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Abstract

This dissertation considers solution methods for damped linear structural systems
which are subjected to transient loading. To accommodate a range of possible applica-
tions, the damping is assumed to be non-proportional to mass and stiffness and may also
be large and/or lumped. Some important characteristic properties of the damped system
are presented. The second-order equations of motion are reduced to a first-order set by
doubling the size of the problem to facilitate the subsequent analysis and computation. ‘

The Rayleigh-Ritz method is generalized for the matrix pencil associated with a
damped system. A projection method is discussed as an alternative. Both provide a basis
for computing partial eigensolutions of a large damped dynamic system.

The subspace iteration method is modified to extract eigensolutions of a damped
dynamic system. The iteration vectors are arranged in such a way that only real arithmetic
is required to describe the complex solution vectors. The algorithm is implemented to
solve some typical numerical examples. ‘

The Lanczos method also is extended to find eigensolutions of a damped dynamic
system. The loss of orthogonality between Lanczos vectors is investigated and two schemes
are presented to restore the required orthogonality. The algorithm presented can take full
advantage of the symmetry and sparsity of the associated matrices and also involves only
real arithmetic during the solution process. The algorithm is implemented and tested with
the numerical examples introduced in the subspace solution.

Within the framework of mode superposition, a number of choices are discussed for
finding the response of a dynamic system subjected to initial conditions and external load-
ings. In particular, the eigenvectors are used to transform the equations of motion into a
set of uncoupled equations. A closed form solution and a numerical solution to the uncou-
pled equations are presented. An example is shown to illustrate the mode displacement
method for the analysis of a transient dynamic problem.
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Chapter 1
Introduction

1.1 Necessity of the study
In analyzing the dynamic response of linear structures, the equation of motion

of a damped system can be expressed as
Mq() + Cq(t) + K q(t) = £(t) (1.1.1)

where M, C, K are the n by n mass, damping, stiffness matrices r&spectiveiy and
ii(t), (i(z), q(r) are the n by 1 acceleration, velocity, displacement vectors respec-
tively.

A common practice for solving this problem starts with finding the normal
modes of vibration of the corresponding undamped system, that is, solving the fol-

lowing eigenproblem
Ky=wMy (1.1.2)

where w and { are the modal frequency and shape of the corresponding undamped
system. From these modal quantities, a set of uncoupled equations of motion in
terms of the normal coordinates of the system can be obtained. Each of these equa-
tions corresponds to one mode of vibration and can be solved individually. The
effect of damping is taken into account by adding a term which represents the suit-
able modal damping ratio to these uncoupled equations. The response of the system
is then obtained by superposing various modal contributions. This leads to the so-
called mode superposition method.

The solution obtained in this way is exact only when the damping matrix C is
proportional; that is, C is of such a form that it can be diagonalized by the same
transformation that uncouples the undamped systems as shown in [C1]. When C is

not proportional, the above method is still used frequently and the solution is taken



as an approximation. - This approximation may be close to the exact solution when
damping is very small. For large damping and/or lumped damping, this type of
approximation may not be appropriate.

Although the analysis for damped systems has been in the literature (e.g.,
[H2]) for years, its use is still limited for the following two major reasons : (1) Inclu-
sion of the damping matrix in the mathematical model increases the cost dispropor-
tionately in solving the resulting eigenproblem; (2) Complex quantities are required
during the solution process and the physical interpretation of these complex quanti-
ties is difficult to identify. In many circumstances, the effect of damping is impor-
tant and thus must be included directly in the analysis in order to obtain a reliable
solution. For example, in some structure-foundation systems, the damping matrix
cannot be modeled well by the proportional terms only. In the control of some flexi-
ble systems such as robot arms and space structures, damping is introduced through
passive systems and actuators which may be isolated at a few locations in the form of
lumped dampers. To accommodate all these possibilities, one has to include the
damping matrix into the model and analyze the system as a damped one. There-
fore, this work is directed to studying Eq.(1.1.1) considering a nonproportional

damping matrix C and to developing methods for efficient analysis of such systems.

1.2 Scope of the study

The present study is focused on viscously damped nongyroscopic systems, where
the associated damping matrix is symmetric. To include situations where the source
of damping comes only from lumped dampers, we allow the damping matrix to be
low-ranked. Therefore, the damping matrix is positive semi-definite. In the
dynamic analysis of undamped structures, the inertia of the nonessential degrees of
freedom are often neglected to reduce the computational effort. As a consequence

of this practice, the mass matrix M does not have full rank and the number of finite
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eigenvalues of the system is reduced to the rank of M. Because of the presence of
the damping matrix C, the number of finite eigenvalues of a damped system is not
apparent if the rank of M is less than the order n of the system. For the conveni-
ence of discussion, we assume that the symmetric mass matrix is full-ranked and
thus positive-definite even though the algorithm developed can still be used to solve
systems where M is not full-ranked. The stiffness matrix is symmetric and positive
definite (or positive semi-definite if there exist rigid body modes).

In Chapter 2 some basic properties of the eigensolutions of a-damped dynamic
system are given. Emphasis is on the difference between a damped system and the
corresponding undamped system. The second-order differential equation of motion
given by Eq.(1.1.1) is reduced to a first-order one by doubling the size of the prob-
lem. This is a state equation approach in the context of control theory. The eigen-
solutions associated with the resulting linear system, represented by the pencil .
(A, B), have the desirable orthogonality property, which can be used for decoupling
the equation of motion.

In Chapter 3 we discuss some theoretical bases for computing a small set of
eigensolutions of a large dynamic system. To take advantage of the sparsity of the
associated matrices, we focus on methods in which the system matrices are used only
in forming matrix-vector multiplications and divisions. In this way, the symmetry
and sparsity of the associated matrices are exploited to reduce the storage space and
computational effort and thus to increase the size of the problem that can be handled
by the program. The stationary property of the Rayleigh quotient, which is widely
used in the analysis of w? M = K , is generalized for an indefinite matrix pencil
(A, B). The projection method, which treats the problem from a geometric point of
view, is also discussed as an alternative. Both provide a theoretical basis for the par-

tial solution of a large eigenproblem.
\\f‘ﬂ
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In Chapter 4 the subspace iteration method is extended o extract the least dom-
inant set of eigenpairs of a damped system. The iteration vectors are arranged in
such a way that only real arithmetic is employed in dealing with complex vectors.
Therefore, both the storage space and computational effort are reduced substantially
for the extraction of the damped modes. In spite of this, the subspace iteration
method for solving the damped system is still expensive compared to its use for solv-
ing the corresponding undamped problem. This is shown by examples.

In Chapter 5 we deduce a variant of the Lanczos algorithm that can be used to
find the eigensolutions of the indefinite matrix pencil (A, B). The infamous
phenomenon of loss of orthogonality between Lanczos vectors is discussed and a
method to restore the orthogonality or semi-orthogonality by a full re-
orthogonalization or a partial re-orthogonalization scheme respectively. The matrix
pencil (A, B) is projected onto the subspace spanned by the Lanczos vectors to
obtain a reduced tri-diagonal system. The solutions of this reduced system are the
Rayleigh-Ritz approximation to the eigensolutions of (A, B). The quality of this
approximation can be measured by a residual norm, which is readily obtained from
the algorithm and requires no extra computational effort. The effectiveness and effi-
ciency of the algorithm is shown by solving some numerical examples.

In Chapter 6 the eigenvectors are used to transform the original set of equations
of motion into a set of uncoupled equations. A closed form solution to the uncou-
pled equation and its physical interpretation are given. A numerical method for
solving the so-called discrete time system is also derived for practical use. A numeri-
cal example is shown to illustrate the mode superposition method for the analysis of
a transient problem.

Summary and suggested future research are given in Chapter 7.



Chapter 2
Some Properties of Eigensolutions

2.1 Eigensolutions

The homogeneous form of equation (1.1.1) is simply
| Mq(t) + Cq(t) + Kq) =0 (2.1.1)
It possesses a solution of the type
qt)=eMw 212
where \ is the eigenvalue and w is the eigenvector of the system which are to be

determined. Substituting this solution into Eq.(2.1.1), we obtain the characteristic

equation
(MM+AC+K)w=0 (2.1.3)

This is a quadratic eigenproblem and is computationally more complicated than the
linear eigenproblem, which arises from an undamped system. A nontrivial solution
exists if, and only if, the determinant of the coefficient matrix of Eq.(2.1.3) is zero;

that is,
det (MMM +AXC+K)=0 (2.1.4)

If M is nonsingular, then the left side of Eq.(2.1.4) is a real polynomial of degree
2n in \ and hence the equation possesses 2n roots, although they are not necessarily
all distinct. If some of these roots are complex, they occur in conjugate pairs.
Therefore, the number of real roots is even. We can arrange these roots in either
real pairs or complex conjugate pairs. For a real pair of eigenvalues, the associated
eigenvectors are also a real pair. For a complex conjugate pair of eigenvalues, the
associated eigenvectors are also a complex conjugate pair. For the purpose of discus-

sion, we assume that there are nc complex conjugate pairs of eigensolutions and nr



real pairs of eigensolutions. We can arrange these eigenvalues as follows

Qg ;@ s e e s e s BrsBrse- s Brr s Bar (2.1.5)
where
a; = ag; + oy it & = agj - ay; i (2.1.6a)
and
B; = B, (2.1.6b)
The corresponding eigenvectors are
¢1’&’_1"""¢uc9d.;nc9¢1"i’17""’¢nr’$nr (2.1.7)
where
¢; =g+ by i b; =g by i (2.1.8)

Here ag;, ay;, B; and éj are real-valued scalars, g;, dy;, ¥; and-tf;j are real-

valued vectors, and i" is the imaginary unit ¥ —1. Note that the eigenpairs men-
tioned above have been arranged in the following order for the convenience of sub-

sequent discussion
log] = |&;] < lag] = @l < .o, < log | = |, (2.1.93)

1Bl < Bl <, os < |Bpl (2.1.9b)

We can define a damped system to be stable, neutrally stable or unstable. If
the real parts of the eigenvalues are all negative, the system is stable; if the real parts
of the eigenvalues include at least one zero and the rest negative, the system is neu-
trally stable; and if the real parts of the eigenvalues include at least one positive, the
system is unstable. Note that for real eigenvalues the real part refers to the eigen-
values themselves.

With regard to the stability of a damped system, the following theorem gives us

an a priori condition for the system to be at least neutrally stable. a



Theorem 2.1 : If M is positive definite, C and K are positive semi-definite,
then the associated damped system is stable or neutrally stable.

proof : Let A and w be an eigenpair; i.e,
(MM+AC+K)w=0 (2.1.10)
Premultiplying the above by W' we have "
m\2+ch+k=0 (2.1.11)

where m = WTMW, a real scalar, and c, k defined similarly. Under the
prescribed conditions, we havem > 0 and ¢, k = 0.

lae A — —— ..—: () 2-1-12

If w is real, it follows by inspection of Eq.(2.1.11) that A\ must be negative. This is
because the left-hand side of Eq.(2.1.11) can only vanish if A = 0. If zero \’s exist
then k = O for some w, implying that K is singular under the prescribed conditions;
conversely, if K is singular then there exists at least one zero A. O

Since the dynamic systems we consider in this study satisfy the conditions
prescribed in the above theorem, all the eigenvalues we find in this study lie in the
left-half of the complex plane or the imaginary axis. That is, all ag;, B;, and B j

are either negative or zero.

2.2 Modal quantities

In the analysis of an undamped dynamic system, the eigenvectors, i.e., the
solutions of Eq.(1.1.2), are used to decouple the equation of motion. Each of the
resulting decoupled equations corresponds to a vibration mode and can be treated
individually. These decoupled equations, called modal equations, can be looked
upon as a set of independent single degree-of-freedom, SDOF, systems. The
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knowledge of a typical SDOF system can be applied directly to any of the modal
equations and the behavior of the system can be easily understood by studying the
set of SDOF systems. Unfortunately, the eigenvectors of a damped system, i.e., the
solutions listed in Eq.(2.1.5), do not decouple the equation of motion Eq.(1.1.1)
since they do not simultaneously diagonalize M, C and K, as will be shown later.
Although the eigenvectors of a damped system do not diagonalize the associated
matrices of the damped system, they are related to the modal quantities, such as
modal mass, damping and stiffness. We want to show in the following how the
eigenvectors of a damped system are related to the modal quantities. This relation
gives insight into the behavior of the damped dynamic system. We begin by show-
ing the characteristics of vibration contained in a typical SDOF damped system.

For a SDOF damped dynamic system, the characteristic equation can be

represented by a quadratic equation as
m\2+ch+k=0 - (2.2.1)

where m, ¢ and k is the associated (modal) mass, damping and stiffness. For this

1
system, the critical damping is 2(km ) 2 and the damping ratio is

g= —S— (2.2.2)

2(km)

(Sl

Depending on the magnitude of the damping ratio, the solution of Eq.(2.2.1) falls
into one of the following three cases :
(1) Underdamped case (0 < £ < 1)

We have roots twinned in complex conjugate pairs
= ~two*ai (2.2.3)
where  is the undamped frequency and & is the damped frequency, given by

1
w=( 2

1
)2 S e=el-8)

3 |>

(22.4)



(2) Critically damped case (£ = 1)

We have negative double roots
A= —w (2.2.5)

(3) Overdamped case (£ > 1)

We have two different negative real roots

1
2

A= —fto * o -1) (2.2.6)

The underdamped solution of Eq.(2.2.3) corresponds to a and a while the over-
damped solution of Eq.(2.2.6) corresponds to B and B according to the notation
introduced in the last section. Note that B, the primary root, is the one with the
plus sign in Eq.(2.2.6) while §, the secondary root, is the one with the minus sign
in accordance with our convention. Since the critically damped case can be viewed
as a special example of the overdamped case and solutions of both cases are real-
valued, we combine them together and call them overdampéd case in future discus-
sions for the sake of simplicity.

For a general n DOF damped dynamic system, there are n pairs of eigensolu-
tions as described in the last section. In these n pairs of eigensolutions, each com-
plex conjugate pair corresponds to an underdamped mode of vibration and each real
pair corresponds to an overdamped mode of vibration. For any pair of eigenvectors
(A, w) and (X, w), either complex or real, we define wIM w, wICwand WL K w
as the modal mass, modal damping and modal stiffness of this mode since they
represent the three real-valued coefficients of a quadratic equation like Eq.(2.2.1)
and the solutions of the quadratic equation are the eigenvalues A and A. To justify
this claim, we demonstrate in the following both the complex case and the real case.

For a complex pair of solutions represented by (., ¢ ) and (q, ¢ ), we can
pre-multiply their characteristic equations a’Mé +aCd +Kob =0 and
@M +aChd +K =0byd and T, respectively, to obtain
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‘26 TMb +ad'Cd +é Kb =0 (2.2.7a)
and
26TMé +adTCd +6TKd =0 (2.2.7b)
Here we observe that &-’TMd) = ¢TM$-, &-)-Tch = d)TC(-b. and
Kb =6¢TK & are merely three real-valued scalars. The « and & are simply
the solutions to a quadratic equation of the form given by Eq.(2.2.1) with the three
scalars as coefficients. Therefore, the definition of F Mo, d_;r C ¢ and J)—T K¢
as the modal mass, damping and stiffness of this underdamped mode is justified.
Other modal quantities associated with this mode, such as critical damping, damping
ratio, undamped frequency and damped frequency, can be easily constructed from
the modal mass, damping, and stiffness. For the purpose of discussion, we call
Eq.(2.2.7) damped modal equation associated with (a, ¢ ) and (&, $ ), although it
should be emphasized that these damped modal equations do mot form a set of
independent SDOF systems as in the analysis of an undamped systerh because the
eigenvectors of the damped system do not uncouple the equation of motion.

Remark 2.2.1 If we set the damping matrix C of a damped system equal to
zero and call the resulting system the corresponding undamped system, then the
modal mass and stiffness of the damped system will be different from those of the
corresponding undamped system in general. Consequently, the undamped frequen-
cies of the damped system are different from the frequencies of the corresponding
undamped system. Hence, one must be careful to avoid this ambiguity. O

For a real pair eigensolutions (B, ¥) and (8, ), we can perform a similar

manipulation to obtain
BZUTM Y + BT CU + §TK Yy =0 (2.2.82)
and

B2¢TM§ + BYTCH+ VTR =0 - - (228D
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It follows from a similar argument that J;TM ¢y = \pTM J;, \fvTC ¢ = \IJT C \f:,
and \fuT K ¢ = YT K § are the modal mass, damping, and stiffness respectively for
this overdamped mode and Eq.(2.2.8) is the damped modal equation of the system
associated with (B, ¥) and (B, ¥).

Remark 2.2.2 If one applies the decoupling procedure used in the analysis of
an undamped dynamic system, the following equation will be obtained

MyTMy +AyTCy +TKy =0 (2.2.9)

Note that one root of the equation is 8 while the other is not an eigenvalue of the
system. A similar conclusion is reached if { is replaced by ¥ in the equation.
Therefore, neither $ ™My nor \i;TM\i; can be called modal mass; neither ¢y TCy nor
J:TC\L can be called modal damping; neither q;TKq; nor @TKJ; can be called modal
stiffness; and Eq.(2.2.9) is not a damped modal equation. D

Proportionally damped system. When the damping of the system is propor-
tional, every pair of eigenvectors, both complex conjugate pairs and real pairs,
degenerates into a real multiple vector. That is, all ¢ y; are zero so that all 5_ j are
equal to ¢ ;; and all U ; coincide with ;. Therefore, there are only n independent
real eigenvectors, i.e., Wy, W,, . . . , W,. These eigenvectors are the same as those
obtained by solving A2 M w = K w. That is, the eigenvectors of a proportionally
damped system coincide with the eigenvectors of the corresponding undamped sys-
tem. Since both M and K are symmetric, these eigenvectors are orthogonal with
respect to M and K and also with respect to C because of proportionality. In other

words, we have for i and j from 1 ton

wiMw; =8; m; (2.2.10a)
wiCw; =8¢ (2.2.10b)
wlKw =3;k (2.2.10c)

where m;, c; and k; are the modal mass, damping and stiffness of the i mode in
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consideration. If we substitute W; for w into ( A2 M +AC+K)w=0;ie., we
consider the system vibrating in the j# mode, then we can pre-multiply the systems

of equation by w;-r to obtain the j# modal equation
mA2+ ¢\ + k;j =0 (2.2.11)

which is of the form given by Eq.(2.2.1). Notice that the undamped frequencies of
this proportionally damped system are the same as the frequencies of the correspond-
ing undamped system. This is because the modal mass and stiffness of the propor-
tionally damped system are the same as those of the corresponding undamped sys-
tem. Due to this property, we can solve a proportionally damped system by the sim-
plified method, where we analyze the corresponding undamped system first to obtain
the modal mass and stiffness and then add an arbitrary amount of modal damping
or the equivalent damping ratio into the solution‘proc&ss.

Example 2.1 : A test problem is demonstrated here to show the solution of a
damped system. The system is a 3 DOF mass-damper-spn'ng system as shown in

Figure 2.1. The mass, damping, and stiffness matrices are represented by

1 0 0
M= 1

0 0 1

8 =5 0 |
C=1|-510 -5 |-10

0 -5 8

2 -1 0 ]
K={-1 2 -1 | 10

0 -1 2

The eigenvalues and eigenvectors are

aRy oy —0.951790464 +01 —0.22557552d +02
ags ap | = | —0.400000004 +02 —0.20000000d +02
B, 6, ~0.24438497d +02 —0.136525694 +03
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[dpidndpdp¥ ¥;]1=

0.7726e+00 -0.7974e~01 -0.1000e+01 0.1672e~13 0.3456e+00 -0.5996e+00
0.1000e+01 0.0000¢+00 0.6887e-13 0.4185e~13 0.1000e+01 0.1000e+01
0.7726e+00 -0.7974e-01 0.1000e+01 0.6939¢-17 -0.3456e+00 -0.5996e+00

We can plot the components of an eigenvector on a complex plane with the x-
axis as the real axis and the y-axis as the imaginary axis. This plot, known as a pha-
sor diagram, shows immediately how much phase difference there is among the
components in the damped mode. For example, the components of an eigenvector
of a proportionally damped system are either in-phase or 180 degree out-of-phase;
therefore, the phasor is only a straight line. Figure 2.2 shows the phasors of the two
underdamped modes of the 3 DOF damped system. Note that the second pair of
eigenvectors are real; therefore, the phasor of the second mode is a straight line.
This indicates that the second mode is actually a proportionally damped mode,
which is due to the special symmetry of the system. In general, the phasbrs of a
damped system will not be straight lines.

To check whether the eigenvectors diagonalize M, C or K, we form the follow-

ing weighted inner products

[dp1dn bR dp ¥ ¥ TM[dri by drdpbidi]=

0.2194e+01 -0.1232e+00 0.1073e-12 0.5477e-13 0.4660e+00 0.7354e—-01
0.1232e+00 0.1272e-01 0.3959¢~14 -0.1334e—-14 0.5512e-01 0.9562e—-01
0.1073e-12 0.3959¢-14 0.2000e+01 -0.1672e-13 0.9902¢-13 0.4621e-12
0.5477e-13 -0.1334e-14 -0.1672¢-13 0.2031e-26 0.3607e-13 0.3182e-13
0.4660e+00 0.5512e-01 0.9902e-13 0.3607e-13 0.1239e+01 0.1414e+01
0.7354e-01 0.9562e~01 0.4621e-12 0.3182e-13 0.1414e+01 0.1719+01
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[bridndrdp ¥ ¥ 1TClépdpdpdpdbd]=

0.4099e+02 -0.1883e+01 0.1781e-11 0.1149¢-11 0.1458¢+02 0.8583e+01
40.1883e+01 0.1017e+01 0.8660e—-12 0.2270e~-12 0.1238¢+02 0.1562e+02
0.1783e-11 0.8659e-12 0.1600e+03 -0.1337e~11 0.8823e-11 0.3962e-10
0.1149e-11 0.2270e-12 -0.1337e-11 0.1275e-24 0.4332e-11 0.5055e-11
0.1458¢+02 0.1238e+02 0.8823e-11 0.4332e-11 0.1882e+03 0.2277e+03
0.8583e+01 0.1562e+02 0.3962¢e--10 0.5055e-11 0.2277e+03 0.2774e+03

[¢R1¢n¢m¢12\l’1‘i'1]TK[¢R1¢11¢R2¢12¢1‘i’1] =

0.1297e+04 -0.8695e+02 0.5105e—10 0.2815e~10 0.7801e+02 -0.198%¢+03
0.8695e+02 0.2543e+02 0.1890e-10 0.4006e—-11 0.2697¢e+03 0.3507e+03
0.5102e-10 0.1890e-10 0.4000e+04 -0.3343e—-10 0.1885¢-09 0.9497e-09
0.2815e-10 0.4006e-11 -0.3343e-10 0.2661e-23 0.8433e-10 0.9708e-10
0.7801e+02 0.2697e+03 0.1885¢--09 0.8433e—-10 0.3860e+04 0.4719e+04
-0.1989e+03 0.3507e+03 0.9497e-09 0.9708e-10 0.4719¢+04 0.5836e+04

It is readily seen that none of M, C and K is diagonalized by the eigenvectors.
From the above weighted inner products, we also can calculate the weighted inner

product between eigenvectors. For example,
Wi Koy
= UK [bg + épi]
= W Kégp) + (W Kby i’
= 78.01 + 269.7 i

In this way, we can obtain the modal mass, damping and stiffness of a particular
mode and verify that the solutions of the modal equation are indeed the eigenvalues
of the corresponding mode. O

From the above discussion and the example, it is clear that the modal quanti-
ties, which characterize the motion of a damped system, can still be constructed from

the M, C, K matrices and their cigenvectors. But these eigenvectors are not
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orthogonal to one another with respect to the M, C or K of a generally damped sys-
tem. The fact that a n degrees of freedom system can only have exactly n indepen-
dent vectors to span the whole space should rule out the possibility that these 2n
eigenvectors can be orthogonal to one another with respect to M, C or K. Accord-
ingly, the equation of motion of a damped system cannot be decoupled by its eigen-
vectors. To decouple the equations of motion, another approach, described in the

next section, is needed.

2.3 Reduced form of the equation of motion

The solution q(z) of Eq.(1.1.1) can be interpreted geometrically by conceiving
an n-dimensional Euclidean space with g, . . . , g, as axes. This space, known as
the configuration space, is not very convenient for a geometric representation of the
motion because a given point in the configuration space is not enough to define the
state of the system uniquely. If we use the generalized velocities (}(t) as a set of

auxiliary variables, the motion can be described in a 2n-dimensional Euclidean

space spanned by g4, . . . ,4,, 4y, - - - »4, known as the state space. The vector
q(r)
x(t) = 1 . (2.3.1)
q(r)

is thus called a state vector and the tip of this vector traces a trajectory in the state
space, depicting the manner in which the solution evolves with time. The advantage
of this representation in the state space is that two trajectories never intersect, so that
a given point in the state space corresponds to a unique trajectory.

From a computational point of view, it is also convenient to use the state vector

representation. In particular, by combining Eq.(1.1.1) with the matrix identity

Mq(t) ~Mq(t) = 0 (23.2)
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we have

C M |q0) K 0] |q) f(r)
. - : = (2.3.3)
M 0] |aq@) 0 M]|q@®) 0
or alternatively, by combining Eq.(1.1.1) with the matrix identity

Kq(t)-Kq(t)=0 (2.3.4)

we have

K 0 q(r) 0 K] |a@) 0
" - ) = (2.3.5)
0 M| |ge)| LK CIl|qo ()
Note that both Eq.(2.3.3) and Eq.(2.3.5) can be represented by the following linear

system
Ax(1) -Bx(t) = y() : ' (2.3.6)

That is, using a state vector approach, we can reduce a system of n second-order
equations to a system of 2n first-order equations. Accordingly, Eq.(2.3.3) or
(2.3.5) is referred to as the reduced form of Eq.(1.1.1). Note that if M, C and K
are symmetric; then A and B are also symmetric although neither is positive-definite.

The homogeneous form of the reduced equation of motion is simply
Ax(t)-Bx(r)=10 2.3.7)
and its solution is of the form
x(1)=eMz (2.3.8)

To relate this solution to the solution given by Eq.(2.1.2), we substitute
q(r) = ¢™ wand (i(t) = ¢M Aw into Eq.(2.3.1) to obtain

w - 1O _:em{w} @39
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Thus, the A in Eq.(2.3.8) is the same as the A in Eq.(2.1.2)-and the z is related to
the w by

z= {)\‘:v } (2.3.10)

Substituting the solution given by Eq.(2.3.8) into A x(t) — B x(¢) = 0, we obtain

the following characteristic equation
AAz=Bz (2.3.11)

which represents a linear generalized eigenproblem. The solution to this equation
can be found using a QZ algorithm. The software package RGG from the
EISPACK library [E1] can be used to perform this task. It is also possible to

arrange the associated eigenproblem in standard form. If Eq.(2.3.11) originates

from Eq.(2.3.3), we form BlAz= i—-z, ie.,

w-lc _wx-1 ' |
[ K€ KOM]z= i—z (2.3.12)

where we have assumed that K is nonsingular. The case where K is singular will be
considered in Section 3.1. If Eq.(2.3.11) originates from Eq.(2.3.5), we form

Al'Bz=1\zie,

Eq.(2.3.12), which uses the inverse of the stiffness matrix, is called the KI form;
while Eq.(2.3.13), which uses the inverse of mass matrix, is called the MI form.
The KI form and MI form are equivalent and either can be used to solve for the
eigensolutions by a QR algorithm. The software package RG from the EISPACK
library [E1] can be used for this purpose. Note that the KI form can readily be used

to find the least dominant eigenpair of the system by the vector iteration method;
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therefore, the matrix in Eq.(2.3.12), which plays a role similar to the dynamic
matrix K™IM does in the analysis of an undamped system, is called the damped
dynamic matrix and is represented by D for use in the subsequent discussion.

The A’s obtained from solving A A z = B z are the same as the A’s obtained
from solving (A2M + A C+ K)w = 0, so they can still be arranged as in
Eq.(2.1.5). The z’s are related to the w’s as given by Eq.(2.3.10). We can express

them as the following :

® ,®,...,0, ,0, v, ¥, ..., ¥, ¥ (2.3.14)

nc ? nr ? nr
with
D, = @p; + Py {’ ®; = Op; —@y; i (2.3.15)

where a direct substitution would give

¢ Rj by |
b, = J ®,. = J 2.3.16
Rj { achb Rj —C!de)lj } L { aRjd’Ij + (le¢ Rj ( )

and
=Y y o[ 2.3.17
¥ { Bjv; } ¥i { Bjw; } (2317

2.4 Orthogonality properties

Since both A and B are symmetric due to the way we reduce the second-order
system into a first-order system, we have the desirable property that the eigenvectors
are orthogonal with respect to both A and B . More precisely, for any two eigenvec-

tors z; and z; whose associated eigenvalues are different, we have

zJTA zz =0 and z}rB z; =0 (2.4.1)

Here, we notice that neither is a proper orthogonality’relation because A and B are

indefinite so that uT A u = 0 for some nonzero vectors u, i.e., u is orthogonal to
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itself.

The eigenvectors associated with underdamped modes are complex. To avoid
the complex arithmetic, we express the orthogonality relationships in terms of the
real and imaginary parts of the complex eigenvectors. Introducing the different

eigenvectors into the first of Eq.(2.4.1), we obtain the following possible conditions

(P + @y i" YTA( PR + @ i° ) =0 (2.4.2)
(Pg; — @y i" )TA(Pge + P i° ) =0 (2.4.3)
VIA(Og + @i )=0 (2.4.4)
VIA(Qp + @i )=0 (2.4.5)

Solving Eqs.(2.4.2) and (2.4.3) simultaneously and noting that both real and ima-

ginary parts must vanish separately, we obtain
O A B =0 @ A Dy =0 (2.4.6)
®L A Dy =0 O A D, = 0 (2.4.7)
Similarly, we obtain from Eq.(2.4.4) and Eq.(2.4.5)
YIA®g =0 YIA®, =0 (2.4.8)
¥Tady =0 ¥TA®, =0 (2.4.9)
J Rk J L o

Eqs.(2.4.6), (2.4.7), (2.4.8) and (2.4.9) express the orthogonality property of the
eigenvectors in terms of their real and imaginary parts. These relationships are
developed with A as the weighting matrix. It is clear that the same relationships
hold if we replace A by B as the weighting matrix.

Scaling of eigenvectors. We assume that the eigenvectors of the system con-
sidered is such that z}r A z; # 0. For convenience, we scale the eigenvectors such

that

2fAz; =1 fBz; =), . . (2410
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For overdamped modes, it simply is
T = T =
YiAY; =1 Y, BY; =B, (2.4.11)

Since neither A or B is positive-definite, it is not always possible to obtain
Eq.(2.4.11) using real vectors. As a result, we may use the following alternative to

avoid pure imaginary vectors.

T — T —_
YIAY, =3, YIBY, =3B, (2.4.12)

where & ; is either 1 or -1.

For underdamped modes, it is possible to simplify the expression in terms of the
real and imaginary parts of the complex eigenvectors using ®g; ir+ ®y; to subst-

tute for z; in Eq.(2.4.10) and expanding it :

DL AQg —Pf A, =1 (2.4.13)
DL A D, + Ofj APy =0 (2.4.14)
and | -
OL; B @y; — @} B ®j; = o (2.4.15)
@ By + O B g = ay (2.4.16)

Nevertheless, recall that ® f and @ j are orthogonal; i.e.,
(@g; — Py i )TA(®g; + @i ) =0 (2.4.17)
(@g; - @y i" )TB(Pg; + @;i° ) =0 (2.4.18)
and thus expanding Eq.(2.4.17) and Eq.(2.4.18), we obtain
DL A Qg + PLAD; =0 (2.4.19)
®F; B Py + O BP; =0 (2.4.20)

Solving Eq.(2.4.13) and Eq.(2.4.19) simultaneously gives

1
2

ofa®, = -2 @4
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while Eq.(2.4.14) itself gives
QL AP =P ADR =0 (24.22)

A similar manipulation yields

1 1 :
oL B @, = SOR) OB @) = - SoR; (2.4.23)

(2.4.24)

1
R B @ = O B &g, = Sy

These formulae of normalization and the aforementioned orthogonality properties
are useful in solving for the eigenpairs of the system. For example, we may have
the following during the solution.

[ ®g, Py, Pr, o, ¥, ¥, ¥, ¥, ]TA[ O, &, @, @, ¥, ¥, ¥, ¥, ] =

:
05 0 0 0 0000
6 0506 0 006CO0CO0
0 0 05 0 0000
0 0 0 -050000 |
0 0 0 0 5 000 (2.4.25)
0 0 0 0 06§ 00
0 0 0 0 00350
|0 0 0 0 00 03]

[ ®g, @y, Pr, O, ¥, ¥, ¥, ¥, ]TB[ O, @, @, @, ¥, ¥, ¥, ¥ ] =

[ 0.5ag, 0.5a, O 0 0 0 0 0
0.5a, —0.5ag, O 0 0 0 0 ©
0 0 0Sag, 05¢;, 0 0 0 O
0 0 0.5a;, -0.5ag, 0 0 0 0
0 0 0 o &8 0 0 o | (2420
0 0 0 0 0 §8, 0 O
0 0 0 0 0 0 88, O
0 0 0 0 0 0 0 §8,
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Note that we can put all the foregoing formulae together as
ZTAZ=A ZTBZ=AA (2.4.27)
where both A and A are diagonal matrices and the diagonal element 8; is 1 for com-
plex A; and 1 or -1 for real A;. Eq.(2.4.27) represents the orthonormality property
and is used in Chapter 6 when Eq.(2.3.6) is decoupled to determine the response of
the system.

Example 2.1 : (continued)
The state form of eigenvectors can be scaled to

[ @g; @y Pro P ¥, ¥, ] =

0.5747e-01 0.5324e-01 0.7906e-01 0.7906e—01 -0.3059e-01 -0.4328e~01
0.6657e-01 0.7578e-01 -0.2137e~14 -0.8753e-14 0.8850e-01 0.7218e-01
0.5747e-01 0.5324e—01 -0.7906e-01 -0.7906e—01 -0.3059e-01 -0.4328e-01
0.6539¢+00 0.1803e+01 -0.1581e+01 -0.4743e+01 0.7475e+00 0.5909e+01
0.1076e+01 -0.2223e+01 0.8197e-13 0.3764e-12 -0.2163e+01 -0.9854e+01
0.6539e+00 -0.1803e+01 0.1581e+01 0.4743e+01 0.7475e+00 0.5909e+01

The orthogonality property can be verified by forming the following weighted inner
products.

[‘pmq’uq’m‘pu‘l’z‘i’J]TA[q’mq’u‘pm@u‘l’z‘i'J]=

0.5000e+00 0.1995¢-16 -0.1325e~13 -0.2345e~13 -0.1110e-13 -0.2256e-13
0.2082e-16 -0.5000e+00 -0.4025e-14 0.1662e-13 0.4220e-14 0.4400e-13
0.1325¢~13 -0.4037e-14 0.5000e+00 0.1561e~16 -0.3137e~13 0.7879%-14
0.2346e-13  0.1662e-13 0.2082e-16 -0.5000e+00 -0.1487e~13 0.1449%-12
0.1110e-13 0.4221e-14 0.3137e~13 -0.1487e-13 0.1000e+01 -0.3567e-14
0.2254e-13 0.4402e-13 0.7883e~14 0.1449e-12 -0.3525e-14 -0.1000e+01
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[ @g; @y P @p ¥, ¥, |TB[ Dy, @y P, P ¥, ¥, ] =

0.4759¢+01 -0.1128e+02 0.1025e~12 0.8610e—-12 0.1763e-12 0.8845e—-12
0.1128¢+02 0.4759¢+01 0.378%¢-12 0.5327e-12 0.1814e-12 -0.131%-12
0.1023e-12 0.3786e-12 -0.2000e+02 -0.1000e+02 0.9529¢-12 0.2790e-11
0.8612e~12 0.5329¢--12 -0.1000e+02 0.2000e+02 0.8902e-12 -0.9109%-11
0.1763e~12 0.1814e~-12 0.9530e--12 0.8905e--12 -0.2444e+02 -0.5455e-12
0.8848e-12 0.1319¢-12 0.2790e-11 -0.9109e-11 -0.5455e-12 0.1365¢+03

2.5 Some examples of a damped system

In this section we show a number of damped dynamic systems which are to be
analyzed and solved in subsequent discussion. We describe each of them individu-
ally and call them Test Problems. The solution algorithms developed in this study
are implemented in the research version of FEAP, a "Finite Element Analysis Pro-
gram,” written by R. L. Taylor ( a simplified version of this program is presented in
Chapter 24 of [Z1] ). The solutions reported herein are performed by the Digital
Equipment VAXstation I'GPX computer system where the Ultrix 1.2 operating sys-
tem and the {77 Fortran compiler are used.

Test Problem 1 : The system is a cantilever beam with a lumped translational
viscous-damper attached at the tip. The geometrical configuration and physical pro-
perties of the beam are shown in Figure 2.3. The consistent mass.is used for matrix
M. The damping matrix C has only one nonzero element representing the magni-
tude ¢ of the lumped damper. The cantilever beam is divided into 20 equal ele-
ments and has 40 degrees of freedom. The associated (A, B) is of the order 80.

Figure 2.4 shows the eigenvalues of the system for ¢ = 5 case and ¢ = 5000
case. Note that in ¢ = 5000 case the real bair are too large and hence they are not
shown in the Figure. Table 2.1 shows the first five eigenvalues of this system. The
associated eigenvectors are plotted in Figure 2.5, 2.6 and 2.7 for ¢ equal to 0, 5 and
5000 respectively. For the ¢ = 0 case, all eigenvalues are pure imaginary and all
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eigenvectors are real. This solution can be checked with a theoretical solution. For
the ¢ = 5 and ¢ = 5000 cases, both eigenvalues and eigenvectors are complex.
Note the first mode in ¢ = 0 case becomes an overdamped mode in the ¢ = 5 and
¢ = 5000 cases. Hence the first underdamped mode in the damped systems evolves
from the second mode of the undamped case. The location of the damper may be
an indication why the first mode of the undamped case becomes an overdamped
mode in the damped cases. Figure 2.8 shows the phasors of the first three under-
damped modes for ¢ = 5. It can be seen that the eigenvectors of this damped sys-
tem are "truly complex". Figure 2.9 shows the phasors of the first three under-
damped modes for ¢ = 5000. It can be seen that the eigenvectors of this heavily
damped system are almost real. This is similar to the situation in an undamped sys-
tem. The effect of the lumped damper on this beam system is important since it can
cause a drastic change in the eigensolutions.

The eigenproblem associated with the damped systerh can be solved by the RG
or RGG routines; the eigenproblem w?> M § = K s associated with the correspond-
ing undamped system can be solved by the RS routine. Table 2.2 shows the CPU
time required for the complete solution of this system by RS, RG, and RGG. The
RS, RG, RGG routines use the symmetric QL, the QR, the QZ algorithms, respec-
tively, and they are obtained from the EISPACK library [E1]

Test Problem 2 : The system consists of two beams connected by a hinge with
rotational viscous-damper. The geometrical configuration and physical properties of
the system are shown in Figure 2.10. The boundary condition of the system is that
the A’s and B in Figure 2.10 are hinges. Just as in Test Problem 1, the consistent
mass is used for matrix M. The matrix C has only four nonzero elements, which
represent the lumped rotational damper ¢. The system is divided into 40 equal ele-
ments and has 80 degrees of freedom. The associated (A, B) is of the order 160.
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Since this system is symmetric, there are symmetric modes and anti-symmetric
modes. Table 2.3 shows the first eight eigenvalues of the system. All the complex
eigenvalues of are plotted in the Figure 2.11. The real pair are too large, so they
are not shown in the Figure. We also consider a different boundary condition where
there is no restraint; i.e., A’s and B in Figure 2.10 are nothing. Under this boun-
dary condition, the system has rigid body modes. We use the shift of origin tech-
nique described in Section 3.1 to compute the eigensolutions of the unrestrained sys-
tem. The eignvectors of the unrestrained system are plotted in Figures 2.12, 2.13,
and 2.14 for ¢ equal to 0, 5, and 5000 respectively. The solutions of the undamped
system (c = O case) is the same as the solutions of two adjacent beams obtained
separately; that is, 40 modes are associated with the vibration of one beam with the
other beam motionless, and the other 40 modes are the other way around. But the
solution of the damped systems (¢ = 5 and ¢ = 5000 cases) clearly shows that there
are actually 40 symmetric and 40 anti-symmetric modes. When the damper is in
effect, i.e., damping is not equal to zero, all the symmetric modes become complex
modes while all the anti-symmetric modes remain unaffected, i.e., they are still real
modes. The physical explanation for damping affecting only the symmetric modes is
that there is no relative displacement, hence no relative velocity, around the damper
when the system vibrates in the anti-symmetric modes. The last mode of the
damped system is an overdamped mode. But, in contrast to the previous problem,
this overdamped mode evolves from the highest mode of the corresponding
undamped system.

Table 2.4 shows the CPU time required for the complete solution of the system
by RG and RGG and the CPU time required for the complete solution of the
corresponding undamped system by RS.

Test Problem 3 : This problem is a threc dimensional space truss system.

There are 44 nodes and the 4 end nodes are fully restrained, as shown in Figure
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2.15. Thus, there are 120 degrees of freedom and the associated (A, B) is of the
order 240. All truss bars have the same density and Young’s modulus but different
damping, as shown in Figure 2.15, resulting in a nonproportionally damped system.

Figure 2.16 shows the complete set of eigenvalues of this system. The CPU
time required for the complete solution of this system by RG and RGG is 1788 and
4633 seconds respectively. The CPU time required for the complete solution of the
corresponding undamped system by RS is 459 seconds.

Test Problem 4 : This problem is a larger three dimensional space truss system.
The typical cell is the same as the typical cell in the last Problem. There are 300
nodes and the 4 end nodes are fully restrained, as shown in Figure 2.17; thus, there
are 888 degrees of freedom. All truss bars have the same density and Young’s
modulus but different damping, resulting in a nonproportionally damped system.
The associated (A, B) is of the order 1776, which is beyond the storage capability of
the computer program for the complete solution. Figure 2.18 shows the first twenty
eigenvalues of this system, obtained by methods to be discussed later.

From the information on the CPU time required to find the complete solution
of these Test Problems, we observe the following.
(1) The RG routine is more efficient than the RGG routine for solving the damped

systems listed above. The difference in CPU time spent between the two

increases with the size of the problem.

(2) There is a considerable increase of CPU time in solving Dz = %—z or

X A z = B z when we change the zero damping matrix C to a nonzero one,
even though the change is made in just a few elements of matrix C, as in Test
examples 1 and 2.

(3) It is much more expensive to solve the eigenproblem associated with a damped

system than the eigenproblem associated with an undamped system.



Table 2.1 Eigenvalues of Test problem 1

mode c =0 c=35 ¢ = 5000
1 +1.41i° | -0.55, —4.83 | —0.00048, 276807.1
2 +8.81i" | —-1.66+7.75i" -0.0023+6.17i"
3 +24.681" | —1.89+24.07i" | —0.0080+19.99i"
4 +48.36i° | —1.94+47.92i" —-0.017+41.70i"
5 +79.96i" | —1.97+79.61i" —0.029+71.32i"

Table 2.2 CPU Time for Test Problem 1

damping / routine | RS RG | RGG
c =0 19.2 | 91.1 | 161.8
c=35 - 152.5 | 223.7

¢ = 5000 - 145.8 | 192.3
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Table 2.3 Eigenvalues of Test problem 2

mode c =20 c=35 ¢ = 5000
1 +0.99i" +0.99;" +0.99i"
2 +0.99* | —0.10+£1.00i" | —0.002+1.54i"
3 +3.95" +3.95i" +3.95;"
4 +3.95{* | —0.39+4.05i" —0.002+5.00i"
5 +8.88i" +8.88i" +8.88i"
6 +8.88" | —7.93%x9.26i" | —0.002+10.43i"
7 +15.79i" +15.79i" +15.79i"
8 +15.79i" | —1.18+16.65i" | —0.002+17.83i"

Table 2.4 CPU Time for Test problem 2

damping / routine | RS

RG

RGG

c=0 107.2 434.0 646.7
c =35 - 985.8 | 1500.8
c = 5000 - 1149.1 | 14544
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cyp=c4=30
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k1=k2=k3=k4=1000

Figure 2.1 3 dof damped system
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Figure 2.2 phasor for the 3 dof system
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Figure 2.4 eigenvalues of Test Problem 1



Figure 2.5 eigenvectors of Test Problem 1 (¢=0)
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Figure 2.6 eigenvectors of Test Problem 1 (c=5)
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Figure 2.7 eigenvectors of Test Problem 1 ( ¢ = 5000)
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Figure 2.8 (a) second mode phasor (¢=5)
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Figure 2.8 (b) third mode phasor (¢ = 5)
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Figure 2.8 (¢) fourth mode phasor (¢ = 5)
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Figure 2.9 (a) second mode phasor (¢ = 5000 )
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Figure 2.9 (b) third mode phasor ( ¢ = 5000 )
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Figure 2.9 (¢) fourth mode phasor (¢ = 5000 )
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Test Problem 2 (c = 5)
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Figure 2.11 eigenvalues of Test Problem 2
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Figure 2.12 (a) eigenvectors of Test Problem 2
symmetric modes (¢ = 0)
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Figure 2.12 (b) eigenvectors of Test Problem 2
anti-symmetric modes (¢ = 0)
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Figure 2.13 eigenvectors of Test Problem 2
symmetric modes (¢ = 5)
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Figure 2.14 eigenvectors of Test Problem 2
symmetric modes ( ¢ = 5000 )
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Chapter 3
Preliminaries to the Solution of Large Eigenproblems

3.1 Vector iteration method

The vector iteration method may be used to extract the least dominant eigen-

pair of a damped system from Dz = %—z. The solution procedure for solving

Dz = ;\l—z is the same as the one for solving K1 M ¢ = —1?11, except that there
w

are two least dominant eigenpairs in Dz = -i—z instead of one. As shown in

Chapter 2, the eigensolutions associated with an underdamped mode exist in com-

plex conjugate pairs. Therefore, a pair of eigenvalues with the same modulus are

least dominant in Dz = ;l\—z. The usual iteration procedure will not converge

directly to either one of them but rather to their linear combination. This can be

explained by the iteration
v&+1) = p yk) - (3.1.1)

where v is a real vector, and superscript k, k+1 are the iteration number. Here
when k is large enough, only the components in the two least dominant eigenvectors

will remain and thus v) can be expressed as
v = o Mz + & AT (3.1.2)

where (A, z;) is the least dominant eigenpair, (A, Z;) is its conjugate, a; is a con-
stant, and a; is its conjugate.

The standard procedure for determining the complex conjugate eigenpairs in
this case is to keep three successive iteration vectors without intermediate normaliza-
tion, say v¢), v(**1) and v¢*2)_ If A, and \, are the roots of the quadratic equa-

tion,
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N4+br+c=0 - | (3.1.3)

it follows that
vk+2) 4 p D) 4 o ) = ¢ (3.1.4)

This can be verified by substituting Eq.(3.1.2) into Eq.(3.1.4). Note that
Eq.(3.1.4) represents a system of 2n equations in two unknowns b and c. The
unknowns b and c are generally found by solving two arbitrary equations from the
set of Eq.(3.1.4), as described in [F2, H1, M1]. A better way to solve for b and c,
however, is to find the least square solution of Eq.(3.1.4), as shown in [J1] and
[W1]. After b and ¢ are found, A\; and )-:1 is obtained by solving Eq.(3.1.3). The

corresponding eigenvectors can be calculated from
2, = v+ X vE+D z, = v+ _ )\ v&+D (3.1.5)
From the above discussion, it is apparent that the computation of the complex

conjugate eigensolutions of a damped system is more laborious than the computation

of the real eigensolutions of an undamped system. Note that the rate of convergence

M 1 of 1.
is — in solving Dz = —z while it is --z—insolvingK"qu;= —Z—tbandthatz
x2 A wy w

is twice the size of §. Therefore, the number of operations for solving D z = ;l\—z

is about 4 times that of solving K1 M ¢ = -—15-4: when the vector iteration method
w

is used.

The vector iteration method may only be used to find the least dominant eigen-
pair. To find other eigenpairs, other technique, such as deflation or shift of origin,
needs to be added. The deflation procedure has rather poor numerical stability and
requires more effort for higher modes. Hence it is not effective in practice.
Detailed accounts can be found in [W1]. Unlike the eigenvalues of an undamped

system, the eigenvalues of a damped system are complex in general; therefore, we
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cannot obtain any desired complex conjugate eigenpair by ﬁsing only real shift. The
use of complex shift, however, changes the associated matrices, which are originally
real, into complex ones. Moreover, it does not produce satisfactory results as stated
in [W1]. Therefore, we need more suitable methods to solve the eigenproblem asso-
ciated with a damped system. This is the subject of the subsequent Chapters.
Although we cannot use the shift of origin to extract desired higher modes, we
need the technique for the case where the eigensolutions required are centered
around a specific point and/or where A = 0. For this use, we take the shift into

consideration and rewrite the characteristic equation as
(A= )PMw+(A—-0cd)Cw+Kw+ (3.1.6)
(2x0 —0c2)Mw+ o Cw=0
where o represents the desired shift. This can be re-arranged into
(A= ¥Mw+ (A—0)(C+2cM)w+ (3.1.7)
(K+oC+c?M)w=0
Notice that the shifted eigenvalue is A — o, therefore, the corresponding auxiliary
equation is
M(AN—oc)w-M(A-0c)w=0 (3.1.8)

Combining Eq.(3.1.7) and (3.1.8), we have the shifted form of the reduced eigen-

problem as

(C+20M)M] [ w ]
= (3.1.9)

(o) [ M 0 (A —o)w

-K—oC—o?M 0 w
0 M (A —o)w

where the shifted A and B matrices remain symmetricy+ Here, we only need to factor
the shifted stiffness matrix K + o C + o2 M, which is still in banded form. If we
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form (B —oA)z = (X —0c ) Az then it is necessary to factor, or invert, the

entire ( B — oA ), which is much more expensive and hence should be avoided.

3.2 Generalized Rayleigh-Ritz method

In the solution of the eigenproblem resulting from an undamped dynanlic sys-
tem, i.e., w2 M ¢ = K ¢ the Rayleigh-Ritz method is commonly used to obtain a
reduced eigensystem. In this method, the property that the Rayleigh Quotient

xT K x
xI' M x

R(x) = (3.2.1)

possesses a stationary value in the neighborhood of each eigenvector is used to find
the best approximation to the eigenvectors of (M, K) from the subspace spanned by
the trial vectors. In the following, we show that the Rayleigh-Ritz method can be
extended to reduce the original eigensystem associated with (A, B) onto a smaller
one. To this end, we start with a brief account of some definitions which are related
to subsequent discussion.

A square matrix pencil (F, G) of order n is called regular if F is non-singular.
Such a matrix pencil will have n eigenvalues if they are counted according to their
multiplicities. A regular symmetric matrix pencil of order n having n linear
independent eigenvectors is called simple; otherwise, it is said to be defective. An

eigenvector z of a symmetric simple matrix pencil (F, G) can be scaled such that

2 Fz=1 21Gz=2X (3.2.2)
where \ is the eigenvalue associated with z. For this simple matrix pencil, we form
the quotient

T

2 Gz

R(z)= — = A (3.2.3
(z) TE )

to demonstrate in the following that it is stationary in the neighborhood of the eigen-

vector z. To establish that R has such stationary property, we introduce an arbitrary
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small variation in z and show that the resulting change in R is zero to the first order
of the variation. That is, we consider R (z+8z) with 3z being the small variation of
an eigenvector z

(z+52)T G (z+32)
(z+52)T F (2+82)

R(z+%z) =

(z+82)T G (z+8z) N (z+82)T F (z+82)

= R@ Y s)TF @ioz)  (2+02)T F (24 52)

(z+82)T (G-\F) (z+82)
(z+52)T F (z+8z2)

= R@) + (3.2.4)

(2+282)T (G-AF) z + (32)T (G-\F) 8z
(z+3z)T F (z+32)

= R(z) +

(52)T (G-\F) 8z
(z+52)T F (z+8z2)

= R(z) +

where the equalities 21 (G—\F) (8z) = (62)T (G-AF) z and (G—-\F) z = 0 have
been used. Note that the numerator in the last line of tﬁe preceding equation is
equal to a term of second order in 8z. Since zI Fz = 1 and the 8z is small, one
can reasonably assume that the denominator is not zero. This shows that R (z+3z)
is equal to R(z) plus a second order term in dz. That is, the first variation of the
quotient R vanishes and, accordingly, R is stationary.

We now turn to the matrix pencil (A, B) obtained from the quadratic eigen-
problem to examine the conditions under which the matrix pencil is simple. To

determine whether A is singular, we compute the determinant of the matrix A as fol-

lows :

- CM
detA-—det[M 0]

= -1y der [ 0 ] (3.2.5)

= (=1)" (detM )?
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This result shows that detA does not depend on the elements of matrix C and that A
is non-singular if M is non-singular. That is, the condition that M is non-singular is
sufficient for the matrix pencil (A, B) to be regular. This and the assumption that
the associated eigenproblem of the dynamic system considered has a full set of eigen-
vectors ensure that (A, B) is a simple matrix pencil. Therefore, the quotient
R(y) = z;}}_z_ (3.2.6)
y Ay
is stationary when y is in the neighborhood of the eigenvectors of (A, B).
Now, we can generalize the Rayleigh-Ritz method to obtain an approximation
to the eigensolutions of (A, B) from a set of trial vectors. For this purpose, we con-

sider an n by m matrix (m = n )

Q=[491995. - -9, ] (3.2.7)

which contains m trial vectors approximating the eigenvectors of (A, B). We look
for the linear combinations of the q; which give the best appfoximatibns to the
eigenvectors. In other words, we want to find a vector s of dimension m such that
y = Qs is the best approximation to the eigenvector from the subspace spanned by
Q. To achieve this, we form the quotient

sTQTBQs

R =
®) sTQTAQs

(3.2.8)

The best approximation y is obtained by invoking the property that the Rayleigh
quotient R (s) is stationary. The necessary condition for R (s) to be stationary is that

the vector s satisfy
A's86=B"s (3.2.9)
where A* and B* are m by m projected matrices given by
A" =QTAQ B*=QTBQ (3.2.10)

The solution of Eq.(3.2.9) yields 6, , . .., 8,,, which are the Ritz values, and
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S{,...,S,, which are the parameters used to form the Ritz vectors
Y=1[y1,...,¥n ] by the relation y; = Qs;. These Ritz pairs (8, y;) are the
best approximations to the eigenpairs sought from the subspace spanned by the trial
vectors Q.

In essence, we have shown that the Rayleigh-Ritz method can be extended to
the indefinite matrix pencil (A, B). From a set of trial vectors, the optimal combi-
nations that approximate the eigensolutions of the original problem can be obtained
through the solution of a reduced problem. This reduction technique makes the par-

tial solution of a large eigenproblem feasible.

3.3 Projection method

In recent research on solving large sparse eigenproblems, the projection method
has attracted much attention. In this section, we briefly review the general frame-
work of the projection method and then describe how it can be used to solve the
eigenproblem associated with a damped system. |

Consider two subspaces L and K of the solution space, referred to as the right
and the left admissible space respectively, and assume that they have the same
dimensions. The projection method consists in approximating an exact eigenvector u,
by a vector @ in subspace K, by requiring that the residual vector of @ satisfy the
Petrov-Galerkin condition, i.e., the residual vector of i is orthogonal to subspace L.
When L = K we say that the method is an orthogonal projection method; otherwise,
we say that the method is an oblique projection method. We choose the orthogonal
projection method because it is simpler and requires less work than the oblique pro-
jection method.

The orthogonal projection method applied to solving A Az = B z seeks an
approximate eigenvalue 8 and its associated vector y, which belongs to the subspace

K, such that the following Galerkin condition is satisfied :
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8Ay—-By | K (3.3.1)

Let Q be an arbitrary orthogonal basis of K; then we can replace the preceding
equation by

QT(6Ay-By)=0 (3.3.2)

The fact that y is in the subspace of K implies that y = Q s, where s represents a set
of free parameters. The choice of these free parameters in s is made to satisfy the

Galerkin condition Eq.(3.3.2), that is, s is the solution of
QT(6AQ-BQ)s=0 (3.3.3)

This expression is identical with Eq.(3.2.11) obtained from the generalized
Rayleigh-Ritz approximation to the same problem. While the Rayleigh-Ritz method
is restricted to those (A, B) which satisfy the condition of being simple matrix pencil,
the projection method does not have this limitation. From this point of view the
projection method, which analyzes the problem geometrically, is advantageous when
compared to the generalized Rayleigh-Ritz method.

The important feature that makes the projection method work is obviously that
the exact eigenvector is well approximated by some vectors of the subspace K. It is
then desirable to estimate a priori the distance between the exact eigenvector and the
subspace of approximation. A rigorous treatment of this matter involves detailed
mathematical proof and remains to be investigated.

As it turns out, most methods for solving large sparse symmetric eigensystems
can be formulated in terms of the orthogonal projection method. Among them, the
two methods we will discuss later are the subspace iteration method and the Lanczos
method. The major difference between them is that the dimension of the subspace
of approximation K is fixed in the subspace iteration method while the dimension of
K is increased by one at every step in the Lanczos method. The strategy of the sub-

space iteration method is to adjust gradually the subspace K of fixed dimension until
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it leads to in the required eigenvectors’ direction. The strategy of the Lanczos
method is to expand gradually the dimension of K until it contains the subspace

spanned by all the required eigenvectors.
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Chapter 4
Subspace Iteration Method

4.1 Consideration for complex eigenpairs

The subspace iteration method is recognized as an efficient method to extract
the least dominant set of eigenpairs of an undamped system represented by
w? M § = K ; therefore, it is desirable to extend this method to solve for the least
dominant set of eigenpairs of a damped system represented by A Az = B z.
Theoretically, solving A A z = B z is the same as solving w? M ¢ = K ¢; however,
the former is computationally more complicated than the latter since in general the
solutions of A A z = B z are complex while the solutions of w?My = K are
real. Due to the similarity in the two formulations, the conventional subspace itera-
tion algorithm may be used to compute the eigenpairs of a damped system. For use
in subsequent discussion, the essential steps in the subspace iteration method are
summarized in Box 4.1. -

We now show what is obtained during the iteration process, considering that
the solutions generally are complex-valued. Assuming we have performed many
iterations and have almost eliminated the undesirable higher mode components in U,
we start the next iteration to further improve U. The first step is to solve for a new

set of vectors V from
BV=AU 4.1.1)

where U contains the approximate eigenvectors from the previous iteration and can

be arranged as the following :
U = [a;+b;i*, a;-bi*, a,+b,i*, ay—boi’, . .. ,d;,dp, ... ] (4.1.2)
Since both A and B are real, V will have the same form as U; accordingly,

v = [r1+51i‘ , rl-—sli', r2+s2i" l'z—szi‘, . v. © s tl 5 t2, <o ] ‘ (41.3)
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Box 4.1 Subspace Iteration Method

Fork = 1,2,3,....,until satisfied
1.  Iterate from E; t0 E; 4 ¢
BV=AU
2. Find the projections of the operators B and A onto Eg 41 :
G=VIBV H=VTAV
3.  Solve the projected eigensystem :

GX=HX®
4.  Form an improved approximation to the eigenvectors :
U=VX

5. Scale U and take U as U for the next iteration
or, if the convergence criterion is satisfied, exit.
Then, provided that the approximating vectors U are not
orthogonal to one of the required eigenvectofs, we have

®~-A and U-Z a &k -

The second step is to form projection matrices G and H by
G=VIBV and H=VIAV (4.1.4)

The matrices G and H have a special structure due to the way we arrange the
matrices U and V. To show this structure, we partition G into the following 4 sub-

matrices

G. G
G= “ & 4.1.5
| & & | 19
where G, is constructed entirely from complex vectors, G, is constructed from

complex vectors and real vectors, G, is the transpose of G, , and G,, is constructed
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entirely from real vectors. If we further partiion G, into 2 by 2 submatrices which
correspond to complex conjugate pairs of vectors, then all submatrices have the fol-

lowing structure
(rTBr -sTBs )+(rTBs +sTBr )it (rTBr +sTBs )——(rTBs —sTBr )
(rTBr +sTBs )+(rTBs —sTBr )i’ (rTBr -sTBs )-(rTBs +sTBr )it
We can also partition G, into 2 by 1 submatrices which correspond to complex con-
jugate pairs. All submatrices have the following structure

(rTBt;)+(sTBt))i"
(rTBt;)—(sBt;)i"

G,, has elements of the following form
tTBt;

Similarly, H has the same form as G except that B is replaced by A in the above for-

mulae. The third step is to solve the projected eigensystem
GX=HX®6 (4.1.6)

where © and X are eigenvalues and eigenvectors of the projected system. The last
step is to find the improved approximation to the eigenvectors of the original system

by
U=VX (4.1.7)

where U is scaled to give U for a new iteration. This procedure is continued until a
specified convergence criterion is fulfilled; then we have ® and U as the required
eigensolutions.

It is clear from the foregoing discussion that if U contains complex vectors then
all the V, G and H will become complex. This implies that when the subspace itera-
tion method is applied to solve A A z = B z, we must use complex arithmetic. The

'
use of complex arithmetic not only requires more storage space but also more
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computational effort. Moreover, a solution system that can handle complei matrices
is required for the solution of the projected eigensystem. To save storage space and
computational effort, it is desirable to modify the algorithm to avoid the complex
arithmetic. To this end, we make the following modification in the subspace itera-
tion method when solving A A z = B z. Note that all the information of a complex
conjugate pair of vectors is contained in the real and imaginary parts of each com-
plex vector. During the iteration process, we use the real and imaginary parts of a
complex vector to replace the pair of complex conjugate vectors and retain the real

vectors without modification. That is, we use
U =[a;,b ,a,by,...,d;,dy,. . .] (4.1.8)
instead of U in the iteration process. As a result of this substitution, V" becomes
V' =[r;,8,M,8, --,t1,t,...] (4.1.9)

and the modified projection matrices G' and H' can be obtained by Eq.(4.1.4)
with V replaced by V*. We partition the matrix G* as before. The 2 by 2 subma-

trices of G_. now become

The 2 by 1 submatrices of G, now become

r;rBt j
sBt;

J
The submatrix G,; remains unchanged and thus is equal to G,,. The matrix H is
identical to G* with B replaced by A. We note that three quarters of the computa-
tional effort and half of the storage space can be eliminated by forming G, instead
of G,., and half of the computational effort and the storage space can be eliminated

by forming G,, and G, instead of G,, and G, .
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The question which remains is the following : what is the relation between the
solution obtained from using these modified matrices, which are distinguished by
superscript *, and the solution obtained from using the original matrices? The
answer is in the following theorem.

Theorem : If the G* and H' are formed according to the above procedure and
the modified eigensystem is represented by G* X" = H" X" @"; then we have
®' = ® and X* = N X, where N is the transformation matrix defined in the proof.
Proof : Any complex conjugate pair of numbers can be factored into its components

and units in the following way
[a+Bi a=Bi]=[a B] L (4.1.10)
where L contains the real and imaginary unit and can be found to be

L= [1 1 (4.1.11)

i —i
Using this factorization, we can relate the original iteration vectors to the modified

iteration vectors by
U=U'N and V=V'N (4.1.12)

where N is made up of the L in the first nc 2 by 2 diagonal blocks, 2nr unities
along the rest of the diagonal, and zero everywhere else. From this formulation, the
relationship between the original projected matrices and the modified projected

matrices is
G=NI'G'N and H=NTH'N (4.1.13)

This indicates that G* and H' are obtained by an equivalent transformation from G
and H respectively and they have the same transformation matrix N. Therefore, the
two pencils (G*, H') and (G, H) are equivalent. We substitute Eq.(4.1.13) into
G X = H X 6 to obtain

NTG*NX=NTH'NX® - (4.1.14)
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Since N7 is non-singular, we can premultiply Eq.(4.1.14) by'(NT)’1 to obtain
G (NX)=H (NX)®© (4.1.15)

This concludes the proof. O

To find the modified improved vectors U° we substitute NX for X" in
0" = V* X" and obtain U° = V* NX = V X, which is equal to U. This indi-
cates that the same result will be obtained by using U® as by using U. That is, the
modified iteration vectors U* have been transformed back by the algorithm itself
after one complete cycle of subspace iteration and no inverse transformation is
required to bring U* back to U.

The main features of the above discussion can be summarized as follows. To
use the procedure described in Box 4.1, we can take U” as the iteration vectors to
reduce computational effort and storage space. Both U*, V' are real-valued and
hence only real arithmetic is required in the iteration process. Moreover, G* and
H* are also real and thus the solution of the projected  eigensystem
G' X' = H' X" © can be performed using a QZ algorithm, which is available
from the EISPACK library.

4.2 Practical implementation

The theoretical aspects of solving for the eigenpairs of a damped system by the
subspace iteration method have been described in the previous section. In this sec-
tion, we consider practical implementation of the method and present a computation
algorithm.

We used A and B instead of M, C and K in the discussion of the theoretical
properties. In practical implementation, however, t0 minimize storage requirements
both A and B are not formed explicitly. To work directly with the matrices M, C,

and K, we partition the iteration matrices U and V »qually into upper and lower
parts as
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U _
1Y

A result which follows immediately from this partitioning method is that after the

solution of the equation B V = A U we have
MV,=MU, o V=1, (4.2.2)

That is, the lower part of V is just the upper part of U. Therefore, it is not neces-
sary to factor, or invert, M. This is because the lower part of matrices A and B
comes from an identity equation, as already shown in Chapter 2.

As in any iteration method, we need a criterion to judge whether the solution
has converged to within a prescribed tolerance during iterations. Let
N = Ag; + )\Iji‘, Niv1 = ARj+1 xlj+1i' be the approximates found in two

consecutive iterations, then the criterion for convergence is defined as

Vv (AR)? + (Ap)? = 10l . - (4.2.3)
where tol represents a prescribed tolerance and

MR

Ag = 1.0 - (4.2.42)
ARj+1
Av:

Ap=1.0 - —2 (4.2.4b)
Aj+1

This criterion also works for real eigenvalues.

As the following section will demonstrate, it takes much more effort to solve
the projected eigenproblem of a damped system than to solve a projected eigenprob-
lem of an undamped system, since the solution of a damped system are complex
while the solutions of an undamped system are real. Therefore, the projected eigen-
system is formed and solved every two iterations instead of every iteration. This
strategy also will make the rate of convergence in solving a damped system of the

same order as the rate of convergence in solving the corresponding undamped
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system. For example when the damping matrix is null, then the number of itera-
tions required to obtain the solutions of A A z = B z by the above strategy is almost
the same as the number of iterations required to obtain the solutions of
w? M ¢ = K { by the conventional subspace algorithm.

We summarize the above discussion and present the CSUBSP algorithm for
extracting eigenpairs of a damped system in Box 4.2. From Box 4.2 we can see that

one iteration using m vectors requires the following number of operations
4m p(M) + 2mp(C) + 2mv(K)
4nm? + Snm + 3m 4.2.5)
cost (RGG)

where n(M) and w(C) represent the number of operations to form M x and C x,
respectively, and v(K) represents the number of operations to solve K y = x for typ-
ical n-vectors x and y. In Box 4.2 and in the above discussion, an iteration vector
means either a complex conjugate pair of vectors or a real pair of vectors. There-
fore, m iteration vectors contain 2m columns of component vectors, which will
become m pairs of Ritz vectors (some in complex conjugate pairs and others in real
pairs) at the end of the iteration process. Recall that the number of operations
required to perform one iteration by a conventional subspace iteration algorithm,

such as SUBSP in FEAP, to solve 0> M ¢ = K { is
qr(M) + qv(K)
2ng2 + 4ng + g (4.2.6)
cost (QL)

where ¢ is the number of iteration vectors used. Let us assume that the same
number of iteration vectors is used to solve a damped system and its corresponding

undamped system, that is m = 2g; then we see that the number of operations per
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iteration required by CSUBSP is much larger than the mumber of operations
required by SUBSP. The ratio between the two numbers of operations ranges from
4 to more than 8 depending upon the cost (RGG) relative to the cost(QL), p(M)
and p(C) relative to ¥(K), and the ratio of ¢ to n. That is, using CSUBSP to
extract a few eigenpairs of a damped system requires at least four times as much
effort as using SUBSP to extract the same number of eigenpairs of the corresponding
undamped system. This will be shown explicitly by examples in the following sec-
tion.

For a given number of iteration vectors, the number of iterations required to
achieve convergence by the subspace iteration method depends on how close the
starting space is to the subspace spanned by the required eigenvectors. The closer
the starting space, the fewer the number of iterations and hence the less the com-
puter CPU time needed to obtain solutions. The starting vectors used to obtain the
solutions of the examples in the next section are constructed by evenly distn’buﬁng n
unities on 2m columns of vectors with zeroes at other entries. This type of starting
vectors is basically the same as that currently used by SUBSP in FEAP. This choice
of starting vectors may not be optimal; other choices, based on previous experience
and on the characteristics of the system to be solved, may be more desirable. As the
examples in Chapter 2 demonstrate, an eigenvector of a damped system contains real
and imaginary parts or, if put in another way, contains an amplitude and a phase
angle. Therefore, it is much more difficult to predict good starting vectors of a

damped system than of an undamped system.

4.3 Numerical examples
In this section, we present several examples to show the capability of the sub-
space iteration algorithm CSUBSP to find the eigensolutions of damped systems.
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To examine the effect of different types of damping matriées, we solve two
groups of problems : (1) beam structures with lumped damping, as described in Test
Problems 1 and 2 and (2) truss structures with distributed damping, as described in
Test Problems 3 and 4. The following are used as the criteria for comparison :

(1) the number of vectors required and the number of the guard vectors used dur-
ing the iteration process,

(2) the number of iterations performed to get the required number of eigenvalues
within a prescribed tolerance, which is set to be 10712 for the following exam-
ples,

(3) CPU time used by RGG to solve the reduced eigensystem G X = H X 0, and

(4) total CPU time to solve the problem.

We also present the results of the corresponding undamped system solved by the

conventional subspace iteration algorithm SUBSP to show explicitly how much more

effort is required to solve a damped system than to solve the corresponding
undamped system. |

In the first group of problems, we consider three cases MDe=0,2)c=5
and (3) ¢ = 5000 to examine how the lumped damping will affect the convergence
rate of the algorithm. Table 4.1 and Table 4.2 summarize the results obtained for
Test Problem 1 by CSUBSP and SUBSP, respectively. Similarly, Table 4.3 and
Table 4.4 summarize the results obtained for Test Problem 2 by CSUBSP and
SUBSP, respectively. From the results shown in Table 4.1 to Table 4.4, we observe
the following.

(1) The solution for a damped system with null damping by CSUBSP requires
almost the same number of iterations as the solution of the corresponding
undamped system by SUBSP. This implies that for undamped systems the
starting vectors used in CSUBSP are as good as those used in SUBSP. But
when the damping coefficient ¢ is not equal to zero, the CSUBSP takes more
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iterations to converge to the required solutions.

(2) It is difficult to decide how many guard vectors should be used to achieve
minimum CPU time, especially when damping is present.

(3) The CPU time spent on using RGG is significantly greater than the CPU time
spent on using QL, even in these relatively small problems.

From these two examples we can perceive an important feature pertaining to
the solution of a quadratic eigenproblem. In Chapter 2 we showed that eigenvalues
of a damped system appear in pairs. For underdamped modes, a; and a; appear
simultaneously. For overdamped modes, B; and g j appear simultaneously. In
heavily damped systems, such as the systems where ¢ = 5000 in the above examples,
the modulus of the primary eigenvalue B; can be very small while the modulus of
the secondary eigenvalue éx can be very large. But they are tied together; i.e., dur-
ing the subspace iteration process, we cannot have one without having the other. As
a result, convergence of the primary eigenvalue is fast during the iteration process
while convergence of the secondary eigenvalue is slow. Sometimes, the sécondary
eigenvalue may not converge at all if it exceeds all the eigenvalues associated with
those eigenvectors which span the subspace under consideration. Fortunately, large
secondary eigenvalues can be ignored in computing the response of the structure.
This will be shown in Chapter 6.

In the second group of problems, we assume that the system has distributed
damping. Hence, each truss member may have different damping which results in a
damping matrix with the same banded structure as the stiffness matrix. Table 4.5
and Table 4.6 summarize the results obtained for Test Problem 3 by CSUBSP and
SUBSP, respectively. Similarly, Table 4.7 and Table 4.8 summarize the results
obtained for Test Problem 4 by CSUBSP and SUBSP, respectively. From the results
shown in Table 4.5 to Table 4.8, we observe the following.
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(1) Since the damping is relatively small, we need only approxiniately the same
number of iterations to solve the damped system using CSUBSP and the
corresponding undamped system using SUBSP.

(2) The optimum number of guard vectors is the same for the damped system and
the corresponding undamped system in both examples considered. This is
because the mode shapes of a lightly damped system do not change much from
the mode shapes of the corresponding undamped system.

(3) While the CPU time spent on using QL is about 23% and 5% of the total CPU
time spent to solve Test Problem 3 and 4, respectively, the CPU time spent on
using RGG is about 54% and 21% of the total CPU time spent to solve Test
Problem 3 and 4, respectively.

From the discussion of the results from the Test Problems, it is apparent that
CSUBSP is quite expensive compared to SUBSP. Although it is possible to modify
the algorithm so that RG, instead of RGG, may be used to solve the projected
eigenproblem, the large number of iterations required to achieve convergenée cannot
be reduced unless an improved set of starting vectors is used. Therefore, the sub-
space iteration method is not an efficient method to extract a least dominate set of
eigenpairs of a general problem except where only a few (say two or three) iterations

are required to achieve convergence.



Box 4.2 Subspace Iteration Algorithm for Damped Systems

INITIAL CALCULATIONS : OPERATION COUNT
1. Factorize K —;—-nb2
2. Select starting iteration vectors U
U= [g’l‘ ] = random vectors
SUBSPACE ITERATIONS : Fori = 1,2... OPERATION COUNT

1. FoomAU=W
wW,=CU,+MU,,W,=MU,

2. Foorm V
vV,=-K1lw,, Vv, =1,

3. Scale V such that for j from 1 tom
|vIBv; | =10

4. FormAV =Y
U,=CV,+ MV, [=MYV,

5. Form projected matrices

mp(C) + 2m n(M)
mv(K)
3nm

m(C) + 2mp(M)

G=VTw, +VIw, nm (m +1)

H=VJU + VT nm (m +1)
6. Solve the projected eigenproblem

HX=GXA™ cost (RGG)
7. Check for convergence

If \/ (AR)2 + (AI)2 =< 1ol exit. Sm
8. Form new iteration vectors U

W, =1, X nm?

U,=-K1w, mv(K)

U=VX nm?
FINAL CALCULATIONS : OPERATION COUNT
1. Form eigenvectors U

U,=V,X,U=VX 2nm?
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Table 4.1 Test Problem 1 by CSUBSP

damoin no. of vectors o. of iterations CPU time total
PIE | & guard vectors no. of tleratio for RGG | CPU time
4,1 9 8.4 25.5
4,2 8 12.0 31.0
c=0
43 7 16.0 36.3
4,4 5 17.3 34.6
4,1 19 16.9 52.0
4,2 12 17.5 45.9
c=15
4,3 10 22.6 51.4
4,4 6 19.4 40.2
4,1 19 17.4 52.6
4,2 12 18.3 46.5
¢ = 5000 —
4,3 10 23.3 521
44 7 239 48.1
Table 4.2 Test Problem 1 by SUBSP
no. of vectors 1o, of iterations CPU ﬁme total
& guard vectors R for QL CPU time

4,1 10 0.5 4.3

4,2 8 0.7 4.5

43 7 0.9 5.0

44 5 - 0.9 4.6
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Table 4.3 Test Problem 2 by CSUBSP

dampin no. of vectors o. of iteratio CPU time total
PUE | o guard vectors 1o. OLTeralons | ¢r RGG | CPU time
8,2 10 38.2 123.3
8,4 9 80.5 184.9
c=0
8,6 9 94.1 219.0
8,8 6 93.5 194.8
8,2 17 116.4 268.7
8,4 10 117.0 233.1
c=35
8,6 9 160.2 291.0
8,8 7 186.7 310.5
8,2 17 110.2 263.3
8,4 10 105.4 221.5
¢ = 5000 :
8,6 9 145.2 276.5
8,8 7 165.5 289.5
Table 4.4 Test Problem 2 by SUBSP
no. of vectors no. of iterations CPU time total
.of i
& guard vectors for QL CPU time

8,2 11 2.7 17.4

8,4 9 3.6 19.5

8,6 9 5.5 24.7

8,8 6 5.0 21.2

%&ﬁ
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Table 4.5 Test Problem 3 by CSUBSP

no. of vectors e CPU time total
& guard vectors | 2% % 8 | 4 RGG | CPU time
12,2 23 421.9 977.0
12,4 18 483.2 1012.9
12,6 21 794.2 1534.2
12,8 18 919.4 1665.4
12,10 13 880.8 1503.5
12,12 11 948.4 1551.8
Table 4.6 Test Problem 3 by SUBSP
no. of vectors ) . CPU time total
& guard vectors no. of iterations for QL CPU time
12,2 25 16.9 98.7
12,4 20 19.3 99.5
12,6 21 27.9 128.4
12,8 21 36.9 157.2
12,10 13 29.8 118.5
12,12 12 35.2 130.8
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Table 4.7 Test Problem 4 by CSUBSP

no. of vectors . . CPU time total
& guard vectors no. of iterations for RGG | CPU time
20,2 48 2928.2 24855.6
20,4 35 2778.9 20992.8
20,6 29 2896.6 20123.3
20,8 22 2740.6 17394.0
20,10 18 2745.8 16122.8
20,12 18 3321.9 18138.8
20,14 12 2614.5 13431.2
20,16 15 3874.7 18829.2
20,18 12 3641.1 16691.6
20,20 12 4227.0 18405.6
Table 4.8 Test Problem 4 by SUBSP
no. of vectors ) . CPU time total
& guard vectors no. of iterations for QL CPU time
20,2 43 95.7 2842.4
20,4 36 101.2 2749.2
20,6 28 98.3 2401.7
20,8 23 97.7 2232.8
20,10 18 91.1 1953.5
20,12 15 91.0 1799.1
20,14 13 95.9 1752.2
20,16 15 126.6 2195.3
20,18 12 119.2 - 1938.2
20,20 1 125.6 | 1948.6
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Chapter 5
Lanczos Method

5.1 Lanczos algorithm for damped systems

The Lanczos algorithm was introduced in 1950 as an efficient method to extract
some eigenvalues and associated eigenvectors of a symmetric standard eigenproblem.
It can also be used to solve w? M § = K ¢, since this generalized eigenproblem can

be transformed into a standard one which is still symmetric. However, we can avoid

the transformation by working directly with K IMy = —1—2—\1: where
w

K, =K —o M and o is a shift. Although K;' M is not symmetric, it is self-
adjoint with respect to the M inner product defined by (u, VIM = vI M u (see [N3]
for details). Given a starting vector, the Lanczos algorithm generates a sequence of
vectors which are M-orthonormal to each other. These vectors, known as Lanczos
vectors, are used in the Rayleigh-Ritz procedure to transform the original system
into a smaller symmetric tridiagonal system. The solutions of the reduced tridiago-
nal system can be obtained easily and inexpensively. In addition, usually almost
half of the solutions obtained are very good approximates to the eigenpairs. These
advantages make the Lanczos algorithm a favorable method for the solution of large
eigenproblems.

Both matrices of the pencil (A, B) associated with a damped system are inde-
finite. Therefore, the weighted inner-product of a vector is not necessarily positive,
as stated in Chapter 2. Except for this improper inner-product, the rest of the Lanc-
zos algorithm for solving w?M ¥ = K may be applied to solving A Az = B z.
To deduce an algorithm for solving A A z = B z, we proceed by induction as fol-
lows. Assuming that the first j Lanczos vectors (a1, 9, - - - ,qj) have been found,
we describe how to construct the next Lanczos vectc%;. Here, we require that the

g, satisfy the condition q}rﬂ Ag; =0 for all i from 1 to j; that is, the new
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Lanczos vector is A-orthogonal to all the previous Lanczos vectors. To‘ obtain gj 1,

a preliminary vector Ejﬂ is first calculated from the previous vector q; as in the
Krylov sequence.

q+1=B1Ag (5.1.1)

In general, this preliminary vector can be expressed as a linear combination of all

the previous Lanczos vectors and a residual vector; namely,

Qo1 = Qo1 + @0 + BjGjg + G2t (5.1.2)
where q j+11s the residual vector, which is A-orthogonal to all previous Lanczos vec-
tors, and a;, B, €2, - - - are the components of Ejﬂ in the directions of the
previous Lanczos vectors. These component coefficients can be evaluated by impos-

ing the condition of A-orthogonality among the Lanczos vectors. Thus, pre-
multiplying both sides of Eq.(5.1.2) by q;-r A, we obtain

qJTA (-l—j+1 = qJTA {lj+1 + ajq;rA q; + , ‘(5-1-3)
Bj1a Agjq + fj—zq;'rA g2t .-

Here the first term on the right-hand side vanishes due to A-orthogonality, and all
terms after the second vanish for the same reason. Hence, the component of ‘-l-j+1

along q; can be readily obtained through

T -
o = 9 Agj+1 (5.1.4)
' gfAg,

The component of ‘Ij+1 along q;_; may be found similarly by pre-multiplying
Eq.(5.1.2) by qj;A. In this case all terms except the third vanish due to A-

orthogonality, so we have

(5.1.5)
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Similarly, the component of q; > contained in (Lﬂ is found to be

——_
qj2 A Q;

€= ,_J_T_?____J_:tl_ (5.1.6)
q;2AG;2

Making use of Eq.(5.1.1) and the fact that the transpose of a scalar and the scalar

are identical, we obtain
q 2A Q4 = qf ,AB T Ag
=qf AB~ TAq;, (5.1.7)

= qj A qJ -1
Next, expanding (Ij__l in terms of the preceding Lanczos vectors and the residual

vector ﬁj_l as in Eq.(5.1.2), we obtain

qJ A qj_l = qJ A (q;-l + aj 242 + Bj-39;-3 + €494 +...§5.1.8)
Since all terms on the right hand side vanish due to the A-orthogonahty, we achieve
the anticipated result €; 5 = 0. A similar manipulation could be apphed to
Eq.(5.1.2) to demonstrate that all further terms in the expansion of qQ j+1 vanish. In
other words, ffjﬂ can be expressed as the combination of only the previous two

Lanczos vectors and the residual vector. Therefore, we can combine Eq.(5.1.1) and

Eq.(5.1.2) to give the recurrence formula for deriving the residual vector q j+188

(Alj-!»l =B1A q —o; q; — Bj-19-1 (5.1.9)
with o; and B;_; given in Eq.(5.1.4) and Eq.(5.1.5) respectively. The new Lanc-

zos vector is then obtained simply by scaling the residual vector q j+10 ie.,

~

q;+1

qj41 = (5.1.10)

Yj+1

where v, 41 is the pseudo length of q j+1 and is defined as

'YJ+1 = \/(81+1 q_,+1 A qj+l) o : (5.111)
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with ;1 = sgn (ﬁ}rﬂ Aq j+1)- Here we use an extra array & to'stdre the pseudo
length of the Lanczos vectors, which is normalized to be 1 or -1.

In the above derivation, we assumed that v; is not equal to zero. Although
in practice it is highly improbable that a zero y;4 is encountered; we still include
the discussion of this situation for the completeness of the proposed algorithm. For
the indefinite matrix pencil under consideration, there are two possible alternatives
when v; 4 is equal to zero : (1) ﬁj+1 is equal to zero, or (2) (ijﬂ is not equal to
zero. If the first case occurs, which means that we have captured an invariant sub-
space [P1], every Ritz pair is an exact eigenpair of the original system. If the
second case occurs, which implies that we have unfortunately chosen an unlucky
starting vector, we can simply start the procedure over by choosing another starting
vector.

An algorithm for computing the Lanczos vectors is summarized in Box 5.1,
showing that only 14n + 2u(M) + p(C) + v(K) mulﬁplications are required to
generate each new Lanczos vector, where w(M), n(C) represents the number of
operations to compute M x, C x, respectively, and v(K) represents the number of
operations to solve Ky = x for typical n-vectors x, y. The algorithm can take full
advantage of the symmetry and sparsity of the matrices M, C, and K and does not

even need to explicitly form matrices A and B.

5.2 Orthogonality between Lanczos vectors

The algorithm presented above involves orthogonalization against only the two
preceding vectors at each step. In finite precision arithmetic, inevitable rounding
errors in computation will generate vectors that are not orthogonal to each other.
To be precise about the loss of orthogonality between Lanczos vectors, we measure

orthogonality between q; and q; by

k=4 Aq | S CRRY
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The m;; are equal to zero for all k < j and I’ﬂjj| is equal to 1 if the q’s are
orthonormal. In finite precision arithmetic, we might expect these |m; ;| to be at €
level, where € is the machine round-off error unit. The output from a simple Lanc-
zos run, however, shows that the computed m’s are much larger than € and can even
be of the order 1. This loss of orthogonality is unfortunately widespread. To illus-
trate the loss in orthogonality, we run the simple Lanczos algorithm on Test Problem
1. The beam structure shown in Figure 2.3 is divided into five equal segments and
has 10 degrees of freedom. The simple Lanczos algorithm is used to generate 20
Lanczos vectors which is the order of (A, B). We then show in Figure 5.1 the

quantities logyg (|m; j — 8;; 8; |/€) rounded to the next integer, with 3;; being the

J
Kronecker delta function. In exact arithmetic, all these quantities should be zero.
Figure 5.1 shows that the orthogonality relation starts to fail at an early stage of
the calculation and the growth of m’s appears to follow a regular pattern. We may
simulate this pattern in the following way. To include the effect induced by round-

ing errors, we change the three-term recurrence formula Eq.(5.1.9) into
Yi+1Qi+1 7 B1A q; —a;q; —Bj_19;1+ fiv1 (5.2.2)

where the n-vector f;, { accounts for rounding errors introduced during the step and
a's, B's, y's and q's denote the computed quantities. Pre-multiplying Eq.(5.2.2)
by q A and using the definition in Eq.(5.2.1), we obtain

Yi+1 Mj+1k = q;‘I‘A B~ A q; — o Njg — Bj—1Mjax t QI;rA fj+1(5-2-3)
Interchanging the index j and k of Eq.(5.2.3) we obtain a similar expansion :

Yee1Mi+1, = 6 ABTAq —oy mpj —Brog iy + qf Af.{52.4)

From the symmetry of A B~ A, the first term on the right-hand side of Eq.(5.2.3)

and (5.2.4) are equal and therefore can be eliminated by subtraction, resulting in

Yi+1 Mj+1k = Ye+1Mjk+1 T (@ —op)m g + ‘ (5.2.5)
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€

)

Figure 5.1 log;g (

rowlcoll1 2 3 4 5 6 7 8 91011 121314151617 18 1920
1 o101 3 47 8111315161512101213141515
2 0102 357 91114151411111314151717
3 01 2 2 46 8101314131011 1315161716
4 011 34 7 911121111121415161616
5 0 1 23 5 71011 910111314151515
6 011 46 8 9 810111314151515
7 01 2 467 6 8 91213141414
8 0 21556 8 9112131414
9 012 346 7 911121212
10 021356 81011212
11 0 01 3 4 7 8101313
12 0 01 47 9111414
13 0 2 2 6 8101313
14 0125 71010
15 Symme1ttric 022588
16 0115 4
17 01 3 4
18 13 3}
19 1 2
20 1

Br—1Mj k-1 — Bj—1Mj-1x + qf A fie1 — q;-rA P

The last two terms of Eq.(5.2.5) are due to unknown local rounding errors which
are assumed to be at round-off level. We can denote them simply by a number

Vit1k- Thus, we achieve a recurrence that governs the evolution of the m j+1k
Vi+1 Mj+1k = Ye+1Mjk+1 T (@ —oj)mjp + (5.2.6)
Br—1Mj k-1 — BjaMj—1k T ¥j+1x
This recurrence can also be expressed compactly in vector form as

Yi+1Mj+1 = Ty —oym; —Bjomja + 41 (5:2.7)
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where m; 41 and ¥4 are the elements of m;4y and ¥4, respectively, and T is
a tri-diagonal matrix defined in Eq.(5.3.2). This formula states that m;,; is some
combination of m; and m;_ plus the contamination from round-off {4 occurring
at this step. The loss of orthogonality therefore can be viewed as the result of an
amplification of each local error after its introduction into the computation. This
statement is consistent with the phenomenon observed in Figure 5.1.

Full re-orthogonalization. To maintain all the m;,y’s at round-off level, a
full re-orthogonalization (FRO) scheme can be adopted which performs the explicit
orthogonalization of q;.y against all the previous q's. To this end, we add the fol-
lowing Gram-Schmidt orthogonalization step after the three-term recurrence step to

force q j+1 tobe orthogonal to q, . . . , q; up to the round-off level
Pj+1= A ;lj+1
aj+1 - ‘ij+1 - il 8 q; (Q.T Pj'+1)'v , - (5.2.8)
i= : ‘

where §; = qf A q; is 1 or -1. During the summation, the vector p;.j is not
changed to avoid extra 2u(M) + p(C) multiplication of g;.; by A. This modifica-
tion can bring all the s to the round-off level, however an extra 4jn multiplication
is added to the original cost. This additional cost is not small compared to the cost
of performing the three-term recurrence. Indeed, this cost will become dominant
after some steps depending on the costs p(M), p(C) and v(K) relative ton..

Partial re-orthogonalization. The FRO scheme just discussed aims at keeping
all the m’s at € level, where € is the machine round-off error unit. However, current
research [P1, P2] shows that semi-orthogonality; i.e., maintaining all the m’s at \/:
level, between Lanczos vectors generated by KM is sufficient to achieve the
eigensolutions of (M, K) within the desired accuracy. Following this direction, we

examine whether semi-orthogonality is enough to achieve satisfactory eigensolutions
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for (A, B). To this end, we monitor the m;,; when computing a new vector g 4.

As soon as any component of the m;, reaches \/: a full Gram-Schmidt sweep is
done. In this way, re-orthogonalization is performed for only some q’s, rather than
for every q’s. Therefore, this scheme is called partial re-orthogonalization (PRO).
To determine whether re-orthogonalization is required, we need to know all the ele-
ments in m;;. Forming m;, explicitly requires 2jn multiplications, which is actu-
ally half the cost of the re-orthogonalization process. Thus, for economic reasons,
we use an estimated m;,;, represented by Eq.(5.2.7), to determine whether re-
orthogonalization is required. The unknown vector ¥;,; in Eq.(5.2.7) can be
replaced by appropriately chosen random numbers, which are based on a statistical
study to reflect the effect of round-off [S2, S3]. Accordingly, we use the following

recurrence in the algorithm to estimate the level of orthogonality.

1
Mje1= o [Tay —eym; —Bjqmjg + )41 ] (5.2.9)
Yj+1 ' ‘ v

This formula holds for j+1=3 and starts by assuming that n;{ = 81, ny1 = V31

and Ny = 82.

5.3 Reduction to tri-diagonal system
After m steps, we have the Lanczos vectors Q = [qy, . . . , q,,] satisfying the

matrix form of the three-term recurrence formula :
Ym+19m+1€n =BTAQ-QT (5.3.1)

where e,] = (00...01) and T is a tri-diagonal matrix of the coefficients from the

three-term recurrence
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a; By
Y2 a B

T = S (5.3.2)

Ym—~1 Om-1 Bm -1
Ym  Om

These Lanczos vectors are A-orthogonal,; i.e., they satisfy
QTAQ=4A (5.3.3)
where A is the diagonal matrix with diagonal elements §;, which is either 1 or -1.
After pre-multiplying Eq. (5.3.1) by QT A, using Eq.(5.3.3) we can obtain
QTAB1AQ=AT (5.3.4)
Now, we choose the span of the set of Lanczos vectors, Q, as the admissible space
and apply the projection method described in Chapter 3 to obtain a reduced eigen-
problem. Let (®71, Y) be the approximates to the eigenpairs. We rcquir¢ that the
residual vectors be A-orthogonal to the admissible space, that is, |
QTA(B1TAY-YO®1)=0 (5.3.5)
From this relation and Y = Q S, it follows that
ATS-AS®1=0 (5.3.6)
or equivalently
TS=861 (5.3.7)

which is a standard eigenproblem. For the moment, we construct the complex
eigensolutions of this reduced problem by a QR algorithm, which is readily available
in the EISPACK library [E1]. It is believed that a better algorithm can be
developed to take advantage of the fact that T is tri-diagonal. After the solution of
this reduced problem the Ritz values are contained in @ and the Ritz vectors

Y=1[y;,...,¥n] are given by Y = QS. To make the Ritz vectors satisfy
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[y}rij | =1, we can scale the s; such that |sJTAsj | =1 for
Jj=1,...,m. These Ritz pairs are the approximates to the least dominant
eigenpairs of the original system (A, B). To measure the quality of this approxima-

tion, we form the residual vectors given by

_ 1
=BT Ay -y o- (5.3.8)
1

The three-term recurrence formula can be used to simplify the computation of these

residual vectors. Post-multiplying Eq.(5.3.1) by s; leads to

Ym+19m+16n 5 = BTAQs; —QTs (5.3.9)
Making use of T s; = s; 6L and Q s; = y;, we obtain
i
- 1
B 1A)’i =Y é‘f‘= Ym+1 Dm+1 Si (M) (5.3.10)
i

th

where s; (m ) represents the m™ element of the vector s;. That is, the residual vector

can be obtained simply from

Ii = Ym+19m+1 si(m) (5'3'11)
and its inner product can accordingly be obtained from
rT AT = 8,01 Ymt18i(m) (5.3.12)

where in general s; (m) is a complex number. Note that all 3, .1, v,,+1 and s;(m)
are readily available from the Lanczos algorithm and therefore no extra computa-
tional effort is required to form the quantity r,fr Ar;. Since r; = 0 corresponds to
an exact solution, we can measure the quality of the approximate solution by exa-
mining the magnitude of the components of r;. Since rT A r; = 0 does not neces-
sarily imply r; = 0, we have to be cautious about the use of r;r A r; as a measure

of how good the approximation is. ¢



88

5.4 Numerical examples

In this section we use the Lanczos algorithm with the re-orthogonalization

scheme described in the previous sections to find the complex eigenpairs of damped

dynamic systems. To test the effectiveness of the developed algorithm, we first run

the Lanczos algorithm with FRO on Test Problems 1 and 2, with different lumped

damping coefficients, up to the size of the problem even though the algorithm is not

intended for the complete solution of an eigenproblem. Tables 5.1 and 5.2 show the

results obtained from solving Test Problems 1 and 2, respectively. From the solution

of these two groups of problems, we observe the following.

(1) The last residual norm of each case is at the round-off level, which implies that

@)

&)

the computed Lanczos vectors have spanned the whole solution space as
expected. This desirable result exhibits the robustness of the developed algo-
rithm. The Ritz pairs obtained from solving the resulting tri-diagonal system
are all accurate eigensolutions as can be verified with the solutions obtained by
RG or RGG shown in Chapter 2.

The solution of the tri-diagonal system takes much more CPU tim¢ than the
generation of the Lanczos vectors. The tri-diagonal matrix is very close to the
2 by 2 block diagonal form from which the eigenvalues can be readily read out,
as shown in Eq.(2.4.25) and Eq.(2.4.26). Therefore, a more efficient algo-
rithm than the QR algorithm is desired to take advantage of the tri-diagonality
of the matrix T.

In general, the starting vector for the Lanczos algorithm may be chosen arbi-
trarily. However, if the starting vector is orthogonal to any of the eigenvectors
of (A, B), all the Lanczos vectors will also be orthogonal to these eigenvectors.
In practice, round-off errors eventually will introduce components along these
eigenvectors; however, this comes slowly and the convergence to these eigenvec-

tors is deferred. Therefore, we need to avoid the possibility of the starting
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vector being orthogonal to the wanted eigenvectors of the system. Since the
structural system in Test Problem 2 is symmetric, there will be anti-symmetric
modes as well as symmetric modes. If a symmetric starting vector is used, such
as (1,1,...,1), all the Lanczos vectors will be symmetric. Accordingly, all
the anti-symmetric modes of the structure will be suppressed by this biased
starting vector. To obtain all the low-frequency modes, we cannot choose a
symmetric or anti-symmetric vector as the starting vector. This undesirable
situation can usually be avoided by using a random vector as the starting vec-
tor.
To measure the efficiency of the Lanczos algorithm, we compare the CPU time
required to find the solutions by the Lanczos algorithm with the CPU time required
to find the solutions by RG (or RGG), shown in Section 2.5. For the examples

considered, the Lanczos algorithm is comparable to RG and is less expensive than

- RGG. However, the virtue of the Lanczos algorithm is its being able to compute a

small set of eigenpairs. To show this we run 20 and 40 step on Test Problems 1 and
2 respectively with various damping coefficients. Tables 5.3 and 5.4 show the
results for partial solution of various experiments on Test Problems 1 and 2, respec-
tively. We see that the first few eigenpairs can be extracted at a fairly low cost com-
pared to the average cost of a complete solution. This is because the re-
orthogonalization cost is greater at later steps in the Lanczos algorithm.

There are repeated eigenpairs in the ¢ = 0 case of Test Problem 2; that is, 1%
and 2" modes have the same eigenvalues and so on (see Section 2.5). Since the
Lanczos algorithm examines the Krylov subspace spanned by the vectors
(q; , Dq;, qul I ) ”lql), where D = B7IA, it produces multiple eigen-
values sequentially instead of simultaneously [P1]. This mechanism differs from the
subspace iteration algorithm where multiple eigenvalues are obtained almost simul-

taneously. For example, in the partial solution of the ¢ = 0 case of Test Problem 2,
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24 eigenvectors, or 12 complex conjugate pairs (12 modes), are found. But the last
three modes .. .. =i are the 11, 13" and 15% modes instead of the 10%, 11%
and 12" . Therefore, it is possible that some of the multiple eigenpairs associated
with low-frequency modes may be missing in the partial solution obtained by the
Lanczos algorithm.

The three dimensional space truss system in Test Problem 3 contains 120
degrees of freedom. The associated (A, B) is of the order 240. The Lanczos algo-
rithm with the FRO and PRO is used to generate 60 Lanczos vectors. Of the 60
Ritz pairs obtained from these 60 Lanczos vectors, the least dominant 28 agree with
the eigenvalues being approximated with at least 8 digit of accuracy. Similarly, 80
vectors are generated by Lanczos algorithm with the FRO and PRO in the relatively
large system of Test Problem 4, where the associated (A, B) is of the order 1776.
The least dominant 40 of the resulting 80 Ritz pairs agree with the eigenvalues being
approximated with at least 8 digit of accuracy. In other words, on the average only
about two Lanczos vectors are required to capture a new eigenvector for these two
large problems. This implies that the Krylov subspace generated by B~lA is excel-
lent for approximating the least dominant eigenspace of the systems in the above
problems. Table 5.5 and Table 5.6 summarize the results of various experiments on
Test problems 3 and 4 respectively.

The effectiveness and efficiency of the PRO scheme can be examined from the
results in Tables 5.5 and 5.6. By maintaining semi-orthogonality between the Lanc-
zos vectors with the PRO scheme, the resulting Ritz values are as accurate as those
obtained with the FRO scheme. In addition, it is noted that about two thirds of the
re-orthogonalization steps and a portion of the CPU time spent on generating the
Lanczos vectors can be saved by using the PRO scheme instead of the FRO scheme.
That is, some re-orthogonalization effort can be saved without sacrificing accuracy of

the final solution when solving A A z = B z with the PRO scheme, as in the case of
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w?M ¢ = K § [P1]. To measure the efficiency of an algorithm, one can compute
the average cost, defined as the ratio of the total CPU time spent to the number of
satisfactory eigenpairs obtained. The Lanczos algorithm is much more efficient than
the subspace iteration algorithm if one compares the average cost of the Lanczos
algorithm with the average cost of the subspace iteration algorithm, listed in Section
4.3.



Box 5.1 Simple Lanczos Algorithm

Step 1: Operation Count
pick a random vector r
p=Ar 2p(M) + w(C)
solve Bgq = p v(K)
P=Agq 2u(M) + p(C)

1 = sqrt [abs (q" p) ]
8; = sgn(q" p)
P-P/M

q-9/v

solve Br = p

a; = (rTp) - ¥
r-r—oaj-q

oldp = Ar

Yo = sqri{abs (rT oldp)]
8, = sgn (rT oldp)

2n

2n

2n

v(K)

2n

2n

2p(M) + p(C)
2n

store q as ¢,

Loop: Forj=2,3... Operation Count
oldq - q
oldp — p
q=r/%; 2n
P-P/Nj 2n
solve Br = p v(K)
a; = (7 p) - §; 2n
Bj—1= (rT oldp) - 81 2n
r-r—a;- g 2n
r-r —B;_ - oldgq 2n

oldp = Ar

Yj+1 = sqrt [ abs (rT oldp) ]
;41 = sgn (rT oldp)

store q as g;

2pM) + p(C)
2n
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Table 5.1 Full Solution of Test problem 1

item c=0 c=15 | c= 5000
number of Lanczos 80 80 80
vectors generated ,
CPU time spent on 212 | 210 21.0
generating Lanczos vectors
CPU tim t
U time spent on 157.6 | 1127 | 100.9
solving eigenproblem
tal .
total CPU time spenton | 107 5 | 1472 | 135.4
solving the whole problem
the 1 idual
¢lastresidualnom | 4 6e25 | 0.5¢-30 | 0.2¢25

rTAT

Table 5.2 Full Solution of Test problem 2

item c=20 c=35 c = 5000
number of Lanczos 160 160 160
vectors generated
CPU time spent on 1289 | 1290 | 1284
generating Lanczos vectors
i t
CPU time spent on 4923 | 67122 | 7200
solving eigenproblem
tal i t
total CPU time spenton | 0 5 | ggg9 | 936.0
solving the whole problem
the last residual norm. | 4 30 | 0.8¢32 | -0.2¢-19

rTAT
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Table 5.3 Partial Solution of Test problem 1

item c=0|c=5]c= 5000
number of Lanczos 20 20 20
vectors generated
CPU tim
U time spent on 30 | 30 | 30
generating Lanczos vectors
CPU tim t
= time spen” OF 51 | 26 2.8
solving eigenproblem
total CPU tim t
otal CPU time spenton | 157 | g2 8.3
solving the whole problem
ber i
number of satisfactory 10 10 10

eigenpairs obtained

Table 5.4 Partial Solution of Test problem 2

eigenpairs obtained

item c=0|c=51|c=5000
number of Lanczos 40 40 40
vectors generated
CPU time spent o0 146 | 145 | 146
generating Lanczos vectors
CPU ti t
U time spent on 197 | 159 | 19.8
solving eigenproblem
t tim t
oal CPUtme spent on | 454 | 382 | 4222
solving the whole problem
tisfact
number of satisfactory 24 2 22
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Table 5.5 Partial Solution of Test Problem 3

item FRO | PRO |
number of Lanczos 60 60
vectors generated
number of
1770 602
re-orthogonalization
CPU tim t
U time spent on 403 | 326
generating Lanczos vectors
CPU time spent on 508 | 517
solving eigenproblem
ta .
to.ICPUtlmespenton 113.9 | 106.7
solving the whole problem
f satisfactory -
nufnberc? sa a'xc ory 28 28
eigenpairs obtained

Table 5.6 Partial Solution of Test problem 4

item FRO | PRO
number of Lanczos 80 80
vectors generated
number of
3159 | 1246
re-orthogonalization
i t
CPU time spent on 536.6 | 473.5
generating Lanczos vectors
CPU time spent on 100.9 | 101.2
solving eigenproblem
total CPU time spent on | g5 5 | g30.9
solving the whole problem “
ber of satisfact
number of satisfactory 40 40

eigenpairs obtained
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Chapter 6
Solution of Transient Probiems

6.1 Introduction

The equation of motion for a transient dynamic problem is
Mq(t) + Cq(r) + K q(t) = £(r) (6.1.1)

This system of second-order ordinary differential equations, in principle, can be
solved with standard procedures for solving differential equations. However, when
the system is large many procedures become very expensive unless we take advan-
tage of the symmetry and sparseness of the coefficient matrices. In practical
analysis, we are mainly interested in efficient methods. The time-domain methods
currently used to solve structural dynamic problems can be divided into two general
categories : direct integration methods and mode superposition methods.

In direct integration methods, the equations in (6.1.1) are integrated using a
numerical step-by-step procedure. To this end, an approximation of q(t), q(¢) and
ii(t) between discrete time points are assumed, where the form assumed dictates the
accuracy, stability, and cost of the method. The use of the approximation involves
that Eq.(6.1.1) is satisfied only at the discrete points in time instead of at any time
t. Since the nature of damping does not require special consideration in the direct
integration methods, the solution of a generally damped system does not pose addi-
tional difficulty than already exists in the solution of a proportionally damped sys-
tem. Therefore, we need not further elaborate on this category of methods.

In mode superposition methods, the equation of motion Eq.(6.1.1) is
transformed into a set of uncoupled equations so that each one may be treated indi-
vidually using a closed form or a numerical solution. The response of the system
can be obtained by superposition of the solutions of these uncoupled equations.
Unlike direct integration methods where the entire set of equations have to be solved



97

at every time step, in mode superposition methods the solution of only a subset of
uncoupled equations can approximate the response of the system very well. Since
the uncoupled equations associated with a damped system are first-order and
complex-valued, which is different from the second-order, real-valued uncoupled
equations associated with a proportionally damped system, we present a detailed
description for solution in the following section.

In some applications, we want to know the responses or the time histories of
certain quantities at only a few chosen degrees of freedom in a very large system.
Using a direct integration method, however, we must compute the résponses of all
the degrees of freedom at each time step since the responses of all the degrees of
freedom at previous time steps are required for computing the responses of the
desired degrees of freedom at the current time step. If a mode superposition method
is used, we can compute the responses at only tflose required degrees of freedom.

In the analysis of a large undamped dynamic system, the Rayleigh-Ritz method
is often used to reduce the large system of equations into a smaller one for economic
reason. To reduce a large damped dynamic system, the procedures in the general-
ized Rayleigh-Ritz method or the projection method described in Chapter 3 can be
used. For example, the Lanczos vectors Q = [q; , . . . , q,,] generated by the pro-
cedures described in Chapter 5 can be used as the transformation matrix between the
geometric coordinates x(¢) and the generalized coordinates u(?). Substituting the
transformation x(r) = Q u(r) and x(r) = Qu(¢) into the reduced equation of
motion A x(z) — B x(¢) = y(+) and pre-multiplying both sides by QTAB™], we

obtain
QTAB1AQu()-QTAQu() =QTABy(r) (6.1.2)

Using the orthogonality properties QT A Q = A and QT AB™ A Q = A T derived
in Section 5.3, we can simplify Eq.(6.1.2) to

ATu(r) —Au(t)=QTAB y(r) o ,(6_.1,"3)
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or

Tu() —u(@)=AQTAB1y() (6.1.4)
where T is an m by m tri-diagonal matrix and A = A7lis an m by m diagonal
matrix. Note that Eq.(6.1.4) is smaller in size than A x(s) — B x(r) = y(r) and is
only slightly coupled; therefore, it is easier to solve. Since the approximate solution
of x(r) is given by Q u(t), the quality of this approximation depends entirely on
how adequately the assumed set of displacements Q have captured the essential
information of the original system. Although using Lanczos vectors generated from
(M, K) to reduce the original large system of equations to a smaller one has been
proved efficient for the analysis of undamped dynamic systems by [W2] and [N2],

using Lanczos vectors generated from (A, B) to reduce the equations of a damped

system, as shown above, remains to be explored.

6.2 Mode superposition method

To take advantage of the orthonormality properties developed in Section 2.4,
we work with the reduced form of the equation of motion. Since the 2n eigenvec-
tors constitute a complete basis, the state vector x(¢) can be expressed as a linear

combination of these eigenvectors [F1]; that is,
2n
x(1) = >, z; pj(t) = Zp(t) (6.2.1)
j=1

where p() is a vector whose elements p; (1) are generally complex-valued and

Z=[zlzfz....zz,,] (6.2.2)

is the modal matrix which transforms the generalized coordinates p(f) to geometric
coordinates x(1). Substituting Eq.(6.2.1) and x(1) = Z p(¢) into the reduced equa-
tion of motion A x(¢) — B x(¢t) = y(¢) and pre-multiplying both sides by zT, we

obtain
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ZTAZp(t) -ZTBZ p(t) = ZT y(r) (6.2.3)

Making use of the orthonormality properties ZTAZ = A and ZTBZ = A A we
can rewrite Eq.(6.2.3) as

P() = Ap(t) = AZTy(1) (6.2.4)
which simply represents the following set of uncoupled equations
pi(t) =N pi(t) = 8; 2] y(t) = 8; wlf(r) j=123,..2n (6.2.5)

with 8; being 1 for complex modes and 1 or -1 for real modes. These uncoupled
equations can be solved individually. The response of the system under excitation is
obtained by summation of the solutions of these uncoupled equations using
Eq.(6.2.1).

Section 2.2 demonstrated that a pair of eigensolutions can be used to construct
the damped modal equation. Now, we show that a pair of first-order uncoupled
equations, either complex conjugate pair or real pair, corresponds to its second-order
modal equation. To establish this result, we consider the following two homogene-

ous equations

pi() = Ay pi(1) =0 py(t) = Aypo(t) =0 (6.2.6)

which are associated with either a complex conjugate pair or a real pair of eigensolu-

tions. We can transfrom the two first-order equations into a second-order one as
) = (A + X)) () + (AN ) (1) = O (6.2.7)

This can be easily verified by substituting r(r) = p;(t) + p,(¢) into the equation.
Recall that A\j+X; = —2£w and \jA, = w? for both underdamped modes and over-
damped modes, so that Eq.(6.2.7) can be written as

ri(t) + 28w (1) + @2 ry(t) = 0 (6.2.8)

%ﬁ
which is simply a damped modal equation, as shown in Section 2.2. That is, the
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two equations in Eq.(6.2.6) correspond to a vibration mode.

Mode superposition method can be applied in two alternative ways to evaluate
the response of a system under excitation : (1) the mode displacement method and
(2) mode acceleration method.

In the mode displacement method, 2m (m = n) values of p;(r), obtained by
solving the first 2m equations of Eq.(6.2.5), are substituted directly into a truncated

form of Eq.(6.2.1), i.e., into
2m
x(1) = 2 z; p;(t) (6.2.9)
j=1

to obtain the approximate solution x(¢r). In the mode-acceleration method,

Eq.(6.2.5) is solved for p;(¢) giving
1 .
pi(1) = 5= [p;(1) = 8; 2] y(1) ] (6.2.10)
J
This is then substituted into Eq.(6.2.9) to give the approximation

2m 1 . T

x) = 2z =170 =8 z7yO) ] (621D
j=

However, the second term of Eq.(6.2.11) need not be limited to the 2m modes.

This is because of the following :

1
z; XT d; z}r y(¢)

Tty

= ZA AT ZT y(r)

= B7ly(r) (6.2.12)
X1 o f(r)

] o M {0}
-K7If(r)

- %)
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The last term is simply a pseudo-static response that is equivalent to the solution of a
static analysis at time r. Hence, in the mode-acceleration method the approximate
solution is

& 1 .

x(1) = 2, z Pi®) - B7ly(r) (6.2.13)

j=1 J
The summation in Eq.(6.2.13) represents a dynamic correction, which is added to
the pseudo-static response to give an approximate solution. Note that if the spatial
distribution of f(¢), and hence y(r), does not vary with time, the pseudo-static dis-
placement vector needs to be solved only once.

From the foregoing discussion, it is apparent that the solution obtained by the
mode acceleration method is actually the solution obtained by the mode displace-
ment method plus the pseudo-static response due to the remaining higher modes.
Hence, with the same number of modes, the mode acceleration method will yield
better results than the mode displacement method for certain classes of problems in
which the static effect plays a dominant role. If all n modes are included in the

summation, then both methods will give the exact solution.

6.3 Closed form solution

The complete solution for an uncoupled equation of motion, derived in the last
section, may be written as the sum of the homogeneous solution and the particular
solution. The homogeneous solution is due to the initial conditions while the partic-
ular solution is due to the externally applied loadings. We evaluate both solution in
closed form in this section.

Free vibration. The homogeneous solution of an uncoupled equation given in

Eq.(6.2.5) is represented by

p;(1) = p;(0)e™* (6.3.1)

where the participation factor p;(0) is determined from the initial conditions of the
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system by
p;(0) = 8; z] A x(0) (6.3.2)
which can be expanded as
p;j(0) =38; [A; wf M q(0) + w[ C q(0) + w] M g(0)] (6.3.3)

That is, p;(0) depends on both the initial displacements and velocities of the system.
We see from Eq.(6.3.3) that the participation factor can be either complex-valued or
real-valued depending on whether the corresponding mode is underdamped or over-
damped. Combining the j* complex conjugate pair of solution, we obtain the

response due to this underdamped mode as

p:(0) e @, + 5;(0) ™' @,
J J J

; (6.3.4)

This is the sum of complex conjugate pair of vectors and therefore is real-valued.
To identify the physical implication of this modal solution, we can rearrange this for-
mulation to obtain the entirely real-valued expression. For this pufpose, we can

express p;(0) in terms of its modulus and phase angle as
_ 1 e,
pi(0) = S aje (6.3.5)

Recall o; = —§;w; + &;i° and ®; = ®g; + ®y;i° and using the identity

PCTALD cos(w;1+6;) + sin(®;r+6; i*, we can write Eq.(6.3.4) as
jETYj P q

aj e—ﬁ,m,t[ (I)RJCOS(G)JI'*‘BJ) - q)IjSlIl((I)JI +91) ] (6.36)

The above equation indicates that the j# underdamped modal solution consists of
the sum of two exponentially decaying harmonic motions with a circular frequency,
@; and a damping ratio, §;. The component motions lag behind one another by
one-quarter the period f‘j = 2m/ ®;, and they are in different spatial configura-
tions. We note that each point of the system undergﬁs a simple harmonic motion;

however, the configuration of the system does not remain constant but changes
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continuously, repeating itself at intervals fj. The quantity fj is thus known as the
j* damped natural period of the system.
Combining the j* real pair of solution, we obtain the response due to this

overdamped mode as

pJ(O) eB]l ‘I’j + 51(0) eBl‘ ‘i,]

(6.3.7)
This indicates that the j* overdamped modal solution consists of the superposition
of two exponentially decaying functions, which are in different spatial configura-
tions. Hence, the resulting motion is non-oscillatory. The configuration of the sys-
tem is not constant, either.

The response of the system to arbitrary initial conditions is thus given by the
superposition of the various modal solutions

x(t) = 3 a; e $9[ D cos(@;1+6;) — Dysin(@; 1 +9;) ]

j=1
S B - Bt B

+ 2 [pj(0)e® ¥, + p;(0)e®’ ¥; ] (6.3.8)

j=1
Forced vibration. The particular solution to the Eq.(6.2.5) for an arbitrary

loading f(¢) may be written in terms of a convolution integral
t

pit)=28; wl [ eMO f(2) dr (6.3.9)

For complex modes, it is desirable to express the solution in terms of the real-valued
quantities so that they may be physically interpreted. To this end, we recall that the

impulse response function for a SDOF damped system with unit mass is

hit) = e 5% sing s (6.3.10)
wj

and its derivative with respect to time is

hi(t) = e 57 cosdjr — Ejwh;(r) (6.3.11)
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In terms of these well-defined functions, we have the following expression
e = [ h(t) + gujhi(e) ] + &;h;() (6.3.12)
Accordingly, the real and imaginary part of p;(t) is represented by
r .
pRj(t) = ¢gj L [Rij(—7) + ijjhj(t“‘f) 1f(v) d
t
- ¢;§L ®; hj(t =) f(z) dr (6.3.13a)
t .
p;(t) = ¢1§JE) [hj(t—T) + &jw;h;(t—) | f(r) d
t
+ bR '() ®; hj(t—) f(r) d7 (6.3.13b)
and the response due to the j# mode is represented by
2 [ @g; pr;(t) — Py P () ] (6.3.14)
Eq.(6.3.14) indicates that the j* underdamped modal solution consists of two oscil-
latory motions with spatial configurations ®g;, ®y; and temporal variations pg; (1),
py;(1) respectively. | |
The response due to the j # overdamped mode is simply
t x amel B .
[; W[, P f(x) dr ] ¥ + [§; WS P gy dr 1 F; (6.3.15)
Again, this indicates that the j”' overdamped modal solution consists of two
exponentially decaying motions with spatial configurations ¥, ¥ ; and decaying fac-

tors B, B j Tespectively.
The response of the system due to applied loadings can thus be represented by

the superposition of the tributary modal solutions; that is,

x0) =2 5 [y pry(1) = @y py )] +
J=
RIOR AR OFZIR 7 (6.3.16)
i=1

A A L ”
& 6L P gy de) ¥, ]
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The general response of the system to bothvinitial conditions and externally
applied loadings can be obtained simply by combining the solutions represented by
Eq.(6.3.8) and (6.3.16).

We see from the above discussion that the eigenvectors of a damped system still
represent the vibration mode shapes of the system just as those of a undamped sys-
tem. Although the undamped mode, obtained by analyzing an undamped system, is
represented by only one single shape, the damped mode is composed of linear com-
bination of two shapes, each of which undergoes different temporal variation. If we
let a damped system vibrate freely, all points in the system undergo motion at the
same frequency but at a different phase angle. In other words, not all points of the
system necessarily pass through their equilibrium position simultaneously as they do
in the undamped mode. As a result, there is no stationary node in the damped
mode. If the undamped mode can be thought of as a stzanding wave pattern, the
damped mode can be thought of as a traveling wave 'through' the system. The
representation of this travelling damped mode requires continuous description over

the period of this mode and is thus much more laborious.

6.4 Numerical solution by exact method

In the last section, convolution integral expressions were obtained for the solu-
tion of uncoupled equations to arbitrary excitations. For simple forms of excitation
these expressions can be evaluated in closed form. For more complicated forms of
excitation a numerical scheme is required. Two general approaches can be used for
this purpose : (1) interpolation of the excitation, or (2) approximation of derivatives
in the differential equation. In many practical dynamic problems, e.g., the so-called
discrete time system, the excitation function is not known in the form of an analyti-
cal expression but rather is supplied at a set of discrete points. A direct and accurate

procedure for obtaining the response to this kind of excitation is to interpolate the
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excitation function and to solve the resulting equation exactly. In this approach,
only the unknown excitation function is interpolated and no other numerical approx-
imations in the integration process is made. For this reason it is called the exact
method. In the following discussion, a piecewise linear interpolation of the excitation
function is used, and the exact solution of the resulting modal equation is derived
for the evaluation of the response quantities.

An uncoupled equation, which is a first-order differential equation, can be

expressed as

p) —=Ap(t) = 8w () = f(t) (6.4.1)

Assuming that f (¢) is represented by a piecewise linear function, Eq.(6.4.1) may be

written as
) —2p@) =f + gL (6.4.2)
where
At = t;4q — 1 (6.4.3)
Af = fi1 —f; (6.4.4)

Eq.(6.4.2) is valid between two consecutive discrete points i and i +1 and the solu-

tion, for 0 = r = As, is
p(ty=a +bt+ce! (6.4.5)

where a, b and ¢ are constants of integration. Substituting this solution into
Eq.(6.4.2) and using the initial condition p(f;) = p(0), we obtain the following

expressions for the integration constants

_ 1, 1
a = ..xjri - (6.4.6)

p=-L A& (6.4.7)
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¢ =p0) —a (6.4.8)

For overdamped modes, these expressions are in terms of real quantities and

can be directly substituted into Eq.(6.4.5) to find the response of the system by the
mode superposition method. For underdamped modes, however, these expressions
are in terms of complex quantities. To obtain the real and imaginary parts of p (t)

at any time ¢, we express the associated complex quantities in terms of their real and

imaginary parts as

p@) =pr(t) + pt) i’ (6.4.9)
A=oag+ ai (6.4.10)
f=fR+Ai1 (6.4.11)

éf_z éfi.*. ._A;.fl_‘*

Ar Ar vk (6.4.12)

Substituting Eqs.(6.4.10), (6.4,11) and (6.4.12) into Eqs.(6.4.6) and (6.4.7) and

simplifying them, we obtain the following expressions

2 2 ] 3
_ aR—aI _ ZQRUI rAfR
2 232 2 2\2 ——
agr (agt+af) (ag+af) At 6.4.13
ay - 2(!R(II aﬁ—alz ﬁ ( o )
2 T2 22
(e+af)?  (ekted) || A
R Y
2 2
(1121'{’&12 GR+GI R
+
ap __oR h
a}%+a12 alzz-%-alz
3 aR a[ b rAf 3
— — R
br a}%+a12 a;zﬁ-alz At 6414
by| oy aRr IR E| (6.4.14)
aﬁ+a12 ‘alzz+a12 ‘ At
) I
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Now, the solution p(¢) for 0 = ¢t < At can be conveniently expresséd as

Pr() ag + brt

o R 6415
e*'cos(ayt) —e™'sin(ay) | (Pr(0)—agr
™ sin(ayt) ¢ cos(ayt) {PI(O)"“I}

Equation (6.4.15) can be used as a recurrence formula for evaluating the
response p; . at time ;1 given the response p; at time #;. This procedure is imple-
mented in FEAP for computing the dynamic response of damped systems. As an
example, we solve two cases of the beam structure in Test Problem 1, one with
damper ¢ = 0 and the other with ¢ = 5. Figure 6.1 shows the detailed description
of the structure and the applied loading. We plot displacement-time history where
the loading is applied. Figure 6.2 shows the results of ¢ = 0 case for using (1) only
the first mode and (2) the first ten modes. The response ‘obtain‘ed by using ten
modes differs only slightly from the response obtained by using one modé. Figure
6.3 shows the results of ¢ = 5 case for using (1) only the first mode, (2) the first
two modes, and (3) the first ten modes. It is shown in Section 2.5 that for this sys-
tem the first mode is an overdamped mode while the others are underdamped
modes. We see that the response obtained by using ten modes differs only slightly
from the response obtained by using two modes. Therefore, the mode displacement
method is very effective for this particular problem. The presence of damper not
only reduces the displacement but also makes the occurrence of maximum displace-

ment earlier.
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Figure 6.2 mode-displacement solution (¢ = 0) .
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Chapter 7
Conclusions

7.1 Summary

Both the subspace iteration algorithm and the Lanczos algorithm have been
extended to extract the least dominant set of complex eigensolutions of a damped
system. It should be noted that the amount of matrix-vector multiplications in one
iteration of the subspace iteration algorithm is about the same as the one in the
Lanczos algorithm. The Lanczos algorithm does not require iteration, therefore, it
is faster than the subspace iteration algorithm. This is because the cost of matrix-
vector multiplications dominates in large scale problems. However, the subspace
iteration algorithm is stable while the Lanczos algorithm is very vulnerable to the
round-off effect. The subspace iteration algorithm has advantages over the Lanczos
algorithm and vice versa. In the case of solutions of parametric problems or many
problems with only slight changes, the Lanczos algorithm used as the first step and
the subspace iteration algorithm used for the other steps is recommended.

The eigensolutions are used to construct a set of decoupled equations which
correspond to the damped modal equations of the dynamic system. Each of the
decoupled equations is solved independently. The modal solutions are then super-
posed to give the response of the dynamic system. Frequently, only the first few

modes are needed to approximate the solution satisfactorily.

7.2 Future Research

The Lanczos algorithm presented is efficient for the solution of viscously
damped dynamic systems. It is suggested that an efficient scheme to solve the result-
ing tri-diagonal system be developed. This will further enhance the efficiency of the
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Lanczos algorithm.

We have shown by examples that the Krylov subspace generated from B~lA is
excellent in approximating the least dominant eigenspace of the damped systems con-
sidered. A rigorous discussion of the property of the Krylov subspace is desired
because it will give an a priori estimation on how close the approximating space is to
the desired eigenspace.

In the solution of an undamped dynamic problem, the Sturm sequence property
is used to check whether the eigensolutions obtained are the required least dominant
ones; however, there is no similar procedure for damped systems. To ascertain that
there are no eigensolutions missed in the calculation, an efficient procedure to give
the number of eigensolutions in a specified interval is desired.

The present study considers only damped nongyroscopic systems, whose damp-
ing matrix is symmetric. In a conservative gyroscopic system the damping matrix,
sometimes referred to as Coriolis matrix, is skew-symmetric. The éigenvalu&s of
such a system are pure imaginary and the eigenvectors are complex. More gen-
erally, the damping matrix may be non-symmetric if it includes both gyroscopic
forces and viscous forces. The Lanczos method can be applied to solve the conser-
vative gyroscopic system, as shown in [B2]. For the general system, the two-sided
Lanczos algorithm, which generates both right and left vectors, must be used to
accommodate the asymmetry of the C matrix. The subspace iteration algorithm,
however, can still be applied in the present form to solve the general system since it
does not require that the associated matrices be symmetric.

Although it is conventional to use the mode-displacement method or the mode-
acceleration method to solve the transient dynamic problem; one can also use the
Lanczos vectors generated from (A, B) to reduce the original system into a smaller
tri-diagonal one, as suggested in Section 6.1. Fu%her study should be directed

towards quantitying the relative effectiveness and efficiency of this alternative
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method.

In using the mode superposition method, if the frequency of a certain mode is
in the neighborhood of the frequency content of the applied loading, then the contri-
bution of this mode must be included in the summation even though the participa-
tion factor of this mode is small. This is because of resonance where the response
due to this mode is greatly amplified. Knowledge of eigenvalues is essential to avoid
resonance in designing the systems under dynamic loadings. It is therefore recom--
mended that one compare the frequency of a mode with the frequency contents of
the loading, in addition to calculating the participation factor, to decide whether this
mode should be included in the mode superposition. Moreover, in performing
design of systems uncertainty in loading must be accommodated. In order to have
reliable sensitivity analysis all modes within a specified range must be known, not

just those excited by the input load specified.
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