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RECURSION RELATIONS AND A CLASS OF ISOSPECTRAL MANIFOLDS . 
FOR SCHRODINGER'S EQUATION. 

The purpose of this note is to show that (properly chosen) 

eigenfunctions 4> (x, k) for the Schrodinger problem 

satisfy a recursion relation of the· form 

M 
I biCk) cpcx,k•i) = ecx)cJ>Cx,k) 
-M 

if V is an "N soliton potential" with eigenvalues 

(1) 

(2) 

{ j 2 /4, j =l, ••. ,N-1} u {CN2 -N+4)/4}2 and arbitrary normalization 

constants. The order M of the recursion relation is given by 

the coefficients b. (k) are given explicitly, and so 
1 

is e(x). Relation (2) can be seen as an extension of the three-term 

recursion relation satisfied by the classical orthogonal polynomials. 

N Soliton Potentials 

the matrices M and M(k) by the rules 

(k.+k.)x 
l J 

M •• 0 .. e 
= + c. k. +k. 1) 1J J 1 J 

( k- k.) 
M .. (k) o .. + c J = 

lJ 1) j k + k. 
J 

c. > 0, 
J 

(k.+k. )x 
1 J e 

k· + k. 1 J 

k. > 0 
J 

' 

and define 
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Now define 

't'(x) = det M 

't'(x,k) = det M(k) 

V(x) 
d2 2(~) I = 2- log -r(x) = dx2 

It is then known, see [1] and its references, that 

4> (X, k) 
kx -r(x,k) 

- e 't'(X) 

satisfies (1) and of course, 

4> (x,k) ekx 

The expressions above give the most general reflectionless 

potential V (x) with eigenvalues kj . 

A Special Isospectral Manifold 

Set 

Now make the choice 

k. = j/2 
J 

, j=1, ••• ,N-1, 

M = N
2 

-N + 2 

2 

Given our choice of k.'s, one gets from (3a) 
J 

2M 
't'(X) = l 

0 

ix a. e 
~ 

2 
N -N + 4 

4 

(3a) 

(3b) 
~ 

(4) v 

(5) 

(3') 
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for a set of constants a. 
]. 

expressible in terms of the ci' s, namely 

(6) 

with {i 1 , ••• ,i'J} an arbitrary subset of {l, ... ,n} and a(i 1 , .. ,i'J) 

fixed once the choice (5) has been made. The sum extends over all the 

subsets of {l, •.. ,n}. One has 

Now define 

9(x) 

Notice that 

e' (x) 

In view of (6) and 

9(x) 

with 

b. = 
]. 

~ = 0 

= 
2M a. 
r -:-2:--M l.-
0 

(i-M)x 
e 

-Mx 
= e t'(x) 

(7) one can write 

M 

r b. ix 
= e 

i=-M 
]. 

L SCi; il ... i'J) c. 
].1 

(7) 

(8) 

0 •• c. 
l.v 

(9) 

Now for any choice of subset {i1 , ••• ,i'J} from the set {l, ..• ,n}, 

define 

(k - ki ) 
1 

(k + k. ) 
].1 

(k - k· ) 
].\) 

(k + k· ) 
].\) 



-4-

The coefficients in the recursion relation (2) are given by an appropriate 

modification of the terms in (9), namely 

b. (k) 
:1 

The choice of potentials V(x) such that a family of eigenfunctions 

of (1) enjoys property (2) is not limited to pure soliton potentials, 

much less to those specified by the choice (5). 

For instance, if M = 1 the most general choice of V(x) is given by 

V(x) = + 
A B 

sinh2 (x +c) cosh2 (x +c) 

and in general this is not a pure soliton potential. 

Among the N soliton potentials, the choice 

k. = j 
J 

, j = 1, ... ,N 

followed by the very special election of normalization constants 

c. 
J 

leads to the celebrated 

= 2jC-l)j-1 TI i•j 
i#j i-j 

V(x) = N(N+l)sech2 (x) 

In this case ~(x,k) are given in terms of Legendre functions 

and (2) holds with M = 1. 

/"i 

'· f 
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The special feature of the choice given by (5) is that it singles 

out an N-dimensional isospectral manifold of potentials V(x), all of 

which enjoy property (2). Property (2) is thus preserved- on this 

manifold- by the whole Korteweg-de Vries hierarchy [2]. These 

nonlinear evolution equations also play a role in discussions of a 

continuous version of (2), see (3]. Some of the potentials discussed 

here as well as in [3] were first considered by Bargmann, see (4]. 

Proofs and several examples will appear elsewhere. 
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