
UC Berkeley
Working Papers

Title
Properties of Link Travel Time Functions Under Dynamic Loads

Permalink
https://escholarship.org/uc/item/2wt9m69s

Author
Daganzo, Carlos F.

Publication Date
1993-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wt9m69s
https://escholarship.org
http://www.cdlib.org/


This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.



CALIFORNIA PATH PROGRAM 
INSTITUTE OF TRANSPORTATION STUDIES 
UNIVERSITY OF CALIFORNIA, BERKELEY 

Properties of Link Travel Time Functions 
Under Dynamic Loads 

Carlos F. Daganzo 

UCB-ITS-PWP-93-5 

This work was performed as part of the California PATH Program of 
the University of California, in cooperation with the State of California 
Business, Transportation, and Housing Agency, Department of 
Transportation; and the United States Department of Transportation, 
Federal Highway Administration. 

The contents of this report reflect the views of the author who is 
responsible for the facts and the accuracy of the data presented herein. 
The contents do not necessarily reflect the official views or policies of 
the State of California. This report does not constitute a standard, 
specification, or regulation. 

AUGUST 1993 

ISSN 1055-1417 



PROPERTIES OF LINK TRAVEL TIME FUNCTIONS UNDER DYNAMIC LOADS* 

by 

CARLOS F. DAGANZO 

Department of Civil Engineering and 
Institute of Transportation Studies 

University of California, Berkeley CA 94720 

(July 2, 1993) 
(Revised July 29, 1993) 

Abstract 

* Research supported by PATH MOU 90, Institute of Transportation 
Studies, Berkeley, CA. 



1 

1. INTRODUCTION 

Many works in the dynamic traffic assignment literature (see 

Ran, 1993, for a recent overview) use optimization algorithms of 

one form or another to estimate travel patterns over transportation 

networks. The approaches essentially apply the methods that have 

proved successful in tackling the static assignment problem, with 

suitable modifications, to the dynamic case. In these works, 

feasible (time-dependent) network flows are defined by means of 

mathematical relations, and an equilibrium condition which extends 

the user optimum principle (Wardrop, 1952) to the dynamic case is 

formulated. 

To reduce the equilibrium condition to a tractable form, 

researchers have assumed that the amount of time that a vehicle 

entering a link at time t spends on that link can be expressed as a 

function of the "statett of the link at time t. Most works express 

the relationship as a special case of the following: 

where T(t) represents the link travel time for a vehicle entering 

the link at time t, x(t) is the number of vehicles on the link at 

time t, u(t) and v(t) are the link arrival and departure rates at 

time t, and "ftt is a non-negative differentiable function. For 

obvious reasons, f is defined to be non-decreasing in x and u, and 

non-increasing in v. 

Although Eq.(l) is rather general, we shall argue that only 
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two special cases of it depict transportation-like phenomena. To 

make our point, we consider the simplest possible network; one with 

only one origin and one destination, joined by a single link. 

The input to the link is defined by an increasing function, 

A ( z ) ,  that gives the arrival time (to the link) of vehicle z ,  where 

z is a real valued variable. Note that the link arrival rate when 

vehicle z arrives is l/A1(z) wherever A ' ( z )  exists. This 

representation of the origin-destination table is not common in the 

literature but it is convenient for our purposes. It allows us to 

express the schedule of arrivals at the destination (the link 

departures) by a simple expression that relates z to its link 

departure time, D(t): 

where 7 z  is the travel 

2. INDEPENDENCE OF u 

D ( z )  = A ( z )  + ' r Z ,  

time of vehicle z .  See Fig. 1. 

We first show that f cannot depend on u because, if it does, 

an A ( z )  can be found that causes D(z) to decrease as z increases. 

This, of course, is absurd since it would mean that all the drivers 

who depart the origin in a certain time interval (say between 8 : O O  

and 8:05 A M )  pass and arrive earlier at the destination than all 

the drivers who had departed in an earlier time interval (say 

between 7:55 AM and 8 : O O  AM). This effect is similar to Smeed's 
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paradox (Smeed, 1972)l. 

The derivations below show that if the partial derivative fu 

is greater than zero, a curve A(z) can be found which induces a 

negative derivative for D(z). 

If we let xz denote the number of cars in the link at the time 

when vehicle z arrives, and uz and vz the arrival and departure 

rates at that same instant, we can rewrite (1) as: 

rz = f(xZ,uZ,vZ). 

Let zo denote the vehicle arriving at t = 0 and use 

(ro,xo,uo,vo) for the corresponding variables, as shown in Fig. 1. 

We assume that the link is in a steady state with r > 0 for t c 0. 

This means that A' is constant until t = 0, which in turn implies 

-by virtue of Eq.(2)-that the departure curve remains straight 

until z=zo. As shown in the figure, this occurs at time Y o .  

Suppose that after time t=O the arrival rate uz begins a rapid 

decline-shown in Fig. 1 by an upward curving A(z)-assumed to be 

of the form: 

Smeed (1972) apparently believed that vehicles could arrive at a 
destination earlier by leaving later if the travel time on a road 
was given by a speed-density curve. It should be stressed, 
however, that such a model feature does not arise from the 
hydrodynamic theory of traffic flow of Lighthill and Witham (1955) 
and Richards (1956), which also uses a speed-density curve. This 
has been pointed out by Newel1 (1985). Ben-Akiva and DePalma 
(1986) are also on record against such a model feature. Their 
argument can be paraphrased as follows: if a driver can postpone a 
trip in order to arrive earlier there should be an instant when the 
driver would be at the same location under both scenarios; because 
from then on the system would have to evolve identically in both 
cases, the two departure times could not differ. 
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A(z) = (z-zO)/UO + M(z-z0)2, 

where M > 0. Substitution of ( 4 )  and ( 3 )  into (2) yields: 

We are particularly interested in the derivative of D(z) at t=O+, 

i.e. for vehicle [zo]+, which can be expressed as: 

D'([zo]+) = l/uo + fx[dxz/dz]+ + fu[duz/dz]+ + fv[dvz/dz]+, 

where the the partial derivatives fx, fu and fv are taken at 

(xz,uz,vz) = (xo,uo,vo), and the terms in brackets are evaluated at 

z = [ZO]+. 

Recalling that vz is defined as the deperture rate when z 

arrives, we note from Fig. 1 that vz is constant in the neigborhood 

of zo (i.e. in the neighborhood of t = 0). Thus, [dvz/dz]+ = 0. 

Figure 1 also reveals that xz = z - D-I(A(z)), and thus: 

dxz/dz = 1 - uo(l/uo) = 0. Thus, the expression for D'([zo]+) only 

has two non-zero terms. 

Since duz/dz = d[l/A']/dz = -Att/At2 = 2M(u0)2, we can write: 

D' ( [z0]+) = l/u0 - 2fUM(uo)2. (7) 

This equation indicates that if fu is positive, one can always 

choose a sufficiently large M to induce a decreasing departure 

schedule. This will happen whenever flow drops from a high steady 
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state value to zero in a short time, as when a traffic light turns 

red. 

3. INDEPENDENCE OF v 

Having shown that f should be independent of u (i.e. travel 

time is a function g of x and v only: f(x,u,v) = g(x,v) ) ,  we now 

argue that g should also be independent of v. To see this, 

consider an initially empty link into which vehicles start to flow 

at time t=O at rate u, and let us observe its behavior at the 

instant when the first vehicle is about to exit. Immediately 

before this time, the formula would predict a travel time g(x,O), 

since v=O; and immediately afterward a travel time g(x,u), since 

v=u. This results in a negative jump that does not correspond to 

anything real. The only way in which it can be eliminated for all 

values of u is by setting g(x,v) = h(x). 

4 .  DISCUSSION 

We have shown that (1) should be of the form: 

which is a common model, often termed "the point queue modelff. 

Unfortunately even this simple link cost function, adopted in a 

number of works, needs to be restricted. We argue below that the 

curve h(x) must either pass through the origin or be constant. 
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If h(0) > 0 and the system is empty at t = 0, then the travel 

time of a vehicle arriving to the system at time t = h(0) is 

determined by the number of vehicles to have arrived in (O,h(O)) 

and nothing else-since all those vehicles must still be in the 

system at time h(O), independent of their arrival times. That is, 

conditional of the number of arrivals, the form of the input has no 

effect. This property is reasonable if the system is uncongested- 

when a vehicle's travel time is constant-but bears little relation 

to real-life congestion phenomena. In actuality, if the link is 

congested, entries close to t = 0 would have a lesser impact on 

delay than those close to t = h(O), since the early ones would have 

a better chance to clear the bottleneck before the arrival of our 

vehicle. 

The above suggests that to represent properly a point queue 

network, one should separate the effects of point queues from those 

of distance travel. Thus, a road segment including a bottleneck 

should be represented by two links in series: one with a constant 

travel time, representing the time needed to overcome distance, and 

another with h(x) = 0 for x = 0, representing the bottleneck-caused 

delay. 

Of course, the point queue representation still falls short of 

realism when delays are caused by "too many cars on the roadtt. It 

does not recognize that traffic often crawls because cars cannot 

enter a link when too many are in it already. Approximations based 

on the hydrodynamic representation of traffic flow hold promise in 

this respect. 



7 

REFERENCES 

BEN-AKIVA, M. and A .  DePALMA (1986) IISome circumstances in which 
vehicles will reach their destinations earlier by starting 
later: revisited" Trans. Sci. 20(1), 52-55. 

LIGHTHILL, M.J. and J.B. WHITHAM (1955) !#On kinematic waves. I Flow 
movement in long rivers. I1 A theory of traffic flow on long 
crowded roads1@ Proc. Royal SOC. A 229, 281-345. 

NEWELL, G.F. (1985) VJnpublished private communication". 

RAN, B. (1993) IIDynamic transportation network models for advanced 
traveler information systems" PhD thesis, Univ. of Illinois, 
Chicago, 11. 

RICHARDS, P. I. (1956) IIShockwaves on the highway" Oms. Res. 4 ,  
42-51. 

SMEED, (1972) IISome circumstances in which vehicles will reach 
their destinations earlier by starting later" Trans. Sci. 
1, 308. 

WARDROP, J.G. (1952) IISome theoretical aspects of road traffic 
research", Proc. Inst. Civil Enq., Part 11, 1, 325-378. 



STEADY 
STATE 4 

I 

I 
j 

i 
i 
.i- 
-i -1- 
% 
i 
j 

i 
i 
i 

i 
i 

I 

I 

- NON-STEADY b 

STATE 

Figure 1 




