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ARTICLE

Objective Quantification of Fluorescence Intensity on the
Corneal Surface Using a Modified Slit-lamp Technique

Bo Tan, Ph.D., Yixiu Zhou, Ph.D., Tatyana Svitova, Ph.D., and Meng C. Lin, O.D., Ph.D.

Objectives: To improve the digital quantification of fluorescence intensity
of sodium fluorescein instilled on corneal surface by modifying a slit lamp
hardware and performing computerized processing of captured digital
images.
Methods: The optics of a slit lamp were modified to remove corneal Purkinje
reflection and to expand the illuminated area on the cornea, followed by
postexperiment image processing to minimize the influence of uneven
illumination. To demonstrate the feasibility and reliability of this new
technique, we applied it to objective grading of corneal staining with sodium
fluorescein. The results of computerized grading were compared with the
results obtained using standard subjective grading of corneal staining.
Objective digital grades, staining area, and staining pixel with manually
and automatically defined threshold (SP-M and SP-A) were calculated for
both original and processed images. Standard subjective grades of the original
images were performed by 13 trained observers using National Eye Institute
(NEI), Efron, and CCLRU grading scales. A series of linear regression
analyses were performed to investigate the correlation between objective and
subjective grades.
Results: Digital grades of the captured images were correlated significantly
with subjective grades. After minimization of the artifact caused by the
nonuniform illumination, correlations between digital and subjective
grading were mostly strengthened. In some cases, digital grading of corneal
staining was more sensitive than subjective grading methods when
differentiating subtle differences of corneal staining.
Conclusions: Modifications performed on commercial slit-lamp hardware
and the proposed digital image–processing technique have improved the
quality of captured images for semiautomated quantification of fluorescein
intensity on the cornea.

Key Words: Fluorescence—Corneal staining—Image processing—
Fluorescein quenching.

(Eye & Contact Lens 2013;39: 239–246)

F luorescent dyes have been commonly used as tracers for many
clinical applications. Sodium fluorescein, in particular, has been

broadly used to evaluate ocular surface integrity. In addition to sodium
fluorescein dye, other derivatives with larger molecular weights
(e.g., fluorescein isothiocyanate and Fluorosoft) have also been useful
in examining precorneal and pre- and post-contact lens tear film, as
well as evaluating contact lens fitting. Therefore, it is essential to
objectively analyze fluorescence images in a quantitative manner.
It is not a trivial task to quantify the fluorescence intensity on the

ocular surface because it is affected by several factors, including but
not limited to concentration and thickness of fluorescein solution,1

both of which are influenced by tear volume, tear film thickness,
tear mixing, and tear turnover rate. An objective quantification of
fluorescence intensity in the eye requires fluorometry. However, in
clinical practice, it can be achieved alternatively by computer-aided
image analysis of green color, which has been shown to attain
superior inter- and intraobserver repeatability, compared with sub-
jective quantification made by clinicians.2To perform objective
image analysis, a high-quality fluorescence image of anterior ocular
surface recorded by slit-lamp imaging system is one of the prereq-
uisites. Nevertheless, most commercially available slit lamps have
limitations in providing fluorescence images with the quality suit-
able for objective quantifications. Figure 1 shows a typical corneal
fluorescence image taken by a conventional slit lamp, Nikon FS-2
(Nikon Corporation, Ophthalmic Instruments Section, Tokyo,
Japan). There is a bright corneal Purkinje reflection or “hot spot”
formed by the excitation light that is reflected off the cornea and
then travels through the imaging path of the slit lamp. With this slit
lamp, it is also difficult to illuminate uniformly the entire cornea
without a diffuser when the cornea is in focus, especially for an eye
with a large corneal diameter. Furthermore, given the optics of a slit
lamp and curvatures of the human cornea, it is reasonable to assume
that the illuminated light cannot be evenly distributed without mod-
ification of the current setup. Uneven illumination may obscure
subtle characteristics of the corneal surface highlighted by fluores-
cein dyes or introduce optical artifacts.
Another aspect to consider in capturing good quality images is

the concentration and volume of instilled sodium fluorescein
solutions. Because the amount of fluorescein dye instilled onto
the eye is commonly not quantitatively controlled in clinical
practice, the initial concentration of fluorescein dye solution on the
ocular surface on instillation could vary by an unknown magnitude.
Thus, quenching can occur in some cases. It is therefore imperative
to control initial fluorescein concentration and volume instilled
onto eyes to avoid quenching and to help capture an image with
a fluorescein concentration corresponding to optimal fluorescence
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intensity within the region where fluorescence intensity is linear
with its concentration.
In this study, we present a method for hardware modification to

a commercial slit lamp and a postexperiment image-processing
technique as well as recommending an optimal sodium fluorescein
concentration all aimed to capture high-quality ocular surface
images for semiautomated quantification of fluorescein intensity.

MATERIALS AND METHODS

Modification of Hardware and
Image-Processing Technique
A Nikon FS-2 slit lamp was modified by replacing its standard

Nikon 35-mm film camera with a digital Canon EOS 7D camera
(Canon, Inc., Tokyo, Japan). This digital camera allows an operator
to release the shutter without having a lens attached. A ring
adapter, Novoflex Lens Mount Adapter—Nikon Lens to Canon
EOS Body (NOVOFLEX, Memmingen, Germany)—was used to
mount the camera onto the original Nikon-designed mount on the
slit lamp. We then followed the instructions provided by the pre-
viously published technical report3 to make the modification,
including mounting the camera body and synchronizing the shutter
release with an external flash.
Removal of the “hot spot” in corneal fluorescence images has

been demonstrated by Cox and Fonn.4 However, the excitation
filter used in their work was not readily available. In this study,
we used an advanced filter set with similar cutoff wavelength and
higher overall transmission efficiency: band-pass filter “ET470/
40X” (wavelength, 470 nm; bandwidth [full width at half maximum],
40 nm) and long-pass filter “HQ510LP” (wavelength, 510 nm;
band pass, .510 nm) (Chroma Technology Corp, Bellows Falls,
VT). In Appendix 1, we have explained the necessity of this mod-
ification. The observation with the slit lamp should certainly be
conducted in a dark room so that no stray light entered the optical
system. Therefore, only the illumination from the slit-lamp light
tower could pass through the excitation filter, reach the cornea, and
excite the fluorescein dye. After replacing the filters, we also
expanded the illumination area by enlarging the working distance
(WD) between the cornea and the light source of the slit lamp, as
shown in Appendix 1.

Although an improved corneal fluorescence image was obtained
after the modifications mentioned above, uneven illumination on the
cornea was still a challenge. The artificial patterns from uneven
illumination could potentially mislead clinicians. Some clinicians, if
noticing the patterns, would rotate the illumination tower of the slit
lamp to try different incident angles of illumination. But if the
patterns were neglected, a misjudgment of the fluorescence intensity
on the cornea might occur. We then developed a method of
postexperiment image processing to convert the original image into
an image taken at quasi-even illumination. The image processing
was summarized by a mathematical model as shown in equation 1.
The validation of this equation is explained in Appendix 2.

True fluorescence intensity ¼
Original fluorescence intensity of each pixel

Weight of each pixel
:

(1)

Subjects
Subjects between 18 and 36 years old (18 women and 4 men)

with an ocular surface disease index score of less than 13 were
recruited through campus fliers and direct referrals. Informed
consent was obtained from all study participants after a full
description of the goals, potential risks and benefits, and procedures
of the studies. This research project adhered to the tenets of the
Declaration of Helsinki; it was approved by an institutional review
board (Committee for Protection of Human Subjects, University of
California, Berkeley, CA) and was HIPAA-compliant.

Determination of the Concentration and Volume
of Sodium Fluorescein
To capture the optimal fluorescence image, we should find

a fluorescein concentration yielding optimal fluorescence intensity.
An experiment was conducted using a tear film model formed by
a thin film of sodium fluorescein solution “sandwiched” by two
coverslips. We captured the fluorescence images of the tear film
model at 12 different concentration levels (between 0.01% and
2%) and then measured the average pixel intensity in the image using
image analysis software, Vision Assistant 2010, NI LabVIEW Vision
Development Module (LabView; National Instruments, Austin, TX).
The experiment results are shown in Appendix 3.

Protocol
The procedure for imaging corneal staining in this study is as

follows:

1. Instill sodium fluorescein solution (2% Fluorescein Ophthalmic
Solution was purchased from Leiter’s Pharmacy, San Jose, CA)
with a pipette onto the conjunctiva of the subject’s right eye and
instruct the subject to close the eye and roll the eyeball to
distribute the fluorescein dye evenly.

2. Ask the subject to put his/her chin on pre-cleaned chin rest and
avoid moving.

3. Align the slit lamp, focus the camera on the subject’s right
cornea, and snap the first image immediately after asking the
subject to blink (to minimize the artifact caused by tear film
break-up or local quenching effect).

4. Take the images with an interval of 30 sec until fluorescence
intensity appeared to drop. In doing so, we were able to capture
the optimal fluorescence intensity.

FIG. 1. Limitation of current imaging technique for corneal stain-
ing: hot spot; nonuniform and small illumination area.
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5. Repeat steps 1 to 4 for the subject’s left eye.
6. Image a white diffusive surface with the same setting of the

illumination to obtain the intensity distribution of the excitation
light so that postexperiment processing could be performed on
the images.

Data Analysis
To objectively grade the digital image of corneal staining and

investigate the correlation between objective grading and sub-
jective grading system, we first defined the criteria for quantifica-
tion of the corneal staining severity. We used two factors: staining
area (SA) and staining pixels (SP). Staining area was defined as the
ratio of the pixel number of the corneal SA, defined by a freehand
shape, to the total pixel number in the area of interest (equation 2).
Staining pixel was the ratio of the pixel number of corneal staining,
defined by the thresholding method, to the total number of pixels in
the area of interest (equation 3). The software for image processing
(including the image processing based on equation 1 to create
a quasi-even illumination) was Vision Assistant 2010, NI Lab-
VIEW Vision Development Module.

SA ¼ Number of pixel in the bounded staining area

Number of pixel in the whole area of interest
· 100%;

(2)

SP ¼ Number of staining pixel

Number of pixel in the whole area of interest
· 100%:

(3)

To calculate SA, one observer needed to visually inspect the
image and use a freehand tool provided by Vision Assistant to
define a region containing all the staining points. The pixels within
the bounded region could be counted by the software and then the
SA was calculated.
To calculate SP, we assigned a threshold value of the intensity so

that the staining pixels could stand out and be counted. Two

techniques were applied to define the threshold value. One was to
define the threshold value manually by inspecting each image and
adjusting the threshold value until most SPs in the image stood out.
The other was to assign a threshold value in a more “automatic” and
statistical way. The calculation of this automatic threshold value was
based on the statistics of the ratios of the “manual” threshold value
and the maximum intensity of each image. We first selected the
appropriate threshold value for each image manually and then calcu-
lated the individual ratio of each threshold value to the highest inten-
sity of that image. The average of all the ratios from all the images
was calculated as a generalized ratio. Then, the “automatic” threshold
value for each image could be obtained by multiplying the general-
ized ratio to that image’s maximum intensity. Once the threshold,
obtained from either manual or automatic method, was assigned to
the image, SP could be counted by the software. Therefore, we
obtained two SP values—manually defined threshold (SP-M) and
automatically defined threshold (SP-A) for each image.

Comparison Between Subjective and Objective
Grading Systems
To validate the objective grades, SA, SP-M, and SP-A, we

investigated the correlations between these factors and the subjective
grades of corneal staining, given that subjective grading has been
used extensively to quantify and monitor corneal staining. The
subjective gradings were conducted by 13 trained observers, who
were familiar with corneal staining observed by slit lamp, all from
the UC Berkeley School of Optometry. The age of the graders was
between 24 and 42 years. The graders’ clinical years of experience
ranged 2 to 18. A training session was given to the graders to clarify
any confusion of using the grading scales and to minimize the
variability of using the scales. We provided the graders with stan-
dardized descriptions and illustrations of each grading system,
which allowed for quantification of the severity of corneal staining.
The subjective grading scales used in our study included CCLRU,5

Efron,6 and Nation Eye Institute (NEI) scales, which are common
grading scales in eye clinics. All grading systems provided

FIG. 2. Step-by-step improvement
of the quality of corneal fluorescence
image.
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a standardized definition of each grade while Efron and CCLRU
scales also included image illustrations. To minimize the interob-
server variability, all 13 graders used the same computer with the
same monitor (Dell Precision T7500 (Round Rock, TX) with Intel
Xeon CPU E5620 (Santa Clara, CA) and ATI FirePro V4800 pro-
fessional graphics card [Markham, Ontario, Canada]) and display
setting (1920 · 1200) in one same room with consistent lighting.
The average of the subjective grades on each original image was
calculated. A linear ordinary least square regression model was used
to measure the relationship between the subjective grades and each
of the three objective grades. Such subjective-objective correlations
for both the original and the post-processed images with quasi-even
illumination were analyzed. Based on the subjective grades, the
images we provided to the graders had a wide range of severity
of corneal staining. Mean subjective grading scores were 0 to
2.95 for CCLRU (type), 0 to 3.85 for CCLRU (extend), 0 to 2.60
for CCLRU (depth), 0 to 3.10 for Efron, and 0.10 to 2.45 for NEI.

RESULTS
An improved corneal fluorescence image was obtained after

hardware modifications. Figure 2 illustrates the step-by-step
improvement from the modifications, including integrating the

external flash, replacing the filter set, disqualifying the diffuser,
and increasing the WD between the slit lamp and the anterior
ocular surface. We then conducted a test to validate the proposed
image-processing method of adjusting pixel intensity weighted by
illumination distribution based on equation 1. The result is shown
in Figure 3, where (a), (b), and (c) are the original fluorescence
image, the illumination distribution image, and the intensity-weighted
images processed from image (a), respectively, with their corre-
sponding histograms shown in Figure 3(d–f). The histogram
representing the emission intensity distribution after intensity-
weighted processing (Fig. 3f) was the narrowest compared with
the histograms of the original fluorescence image (Fig. 3d) and
the illumination distribution image (an image of apiece of diffu-
sive paper [Fig. 3e]).
The comparison of the three intensity distributions validated

the procedure we used to process the original fluorescence
images by using equation 1 to generate new images, which were
equivalent to the images captured under a uniform illumination.
To record the illumination distribution profile used to calculate
the weight of pixel intensity in equation 1, we imaged a white
diffusive surface every time after we imaged a subject and then
normalized the intensity of each pixel based on the maximum
intensity in the image.

FIG. 3. “Uniform” illumination after postexperiment processing based on equation 1 by assigning the
intensity weight on each pixel. From upper left to lower right are subfigure (a) the original fluorescence
image; (b) the illumination distribution image; (c) the intensity-weighted images processed from image
and with their corresponding histograms shown in (d), (e), and (f), respectively.

TABLE 1. Summary of the Correlations of SP (SP-M and SP-A) and SA in Original Images With Five Subjective Grades

CCLRU (Type) CCLRU (Depth) CCLRU (Extent) Efron NEI

SP-M 1.36+0.11x 1.03+0.09x 1.08+0.31x 1.29+0.18x 1.07+0.11x
R2=0.11; P=0.15 R2=0.13; P=0.12 R2=0.56; P=0.00 R2=0.30; P=0.01 R2=0.24; P=0.03

SP-A 1.40+0.08x 1.04+0.07x 1.33+0.18x 1.43+0.11x 1.14+0.07x
R2=0.13; P=0.12 R2=0.18; P=0.07 R2=0.37; P=0.00 R2=0.21; P=0.04 R2=0.20; P=0.05

SA 1.29+0.01x 0.94+0.01x 0.78+004x 1.15+0.02x 1+0.01x
R2=0.13; P=0.12 R2=0.19; P=0.05 R2=0.81; P=0.00 R2=0.40; P=0.00 R2=0.28; P=0.02

SA, staining area; SP, staining pixel; SP-A, automatically defined threshold; SP-M, manually defined threshold.
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Correlation Between Subjective and Objective
Grading Systems
A series of linear regression analyses were performed to

investigate the correlation between objective grades (of both
original and processed images), including SP-M, SP-A, and SA,
and subjective grades (of original images only), including
CCLRU (type, extent, and depth), Efron, and NEI. Tables 1
and 2 present linear correlations between each pair of objective
and subjective grades. All three objective grades, obtained from
original images, were significantly correlated with CCLRU
(extent), Efron, and NEI grades, whereas correlations between
SP-M and CCLRU (type and depth), SP-A and CCLRU (type
and depth), and SA and CCLRU (type) were insignificant. After
postexperiment processing of the images (to generate quasi-even
illumination), SP-M and SP-A showed significant correlations
with all subjective grades, and the correlations were stronger.
For example, the R2 of SP-A and CCLRU (extent) increased from
0.37 to 0.61 after quasi-even illumination was applied. We also
noted that the correlation between SA and subjected grades was
not enhanced. Therefore, quasi-evenly illuminated images
improved the predictability of objective grading with SP-M and
SP-A. The correlation with CCLRU type and depth became sig-
nificant after uniformity of illumination was improved.

Differentiation Capability of Objective
Grading System
The objective grading system presented in this study provides

a reliable alternative method to the subjective grading system,
with its own advantages, for example, enhanced differentiation
capability. This capability was revealed in the following exper-
iment. The average subjective grades of staining extent based on
the CCLRU scale are same for the two images in Figure 4
(CCLRU [extent]=3.0), although some graders might sense the
difference when comparing them side-by-side. However, the
objective grading system did yield different grading scores:

SP-M=6.15% and SP-A=10.13% for the left image and
SP-M=3.71% and SP-A=5.73% for the right image, indicating
a mildly higher staining extent in the left image. Conclusively,
objective grading was superior to the subjective grading scale
in its capability to quantify minor differences between those
two images.

DISCUSSION
In the present study, we first modified a commercial slit lamp by

replacing the original film camera with a new digital camera,
upgrading the filter set for fluorescence imaging, and enlarging the
WD. In addition to the modification of the hardware, we introduced
an additional step for image processing to generate a quasi-even
illumination and minimize the artifacts caused by uneven
illumination.
With modifications of a commercial slit lamp and postexperi-

ment image-processing technique, we demonstrated that our
objective grading system provided an alternative tool to a subjective
grading system. The quantification technique of fluorescence
presented in this study has its own advantage. The digitization of
high-quality fluorescence images can contribute to longitudinal
study of anterior ocular health assessment. Also, a computer-aided
analysis of a digital image has better differentiation capability than
a subjective grading system (e.g., 256 intensity levels in an 8-bit
grayscale image vs. 0–4 score [9 levels if in a 0.5 increment]).
However, further improvement is still needed. First, to create

quasi-even illumination, a small amount of noise was introduced
with manipulation of emission intensity because of texture on the
diffusive surface. A smoother but still 100% diffusive surface,
working as the “white” background for obtaining illumination
intensity distribution, is desired to reduce the noise. Second,
uneven distribution of tear film can be misleading when observers
search for corneal staining spots. Specifically, the intensity of stain-
ing spots in one region may be darker than the background (tear

TABLE 2. Summary of the Correlations of SP (SP-M and SP-A) and SA in Processed Images (Quasi-evenly Illuminated Images) With Five Subjective
Grades

CCLRU (Type) CCLRU (Depth) CCLRU (Extent) Efron NEI

SP-M 1.24+0.20x 0.94+0.15x 1.20+0.32x 1.25+0.24x 1.04+0.16x
R2=0.30; P=0.01 R2=0.33; P=0.01 R2=0.47; P=0.00 R2=0.44; P=0.00 R2=0.37; P=0.00

SP-A 1.30+0.13x 0.99+0.10x 1.11+0.28x 1.31+0.16x 1.10+0.10x
R2=0.20; P=0.05 R2=0.23; P=0.03 R2=0.61; P=0.00 R2=0.33; P=0.01 R2=0.25; P=0.02

SA 1.47+0.006x 1.10+0.005x 1.01+0.03x 1.35+0.01x 1.15+0.008x
R2=0.04; P=0.41 R2=0.05; P=0.33 R2=0.68; P=0.00 R2=0.22; P=0.04 R2=0.12; P=0.13

SA, staining area; SP, staining pixel; SP-A, automatically defined threshold; SP-M, manually defined threshold.

FIG. 4. Differentiation capability of
objective grading—Extent: CCLRU=3.0
for temporal zone at both images versus
(left) SP-M=6.15% and SP-A=10.13%
versus (right) SP-M=3.71% and SP-
A=5.73%. SP, staining pixel; SP-M,
manually defined threshold; SP-A, auto-
matically defined threshold.
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film) in another region. Therefore, smaller subzones with relatively
consistent background need to be defined and analyzed separately.
Third, other objective grades, for example, max, mean, and stan-
dard deviation of fluorescence intensity, are worth investigation.
For example, when using the standard deviation or intensity gra-
dient, which better represents the dispersion of the stains than the
sum of pixels of the region, we might see a higher correlation with
CCLRU (depth). Lastly, the fluorescence intensity variation with
decreasing concentration of dye can also be used to quantify tear
volume, tear mixing, and tear turnover rate with certain types of
calibration.
In conclusion, the quality of corneal surface fluorescence images

was significantly improved with slit lamp hardware modification
and postexperiment image processing. To demonstrate the advan-
tages of the improved imaging technique, objective grading was
performed on the improved corneal staining images before and
after postexperiment image processing. The statistically significant
correlation with the subjective grading system illustrated the
reliability of our objective grading technique. The present objective
grading of corneal staining is also superior to the subjective
grading method in its ability to differentiate small differences of
corneal staining. In our future studies, we will investigate potential
applications of the present imaging technique to quantify tear
retention time on the ocular surface of normal and dry eyes as well
as post-contact lens tear mixing.
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Appendix 1: MODIFICATIONS OF
ILLUMINATION SYSTEM OF NIKON

FS-2 SLIT LAMP

Removing the “Hot Spot” From Corneal
Fluorescence Images

To remove the hot spot from the corneal staining image, we
first needed to locate the source of this bright spot. The fluorescence
image is formed by the emission light from the fluorescein dye
excited by blue excitation light. The emission light has a longer
wavelength than the excitation light, hence lower energy than the
absorbed radiation. Sodium fluorescein has excitation and emis-
sion spectrum peaks of approximately 495 nm and 521 nm,
respectively.7 Nikon FS-2 was originally equipped with cobalt
blue and yellow filters to enhance fluorescence image quality by
separating excitation and emission lights. However, excitation
and emission lights have an overlap in their spectra at approxi-
mately 500 nm. The blue and yellow filters used in most conven-
tional slit lamps also have an overlap of the wavelength
passbands. Therefore, in the original slit lamp setup, a yellow
filter could not completely block the excitation beams reflected
off the curved cornea surface, which resulted in a portion of
reflection leaking into the imaging path and forming a saturated
reflection spot on the cornea fluorescence images because of cur-
vature of cornea. To correct for this overlap in wavelengths, we
replaced the original filters with a new filter set, band-pass filter
“ET470/40X” and long-pass filter “HQ510LP,” originally made
for epifluorescence microscopes, which could separate the excita-
tion and the emission light because of the separation of band pass,
as shown in Figure 5.

Expanding the Illumination Area
To generate a larger illumination zone covering the entire

cornea (i.e., limbus to limbus), we initially tried a diffuser. The
illumination did cover the whole anterior ocular surface with the
diffuser in front of the eye, but the illumination intensity dropped
significantly. The reduction of intensity made it difficult to preview
and focus the camera unless we increased ISO of the camera,
which would in turn lead to increased imaging noise. An alternate
solution was to expand the illumination area by increasing the WD,
that is, moving the slit lamp farther away from the cornea. Thus,
the image distance (the distance between the focusing lens and
camera) should be shortened to maintain the best focus of the
cornea on the camera image surface. We therefore moved the lens
mount toward the camera. Figure 5 illustrates the modification.

Appendix 2: POSTEXPERIMENT IMAGE
PROCESSING TO GENERATE QUASI-EVEN

ILLUMINATION
To investigate the question of how the distribution of the

illumination could be “transformed” into quasi-even coverage so
that a single photo could provide an overview of the true condition
of the cornea, we first examined the correlation between the inten-
sity distribution of excitation and emission lights.
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We imaged two pieces of paper, a white paper with the
characteristics of nearly 100% diffusive reflection and a black paper
soaked with sodium fluorescein solution. Green light was used as
illumination to image the white paper, whereas blue light (white light
through ET470/40X filter) was used to illuminate the sodium
fluorescein–soaked black paper. We extracted the green color from
the original RGB photos (Fig. 6). Then, linear regression was per-
formed on the intensity of each two corresponding pixels in the two
photos. The regression result confirmed a significant and strong
linear correlation between the illumination (excitation) and fluores-
cence (emission) intensity (R2=0.9638, P=0.000). The correlation
regression coefficients are shown in Table 3. A mathematical model
(equation 1) was then built to transform the pixel intensity in the
original fluorescence image by applying a “weight” that was deter-
mined by the normalized intensity of each pixel. The post-processed
image with transformed pixel intensity is equivalent to an image
under quasi-even illumination.

Appendix 3: DETERMINATION OF INITIAL
CONCENTRATION AND VOLUME OF SODIUM

FLUORESCEIN
Quenching Effect

We developed a test to find the optimal fluorescein concen-
tration to get the maximum fluorescence intensity in linear regime.
Figure 7 shows an investigation of the correlation relationship
between fluorescence intensity and fluorescein concentration. We
found that the fluorescein concentration corresponding to

FIG. 6. “Green” images extracted from RGB photos of a white
100% diffusive paper (A) and a black sodium fluorescein–soaked
paper (B). The slit lamp and the camera had the same setting except
for adding the blue filter when imaging the black paper.

FIG. 5. Diagram of modified FS-2 slit lamp, including the increased working distance enlarged the area
illuminated by the light source on the cornea transmission efficiency of the new excitation (ET470/40X)
and emission (HQ510LP) filters (generated from the specifications provided on www.chroma.com).

TABLE 3. Linear Correlation Between Excitation and Emission
Intensity

Emission intensity Coefficient
Standard
Error P

95% Confidence
Interval

Excitation
intensity

0.856 0.00004 0.000 0.855974–0.8561276
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the maximum fluorescence intensity was approximately 0.2% for
a 10-mm layer of sodium fluorescein solution, which has similar
dimension as pre-lens and post-lens tear film.8,9 This result is con-
sistent with the finding by another study, although in that study
a fluorometer was used to monitor and record emission intensity.10

To maintain the optimal fluorescein concentration (0.2%)
producing high fluorescence intensity, the initial concentration and
volume of dye solution instilled onto the eye, tear volume, tear
turnover rate, and the elapsed time between dye instillation and

observation (snapshot) had to be considered. The postulated
average values of these factors were obtained from previously
published literature: average tear turnover rate is between 11% and
44% per minute10–16; average tear volume is between 6.2 and
9.7 mL11,17; and the concentration of fluorescein in the eye at time
(t) after the instillation is given by11

Ct ¼ C0expð2 ktÞ; (4)

where C0 is the initial concentration and k is the turnover rate.
Therefore, we can derive an equation to calculate the initial con-
centration of fluorescein sodium solution instilled into the eye. This
initial concentration of fluorescein sodium in eyes could guarantee
the capture of optimal fluorescence after 60 to 70 sec, the time
needed to align and focus the slit lamp and for the fluorescein
sodium to dilute evenly in human tears. The equation is

C0 ¼ CtexpðktÞ: (5)

Therefore, assuming the lowest initial concentration (the max
tear volume 9.7 mL) after instillation and the fastest turnover rate
(44% per minute), C0 should be 0.33%. We determined that 2 mL
2% sodium fluorescein solution should be instilled into the eye to
capture the optimal fluorescence (at the concentration of ;0.2%).
It should be noted that the tear volume and tear turnover rate vary
from one subject to another, so we took multiple images after 60 sec
until fluorescence intensity began to decrease, thereby accounting
for individual patient variations to capture optimal fluorescence
intensity.

FIG. 7. Demonstration of quenching effect in a tear film model
(fluorescein solution sandwiched by two coverslips); the concentra-
tion showing optimal fluorescence is 0.2%.
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