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Theory of coherent transition radiation generated at a

plasma-vacuum interface

C. B. Schroeder, E. Esarey, J. van Tilborg,∗ and W. P. Leemans

Lawrence Berkeley National Laboratory,

University of California, Berkeley, California 94720

(Dated: June 26, 2003)

Abstract

Transition radiation generated by an electron beam, produced by a laser wakefield accelerator

operating in the self-modulated regime, crossing the plasma-vacuum boundary is considered. The

angular distributions and spectra are calculated for both the incoherent and coherent radiation.

The effects of the longitudinal and transverse momentum distributions on the differential energy

spectra are examined. Diffraction radiation from the finite transverse extent of the plasma is

considered and shown to strongly modify the spectra and energy radiated for long wavelength

radiation. This method of transition radiation generation has the capability of producing high

peak power THz radiation, of order 100 µJ/pulse at the plasma-vacuum interface, which is several

orders of magnitude beyond current state-of-the-art THz sources.

PACS numbers: 41.60.-m, 52.38.Kd

∗Also at Technische Universiteit Eindhoven, the Netherlands.
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I. INTRODUCTION

Radiation in the THz and far infrared frequency regimes is used in many areas of research

including biological imaging, material screening, semi-conductor imaging, surface chemistry

and high-field condensed matter studies [1–3]. Laser-based THz sources have been developed

that rely on switched photo-conducting antennas ([4] and references therein) or optical recti-

fication of femtosecond pulse trains [5]. Since the radiation emission is either triggered by or

directly produced from a laser, the THz radiation and laser pulses are intrinsically synchro-

nized thereby enabling pump-probe experiments. Large aperture biased GaAs structures,

operated at 1 kHz repetition rate, have produced on the order of 0.5 µJ/pulse [6]. Most

other sources that use lasers have operated at high frequency (10’s of MHz) with µW–mW

level average power (i.e., 10’s of fJ–nJ per pulse). Increasing the peak power and average

power of THz and far infrared sources would benefit numerous applications, such as rapid

two-dimensional imaging [3] and high-field studies that require multi-MV/cm fields [2].

Relativistic electron beams can also be used to produce THz and long wavelength ra-

diation through a variety of mechanisms that include synchrotron radiation (e.g., emitted

when an electron trajectory is bent in a magnetic field), transition radiation (emitted when

an electron traverses a medium with spatially varying dielectric properties, e.g., when an

electron propagates through a metallic foil) or diffraction radiation (e.g., emitted when an

electron propagates through an aperture) [7]. Radiation emitted by these mechanisms will

be coherent when the bunch length (or any longitudinal structure on the bunch) is shorter

than the wavelength of interest. The radiated power then scales quadratically with the

total charge, rather than linear as in the case of incoherent emission. Coherent radiation

can be many orders of magnitude brighter than incoherent radiation since typical electron

bunches contain between 107 to 1010 electrons per bunch. For example, production of coher-

ent high average power THz synchrotron radiation peaking at approximately 0.6 THz has

been demonstrated using 40 MeV, 500 fs duration electron bunches with pC charge levels

produced by a high repetition rate (37 MHz) linear accelerator [8]. Although such a high

average power source will have a wide variety of applications, the amount of energy per

pulse was comparable to state-of-the-art solid state based THz sources (< 1µJ/pulse) and

does not benefit from intrinsic synchronization with an external laser, which is desired for

pump-probe experiments.
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Recently, researchers at Lawrence Berkeley National Laboratory (LBNL) have demon-

strated a laser-based source of THz radiation that relies on the coherent transition radiation

produced by a dense relativistic electron bunch traversing a plasma-vacuum interface [9]. In

these experiments, a 10 TW, 50 fs laser pulse interacting with a gas jet was used to generate

self-trapped electron bunches via the mechanism of a laser wakefield accelerator (LWFA) in

the self-modulated regime [10]. The energy per THz pulse in these experiments was limited

by the narrow transverse dimension of the plasma to ∼ 5 nJ within a 30 mrad collection

angle and was observed to scale quadratically with bunch charge, consistent with coherent

emission. The analysis presented below indicates that ∼ 1 µJ/pulse is produced within a

100 mrad angle and that optimization of this table-top source could provide 100 µJ/pulse.

Together with intrinsic synchronization to a laser pulse, this allows numerous applications

in THz imaging and nonlinear ultrafast science.

This laser-plasma source of THz radiation benefits from the extremely dense and ultra-

short electron bunches generated using a LWFA (for a review of laser-plasma-based accel-

erators, see Ref. [11]). The electron bunches produced by this ultra-intense laser-plasma

interaction have been characterized experimentally [10, 12–17] and using numerical simula-

tions [18–20]. The self-modulated LWFA produces multi-nC electron bunches of duration

on the order of the laser pulse length (. 100 fs), radius on the order of the laser spot

size (∼ 5 µm), and with a longitudinal momentum distribution that is well-modeled by

a Boltzmann distribution, typically with a temperature of a few MeV. Inside the plasma,

background ions provide space charge shielding that prevent blow-up of the dense electron

bunches. After exiting the plasma, space charge and energy spread effects cause bunch

density reduction through bunch lengthening and transverse expansion [21]. Therefore, to

produce high peak power coherent radiation, emission must occur before propagation in vac-

uum. This occurs naturally in a self-modulated LWFA by relying on the coherent transition

radiation produced by the ultrashort, dense electron bunch at the plasma-vacuum boundary.

The theory of transition radiation by a single electron, first studied by Ginzburg and

Frank [22], is extensively treated in the monograph by Ter-Mikaelian [23]. The passage of a

charged particle through a spatially-inhomogeneous media results in a transient polarization

of the dielectric, and radiation is emitted by the transient polarization current. Coherent

transition radiation has been observed and used to diagnose the electron beam properties by

passing the electron beam through a metallic foil (for example, see Refs. [24–28]). Recently,
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Zheng et al. [29] discussed the spectrum of transition radiation in the optical region due to

a hot electron beam with structure at half the laser wavelength generated by a laser-matter

interaction.

In this paper, properties of incoherent and coherent transition radiation are analyzed

for parameter regimes relevant to the production of THz radiation at a plasma-vacuum

boundary by electron bunches from a self-modulated LWFA. Included are the effects of a

large spread in longitudinal momentum, the effects of the transverse beam momentum (i.e.,

beam emittance), and the effects of the finite transverse size of the plasma. In the long-

wavelength regime characteristic of THz radiation, the transverse extent of the self-fields of

the electrons, which is of the order ∼ λγ, can be comparable to the transverse dimensions

of the plasma. Here λ is the radiation wavelength and γ is the relativistic Lorentz factor. In

this regime, the finite transverse boundary of a dielectric will produce coherent diffraction

radiation [30]. The coherent diffraction radiation from the finite transverse size of the

plasma will strongly modify the radiation energy spectra and suppress the generation of

long wavelength transition radiation.

This paper is organized as follows. The basic description and scalings of transition radi-

ation are presented in Sec. II. In Sec. III, a detailed calculation of the energy radiated by

a non-evolving electron bunch traversing a dielectric-vacuum interface is presented. Section

IV considers the incoherent transition radiation (ITR) of an electron bunch including the

effects of the electron beam longitudinal and transverse momentum distributions. Section V

considers coherent transition radiation (CTR). Section VI discusses the effect of diffraction

radiation due to the finite transverse size of the plasma-vacuum boundary. In Sec. VII we

present an example of the coherent radiation produced by a self-modulated LWFA generated

electron bunch. A summary and discussion is presented in Sec. VIII.

II. BASIC DESCRIPTION AND SCALINGS OF TRANSITION RADIATION

To illustrate the potential of CTR generated at the plasma-vacuum boundary as a ra-

diation source, a simplified, idealized description is presented in this section that uses the

standard description of transition radiation (for example, see Ref. [31], p. 190) for elec-

trons transiting a metallic foil into vacuum. For radiation wavelengths of interest (e.g.,

λ ∼ 500 µm or radiation frequency ω ∼ 4× 1012 s−1), the plasma for typical densities (e.g.,
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plasma number density n ∼ 1019 cm−3 or electron plasma frequency ωp ∼ 2 × 1014 s−1) is

highly overdense, i.e., ω2
p � ω2. Furthermore, since the scale length of the plasma-vacuum

boundary is small compared to a radiation formation length (the radiation formation length

scales as ∼ γ2λ), the plasma-vacuum interface can be approximated as a step function.

Hence, the formulae describing transition radiation in the limit of a metallic foil in vacuum

are a good approximation, provided the plasma can be modeled as semi-infinite. These

approximations and assumptions will be discussed in more detail in the following sections.

Consider a single energetic electron emerging from a high density (ω2
p � ω2), semi-infinite

plasma into vacuum (step transition), traveling normal to the plasma surface. The energy

radiated from a single electron per unit frequency dω, per unit solid angle dΩ is given by

d2We

dωdΩ
=
remec

π2

β2 sin2 θ

(1− β2 cos2 θ)2
, (1)

where θ is the observation angle with respect to the electron trajectory (assumed to be normal

to the plasma surface), β is the electron velocity normalized to the speed of light c, me is the

electron rest mass, and re is the classical electron radius. The radiation pattern is zero along

the axis (θ = 0) and peaks at a radiation cone angle of θ ∼ 1/γ (assuming γ � 1). Notice

that the differential energy spectrum d2We/dωdΩ is independent of frequency. In practice,

however, the maximum wavelength radiated will be limited, for example, by the physical

dimensions of the system, as will be discussed in Sec. VI, whereas the minium wavelength

radiated will be limited, for the case of CTR, by the electron bunch dimensions. Integrating

over all angles yields

dWe

dω
=
remec

2πβ

[

(1 + β2) ln

(

1 + β

1− β

)

− 2β

]

, (2)

which, in the highly-relativistic limit γ � 1, reduces to dWe/dω ' (2/π)remec ln γ.

Consider now the energy radiated by a monoenergetic electron bunch in the limit of

zero emittance and beam radius. For wavelengths short compared to the bunch length, the

radiation from the electrons sums incoherently, i.e., WITR ' NWe, where N is the number

of electrons in the bunch. For wavelengths long compared to the bunch length, the radiation

sums coherently, i.e., WCTR ' N2We. In particular, the total coherent radiated energy over

all angles and frequencies is given by

Wtot '
(

4remec
2
)

N2(ln γ)/λmin , (3)
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assuming γ � 1, where λmin is the minimum wavelength for which the bunch radiates

coherently and is determined by the electron bunch dimensions, as will be discussed more

rigorously in the following sections. The energy radiated into a narrow frequency band ∆ω

about the frequency ω = 2πc/λ < 2πc/λmin is given approximately by multiplying the above

equation by the quantity (λmin/λ)(∆ω/ω). Equation (3) can be written in practical units

as Wtot[J] ' 3.6× 10−2(Q[nC])2(ln γ)/λmin[µm], where Q is the bunch charge. For example,

Q = 5 nC (N = 3.1× 1010), γ = 10, and λmin = 200 µm give Wtot ' 10 mJ, which is several

orders of magnitude beyond that of conventional sources.

Owing to the N 2 scaling of CTR, the total radiated energy can approach the total ki-

netic energy of the bunch Wb = Nmec
2(γ − 1) for electron bunches with sufficiently high

charge (large N) and low energy (small γ). The above expressions hold only if the en-

ergy radiated is small compared to the bunch kinetic energy. Requiring Wtot < Wb implies

N < 0.25(λmin/re)(γ/ ln γ). For example, γ = 10, λmin = 200 µm implies N < 7.7 × 1010

(12 nC).

The above expressions indicate that electron energy loss via CTR can be a significant

factor in determining the final electron energy spectra emerging from a LWFA. In particular,

in the self-modulated regime, experiments have measured multiple-nC bunches (up to 10 nC

observed in experiments at LBNL), with the bulk of electrons occurring at low energies,

i.e., the energy distribution falls off exponentially with a temperature of a few MeV [32].

Furthermore, the electron bunch length in the plasma is expected to be on the order of the

laser pulse duration, i.e., < 100 fs. This implies that CTR could be emitted with wavelengths

on the order of λ & 30 µm. The above expressions indicate that the energy radiated by

CTR can be on the order of the kinetic energy of the bunch, particularly for short, low

energy bunches of high charge. Hence, as such bunches emerge from the plasma, the CTR

emitted at the plasma-vacuum interface can significantly modify the electron energy spectra

by shifting the spectra to lower energies. A self-consistent description of this problem (e.g.,

by including electron recoil) is beyond the scope of this paper. In the following, sufficiently

low bunch charge and sufficiently long bunch lengths will be assumed such that the electron

energy can be assumed unperturbed as it crosses the plasma-vacuum boundary.

Another quantity of interest to experiments is the energy radiated into a small cone about
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the propagation axis. Expanding Eq. (1) for small angles θ2 � 1 gives

d2We

dωdΩ
' remec

π2

β2γ4θ2

(1 + β2γ2θ2)2
. (4)

Integrating over the solid angle from 0 ≤ θ ≤ θ0 � 1 yields

dWe

dω
' remec

πβ2

[

ln(1 + β2γ2θ2
0)−

β2γ2θ2
0

1 + β2γ2θ2
0

]

, (5)

which in the limit β2γ2θ2
0 � 1, i.e., small angles compared to the cone angle of maximum

emission 1/(βγ), gives
dWe

dω
' remec

2π
β2γ4θ4

0 . (6)

Hence, the total CTR energy radiated into a narrow frequency band ∆ω about the frequency

ω = 2πc/λ < 2πc/λmin by a monoenergetic bunch is given approximately by

Wtot ' N2 remec
2

λ
β2γ4θ4

0

∆ω

ω
(7)

or Wtot[mJ] ' 9.0(Q[nC])2(γθ0)
4(∆ω/ω)/λ[µm], assuming γ2 � 1. For example, Q = 5 nC

(N = 3.1 × 1010), γ = 10, λmin = 200 µm, and θ0 = 10 mrad give Wtot ' 0.11(∆ω/ω) µJ.

Due to the strong dependence on electron energy and angle, Wtot ∝ (γθ0)
4, the measured

energy can easily be increased by increasing either the electron energy γ or the cone angle

θ0 of the collection optics.

The above results apply to an idealized case of a short monoenergetic bunch in the limit of

zero emittance and zero radius interacting with a semi-infinite plasma slab. In the following

sections, non-ideal effects will be accounted for in the calculation of the radiation spectrum,

including energy spread, emittance, finite bunch size, and the finite transverse size of the

plasma.

III. GENERAL FORMALISM AND ASSUMPTIONS

In this section, we derive the total energy radiated by an electron bunch, with arbitrary

spatial and momentum distributions, crossing a plasma-vacuum interface. We will consider

a dielectric (plasma-vacuum) interface in the (x, y) plane such that there is plasma for z < 0

and vacuum for z > 0. The approximation of a step transition from plasma to vacuum will

be valid for provided the transition from plasma to vacuum is much less than the formation
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length [33] of the radiation Lf ' λ/(γ−2 + θ2). We will also consider an electron beam

current that has the form

Jb(x, t) = −e
N

∑

j=1

cβjδ (x− rj − cβjt) , (8)

where N is the number of electrons in the bunch, e is the electronic charge, c is the speed

of light in vacuo, and rj is the position of the jth electron with velocity vj = cβj. The

geometry of the calculation is shown in Fig. 1. The dielectric interface lies at z = 0 in the

(x, y) plane. Each (jth) electron in the bunch traverses the plasma-vacuum interface with

velocity vj = cβj = c(βxj, βyj, βzj) = cβj(sinψj cosϕj, sinψj sinϕj, cosψj). Without loss of

generality we may assume that the observation vector R (or radiation wavenumber vector

k) is in the (x, z) plane, where θ is the angle between the observation vector and the z axis.

We will assume that |r⊥j(z = 0)| � R sin θ for each electron, such that the beam-boundary

interaction may be treated as a point source at the observation position R.

A. Radiation field

The Maxwell equations can be combined and written as the following wave equation [7]

(

c2∇2 − ∂2
t

)

E = 4π∂t (Jb + Jp) + 4πc2∇ (ρb + ρp) , (9)

where E is the electric field and (ρb,Jb) and (ρp,Jp) are the density and current of the beam

and plasma, respectively. The plasma density can be expressed as a sum of the electron and

ion densities ρp = ρe+ρi. We will assume a neutral plasma and the ions are stationary such

that ρe = ρ0+δρ and ρi = −ρ0, where ρ0 is the constant background ambient electron plasma

density and δρ is the electron plasma density perturbation. By using the Poisson equation

∇ ·E = 4π(ρp + ρb) = 4π(δρ+ ρb), the linearized fluid momentum equation 4π∂tJp = ω2
pE,

and the continuity equation, the linear electron plasma density perturbation response can

be derived and has the form

(

∂2
t + ω2

p

)

4πδρ = −ω2
p4πρb + E · ∇ω2

p , (10)

where ω2
p = −4πeρ0/mec

2 is the plasma frequency. Equations (9) and (10) can be Fourier

time-decomposed and combined to yield

(

c2∇2 + ω2 − ω2
p

)

E − c2∇
(

E · ∇ω2
p

ω2 − ω2
p

)

= −i4πω
[

c2∇
( ∇ · Jb

ω2 − ω2
p

)

+ Jb

]

, (11)
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where we have used the beam density continuity equation ∇ · Jb = iωρb. We will assume

that the plasma frequency (ambient background density) is spatially homogeneous such that

∇ω2
p = 0 in the plasma and vacuum regions and the second term on the left-hand side of

Eq. (11) vanishes. The wave equation Eq. (11) can then be expressed simply as

(

c2∇2 + εω2
)

E =
4π

iωε

[

c2∇ (∇ · Jb) + ω2εJb

]

(12)

in both the vacuum and plasma regions, where ε = 1 − ω2
p/ω

2 is the dielectric constant in

the plasma and ε = 1 in vacuum. Note that in this analysis we are assuming the absence

of external magnetic fields, and we consider a collisionless plasma, which is a good approx-

imation since the collisional frequencies for the parameter regime of interest (e.g., plasma

number density < 1018 cm−3, electron plasma temperature < 1 keV) are much less than the

plasma and radiation frequencies considered.

The transition radiation fields can be calculated by solving the wave equation Eq. (12) in

both the vacuum and plasma regions and applying continuity of the normal electric displace-

ment field ε(ω)E(ω) and tangential electric field across the boundary [23]. The complete

solution to the wave equation Eq. (12) in both the plasma and vacuum regions contains both

the particular (particle field) and the homogeneous (radiation field) solutions E = Ep+Eh,

where the homogeneous solution can be written as Eh(ω,k) = Ẽ(ω,k)δ(k2c2 − ω2ε). Note

that the homogeneous solution to the wave equation is divergenceless k ·Eh(ω,k) = 0. Ap-

plying the inverse-Fourier transform of z to the homogeneous solution yields Eh(ω,k⊥, z) =

[Ẽ/(4πckz)] exp(ikzz) with kz = ±(ω2ε− c2k2
⊥)1/2 and the ± indicates waves in the forward

(in the vacuum) and backward (in the plasma) going directions with respect to the beam.

Substituting the Fourier-transformed beam current [Eq. (8)],

Jb(ω,k) = −e
N

∑

j=1

cβj2πδ(ω − k · vj)e−ik·rj , (13)

into the Fourier-transformed wave equation [Eq. (12)] yields the particular solution

Ep(ω,k) = i4πec2
N

∑

j=1

(

ck

ωε
k · βj −

ωβj

c

)

2πδ(ω − k · vj)
(c2k2 − εω2)

e−ik·rj . (14)

Applying the inverse-Fourier transform of z to the particular solution yields

Ep(ω,k⊥, z) = i4πe
N

∑

j=1

1

βzj

(ωβj − ck/ε)

(c2k2 − εω2)
e−ik⊥·r⊥je−ikz(zj−z)

∣

∣

kz=ω/vzj−k⊥·v⊥j/vzj
. (15)
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From the continuity equations across the dielectric interface for the tangential components

of the electric field and the normal component of the electric displacement field and using

the fact that the homogeneous fields are divergenceless, the radiation fields Ẽ(ω,k⊥) in both

regions (z < 0 and z > 0) can be solved [23]. In the limit of an ideal conductor-vacuum

interface (i.e., assuming ε � 1 in the plasma and ε = 1 in the vacuum), the boundary

conditions reduce to ẑ × [Eh + Ep]z=0 = 0 for the vacuum fields.

The homogeneous electric field in the vacuum z > 0 generated by the current traversing

the plasma-vacuum boundary can be written as

Eh(ω,k⊥, z) = −i4πe
ω

N
∑

j=1

sec θE j(k⊥,βj)e
−iΨjeiz

√
ω2/c2−k2

⊥ . (16)

where Ψj = k⊥ ·r⊥j−(ω−k⊥ ·v⊥j)zj/vzj and Ej(k⊥,βj) = E j(θ, βj, ψj, ϕj) = E‖j ê‖+E⊥j ê⊥.

Here E‖j and E⊥j are the normalized amplitudes of the electric fields generated by an electron

in the radiation plane (formed by ẑ and k̂) and perpendicular to the radiation plane (ŷ in the

geometry of Fig. 1), respectively. Equation (16) may be decomposed into Eh = E‖ê‖+E⊥ê⊥,

with the normal component ẑ ·Eh = −E‖ sin θ. In the limit of an ideal conductor to vacuum

interface (i.e., assuming |ε| � 1 for z < 0 and ε = 1 for z > 0),

E‖j(θ, uj, ψj, ϕj) =
uj cosψj

[

uj sinψj cosϕj −
(

1 + u2
j

)1/2
sin θ

]

[

(

1 + u2
j

)1/2 − uj sinψj cosϕj sin θ
]2

− u2
j cos2 ψj cos2 θ

, (17)

E⊥j(θ, uj, ψj, ϕj) =
u2
j cosψj sinψj sinϕj cos θ

[

(

1 + u2
j

)1/2 − uj sinψj cosϕj sin θ
]2

− u2
j cos2 ψj cos2 θ

, (18)

where u = p/mec = γβ is the normalized momentum of the electrons. Note that, for

electrons traversing normal to the dielectric-vacuum boundary, E⊥j = 0 and the transition

radiation will be radially polarized. In general, the transition radiation is elliptically polar-

ized. The treatment of the plasma as a perfect metallic conductor is a good approximation

for radiation and plasma frequencies such that |ε| & 2 (see Appendix for further discussion).

The transition radiation electric field is the inverse-Fourier transform of Eq. (16),

Eh(x, t) =

∫

d2k⊥

(2π)2

∫

dω

2π
Eh(ω,k⊥, z)e

ik⊥·x⊥−iωt . (19)
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B. Radiation energy spectra

The total (integrated over time) energy radiated by the electron beam through a plane

in the far-field is given by the integral of the Poynting vector

dW =
c

4π

∞
∫

−∞

dt

∫

d2x⊥(E ×B) · ẑ

=
c

2π

∞
∫

0

dω

2π

∫

d2k⊥

(2π)2
(k̂ · ẑ)E∗

h(ω,k⊥, z) ·Eh(ω,k⊥, z) ,

(20)

where Eh is given by Eq. (16). The energy radiated W per unit frequency dω and unit solid

angle dΩ is

d2W

dωdΩ
=
ω2 cos2 θ

(2π)4c
E∗
h(ω,k⊥, z) ·Eh(ω,k⊥, z)

=
e2

π2c

N
∑

i=1

N
∑

j=1

(

E‖iE‖j + E⊥iE⊥j
)

eiΨj−iΨi .

(21)

The summations over electrons in Eq. (21) may be removed by taking an ensemble av-

erage over the six-dimensional electron beam distribution f̃(r,p), with the normalization
∫

d3rd3pf̃ = 1 and momentum distribution given by g(p) =
∫

d3rf̃ . Performing the ensem-

ble average yields

d2W

dωdΩ
=
e2N

π2c

{

∫

d3p
(

E2
‖ + E2

⊥

)

g(p)+(N−1)

[

∣

∣

∣

∣

∫

d3pg(p)E‖F
∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫

d3pg(p)E⊥F
∣

∣

∣

∣

2
]}

,

(22)

where F is the spatial form factor defined by

F =
1

g(p)

∫

d2r⊥e
−ik⊥·r⊥

∫

dze−iz(ω−k⊥·v⊥)/vz f̃(r,p) . (23)

The first term on the right-hand side of Eq. (22) is the contribution from the incoherent

radiation (∝ N) and the second term on the right-hand side of Eq. (22) is the contribution

from the coherent radiation (∝ N 2), such that W = WITR +WCTR with

d2WITR

dωdΩ
=

e2

π2c
N

[

〈E2
‖ 〉+ 〈E2

⊥〉
]

(24)

d2WCTR

dωdΩ
=

e2

π2c
N(N − 1)

[

∣

∣〈E‖F 〉
∣

∣

2
+ |〈E⊥F 〉|2

]

(25)

where the brackets indicate an average over the momentum distribution. Note that 〈E⊥〉 = 0

for a cylindrically-symmetric momentum distribution.
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In the following sections, for simplicity, we will assume no correlations between the po-

sition and momentum of the electrons such that the electron beam distribution takes the

form f̃(r,p) = g(p)f(r) and the spatial form factor reduces to

F =

∫

d2r⊥e
−ik⊥·r⊥

∫

dze−iz(ω−k⊥·v⊥)/vzf(r) . (26)

The spatial form factor Eq. (26) is closely related to the Fourier transform of the

electron beam spatial distribution. For a Gaussian spatial beam distribution f =

[(2π)3/2σ2
rσz]

−1 exp(−r2
⊥/2σ

2
r) exp(−z2/2σ2

z), where σz and σr are the root-mean square

(rms) beam duration and radius, respectively, the spatial form factor is F = F⊥F‖, with

F⊥ = e−
1

2
(ω/c)2σ2

r sin2 θ , (27)

F‖ = e−
1

2
[ω/(cβ cosψ)]2σ2

z(1−β sin θ cosϕ sinψ)2 . (28)

For ψ � 1, i.e., a near collimated beam at the plasma-vacuum boundary, F‖ '
exp[(ωσz/v)

2/2]. As Eqs. (27) and (28) indicate, for radiation wavelengths λ = 2πc/ω

that are large compared to the dimensions of the beam λ� σr and λ� σz, F ' 1 and the

radiation is fully-coherent. For radiation wavelengths such that σr sin θ � λ or σz � λ, the

spatial form factor vanishes F ' 0 and the beam does not radiate coherently WCTR ' 0.

In deriving the results in this section, it was assumed that the total energy radiated is

small compared to the energy stored in the electron beam (as discussed in Sec. II), so that

the electron beam distribution remains approximately constant during the radiation process.

Also, use of the far-field (or radiation zone) radiation fields requires that the observation

position to be sufficiently far from the source, such that the distance from radiator to detector

is larger than the radiation formation length R > Lf .

C. Self-modulated LWFA electron beam

In this paper, we will assume that the electron beam momentum distribution may be

decomposed such that g(p) = g‖(u)g⊥(ψ, ϕ). The longitudinal momentum distribution of

the self-modulated LWFA generated electron bunch can be modeled as a single temperature

Boltzmann distribution:

g‖(u)du = u−1
t exp [−u/ut] du , (29)
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where ut is the temperature of the distribution. Typically, self-modulated LWFA electron

bunches will have a temperature of a few MeV (e.g., ut ∼ 10). We will assume the self-

modulated LWFA electron bunch transverse momentum distribution can be expressed as

a Gaussian distribution g⊥(ψ, ϕ)dψdϕ = (πσ2
⊥)−1 exp(− sin2 ψ/σ2

⊥) sinψ cosψdψdϕ. Self-

modulated LWFA electron bunches with nC-charge have been demonstrated experimentally

[10, 14, 16, 17]. While the electron bunch remains in the plasma, where the background

ions provide space charge shielding that prevents blow-up of the dense electron bunches, the

bunch duration will typically be on the order of the laser duration (σz . 100 fs) and the

radius on the order of the laser spot size (σr ∼ 5 µm).

IV. INCOHERENT TRANSITION RADIATION

In this section we consider the incoherent transition radiation. Using the results of

Sec. III B, the energy radiated by a single electron per unit frequency dω in solid angle dΩ is

given by [d2WITR/dωdΩ]e− = (e2/π2c)(E2
‖ +E2

⊥). In the limit of no divergence ψ = 0, E⊥ = 0

and the single-electron radiated energy reduces to the well-known result [cf. Eq. (1)]

[

d2WITR

dωdΩ

]

e−
=

(

e2

π2c

)

u2 (1 + u2) sin2 θ
(

1 + u2 sin2 θ
)2

=

(

e2

π2c

)

β2 sin2 θ

(1− β2 cos2 θ)2 ,

(30)

which can be integrated over solid angle dΩ = 2π sin θdθ to yield

[

dWITR

dω

]

e−
=

(

2e2

πc

)

[

(1 + 2u2)

u (1 + u2)1/2
tanh−1

(

u√
1 + u2

)

− 1

]

=

(

e2

2πcβ

) [

(

1 + β2
)

ln

(

1 + β

1− β

)

− 2β

]

.

(31)

The total incoherent energy radiated by a beam with N electrons and a normalized momen-

tum distribution g(p) is

d2WITR

dωdΩ
= N

∫

d3pg(p)

[

d2WITR

dωdΩ

]

e−
. (32)

For small electron divergence and observation angles, such that ψ � 1 and θ � 1, the total

radiated energy by a cylindrically-symmetric beam distribution is

d2WITR

dωdΩ
' e2N

π2c

[(

〈u2〉+ 〈u4〉
)

θ2 + 〈u4〉〈ψ2〉
]

, (33)
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where 〈ψ2〉1/2 is the rms beam divergence at the plasma-vacuum interface. Note that, for

θ � ψ � 1, d2WITR/dωdΩ ' (e2N/π2c)〈u4〉〈ψ2〉, and the result of finite beam diver-

gence at the plasma-vacuum boundary is to produce incoherent radiation on axis (θ = 0).

Without beam divergence, the radiation intensity vanishes on axis. Figure 2 shows the an-

gular distribution of the normalized differential energy spectrum of the incoherent radiation

(π2c/e2N)d2WITR/dωdΩ produced by a self-modulated LWFA electron beam (ut = 10) as-

suming a symmetric Gaussian transverse momentum distribution with 〈ψ2〉1/2 = 0 (dashed

line) and 〈ψ2〉1/2 = 0.02 (solid line).

Equation (33) can be integrated over solid angle, and for a small collection angle θ ≤
θ0 < 1/〈u〉,

dWITR

dω
' e2N

2πc

[(

〈u2〉+ 〈u4〉
)

θ4
0 + 2〈u4〉〈ψ2〉θ2

0

]

. (34)

Since the differential incoherent transition radiation spectrum Eq. (24) is frequency inde-

pendent, the total incoherent energy radiated into a bandwidth ∆ω/ω and small collection

angle θ ≤ θ0 < 1/〈u〉 is

WITR ' mec
2 re
λ
N

∆ω

ω
θ4
0

[

(

〈u2〉+ 〈u4〉
)

+ 2〈u4〉〈ψ
2〉
θ2
0

]

(35)

where re = e2/mec
2 ' 2.818× 10−15 m is the classical electron radius.

V. COHERENT TRANSITION RADIATION

In this section the coherent transition radiation produced at the plasma-vacuum boundary

is considered. The energy of the coherent radiation emitted by the electron beam has

the form given by Eq. (25). The wavelength dependence is contained in the form factor

Eq. (26), which is the Fourier transform of the spatial distribution of the electron beam.

Therefore measurement of the energy spectra can provide a method for determining the

spatial distribution of the electron beam.

For the case of a collimated beam g⊥(ψ) = δ(ψ), 〈E⊥〉 = 0, the fields are radially-polarized,

and the differential energy spectrum of the coherent transition radiation is

d2WCTR

dωdΩ
=

(

e2

π2c

)

N(N − 1) sin2 θ

∣

∣

∣

∣

∣

∫

dug‖(u)F (ω, θ, u)
u (1 + u2)

1/2

1 + u2 sin2 θ

∣

∣

∣

∣

∣

2

. (36)

In general, the differential energy spectrum will be modified by finite beam divergence.

For fully-coherent radiation F ' 1, the energy emitted by a cylindrically-symmetric beam
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distribution with small divergence and a small observation angle, such that uψ < uθ < 1, is

d2WCTR

dωdΩ
'

(

e2

π2c

)

N(N − 1)θ2

∣

∣

∣

∣

∫

dug‖u(1 + u2)1/2

[

1− 1

2

(

1 + 4u2
)

〈ψ2〉
]
∣

∣

∣

∣

2

, (37)

and for u > 1,

d2WCTR

dωdΩ
'

(

e2

π2c

)

N(N−1)
θ2

4

[

(

1 + 2〈u2〉
)2−

(

1 + 2〈u2〉
) (

1 + 6〈u2〉+ 8〈u4〉
)

〈ψ2〉
]

, (38)

where 〈ψ2〉1/2 is the rms divergence of the electron beam through the plasma-vacuum bound-

ary. For θ � ψ < 1, d2WCTR/dωdΩ ' 0, and no coherent radiation is observed on axis for

a cylindrically-symmetric beam. Physically, this result is due to the fact that the radiation

fields produced by the electrons are summed for coherent radiation and the cylindrical sym-

metry results in the sum vanishing on axis, whereas, in the case of incoherent radiation,

the intensities radiated by each electron are summed, resulting in a non-zero incoherent

radiation intensity on axis (as shown in Fig. 2). Figure 3 shows the angular distribution of

the coherent transition radiation produced by an electron beam with a 5 MeV temperature

Boltzmann momentum distribution and a symmetric Gaussian transverse momentum dis-

tribution with 〈ψ2〉1/2 = 0 (dashed line) and 〈ψ2〉1/2 = 0.05 (solid line). The radiation is

assumed to be fully-coherent in Fig. 3. As the figure shows, and indicated by Eq. (38), the

effect of beam divergence is to reduce the CTR energy radiated.

Using Eq. (38), the total coherent radiation energy into a small collection angle θ ≤ θ0 <

1/〈u〉, and for a bandwidth ∆ω/ω is

WCTR ' mec
2 re
λ
N(N − 1)

∆ω

ω

θ4
0

4

[

(

1 + 2〈u2〉
)2 −

(

1 + 2〈u2〉
) (

1 + 6〈u2〉+ 8〈u4〉
)

〈ψ2〉
]

.

(39)

Equation (39) shows that the coherent transition radiation scales as WCTR ∼
(mec

2)(re/λ)N2(∆ω/ω)θ4
0〈u2〉2.

VI. EFFECTS OF COHERENT DIFFRACTION RADIATION

The self-field of a relativistic electron extends transversely a distance of the order ∼ γλ.

Therefore diffraction radiation from the transverse edge of the plasma-vacuum boundary

can be neglected provided ρ � λγ, where ρ is the transverse size of the plasma-vacuum

interface. For parameters such that ρ ∼ λγ, diffraction radiation will be produced, limiting
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the generation of long-wavelength transition radiation. To estimate the effect of the trans-

verse size of the plasma-vacuum interface, consider the model of a circular dielectric disc (of

radius ρ) in the (x, y) plane and an electron beam, with rms radius σr � ρ, propagating

along the z axis through the dielectric. The resulting radiation will be a combination of

transition radiation from the passage of the electron through the dielectric-vacuum interface

and diffraction radiation from the transverse edge of the dielectric. The diffraction radiation

in the far-field (R � ρ and R � λ) may be determined by applying Kirchhoff diffraction

theory [7] to the incident fields [i.e., the particle fields, given by Eq. (14)] at the transverse

boundary. The electric fields produced by an electron passing through a circular aperture

are well-known (for example, Ref. [23]) and, through Babinet’s principle [7], may be applied

to diffraction from a dielectric disc. For simplicity, in this section we will consider a beam

without divergence (ψ � 1) passing through a ideal circular (radius ρ) conductor (|ε| � 1).

The differential energy spectrum of the coherent radiation (transition and diffraction)

can be expressed as

d2WCR

dωdΩ
=

(

e2

π2c

)

N(N − 1) sin2 θ

∣

∣

∣

∣

∣

∫

dug‖(u)F (ω, θ, u)
u (1 + u2)

1/2

1 + u2 sin2 θ
D(ω, ρ, u, θ)

∣

∣

∣

∣

∣

2

, (40)

where D(ω, ρ, u, θ) = D(b, u sin θ) describes the effect of the diffraction radiation from the

transverse boundary:

D = 1− J0(bu sin θ)

[

bK1(b) +
1

2
b2K0(b)

]

− 1

2
b2K0(b)J2(bu sin θ) , (41)

with the parameter b = kρ/u describing the relative influence of the transverse boundary

(i.e., the ratio of the transverse size of the dielectric to the transverse extent of the self-fields

of the relativistic electrons). Here Jm and Km are the mth-order regular and modified Bessel

functions, respectively. For b� 1,

D ' 1− [J0(kρ sin θ) + J2(kρ sin θ)]

√

b3π

8
exp(−b) , (42)

and in the limit of b→∞, D = 1 and Eq. (40) reduces to Eq. (36), i.e., neglecting diffraction

radiation is a good approximation in the limit of large transverse dimension b = kρ/u� 1.

For b� 1,

D ' 1− J0(kρ sin θ) +
b2

2

{

J0(kρ sin θ) + J2(kρ sin θ)

[

Cγ + ln

(

b

2

)] }

, (43)
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where Cγ is Euler’s constant. In the ultra-relativistic limit, b→ 0 and D = 1− J0(kρ sin θ).

The radiation generated by a fully-coherent F ' 1, monoenergetic beam passing through

the dielectric (|ε| � 1) with radius ρ is

d2WCR

dωdΩ
=

(

d2WCTR

dωdΩ

)

D2(ω, ρ, u, θ) , (44)

where WCTR is given by Eq. (36) for a monoenergetic momentum distribution. The peak

of the angular distribution of the coherent radiation from an interface with finite transverse

size is shifted compared to the case of a plasma-vacuum boundary with infinite transverse

dimension. The peak of the angular distribution of the radiation given by Eq. (44) occurs at

θpeak ' 1/u for b� 1 and θpeak ' 2.8/(kρ) for b� 1. The effect of the finite transverse size is

that the peak of the angular distribution occurs at a larger angle θpeak(b) > 1/u = θpeak(b→
∞). In the ultra-relativistic limit, b � 1, and for small observation angles kρ sin θ � 1,

Eq. (44) reduces to d2WCR/dωdΩ ' (πρθ/λ)4(d2WCTR/dωdΩ) � d2WCTR/dωdΩ, which

indicates that the total energy radiated is significantly reduced in this regime due to the

effects of diffraction radiation.

Figure 4 shows the angular dependence of the differential energy spectrum Eq. (40)

produced by an electron beam with a 5 MeV temperature Boltzmann momentum distribution

for three cases: kρ = 100 (solid line), kρ = 20 (dotted line), and kρ = 5 (dashed line). As

b = kρ/u decreases, the diffraction radiation strongly modifies the angular distribution

[e.g., note the oscillatory behavior characteristic of diffraction radiation evident for kρ = 20

(dotted line)], resulting in the maximum of the differential energy spectrum occurring at

larger angles.

As Eq. (40) indicates, the finite transverse extent of the plasma produces a wavelength

dependence in the differential energy spectrum for fully-coherent radiation. Figure 5 shows

the normalized energy spectrum integrated over solid angle (dWCR/dω)π2c/e2N(N − 1)

radiated by an electron beam with a Boltzmann distribution versus kρ = 2πρ/λ for ut =

20 (solid line), ut = 10 (dashed line), and ut = 5 (dotted line). Figure 5 clearly shows

that the spectral content of the radiation is no longer constant, as is the case for ordinary

transition radiation from a fully-coherent beam, and that the spectra is strongly modified

by the diffraction radiation for parameters b ∼ 1 (i.e., λ ∼ ρ/γ). Distortion of the spectra

increases with larger energy, and for decreasing transverse size, the spectra is suppressed.

For large transverse size (b� 1), the fully-coherent spectra becomes constant (i.e., the limit
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of transition radiation from an infinite transverse boundary). In general, the spectral region

of coherent radiation is approximately 2πσz < λ < 2πρ/u, where the lower bound is due to

longitudinal coherence [F in Eq. (40)], and the upper bound is due to diffraction radiation

effects [D in Eq. (40)].

VII. COHERENT THZ RADIATION FROM A SELF-MODULATED LWFA

ELECTRON BEAM

Recent self-modulated LWFA experiments have produced relativistic electrons with lon-

gitudinal momentum distributions given by Eq. (29) with temperatures typically a few MeV

[10]. In such experiments, an intense laser pulse is focused into a gas jet with dimensions

. 1 mm. The laser pulse ionizes the gas and becomes self-modulated through Raman scat-

tering, generating a high phase velocity plasma wave. Background plasma electrons can

become trapped by heating (through the interaction with the backward scattered light) or

by wavebreaking (where the plasma wave drives fluid oscillations with velocities near the

plasma wave phase velocity). These trapped electrons are then accelerated by the plasma

wave. The self-modulated LWFA can produce nC electron bunches of duration on the or-

der of the laser duration (σz/c . 100 fs) and radius on the order of the laser spot size

(σr ∼ 5 µm). When the electron bunch exits the plasma, radiation is emitted from the

interaction with the plasma-vacuum boundary.

The interaction of these extremely dense laser-plasma-generated electron bunches with

the plasma-vacuum boundary can produce coherent radiation for wavelengths longer than

the bunch dimensions. For example, Eq. (36) predicts that the total energy radiated by a

2 nC laser-plasma-generated electron bunch, with a 5 MeV temperature Boltzmann distri-

bution, in the spectral range λ = 0.1–1 mm and within the collection angle θ ≤ 100 mrad,

is W = 98 µJ. This energy per pulse is several orders of magnitude beyond current state-of-

the-art THz sources [6, 8].

For the laser-plasma acceleration experiments, the transverse plasma boundary is typi-

cally ρ . 1 mm. Therefore coherent THz radiation will be strongly modified by the diffrac-

tion radiation produced by the finite transverse size of the plasma. Equation (40) can be

solved for the case of a self-modulated LWFA-generated electron bunch distribution. Fig-

ure 6 shows the dependence of total coherent energy radiated in the spectral range λ =
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0.1–1 mm normalized to the charge W [nJ]/(Q[nC])2, generated by a 5 MeV temperature

self-modulated LWFA generated electron bunch versus transverse plasma radius ρ, within a

collection angle of θ ≤ 50 mrad, θ ≤ 100 mrad, and θ ≤ 200 mrad. Figure 6 shows that,

for this spectral range, the energy radiated can be increased several orders of magnitude

by increasing the transverse size of the plasma, and this source (e.g., a ∼ 1 nC, ∼ 5 MeV

temperature self-modulated LWFA-generated electron bunch) has the capability to produce

THz radiation with a flux of 100 µJ/pulse.

VIII. SUMMARY AND CONCLUSIONS

A general theory of transition radiation has been presented that describes both the in-

coherent and coherent radiation emitted by an electron bunch traversing a plasma-vacuum

boundary. By using the dense, short electron bunches produced by a LWFA, unprece-

dented levels of CTR can be generated at the plasma-vacuum boundary where the bunch is

still ultrashort and extremely dense, i.e., before the electron bunch undergoes space charge

blow-up in vacuum. Coherent emission requires that the longitudinal and transverse form

factors be near unity, e.g., for wavelengths long compared to the bunch dimensions. To

accurately model experiments in the self-modulated LWFA regime, the effects of the longi-

tudinal and transverse momentum distributions were examined for both the ITR and CTR.

It was shown that finite beam divergence produces on-axis radiation for ITR. For CTR from

a cylindrically-symmetric beam with finite divergence, the angular distribution of radiated

energy is zero on axis and the total energy radiated is reduced.

In the limit of a semi-infinite plasma, the CTR energy radiated in a narrow bandwidth ∆ω

within a cone angle θ0 scales as W ∝ N 2(utθ0)
4. Hence, the CTR energy can be increased

by increasing the bunch charge (N), the opening angle of the collection optics (θ0), and the

electron energy (ut). The analysis in this paper indicates that for parameters obtainable

in present day experiments, self-modulated LWFA generated electron bunches have the

capability of producing intense THz radiation, of order 100 µJ/pulse at the plasma-vacuum

interface, several orders of magnitude beyond current state-of-the-art THz sources.

One factor limiting the CTR energy is the small transverse size of the plasma. This is

of concern since the plasmas used in the self-modulated LWFA are typically produced via

tunneling ionization from the pump laser pulse and have a transverse dimension . 1 mm.
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To model the finite transverse extent of the plasma, the effect of the diffraction radiation

was included in the analysis. The finite transverse extent of the plasma was shown to

significantly reduce the long-wavelength transition radiation λ > ρ/γ. This restriction can

be overcome in a straightforward manner by using additional laser pulses to pre-ionize a

larger region of plasma. Also assumed in the analysis was a sharp transition between the

plasma and vacuum. However, for sufficiently short wavelength radiation the scale length

of the plasma-vacuum boundary will be comparable to the radiation formation length, and

this assumption will no longer be valid.

This paper has focused on the production of CTR from LWFAs, i.e., intense laser pulses

interacting with gas jets (underdense plasmas). Transition radiation will also occur from

intense laser pulses interacting with solid targets (overdense plasmas) [34]. For example,

when an intense laser pulse strikes the front surface of a foil, energetic electron are generated

near the front surface through a combination of ponderomotive and parametric processes.

This results in a beam of relativistic electrons, which for sufficiently thin foils, can generate

CTR as the beam emerges from the rear side of the target.

In addition to being an intense source of THz and far infrared radiation, this radiation

can also be used as a diagnostic for the electron bunch structure, due to the correlation

between the bunch dimensions and the rapid fall off of the CTR signal for short wavelengths.

Although a direct measurement of the the longitudinal bunch structure has not been made

in a LWFA, theory and simulation indicate that the bunch length should be on the order

of the laser pulse length (& 50 fs). In the self-modulated regime, simulations indicate that

the electron bunch may be sub-bunched at the plasma wavelength, which is on the order of

10 µm for a plasma density of 1019 cm−3, as used in present day experiments. Furthermore,

future experiments may test such novel concepts as the colliding laser pulse injection [35, 36],

simulations of which predict electron bunch durations on the order of 10 fs (a few microns).

The fine longitudinal structure that may be present on a electron bunch in the self-modulated

regime, or the extremely short bunches predicted for a colliding pulse injector, imply that

such bunches can generate CTR in unprecedented short wavelength regimes, i.e., from a

few to tens of microns. For increasing bunch charge and decreasing bunch length, it is

possible that the total energy radiated by CTR approaches the total kinetic energy of the

electron bunch, particularly for modest energy electron bunches. This could significantly

alter the electron energy distribution of the self-modulated LWFA electron bunch as it exits
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the plasma (particularly for the low energy component of the distribution). In this limit, an

accurate analysis of CTR and the electron beam distribution must include the self-consistent

energy loss of the electrons due to the radiation process.

APPENDIX: FINITE PLASMA DIELECTRIC CONSTANT

In this Appendix we consider the influence of a finite plasma dielectric and show that

the plasma-vacuum interface can be well-modeled by a conductor-vacuum interface provided

ωp > ω. Consider a single electron normal to the plasma-vacuum interface. For a single elec-

tron normal to the plasma-vacuum interface, the energy of the transition radiation emitted

into the vacuum for arbitrary dielectric constant ε, in frequency range dω and solid angle

dΩ, is given by [23]

d2We

dωdΩ
=

e2

π2c

β2 sin2 θ cos2 θ

(1− β2 cos2 θ)2

∣

∣

∣

∣

∣

∣

(ε− 1)
[

1− β2 − β
(

ε− sin2 θ
)1/2

]

[

ε cos θ +
(

ε− sin2 θ
)1/2

] [

1− β
(

ε− sin2 θ
)1/2

]

∣

∣

∣

∣

∣

∣

2

. (A.1)

In the long radiation wavelength, high plasma density limit ε = 1−ω2
p/ω

2 → −∞, Eq. (A.1)

reduces to Eq. (30). For |ε| cos θ � 1 and |ε|β � 1, Eq. (A.1) reduces to

d2We

dωdΩ
' e2

π2c

β2 sin2 θ

(1− β2 cos2 θ)2

[

1 +
(β cos θ − 1)2

|ε| cos2 θ

]

, (A.2)

or, with γ � 1 and θ � 1,

d2We

dωdΩ
' e2

π2c

θ2

(θ2 + γ−2)2

[

1 +
(

θ2 + γ−2
)2 |ε|−1

]

. (A.3)

Equation (A.3) indicates that even for a relatively small plasma dielectric constant, i.e.,

|ε| & 1, the plasma can be well-approximated by a conductor. Figure 7 shows the energy

spectra dWe/dω calculated from Eq. (A.1), normalized to the infinite-dielectric constant

result calculated from Eq. (30), versus dielectric constant ε = 1−ω2
p/ω

2, emitted within θ ≤
200 mrad, by an electron with γ = 20 (solid curve), 10 (dashed curve), and 5 (dotted curve).

Figure 7 indicates that modeling the plasma as a conductor is a good approximation (i.e.,

within a few percent) for long wavelength radiation ω < ωp.
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FIG. 1: Geometry of calculation: rj is the position of the jth particle at z = 0 [in the (x, y) plane],

ψj is the angle of the electron velocity βj with respect to the z axis, ϕj is the angle of the transverse

projection of βj with respect to the x axis, and θ is the angle the observation vector R makes with

the z axis.
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FIG. 2: Normalized differential energy spectrum for the incoherent radiation

(π2c/e2N)d2WITR/dωdΩ versus observation angle θ generated by an electron beam with a

5 MeV temperature Boltzmann momentum distribution and a Gaussian transverse momentum

distribution with 〈ψ2〉1/2 = 0 (dashed line) and 〈ψ2〉1/2 = 0.02 (solid line).
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FIG. 3: Normalized differential energy spectrum for the coherent radiation [π2c/e2N(N −

1)]d2WCTR/dωdΩ versus observation angle θ generated by an electron beam with a 5 MeV temper-

ature Boltzmann momentum distribution and a Gaussian transverse momentum distribution with

〈ψ2〉1/2 = 0 (dashed line) and 〈ψ2〉1/2 = 0.05 (solid line).
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FIG. 4: Angular distribution of normalized differential energy spectrum for the fully-coherent

radiation (transition and diffraction) [π2c/e2N(N − 1)]d2WCR/dωdΩ generated by an electron

beam with a 5 MeV temperature Boltzmann momentum distribution with kρ = 100 (solid line),

kρ = 20 (dotted line), and kρ = 5 (dashed line).
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FIG. 5: Normalized energy spectrum integrated over solid angle [π2c/e2N(N − 1)]dWCR/dω ra-

diated by an electron beam with a Boltzmann distribution versus kρ = 2πρ/λ for ut = 20 (solid

line), ut = 10 (dashed line), and ut = 5 (dotted line).
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FIG. 6: Total coherent energy radiated in the spectral range λ = 0.1–1 mm normalized to the charge

W [nJ]/(Q[nC])2, generated by 5 MeV temperature self-modulated LWFA-generated electron bunch

versus transverse plasma radius ρ within the collection angles: θ ≤ 50 mrad, θ ≤ 100 mrad, and

θ ≤ 200 mrad.
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FIG. 7: Energy spectra dWe/dω emitted by a single electron traversing normal to the plasma-

vacuum interface [cf. Eq. (A.1)] normalized to the conductor-vacuum result [cf. Eq. (30)] versus

dielectric constant ε = 1 − ω2
p/ω

2, emitted within θ ≤ 200 mrad, with γ = 20 (solid curve), 10

(dashed curve), and 5 (dotted curve).

32




