 

California, 2016 – 2019 

Pollutan

t 

Seaso

n 

Lag 

(day

) 

Adjusted OR (95% CI)a 

Less than 18 

years 

(N=17) 

Between 18-25 

years 

(N=409) 

Between 26-35 

years 

(N=478) 

Greater than 35 

years 

(N=192) 

PM2.5 

Warm 

0 0.48 (0.16,1.42) 0.98 (0.84,1.13) 0.88 (0.77,0.99) 0.96 (0.79,1.18) 

1 0.68 (0.24,1.95) 0.94 (0.81,1.08) 0.87 (0.77,0.99) 0.99 (0.82,1.20) 

2 0.53 (0.18,1.58) 0.94 (0.81,1.11) 0.88 (0.78,0.99) 0.95 (0.79,1.16) 

3 0.54 (0.20,1.50) 0.97 (0.83,1.13) 0.84 (0.73,0.96) 0.99 (0.80,1.21) 

4 0.51 (0.18,1.41) 0.93 (0.81,1.08) 0.83 (0.72,0.94) 1.00 (0.82,1.23) 

5 0.51 (0.19,1.37) 0.94 (0.81,1.09) 0.84 (0.74,0.96) 1.02 (0.83,1.24) 

6 0.55 (0.20,1.57) 0.93 (0.81,1.08) 0.81 (0.71,0.93) 0.97 (0.79,1.20) 

7 0.57 (0.20,1.60) 0.90 (0.77,1.04) 0.83 (0.72,0.94) 0.92 (0.75,1.13) 

8 0.61 (0.21,1.74) 0.90 (0.78,1.05) 0.83 (0.73,0.96) 0.98 (0.80,1.18) 

9 0.60 (0.20,1.76) 0.87 (0.74,1.02) 0.85 (0.75,0.96) 1.00 (0.83,1.21) 

10 0.49 (0.17,1.40) 0.91 (0.78,1.06) 0.86 (0.75,0.98) 0.97 (0.78,1.20) 

11 0.40 (0.13,1.29) 0.90 (0.78,1.05) 0.83 (0.73,0.95) 0.95 (0.77,1.17) 

12 0.44 (0.15,1.24) 0.89 (0.76,1.04) 0.82 (0.72,0.94) 0.90 (0.73,1.13) 

13 0.46 (0.15,1.40) 0.93 (0.81,1.07) 0.81 (0.71,0.93) 0.93 (0.75,1.16) 

14 0.50 (0.17,1.48) 0.93 (0.80,1.08) 0.82 (0.72,0.93) 0.95 (0.78,1.16) 

  

Cold 

0 1.02 (0.52,1.99) 1.09 (0.99,1.22) 1.03 (0.93,1.14) 1.04 (0.91,1.20) 

1 1.42 (0.76,2.67) 1.05 (0.95,1.17) 1.02 (0.92,1.14) 1.07 (0.95,1.21) 

2 1.12 (0.56,2.24) 1.06 (0.94,1.20) 1.03 (0.93,1.14) 1.03 (0.91,1.17) 

3 1.15 (0.72,1.83) 1.08 (0.97,1.22) 0.99 (0.89,1.11) 1.07 (0.92,1.23) 

4 1.07 (0.69,1.68) 1.05 (0.94,1.17) 0.97 (0.87,1.08) 1.08 (0.94,1.26) 

5 1.06 (0.69,1.63) 1.06 (0.95,1.18) 0.99 (0.90,1.09) 1.11 (0.97,1.26) 

6 1.16 (0.68,2.00) 1.05 (0.95,1.16) 0.95 (0.85,1.06) 1.05 (0.90,1.22) 
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7 1.20 (0.69,2.06) 1.00 (0.90,1.13) 0.97 (0.87,1.08) 1.00 (0.87,1.15) 

8 1.27 (0.71,2.28) 1.02 (0.90,1.14) 0.98 (0.88,1.09) 1.06 (0.93,1.20) 

9 1.26 (0.66,2.43) 0.98 (0.86,1.12) 1.00 (0.90,1.11) 1.08 (0.97,1.22) 

10 1.03 (0.59,1.77) 1.02 (0.90,1.16) 1.01 (0.90,1.13) 1.05 (0.90,1.22) 

11 0.85 (0.41,1.77) 1.01 (0.90,1.14) 0.98 (0.88,1.09) 1.03 (0.88,1.20) 

12 0.92 (0.52,1.64) 1.00 (0.89,1.13) 0.96 (0.87,1.07) 0.98 (0.84,1.15) 

13 0.96 (0.48,1.95) 1.04 (0.94,1.16) 0.95 (0.85,1.07) 1.01 (0.86,1.18) 

14 1.06 (0.56,2.00) 1.04 (0.93,1.16) 0.96 (0.86,1.07) 1.03 (0.90,1.17) 

  

O3 

Warm 

0 1.38 (0.85,2.24) 1.15 (1.05,1.24) 1.12 (1.02,1.21) 1.07 (0.94,1.22) 

1 1.28 (0.78,2.08) 1.12 (1.02,1.22) 1.09 (1.00,1.18) 1.03 (0.90,1.16) 

2 1.34 (0.79,2.26) 1.12 (1.02,1.21) 1.09 (1.01,1.18) 1.03 (0.90,1.17) 

3 1.29 (0.78,2.14) 1.12 (1.02,1.21) 1.11 (1.01,1.20) 1.04 (0.91,1.18) 

4 1.32 (0.81,2.14) 1.11 (1.02,1.21) 1.11 (1.02,1.20) 1.02 (0.90,1.16) 

5 1.32 (0.80,2.18) 1.11 (1.01,1.21) 1.09 (1.01,1.18) 1.01 (0.90,1.15) 

6 1.31 (0.80,2.12) 1.11 (1.01,1.21) 1.11 (1.01,1.20) 1.03 (0.90,1.17) 

7 1.29 (0.80,2.10) 1.12 (1.02,1.22) 1.09 (1.01,1.18) 1.03 (0.90,1.16) 

8 1.28 (0.78,2.12) 1.12 (1.02,1.22) 1.09 (1.01,1.18) 1.02 (0.90,1.16) 

9 1.28 (0.75,2.18) 1.13 (1.03,1.22) 1.08 (1.00,1.17) 1.02 (0.90,1.16) 

10 1.28 (0.77,2.14) 1.12 (1.03,1.22) 1.08 (1.00,1.17) 1.03 (0.90,1.17) 

11 1.37 (0.82,2.28) 1.12 (1.02,1.22) 1.09 (1.01,1.18) 1.04 (0.91,1.18) 

12 1.38 (0.83,2.30) 1.12 (1.02,1.22) 1.09 (1.01,1.18) 1.05 (0.92,1.18) 

13 1.38 (0.84,2.24) 1.11 (1.01,1.21) 1.09 (1.01,1.20) 1.04 (0.91,1.18) 

14 1.36 (0.84,2.18) 1.12 (1.02,1.21) 1.11 (1.01,1.20) 1.04 (0.92,1.18) 

  

Cold 

0 0.68 (0.44,1.03) 0.97 (0.88,1.06) 0.98 (0.90,1.07) 0.91 (0.80,1.04) 

1 0.62 (0.39,0.99) 0.94 (0.86,1.03) 0.96 (0.89,1.05) 0.88 (0.77,1.00) 

2 0.66 (0.43,1.02) 0.94 (0.86,1.03) 0.96 (0.89,1.05) 0.88 (0.78,1.00) 

3 0.64 (0.41,0.98) 0.94 (0.86,1.03) 0.97 (0.90,1.06) 0.89 (0.78,1.01) 

4 0.64 (0.43,0.98) 0.93 (0.85,1.02) 0.98 (0.90,1.06) 0.87 (0.76,0.99) 

5 0.65 (0.43,0.99) 0.93 (0.85,1.02) 0.97 (0.89,1.05) 0.87 (0.76,0.99) 

6 0.64 (0.42,0.98) 0.93 (0.85,1.03) 0.97 (0.90,1.06) 0.88 (0.77,1.00) 

7 0.64 (0.42,0.97) 0.94 (0.86,1.03) 0.97 (0.89,1.05) 0.88 (0.77,1.00) 

8 0.62 (0.39,1.00) 0.94 (0.86,1.03) 0.97 (0.89,1.05) 0.87 (0.77,0.99) 

9 0.62 (0.40,0.99) 0.94 (0.87,1.03) 0.96 (0.88,1.04) 0.88 (0.77,0.99) 

10 0.63 (0.40,0.99) 0.94 (0.86,1.03) 0.96 (0.89,1.04) 0.88 (0.77,1.00) 

11 0.67 (0.43,1.04) 0.94 (0.86,1.03) 0.97 (0.89,1.05) 0.89 (0.78,1.01) 

12 0.68 (0.44,1.04) 0.94 (0.86,1.03) 0.96 (0.89,1.05) 0.90 (0.78,1.02) 

13 0.68 (0.44,1.03) 0.93 (0.85,1.02) 0.97 (0.9,1.05) 0.89 (0.78,1.01) 

14 0.67 (0.44,1.00) 0.94 (0.86,1.03) 0.97 (0.9,1.06) 0.89 (0.78,1.01) 
aModels only adjusted for time invariant confounders by design; and ORs were obtained for 10 units increase in each 

pollutant concentration. 
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bModels adjusted for the other pollutant, temperature, and relative humidity; and ORs were obtained for 10 units 

increase in each pollutant concentration. 

Abbreviations: OR, odds ratio; CI, confidence intervals; PM2.5, particulate matter <2.5 microns; O3, ozone; SJV, San 

Joaquin Valley. 

Note: Bold numbers indicate a significant positive association. 

3.4.Additional analysis 

3.4.1. Whole-year associations between air pollutants and fetal and infant death  

Table S8 represents a whole- year analysis that generally suggests a slight but 

insignificant increase in odds of fetal and infant death. However, there is no evidence of 

association in the whole- year analysis, confirming that seasonal difference is 

pronounced. 

3.4.2. Single pollutant model for fetal death and infant death 

In Table S9, the single pollutant model depicts the relationship between air 

pollutants and fetal death. The findings indicate that there is no significant association 

between fetal death and O3 exposure. However, a positive association was observed with 

PM2.5 exposure, particularly at lag 7 (aORlag7: 1.06 (95% CI: 1.01, 1.13) and lag 14 

(aORlag14: 1.05 (95% CI: 1.00, 1.12). 

 Table S10 represents the association between air pollutants and infant death in a 

single pollutant model. The findings suggest no evidence of significant association with 

PM2.5 exposure. However, a notable significant association was observed with O3 

exposure across all lags except lag 9 and lag 12.  

4. Discussion  

4.1.Principal findings  

This case-crossover study investigated the acute associations between exposure to air 

pollutants, specifically PM2.5 and O3, and the risk of fetal and infant death in the SJV. Our 

findings indicate that higher PM2.5 levels in the cold season and higher O3 levels in the 

warm season were associated with increased odds of both fetal and infant deaths. The 

associations with O3 were notably more consistent and pronounced for both outcomes 

compared to those of PM2.5. Our study also found that individuals in lower-income 

neighborhoods might be more susceptible to the detrimental effects of air pollution on 

fetal and infant death compared to those in higher-income neighborhoods. 

Given the SJV has not achieved compliance with the National Ambient Air 

Quality Standards (NAAQS) for PM2.5 and O3 and the diverse population in this region, 

these findings support that air pollution may be contributing to the perinatal health 

burden in the region and efforts to reduce exposures are critical.    

4.1.1. Interpretation for fetal death 

Our findings, aligning with existing research, confirm that PM2.5 exposure during 

pregnancy is linked to an increased risk of fetal death (DeFranco et al., 2015; Rochelle 
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Green et al., 2015; Liang et al., 2021; Siddika et al., 2016; Tan et al., 2023; Tong et al., 

2022; Wainstock et al., 2021; Wang et al., 2023; Shaoping Yang et al., 2018). In a 

retrospective cohort study spanning from 1999 to 2009 in California, Green et al. 

observed a positive association between PM2.5 exposure and increased risk of stillbirth 

throughout the pregnancy (R. Green et al., 2015). The study by Green et al., involved 

comparing the risk of fetal death between two distinct groups of women, one with high 

exposure levels and the other with low exposure levels. As such, this design seeks to 

explain why some women experienced fetal death while others did not. Despite our 

different approach using a case-crossover analysis to address the question of why death 

occurs at one time but not another, it is reassuring to observe the consistency of findings.  

Additional research conducted in China further confirms the positive relationship 

between PM2.5 exposure and fetal death. For instance, a recent cohort study carried out in 

Wuhan, China, between 2011 and 2017, identified a positive link between exposure to 

PM2.5 and fetal death (Tan et al., 2023), a prospective cohort study conducted in Wuhan, 

China, from June 10, 2011, to June 9, 2013, and analyzed using logistic regression, found 

a steady increase in stillbirth risk associated with high PM2.5 exposure as pregnancies 

advanced (S. Yang et al., 2018), a population-based prospective cohort study conducted 

in China revealed that for every increase of 10 μg/m3 in PM2.5 levels, there was a 

corresponding rise in the risk of stillbirths (Zang et al., 2019), and another retrospective 

cohort study in seven Guangdong cities in China conducted using a cox proportional 

hazards model also found a positive link between PM2.5 exposure and stillbirths (Liang et 

al., 2021). This convergence of results despite using different study designs and statistical 

methods of analysis reinforces the validity of our findings and the broader implications of 

air pollution on fetal health.  

Meanwhile, two US studies, both employed a time-stratified case-crossover study 

design, showed mixed results. The California study (1999-2009) found no significant link 

(Sarovar et al., 2020) between PM2.5 and fetal death, while the New Jersey study (1998-

2004) noted increased risk, although the estimates were not statistically significant (Faiz 

et al., 2013). In contrast, our study looked at a broader span of lag days (0-14) and 

identified increased risk across most lags and notable significant associations particularly 

in the later lag periods. Despite using similar study designs as ours, the discrepancies in 

findings could be attributed to different ranges of lag days, measurement units for PM2.5 

(IQR vs. μg/m³), season-specific stratification for the pollutants and exposure 

assessments limited to 10 km from maternal residences in the other studies. Our study 

measured the mean concentration of PM2.5 in mg/m³, as opposed to the Interquartile 

Range (IQR) used in these two studies. Furthermore, our study is based on more recent 

data (2016-2019), unlike the earlier timeframes of the other two studies. In addition, it is 

important to pinpoint that our whole year analysis (without season-specific stratification) 

did not find any significant associations like these studies.  Hence, given the limited 

research on acute exposure, further studies focusing on short-term air pollution exposure 

are essential which would enhance our understanding of the impact of short-term 

exposure and help pinpoint the critical periods of exposure just before death. Three 

comprehensive systematic reviews and meta-analyses, incorporating a total of 67 cohort 

studies from 20 nations (Wang et al., 2023), 15 epidemiological studies across 6 nations 
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(Zhang et al., 2021), and 13 studies assessing the short- and long-term impacts of air 

pollution (Siddika et al., 2016) including PM2.5 exposure, collectively indicate an 

increased risk of fetal death associated with exposure to PM2.5. 

 Contrary to our hypothesis, we also observed a protective effect of PM2.5 during 

the warmer seasons, a period typically characterized by lower atmospheric PM2.5 

concentrations. This finding contrasts with a study conducted in China, which reported a 

protective effect against intrauterine fetal death at higher PM2.5 levels, particularly when 

the exposure period extended beyond eight months. This discrepancy highlights the 

complexity of the impact of PM2.5 impact on fetal deaths across different environmental 

conditions and time frames (Yan et al., 2023). However, the current literature underscores 

the necessity for further research investigating the relationship between PM2.5 exposure 

and fetal death, given the limited scope of existing studies and the observed 

inconsistencies, particularly concerning the identification of critical exposure windows.  

Together, findings suggest PM2.5 might increase fetal death burden. Although the 

biological mechanisms are not clear, studies have shown that fine particles can 

potentially cross the uteroplacental barrier, cause irreversible, hypoxic, or immune-

related damage, potentially affecting the growth and development of the fetus and may 

also cause fetal death. The potential health implications of air pollution may be attributed 

to several biological mechanisms, such as systemic inflammation (Lanki et al., 2015; 

Viehmann et al., 2015), oxidative stress (W. Li et al., 2016; Patel, 2016; Patel et al., 

2013), spontaneous premature rupture of membrane and endocrine disruption (Jiao et al., 

2023; Slama et al., 2008).  

 Our findings regarding the association between O3 and fetal death are also 

consistent with the literature. A nationwide US study by Mendola et al. reported a 

significant positive association for both chronic (i.e. first trimester and whole pregnancy) 

and acute exposures (Mendola et al., 2017). For acute exposures, Mendola et al., reported 

an 8% increased risk of stillbirth ≥23 weeks of gestation corresponding to a 10 ppb rise in 

O3 concentrations, two days before the event (Mendola et al., 2017). For the other days 

preceding the event, the increment in risk tied to a 10-ppb increment O3 concentrations 

ranged between 7% and 12%. Similarly, our study found the strongest association with 

O3 exposure occurring two days before the event with similar effect estimates. We note 

that the prior study did not estimate season specific effects of O3 while we only observed 

O3 effects during warm season when O3 levels are high in the SJV. A case-crossover 

study in California by Sarovar et al., also found a significant association between 

exposure to maximum 1-hour O3 and the risk of fetal death at lag 4 (Sarovar et al., 2020). 

More specifically, they found that an estimate similar to ours. Earlier studies have shown 

that there is typically a 48-hour interval between the occurrence of fetal death and the 

subsequent delivery. However, we did not implement this approach in our study and used 

the reported fetal death day as the case day. Although both our study and that of Sarovar 

et al. employed the same study design and were conducted in the same geographical 

region, the above listed variations might have yielded a more consistent insight into the 

effects of O3 in our study compared to the study by Sarovar et al. Similarly, a 

retrospective cohort study conducted (January, 2008- December, 2013) in Harris County, 

Texas, an urban area with nonattainment status, reported a 9% rise in the risk of fetal 
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death for every 3.6 ppb IQR increase in O3 exposure using a survival analysis model 

(Rammah et al., 2019). This study involved comparing the risk of fetal death (N=1,874) 

between two distinct groups of women, one with high exposure levels and the other with 

low exposure levels while our case-crossover study examined when the event occurred 

with case and controls being the same individual. It is crucial to recognize that Harris 

County in Texas, much like our study area, the SJV in California, is classified as a 

nonattainment area. However, a notable distinction exists between the two: Harris County 

is an urban area, whereas SJV is predominantly rural and underserved. The consistency 

of our results with Rammah et al., despite the variations in the study design, statistical 

analysis model, sample size and geographical location provides reassurance in the 

validity of our findings. Another retrospective cohort study in California, employing 

logistic regression models, identified a significant association between O3 exposure and 

stillbirth during the third trimester. However, it found null associations in the first two 

trimesters or across the entire pregnancy (Rochelle Green et al., 2015). 

Despite consistency with prior literature, we also note that our findings are 

appreciably different from a few existing studies (Hwang et al., 2011; Rammah et al., 

2019; Shaoping Yang et al., 2018). A case-crossover study involving 1,599 cases of 

stillbirth in Harris County, Texas, found no evidence of association between short-term 

exposure to O3 and the risk of fetal death within one week (Rammah et al., 2019). The 

discrepancy could be due to the fact that the Texas study did not consider season specific 

O3 effects. Year-round analyses could show null effects similar to what we observed but 

may ignore important effects when O3 levels are higher. In a comprehensive, population-

based case-control study conducted in Taiwan, Hwang et al. also discovered no evidence 

of a link between ozone exposure and stillbirth across all pregnancy trimesters, as well as 

the entire duration of gestation (Hwang et al., 2011).  

The plausibility for the inverse associations observed between ozone and fetal 

death in the cold season is unclear. It has also been observed in the literature.  In a time 

series analysis conducted by Dastoorpoor et al. in Iran, the impact of O3 exposure on 

stillbirth risk was investigated using a Poisson regression model (Dastoorpoor et al., 

2018). The study revealed a protective relationship between O3 exposure and the risk of 

stillbirth while accounting for seasonality, ambient temperature and relative humidity. 

We suspect that the inverse associations may be because of the lack of data for other 

pollutants, but this remains a speculation.  

These discrepancies in findings may exist due to variations in exposure 

assessment, level of pollutant concentration, study design, and methodologies used in 

prior studies. For instance, studies conducted by Faiz et al., and Rammah et al., restricted 

exposure assessments to readings from the closest monitor based on maternal residence 

(Faiz et al., 2012; Rammah et al., 2019).  

Susceptible population  

Our results indicate that neighborhood income level and maternal age may modify 

the effects of PM2.5 and O3 exposure. We observed a notable increase in odds of fetal 

death among both low- and high-income neighborhoods exposed to both pollutants, but 

the associations were stronger for low-income neighborhoods. This disparity is likely due 
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to mothers from lower socioeconomic backgrounds facing not only a higher number of 

pollution sources but also having fewer resources to mitigate these effects and 

experiencing additional stress factors (American Lung Association, 2023a). Of note, we 

also observed that the associations were higher among Asian and Hawaiian/PI, although 

confidence intervals were wide due to low sample size. In existing studies exploring birth 

outcomes in relation to air pollution, researchers have highlighted variations in 

associations with air pollution across demographic indicators (Green et al., 2009; Tong et 

al., 2022; Wainstock et al., 2021). This finding indicates that race may play a significant 

role as a modifying factor in the effects of air pollution on pregnant women. Our data 

also suggests a similar pattern with racial minorities, but the limited sample size does not 

allow a comprehensive interpretation of these observed relationships among different 

races/ethnicities considered in our study. Nevertheless, it is essential to acknowledge that 

socially disadvantaged racial minorities often bear elevated risk of adverse birth 

outcomes (Basu et al., 2016; Lorch et al., 2012), which presents a pressing need for more 

in-depth, robust research to elucidate these associations effectively.    

While, some studies indicated no significant effect modification by maternal age  

(Faiz et al., 2013), some suggest that both younger (<25 years) and older mothers (>35 

years) exposed to air pollution have an elevated risk of fetal death (R. Green et al., 2015) 

compared to those in the middle of reproductive age years. However, our study found 

higher risk of fetal death with exposure to the air pollutants among mothers between 18 – 

35 years of age compared to mothers below 18 years. These age disparities may warrant 

further investigation. But it is important to highlight that the sample size for mothers 

under 18 years was too low (N=27) compared to other age-groups in our study.  

   

4.1.2. Interpretation for infant death 

Our study revealed an increased odds of infant death associated with higher O3 

levels, with both immediate and delayed effects. These findings are consistent with a few 

other studies which demonstrated a strong positive association with O3 exposure 

(Gouveia et al., 2018; Hajat et al., 2007; Woodruff et al., 2008a; Yang et al., 2006). A 

retrospective cohort study conducted by Woodruff et al., reported that O3 exposure during 

the first two months of a child's life was associated with a 20% (OR 1.20; 95% CI, 1.09-

1.32) increased risk of sudden infant death syndrome. These findings align with our 

observation and further substantiate that the critical period for exposure to O3 is indeed 

during early life. Meanwhile, in Taiwan, a case-crossover study reported an increased 

risk of post-neonatal deaths (i.e., infants older than 27 days but less than 365 days) with 

O3 exposure but no evidence of significant association (Yang et al., 2006). The lack of 

significant impact of O3 exposure on infant deaths in Taipei could be due to the low 

average O3 concentration of 18.14 ppb, potentially too low for a measurable effect. 

Moreover, Taipei's moderate subtropical climate, with an average temperature around 

22.92°C (73.5°F), may further mitigate the potential effects of O3 exposure. This is 

supported by research indicating that milder temperatures in subtropical regions can 

reduce the respiratory stress and health risks associated with O3 pollution, unlike in hotter 

climates where these effects may be amplified. Additionally, the limited number of 
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postneonatal deaths (N=471) might have resulted in inadequate statistical power to 

identify an association in this study. In contrast, our study, undertaken in the SJV, a rural 

setting characterized by elevated O3 levels, particularly in the warmer season, recorded an 

average O3 concentration of 57.5 ppb during the study period (2016-2019). The variation 

of concentration of O3 in the atmosphere due to differences in geographical region and 

climatic conditions may have contributed to a more pronounced and significant influence 

of O3 exposure on infant’s health in our study. It is also important to note that in Taipei, 

the main cause of air pollution is emissions from vehicles, while in the SJV, air quality is 

influenced by a combination of factors including agricultural activities, wildfires, 

industrial emissions, and vehicle exhaust (Veloz et al., 2020). In addition, a review 

conducted among 27 articles did not provide any evidence of an association between O3 

exposure and the risk of infant death (Karimi & Shokrinezhad, 2020). A recent 

systematic review and meta-analysis, incorporating 22 studies focused on the short-term 

impacts of air pollution on infant death, identified a negative association between infant 

deaths and O3 exposure. Out of these, 13 studies provided effect estimates, resulting in a 

combined OR of 0.99 (95% CI: 0.97, 1.01) for infant death with O3 exposure (Luben et 

al., 2023). This study also indicated a lack of a significant connection between O3 

exposure and infant death, with variations in the strength of association and critical 

period of exposure which is likely due to limited body of research in this domain. Further 

investigation into the relationship between O3 exposure and infant death is essential to 

clarify the true nature of this association. The current research presents conflicting results 

regarding the relationship between O3 exposure and infant death. Such inconsistencies 

might result from differences in study designs, methodologies, demographics, 

geographical locations, and periods studied. Another factor contributing to the differences 

observed in studies might be consideration of how respiratory infections affect infants, 

with higher deaths seen in infants with these infections. Notably, a significant link was 

found between lower respiratory infections and infant death (Gouveia et al., 2018). This 

study revealed that the impact of O3 varies seasonally, being more pronounced in the 

warm season for respiratory issues in infants under one year, as opposed to children over 

one year old. These findings reinforce the idea that infants are particularly vulnerable to 

the effects of O3 in warmer seasons, when O3 levels are typically higher in the 

atmosphere (Gallacher et al., 2016). In summary, the inconsistent findings highlight the 

need for further in-depth research to elucidate the link between O3 exposure and infant 

death, considering these varied factors since infants are a vulnerable population with 

unique health risks. In addition, research on infant death and O3 exposure is also limited 

as most studies have focused on adults (Anderson et al., 1996; Chen et al., 2023; Chen et 

al., 2018; C. Li et al., 2016; Yap et al., 2019). This disparity may stem from factors such 

as the greater availability of data on adult populations, or the perception that adults are 

more likely to experience adverse health effects from air pollution.  

We did not find any significant association between exposure to PM2.5 and infant 

deaths. This finding aligns with other research that explored the impact of total suspended 

particulates on infant death (Chay & Greenstone, 2003) and PM (Chen et al., 2021) on 

SIDS. It is also important to note that many studies have reported positive associations 

with particulate matter and infant death (Bobak & Leon, 1992; Goyal et al., 2019; Ha et 

al., 2003; Heft-Neal et al., 2018; Loomis et al., 1999; Woodruff et al., 1997; Yorifuji et 
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al., 2016). Studies examining the connection between exposure to PM and infant death 

have varied, not just in terms of the strength of the association but also regarding the 

critical periods of exposure. While studies by Loomis and others suggested a correlation 

between increased odds of infant death with PM2.5 exposure shortly before death i.e. on 

the same day and four days post-exposure (Loomis et al., 1999; Yorifuji et al., 2016), 

Carbajal-Arroyo et al. indicated higher postneonatal death to immediate (i.e. same day) 

and brief exposures (i.e. cumulative lags for lag 0 – lag 2)  to larger PM10 particles 

(Carbajal-Arroyo et al., 2011). Contrarily, findings from Belgium and the United 

Kingdom showed that while some pollutants like sulfur dioxide were associated with 

infant death, PM10 was not (Hajat et al., 2007; Scheers et al., 2011). Additional research 

from Korea supported the notion of a risk increase with same-day PM10 exposure (Ha et 

al., 2003). A study in Beijing, China, investigating monthly PM2.5 exposure through 

generalized additive Poisson regression, indicated increased odds of infant death (aOR 

1.548, 95% CI 1.06, 2.25), after accounting for concurrent PM10 exposure (Wang et al., 

2019). Similarly, another research in China, employing a time-stratified case-crossover 

design, identified a higher risk of neonatal deaths associated with PM2.5 exposure, 

particularly during the warmer seasons (April- September), although these findings did 

not reach statistical significance (He et al., 2022). Despite biologic plausibility, our study 

does not support a positive link between PM2.5 exposure and infant mortality. In the 

meantime, a systematic review encompassing 14 studies also found little to no evidence 

supporting a link between exposure to PM and infant death (Glinianaia et al., 2004).  

Susceptible population 

We observed that O3 exposure significantly affected infants in both low and high-

income neighborhoods, with marginally stronger effects in high-income areas during 

immediate lag periods. Conversely, PM2.5 had no significant association with infant death 

in low-income neighborhoods but was linked to higher odds of infant deaths from high-

income areas at lag 5 and lag 10. Predominantly research suggests that individuals 

residing in low-income neighborhoods bear the greatest burden of the impact of air 

pollution (Gwynn & Thurston, 2001; Jbaily et al., 2022; Woodruff et al., 2003; Yazdi et 

al., 2021). In addition, socially disadvantaged individuals often face higher risks of 

experiencing adverse birth outcomes due to air pollution or other chemical toxins 

(Giscombé & Lobel, 2005; O'Campo et al., 2007; Yazdi et al., 2021). However, our 

findings underscore the pervasive impact of air pollution on infant health, irrespective of 

the socioeconomic status of their neighborhood. We also note that because the SJV 

generally has lower SES compared to the rest of the state, a high-SES area in our study 

may still have low SES based on state standards. Nevertheless, the fact that air pollution-

related fetal deaths predominantly occur in low SES populations suggests that socio-

economic conditions heighten the risks to pregnant women and unborn children, 

potentially due to factors like nutrition, stress, healthcare access, and exposure to 

additional environmental risks. We note that these factors are not likely confounders in 

our study due to the self-match nature of the study design.   

Our results also emphasize that the link between O3 exposure and infant death risk 

is significantly affected by the age of the mother, showing a more marked impact among 

mothers aged 18 to 35 years compared to those younger than 18 years. However, due to a 
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limited number of samples from mothers under 18 years old (N=17), we cannot draw 

definitive conclusions, making this finding uncertain in our study.  

Our study also observed a pronounced effect of air pollution on racial minority 

groups, specifically Asian and Hawaiian/Pacific Islander populations. However, the 

limited sample size and broad confidence intervals preclude definitive conclusions. 

Despite these constraints, our findings underscore substantial health equity concerns, as 

they suggest a stronger positive association between exposure to air pollution and an 

increased risk of infant death within these communities. While Asian is the fastest-

growing population in the U.S. (Budiman & Runiz, 2021), the multitude of health issues 

faced by both Asian and Hawaiian/Pacific Islander (ADDA; Renehan, 2022) 

communities are frequently overlooked. In fact, these populations face higher disparities 

in exposure to air pollution (Jbaily et al., 2022). The adverse health implications of these 

exposures contribute to a range of birth outcomes including preterm birth, low birth 

weight (Fleischer et al., 2014), term low-birth weight (Slama et al., 2007), birth defects 

(Padula et al., 2013), fetal distress (H. Liu et al., 2019) and pregnancy loss (Ha, Ghimire, 

et al., 2022). The findings from our study can also shed light on environmental justice 

issues, as underprivileged communities frequently experience disproportionate exposure 

to elevated air pollution levels (Liu et al., 2018).  

Moreover, the exact ways in which air pollution impacts the deaths of infants 

remain partly unknown; however, the combination of environmental factors and 

epigenetic changes plays a crucial role. During the early years of life, an infant's immune 

system and lungs are not fully developed, making them more susceptible to the harmful 

effects of air pollution than adults (Gouveia et al., 2018), due to their higher risk of 

respiratory diseases, underdeveloped metabolic processes, and weaker natural defenses 

(Glinianaia et al., 2004; Ha et al., 2003). Furthermore, the detrimental effects of air 

pollution on health, particularly through oxidative stress and inflammation in the 

cardiovascular and respiratory systems, play a major role in contributing to infant death 

(Kannan et al., 2006). Further investigations into the association between air pollution, 

and fetal and infant death can deepen our knowledge of the involved biological processes, 

aiding healthcare practitioners in improving prenatal and postnatal care and advising 

pregnant mothers to reduce exposure to harmful air pollutants. Identification of the most 

detrimental air pollutants to pregnant women, fetuses, and infants is crucial for devising 

effective mitigation strategies to protect these populations.  

4.1.3. Inverse association  

 Despite positive associations between air pollutants and perinatal deaths, we also 

found some unexpected protective associations. Notably, these protective effects were 

observed during the warm season for PM2.5 exposure and during the cold season for O3 

exposure. These are windows during which the pollutants had the lowest concentrations. 

The underlying mechanisms for these observations remain elusive but a few other studies 

reported similar findings (DeFranco et al., 2015; Smith et al., 2020). For example, 

DeFranco et al. found a protective effect against fetal death from high air pollution in the 

first trimester, in contrast to the increased risks in later pregnancy stages (DeFranco et al., 

2015). DeFranco et al. suggest this could be due to their study's focus on pregnancies 
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beyond 20 weeks, potentially missing early losses to pollution, thus inaccurately 

indicating a protective effect. Another study by Smith et al. also found similar protective 

effects between exposure to air pollution and stillbirth risk at different trimesters of 

pregnancies (Smith et al., 2020). Smith et al. noted that due to the wide range of tests 

conducted on different pollutants and stages of pregnancy, some findings might be 

coincidental in their study. They also suggested that higher pollution areas might have 

enhanced healthcare strategies to mitigate risks and that their method of assessing 

pollution exposure may not accurately reflect personal behaviors or mobility.  

4.2.Strength and limitations 

This research holds significance as it is conducted in the underserved SJV region, 

which is well-known for its non-attainment status concerning PM2.5 and O3. It represents 

the first study in this area that specifically investigates the connection between short-term 

exposure to air pollution and fetal and infant death. This study differs from previous 

research conducted in the region, which primarily focused on exploring the relationship 

between air pollution and the likelihood of preterm birth, low birth weight, and birth 

defects (Ha, Martinez, et al., 2022; Padula et al., 2014; Padula et al., 2015). There are 

some other important strengths of this study. Firstly, the self-matching aspect provides 

full control over time in variant confounders, such as genetics, demographics, and 

underlying health conditions. Secondly, the time-stratified control selection approach 

effectively minimizes seasonal and time-trend biases. In addition, the case-crossover 

analysis aims to determine why an event occurs at a particular moment rather than 

another time for the same individual. Moreover, numerous studies have concentrated on 

investigating the lag effects of air pollution within a one-week timeframe due to the 

observable immediate impacts. However, this narrow focus may have inadvertently 

neglected any prolonged lag effects that could be present. Our study broadened the scope 

of lag effects analysis to encompass two weeks. This expanded evaluation allowed us to 

identify and examine extended lag effects. 

On the other hand, our research had certain constraints that should be considered. 

First, exposures were inferred from modeled data and connected to mothers' zip codes, 

which may not provide the most accurate representation of residential locations, 

particularly in areas where zip codes cover vast areas. Nevertheless, studies have 

demonstrated that using zip codes for exposure estimation can be adequate (Soret et al., 

2006). Second of the lack of data on some co-pollutants such as NO2 and SO2 hinders a 

comprehensive understanding of air pollution dynamics in each area. It is essential to 

consider the intricate combination of pollutants and their potential synergistic or 

antagonistic interactions to ensure an accurate analysis. Without such data, our 

understanding of the complex nature of air pollution in these areas remains incomplete. 

While we did not notice a significant impact of confounding from pollutants in our study, 

it remains possible that an unexplored pollutant, which is strongly linked to both the 

pollutants and these adverse birth outcomes, could still introduce confounding. Third, our 

study lacks personal monitoring data, residential history, migration records, as well as 

insights into daily activity patterns. This lack of data could potentially lead to 

misclassification of exposure because it depends on multiple factors, such as the time 
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spent indoors and outdoors, and the time spent away from her registered living address. 

Fourth, we excluded miscarriage in our study because of data quality as California does 

not legally require the documentation of pregnancy loss occurring before 20 weeks of 

gestation in birth certificates. Such information could not be considered reliable in these 

datasets. Consequently, our analysis was confined to fetal deaths occurring within a 

gestational range of 20 to 42 weeks. The exclusion of deaths after 20 weeks means we 

systematically exclude those who died earlier with potentially higher exposures. Such 

selection bias would bias our results towards the null. Moreover, we did not have specific 

causes of infant deaths, making it challenging to ascertain whether the effects of air 

pollution are linked to deaths related to respiratory issues after birth, as it is known that 

air pollutants can adversely affect the respiratory system in infants and children due to 

their immature lungs. Incorporating these aspects when determining exposure could be 

advantageous for future research.  

In addition, although most people spend the majority of their time indoors, our study 

focuses on outdoor air. Studies on the connection between indoor and outdoor air show 

that much of the pollution outside can make its way inside (John D. Spengler, 2000). 

Even though the direct link between outdoor air quality and a person's exposure is not 

very strong (with values between .2 and .6 in many PM studies), this connection gets 

stronger over time. This happens because an individual's indoor pollution sources usually 

do not change much and do not depend on outdoor air quality. Consequently, for an 

individual, variations in air quality are primarily influenced by changes in outdoor 

pollution levels (John D. Spengler, 2000). As such the self-matching study design 

addressed some of these issues by eliminating the influence of factors that remained 

consistent over an extended period of weeks. Finally, PM2.5 is a complex combination of 

particles, which can differ from one region to another based on their origins. Therefore, 

identifying the specific components and origins of PM2.5 that have a substantial effect on 

fetal and infant death is essential. For instance, PM2.5 originating from wildfire smoke 

could be more harmful than general ambient PM2.5 exposure. However, we lacked the 

necessary data to investigate this vital aspect, which could potentially account for the 

observed inverse and protective effects of air pollution on fetal and infant deaths. 

5. Conclusions 

This study highlights a significant increase in prenatal and postnatal fatalities 

linked to short-term exposure to PM2.5 and ozone, specifically within two weeks. These 

effects varied by season where the impacts of PM2.5 were pronounced in the cold season 

whereas the effects of O3 were significant in the warm season. These findings 

substantiate the urgency for policies promoting reproductive justice, targeted at reducing 

the detrimental impacts of air pollution, especially within disadvantaged and financially 

strained communities that suffer from these adverse birth outcomes. Considering climate 

change elements such as escalating temperatures, increased frequency of heatwaves, and 

natural calamities, the importance of intensifying investigations into the effect of climate 

change on birth outcomes cannot be overstated. As advancing climate change threatens to 

exacerbate air pollution, understanding this connection becomes increasingly vital for 
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improving public health readiness and formulating effective adaptation strategies, 

especially among vulnerable populations.  
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7. Supplementary tables 

Table S7. Distribution of air pollutants and weather variables during the study period (2016 - 2019) 

Season Parameter Mean SD Min P25 P50 P75 Max QR 

Warm 

  

  

  

PM2.5 (μg/m3) 9.8 7.9 1.0 5.7 8.3 11.7 214.9 6.0 

O3 (ppb) 57.5 14.1 5.0 47.2 57.3 67.2 141.6 20.0 

Temperature (0C) 20.6 5.1 -8.7 17.3 20.6 23.9 42.2 6.7 

Humidity (%) 53.8 16.9 1.3 40.7 56.0 67.6 100.0 26.9 

Cold 

  

  

  

PM2.5 (μg/m3) 13.1 11.8 1.0 5.2 9.3 17.2 253.4 11.9 

O3 (ppb) 35.8 12.4 1.0 27.4 35.6 43.7 92.5 16.3 

Temperature (0C) 11.7 5.0 -19.3 8.9 12.1 15.1 32.2 6.2 

Humidity (%) 60.7 17.1 2.7 50.2 64.0 73.4 100.0 23.2 

Abbreviations: O3, ozone; PM2.5, particulate matter <2.5 microns; C, Celsius; SD, standard deviation; P, percentile; QR, quartile 

range
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Table S8. Distribution of exposures among study participants by the season of delivery 

Pollutant Season 
Lag 

day 

Case period Control period 

IQR Mean SD IQR Mean SD 

PM2.5 (μg/m3) 

Warm 

0 5.9 9.1 5.4 5.6 9.5 5.8 

1 5.5 9.4 5.6 5.5 9.4 5.7 

2 5.1 9.2 5.6 5.3 9.4 5.5 

3 5.2 9.2 5.7 5.5 9.4 5.7 

4 5.4 9.3 6.0 5.7 9.4 5.7 

5 5.9 9.2 5.6 5.7 9.5 5.7 

6 6.1 9.4 6.1 5.7 9.5 5.7 

7 5.9 9.4 6.0 5.6 9.4 5.6 

8 5.7 9.2 5.8 5.5 9.4 5.6 

9 5.0 9.1 5.2 5.4 9.4 5.6 

10 4.8 8.8 5.1 5.5 9.4 5.8 

11 5.4 8.8 4.8 5.7 9.5 5.9 

12 5.2 8.8 4.9 6.0 9.5 5.9 

13 5.2 8.9 5.0 6.0 9.6 6.0 

14 5.3 9.1 5.5 5.8 9.5 5.8 

Cold 

0 11.7 12.8 12.3 12.1 13.4 13.9 

1 11.4 12.8 12.6 11.7 13.1 13.4 

2 11.3 12.5 12.1 10.4 12.8 13.3 

3 10.1 12.5 12.5 10.2 12.7 13.0 

4 10.0 12.6 12.6 10.8 12.5 13.3 

5 11.6 13.2 14.6 11.0 12.7 13.3 

6 11.5 13.5 13.9 11.7 13.1 13.5 

7 12.4 13.9 14.2 11.8 13.1 13.2 

8 11.6 13.3 14.2 11.3 12.8 12.7 

9 10.6 13.3 14.9 10.5 12.6 12.3 

10 10.5 13.5 14.4 10.0 12.5 12.3 

11 11.5 13.2 14.5 10.4 12.3 12.5 

12 12.3 13.2 14.4 10.9 12.6 13.5 

13 12.6 13.5 15.1 11.2 13.0 13.3 

14 12.2 14.0 14.6 11.9 13.1 13.1 

O3 (ppb) 
Warm 

0 19.5 56.1 13.4 19.9 56.4 13.2 

1 18.3 56.3 13.3 19.7 56.5 13.1 

2 18.8 56.5 12.8 19.9 56.4 13.5 

3 18.7 56.2 12.5 19.8 56.3 13.3 

4 18.2 56.3 12.6 19.7 56.2 13.3 

5 19.4 56.1 13.0 20.2 56.2 13.4 

6 19.9 56.7 13.0 20.5 56.5 13.4 

7 18.7 56.1 12.7 19.8 56.4 13.3 

8 18.4 56.2 12.6 19.3 56.6 13.2 

9 18.9 56.2 12.8 19.6 56.5 13.3 

10 19.7 55.9 12.9 19.5 56.3 13.1 

11 20.7 56.4 12.7 19.1 56.2 13.2 

12 20.5 56.5 13.0 20.0 56.2 13.4 

13 19.5 56.8 12.7 20.9 56.6 13.4 

14 19.1 56.6 12.7 19.9 56.4 13.3 

Cold 0 15.6 35.6 11.5 15.8 35.7 11.5 



59 

 

1 14.9 35.9 11.4 15.5 35.5 11.5 

2 14.9 36.2 11.4 14.5 35.7 11.3 

3 14.8 36.0 11.7 14.9 35.8 11.6 

4 15.2 35.8 11.3 15.0 35.7 11.1 

5 13.8 35.6 11.3 15.4 35.8 11.4 

6 14.9 35.7 11.2 15.2 36.0 11.5 

7 15.6 34.8 11.4 15.5 35.7 11.5 

8 14.4 34.8 11.1 15.3 35.8 11.5 

9 13.4 34.7 10.9 14.7 36.0 11.5 

10 13.8 35.2 11.1 15.1 35.9 11.7 

11 13.7 35.5 11.1 15.1 35.7 11.2 

12 13.9 35.6 11.5 15.1 35.7 11.3 

13 14.6 35.4 11.3 15.2 36.1 11.4 

14 15.2 35.5 11.4 15.6 35.7 11.5 

Abbreviations: O3, Ozone; PM2.5, particulate matter <2.5 microns; IQR, interquartile range; SD, standard deviation 
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Table S9. The Spearman correlation coefficient between air pollutants and weather variables throughout the 

whole two weeks of exposure windows by the season of delivery 

Season Parameter PM2.5 O3 Temperature Humidity 

Cold 

PM2.5 (μg/m3) 1.0 -0.4 -0.2 0.0 

O3 (ppb) -0.4 1.0 0.7 -0.6 

Temperature (C) -0.2 0.7 1.0 -0.3 

Humidity (%) 0.0 -0.6 -0.3 1.0 

Warm 

PM2.5 (μg/m3) 1.0 0.4 0.2 -0.3 

O3 (ppb) 0.4 1.0 0.7 -0.6 

Temperature (C) 0.2 0.7 1.0 -0.4 

Humidity (%) -0.3 -0.6 -0.4 1.0 
Abbreviations: O3, ozone; PM2.5, particulate matter <2.5 microns; C, Celsius
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Table S10. The Spearman correlation coefficient between the lags (lag 0 to lag 14) of air pollutants and weather 

variables throughout the whole two weeks of exposure windows by the season of delivery 

Sea

son 
Spearman Correlation Coefficients, N = 3228 

Col

d 

lag(

day) 

pm

0 

pm

1 

pm

2 

pm

3 

pm

4 

pm

5 

pm

6 

pm

7 

pm

8 

pm

9 

pm1

0 

pm1

1 

pm1

2 

pm1

3 

pm1

4 

pm0 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.4 0.4 0.5 

pm1 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.4 0.4 

pm2 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.6 0.5 0.4 0.4 0.4 0.4 

pm3 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.6 0.5 0.4 0.4 0.3 

pm4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 

pm5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.6 0.5 0.4 

pm6 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.5 

pm7 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 

pm8 0.5 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 

pm9 0.4 0.5 0.6 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 

pm1

0 

0.4 0.4 0.5 0.6 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 

pm1

1 

0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 

pm1

2 

0.4 0.4 0.4 0.4 0.5 0.6 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 

pm1

3 

0.4 0.4 0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 

pm1

4 

0.5 0.4 0.4 0.3 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 

  Spearman Correlation Coefficients, N = 3228 
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ne5 
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ne1

1 
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2 
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3 
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1.0 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 
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0.8 1.0 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.6 0.7 
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ne2 

0.7 0.8 1.0 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.6 0.6 

ozo

ne3 

0.7 0.7 0.8 1.0 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.6 
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ne4 

0.7 0.7 0.7 0.8 1.0 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 
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ne5 

0.7 0.7 0.7 0.8 0.8 1.0 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 
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0.7 0.7 0.7 0.7 0.7 0.8 1.0 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.7 
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0.8 0.7 0.7 0.7 0.7 0.7 0.8 1.0 0.8 0.7 0.7 0.7 0.7 0.7 0.8 
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0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.8 1.0 0.8 0.7 0.7 0.7 0.7 0.7 

ozo

ne9 

0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.8 1.0 0.8 0.8 0.7 0.7 0.7 
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  Spearman Correlation Coefficients, N = 3327 
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0.9 1.0 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 

tem

p2 

0.7 0.8 1.0 0.9 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 

tem

p3 

0.6 0.7 0.9 1.0 0.9 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.6 
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p4 

0.6 0.7 0.7 0.9 1.0 0.9 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.6 0.6 

tem

p5 

0.6 0.7 0.7 0.7 0.9 1.0 0.9 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.6 

tem

p6 

0.7 0.7 0.7 0.7 0.7 0.9 1.0 0.9 0.7 0.7 0.6 0.6 0.7 0.8 0.7 

tem

p7 

0.7 0.7 0.7 0.6 0.7 0.7 0.9 1.0 0.9 0.7 0.7 0.6 0.7 0.7 0.8 

tem

p8 

0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.9 1.0 0.8 0.7 0.7 0.6 0.7 0.7 

tem

p9 

0.6 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.8 1.0 0.9 0.7 0.7 0.7 0.6 

tem

p10 

0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.9 1.0 0.9 0.7 0.7 0.6 

tem

p11 

0.6 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.9 1.0 0.9 0.7 0.7 

tem

p12 

0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.6 0.7 0.7 0.9 1.0 0.9 0.7 

tem

p13 

0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.9 1.0 0.9 

tem

p14 

0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.7 0.6 0.6 0.7 0.7 0.9 1.0 

  Spearman Correlation Coefficients, N = 3327 

Col

d 

lag(

day) rh0 rh1 rh2 rh3 rh4 rh5 rh6 rh7 rh8 rh9 rh10 rh11 rh12 rh13 rh14 

rh0 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.6 0.5 0.4 0.4 0.5 0.5 0.6 

rh1 0.7 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.6 0.5 0.4 0.5 0.5 0.5 
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rh2 0.6 0.7 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.6 0.5 0.4 0.4 0.5 

rh3 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.5 0.5 0.4 0.5 

rh4 0.5 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.5 0.5 0.4 

rh5 0.5 0.5 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.6 0.5 

rh6 0.6 0.5 0.5 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.6 

rh7 0.7 0.6 0.5 0.5 0.5 0.6 0.7 1.0 0.8 0.6 0.5 0.5 0.5 0.6 0.7 

rh8 0.6 0.7 0.6 0.5 0.5 0.5 0.6 0.8 1.0 0.7 0.6 0.5 0.5 0.5 0.6 

rh9 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.5 0.5 

rh10 0.4 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.5 

rh11 0.4 0.4 0.5 0.5 0.7 0.6 0.5 0.5 0.5 0.6 0.7 1.0 0.7 0.6 0.5 

rh12 0.5 0.5 0.4 0.5 0.5 0.7 0.6 0.5 0.5 0.5 0.6 0.7 1.0 0.7 0.6 

rh13 0.5 0.5 0.4 0.4 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.6 0.7 1.0 0.7 

rh14 0.6 0.5 0.5 0.5 0.4 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.6 0.7 1.0 

  Spearman Correlation Coefficients, N = 3285 

Wa

rm 

lag(

day) 

pm

0 

pm

1 

pm

2 

pm

3 

pm

4 

pm

5 

pm

6 

pm

7 

pm

8 

pm

9 

pm1

0 

pm1

1 

pm1

2 

pm1

3 

pm1

4 

pm0 1.0 0.7 0.5 0.4 0.4 0.5 0.5 0.7 0.5 0.5 0.4 0.4 0.4 0.5 0.5 
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  Spearman Correlation Coefficients, N = 3285 
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  Spearman Correlation Coefficients, N = 3360 
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tem
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tem

p12 

0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.9 1.0 0.9 0.8 

tem

p13 

0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.9 1.0 0.9 

tem

p14 

0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.9 1.0 

  Spearman Correlation Coefficients, N = 3360 

Wa

rm 

lag(

day) rh0 rh1 rh2 rh3 rh4 rh5 rh6 rh7 rh8 rh9 rh10 rh11 rh12 rh13 rh14 

rh0 1.0 0.8 0.7 0.6 0.5 0.5 0.6 0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.6 

rh1 0.8 1.0 0.8 0.7 0.6 0.5 0.5 0.6 0.7 0.6 0.6 0.5 0.5 0.5 0.5 

rh2 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.6 0.6 0.7 0.7 0.6 0.5 0.5 0.5 

rh3 0.6 0.7 0.8 1.0 0.9 0.7 0.6 0.5 0.6 0.6 0.7 0.7 0.6 0.5 0.5 

rh4 0.5 0.6 0.7 0.9 1.0 0.8 0.7 0.6 0.5 0.6 0.6 0.7 0.7 0.6 0.5 

rh5 0.5 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.6 0.6 0.7 0.7 0.6 

rh6 0.6 0.5 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.6 0.7 0.7 0.7 

rh7 0.7 0.6 0.6 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.6 0.6 0.7 

rh8 0.6 0.7 0.6 0.6 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.6 0.7 

rh9 0.6 0.6 0.7 0.6 0.6 0.5 0.6 0.7 0.8 1.0 0.9 0.7 0.6 0.5 0.6 

rh10 0.5 0.6 0.7 0.7 0.6 0.6 0.5 0.6 0.7 0.9 1.0 0.8 0.7 0.6 0.6 

rh11 0.5 0.5 0.6 0.7 0.7 0.6 0.6 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 

rh12 0.5 0.5 0.5 0.6 0.7 0.7 0.7 0.6 0.5 0.6 0.7 0.8 1.0 0.8 0.7 

rh13 0.5 0.5 0.5 0.5 0.6 0.7 0.7 0.6 0.6 0.5 0.6 0.7 0.8 1.0 0.8 

rh14 0.6 0.5 0.5 0.5 0.5 0.6 0.7 0.7 0.7 0.6 0.6 0.6 0.7 0.8 1.0 

Abbreviations: pm, particulate matter <2.5 microns; temp, temperature; rh, relative humidity
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Table S11. Distribution of exposures among study participants by the season of death 

Pollutant Season Lag day 
Case period Control period 

IQR Mean SD IQR Mean SD 

PM2.5 (μg/m3) 

Warm 

0 5.5 9.8 6.3 5.6 9.1 6.4 

1 6.3 9.6 6.6 5.8 9.3 6.3 

2 6.2 9.7 6.5 6.1 9.5 6.4 

3 6.7 9.7 6.6 5.7 9.3 5.7 

4 5.7 9.6 6.1 5.7 9.3 5.7 

5 6.2 9.6 6.2 5.6 9.3 6.1 

6 5.8 9.4 6.2 5.8 9.4 6.3 

7 5.4 9.1 5.3 5.7 9.4 6.6 

8 5.7 9.0 5.2 6.0 9.5 6.6 

9 6.0 9.1 5.5 6.0 9.7 6.7 

10 5.8 9.2 5.8 5.7 9.5 6.0 

11 6.0 9.0 5.6 5.6 9.4 5.8 

12 6.0 9.1 5.7 5.6 9.4 6.3 

13 5.7 9.0 5.7 5.7 9.3 6.4 

14 5.5 9.1 5.5 5.6 9.2 6.5 

Cold 

0 11.3 12.9 13.8 10.7 12.7 14.1 

1 11.1 13.0 15.3 10.0 12.4 13.6 

2 11.9 13.1 14.3 10.6 12.6 13.9 

3 10.8 12.8 13.6 10.7 12.4 12.8 

4 11.1 12.7 13.6 10.7 12.6 13.5 

5 10.1 13.0 13.6 10.4 12.6 13.7 

6 11.2 12.9 14.1 10.8 12.7 13.5 

7 11.9 12.6 13.2 10.8 12.8 14.1 

8 10.7 13.0 14.0 10.2 12.3 13.8 

9 11.8 13.1 14.9 10.0 12.4 13.4 

10 11.5 12.7 12.6 10.3 12.2 12.8 

11 11.2 12.7 13.8 10.5 12.5 13.2 

12 10.9 12.2 11.0 10.3 12.7 14.2 

13 11.0 12.8 11.6 10.9 12.8 14.1 

14 11.0 12.9 11.5 11.0 12.8 14.5 

O3 (ppb) 
Warm 

0 19.4 56.8 13.0 20.2 55.8 13.3 

1 20.4 56.3 13.3 20.0 55.8 13.3 

2 20.6 56.7 13.4 18.7 55.9 13.4 

3 20.1 57.2 13.1 20.2 55.8 13.7 

4 19.6 56.9 13.1 19.7 55.9 13.2 

5 20.5 56.7 13.0 19.7 56.1 13.4 

6 18.1 56.7 12.6 20.3 55.9 13.3 

7 18.0 56.3 12.4 20.3 56.3 13.4 

8 17.5 56.7 12.2 20.2 55.9 13.4 

9 18.2 56.5 12.5 19.4 56.3 13.5 

10 18.7 56.7 12.8 20.3 56.3 13.6 

11 19.0 56.5 12.8 19.5 56.1 13.2 

12 18.1 56.5 12.7 20.2 56.1 13.3 

13 19.5 56.6 12.8 19.6 56.0 13.0 

14 18.4 57.0 12.9 19.6 56.1 13.1 

Cold 0 15.1 36.8 11.7 16.0 36.7 11.4 
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1 14.9 36.8 11.3 15.9 36.8 11.7 

2 14.9 36.5 11.7 16.2 36.9 12.0 

3 15.5 36.8 11.7 15.8 36.7 11.7 

4 15.6 36.1 11.6 16.0 36.8 11.8 

5 14.9 36.3 11.7 16.8 36.9 11.7 

6 16.5 36.9 11.8 15.6 36.8 11.6 

7 13.8 36.7 11.5 15.8 36.7 11.4 

8 13.6 36.8 11.6 15.5 36.8 11.6 

9 16.0 36.6 12.1 15.4 36.9 12.0 

10 15.3 36.7 12.1 15.7 36.9 11.7 

11 14.3 36.6 12.0 16.0 36.7 11.7 

12 14.7 36.2 11.7 16.6 36.9 11.8 

13 15.6 36.4 12.1 15.6 36.8 11.6 

14 15.1 36.6 12.2 15.6 36.6 11.3 

Abbreviations: O3, ozone, PM2.5, particulate matter <2.5 microns; IQR, interquartile range; SD, standard deviation
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Table S12. The Spearman correlation coefficient between air pollutants and weather variables throughout the whole 

two weeks of exposure windows by the season of death 

Season Parameter PM2.5 O3 Temperature Humidity 

Cod 

PM2.5 (μg/m3) 1.0 -0.4 -0.3 0.0 

O3 (ppb) -0.4 1.0 0.7 -0.6 

Temperature (C) -0.3 0.7 1.0 -0.3 

Humidity (%) 0.0 -0.6 -0.3 1.0 

Warm 

PM2.5 (μg/m3) 1.0 0.4 0.3 -0.4 

O3 (ppb) 0.4 1.0 0.7 -0.6 

Temperature (C) 0.3 0.7 1.0 -0.4 

Humidity (%) -0.4 -0.6 -0.4 1.0 
Abbreviations: O3, ozone; PM2.5, particulate matter <2.5 microns; C, Celsius
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Table S13. The Spearman correlation coefficient between the lags (lag 0 to lag 14) of air pollutants and weather 

variables throughout the whole two weeks of exposure windows by the season of death 

Sea

son 
Spearman Correlation Coefficients, N = 2504 

Col

d 

lag(

day) 

pm

0 

pm

1 

pm

2 

pm

3 

pm

4 

pm

5 

pm

6 

pm

7 

pm

8 

pm

9 

pm1

0 

pm1

1 

pm1

2 

pm1

3 

pm1

4 

pm0 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.4 0.4 0.5 

pm1 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.4 0.5 

pm2 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.5 0.5 0.7 0.5 0.4 0.4 0.4 0.4 

pm3 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 

pm4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 

pm5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.6 0.5 

pm6 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.6 

pm7 0.7 0.5 0.5 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 

pm8 0.5 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.6 

pm9 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.5 

pm1

0 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 

pm1

1 0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 

pm1

2 0.4 0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 

pm1

3 0.4 0.4 0.4 0.4 0.4 0.6 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 

pm1

4 0.5 0.5 0.4 0.4 0.4 0.5 0.6 0.7 0.6 0.5 0.4 0.4 0.5 0.7 1.0 

  Spearman Correlation Coefficients, N = 2504 

Col

d 

lag(

day) 

ozo

ne0 

ozo

ne1 

ozo

ne2 

ozo

ne3 

ozo

ne4 

ozo

ne5 

ozo

ne6 

ozo

ne7 

ozo

ne8 

ozo

ne9 

ozo

ne1

0 

ozo

ne1

1 

ozo

ne1

2 

ozo

ne1

3 

ozo

ne1

4 

ozo

ne0 1.0 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

ozo

ne1 0.8 1.0 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 

ozo

ne2 0.8 0.8 1.0 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 

ozo

ne3 0.7 0.8 0.8 1.0 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 

ozo

ne4 0.7 0.7 0.8 0.8 1.0 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 

ozo

ne5 0.7 0.7 0.7 0.8 0.8 1.0 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.7 

ozo

ne6 0.7 0.7 0.7 0.7 0.8 0.8 1.0 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.7 

ozo

ne7 0.8 0.7 0.7 0.7 0.7 0.8 0.8 1.0 0.8 0.8 0.7 0.7 0.7 0.7 0.8 

ozo

ne8 0.7 0.8 0.7 0.7 0.7 0.7 0.8 0.8 1.0 0.8 0.8 0.7 0.7 0.7 0.8 

ozo

ne9 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.8 0.8 1.0 0.8 0.8 0.7 0.7 0.7 
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ozo

ne1

0 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.8 0.8 1.0 0.8 0.8 0.7 0.7 

ozo

ne1

1 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.8 0.8 1.0 0.8 0.8 0.7 

ozo

ne1

2 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.8 0.8 1.0 0.8 0.8 

ozo

ne1

3 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.8 0.8 1.0 0.8 

ozo

ne1

4 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.8 0.8 1.0 

  Spearman Correlation Coefficients, N = 2574 

Col

d 

lag(

day) 

tem

p0 

tem

p1 

tem

p2 

tem

p3 

tem

p4 

tem

p5 

tem

p6 

tem

p7 

tem

p8 

tem

p9 

tem

p10 

tem

p11 

tem

p12 

tem

p13 

tem

p14 

tem

p0 1.0 0.8 0.7 0.6 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 

tem

p1 0.8 1.0 0.8 0.7 0.6 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.6 

tem

p2 0.7 0.8 1.0 0.8 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.5 0.5 

tem

p3 0.6 0.7 0.8 1.0 0.9 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.6 

tem

p4 0.6 0.6 0.7 0.9 1.0 0.9 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.6 0.6 

tem

p5 0.6 0.6 0.7 0.7 0.9 1.0 0.9 0.7 0.7 0.6 0.6 0.7 0.8 0.7 0.6 

tem

p6 0.7 0.6 0.6 0.7 0.7 0.9 1.0 0.9 0.7 0.7 0.6 0.6 0.7 0.7 0.7 

tem

p7 0.7 0.7 0.6 0.6 0.7 0.7 0.9 1.0 0.8 0.7 0.7 0.6 0.7 0.7 0.7 

tem

p8 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.8 1.0 0.9 0.7 0.7 0.7 0.6 0.7 

tem

p9 0.6 0.7 0.7 0.7 0.7 0.6 0.7 0.7 0.9 1.0 0.9 0.7 0.7 0.6 0.6 

tem

p10 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.9 1.0 0.9 0.8 0.7 0.6 

tem

p11 0.6 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.9 1.0 0.9 0.7 0.7 

tem

p12 0.6 0.6 0.6 0.6 0.7 0.8 0.7 0.7 0.7 0.7 0.8 0.9 1.0 0.9 0.7 

tem

p13 0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.9 1.0 0.9 

tem

p14 0.6 0.6 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.9 1.0 

  Spearman Correlation Coefficients, N = 2574 

Col

d 

lag(

day) rh0 rh1 rh2 rh3 rh4 rh5 rh6 rh7 rh8 rh9 rh10 rh11 rh12 rh13 rh14 

rh0 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.6 0.5 0.4 0.5 0.5 0.5 0.5 

rh1 0.7 1.0 0.8 0.6 0.5 0.5 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.5 0.5 
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rh2 0.6 0.8 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.5 

rh3 0.5 0.6 0.7 1.0 0.8 0.6 0.5 0.5 0.5 0.6 0.7 0.6 0.5 0.5 0.5 

rh4 0.5 0.5 0.6 0.8 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.6 0.5 0.5 

rh5 0.5 0.5 0.5 0.6 0.7 1.0 0.8 0.6 0.5 0.5 0.5 0.6 0.7 0.6 0.5 

rh6 0.6 0.5 0.5 0.5 0.6 0.8 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.6 

rh7 0.7 0.6 0.5 0.5 0.5 0.6 0.7 1.0 0.8 0.6 0.5 0.5 0.5 0.6 0.7 

rh8 0.6 0.7 0.6 0.5 0.5 0.5 0.6 0.8 1.0 0.8 0.6 0.5 0.5 0.6 0.6 

rh9 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.6 0.8 1.0 0.7 0.6 0.5 0.5 0.5 

rh10 0.4 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.6 0.7 1.0 0.8 0.6 0.5 0.5 

rh11 0.5 0.5 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.6 0.8 1.0 0.7 0.6 0.5 

rh12 0.5 0.5 0.5 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.6 0.7 1.0 0.8 0.6 

rh13 0.5 0.5 0.5 0.5 0.5 0.6 0.7 0.6 0.6 0.5 0.5 0.6 0.8 1.0 0.8 

rh14 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.6 0.8 1.0 

  Spearman Correlation Coefficients, N = 2830 

Wa

rm 

lag(

day) 

pm

0 

pm

1 

pm

2 

pm

3 

pm

4 

pm

5 

pm

6 

pm

7 

pm

8 

pm

9 

pm1

0 

pm1

1 

pm1

2 

pm1

3 

pm1

4 

pm0 1.0 0.7 0.5 0.5 0.4 0.5 0.5 0.7 0.6 0.5 0.5 0.4 0.4 0.5 0.5 

pm1 0.7 1.0 0.7 0.6 0.5 0.4 0.4 0.5 0.7 0.6 0.5 0.4 0.4 0.4 0.5 

pm2 0.5 0.7 1.0 0.7 0.6 0.5 0.4 0.5 0.6 0.7 0.6 0.5 0.4 0.4 0.4 

pm3 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.4 0.5 0.6 0.7 0.6 0.5 0.4 0.4 

pm4 0.4 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.4 0.5 0.5 0.7 0.6 0.5 0.4 

pm5 0.5 0.4 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.4 0.5 0.5 0.7 0.6 0.5 

pm6 0.5 0.4 0.4 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.4 0.4 0.6 0.7 0.6 

pm7 0.7 0.5 0.5 0.4 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.4 0.5 0.6 0.7 

pm8 0.6 0.7 0.6 0.5 0.4 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.4 0.5 0.6 

pm9 0.5 0.6 0.7 0.6 0.5 0.4 0.5 0.6 0.7 1.0 0.7 0.6 0.5 0.4 0.5 

pm1

0 0.5 0.5 0.6 0.7 0.5 0.5 0.4 0.5 0.6 0.7 1.0 0.8 0.6 0.5 0.4 

pm1

1 0.4 0.4 0.5 0.6 0.7 0.5 0.4 0.4 0.5 0.6 0.8 1.0 0.7 0.6 0.5 

pm1

2 0.4 0.4 0.4 0.5 0.6 0.7 0.6 0.5 0.4 0.5 0.6 0.7 1.0 0.8 0.6 

pm1

3 0.5 0.4 0.4 0.4 0.5 0.6 0.7 0.6 0.5 0.4 0.5 0.6 0.8 1.0 0.7 

pm1

4 0.5 0.5 0.4 0.4 0.4 0.5 0.6 0.7 0.6 0.5 0.4 0.5 0.6 0.7 1.0 

  Spearman Correlation Coefficients, N = 2830 

Wa

rm 

lag(

day) 

ozo

ne0 

ozo

ne1 

ozo

ne2 

ozo

ne3 

ozo

ne4 

ozo

ne5 

ozo

ne6 

ozo

ne7 

ozo

ne8 

ozo

ne9 

ozo

ne1

0 

ozo

ne1

1 

ozo

ne1

2 

ozo

ne1

3 

ozo

ne1

4 

ozo

ne0 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.6 0.5 0.4 0.4 0.4 0.4 0.5 

ozo

ne1 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.5 0.5 0.4 0.4 0.4 0.5 

ozo

ne2 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.6 0.5 0.4 0.4 0.4 

ozo

ne3 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.6 0.5 0.4 0.4 
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ozo

ne4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.6 0.5 0.4 

ozo

ne5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.6 0.5 

ozo

ne6 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 0.6 

ozo

ne7 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 0.7 

ozo

ne8 0.6 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 0.5 

ozo

ne9 0.5 0.5 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 0.4 0.4 0.4 

ozo

ne1

0 0.4 0.5 0.6 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.8 0.5 0.4 0.4 

ozo

ne1

1 0.4 0.4 0.5 0.6 0.7 0.5 0.4 0.4 0.4 0.5 0.8 1.0 0.7 0.5 0.4 

ozo

ne1

2 0.4 0.4 0.4 0.5 0.6 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 0.5 

ozo

ne1

3 0.4 0.4 0.4 0.4 0.5 0.6 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 0.7 

ozo

ne1

4 0.5 0.5 0.4 0.4 0.4 0.5 0.6 0.7 0.5 0.4 0.4 0.4 0.5 0.7 1.0 

  Spearman Correlation Coefficients, N = 2890 

Wa

rm 

lag(

day) 

tem

p0 

tem

p1 

tem

p2 

tem

p3 

tem

p4 
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p5 

tem

p6 

tem

p7 

tem

p8 

tem

p9 

tem

p10 

tem

p11 

tem

p12 

tem

p13 

tem

p14 

tem

p0 1.0 0.9 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 

tem

p1 0.9 1.0 0.9 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 

tem

p2 0.8 0.9 1.0 0.9 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 

tem

p3 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 

tem

p4 0.7 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 

tem

p5 0.7 0.7 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.7 

tem

p6 0.8 0.7 0.7 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.7 0.7 0.8 0.8 0.8 

tem

p7 0.8 0.8 0.7 0.7 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.7 0.7 0.8 0.8 

tem

p8 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.7 0.7 0.8 

tem

p9 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.7 0.7 

tem

p10 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.7 

tem

p11 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.9 1.0 0.9 0.8 0.7 
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tem

p12 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.9 1.0 0.9 0.8 

tem

p13 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.9 1.0 0.9 

tem

p14 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.9 1.0 

  Spearman Correlation Coefficients, N = 2890 

Wa

rm 

lag(

day) rh0 rh1 rh2 rh3 rh4 rh5 rh6 rh7 rh8 rh9 rh10 rh11 rh12 rh13 rh14 

rh0 1.0 0.8 0.7 0.6 0.5 0.6 0.6 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.5 

rh1 0.8 1.0 0.8 0.7 0.6 0.5 0.5 0.6 0.7 0.6 0.6 0.5 0.5 0.5 0.5 

rh2 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.5 0.6 0.7 0.6 0.6 0.5 0.5 0.5 

rh3 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.5 0.6 0.7 0.6 0.6 0.5 0.5 

rh4 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.5 0.6 0.7 0.7 0.6 0.5 

rh5 0.6 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.6 0.6 0.7 0.6 0.6 

rh6 0.6 0.5 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.5 0.6 0.7 0.6 

rh7 0.7 0.6 0.5 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.6 0.6 0.7 

rh8 0.6 0.7 0.6 0.5 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.5 0.6 

rh9 0.5 0.6 0.7 0.6 0.5 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 0.5 

rh10 0.5 0.6 0.6 0.7 0.6 0.6 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 0.5 

rh11 0.5 0.5 0.6 0.6 0.7 0.6 0.5 0.5 0.6 0.7 0.8 1.0 0.8 0.7 0.6 

rh12 0.5 0.5 0.5 0.6 0.7 0.7 0.6 0.6 0.5 0.6 0.7 0.8 1.0 0.8 0.7 

rh13 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.6 0.5 0.5 0.6 0.7 0.8 1.0 0.8 

rh14 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.6 0.5 0.5 0.6 0.7 0.8 1.0 
Abbreviations: pm, particulate matter <2.5 microns; temp, temperature; rh, relative humidity
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Table S14: Whole-year association between air pollutants and fetal and infant deaths in the SJV, California,  

2016-2019 

 

Pollutant Lag (day) 
Fetal death (20-42 weeks) Infant death (< 1 year) 

Unadjusted OR  

(95% CI)a 

Adjusted OR  

(95% CI)b 

Unadjusted OR 

 (95% CI)a 

Adjusted OR  

(95% CI)b 

PM2.5 

0 0.97(0.90,1.03) 0.97(0.90,1.03) 1.03(0.97,1.11) 1.03(0.97,1.09) 

1 1.00(0.94,1.06) 1.00(0.94,1.06) 1.04(0.97,1.11) 1.03(0.97,1.09) 

2 0.99(0.93,1.05) 0.99(0.93,1.05) 1.03(0.96,1.09) 1.02(0.96,1.09) 

3 0.99(0.93,1.06) 0.99(0.93,1.06) 1.04(0.97,1.11) 1.03(0.97,1.11) 

4 1.01(0.95,1.07) 1.01(0.95,1.07) 1.01(0.95,1.08) 1.01(0.94,1.08) 

5 1.03(0.97,1.08) 1.02(0.97,1.08) 1.03(0.97,1.09) 1.03(0.96,1.09) 

6 1.03(0.97,1.09) 1.02(0.97,1.08) 1.01(0.94,1.07) 1.00(0.94,1.07) 

7 1.04(0.99,1.11) 1.04(0.99,1.11) 0.97(0.91,1.04) 0.97(0.90,1.04) 

8 1.02(0.96,1.08) 1.02(0.96,1.08) 1.01(0.94,1.07) 1.00(0.94,1.07) 

9 1.03(0.97,1.09) 1.03(0.97,1.09) 1.00(0.94,1.07) 1.00(0.93,1.06) 

10 1.03(0.97,1.09) 1.03(0.97,1.09) 1.01(0.94,1.08) 1.00(0.93,1.07) 

11 1.03(0.96,1.09) 1.02(0.96,1.08) 0.99(0.92,1.05) 0.98(0.91,1.05) 

12 1.00(0.95,1.06) 1.00(0.94,1.06) 0.96(0.9,1.03) 0.95(0.89,1.02) 

13 1.00(0.94,1.06) 1.00(0.95,1.06) 0.99(0.92,1.05) 0.98(0.91,1.05) 

14 1.04(0.98,1.09) 1.03(0.97,1.09) 1.00(0.93,1.06) 0.99(0.92,1.06) 

  

O3 

0 0.96(0.92,1.00) 0.98(0.93,1.02) 1.04(0.99,1.08) 1.03(0.98,1.08) 

1 0.97(0.93,1.01) 0.98(0.94,1.03) 1.03(0.98,1.07) 1.02(0.97,1.06) 

2 0.98(0.94,1.02) 0.99(0.95,1.04) 1.02(0.98,1.07) 1.01(0.96,1.06) 

3 0.97(0.93,1.02) 0.99(0.94,1.03) 1.05(1.00,1.09) 1.03(0.99,1.08) 

4 0.98(0.94,1.02) 0.99(0.94,1.03) 1.02(0.98,1.07) 1.01(0.96,1.06) 

5 0.97(0.93,1.01) 0.98(0.94,1.02) 1.02(0.97,1.07) 1.01(0.96,1.06) 

6 0.97(0.93,1.01) 0.98(0.94,1.02) 1.03(0.99,1.08) 1.02(0.97,1.07) 

7 0.95(0.91,0.99) 0.96(0.92,1.01) 1.02(0.97,1.06) 1.01(0.96,1.05) 

8 0.95(0.91,0.99) 0.96(0.92,1.01) 1.03(0.98,1.07) 1.02(0.97,1.07) 

9 0.94(0.90,0.98) 0.96(0.92,1.00) 1.01(0.97,1.06) 1.00(0.95,1.05) 

10 0.95(0.91,0.99) 0.97(0.92,1.01) 1.02(0.97,1.06) 1.01(0.96,1.06) 

11 0.97(0.93,1.02) 0.98(0.94,1.03) 1.02(0.97,1.07) 1.01(0.96,1.06) 

12 0.98(0.93,1.02) 0.99(0.94,1.03) 1.01(0.97,1.06) 1.00(0.95,1.05) 

13 0.96(0.92,1.00) 0.98(0.93,1.02) 1.02(0.97,1.07) 1.01(0.96,1.06) 

14 0.97(0.93,1.01) 0.98(0.94,1.03) 1.03(0.99,1.08) 1.02(0.97,1.07) 
aModels only adjusted for time invariant confounders by design; and ORs were obtained for 10 units increase in each pollutant 

concentration. 
bModels adjusted for the other pollutant, temperature, and relative humidity; and ORs were obtained for 10 units increase in each 

pollutant concentration. 

Abbreviations: OR, odds ratio; CI, confidence intervals; PM2.5 , particulate matter <2.5 microns; O3, ozone; SJV, San Joaquin 

Valley
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Table S15: Association between air pollutants and fetal death in the single pollutant model in the SJV, 

California 2016-2019 

Seaso

n Lag 

(day) 

PM2.5  O3  

Unadjusted OR 

(95% CI) a 

Adjusted OR  

(95% CI) b 

Unadjusted OR (95% 

CI) a 

Adjusted OR  

(95% CI) b 

Warm 

0 0.82(0.75,0.88) 0.83(0.77,0.90) 0.92(0.88,0.97) 1.00(0.96,1.05) 

1 0.84(0.78,0.91) 0.86(0.79,0.92) 0.93(0.90,0.98) 1.02(0.97,1.06) 

2 0.83(0.77,0.90) 0.84(0.78,0.91) 0.94(0.90,0.99) 1.03(0.98,1.07) 

3 0.83(0.77,0.90) 0.85(0.78,0.92) 0.94(0.90,0.98) 1.02(0.97,1.06) 

4 0.85(0.78,0.92) 0.87(0.80,0.93) 0.94(0.90,0.99) 1.02(0.97,1.07) 

5 0.86(0.80,0.92) 0.88(0.81,0.94) 0.93(0.89,0.98) 1.01(0.97,1.06) 

6 0.86(0.80,0.93) 0.88(0.82,0.95) 0.93(0.89,0.98) 1.01(0.97,1.06) 

7 0.88(0.82,0.95) 0.90(0.83,0.96) 0.91(0.87,0.96) 0.99(0.95,1.04) 

8 0.86(0.80,0.93) 0.88(0.81,0.95) 0.91(0.87,0.96) 0.99(0.95,1.04) 

9 0.87(0.80,0.93) 0.89(0.82,0.95) 0.90(0.87,0.95) 0.99(0.94,1.03) 

10 0.87(0.80,0.94) 0.89(0.82,0.95) 0.91(0.87,0.96) 0.99(0.95,1.04) 

11 0.86(0.80,0.93) 0.88(0.81,0.95) 0.93(0.90,0.98) 1.02(0.97,1.06) 

12 0.84(0.78,0.91) 0.86(0.79,0.92) 0.94(0.90,0.98) 1.02(0.97,1.07) 

13 0.84(0.78,0.91) 0.86(0.79,0.92) 0.92(0.89,0.97) 1.01(0.96,1.05) 

14 0.87(0.81,0.93) 0.89(0.82,0.95) 0.93(0.90,0.98) 1.02(0.97,1.06) 

  

Cold 

0 0.99(0.93,1.05) 0.99(0.93,1.05) 0.99(0.94,1.03) 0.93(0.89,0.98) 

1 1.02(0.96,1.08) 1.02(0.96,1.08) 1.00(0.96,1.04) 0.94(0.90,0.99) 

2 1.01(0.95,1.07) 1.01(0.95,1.07) 1.01(0.96,1.05) 0.95(0.90,1.00) 

3 1.01(0.95,1.08) 1.01(0.95,1.08) 1.00(0.96,1.04) 0.94(0.90,0.99) 

4 1.03(0.97,1.09) 1.03(0.97,1.09) 1.00(0.96,1.05) 0.95(0.90,1.00) 

5 1.04(0.99,1.11) 1.04(0.99,1.11) 0.99(0.95,1.04) 0.94(0.90,0.99) 

6 1.05(0.99,1.11) 1.05(0.99,1.11) 0.99(0.95,1.04) 0.94(0.90,0.99) 

7 1.06(1.01,1.13) 1.06(1.01,1.13) 0.97(0.93,1.02) 0.92(0.88,0.97) 

8 1.04(0.98,1.12) 1.05(0.99,1.12) 0.97(0.93,1.02) 0.92(0.88,0.97) 

9 1.05(0.99,1.12) 1.05(0.99,1.12) 0.97(0.93,1.01) 0.91(0.87,0.96) 

10 1.05(0.99,1.12) 1.05(0.99,1.12) 0.98(0.93,1.02) 0.92(0.88,0.97) 

11 1.05(0.98,1.12) 1.05(0.99,1.12) 1.00(0.96,1.04) 0.94(0.90,0.99) 

12 1.02(0.96,1.08) 1.02(0.97,1.08) 1.00(0.96,1.04) 0.95(0.90,0.99) 

13 1.02(0.96,1.08) 1.02(0.97,1.08) 0.99(0.95,1.03) 0.93(0.89,0.98) 

14 1.05(0.99,1.12) 1.05(1.00,1.12) 1.00(0.95,1.04) 0.94(0.90,0.99) 
aModels not adjusted for temperature, and relative humidity; and ORs were obtained for 10 units increase in each 

pollutant concentration. 
bModels adjusted for temperature, and relative humidity; and ORs were obtained for 10 units increase in each pollutant 

concentration. 

Abbreviations: OR, odds ratio; CI, confidence intervals; PM2.5 , particulate matter <2.5 microns; O3, ozone; SJV, San 

Joaquin Valley. 
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Table S16: Association between air pollutants and infant death in the single pollutant model in the SJV, 

California, 2016-2019 

Seas

on 

 Lag 

(day) 

PM2.5 O3 

Unadjusted OR 

(95% CI)a 

Adjusted OR 

(95% CI)b 

Unadjusted OR 

(95% CI)a 

Adjusted OR 

(95% CI)b  

War

m 

0 1.01(0.93,1.08) 0.99(0.91,1.07) 1.08(1.03,1.13) 1.07(1.02,1.13) 

1 1.01(0.93,1.09) 0.99(0.91,1.07) 1.07(1.02,1.12) 1.06(1.01,1.12) 

2 1.00(0.93,1.08) 0.98(0.91,1.06) 1.06(1.02,1.12) 1.06(1.01,1.12) 

3 1.01(0.93,1.09) 0.99(0.91,1.08) 1.08(1.04,1.14) 1.08(1.03,1.14) 

4 0.99(0.91,1.07) 0.97(0.90,1.05) 1.06(1.02,1.12) 1.06(1.01,1.12) 

5 1.00(0.93,1.08) 0.99(0.91,1.07) 1.06(1.01,1.12) 1.05(1.00,1.11) 

6 0.98(0.90,1.06) 0.96(0.89,1.04) 1.07(1.03,1.13) 1.07(1.02,1.13) 

7 0.95(0.88,1.03) 0.93(0.86,1.01) 1.06(1.01,1.11) 1.05(1.00,1.11) 

8 0.98(0.90,1.06) 0.96(0.89,1.04) 1.07(1.02,1.13) 1.06(1.01,1.12) 

9 0.98(0.90,1.06) 0.96(0.89,1.04) 1.05(1.00,1.11) 1.04(0.99,1.09) 

10 0.98(0.90,1.07) 0.97(0.89,1.05) 1.06(1.01,1.12) 1.05(1.00,1.11) 

11 0.96(0.89,1.04) 0.94(0.87,1.03) 1.06(1.01,1.12) 1.05(1.00,1.11) 

12 0.93(0.86,1.02) 0.91(0.84,1.00) 1.05(1.01,1.11) 1.04(0.99,1.11) 

13 0.96(0.89,1.04) 0.94(0.87,1.02) 1.06(1.01,1.12) 1.05(1.00,1.11) 

14 0.97(0.90,1.05) 0.95(0.88,1.03) 1.07(1.03,1.13) 1.07(1.02,1.13) 

  

Cold 

0 1.05(0.98,1.12) 1.04(0.98,1.11) 0.96(0.90,1.01) 0.95(0.90,1.00) 

1 1.05(0.99,1.12) 1.04(0.98,1.11) 0.95(0.90,1.00) 0.94(0.89,0.99) 

2 1.04(0.98,1.11) 1.03(0.97,1.11) 0.95(0.90,1.00) 0.94(0.89,0.99) 

3 1.05(0.98,1.13) 1.04(0.98,1.12) 0.97(0.91,1.02) 0.95(0.90,1.01) 

4 1.03(0.96,1.09) 1.02(0.95,1.09) 0.95(0.90,1.00) 0.94(0.89,0.99) 

5 1.04(0.98,1.12) 1.04(0.97,1.11) 0.94(0.90,0.99) 0.93(0.88,0.98) 

6 1.02(0.96,1.09) 1.01(0.95,1.08) 0.96(0.90,1.01) 0.94(0.90,1.00) 

7 0.99(0.92,1.06) 0.98(0.91,1.05) 0.94(0.90,0.99) 0.93(0.88,0.98) 

8 1.02(0.95,1.08) 1.01(0.95,1.08) 0.95(0.90,1.00) 0.94(0.89,0.99) 

9 1.02(0.95,1.08) 1.01(0.94,1.07) 0.93(0.89,0.99) 0.92(0.88,0.98) 

10 1.02(0.95,1.09) 1.01(0.94,1.08) 0.94(0.90,0.99) 0.93(0.89,0.98) 

11 1.00(0.93,1.07) 0.99(0.92,1.06) 0.94(0.90,1.00) 0.93(0.89,0.99) 

12 0.97(0.90,1.04) 0.96(0.90,1.03) 0.93(0.89,0.99) 0.92(0.88,0.98) 

13 1.00(0.93,1.07) 0.99(0.92,1.06) 0.94(0.90,1.00) 0.93(0.89,0.99) 

14 1.01(0.94,1.08) 1.00(0.93,1.07) 0.96(0.90,1.01) 0.94(0.09,1.00) 
aModels not adjusted for temperature, and relative humidity; and ORs were obtained for 10 units increase in each pollutant 
concentration. 
bModels adjusted for temperature, and relative humidity; and ORs were obtained for 10 units increase in each pollutant concentration. 

Abbreviations: OR, odds ratio; CI, confidence intervals; PM2.5, particulate matter <2.5 microns; O3, ozone; SJV, San Joaquin Valley. 
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8. Supplementary figures 

 

Figure S4. Study design scheme 
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Figure S5: Flowchart representing sample selection scheme 




