
UC San Diego
Technical Reports

Title
ShortCuts: Using Soft State To Improve DHT Routing

Permalink
https://escholarship.org/uc/item/2wx9t8kb

Authors
Tati, Kiran
Voelker, Geoffrey M

Publication Date
2006-07-27

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wx9t8kb
https://escholarship.org
http://www.cdlib.org/

ShortCuts: Using Soft State

To Improve DHT Routing

Kiran Tati and Geoffrey M. Voelker

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0114

{ktati, voelker}@cs.ucsd.edu

Abstract

Distributed hash tables are increasingly being pro-
posed as the core substrate for content delivery ap-
plications in the Internet, such as cooperative Web
caches, Web index and search, and content delivery
systems. The performance of these applications built
on DHTs fundamentally depends on the effectiveness
of request routing within the DHT. In this paper, we
show how to use soft state to achieve routing perfor-
mance that approaches the aggressive performance
of one-hop schemes, but with an order of magnitude
less overhead on average. We use three kinds of hint
caches to improve routing latency: local hint caches,
path hint caches, and global hint caches. Local hint
caches use large successor lists to short cut final hops.
Path hint caches store a moderate number of effec-
tive route entries gathered while performing lookups
for other nodes. And global hint caches store direct
routes to peers distributed across the ID space. Based
upon our simulation results, we find that the combi-
nation of the hint caches significantly improves Chord
routing performance: in a network of 4,096 peers, the
hint caches enable Chord to route requests with aver-
age latencies only 6% more than algorithms that use
complete routing tables with significantly less over-
head.

1 Introduction

Peer-to-peer overlay networks provide a distributed,
fault-tolerant, scalable architecture on which wide-
area distributed systems and applications can be
built. An increasing trend has been to propose con-
tent delivery services on peer-to-peer networks, in-
cluding cooperative Web caches [9], Web indexing
and searching [14,16], content delivery systems [3,12],
and Usenet news [6]. Popular designs of these overlay
networks implement a distributed hash table (DHT)
interface to higher level software. DHTs map keys in
a large, virtual ID space to associated values stored
and managed by individual nodes in the overlay net-
work. DHTs use a distributed routing protocol to
implement this mapping. Each node in the overlay
network maintains a routing table. When a node
receives a request for a particular key, it forwards
the request to another node in its routing table that
brings the request closer to its destination.

A natural trade off in the design of these routing
protocols is the size of the routing table and the la-
tency of routing requests. Larger routing tables can
reduce routing latency in terms of the number of
hops to reach a destination, but at the cost of ad-
ditional route maintenance overhead. Because the
performance and overhead of DHT overlay networks
fundamentally depend upon the distributed routing
protocol, significant work has focused on the problem
of balancing the degree of routing state and mainte-
nance with route performance.

1

Initial systems like Chord [28], Pastry [26],
Tapestry [31], and CAN [24] use routing tables of
degree O(log n) to route requests in O(log n)) hops,
where n is the number of hosts in the network.
Newer algorithms improve the theoretical bounds
on routing state and hops. Randomized algorithms
like Viceroy [17] and Symphony [18] achieve small,
constant-degree routing tables to route requests on
average in O(log n) and O(log log n) hops, respec-
tively. Koorde [10] is a tunable protocol that can
route requests with a latency ranging from O(log n)
to O(log n/ log log n) hops for routing tables of con-
stant size to O(log n)) size, respectively. Other
approaches, such as Kelips [8], Structured Super-
peers [22], Beehive [23], and CUP [25] focus on
achieving constant-time O(1) hops to route requests
at the expense of high degree routing tables, hier-
archical routing, tailoring to traffic distributions, or
aggressive update protocols to maintain consistency
among the large routing tables in each peer.

In this paper, we argue that the appropriate use of
cached routing state within the routing protocol can
provide competitive improvements in performance
while using a simple baseline routing algorithm. We
describe and evaluate the use of three kinds of hint
caches containing route hints to improve the routing
performance of distributed hash tables (DHTs): local
hint caches store direct routes to successors in the ID
space; path hint caches store direct routes to peers
accumulated during the natural processing of lookup
requests; and global hint caches store direct routes to
a set of peers roughly uniformly distributed across
the ID space.

These hint caches require state similar to previous
approaches that route requests in constant-time hops,
but they do not require the complexity and communi-
cation overhead of a distributed update mechanism
to maintain consistency among cached routes. In-
stead, the hint caches do not explicitly maintain con-
sistency in response to peer arrivals and departures
other than as straightforward extensions of the stan-
dard operations of the overlay network. We show
that hint cache inconsistency does not degrade their
performance benefits.

We evaluate the use of these hint caches by sim-
ulating the latest version of the Chord DHT [5] and

extending it to use the three hint caches. We evalu-
ate the effectiveness of the hint caches under a variety
of conditions, including highly volatile peer turnover
rates and relatively large network sizes. Based upon
our simulation results, we find that the combination
of the hint caches significantly improves Chord rout-
ing performance. In networks of 4,096 peers, the hint
caches enable Chord to route requests with average
latencies only 6% more than algorithms like “One-
Hop” that use complete routing tables, while requir-
ing an order of magnitude less bandwidth to main-
tain the caches and without the complexity of a dis-
tributed update mechanism to maintain consistency.

The remainder of the paper is organized as follows.
In Section 2, we discuss related work on improving
routing performance in peer-to-peer overlays. Sec-
tion 3 describes how we extend Chord to use the lo-
cal, path, and global hint caches. Section 5 describes
our simulation methodology for evaluating the hint
caches, and presents the results of our evaluations.
Finally, Section 6 summarizes our results and con-
cludes.

2 Related Work

Initial distributed routing protocols for DHT peer-to-
peer overlay networks were designed to balance rout-
ing state overhead and route maintenance overhead
while providing provably attractive routing perfor-
mance. Chord [28], Pastry [26], Tapestry [31], and
Kademlia [19] use routing tables with degree O(log n)
to route requests in O(log n) hops through the net-
works.

Since the performance and overhead of these net-
works fundamentally depend upon the distributed
routing protocol, significant research has focused on
the problems of improving route maintenance and
performance. As a result, newer algorithms have im-
proved the theoretical bounds on routing degree and
routing hops. The most efficient of these algorithms
achieve either constant degree routing state or con-
stant hop routing latency, often, however, at the price
of additional system complexity.

A number of algorithms seek to minimize route
maintenance overhead by using only constant-size

2

O(1) routing tables per node, such as Viceroy [17],
Symphony [18], and [10]. Several efforts have also
been made to achieve constant-time O(1) hops to
route requests at the cost of high-degree routing ta-
bles. These approaches use gossip protocols to prop-
agate route updates [8], hierarchical routing through
structured superpeers [22], complete routing tables
consistently maintained using a hierarchical update
protocol [7], and reliance on traffic distributions [23].

Chord/DHash++ [5] exploits the fact that lookups
for replicated values only need to reach a peer near
the owner of the key associated with the value (since
the peer will have a replica). Although this is ap-
propriate for locating any one of a number of repli-
cas, many applications require exact lookup. The
“OneHop” approach uses a very aggressive update
mechanism to route requests in only a single hop [7].
However, this approach requires a hierarchical update
distribution tree overlayed on the DHT, and requires
significant communication overhead to distribute up-
dates to all nodes in the system. Beehive exploits the
power-law property of lookup traffic distributions [23]
to achieve constant-time lookups. However, a large
class of applications induce different types of lookup
traffic.

Perhaps the most closely related work is the Con-
trolled Update Protocol (CUP) for managing path
caches on peers [25]. CUP uses a query and update
protocol to keep path caches consistent with peer ar-
rivals and departures. CUP was implemented in the
context of the CAN overlay network, and evaluated
relative to straightforward path caches with expira-
tion. Although the CUP path caches are analogous
to the path hint caches in our work, our work dif-
fers in a number of ways with the CUP approach.
Rather than providing an update mechanism to keep
caches consistent, we instead combine the use of lo-
cal hint caches with path and global hint caches to
improve performance and tolerate inconsistency. We
also evaluate hint caches with a baseline DHT routing
algorithm that routes in O(log n) hops (rather than
a range of coordinate dimensions).

3 Design

Distributed hash tables (DHT) increasingly serve as
the foundation for a wide range of content delivery
systems and applications. The DHT lookup oper-
ation is the fundamental operation on which appli-
cations base their communication. As a result, the
performance of these applications directly depends on
the performance of the lookup operation, and improv-
ing lookup performance improves performance for all
applications layered on DHTs.

The primary goal of our work is to reduce lookup
performance as close to direct routing with much less
overhead than previous approaches and without rely-
ing upon specific traffic patterns. We also integrate
the cache update mechanism to refresh cached route
entries into the routing protocol to minimize the up-
date complexity as well as overhead. To achieve this
goal, each peer employs three hint caches. Local
hint caches store direct routes to neighbors in the
ID space. Path hint caches store direct routes to
peers accumulated during the natural processing of
lookup requests. Finally, global hint caches store di-
rect routes to a set of peers roughly uniformly dis-
tributed across the ID space. We call them hint
caches since the cached routes are hints that may
potentially be stale or inconsistent. We also consider
them soft-state hints since they can be reconstructed
quickly at any time and they are not necessary for
the correctness of the routing algorithm.

The following sections describe the behavior of
each of the three hint caches. Although these caches
are applicable to DHTs in general, we describe them
in the context of integrating them into the Chord
DHT as a concrete example. So we start with a brief
overview of the Chord lookup operation and routing
algorithm as background.

3.1 The Chord DHT

In Chord, all peers in the overlay form a circular
linked list. Each peer has one successor and one
predecessor. Each peer also maintains O(log n) suc-
cessors and O(log n) additional peers called fingers.
The owner of a key is defined as a peer for which
the key is in between the peer’s predecessor’s ID and

3

its ID. The lookup operation for a given key returns
the owner peer by successively traversing the over-
lay. Peers construct their finger tables such that the
lookup operation traverses progressively closer to the
owner in each step. In recursive lookup, the initia-
tor peer uses its routing table to contact the closest
peer to the key. This closest peer then recursively
forwards the lookup request using its routing table.
Included in the request is the IP address of the initi-
ating peer. When the request reaches the peer that
owns the key, that peer responds directly to the ini-
tiator. This lookup operation contacts O(log n) ap-
plication level intermediate peers to reach the owner
for a given key.

We augment Chord with the three hint caches.
Chord uses these hint caches as simple extensions to
its original routing table. When determining the next
best hop to forward a request, Chord considers the
entries in its original finger table as well as all entries
in the hint caches.

3.2 Local Hint Caches

Local hints are direct routes to neighbors in the ID
space. They are extensions of successor lists in Chord
and leaf nodes in Pastry, except that their purpose
is to improve routing performance. With a cache of
local hints, a peer can directly reach a small fraction
of peers directly and peers can short cut the final
hops of request routing.

Local hints are straightforward to implement in a
system like Chord using its successor lists. Normally,
each peer maintains a small list of its successors to
support fault-tolerance within Chord and upper layer
applications. Peers request successor lists when they
join the network. As part of a process called stabi-
lization in Chord, each peer also periodically pings its
successor to determine liveness and to receive updates
of new successors in its list. This stabilization pro-
cess is fundamental for maintaining lookup routing
correctness, and most DHT designs perform similar
processes to maintain successor liveness.

We propose enlarging these lists significantly — on
the order of a thousand entries — to become local
hint caches. Growing the successor lists does not in-
troduce any additional updates, but it does consume

additional bandwidth. The additional bandwidth re-
quired is S

H
entries per second where S is the num-

ber of entries in local hint cache, and H is the half
life time of peers in the system. Each peer change,
either joining or leaving, requires two entries to up-
date. Similar to [15], we define the half life as the
time in seconds for half of the peers in the system
to either leave or join the DHT. For perspective, a
study of the Overnet peer-to-peer file sharing system
measured a half life of four hours [1].

The overhead of maintaining the local hint cache is
quite small. For example, when S is 1000 entries and
H is four hours, then each peer will receive 0.07 extra
entries per second during stabilization. Since entries
are relatively small (e.g., 64 bytes), this corresponds
to only a couple of bytes/sec of overhead.

Local hint caches can be inconsistent due to peer
arrivals and departures. When a peer fails or a new
peer joins, for example, its immediate predecessor
will detect the failure or join event during stabiliza-
tion. It will then update its successor list, and start
propagating this update backwards along the ring
during subsequent rounds of stabilization. Conse-
quently, the further one peer is from one its succes-
sors, the longer it takes that peer to learn that the
successor has failed or joined.

The average amount of stale data in the local hint

cache is R∗S∗(S+1)
4∗H

, where R is the stabilization pe-
riod in seconds (typically one second). On average a
peer accumulates 1

2∗H
peers per second of stale data.

Since a peer updates its x’th successor every x∗R sec-
onds, it accumulates x∗R

2∗H
stale entries from its x’th

successor. If a peer has S successors, then on aver-
age the total amount of stale data is

∑S

i=1
i∗R
2∗H

. If
the system half life time H is four hours and the lo-
cal hint cache size is 1000 peers, then each peer only
has 1.7% stale entries. Of course, a peer can fur-
ther reduce the stale data by using additional update
mechanisms, introducing additional bandwidth and
complexity. Given the small impact on routing, we
argue that such additions are unnecessary.

3.3 Path Hint Caches

The distributed nature of routing lookup requests re-
quires each peer to process the lookup requests of

4

other peers. These lookup requests are generated
both by the application layered on top of the DHT as
well as the DHT itself to maintain the overlay struc-
ture. In the process of handling a lookup request,
a given peer can get information about other peers
that contact it as well as the peer that initiated the
lookup.

With Path Caching with Expiration (PCX) [25],
peers cache path entries when handling lookup re-
quests, expiring them after a time threshold. PCX
caches entries to the initiator of the request as well
as the result of the lookup, and the initiator caches
the results of the lookup. In PCX, a peer stores
routes to other peers without considering the latency
between itself and these new peers. In many cases,
these extra peers are far away in terms latency. Using
these cached routes to peers can significantly add to
the overall latency of lookups (Figure 6(a)). Hence
PCX, although it reduces hops (Figure 6(b)), can also
counter-intuitively increase lookup latency.

Instead, peers should be selective in terms of
caching information about routes to other peers
learned while handling lookups. We propose a se-
lection criteria based on the latency to select a peer
to cache it. A peer x caches a peer y if the latency
to y from x is less than the latency from x to peer z,
where (1) z is in x’s finger table already and (2) its
ID comes immediately before y’s ID if x orders the
IDs of its finger table peers. For example, assume y
falls between a and b in x’s finger table and then peer
x contacts a to perform the lookup request for an ID
between (a, b]. If we insert y, then x would contact y
for the ID between (y, b]. Since the latency to y from
x is less than the latency a from x, the lookup latency
may reduce for IDs between (y, b]. As a result, x will
cache the hop to y. We call the cache that collects
such hints the path hint cache.

We would like to maintain the path hint cache
without the cost of keeping entries consistent. The
following cache eviction mechanism tries to achieve
this goal. Since a small amount of stale data will not
affect lookup performance significantly (Figure 4), a
peer tries to choose a time period to evict entries in
the path hint cache such that amount of stale data in
its path cache is small, around 1%. The average time
to accumulate d percentage of stale data in the path

hint cache is 2 ∗ d ∗ h seconds, where h is the halving
time [15]. Hence a peer can use this time period as
the eviction time period.

Although the improvement provided by path hint
caches is somewhat marginal (1–2%), we still use this
information since it takes advantage of existing com-
munication and comes free of cost.

3.4 Global Hint Caches

The goal of the global hint cache is to approximate
two-hop route coverage of the entire overlay network
using a set of direct routes to low-latency, or nearby,
peers. Ideally, entries in the global hint cache provide
routes to roughly equally distributed points in the ID
space; for Chord, these nearby routes are to peers
roughly equally distributed around the ring.

These nearby peers work particularly well in com-
bination with the local hint caches at peers. When
routing a request, a peer can forward a lookup to one
of its global cache entries whose local hint cache has
a direct route to the destination. With a local hint
cache with 1000 entries, a global hint cache with a
few thousand nodes will approximately cover an en-
tire system of few million peers in two hops.

A peer populates its global hint cache by collecting
route entries to low-latency nodes by walking the ID
space. A peer x contacts a peer y from its routing
table to request a peer z from y’s local hint cache.
The peer x can repeat this process from z until it
reaches one of its local hint cache peers. We call this
process space walking.

While choosing peer z, we have three requirements:
minimizing the latency from x, minimizing x’s global
hint cache size, and preventing gaps in coverage due
to new peer arrivals. Hence, we would like to have a
large set of peers to choose from to find the closest
peer, to choose the farthest peer in the y’s local hint
cache to minimize the global hint cache size, and to
choose the closer peer in y’s local hint cache to pre-
vent gaps. To balance these three requirements, when
doing a space walk to fill the global hint cache we use
the second half of the successor peers in the local hint
cache.

Each peer uses the following algorithm to main-
tain the global hint cache. Each peer maintains an

5

index pointer into the global hint cache called the
refresh pointer. Initially, the refresh pointer points
to the first entry in the global hint cache. The peer
then periodically walks through the cache and ex-
amines cache entries for staleness. The peer only re-
freshes a cache entry if the entry has not been used in
the previous half life time period. The rate at which
the peer examines entries in the global hint cache is

g

2∗d∗h
, where d is targeted percentage of stale data

in the global hint cache, g is the global hint cache
size, and h is the halving time. This formula is based
on the formula for stale data in the path hint cache
(Section 3.3).

d is a system configuration parameter, and peers
can estimate h based upon peer leave events in the
local hint cache. For example, if the halving time h
is four hours, the global hint cache size g is 1000, and
the maximum staleness d is 0.125%, then the refresh
time period is 3.6 seconds. Note that if a peer uses
an entry in the global hint cache to perform a lookup,
it implicitly refreshes it as well and consequently re-
duces the overhead of maintaining the hint cache.

Scaling the system to a very large number of nodes,
such as two million peers, the global hint cache would
have around 4000 entries and peers would require one
ping message per second to maintain 0.5% stale data
in very high churn situations like one-hour halving
times. Such overheads are small, even in large net-
works.

Peers continually maintain the local and path hint
caches after they join the DHT. In contrast, a peer
will only start space walking to populate its global
hint cache if it receives a threshold explicit lookup re-
quests directly from the application layer (as opposed
to routing requests from other peers). The global hint
cache is only useful for the lookups made by the peer
itself. Hence, it is unnecessary to maintain this cache
for a peer that is not making any lookup requests.
Since a peer can build this cache very quickly (Fig-
ure 9), it benefits from this cache soon after it starts
making application level lookups. A peer maintains
the global hint cache using the above algorithm as
long as it receives lookups from applications on the
peer.

3.5 Discussion

Our goal is to achieve near-minimal request rout-
ing performance with significantly less overhead than
previous approaches. Local hint caches require S

H
en-

tries/sec additional stabilization bandwidth, where S
is the number of entries in the local hint cache and H
is the half life of the system. Path hint caches require
no extra bandwidth since they incorporate informa-
tion from requests sent to the peer. And, in the worst
case, global hint caches require one ping message per
2∗d∗h

g
seconds to refresh stale entries.

For comparison, in the “OneHop” approach [7]
each peer periodically communicates N

2∗H
entries to

update its routing table, an order of magnitude more
overhead. With one million peers at four hour half life
time, for example, peers in “OneHop” would need to
communicate at least 35 entries per second to main-
tain the state consistently, whereas the local hint
cache requires 0.07 entries per second and one ping
per 28 seconds to maintain the global hint cache.

4 Shun Pikes

The direct route provided by the Internet between
two peers may not be the best route [27]. Accord-
ing to the latest study, 17% pairs of peers reduce 25
milliseconds in latency if we use alternate paths [13]
with some intermediate hops. Our goal is to reduce
the DHT lookup latency by exploiting the alternate
paths that are better than the direct paths. Each
peer tries to forward the lookup request to a peer
that is closest to the lookup key from its routing ta-
ble until the lookup request reaches the owner. We
try to use these alternate paths to reach these inter-
mediate hops if alternative paths reduce latency.

The simplest approach to find alternate shortest
paths is to run the single source shortest paths algo-
rithm (either Dijkstra or Bellman-Ford) at each peer
using the local hint cache and global hint cache as the
intermediate hops. The shortest paths from a single
node to all other nodes in a complete graph can be
approximated closely by the shortest paths that are
constructed from a few random subset of nodes in
the graph similar to Internet [29]. In other words,

6

the shortest paths constructed for single node with
some random nodes and edges to these random nodes
are almost as good as the shortest paths constructed
from the same node to all other nodes in the graph
with complete graph. In our case, the local hint cache
has small set of random subset of peers in the DHT
and the global hint cache has the closest peers for
a given peer. Hence, the shortest path constructed
from a peer x to any other peer y in the DHT using
just x’s local and global hint cache peers as inter-
mediate hops is within constant factor from shortest
path from x to y if x uses all other peers in the DHT
as intermediate hops to construct the shortest path.

Each peer constructs the shortest paths to all other
peers in its caches and tries to uses this information
in forwarding the lookup operation. As previously,
a peer x tries to forward the lookup request to the
closest peer y in the identifier space. However if there
is a better path from x to y through peer z then peer
x forwards the lookup to peer z, instead of directly
forwarding to y, to forward the lookup request to the
y.

Overall this new lookup algorithm combining with
the local and global hint cache performs better than
the “OneHop” approach with significantly less over-
head. However, “OneHop” could be modified to take
advantages of detours to improve the lookup opera-
tion and can achieve similar lookup performance.

5 Methodology and Results

In this section we describe our DHT simulator and
our simulation methodology. We also define our per-
formance metric, average space walk time, to evalu-
ate the benefits of our hint caches on DHT routing
performance.

5.1 Chord Simulator

Although the caching techniques are applicable to
DHTs in general, we chose to implement and eval-
uate them in the context of Chord [28] due to its rel-
ative simplicity. Although the Chord group at MIT
makes its simulator available for external use [11],
we chose to implement our own Chord simulator to-

gether with our hint caching extensions. We im-
plemented a Chord simulator according to the recent
design in [5] that optimizes the lookup latency by
choosing nearest fingers. It is an event-driven sim-
ulator that models network latencies, but assumes
infinite bandwidth and no queuing in the network.
Since our experiments had small bandwidth require-
ments, these assumptions have a negligible effect on
the simulation results.

We separated the successor list and finger tables
to simplify the implementation of the hint caches.
During stabilization, each peer periodically pings its
successor and predecessor. If it does not receive an
acknowledgment to its ping, then it simply removes
that peer from it tables. Each peer also periodically
requests a successor list update from its immediate
successor, and issues lookup requests to keep its fin-
ger table consistent. When the lookup reaches the
key’s owner, the initiating peer chooses as a finger
the peer with the lowest latency among the peers in
the owner’s successor list.

For our experiments, we used a period of one sec-
ond to ping the successor and predecessor and a 15
minute time period to refresh the fingers. A finger
is refreshed immediately if a peer detects that the
finger has left the DHT while performing the lookup
operation. These time periods are same as ones used
in the Chord implementation [11].

To compare different approaches, we want to eval-
uate the potential performance of a peer’s routing
table for a given approach. We do this by defining
a new metric called space walk latency. The space
walk latency for a peer is the average time it takes
to perform a lookup to any other peer on the DHT
at a given point of time. We define a similar metric,
space walk hops, in terms of hops rather than latency.
The space walk time is a more complete measurement
than a few thousands of random sample lookups be-
cause space walk time represent lookup times to all
peers in the network.

We simulate experiments in three phases: an ini-
tial phase, a stabilization phase, and an experiment
phase. The initial phase builds the Chord ring of
a specified number of nodes, where nodes join the
ring at the rate of 50 nodes per second. The stabi-
lization phase settles the Chord ring over 15 minutes

7

and establishes a stable baseline for the Chord rout-
ing data structures. The experimental phase simu-
lates the peer request workload and peer arrival and
departure patterns for a specified duration. The sim-
ulator collects results to evaluate the hint caching
techniques only during the experimental phase.

Because membership churn is an important aspect
of overlay networks, we study the performance of
the hint caches using three different churn scenar-
ios: twenty-four-hour, four-hour, and one-hour half
life times. The twenty-four-hour half life time repre-
sent the churn in a distributed file system with many
stable corporate/university peers [2]. The four-hour
half life time represent the churn in a file sharing peer-
to-peer network with many home users [20]. And the
one-hour half life time represent extremely aggressive
worst-case churn scenarios [7].

For the simulations in this paper, we use an over-
lay network of 8,192 peers with latency characteris-
tics derived from real measurements. We start with
the latencies measured as part of the Vivaldi [4] eval-
uation using the King [13] measurement technique.
This data set has approximately 1,700 DNS servers,
but only has complete all-pair latency information
for 468 of the DNS servers. To simulate a larger net-
work, for each one of these 468 DNS servers we create
roughly 16 additional peers to represent peers in the
same stub networks as the DNS servers. We cre-
ate these additional peers to form a network of 8,192
peers. We model the latency among hosts within the
group as zero to correspond to the minimal latency
among hosts in the same network. We model the la-
tency among hosts between groups according to the
measured latencies from the Vivaldi data set and we
refer this data set as a “King”. The minimum, av-
erage, and maximum latencies among groups are 2,
165, and 795 milliseconds, respectively. As a timeout
value for detecting failed peers, we use a single round
trip time to that peer (according to the optimizations
in [5]).

Using measurements to create the network model
adds realism to the evaluation. At the same time,
though, the evaluation only scales to the limits of
the measurements. To study the hint caches on sys-
tems of much larger scale, we also performed exper-
iments using another network model. We have two

different data sets in this model and both of them
are significantly larger than above data set. First,
we created a matrix of network latency among 8,192
groups by randomly assigning a latency between two
groups from the range of 10 to 500 milliseconds and
a latency within a group from the range of 1 to 5
milliseconds. We then created an overlay network of
262,144 peers by randomly assigning each peer to one
group, keeping the groups balanced. We also created
another data set with same latencies among groups
and with in a group for 65536 peers that are ran-
domly distributed into 2,048 groups. We refer these
data sets as a “Random”.

The goal of “Random” data set is to show the per-
formance of various caches at large scale networks
that we can simulate on the resources that are avail-
able to us. We used two different clusters [21, 30] to
scale the computational resources. However, in some
of the experiments we couldn’t parallelize our simu-
lation easily hence we used smaller “Random” data
set with 65,536 peers.

5.2 Local Hint Caches

In this experiment we evaluate the performance of the
local hint cache compared with two baseline routing
algorithms, “Standard” and “OneHop.” “Standard”
is the default routing algorithm in Chord++ [5] that
optimized for lookup latency by choosing nearest fin-
gers. “OneHop” maintains complete routing tables
on all peers [7].

Figures 1(a) and 1(b) show the cumulative distri-
butions for the space walk latencies and hops, re-
spectively, across all peers in the system. Since there
is no churn in this experiment, we calculate the la-
tencies and hops after the network stabilizes when
reaching the experimental phase; we address churn
in the next experiment. Figure 1(a) shows results
for “Standard” and “OneHop” and local hint cache
sizes ranging from 64–1024 successors; Figure 1(b)
omits “OneHop” since it only requires one hop for all
lookups with stable routing tables.

Figure 1(a) shows that the local hint caches im-
prove routing performance over the Chord baseline,
and that doubling the cache size roughly improves
space walk latency by a linear amount. The median

8

0

10

20

30

40

50

60

70

80

90

100

200 250 300 350 400 450 500 550 600 650 700 750 800 850

Space Walk Latency (in M illiseconds)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e

rs

OneHop

Standard

64-Successors

256-Successors

1024-Successors

(a) Latency distributions

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Spacw Walk Hops

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

Standard

64-Successors

256-Successors

1024-Successors

(b) Hop count distributions

Figure 1: Sensitivity of local hint cache size on lookup
performance for “King” data set.

space walk latency drops from 432 ms in Chord to
355 ms with 1024 successors in the local hint cache
(a decrease of 18%). Although an improvement, the
local hint cache alone is still substantially slower than
“OneHop”, which has a median space walk latency of
273 ms (a decrease of 37% is needed).

Figure 1(b) shows similar behavior for local hint
caches in terms of hops. A local hint cache with 1024
successors decreases median space walk latency by
2.5 hops, although using such a cache still requires
one more hop than “OneHop”.

The performance local hint cache for “Random”
data set in Figure 2(a) and Figure 2(b) is similar to
the performance of local hint cache for “King” data
set in Figure 1(a) and Figure 1(b) respectively. We
used 65,536 peers for the “Random” data set to be

0

10

20

30

40

50

60

70

80

90

100

450 500 550 600 650 700 750

Space Walk Latency (in Milliseconds)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

OneHop

Standard

64-Successors

256-Successors

1024-Successors

(a) Latency distributions

0

10

20

30

40

50

60

70

80

90

100

2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6

Space Walk Hops

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

Standard

64-Successors

256-Successors

1024-Successors

(b) Hop count distributions

Figure 2: Sensitivity of local hint cache size on lookup
performance for “Random” data set.

consistent with other Figures in this section.

From the graph, we see that doubling the local hint
cache size improves the number of hops by at most
0.5. Doubling the local hint cache size reduces hop
count by one for half of the peers, and the remaining
half does not benefit from the increase. For exam-
ple, consider a network of 100 peers where each peer
maintains 50 other peers in its local hint cache. For
each peer, 50 peers are one hop away and the other
50 peers are two hops away. As a result, the space
walk hop distance is 1.5 hops. If we increase the local
hint cache to 100 peers, then each peer reduces the
hop distance for only the 50 peers that were two hops
away in the original scenario. In this case, the space
walk hop distance is 1.

When there is no churn in the system, the lookup

9

performance when measured in terms of hops either
remains the same or improves when we double the
local hint cache size. The results are more compli-
cated when we measure lookup performance in terms
of latency. Most peers improves their lookup laten-
cies to other peers and, on average, increasing local
hint cache improves the space walk latency. However,
lookup latency to individual peers can increase when
we double the local hint cache size in some cases.
This is because Internet routing does not necessar-
ily follow the triangular inequality: routing through
multiple hops may have lower latency than a direct
route between two peers. Since we derive our net-
work latency model from Internet measurements, our
latency results reflect this characteristic of Internet
routing.

5.3 Staleness in Local Hint Caches

The previous experiment measured the benefit of us-
ing the local hint cache in a stable network, and we
now measure the staleness in terms of stale entries
in the local hint cache and the effect of staleness on
lookup performance.

In this experiment, we use a local hint cache size
of 1024 successors. To calculate stale data in local
hint caches, we ran the simulator with King data set
and Random data set with 65,536 peers for an experi-
mental phase of 30 minutes. During the experimental
phase, the network experiences churn in terms of peer
joins and leaves. We vary peer churn in the network
by varying the half life of peers in the system from
one hour to one day; we select nodes to join or leave
from a uniform distribution.

Figure 3 shows the fraction of stale entries in lo-
cal hint caches for various system half life times as
a cumulative distribution across all peers. We calcu-
lated the fraction of stale entries by sampling each
peer’s local hint cache every second and determining
the number of stale entries. We then averaged the
samples across the entire simulation run. Each point
(x, y) on a curve indicates that y percentage of peers
have at most x% stale data in their local hint caches.
As expected, the amount of stale data increases as
the churn increases. Note that the amount of stale
data is always less than the amount calculated from

0

10

20

30

40

50

60

70

80

90

100

0 6 12 18 24 30 36 42 48 54

Stale Data (Number of Stale Entries)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

OneHour

FourHours

OneDay

(a) King Data set

0

10

20

30

40

50

60

70

80

90

100

0 6 12 18 24 30 36 42 48 54 60 66 72

Stale Data (Number of Stale Entries)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

OneHour

FourHours

OneDay

(b) Random Data set

Figure 3: Stale data distribution under various churn
situations for King and Random data sets.

our analysis in Section 3.2 since the analysis conser-
vatively assumes worst case update synchronization.

Figure 4 shows the effect of stale local hint cache
entries on lookup performance across all peers for
King data set and Random data set with 32768 peers.
It shows results for the same system half life times as
Figure 3 and adds results for an “Infinite” half life
time. An “Infinite” half life means that there is no
churn, no stale entries in the hint cache, and therefore
represents the best-case latency. At the end of the ex-
periment phase in the simulation, we used the state
of each peer’s routing table to calculate the distri-
bution of space walk latencies across all peers. Each
point (x, y) in the figure indicates that y percentage
of peers have at most x space walk latency. We cut off
the y-axis at 75% of peers to highlight the difference

10

0

10

20

30

40

50

60

70

80

200 250 300 350 400

Space Walk Latency (in Milliseconds)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

Infinite

OneDay

FourHours

OneHour

(a) King data set

0

10

20

30

40

50

60

70

80

90

100

520 540 560 580 600 620

Space Walk Latency (in Milliseconds)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

Infinite

OneDay

FourHours

OneHour

(b) Random data set

Figure 4: Space walk latency distributions under var-
ious churn situations.

between the various curves.
The space walk latencies for a four hour half life

time are similar to the latencies from the ideal case
with no churn (medians differ by only 1.35%). From
these results we conclude that the small amount
of stale data (1–2%) does not significantly degrade
lookup performance, and that the local hint cache up-
date mechanism maintains fresh entries well. As the
churn rate increases, stale data increases and lookup
performance also suffers. At an one hour half life,
lookup performance increases moderately.

Note that the “Infinite” half life time curves in Fig-
ure 4(a) and Figure 4(b) performs better than the
1024 successors curve in Figure 1(a) and Figure 2(a)
even though one would expect them to be the same.
The reason they differ is that the finger table entries
in these two cases are different. When we evaluated

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5

Update Size (Num ber of Peers per Second)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e

rs

OneHour

FourHours

OneDay

(a) King data set

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5

Update Size (Number of Peers per Second)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

OneHour

FourHours

OneDay

(b) Random data set

Figure 5: Update traffic distribution under various
churn situations.

the local hint cache, we used a routing table with
13 successors and added the remaining successors to
create the local hint cache without changing the fin-
ger table. When we evaluated the stale data effects
in the local hint cache we have 1024 successors from
which to choose “nearest” fingers. As a result, the
performance is better.

5.4 Update Traffic

In the previous section we evaluated the effect of stale
data on lookup performance under various churn sce-
narios. In this section we evaluate the update traffic
load under various churn scenarios to evaluate the
update traffic bandwidth required by large local hint

11

caches.
We performed a similar experiment as in Sec-

tion 5.3 for King data set and Random data set with
65536 peers. However, instead of measuring stale
data entries we measured the update traffic size. We
calculated the average of all update samples per sec-
ond for each peer over its lifetime in terms of the
number of entries communicated. Figure 5 presents
this average for all peers as cumulative distributions.
Each curve in Figure 5 corresponds to a different
churn scenario. A point (x, y) on each curve rep-
resent the y percentage of peers that have at most x
entries of average update traffic. The average update
traffic closely matches the estimate from our analysis
in Section3.2. The average update traffic (0.4 en-
tries/second) is extremely low even under worst case
conditions. Hence, this traffic does not impose a bur-
den on the system.

5.5 Path Hint Caches

Next we evaluate the performance of the path hint
cache (PHC) described in Section 3.3 compared to
path caching with expiration (PCX) as well as Chord.
PCX is the technique of caching path entries de-
scribed in [25]. When handling lookup requests on
behalf of other nodes, PCX caches route entries to
the initiator of the request as well as the result of the
lookup.

In this experiment, we simulate a network of
“King” data set with a 30-minute experimental
phase. We study the lower-bound effect of the path
hint caches in that we do not perform any application
level lookups. Instead, the path hint caches are only
populated by traffic resulting from network stabiliza-
tion. We did not simulate application level lookup
traffic to separate its effects on cache performance;
with applications performing lookups, the path hint
caches may provide more benefit, although it will
likely be application-dependent. Since there is no
churn, cache entries never expire. To focus on the
effect of path caches only, we used a local hint cache
size of 13, the size of the standard Chord successor
list, and no global hint cache. We collected the rout-
ing tables for all peers at the end of the simulations
and calculated the space walk latencies and hops.

0

10

20

30

40

50

60

300 350 400 450 500

Space Walk Latency (in M illiseconds)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

Standard

PHC

PCX

(a) Latency Distribution

0

10

20

30

40

50

60

70

80

90

100

3 3.5 4 4.5

Space Walk Hops

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

Standard

PHC

PCX

(b) Hop count distributions

Figure 6: Lookup performance of path caching with
expiration (PCX), path hint cache (PHC), and stan-
dard Chord for “King” data set.

Figure 6(a) shows the cumulative distribution of
space walk latencies across all peers at the end of the
simulation for the various path caches and standard
Chord. Each point (x, y) in this figure indicates that
y percent peers have at most x space walk latency.
From these results we see that, as expected, the path
hint cache improves latency only marginally. How-
ever, the path hint cache is essentially free, requiring
no communication overhead and a small amount of
memory to maintain.

We also see that PCX performs worse even than
Chord. The reason for this is that PCX optimizes
for hops and caches routing information independent
of the latency between the caching peer and the peer
being cached. The latest version of Chord and our

12

0

10

20

30

40

50

60

70

80

90

100

600 650 700 750 800 850 900 950

Space Walk Latency (in Milliseconds)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

Standard

PHC

PCX

(a) Latency Distribution

0

10

20

30

40

50

60

70

80

90

100

3.5 4 4.5 5 5.5

Space Walk Hops

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

Standard

PHC

PCX

(b) Hop count distributions

Figure 7: Lookup performance of path caching with
expiration (PCX), path hint cache (PHC), and stan-
dard Chord for “Random” data set.

path hint caches use latency to determine what en-
tries to place and use in the caches and in the routing
tables. For peers with high latency, it is often bet-
ter to use additional hops through low-latency peers
than fewer hops through high-latency peers.

Figure 6(b) shows this effect as well by presenting
the cumulative distribution of space walk hops across
all peers for the various algorithms. Each point (x,
y) in this figure indicates that y percent peers have
at most x space walk hops. Using the metric of hops,
PCX performs better than both Chord and PHC.
Similar to results in previous work incorporating la-
tency into the analysis, these results again demon-
strate that improving hop count does not necessarily
improve latency. Choosing routing table and cache

0

10

20

30

40

50

60

70

80

90

100

200 250 300 350 400 450 500 550 600 650 700 750 800 850

Space Walk Latency (in Milliseconds)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

Standard

LocalCache

GlobalCache-32

OneHop

GlobalCache-256

(a) King data set

0

10

20

30

40

50

60

70

80

90

100

490 520 550 580 610 640 670 700 730 760 790 820

Space Walk Latency (in ms)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

Standard

LocalCache

GlobalCache-128

OneHop

(b) Random data set

Figure 8: Global hint cache performance in different
network models.

entries in terms of latency is important for improv-
ing performance.

We did the same experiment replacing the ”King”
data set with the “Random” data set with 65,536
peers and Figures 7 shows the results of this exper-
iment. These results are qualitatively similar to the
results of above “King” data set.

The path hint cache are small and each peer ag-
gressively evicts the cache entries to minimize the
stale data. Hence the effects of stale data on lookup
request performance is marginal.

5.6 Global Hint Caches

Finally, we evaluate the performance of using the
global hint cache together with the local and path
hint caches. We compare its performance with “Stan-

13

dard” Chord and “OneHop”. In this experiment, we
simulated 8,192 peers with both 32 and 256 entries in
their local hint caches. We have two different config-
urations of local hint caches to compare the extent to
which the global hint cache benefits from having more
candidate peers from which to select nearby peers to
place in the global hint cache. (Note that the global
hint cache uses only the second half of the nodes in
the local hint cache to select nearest nodes; hence,
the global hint cache uses only 16 and 128 entries to
choose nearest peers in the above two cases.) Each
peer constructs its global cache when it joined the
network as described in Section 3.4. We collected
the peer’s routing tables once the network reached
a stable state during the experimentation phase, and
calculated the space walk latencies for each peer from
the tables.

Figure 8(a) shows the cumulative distributions of
space walk latencies across all peers for the vari-
ous algorithms. The “Standard”, “OneHop”, “Local-
Cache”, “GlobalCache-32”, and “GlobalCache-256”
curves represent Chord, the “OneHop” approach, a
1024-entry local hint cache, a 32-entry global hint
cache with a 256-entry local hint cache, and a 256-
entry global hint cache with a 32-entry local hint
cache. Comparing the size of local hint caches used to
populate the global hint cache, we find that the me-
dian space walk latency of “GlobalCache-256”is 287
ms and “GlobalCache-32” is 305 ms; the performance
of the global hint cache improved only 6% when it
has more peers in the local hint cache to choose the
nearest peer.

We also did same experiment with Random data
set for 262,144 peers. We set the local hint cache
size to 128 instead of 1024 to grow the global hint
caches to few thousand peers which is the expected
global hint cache size when the network has few mil-
lion peers. This is the maximum network size we
could able to simulate on our cluster machines. At
this point, the main memory becomes the bottle-neck
for our simulation. The results are presented in Fig-
ure 8(b) and the global hint cache performed close
to the “OneHop” approach (the median space walk
latency of global hint cache is 2% more than the me-
dian space walk latency of “OneHop” approach).

Comparing algorithms, we find that the median la-

tency of the global hint cache comes within 6% of the
“OneHop” approach when the global hint cache uses
128 of 256 entries in the local hint cache to choose
nearby peers. Although these results are from a sta-
ble system without churn, the amount of stale data
in the global hint cache under churn is similar to the
local hint cache under churn because both of them
use a similar update mechanism. Hence, the global
hint cache performance under churn is same or a little
better than the local hint cache performance under
churn because global hint cache is filled with the near-
est peers as opposed to the random peers in local hint
cache. As a result, the effect of stale data in the global
hint cache is negligible for a one-day system half life
time and four-hour system half life time. Overall, our
soft-state approach approaches the lookup latency of
algorithms like “OneHop” that use significantly more
communication overhead to maintain complete rout-
ing tables.

5.6.1 Global Hint Cache Build Time

Since we contact closer peers while constructing the
global hint cache, one can build this cache within a
few minutes. To demonstrate this, we calculated the
time to build the global hint cache for King data set
with 8,192 peers and Random data set with 262,144
peers. Figure 9 presents the results of this experiment
as a distribution of cache build times. Each point
(x, y) on a curve indicates that y percentage of peers
needs at most x seconds to build the cache. Each peer
has around 500 peers in its the global hint caches and
16 peers in its local hint cache for King data set and
in the Random data set each peer has around 1500
peers in the global hint cache and 128 peers in the
local hint cache.

In the King data set, on the average it took 45
seconds to build the global hint cache. A peer can
speed up this process by initiating walks from mul-
tiple peers from its routing table in parallel. The
curves labeled “Two”, “Four”, and “Eight” represent
the cache build times with two, four, and eight paral-
lel walks, respectively. As expected, cache build time
reduces as we increase the number of parallel walks.
The median reduces from 32 seconds for single walk
to 12 seconds for four parallel walks. We see only

14

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time to Build Global Hint Cache (in seconds)

P
e

rc
e

n
ta

g
e

 o
f

P
e

e
rs

One

Two

Four

Eight

(a) King data set

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40

Time to Build Global Hint Cache (in seconds)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

One

Two

Four

Eight

(b) Random data set

Figure 9: Global hint cache build time

a small benefit of increasing the parallel walks after
four parallel walks.

The global hint cache build times for Random data
set has similar trends as the global hint cache build
times for King data set. Even though global hint
cache sizes are bigger in the Random data set the
build time is less comparing with the King data set.
The Random data set has more peers in the local hint
cache which improve the chances of finding a nearest
peer for a given peer which in turn improves the build
time.

5.6.2 Network Coordinates

So far we have assumed that, when populating the
global hint caches, peers are aware of the latencies
among all other peers in the system. As a result, the
results represent upper bounds. In practice, peers

0

10

20

30

40

50

60

70

80

90

100

200 250 300 350 400 450 500 550 600 650 700

Space Walk Latency (in Milliseconds)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

GlobalCache-32

Vivaldy-32

GlobalCache-256

Vivaldy-256

Figure 10: Effects of Network Coordinates

will likely only track the latencies of other peers they
communicate with, and not have detailed knowledge
of latencies among arbitrary peers. One way to solve
this problem is to use a distributed network coordi-
nate system such as Vivaldi [4]. Of course, network
coordinate systems introduce some error in the la-
tency prediction. To study the effect of coordinate
systems for populating global hint caches, we next
use Vivaldi to estimate peer latencies.

In our simulation we selected the nearest node ac-
cording to network latency estimated according to
the Vivaldi network coordinate system, but calcu-
lated the space walk time using actual network la-
tency. We did this for the “GlobalCache-32” and
“GlobalCache-256” curves in Figure 8. Figure 10
shows these curves and the results using Vivaldi coor-
dinates as “Vivaldi-32” and “Vivaldi-256”. The per-
formance using the coordinate system decreases 6%
on average in both cases, showing that the coordinate
system performs well in practice.

5.7 Shun Pikes

In section 4 we described ways to exploit the detours
to improve the lookup performance even further than
the “OneHop” approach. In this section we evaluated
the shun pikes for the King data set. The latency
distributions between all pairs are presented in Fig-
ure 11(a) and Figure 11(b) shows the performance
results of our new lookup algorithm.

First we calculated the shortest path between all

15

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

Latency (in Milliseconds)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

OneHop

Apprx

Optimal

(a) Latency distributions

0

10

20

30

40

50

60

70

80

90

100

150 200 250 300 350 400 450 500 550 600 650

Space Walk Latency (in Milliseconds)

P
e
rc

e
n

ta
g

e
 o

f
P

e
e
rs

OneHop

Apprx

Optimal

GHC

(b) Space walk latency distributions

Figure 11: Effects of shun pikes

pair of peers in the data set assuming that each peer
has full knowledge of other peers. We just simply ran
the shortest path algorithm on network latency ma-
trix. The result of this is presented in Figure 11(a) as
the “Optimal” labeled curve. We then calculated the
shortest paths from each peer to all other peers as-
suming each peer has 64 peers in its local hint cache
and approximately 64 peers in the global hint cache.
The resultant latency distributed is represented as
“Apprx” curve in Figure 11(a). The curve “OneHop”
shows the the network latency distribution. Overall
for 40% of pairs shorest path latency improved over
the one hop latency. The “Apprx” and “Optimal”
performed similarly for smaller latencies and differ
a bit at higher latencies. Though theoratically the
“Apprx” should be constant factor away from the op-
timal case in general Internet like graphs. However,

in this case we got similar performace as the optimal
case when each node has partial infomrationabout
the enitre graph.

The Figure 11(b) shows the space walk latency
for one hop, shortest path latencies, our new lookup
algorithm and our global and local hint caches .
The “OneHop” and “Optimal” curves represent the
one hop and shortest path latency approaches. The
“GHC” curve represents the space walk latency of
our global hint cache along with the local hint cache
that is same as the “GlobalCache-256” curve in Fig-
ure 8(a). The “Apprx” curve represents the space
walk latency of our approach where each peer has
only partial information about the entire network
and each peer tries to optimize the lookup as de-
scribed in section 4. The median space latency for
our caches, one hop, our new lookup algorithm and
shortest paths is 287, 271, 262 and 228 milliseconds.
Our new lookup algorithm improved approximately
10% over our global and local hint caches and it
improved around 3% over one hop approach. As
expected our lookup algorithm performed approxi-
mately 15% slower than the optimal because we need
one extra hop to complete the lookup. Overall our
new lookup algorithm performed a little better than
the one hop approach.

6 Conclusions

In this paper, we describe and evaluate the use of
three kinds of hint caches containing route hints to
improve the routing performance of distributed hash
tables (DHTs): local hint caches store direct routes
to neighbors in the ID space; path hint caches store
direct routes to peers accumulated during the natural
processing of lookup requests; and global hint caches
store direct routes to a set of peers roughly uniformly
distributed across the ID space.

We simulate the effectiveness of these hint caches
as extensions to the Chord DHT. Based upon our
simulation results, we find that the combination of
hint caches significantly improves Chord routing per-
formance with little overhead. For example, in net-
works of 4,096 peers, the hint caches enable Chord to
route requests with average latencies only 6% more

16

than algorithms like “OneHop” that use complete
routing tables, while requiring an order of magnitude
less bandwidth to maintain the caches and without
the complexity of a distributed update mechanism to
maintain consistency.

7 Acknowledgments

We would like thank the anonymous reviewers of our
WCW submission for their valuable feedback for im-
proving this paper. We would also like to express our
gratitude to Marvin McNett for system support for
performing our simulation experiments, and to Frank
Dabek for providing us with the network latency in-
formation used in all simulations. Support for this
work was provided in part by AFOSR MURI Con-
tract F49620-02-1-0233 and DARPA FTN Contract
N66001-01-1-8933.

References

[1] R. Bhagwan, S. Savage, and G. M. Voelker. Un-
derstanding availability. In 2nd International
Workshop on Peer-to-Peer Systems, Feb. 2003.

[2] W. J. Bolosky, J. R. Douceur, D. Ely, and
M. Theimer. Feasibility of a serverless dis-
tributed file system deployed on an existing set
of desktop pcs. In Proceedings of SIGMETRICS,
June 2000.

[3] M. Castro, P. Druschel, A.-M. Kermarrec,
A. Nandi, A. Rowstron, and A. Singh. Split-
stream: High-bandwidth multicast in coopera-
tive environments. In 19th ACM Symposium on
Operating Systems Principles, Oct. 2003.

[4] R. Cox, F. Dabek, F. Kaashoek, J. Li, and
R. Morris. Practical, distributed network coor-
dinates. In proceedings of Second Workshop on
Hot Topics in Networks, Nov. 2003.

[5] F. Dabek, J. Li, E. Sit, J. Robertson, M. F.
Kaashoek, and R. Morris. Designing a dht
for low latency and high throughput. In

ACM/USENIX Symposium on Networked Sys-
tems Design and Implementation, Mar. 2004.

[6] F. D. Emil Sit and J. Robertson. Usenetdht: A
low overhead usenet server. In 3rd International
Workshop on Peer-to-Peer Systems, Feb. 2004.

[7] A. Gupta, B. Liskov, and R. Rodrigues. Ef-
ficient routing for peer-to-peer overlays. In
ACM/USENIX Symposium on Networked Sys-
tems Design and Implementation, Mar. 2004.

[8] I. Gupta, K. Birman, P. Linga, A. Demers, and
R. van Renesse. Kelips: Building an efficient
and stable p2p dht through increased memory
and background overhead. In 2nd International
Workshop on Peer-to-Peer Systems, Feb. 2003.

[9] S. Iyer, A. Rowstron, and P. Druschel. Squir-
rel: A decentralized and peer-to-peer web cache.
In 21st ACM Symposium on Principles of Dis-
tributed Computing, July 2002.

[10] F. Kaashoek and D. R. Karger. Koorde: A sim-
ple degree-optimal hash table. In 2nd Interna-
tional Workshop on Peer-to-Peer Systems, Feb.
2003.

[11] M. F. Kaashoek and R. Morris.
http://www.pdos.lcs.mit.edu/chord/.

[12] D. Kostic, A. Rodriguez, J. Albrecht, and
A. Vahdat. Bullet: High bandwidth data dis-
semination using an overlay mesh. In 19th
ACM Symposium on Operating Systems Princi-
ples, Oct. 2003.

[13] S. S. Krishna P. Gummadi and S. D. Gribble.
King: Estimating latency between arbitrary in-
ternet end hosts. In 2nd Internet Measurement
Workshop, Nov. 2002.

[14] J. Li, B. T. Loo, J. M. Hellerstein, M. F.
Kaashoek, D. R. Karger, and R. Morris. On
the feasibility of peer-to-peer web indexing and
search. In 2nd International Workshop on Peer-
to-Peer Systems, Feb. 2003.

17

[15] D. Liben-Nowell, H. Balakrishnan, and
D. Karger. Observations on the dynamic
evolution of peer-to-peer networks. In First In-
ternational Workshop on Peer-to-Peer Systems,
Mar. 2002.

[16] B. T. Loo, S. Krishnamurthy, and O. Cooper.
Distributed web crawling over dhts. Technical
Report UCB/CSD-4-1305, UC Berkeley, 2004.

[17] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy:
A scalable and dynamic emulation of the but-
terfly. In 21st ACM Symposium on Principles of
Distributed Computing, July 2002.

[18] G. S. Manku, M. Bawa, and P. Raghavan. Sym-
phony: Distributed hashing in a small world. In
4th USENIX Symposium on Internet Technolo-
gies and Systems, Mar. 2003.

[19] P. Maymounkov and D. Mazires. Kademlia: A
peer-to-peer information system based on the
xor metric. In 1st International Workshop on
Peer-to-Peer Systems, Mar. 2002.

[20] J. McCaleb. http://www.overnet.com/.

[21] M. McNett. https://ramp.ucsd.edu/group.

[22] A. Mizrak, Y. Cheng, V. Kumar, and S. Savage.
Structured superpeers: Leveraging heterogene-
ity to provide constant-time lookup. In IEEE
Workshop on Internet Applications, June 2003.

[23] V. Ramasubramanian and E. G. Sirer. Bee-
hive: O(1) lookup performance for power-law
query distributions in peer-to-peer overlays. In
ACM/USENIX Symposium on Networked Sys-
tems Design and Implementation, Mar. 2004.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A scalable content-addressable
network. In proceedings of ACM SIGCOMM,
Aug. 2001.

[25] M. Roussopoulos and M. Baker. Cup: Con-
trolled update propagation in peer-to-peer net-
works. In USENIX Annual Technical Confer-
ence, June 2003.

[26] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), Nov. 2001.

[27] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell,
A. Vahdat, G. Voelker, and J. Zahorjan. De-
tour: A case for informed internet routing and
transport. IEEE Micro, 19, 1999.

[28] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications.
In proceedings of ACM SIGCOMM, Aug. 2001.

[29] M. Thorup and U. Zwick. Compact routing
schemes. In Proceedings of the thirteenth annual
ACM symposium on Parallel algorithms and ar-
chitectures, 2001.

[30] C. UCSD. http://activeweb.ucsd.edu/.

[31] B. Y. Zhao, J. Kubiatowicz, and A. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Re-
port UCB/CSD-01-1141, UC Berkeley, Apr.
2001.

18

