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Abstract 

Dynamic switching of the vortex circulation in magnetic nanodisks by fast rising magnetic field pulse 

requires annihilation of the vortex core at the disk boundary during the first half-period of the high 

amplitude gyrotropic precession and reforming a new vortex with required sense of circulation. We 

study the influence of pulse parameters on the dynamics and efficiency of the dynamic vortex core 

annihilation in Permalloy nanodisks. We use magnetic transmission X-ray microscopy to experimentally 

determine the pulse rise time – pulse amplitude phase diagram for vortex circulation switching and show 

time-resolved evolution of magnetization in different regions of the phase diagram. The experimental 

phase diagram is compared with an analytical model based on Thiele’s equation describing high 

amplitude vortex core motion in parabolic potential. We found that the analytical model is in a good 

agreement with experimental data for wide range of disk geometries. From the outputs of the analytical 

model and in accordance with our experimental finding we determine the geometrical restriction for 

dynamic vortex core annihilation and pulse parameters needed for the most efficient and fastest 

circulation switching. The comparison of our experimental results with micromagnetic simulations show 

that the micromagnetic simulations of ‘ideal’ disks with diameters larger than ~250 nm overestimate 

nonlinearities in susceptibility and eigenfrequency. This overestimation leads to a premature core 

polarity switching near the disk boundary, which then (in disagreement with experimental findings) 

prevents the core annihilation and circulation switching. We modified the micromagnetic simulation by 

introducing the ‘boundary region’ of reduced magnetization to fit the experimentally determined 

susceptibility and in these modified micromagnetic simulations we were able to reproduce 

experimentally observed dynamic vortex core annihilation and circulation switching. 

 

I. INTRODUCTION 

Magnetic vortices are curling magnetization structures formed in micro- and nanosized magnetic disks 

and polygons. They are known for having four different magnetization configurations (vortex states) 

that can be used for a multibit memory cell. The vortex states are defined by the polarity of the vortex 

core, pointing either up (𝑝 = +1) or down (𝑝 = −1) and by the circulation of the magnetization in the 

plane of the disk, curling either counterclockwise (𝑐 = +1), or clockwise (𝑐 = −1). They can be 

controlled by applying a static out-of-plane (polarity control [1]) or in-plane (circulation control [2]) 

magnetic fields, although the amplitude of these fields can be quite large. However, both the polarity 

and the circulation can be switched more effectively by using fast rising magnetic fields [3,4].  

Selective switching of the circulation requires expelling the vortex core out of the disk and then 

reforming a new vortex with a required sense of spin circulation. We have recently demonstrated [4], 

that this can be achieved by using a fast rising in-plane magnetic field pulse that drives the vortex core 

into far-from-equilibrium gyrotropic precession and annihilates the vortex during the first half-period of 



the precessional motion at the disk boundary. The resulting circulation of a new vortex is controlled by 

a disk asymmetry in the form of a thickness gradient and by the direction of the magnetic field pulse. 

This approach allows for a fast switching with the field amplitudes reduced by more than 50% when 

compared to the switching using static fields. 

The dynamics of a magnetic vortex confined in soft ferromagnetic nanodisks excited resonantly by an 

in-plane alternating magnetic field or by a fast rising magnetic field pulse can be described as a forced 

harmonic oscillator using Thiele’s equation of motion [5,6]. Its properties depend on the profile of the 

confining magnetostatic potential. The potential can be described either by parabolic terms [7], or more 

precisely including higher order terms in the energy expansion [8–10]. Micromagnetic simulations 

predict significant contribution of the higher order energy terms [8,9] leading to a nonlinear increase of 

the eigenfrequency as a function of the vortex core position. However, the experimental results obtained 

from eigenfrequency measurements at high amplitude rf field excitation or low amplitude rf field 

excitation in biasing field are often inconsistent with the simulations, showing a decrease of the 

eigenfrequency with an increasing amplitude[11] or a pinnig dominated eigenfrequency 

dependence [12,13]. Only recently, an experimental measurement of anharmonicity of a potential well 

in a FeV single crystal disk showed an ~10% increase of the eigenfrequency for vortex core 

displacements up to 0.4R [10]. 

In this paper, we present an experimental study of the process of dynamic annihilation of the magnetic 

vortices in micro- and nanosized magnetic disks. We investigate the range of disk diameters and 

thicknesses, in which the magnetic vortices can be dynamically annihilated, as well as the possible 

extension of this range by an appropriate selection of pulse rise time and amplitude. The experimental 

results are presented in section II. In section III we derive a simple, but well-fitting analytical model 

based on Thiele’s equation of motion assuming a parabolic potential. In section IV we compare the 

experimental data and the analytical model with micromagnetic simulation. The discrepancy between 

the prediction of micromagnetic simulations and experimental data is discussed and a modified 

micromagnetic simulation, fitting to the experimental observation is presented.  

 

II. EXPERIMENTS 

The dynamic annihilation of magnetic vortices was studied on a series of samples consisting from 

Permalloy (Ni80Fe20) disks with diameters ranging from 250 nm to 2500 nm and thicknesses from 20 nm 

to 50 nm. The disks were placed on gold coplanar waveguides which were used to generate in-plane 

magnetic field pulses up to 60 mT. To provide a circulation control, the disks were fabricated with a 

wedge-like thickness asymmetry using the shadowing effect of a 500-nm-thick polymethyl methacrylate 

(PMMA) mask and a directional ion beam sputtering of Ni80Fe20 with the sputtered particles incident at 

15° from the film normal [4]. The entire structure was fabricated on a 200-nm-thick Si3N4 membrane to 

be able to conduct magnetic transmission x-ray microscopy (MTXM) [14] experiments. 

Magnetic field pulses were generated by launching current pulses into the waveguide using a pulse 

generator (Agilent 81150A) allowing a precise setting of the rise time in the range of 2.5 – 8.0 ns and 

the amplitude of the pulses in the range of 1.0 – 50.0 mT. The pulse shapes were recorded on a 4-GHz 

oscilloscope (LeCroy WaveMaster 804Zi-A). Alternatively, for smaller disks where a faster rise time 

was needed, we used another pulse generator (Picosecond Pulse Labs 10,050A) with a fixed rise time 

of 250 ps. 

The magnetization in the disks was imaged by XM-1, the full-field transmission soft x-ray microscope 

at beamline 6.1.2 at the Advanced Light Source (ALS) in Berkeley, CA. The images were captured for 

one circular polarization of the x-ray beam at the Fe L3 edge (707 eV) with a spatial resolution of 25 nm 



using x-ray magnetic circular dichroism (XMCD) as a source of magnetic contrast. The disks were 

imaged before, during and after application of the magnetic field pulses. The time-resolved experiments, 

where the snapshots of magnetization evolution in the disks were imaged at defined times during the 

magnetic pulse were based on a pump-probe technique enabling stroboscopic imaging of reproducible 

events [15]. The temporal resolution is given by the length of the photon flashes (70 ps), arriving at the 

sample at 3.05 MHz repetition frequency. The total acquisition time for each image is about 120 s, i.e. 

approx. 3.7×108 events are averaged per single image. 

During the experiments, prior to the application of the magnetic field pulses we set the spin circulation 

in a disk into one state (e.g. clockwise) by applying an external static magnetic field in a defined 

direction. This was possible by exploiting the asymmetry in the disk thickness [4]. The pulsed magnetic 

field was then applied in the opposite direction and in case of the successful annihilation of a vortex the 

spin circulation in the disk switched (i.e. from clockwise to counterclockwise). In case of unsuccessful 

annihilation, the circulation stayed the same. This approach allowed for construction of a pulse rise time 

– pulse amplitude phase diagram of successful vortex annihilation (see Fig. 1). We are able to distinguish 

three distinct regions: (1) a region of low pulse amplitude and long rise time [Fig. 1(a), (b); red triangles], 

where the circulation switching was not detected, (2) a region of intermediate pulse amplitude and 

intermediate rise rime [Fig. 1(a), blue stars], where the circulation switching was detected and finally 

(3) a region of short rise time and high amplitude [Fig. 1(a), red dots], where again the circulation 

switching was not successful.  

Time resolved experiments revealed the dynamics in each region. In region (1) the vortex core was not 

expelled out of the disk and gyrated freely in the disk with an unchanged polarity (see top inset in Fig. 

1). In region (2) the pulse parameters were sufficient to expel the vortex core out of the disk. After an 

intermediate state where the disk was fully saturated [see left inset in Fig. 1(a)] a new vortex with a 

reversed circulation and a random polarity is formed [4]. The symmetric magnetic contrast apparent in 

these images corresponds to two vortex core trajectories for two opposite polarities of the vortex 

core [16], which were averaged together during a multitude of cycles of the pump-probe technique. The 

dynamics in region (3) shows the same symmetric contrast revealing core polarity switching, however 

here the disk did not reach a full saturation and the circulation did not reverse. This shows that the core 

polarity switching prevented annihilation and consequent circulation reversal, even when a stronger 

pulse than in region (2) was applied. The described behavior was consistent over all disk geometries. 

The character and boundaries of the normalized diagram stayed the same for disks with the same 

thickness, even when the radius was changed. With increasing disk thickness increased the region (2) 

moved towards top-right of the normalized phase diagram [Fig. 1 (b)]. In section III we present an 

analytical model describing underlying processes in the phase diagram.  

 

  



 

FIG1. (a) Pulse rise time – pulse amplitude phase diagram experimentally determined for a 1600-nm-wide, 20-nm-thick 

Permalloy disk. Estimated eigenperiod 2𝜋/𝜔 = 7.9 ns, experimentally determined static annihilation field 𝐵𝑎𝑛𝑠𝑡𝑎𝑡 = 19 mT. 

Red triangles [region (1)] represent a case of unsuccessful switching due to a low amplitude and/or long rise time of the 

magnetic pulse. Temporal evolution of the magnetization captured by a series of time-resolved MTXM images is depicted in 

the top inset. Blue stars [region (2)] represent a case, where successful core annihilation led to a circulation switching. Left 

inset shows temporal evolution of the magnetization in this region, showing full saturation at 8 ns which is followed by 

nucleation of a vortex with reversed circulation after X ns. Red dots [region (3)] represent a case, where the circulation 

switching was not achieved in spite of using the same rise time and larger pulse amplitudes than in region 2. Here, the maximum 

displacement of the vortex core was reached at 3 ns and at 4 ns the vortex core(s) already returned towards the disk center, 

indicating a continuous motion of the core without vortex annihilation and re-nucleation. Symmetric contrast in the MTXM 

images in the right and left insets is a combination of two symmetric core trajectories and thus indicates the core polarity 

reversal (either at vortex nucleation after its annihilation or directly during the core motion). (b) Phase diagram for a 1600-nm-

wide, 30-nm-thick Permalloy disk. The region (2) moved towards top-right of the normalized phase diagram. The grey areas 

in the phase diagrams defines boundary of region (2) predicted by the analytical model (see section III). 

 

III. ANALYTICAL MODELING 

A vortex core trajectory in a magnetic disk during dynamic annihilation can be described by a simple 

analytical model based on Thiele’s equation of motion [5,17]. When using a fast rising magnetic pulse 

with a rise time shorter or equal to the period of the vortex eigen-oscillation, the vortex core 𝐶 gyrates 

about a point 𝑆, following circular trajectory [18]. The distance of the gyration center from the disk 

center is 𝑠 = 𝑅𝜒𝐵/(𝜇0𝑀𝑠), where 𝜒 is the static susceptibility of the vortex, 𝐵 is the applied magnetic 

field and 𝑀𝑠 is the spontaneous magnetization of the disk material  [19]. As the coordinates of the 

gyration center depend on the magnitude of the magnetic field 𝐵, during the rise time of the magnetic 

pulse the point 𝑆 is moving perpendicularly to the direction of the magnetic field with a velocity 𝑣𝑠 =

𝑅𝜒𝐵𝑚𝑎𝑥/(𝜇0𝑀𝑠𝑡𝑟𝑖𝑠𝑒), where 𝐵𝑚𝑎𝑥 is the maximum amplitude of the pulse and 𝑡𝑟𝑖𝑠𝑒 is the rise time of 

the pulse. Hence, the resulting trajectory of the vortex core is cycloidal with coordinates [20]: 𝑥(𝑡) =

𝑣𝑠[𝑡 − (1 𝜔⁄ )sin 𝜔𝑡], 𝑦(𝑡) = (𝑣𝑠 𝜔⁄ ) (1 − cos 𝜔𝑡), where 𝜔 is the eigenfrequency of the gyrotropic 

mode  [17]. When the maximum amplitude of the pulse 𝐵𝑚𝑎𝑥 is reached at 𝑡 = 𝑡𝑟𝑖𝑠𝑒, the vortex core 

trajectory changes to circular with a gyration center (static equilibrium point) at a distance 𝑠𝑚𝑎𝑥 =

𝑅𝜒𝐵𝑚𝑎𝑥/(𝜇0𝑀𝑠) from the disk center [see Fig. 1(a)]. The maximum amplitude of the vortex 

translational motion 𝐶𝑚𝑎𝑥 = 𝑠𝑚𝑎𝑥 + √[𝑠𝑚𝑎𝑥 − 𝑥(𝑡𝑟𝑖𝑠𝑒)]2 + 𝑦(𝑡𝑟𝑖𝑠𝑒)2  needs to fulfil the geometrical 

condition for the successful vortex annihilation: 𝐶𝑚𝑎𝑥(𝐵𝑚𝑎𝑥, 𝑡𝑟𝑖𝑠𝑒) ≥ 𝑅𝑎𝑛.The vortex core is 

annihilated, when its distance from the disk center reaches the annihilation radius 𝑅𝑎𝑛, which is smaller 

than 𝑅 due to the finite size of the vortex core. The value 𝑅𝑎𝑛~0.85𝑅 was estimated from experimental 

data – fitting upper boundary of the phase diagram (see Fig. 1) and confirmed by micromagnetic 

simulations [see Fig. 5(c)]. Another condition to be considered is associated with the vortex core 

velocity. If the core velocity exceeds the critical velocity the core polarity is switched [21] and the sense 

of the vortex core gyration is reversed [16]. The polarity reversal causes an offset of the initial core 



position before it continues gyrating about the point 𝑆 and as a result, the maximum amplitude of the 

vortex core translational motion is reduced. Although the vortex core may still reach the annihilation 

radius after polarity switching, it is at the cost of largely increased pulse amplitude and duration and this 

case is not considered in the model (pulses with an amplitude approaching or exceeding 𝐵𝑎𝑛𝑠𝑡𝑎𝑡 and a 

sufficient duration will annihilate the vortex no matter what the exact dynamic behavior is). 

For efficient dynamic switching (i.e. without core polarity reversal), the following condition for the 

maximum vortex core velocity 𝑣𝑐𝑚𝑎𝑥 must be satisfied: 𝑣𝑐𝑚𝑎𝑥(𝐵𝑚𝑎𝑥 , 𝑡𝑟𝑖𝑠𝑒) < 𝑣𝑐𝑟𝑖𝑡, where 𝑣𝑐𝑚𝑎𝑥 =

(2𝑠𝑚𝑎𝑥 𝑡𝑟𝑖𝑠𝑒⁄ )sin(𝜔𝑡𝑟𝑖𝑠𝑒 2⁄ ) for 𝑡𝑟𝑖𝑠𝑒 <  𝜋/𝜔 and 𝑣𝑐𝑚𝑎𝑥 = (2𝑠𝑚𝑎𝑥 𝑡𝑟𝑖𝑠𝑒⁄ ) for 𝑡𝑟𝑖𝑠𝑒 >  𝜋/𝜔  [20].  

 

FIG. 2. (a) Sketch of the trajectory of the vortex core during a magnetic field pulse with a rise time. During the rise time of the 

magnetic pulse the gyration center 𝑆 is moving perpendicularly to the direction of the magnetic field with a velocity 𝑣𝑠. The 

trajectory of the vortex core is cycloidal.  At the maximum amplitude of the pulse 𝐵𝑚𝑎𝑥 the vortex core trajectory changes to 

circular with a gyration center at a distance 𝑠𝑚𝑎𝑥. The vortex core is annihilated, when its maximum amplitude of the vortex 

translational motion 𝐶𝑚𝑎𝑥 reaches the annihilation radius 𝑅𝑎𝑛. (b) Rise time – pulse amplitude phase diagram showing the 

region of successful vortex core annihilation [color-coded, marked (2)]. The region is defined by the two boundaries; 

annihilation radius 𝑅𝑎𝑛 (thick gray line at 𝐶𝑚𝑎𝑥 = 0.85) and critical velocity 𝑣𝑐𝑟𝑖𝑡 (black dotted line at 𝑣𝑐𝑚𝑎𝑥 = 320 m/s). For 

the rise time – pulse amplitude combinations in the region [marked (1)] above annihilation radius boundary, the maximum 

amplitude of the translation motion of the vortex core is too low and the core gyrates inside the disk. For the rise time – pulse 

amplitude combinations in the region (3) below the critical velocity boundary the core switches its polarity and reverses its 

sense of gyration. The phase diagram is calculated for 20-nm-thick Permalloy disks with following material parameters:  𝑀𝑠 =
6.9 × 105 A/m, 𝛾 = 2.9 × 1011 rad∙Hz/T, 𝑣𝑐𝑟𝑖𝑡 = 320 m/s. The rise time is normalized by the period of eigen-oscillation 

2𝜋/𝜔, the pulse amplitude is normalized by the static annihilation field 𝐵𝑎𝑛𝑠𝑡𝑎𝑡 and maximum amplitude of the eigen-

oscillation 𝐶𝑚𝑎𝑥 (gray contour) is normalized by the disk radius 𝑅.  

These conditions set a limit on the amplitude and rise time of the magnetic pulse needed for successful 

and efficient vortex core annihilation and form boundaries in a phase diagram displaying the region of 

successful switching [color-coded area in Fig. 1(b)]. The region is marked by two boundaries; first 

boundary results from the condition that the vortex core must reach the annihilation radius [thick gray 

line in Fig. 1(b)] and the second boundary is the result of the condition for the critical velocity [black 

dotted line in Fig. 1(b)].  



Input parameters for the model are the rise time 𝑡𝑟𝑖𝑠𝑒, the pulse amplitude 𝐵𝑚𝑎𝑥, the disk radius 𝑅, 

thickness 𝐿, it’s susceptibility 𝜒 and eigenfrequency 𝜔. The pulse parameters 𝑡𝑟𝑖𝑠𝑒 and 𝐵𝑚𝑎𝑥 are used 

for construction of a phase diagram displaying the region of successful vortex annihilation [Fig. 1(a)] 

for disks with a given geometry. The last two parameters in the model (𝜒 and 𝜔) can be either determined 

experimentally or calculated from the material parameters of the modeled disk. It has been shown, that 

the susceptibility can be predicted with a reasonable precision by the rigid-core model [19] and the 

eigenfrequency by the pole-free model [17].  

The eigenfrequency dependence on the disk geometry is approximately 𝜔 ~ 𝐿 𝑅⁄ , thus the vortex core 

velocity during gyration is proportional to the disk thickness 𝐿 only (𝑣𝑐 = 𝜔𝑠 ~ 𝐿, where 𝑠 ~ 𝑅 is the 

distance between the moving vortex and the point S). We can also normalize the pulse rise time with by 

the period of the eigen-oscillation and pulse amplitude by the static annihilation field.  As a result, the 

shape of the phase diagram is the same for all disk diameters and depends on the thickness only. The 

lowest amplitude boundary remains the same for all thicknesses in the normalized phase diagram [see 

Fig 3(a)]. The intersection of the lowest amplitude boundary with the pulse amplitude axis at zero rise 

time indicates the minimum pulse amplitude which is sufficient to annihilate the vortex [~0.43 of the 

static annihilation field for our Permalloy disks, see Figs. 3(a), (b)]. The boundary for the critical velocity 

is moving to the left with increasing thickness [see Fig. 3(a)] and at a certain threshold [~23 nm for our 

Permalloy disks, see Fig. 3(b)] it is no longer possible to annihilate the vortex with a pulse with a zero 

rise time. By increasing the rise time, it is still possible to dynamically annihilate the vortex in thicker 

disks at the cost of an increased pulse amplitude. Finally, for disks thicker than 36.9 nm the minimum 

pulse amplitude equals the static annihilation field 𝐵𝑎𝑛𝑠𝑡𝑎𝑡 [Fig. 3(b)]. 

  

FIG. 3. (a) Phase diagram showing the regions of successful vortex core annihilation in Permalloy disks with different 

thicknesses. The lowest amplitude boundary on the left remains the same for all thicknesses. The critical velocity boundary is 

moving to the left with increasing disk thickness, i.e. the region of successful core annihilation is progressively shrinking. (b) 

Thickness dependence of the minimum pulse amplitude (red line) and the corresponding minimum pulse rise time (black line) 

needed for successful vortex core annihilation. For the disks with a thickness of 23 nm or less, the minimum pulse amplitude 

is 0.43 𝐵𝑎𝑛𝑠𝑡𝑎𝑡. For disks with thicknesses above 36.9 nm the model does not predict the possibility of dynamic annihilation 

of the core with a pulse amplitude lower than 𝐵𝑎𝑛𝑠𝑡𝑎𝑡 [the thickness limit is calculated assuming the same material parameters 

as in Fig 2(b)]. 

The pulse parameters, the rise time 𝑡𝑟𝑖𝑠𝑒, the pulse amplitude 𝐵𝑚𝑎𝑥 and the minimum pulse duration 𝑡𝑎𝑛 

(i.e. the predicted time at which the core reaches the annihilation radius 𝑅𝑎𝑛) can be used to calculate 

the energy cost associated with the vortex annihilation (resp. the circulation switching). Mapping the 

energy cost for each point in the region (2) of the phase diagram allows to find the specific pulse 

parameters for which the vortex annihilation is most efficient. Since the exact pulse energy 𝐸 =

∫ 𝑅𝐼2d𝑡
𝑡𝑎𝑛

0
 (𝑅 is the electrical resistance of the waveguide and 𝐼 is the electric current) depends on the 

resistance of the waveguide used to generate the magnetic field pulse, we calculate the reduced energy 



𝜀 from the magnetic field pulse: 𝜀 = ∫ 𝐵2d𝑡
𝑡𝑎𝑛

0
 in arbitrary units only. Assuming a linear rise time, we 

get 𝜀 = 𝐵𝑚𝑎𝑥
2 (𝑡𝑎𝑛 − 2

3
𝑡𝑟𝑖𝑠𝑒) for the case where 𝑡𝑎𝑛 > 𝑡𝑟𝑖𝑠𝑒 and 𝜀 = 1

3
𝑡𝑟𝑖𝑠𝑒(𝐵𝑚𝑎𝑥𝑡𝑎𝑛/𝑡𝑟𝑖𝑠𝑒)2, when 𝑡𝑎𝑛 <

𝑡𝑟𝑖𝑠𝑒, i.e. the core is annihilated before the (theoretical) maximum pulse amplitude is reached. In Fig. 

2(a)-(c) are efficiency parameters plotted in the pulse rise time – pulse amplitude phase diagrams for the 

disks with thicknesses 𝐿 of 15, 20 and 30 nanometers. Note that the reduced energy in the phase diagram 

is independent of the disk radius. Although the period of eigen-oscillation increases for wider disks, it 

is compensated by a decrease of the annihilation field.  For disks with thicknesses below ~20 nm, the 

most effective switching occurs when the pulse amplitude is slightly above the minimum value (𝐵𝑚𝑎𝑥 =

0.47 𝐵𝑎𝑛𝑠𝑡𝑎𝑡) and the rise time is short, but nonzero [𝑡𝑟𝑖𝑠𝑒 = 0.17 (2𝜋 𝜔⁄ )]. The region is marked by 

hashes in Figs. 2(a)-(b). For thicker disks, where the phase diagram becomes restricted by the critical 

core velocity and successful vortex annihilation cannot be achieved with short rise times. Then, the 

region of the most effective switching is located along the bottom-right boundary of the phase diagram 

and starts already at the minimum pulse amplitude [Fig. 4(c)].  

The minimum pulse duration [Figs. 4(d)-(e)] does not exactly correspond to the region of the least 

energy cost; unlike the reduced energy, the minimum pulse duration depends the radius of the disk. The 

regions of fastest switching for thinner disks [Figs. 4(d)-(e), marked by hashes] are located around the 

minimum rise time and maximum pulse amplitude. For thick disks the region of fastest switching is 

located along the right boundary of the phase diagram [Fig. 4(f)].  By comparing the absolute values of 

𝜀  in Figs. 4(a)-(c) and 𝑡𝑎𝑛 in Figs. 4(d)-(f), we can see that the switching becomes more effective with 

decreasing disk thickness and also the time to annihilation can be shortest in thinnest disks. However, 

for thinner disks the position of the region of the fastest switching does not correspond with the region 

of minimum 𝜀 [compare Fig. 4(d) and Fig 4(a), respectively] and the choice between fast or effective 

switching must be made.  

 

 

   

FIG. 4. Pulse rise time – pulse amplitude phase diagrams showing the reduced energy 𝜀 needed for the vortex circulation 

switching (a)-(c) and shortest annihilation times 𝑡𝑎𝑛 (d)-(e). The regions of the most efficient switching (least energy cost) and 

shortest annihilation times are marked by hashes. The phase diagrams were calculated for Permalloy disks with a radius 𝑅=500 

nm and thicknesses 𝐿 = 15, 20 and 30 nm. Material parameters used for calculation of the phase diagrams were the same as in 

Fig. 2.  

 

 

 



IV. MICROMAGNETIC SIMULATIONS 

The predictions of the analytical model agreed with micromagnetic simulations in OOMMF [22,23] the 

simulations agreed with the predictions of the analytical model for disks with radius 𝑅 up to ~125 nm. 

For larger disks of all thicknesses, the vortex core velocity exceeded the critical velocity within few 

picoseconds after the beginning of the pulse which lead to core polarity switching. The micromagnetic 

simulation predicts large nonlinearity in displacement susceptibility 𝜒𝑑 = 𝑑𝑆/𝑑𝐵 [Fig. 3(a); orange line 

with circles]. Due to this nonlinearity, at the beginning of the pulse where the displacement susceptibility 

is higher, the gyration center in micromagnetic simulation is located further than linear model predicts. 

For instance, a pulse amplitude 𝐵 = 0.5𝐵𝑎𝑛𝑠𝑡𝑎𝑡  corresponds to a gyration center 𝑆 at 0.5𝑅 according 

to linear model [Fig. 5(a) grey line], whereas according to micromagnetic simulation the position of 𝑆 

is at 0.85𝑅 [Fig. 5(a) orange line with circles]. This increase in the gyration radius leads to an increase 

of the core velocity above the critical velocity. We can overcome the unwanted polarity switching at the 

beginning of the pulse by using a pulse with a nonzero rise time. However when the core approaches 

the disk boundary, its velocity again exceeds the critical velocity, which leads to polarity reversal and a 

consequent change in the sense of gyration [see Fig. 5(b)]. This reversal at the disk boundary, which is 

always present in simulation of disks with radii larger than ~ 500 nm is caused by anharmonicity in the 

potential energy well of the vortex leading to a nonlinear, vortex-core-position-dependent 

eigenfrequency [8,9,24,25]. From displacement susceptibility 𝜒𝑑(𝑆), we can obtain the local 

eigenfrequency 𝜔(𝑆) =
1

2
𝛾𝑀𝑠

𝜉2

𝜒𝑑(𝑆)
, here we assume 𝜉 = 2/3 (pole-free model magnetization 

distribution [17]). Note, that this approach is more suited to the calculation of eigenfrequency of small 

amplitude vortex core gyration about gyration center position 𝑆 shifted from the disk center by static 

biasing field. In our case of the large gyration amplitude, the eigenfrequency in the position of the vortex 

core 𝐶 may be lower [24]. The local eigenfrequency 𝜔(𝑆) rapidly increases for the core displacements 

larger than 0.6𝑅 [see Fig. 5(d) orange line with circles]. The increase in eigenfrequency drives the core 

velocity above the critical value and the core polarity close to the disk boundary switches [Fig. 5(b)].  

This result of micromagnetic simulation is in contradiction to our experimental observation, where we 

were able to annihilate the vortex core in the disks with radii up to 1.25 µm. The resolution of XM-1 

microscope allowed us to directly measure a shift of the vortex core in an applied magnetic field with 

sub-100-nm precision. Comparison of the experimentally measured displacement susceptibility for 

1600-nm-wide, 20-nm-thick disk [Fig. 5(a); blue line with squares] with micromagnetic simulation [Fig. 

5(a); orange line with circles] reveals the overestimation of the nonlinearity in displacement 

susceptibility by the micromagnetic simulation.  

We were able to reproduce the experimental displacement susceptibility curve in micromagnetic 

simulations [see Fig. 3(a)], blue line with squares and green line with triangles, respectively) by gradual 

decrease of the spontaneous magnetization of the disk material near the edge [from 690 kAm-1 to 310 

kAm-1 in the 80-nm-wide ‘boundary zone’, see insets in Figs. 5(b) and 5(c)]. After this modification, it 

is possible to annihilate the vortex also in micromagnetic simulation [see Fig. 3(c)]. The eigenfrequency 

calculated from corrected simulation and from experimentally measured displacement susceptibility 

stays close to the eigenfrequency used in the linear model [see Fig. 5(d)] and the vortex core can reach 

the annihilation radius without exceeding the critical velocity. 



 

FIG. 5. (a) comparison of simulated displacement susceptibility of the 1600 nm wide, 20 nm thick disk with uniform Ms (sim1 

– red line with circles), simulated displacement susceptibility of  the same disk, where the spontaneous magnetization of the 

disk material was gradually decreased from 690 kAm-1 to 310 kAm-1 in the 80-nm-wide region around the disk perimeter (sim2 

– green line with triangles) and the displacement susceptibility determined directly from the experimental measurements of the 

shift of the vortex core in an increasing applied magnetic field by MTXM (exp – blue line with squares). Linear susceptibility, 

used in analytical models is plotted as a gray line. (b) simulated vortex core trajectories in the disk with uniform magnetization 

(nonlinear susceptibility). A magnetic field pulse of 10 mT is not enough to reach the annihilation radius (black trajectory). A 

slight increase of the magnetic field amplitude to 11 mT drives the vortex core into the nonlinear region, where the 

eigenfrequency of the translational motion and thus also the vortex core velocity are increased, which leads to unwanted polarity 

switching. Switched core then continues with inverted sense of gyration towards the disk center (red trajectory). (c) simulated 

vortex core trajectory in the disk with magnetization decreasing towards the edge (linearized susceptibility). A magnetic pulse 

of 9 mT is sufficient to drive the vortex core into the annihilation region and the vortex is successfully annihilated (green 

trajectory). 

 

The linear behavior of the displacement susceptibility in real disks may be caused by shape 

imperfections, lateral roughness and due to other deteriorations of the magnetic properties of the disk 

material close to the disk edge, e.g. by oxidation. It cannot be explained by the lateral roughness only, 

because the lateral roughness at the edges of our disks was approx. 20 nm (estimated from SEM images), 

whereas the width of the boundary region necessary for reproducing the experimental data is 4x larger. 

We observed an additional increase of the nonlinearity in displacement susceptibility for larger disks, 

however the experimentally determined nonlinearity in displacement susceptibility was still 

significantly smaller than the predictions of micromagnetic simulations (2.5-µm-wide disks, data not 

shown). Similar, weaker than expected nonlinearity in displacement susceptibility was reported for 3-

µm-wide Permalloy disks measured by Lorentz transmission electron microscopy by Uhlig et al. [26]. 

The existence of higher-order term (beyond parabolic approximation) in the potential energy well 

resulting in a parabolic dependence of 𝜔(𝑆)/𝜔0 and 10% increase ~0.3R was recently reported in FeV 

single crystal disks [10]. In our case, a similar dependence in experimentally determined eigenfrequency 

can be seen for static core displacements up to 0.4R [Fig. 5(d)], beyond this point the experimental data 

do not follow a clear trend (i.e. parabolic dependence) and stay in the vicinity of 𝜔𝑙𝑖𝑛𝑒𝑎𝑟. This 

comparison shows that for large amplitude vortex core gyrations the assumption of linear susceptibility 

provides a good approximation and that the micromagnetic simulations of ‘ideal’ disks grossly 

overestimate the nonlinearity in displacement susceptibility (anharmonicity of the vortex potential well) 

for large core displacements. 

 

 



CONCLUSION 

In summary, we have studied the influence of the pulse parameters on the dynamics and efficiency of 

the vortex core annihilation in Permalloy nanodisks. The experimentally determined pulse risetime – 

pulse amplitude phase diagram was successfully reproduced with an analytical model based on Thiele’s 

equation describing vortex core motion in a parabolic potential. We found that the analytical model is 

in a good agreement with experimental data for a wide range of disk geometries. From both the analytical 

model the experimental findings we have determined the geometrical condition for dynamic vortex core 

annihilation and the pulse parameters giving the most efficient and fastest circulation switching. 

However, micromagnetic simulations of the vortex core annihilation in ‘ideal’ disks did not reproduce 

the experimental behavior. This is due to the fact that the nonlinearities in displacement susceptibility 

and eigenfrequency of ‘ideal’ disks with diameters larger than ~250 nm are overestimated with respect 

to the experimentally determined values. This overestimation leads to a premature core polarity 

switching near the disk boundary which prevents the core annihilation and subsequent circulation 

switching. We modified the micromagnetic simulation by introducing a ‘boundary region’ of reduced 

magnetization to simulate the experimentally determined displacement susceptibility. This results in 

linearization of the displacement susceptibility and the modified micromagnetic simulation shows a 

good agreement of the dynamic vortex core annihilation with the experimental observations.   

Assumption of a non-parabolic potential with higher order energy terms, which may be more precise for 

the description of vortex core motion within 0.4 R from the disk center [10], does not make a significant 

correction to the parameters inferred from the linear susceptibility model. We conclude that the linear 

susceptibility model (i.e. a parabolic potential) is appropriate for the description of large amplitude 

vortex core gyration in real disks.  
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