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Abstract

Rett syndrome (RTT) is a pervasive developmental disorder caused by mutations in

MECP2. Complete loss of MECP2 function in males causes congenital encephalopathy,

neurodevelopmental arrest, and early lethality. Induced pluripotent stem cell (iPSC) lines

from male patients harboring mutations in MECP2, along with control lines from their unaf-

fected fathers, give us an opportunity to identify some of the earliest cellular and molecular

changes associated with MECP2 loss-of-function (LOF). We differentiated iPSC-derived

neural progenitor cells (NPCs) using retinoic acid (RA) and found that astrocyte differentia-

tion is perturbed in iPSC lines derived from two different patients. Using highly stringent

quantitative proteomic analyses, we found that LIN28, a gene important for cell fate regula-

tion and developmental timing, is upregulated in mutant NPCs compared to WT controls.

Overexpression of LIN28 protein in control NPCs suppressed astrocyte differentiation and

reduced neuronal synapse density, whereas downregulation of LIN28 expression in mutant

NPCs partially rescued this synaptic deficiency. These results indicate that the pathophysi-

ology of RTT may be caused in part by misregulation of developmental timing in neural pro-

genitors, and the subsequent consequences of this disruption on neuronal and glial

differentiation.
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Introduction

In RTT, female patients are heterozygous for mutations in MECP2 and therefore display mosa-

icism due to either balanced or non-balanced X-inactivation[1, 2]. In rare cases, male patients

with MECP2 mutations have survived to term and beyond[3]. In such patients, the MECP2

protein is either entirely absent or is significantly mutated in all cells. Male MECP2 deficiency

manifests as neonatal encephalopathy, accompanied by deficits in dendritic arborization and

synaptic spines in the neocortex, and death during the first few years of life[4].

Human iPSCs are emerging as a powerful experimental paradigm to model complex

human neurological disorders[5–10]. Models of RTT using female patient-derived iPSCs and

genome-edited human embryonic stem cells (hESCs) have been useful in highlighting deficits

in neuronal synapse maturation and activity[5, 6, 9–11], both hallmarks of cells harboring

MECP2 mutations in vivo [12–14]. Additionally, in mouse models, glia have been shown to

actively contribute to the pathophysiology of RTT [15–18]. However, how MECP2 mutations

affect glial development is not well understood.

We used male patient-derived iPSCs as an in vitro human disease model of complete

MECP2 LOF to identify molecular pathways that may underlie the cellular pathophysiology of

RTT. We derived forebrain progenitors and forebrain neurons by directed differentiation of

human pluripotent stem cells (hPSCs) from two patient samples[19, 20]. Following RA treat-

ment, we observed profound differences in the ability of MECP2 mutant NPCs to differentiate

into GFAP-positive glia. By combining isotopic protein labeling with mass spectrometry, we

found significantly reduced levels of many astrocytic markers in mutant cultures. In additional

proteomic experiments, we identified abnormal upregulation of LIN28 in mutant NPCs. As

LIN28 is a known developmental driver important for neural differentiation and its expression

level was inversely correlated with the ability to generate GFAP-positive glia[21, 22], we

hypothesized that LIN28 is regulated by MECP2 and that its misregulation in patient NPCs

may affect astrocytic differentiation.

Results

MECP2-mutant NPCs show perturbed neuronal and glial differentiation

To investigate how MECP2 deficiency affects neural differentiation in vitro, we used previously

generated and characterized iPSC lines reprogrammed from two male patients, with either an

early termination of MECP2 translation (Q83X) or a polar-to-hydrophobic amino acid substi-

tution in the methyl-CpG-binding domain (N126I) (Fig 1A) [11]. We used iPSCs derived

from their respective unaffected fathers (WT83 and WT126) as controls, and all NPCs were

differentiated by directed differentiation in serum-free conditions[19]. The absence of MECP2

expression in Q83X mutant NPCs and neurons was verified by immunofluorescence (Fig 1B).

Smaller soma[5, 23, 24] and smaller nuclei[9, 25] have been observed in MECP2-deficient neu-

rons compared to WT. However, NPCs derived from MECP2-mutant patients iPSCs appeared

to be similar to controls and did not show reduced nuclear size (Fig 1C), consistent with a pre-

vious report that nuclei were smaller in mutant neurons but not in NPCs derived from

genome-edited MECP2-mutant hESCs[9].

Following neural differentiation of control and MECP2-mutant cultures, we observed per-

sistent differences in the expression levels of two commonly used markers for neurons and

glia, MAP2 and GFAP (Fig 1D–1H). Analysis of cell populations by flow cytometry revealed a

slightly higher percentage of MAP2-expressing cells and a lower percentage of GFAP-express-

ing cells in Q83X cultures compared to WT83 cultures (Fig 1D; S1A Fig). A clear reduction in

GFAP-positive cells was also observed in the N126I-mutant culture, although the percentage
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of MAP2-positive cells was also somewhat reduced (S1B Fig). We used ECL-based Western

blots, immunofluorescence staining, infrared fluorescence (IRFL)-based Odyssey Western

blots, and IRFL-based In-Cell Westerns to quantitate the differences in Q83X cultures (Fig

1E–1H). We consistently observed increased MAP2 and decreased GFAP expression levels in

Q83X-mutant lines at 3 weeks after RA treatment (Fig 1F), indicating increased neuron-to-glia

ratios in mutant cultures compared to WT. After 5 weeks of culture, the differences in lysates

were no longer statistically significant, but there was a clear trend of increased neuronal MAP2

and decreased glial GFAP expression that supported our other results from 3-week cultures

(Fig 1H).

SILAC and quantitative proteomic screening reveals astrocyte markers are

decreased in MECP2-mutant NPCs

To identify the molecular changes underlying this decreased ability for MECP2-mutant NPCs

to differentiate into glia, we applied stable isotope labeling by amino acids in cell culture

(SILAC) with quantitative multidimensional protein identification technology (MudPIT)

mass spectrometry (MS)-based shotgun proteomics[26–28]. By metabolically incorporating

heavy isotopically labeled amino acids into the synthesized proteins, one culture produces a

“heavy” version of each protein, allowing the mass spectrometer to discriminate between

“heavy” labeled proteins from one culture and unlabeled “light” proteins from a second culture

(Fig 2A and 2B). By mixing the “light” and “heavy” extracts in a 1:1 ratio, we quantitatively

compared their proteomes. SILAC labeling of iPSC cultures that had been terminally differen-

tiated with RA treatment had no overt effect on neuronal morphology (S2A Fig) and all cul-

tures displayed > 94% peptide labeling efficiency (S2B Fig).

MECP2 has been reported to regulate gene expression at multiple levels including tran-

scriptional, post-transcriptional, and RNA processing levels[9, 29, 30]. Therefore, we hypothe-

sized that MECP2 mutations cause quantifiable changes in the proteomes of iPSC-derived

neurons compared to WT neurons. Indeed, our proteomic analysis unveiled hundreds of per-

turbed proteins (Fig 2). In order to narrow our focus to only the proteins most perturbed in

both MECP2 mutant populations, we used two distinct analytical paradigms, both of which

involved determining ratios of “light” to “heavy” proteins to calculate the Mutant / WT ratio.

In the Ratio of Ratios (RoR) paradigm (Fig 2A), quantified proteins are normalized using a

common internal standard that can accurately correct for incomplete labeling and other

instrument-based biases[31]. In the Label Swap (LS) paradigm (Fig 2B), we generated two

ratios for each protein from four samples[32, 33]. In this way, we focused on those proteins

that were significantly altered in both RTT affected son / paternal control comparisons.

We first analyzed proteomes of the Q83X patient relative to the paternal WT83 control

with the RoR paradigm and found three proteins—ALDOC, S100B, and GFAP—were all

Fig 1. NPCs and neuronal cultures derived from male patients with MECP2 mutations and their unaffected fathers show differential

neuron-to-glia ratios. A. Diagram of MECP2 showing the relative positions of mutations found in Q83X and N126I patients.B. MECP2

staining (in red) in NPCs and neurons derived from WT hESCs, WT83 iPSCs, and Q83X iPSCs. Upper panels, NPCs were stained with

anti-Nestin antibodies (in green), and lower panels, neurons with anti-MAP2 antibodies (in green).C. Comparison of average nuclear area

and perimeter in WT83 and Q83X NPCs. NPCs were stained with anti-Nestin antibodies (in green), and nuclei with Hoechst 33342 (in

blue). Scale bar is 50 μm. p = 0.342 by a one-tailed unpaired t-test. All p-values>0.05 are labeled as “n.s.” (not significant).D. Flow

cytometry data showing percentage of MAP2+ and GFAP+ cells in 3-week-old RA-treated cultures from WT83 and Q83X NPCs.E.

Representative In-Cell Western images showing MAP2, GFAP, and beta-Actin staining in 3-week-old RA-treated WT83 and Q83X NPCs.

F. Quantification of the In-Cell Western experiment shown in E. �� p-value<0.02 and ���� p-value<0.0001 by a two-tailed unpaired t-test.

G. Immunofluorescence images showing MAP2 and GFAP expression in 5-week-old RA-treated cultures from WT83 and Q83X NPCs.

Scale bar is 100 μm. H. Quantification of Odyssey Western blots showing relative MAP2 and GFAP expression in protein extracts from

5-week-old RA-treated cultures from WT83 and Q83X NPCs. p = 0.108 for MAP2 and p = 0.051 for GFAP.

https://doi.org/10.1371/journal.pone.0212553.g001
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downregulated by at least 2-fold (p-value<0.05; Fig 2C). Next, we investigated if these proteins

were downregulated in both ratios with a p value <0.05 using the LS approach. All three key

astrocytic markers were expressed at lower levels in the Q83X cultures (Fig 2D). We then

tested N126I iPSCs and consistently found that two (GFAP and S100B) of the three key astro-

cytic markers had at least a 1.5-fold decrease in expression and a t-test p-value <0.05 (Fig 2E).

Lastly, we examined the proteomes of N126I mutant cells with the LS paradigm and again

found that GFAP and S100B met our inclusion criteria (Fig 2F). The joint probability that a

protein is found downregulated by chance using all of our inclusion criteria in both Q83X and

N126I cells is estimated to be 0.0018 (Fig 2G; refer to Statistical analysis of SILAC results in

the Materials and methods section).

To investigate whether or not astrocytes were selectively affected, we systematically

searched for proteins that were mapped to known neural cell type-specific genes in our proteo-

mic datasets (Fig 2H; S2C Fig, S1 Table). The cell type-specific genes were based on published

data generated from cell type-specific FACS of postnatal mouse forebrain and transcriptome

analysis[34]. Overall, both neuronal and astrocytic proteins were affected in both the Q83X

and N126I mutant cultures differentiated with RA. Furthermore, we also made intersectional

lists of perturbed proteins found in our datasets with markers that had been identified in

human cortical spheroid cultures (hCS) derived from iPSCs[35] (S5 Fig, S1 Table). In that

study by Sloan et al., hCS-derived astrocytes were immunopanned using HepaCAM, transcrip-

tome-profiled between Day 96 and Day 495, and were clustered into Early, Middle, and Late

pseudotimes. The proteins we identified remarkably spanned all pseudotimes (S6A–S6C Fig),

as well as some mature astrocyte markers that overlapped with human primary astrocytes

(S5D Fig). Interestingly, even though our cultures had only been differentiated for 21 days, we

found perturbations of numerous astrocyte proteins in the mutant cultures that were enriched

relatively late in hCS cultures and in mature astrocytes. Altogether, these discovery-based

quantitative proteomic analyses demonstrate that multiple astrocytic markers are significantly

downregulated in neural cultures from two distinct male RTT patient-derived iPSC lines.

MECP2-mutant NPCs aberrantly regulate LIN28

Protein level changes at the NPC stage can affect major signaling pathways crucial for terminal

cell fate decisions. We hypothesized that these changes could account for the differences in

astrocyte markers observed in our MECP2-mutant differentiated cultures. Using our intersec-

tional SILAC approach to compare the proteomes of undifferentiated WT83 and Q83X NPCs,

we found that LIN28, a gene previously implicated in repressing glial differentiation, was one

of the most highly and consistently upregulated proteins by both the RoR and LS approaches

(Fig 3A and 3B). To rule out variability that can be introduced during directed differentiation,

we verified that all NPC lines used were>90% NCAM-positive, and only ~10% p75-positive

Fig 2. Deep quantitative proteomic analyses of SILAC-labeled WT and MECP2 mutant (Mut) 3-week-old differentiated cultures. A. Diagram of

the Ratio of Ratios (RoR) paradigm. “Heavy” denotes SILAC labeled (Arg+10 and Lys+8) cultures. “Light” denotes unlabeled cultures. N� 3

cultures. B. Diagram of the Label Swap (LS) paradigm. N� 4 cultures. C. Volcano plot showing confidently quantified proteins by LC-MS in WT83

and Q83X comparison by the RoR paradigm. The blue dotted line demarcates proteins that have a t-test p-value< 0.05 (FDR = 0.14) and that are

downregulated by at least 2-fold. N = 8327 proteins.D. Scatter plot showing all confidently quantified proteins by LC-MS in WT83 and Q83X

comparison by the LS paradigm that are significantly differentially expressed. N = 5105 significant proteins, t-test p-value< 0.05 (FDR = 0.14). E.

Volcano plot showing confidently quantified proteins by LC-MS in WT126 and N126I comparison by the RoR paradigm. The blue dotted line

demarcates proteins that have a t-test p-value< 0.05 (FDR = 0.17) and that are downregulated by at least 1.5-fold. N = 9076 proteins. F. Scatter plot

showing all confidently quantified proteins by LC-MS in WT126 and N126I comparison by the LS paradigm that are significantly differentially

expressed. N = 4884 significant proteins, t-test p-value< 0.05 (FDR = 0.14).G. Schematic diagram showing the identification of GFAP and S100B at

the intersection of the two SILAC approaches (RoR and LS) and the two independent MECP2 mutations (Q83X and N126I).H. Summary of the

numbers of neural cell type-specific proteins quantified in the RoR and LS datasets.

https://doi.org/10.1371/journal.pone.0212553.g002
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(S3A Fig). SILAC labeling of Q83X and N126I cultures had no overt effect on NPC morphol-

ogy (S3B Fig) and all cultures displayed >95% peptide labeling efficiency (S3C Fig).

We verified significantly increased LIN28 expression in multiple clonal lines of Q83X using

traditional and Odyssey Western blots (Fig 3C–3G). Remarkably, N126I NPCs also displayed

high LIN28 expression compared to passage-matched WT NPCs (Fig 3E, right blot). We also

compared the expression of LIN28 at different NPC passages and found that by passage 8,

LIN28 expression could not be detected by ECL (S3D Fig). Using a slightly modified culture

protocol, NPCs can be propagated stably over >20 passages with the addition of BDNF (see

Establishment of stable NPCs and serial passaging in the Materials and methods section).

We used the Odyssey Western to compare LIN28 expression levels in serially passaged NPCs,

and observed that LIN28 was clearly upregulated in the Q83X clones (Fig 3F and 3G; S3E Fig).

To address the concern that the age of the control did not match the probands and that age-

related epigenetic factors may play a role in the expression of LIN28, we also generated iso-

genic genome-edited MECP2 -/- hESCs, which were similarly differentiated and serially pas-

saged as NPCs (S6 Fig). At the first passage assayed, MECP2 -/- NPCs had significantly higher

levels of LIN28 compared to passage-matched isogenic WT NPCs (Fig 3H). However, expres-

sion decreased to WT levels in later passages (Fig 3I). These analyses clearly show that the

expression of LIN28 is significantly upregulated in NPCs that lack MECP2 function. However,

it is important to note that the serial passaging experiments show that LIN28 expression

changes dynamically over time in culture. Indeed, another study using hPSC-derived NPCs

demonstrated a similar phenomenon[36]. Thus, MECP2-mutant NPCs may be unable to regu-

late LIN28 expression effectively over time relative to WT NPCs at equivalent passages.

Overexpression of LIN28 represses glial differentiation in MECP2-mutant

NPCs

LIN28 overexpression can repress glial differentiation in mouse embryonal carcinoma cells

treated with RA[21]. Persistent expression of LIN28 in hPSC-derived neural progenitors has

also been linked to inefficient glial differentiation in a different study[22], suggesting that ele-

vated levels of LIN28 expression in MECP2-mutant NPCs could account for the observed

astrocyte phenotype. To test this hypothesis, we overexpressed LIN28 in NPCs using a

LIN28-expressing lentivirus (Fig 3K), and then further differentiated them for 3 weeks. In

these cells, we found that MAP2 and GFAP expression were skewed in the same direction as in

Q83X cultures (Fig 3J and 3L). Viral LIN28 expression persisted in the 3-week cultures without

any adverse effects on viability or morphology (Fig 3K). In contrast, in our control iPSC lines,

Fig 3. LIN28 expression is elevated in MECP2 mutant NPCs and results in suppression of GFAP expression. A. Volcano plot

showing confidently quantified proteins by LC-MS in WT83 and Q83X comparison by the RoR paradigm. The red dotted line

demarcates proteins that have a t-test p-value< 0.05 (FDR = 0.15) and that are upregulated by at least 2-fold. N = 10662 proteins.

B. Scatter plot showing all confidently quantified proteins by LC-MS in WT83 and Q83X comparison by the LS paradigm

that are significantly differentially expressed. N = 5502 significant proteins, t-test p-value< 0.05 (FDR = 0.15). C. Enhanced

chemiluminescence (ECL)-based Western blot of LIN28 expression in WT83 and Q83X NPC extracts. D. Quantification of ECL-

based Western blot bands. For all bar graphs in D-L, � p-value<0.05, �� p-value<0.02, ��� p-value<0.001, and ���� p-value<

0.0001 by a two-tailed unpaired t-test. E. IRFL-based Odyssey Western blot of LIN28 (green) and beta-Actin (red) expression in

WT83, Q83X, WT126, and N126I NPC extracts. For WT83 and Q83X, two different sets of clones were used. F. Quantification of

LIN28 expression using Odyssey Western blots in WT83 and two clones of Q83X NPCs harvested on the 1st, 3rd, and 5th passages

after thawing. G. Averaged LIN28 expression in the three NPC passages shown in F. H. Quantification of LIN28 expression using

Odyssey Western blots in WT and MECP2 -/- hESC-derived NPCs harvested on the 1st, 3rd, and 5th passages after thawing. I.

Averaged LIN28 expression in the three NPC passages shown in H. J.Odyssey Western blots showing expression of MAP2 (upper

blot, green), GFAP (lower blot, green), and beta-Actin (red), in uninfected (Control) or LIN28-overexpressing (+LIN28) WT83

NPCs after 3 weeks of differentiation. K. Odyssey Western blots showing expression of LIN28 (green) and beta-Actin (red), in

uninfected (Control) or LIN28-overexpressing (+LIN28) WT83 NPCs after 3 weeks of differentiation. L. Quantification of IRFL-

based Western blot bands for MAP2 and GFAP shown in J.

https://doi.org/10.1371/journal.pone.0212553.g003
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RA treatment following withdrawal of mitogens induced robust glial differentiation in NPCs.

Furthermore, we found that GFAP expression was suppressed and MAP2 expression was

enhanced more dramatically after forced LIN28 expression in WT83 cultures compared to

mutant Q83X cultures (Fig 3L and Fig 1F, respectively).

LIN28 overexpression decreases synapse formation in MECP2-mutant

neurons

Neurons differentiated from RTT patient NPCs have been reported to display deficits in syn-

apse development[5]. We also observed that SILAC analysis in the 3-week-old neuronal cul-

tures also identified downregulation of neuron-specific proteins such as SNAP25, STMN2,

CALB1, and SYT1 (S2C Fig). As astrocytic signals regulate synapse formation[37–39], we next

wanted to determine whether neurons derived from our mutant lines had a defect in synapse

formation. Therefore, we quantified excitatory and inhibitory synapse densities after 5 weeks

of culture (Fig 4A–4D). Q83X neurons displayed significantly reduced Synapsin-positive pre-

synaptic puncta, whereas N126I neurons did not show a consistent trend based on Synapsin

quantification alone (Fig 4C and 4D). We also compared excitatory and inhibitory synapse

numbers in WT83, Q83X, and N126I cultures by quantifying numbers of PSD95-positive

puncta and VGAT-positive puncta co-localized with Synapsin. We found that both excitatory

and inhibitory synapses were significantly reduced in Q83X and N126I cultures compared to

WT83 (Fig 4C and 4D). By comparing the percentage of Synapsin puncta that either co-local-

ized with PSD95 or VGAT, we observed that VGAT-positive inhibitory puncta were more sig-

nificantly reduced compared to PSD95-stained glutamatergic puncta in the mutant cultures

(Fig 4E), indicating that our patient iPSC-derived neurons are capable of organizing into syn-

aptic puncta when presynaptic vesicles are present, but exhibit an overall deficiency in synaptic

maturation at both excitatory and inhibitory synapses.

Since LIN28 overexpression in WT NPCs could alter proportions of neuronal versus glial

differentiation, we wanted to follow the consequence of LIN28 misregulation in more mature

differentiated cultures. We found that WT83 cultures overexpressing LIN28 had reduced syn-

aptic densities compared to WT83 neurons (Fig 4F and 4H). This synaptic reduction was most

significant in PSD95-positive excitatory synapses (Fig 4H), though there was also a trend of

reduction in VGAT-positive inhibitory synapses and Synapsin puncta. Thus, LIN28 overex-

pression can phenocopy the reduced synaptic density observed in MECP2-mutant neurons.

Conversely, we knocked down LIN28 expression in order to test whether it was sufficient to

rescue neuronal synapses. When we introduced LIN28 shRNA in Q83X NPCs, the overall den-

sity of Synapsin puncta increased significantly (Fig 4G and 4I). However, these “new” puncta

appeared less mature and were not significantly labeled with either PSD95 or VGAT (Fig 4I).

Thus, LIN28 misregulation at the progenitor stage may contribute to the astrocytic and synap-

tic phenotype observed in cultures derived from MECP2 mutant human iPSCs.

MECP2 interacts with the LIN28 promoter

A previous ChIP-seq study had identified an interaction of the REST complex with the LIN28
promoter[40]. Given that MECP2 is recruited by REST as a co-repressor[41], we reasoned that

MECP2 could also associate with the LIN28 promoter. We performed chromatin immunopre-

cipitation of MECP2-bound genomic DNA in both WT83 iPSCs and NPCs, and found that

indeed the MECP2 ChIP interaction was enriched >20-fold compared to control IgG in both

cell types (S4 Fig). Enrichment of MECP2 to promoter regions in iPSCs is not that surprising

as MECP2 protein expression is detectable in undifferentiated hPSCs[5, 9, 42], and in neurons,

where MECP2 is highly expressed, it is thought to bind to DNA nearly as abundantly as the
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histone octamer[43]. The directionality of the target gene expression is likely to be context-

dependent. The level of enrichment observed is comparable to MECP2 recruitment to the

BDNF promoter, a known target of MECP2[44]. These results further strengthen our hypothe-

sis that MECP2 directly regulates LIN28 expression in NPCs, which may in turn contribute to

the glial defect during terminal differentiation of MECP2-mutant NPCs. At present, whether

the interaction of MECP2 with the LIN28 promoter is direct or indirect via REST remains

unclear. Future molecular studies are required to explore additional MECP2-binding sites on

the LIN28 promoter and interrogate its epigenetic status before and after RA treatment.

Discussion

In this study, we found that male RTT patient-derived NPCs treated with RA skew toward

neuron differentiation at the expense of glial cells. Using an unbiased discovery-based proteo-

mic approach, we found that overexpression of LIN28 during this early proliferation may

be responsible for the observed astrocyte-deficit. LIN28 has previously been linked to progeni-

tor self-renewal and neuron-to-glia cell fate decisions[21, 22, 36, 45, 46]. Here, we saw that

overexpression of LIN28 in wild type (WT) NPCs suppressed glial differentiation and led to

decreased synaptic densities in WT neuronal cultures. Conversely, knockdown of LIN28

expression in Q83X NPCs was able to partially reverse synaptic deficits in the mutant lines.

Altogether, our data suggest that MECP2-mutant cells improperly regulate LIN28 and indicate

that disrupting the timing of glial differentiation may contribute to the neurological phenotype

of complete MECP2 loss-of-function.

Our results from RTT patient-derived iPSCs suggest that a defect in timing of cell fate regu-

lation and/or response to external cues may be involved in the early pathophysiology of RTT.

MECP2 LOF in NPCs may influence very early cell differentiation timing genes such as LIN28.

Interestingly, there is evidence showing that the outcome of RA treatment depends on the

developmental stage of the neural progenitors (perhaps determined by the levels of timing-

related genes)—RA acts to suppress astrocyte differentiation in early E13 rat progenitors and

induces astrocyte differentiation in later E17 progenitors[47]. We now implicate MECP2 in

the regulation of LIN28 expression in NPCs, where the LIN28 expression level is elevated and

declines rapidly as differentiation occurs, allowing glial differentiation to proceed. In more

advanced stages of development or in adulthood, glial gene regulation may be controlled by

other factors, including MECP2 itself, which has been shown to directly regulate gene expres-

sion in postnatally cultured astrocytes[48].

Fig 4. Early manipulation of LIN28 expression in NPCs alters synaptic density after terminal differentiation. A.

Excitatory synaptic staining (PSD95, green) in WT83, Q83X, and N126I neurons after 5 weeks of differentiation. Two

representative dendritic segments are shown per genotype. Scale bar is 10 μm. B. Inhibitory synaptic staining in cultures

as in (A), except green is VGAT staining. C. Quantification of synaptic density in cultures shown in (A). Synapsin-

positive puncta that were excitatory (PSD95+) were quantified in WT83 (black), Q83X (light gray), and N126I (dark

gray) neurons. For all bar graphs in C-I, � p-value<0.05, �� p-value<0.02, ��� p-value<0.001, and ���� p-value<0.0001

by a one-tailed unpaired t-test. D. Quantification of synaptic density in cultures shown in (B). Synapsin-positive puncta

that were inhibitory (VGAT+) were quantified in WT83 (black), Q83X (light gray), and N126I (dark gray) neurons. E.

Percentage of Synapsin-positive puncta that were either excitatory (PSD95+) or inhibitory (VGAT+) in WT83 (black),

Q83X (light gray), and N126I (dark gray) neurons. F. Excitatory and inhibitory synapse staining in WT83 NPCs that

were differentiated for 5 weeks. WT83 NPCs were either uninfected (WT control, black) or infected with a

LIN28-overexpressing lentivirus (WT LIN28 OE, gray). G. Excitatory and inhibitory synapse staining in Q83X NPCs that

were differentiated for 5 weeks. Q83X NPCs were either infected with a control pLKO.1 lentivirus (QX control, black) or

shRNA for LIN28 (QX shLIN28, gray). H. Normalized synaptic densities shown in (F). I. Normalized synaptic densities

shown in (G). J. Schematic of the consequences of MECP2 LOF and LIN28 misregulation in mutant NPCs, leading to

delayed timing of astrocyte differentiation and negative effects on neuronal synaptic maturation. LIN28 OE may

phenocopy by suppressing astrocyte differentiation.

https://doi.org/10.1371/journal.pone.0212553.g004
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Post-mortem patient brain studies may have overlooked the contribution of glial cells in

the pathophysiology of RTT, because differences in glial cell number or morphology are diffi-

cult to assess accurately in patient brains. Other published protocols used to differentiate

hPSCs do not produce significant amounts of glia (~10%) and often rely on co-cultures with

glial feeders. We found that our differentiation method reliably generates a significant propor-

tion (~30%) of GFAP+ astrocytes in WT iPSCs cultures following RA treatment, allowing us

to observe detectable reductions in GFAP expression in our cultures.

Increased levels of MECP2 expression in patients with genomic duplications cause a differ-

ent autism spectrum disorder, MECP2 Duplication Syndrome, which has shared features of

RTT[49–52]. Major phenotypic abnormalities can be rescued genetically in mouse models of

both RTT[53] and MECP2 Duplication Syndrome[54]. As the mechanism regulating LIN28

expression may be highly sensitive to MECP2 levels, whether LIN28 regulation is affected in

the MECP2 Duplication Syndrome patient-derived NPCs remains an open avenue for

investigation.

Failure of proper LIN28 regulation could result in defects in neuronal maturation and

delays in glial differentiation, impairing neurodevelopmental trajectories (Fig 4J). Our data

suggests that the early stage of balanced neuron/glia differentiation is important to ensure the

proper course of synapse formation and maturation of neurons in the brain. Astrocytes have

been shown as indispensable regulators of neuronal development[38]. We propose a mecha-

nism whereby in the absence of MECP2 function during early neural development, LIN28 is

misregulated in neural progenitors, resulting in delayed cell responsiveness to external cues

and neuron/glia differentiation. This defect in astrocyte differentiation in turn contributes to

the functional immaturity of neurons in the MECP2-mutant brain. MECP2 may regulate gene

expression in various ways depending on the developmental stage. For example, one study

showed that cell type- or developmental age-dependent methylation at gene promoters may be

a factor in the responsiveness to extracellular signals[55]. We know from previous studies

using these RTT patient iPSCs that neuronal gene expression is also altered and that the devel-

opmental timing-dependent GABA functional switch is delayed through deficits in KCC2

expression[11]. Therefore, several types of developmental timing events may be impaired in

the MECP2-mutant cells due to improper gene regulation, leading to pervasive dysfunction in

the nervous system.

Conclusion

Our unbiased discovery-based proteomic approach identified a molecular change in male

RTT patient NPCs that may contribute to the astrocytic and neuronal deficits that are observed

in subsequent terminally differentiated cultures, and demonstrate the value of proteomic anal-

yses in providing mechanistic insights underlying disease progression.

Materials and methods

Differentiation of iPSC cultures

The use of human pluripotent stem cells was approved by the University of California, San

Diego Institutional Review Board and Embryonic Stem Cell Research Oversight Committee.

The generation and characterization of the WT83, Q83X, WT126, and N126I iPSC clonal lines

was described and published in a separate study[11]. Human iPSC-derived forebrain NPCs

were differentiated as previously described[19]. Forebrain NPCs were maintained at high den-

sity, grown on poly-ornithine/laminin-coated plates in NPC medium (DMEM-F12, 0.5% N2

and 1% B27 supplements (Life Technologies), 10 ng/mL EGF, 10 ng/mL FGF2) and passaged

with Accutase.
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RA treatment and neuronal differentiation

On Day 0 of differentiation, forebrain NPCs were replated at 30,000–40,000 cells per cm2 in

NPC medium without EGF/FGF2 and supplemented with 5μM Y-27632 (Stemgent) and 1μM

retinoic acid (Tocris). Y-27632 was withdrawn on Day 3, and retinoic acid was withdrawn on

Day 7. Starting on Day 3, the medium was supplemented with 200 μM ascorbic acid (Sigma),

1μM dibutyryl-cAMP (Sigma), 20 ng/mL BDNF (Life Technologies), and 20 ng/mL GDNF

(Life Technologies) until Day 10, after which basal NPC medium minus EGF/FGF2 was used.

Medium was partially changed every other day until Day 21 or Day 35 for downstream experi-

ments. All NPCs used for RA treatment were passages 2–6.

LIN28 overexpression and knockdown experiments

For the LIN28 overexpresssion experiments, we used a commercially available lentivirus

expressing human LIN28 (Stemgent, #ST070016) and we used the uninfected cultures as "Con-

trol". 1 x 106 transducing units (TU) of the LIN28 lentivirus were used to infect 200,000 WT83

NPCs at passage 4. For the LIN28 knockdown experiments, we used NPCs at passages 2–3 and

utilized an shRNA construct targeting human LIN28 in the pLKO.1 vector (TRCN0000102579;

Open Biosystems). As the "Control", a pLKO.1 vector containing an shRNA toward GFP was

used (Open Biosystems). Both constructs were gifts from Dr. Eugene Yeo used in a previous

publication[56]. The optimal titers of lentiviral supernatants were determined empirically and

used to infect WT83 and Q83X NPCs.

SILAC metabolic labeling, cell lysis, and sample processing

To generate near completely labeled iPSC-derived NPCs with stable isotope-labeled amino

acids, cells were seeded in duplicate 10-cm plates at passages 2–3 and cultured for 12 days (~8

population doublings) in NPC media formulated with Arginine- and Lysine-depleted

DMEM-F12 (Life Technologies) supplemented at a final concentration of 100 mg/L either

with regular “light” L-Arg and L-Lys (Life Technologies) or “heavy” isotope-enriched

[U-13C6,15N2]-L-Arg and [U-13C6,15N4]-L-Lys (Cambridge Isotopes). For SILAC of RA-differ-

entiated cultures, NPC cultures at passages 2–3 (sister cultures of the NPC SILAC experi-

ments) were re-seeded in duplicate 10-cm plates and SILAC labeled for two days in NPC

medium prior to RA-treatment and harvested 21 days after the first day of RA treatment. Cell

cultures were washed in cold PBS twice and then lysed in RIPA buffer (25mM Tris-HCl (pH

7.6), 150mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) for 1–2 hours directly on

the culture dish while on ice. Protein extracts were collected with cell scrapers and the protein

concentration was determined by BCA assay. Heavy labeled control extracts were then added

1:1 to light labeled RTT or control lysates and precipitated with methanol / chloroform.

Mass spectrometry

For whole proteome analysis by MudPIT (LCLC-MS/MS), each analysis of 100 μg of total pro-

tein extract was processed to peptides as previously described[26, 57]. Each experiment was

analyzed in 7–10 replicates, for a total of 154–220 hours of instrument time per experiment.

Most of the data were acquired on a LTQ Velos Orbitrap mass spectrometer (Thermo Finni-

gan) with additional analysis on a LTQ Velos Orbitrap Elite and LTQ Orbitrap XL as previ-

ously described[58]. For LTQ Velos Orbitrap analysis, a cycle of one full-scan mass spectrum

(400–1,800 m/z) at a resolution of 60,000, followed by 15 data-dependent MS/MS spectra at a

35% normalized collision energy was repeated continuously throughout each step of the
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multidimensional separation. For LTQ Orbitrap XL analysis, full-scan mass spectrum (400–

1,600 m/z) at a resolution of 60,000 was followed by 9 data-dependent MS/MS spectra.

Proteomic data analysis

Proteomic analyses (protein identification and quantification) were performed with Integrated

Proteomics Pipeline—IP2 (Integrated Proteomics Applications, Inc., www.integratedproteomics.

com) using ProLucid, DTASelect2, Census, and QuantCompare[33, 58, 59]. MS/MS spectra were

searched with the in-house software ProLucid, against the EBI human IPI database (ftp://ftp.ebi.

ac.uk/pub/databases/IPI, released in March 2007) concatenated to a decoy database in which the

sequence for each entry in the original database was reversed. Peptides were required to posess at

least one tryptic termini and be within 10PPM of the expected m/z. The resulting spectral matches

were assembled and filtered using DTASelect with a protein false discovery rate of 1% for each

analysis. Peptides that passed the filter were quantified using the in-house-developed software

Census. A detailed description of the entire analysis workflow has been previously described[58].

In the current analysis, protein ratios and statistics were generated after grouping of all the quanti-

fied peptide ratios from all the replicate analysis. To control for multiple hypothesis testing, we

used the Benjamini-Hochberg procedure[60] to estimate the false discovery rate (FDR) at the t-
test p-value threshold of 0.05 for each proteomics experiment. To complete our inclusion criteria,

a fold change threshold was then applied in addition to the p-value threshold to reduce false posi-

tives and therefore maximize specificity. All the proteomic data reported in this paper is fully

available at ftp://massive.ucsd.edu/MSV000083090.

SILAC labeling efficiency was determined as previously described[59]. Briefly, analysis of

100 μg of the heavy labeled samples was performed by LCLC-MS/MS with Orbitraps mass spec-

trometers. Data was processed with SEQUEST, DTASelect, and Census software. We filtered our

searches at 1% protein FDR based on target-decoy and to ensure confident quantitation we

required peptide pairs to have a profile score of>0.5 in Census. We then calculated and compared

the LIGHT / HEAVY peak areas and graphed the binned ratios. The labeling efficiency is reported

as the average peptide ratio (light / heavy) after log transformation. Both paradigms involve deter-

mining ratios of “light” to “heavy” proteins towards the eventual calculation of the Mutant / WT

ratio. In the Ratio of Ratios (RoR) analysis (mutant-“light” / wild type-“heavy” // wild type-“light”

/ wild type-“heavy”) paradigm, quantified proteins are normalized using a common internal stan-

dard which can accurately correct for incomplete labeling and other instrument-based biases[31].

In the Label Swap (LS) paradigm, we generate two ratios for each protein from four samples

(mutant-“light” / wild type-“heavy” and wild type-“light” / mutant-“heavy”)[32, 33].

Statistical analysis of SILAC results

Let Pr[QL,NR,QR,NL] be the joint probability of identifying a protein as being downregulated

using all of our inclusion criteria in both Q83X and N126I neural cultures by chance. More

precisely, QL corresponds to the event of observing a protein meeting our inclusion criteria for

the LS paradigm with the Q83X neural culture. NL represents the same event but in the N126I

neural culture. NR and QR consist of the events of a protein to be down-regulated according to

the inclusion criteria of the RoR paradigm in the N126I and Q83X cultures respectively. These

events share dependencies because of their occasional usage of the same cell lines and similar

analytical paradigms. In order to compute Pr[QL,NR,QR,NL], these dependencies have to be

accounted for. We therefore estimated this probability using chain rule,

Pr½QL;NR;QR;NL� ¼ Pr½QL� � Pr½NRjQL� � Pr½QRjQL;NR� � Pr½NLjQL;NR;QR�
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Pr[QL] is inferred from the data using the fraction of proteins passing the inclusion criteria

over all significant proteins (p-value<0.05) from the LS analysis of the Q83X cells. An estimate

of Pr[NR|QL] is computed using Bayes’ rule:

Pr½NRjQL� ¼
Pr½NR� � Pr½QLjNR�

z

where Pr[QL|NR] is estimated by the number of proteins meeting both inclusion criteria of LS

in Q83X cells and RoR in N126I cells over the number of proteins passing the criteria of the

former. z is a normalization factor and Pr[NR] is estimated using the same strategy as Pr[QL].

It is unlikely that we can exactly compute Pr[QR|QL,NL]. Nevertheless, Bayes’ rule can be

used to estimate this probability by assuming the conditional independence of QL and NR

given QR:

Pr½QRjQL;NR� ¼
Pr½QR� � Pr½QLjQR� � Pr½NRjQR�

z

Probabilities on the right hand side of the equation are inferred from the data using the

strategy detailed previously. As for Pr[NL|QL,NR,QR], using Bayes’ rule and the conditional

independence of NR and QL, and NR and QR given NL,

Pr½NLjQL;NR;QR� ¼
Pr½NL� � Pr½NRjNL� � Pr½QL;QRjNL�

z

Pr[NL] and Pr[NR|NL] are estimated from the data. However, since QL and QR involve the

same cell line, they are likely to not be conditionally independent given NL. Hence, using chain

rule,

Pr½QL;QRjNL� ¼ Pr½QLjNL� � Pr½QRjQL;NL�

where Pr[QL|NL] is inferred as shown previously. Finally, using Bayes’ rule and assuming the

conditional independence of QL and NL given QR,

Pr½QRjQL;NL� ¼
Pr½QR� � Pr½QLjQR� � Pr½NLjQR�

z

where Pr[NL|QR] is estimated from the data.

IRFL-based Odyssey Western blotting & In-Cell Western

For IRFL-based Odyssey Western blots, cultures were lysed with RIPA buffer and protein

lysates were collected using standard methods. For each sample, 10 μg of total proteins were

loaded and run per well in NuPAGE gels (10% or 4–12% gradient gel; Invitrogen). The gels

were subsequently transferred on to low-fluorescence PVDF membrane (Invitrogen). Mem-

branes containing protein bands were blocked in Li-COR Odyssey Blocking buffer (Li-COR

Biosciences) for 1.5 hr at room temperature, washed 5x with PBS + 0.1% Tween solution

(PBST), and incubated in Odyssey Blocking Buffer containing primary antibodies (Mouse

anti-SMI21R, Covance; Chicken anti-MAP2, Abcam; Rabbit anti-Lin28A, Cell Signaling;

Mouse anti-beta-actin, Li-COR Biosciences) for 4 hrs at room temperature, or overnight at

4ºC. Membranes were then washed 5 times with PBST, and incubated in Odyssey Blocking

Buffer containing secondary antibodies for IRFL detection (Goat anti-Mouse 680/800, Goat

anti-Rabbit 680/800, all from Li-COR Biosciences) for 30 mins at room temperature. 0.01%

SDS was added to reduce background fluorescence. Subsequently, membranes were washed 3

times with PBST and rinsed with PBS. Wet membranes were placed on Li-COR Odyssey
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detection machine to scan and record fluorescence signals. Protein band intensities were

recorded as fluorescence intensity using Li-COR image analysis software. Bands for proteins

of interest were normalized over beta-actin (control) band intensities on the same blot.

For IRFL-Based In-Cell Western procedures, NPCs or iPSC-derived neuronal cultures

grown on glass coverslips were fixed with 4% PFA + 20% sucrose solution at room tempera-

ture for 15 min. Cultures were then rinsed 3 times with PBS and stored in PBS + 0.1% Na-

azide at 4ºC until antibody staining. Prior to staining, cultures were permeabilized 5 times for

5 mins with PBS + 3.3% BSA + 0.1% Triton solution on a gentle shaker. Cultures were then

rinsed with PBST and blocked for 1.5 hrs at room temperature, or overnight at 4ºC, in Odyssey

Blocking Buffer. Primary and secondary antibodies were diluted using Odyssey Blocking

Buffer containing 0.01% SDS. Primary antibodies used include: Mouse anti-SMI21R, Covance;

Chicken anti-MAP2, Abcam; Rabbit anti-synapsin, Cell Signaling Technology; Rabbit anti-

vGlut1, Abcam; Mouse anti-VGAT, Cell Signaling technology. Secondary antibodies include:

Goat anti-Mouse 680/800, Goat anti-Rabbit 680/800, all from Li-COR Biosciences. Cultures

were incubated in primary antibodies were incubated for at least 4 hrs at room temperature, or

overnight at 4ºC; in secondary antibodies for 30 minutes to 1 hr at room temperature.

For imaging, glass coverslips were retrieved from the holder wells and placed facedown on

the Odyssey imaging platform for optimal focal plane position during scanning. Images were

analyzed using the Li-COR analysis software. Whole areas of the coverslips were included in

total fluorescence detection. Signals were normalized over beta-actin (control) channel.

Genome editing of hESCs

A MECP2 knockout model was made using the commercially available male human embryonic

stem cell (hESC) line, SA001 (Cellartis). To knockout the MECP2 gene we used a plasmid-based

antibiotic selection cassette (loxP-PGK-gb2-neo-loxP plasmid from GeneBridges), together with

zinc finger nucleases (ZFNs) designed for the target (Sigma Aldrich product # CKOZFND-1505-

1KT). For the “WT” control line, we used the same SA001 line with the targeting vector used to

generate the MECP2 knockout inserted into a safe harbor locus, AAVS1, using ZFNs targeted to

this site. A similar procedure, as described below for the generation of the MECP2 lines, was fol-

lowed for generating the WT lines. Nucleofection of ZFNs and targeting plasmid was done in

100μL cuvettes using the Amaxa 4D-Nucleofector X Unit (Lonza), program DN-100. For each

nucleofection, 1μg each of the two ZFNs and 1μg of the targeting plasmid was used.

Briefly, SA001 cells (low passage, karyotypically normal) were grown on Matrigel-coated

10-cm plates in mTeSR1 medium (StemCell Technologies) until ~80% confluenecy. Cells were

dissociated with Accutase, resuspended in 10mL mTeSR1, and cell count was determined. 4

million cells per nucleofection was added to a sterile 1.5 mL Eppendorf and briefly pelleted.

After removing all supernatant, the cell pellet was resuspended in 200 μL P3 solution (Lonza)

and DNA for two transfections was added to the cell suspension. 100 μL of the cell suspension

plus DNA was transferred to two cuvettes and nucleofected immediately. Nucleofected cells

were then transferred to a 10-cm plate containing 12 mL mTeSR1 and 10 μM ROCK inhibitor.

One day post-nucleofection, the media was changed to mTeSR1 only. Every day thereafter,

until colonies were formed, the media was changed to mTeSR1 plus 0.2 mg/mL G-418. 11–13

days post-nucleofection, when the colonies were 1–2 mm in diameter, colonies were manually

selected and transferred to a 48-well Matrigel plate with mTeSR1 + 10μM ROCK inhibitor.

After cells attached (1–2 hours), media was changed to mTeSR1 only. Daily media changes

were performed as before, until most wells were 80–90% confluent.

For selection of clones, all lines were screened by PCR for target vector insertion at the

appropriate site. For the MECP2 knockout we were also able to perform screening by
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immunofluorescence, which allowed us to easily detect heterogeneous populations (S6A Fig).

For IF screening we used a rabbit anti-MECP2 antibody (Cell Signalling D4F3) and imaged

with the Operetta System (Perkin Elmer).

The first round of colony selection resulted in a few clones with predominantly knockout

cells but still heterozygous for some non-targeted cells. Therefore, we had to do a second

round of selection. We were able to achieve homogeneous clonal lines by splitting the cultures

at very low density (800 cells/cm2) and manually selecting sub-colonies. As a final validation,

homozygous MECP2 knockout clones were screened for number of target vector insertions by

digital droplet PCR (ddPCR) to exclude the possibility of additional spurious insertions (S6B

and S6C Fig).

Establishment of stable NPCs and serial passaging

Briefly, human pluripotent stem cells (hPSCs) were dissociated to single cells and transferred

into AggreWell-800 plates for formation of aggregates with defined cell numbers. Neural

aggregates were formed in media containing 50% DMEM/F12 with Glutamax I (Invitrogen),

50% Neurobasal (Invitrogen), B27 supplement without vitamin A (Invitrogen), N2 supple-

ment (Invitrogen), and 0.1% beta-mercaptoethanol (N2B27) supplemented with FGF-2 (5ng/

mL), Noggin (266ng/mL), SB 431542 (20μM). The application of Noggin and SB-431542

(‘dual SMAD’) induced neuralization[61]. Each day, a partial media change was performed.

After five days of neutralization, neural aggregates were plated onto poly-ornithine/laminin-

coated plates and allowed to form neural rosettes under continued dual SMAD conditions.

After approximately 4 days, neural rosettes were selectively isolated using STEMdiff Neural

Rosette Selection Medium (StemCell Technologies), replated onto poly-ornithine/laminin-

coated plates and expanded under dual SMAD conditions. Cultures were then trypsinized,

replated onto poly-ornithine/laminin-coated plates and cultured in N2B27 supplemented with

FGF-2, EGF, and BDNF (FEB) at high cell density. Continued passaging in FEB with step-wise

reduction in seeding density produced a stable neural stem/progenitor cell line.

NPC cell lines were thawed from liquid nitrogen storage. Samples were collected for West-

ern analysis from the first, third and fifth passage after thawing. The corresponding passage

number of the relevant cell lines are as follows: WT83c7 NPC (passage 9, 11, 13); Q83Xc1 NPC

(passage 10, 12, 14); Q83Xc3 NPC (passage 10, 12, 14); SA001_MECP2GEc1 NPC (passage 24,

26, 28); SA001_CtrlGEc16B2 NPC (passage 24,26,28). For each passage, four biological repli-

cates were performed per cell line. Cells were seeded at a density of 25,000/cm2 on 12-well

plates, collected in 100 μL Laemmli/DTT buffer, and stored at -20˚C. Samples were run on a

4–12% Bis-Tris gel. Due to the number of samples, in order to compare all data points, we

made a pooled sample, which was run in three lanes on each gel and used for normalization.

The blots were probed as described above. Each data point was first normalized to actin and

then to the normalized pooled sample.

MECP2 Chromatin Immunoprecipitation (ChIP)

Passage 31 WT83 iPSCs and passage 7 NPCs were grown to confluence in 10-cm plates and

harvested for ChIP. The ChIP-IT Express Enzymatic kit (Active Motif) was used according to

manufacturer’s instructions, with the addition of a DNA clean-up step using phenol:chloro-

form:isoamyl alcohol at the end point. Briefly, cells were fixed and lysed with 20 strokes of a

dounce homogenizer to aid the release of nuclei. The cellular extract was incubated with enzy-

matic shearing cocktail solution for 10 minutes at 37˚C, and mixed every two minutes to

increase shearing efficiency. Each sample was incubated with 2 ng of MECP2 antibody (Diage-

node), or with controls, one with RNA pol II (RNAP) or IgG for positive or negative controls,
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respectively. Primers used for the LIN28 promoter region were: forward GAGCTGGGAATCAA
GACAGC and reverse GAGTTGAACGCTCTGGCTTC; primer sequences for the BDNF pro-

moter were: forward AAGCATGCAATGCCCTGGAA and reverse TGCCTTGACGTGCGCTGT
CAT. Real-time PCR reaction was performed using the iQ SYBR green reagent (BioRad), using

a CFX_2stepAmp standard protocol with melting curve step added: 95˚C for 10 minutes; 40

cycles of 95˚C for 15 seconds and 60˚C for 60 seconds; 95˚C for 10 seconds, 65˚C for 5 seconds

and final 95˚C for 5 seconds for the melting curve.

Supporting information

S1 Fig. Characterization of 3-week-old RA-differentiated cultures from WT83, Q83X,

WT126, and N126I NPCs. A. Comparison of MAP2+ and GFAP+ cells in WT83 and Q83X

cultures. Flow cytometry gating parameters using isotype control antibodies are shown. The

lower four panels are the same as in Fig 1D.

B. Comparison of MAP2+ and GFAP+ cells in WT126 and N126I cultures. Flow cytometry

gating parameters using isotype control antibodies are shown.

(PDF)

S2 Fig. SILAC labeling of RA-differentiated cultures from WT83, Q83X, WT126, and

N126I NPCs. A. WT83, Q83X, WT126, and N126I 3-week-old cultures in SILAC medium

with either “Light” (upper panels) or “Heavy” (lower panels) amino acids. Scale bar is 200 μm.

B. Graphs of peptide frequency versus light/heavy ratio for the indicated RA-treated differenti-

ated cultures and biological replicates. Also indicated is the average peptide labeling efficiency

for each replicate.

C. List of neuron-, astrocyte- and oligodendrocyte-specific proteins mapped to genes in the

RoR and LS datasets. Red numbers indicate upregulation and blue downregulation. Proteins

with significant p-values are highlighted in yellow.

(PDF)

S3 Fig. Characterization of undifferentiated NPCs derived from WT83 and Q83X iPSCs.

A. Flow cytometry data showing expression of CD271/p75 (upper plots) and CD56/NCAM

(lower plots) in WT83 NPCs at passage 5 and two Q83X NPC clones each at passage 6. Per-

centage positive populations in Quadrant 1 are summarized in a table (bottom right corner).

NCAM is a neuroectoderm marker and p75 is an early neural crest marker.

B. WT83, Q83X, WT126, and N126I NPCs cultured in SILAC medium with either “Light”

(upper panels) or “Heavy” (lower panels) amino acids. Scale bar is 200 μm.

C. Graphs of peptide frequency versus light/heavy ratio for the indicated NPC cultures and

biological replicates. Also indicated is the average peptide labeling efficiency for each replicate.

D. Western blot of LIN28 expression in WT83 and Q83X NPCs at passage 4 (P4) and passage

8 (P8).

E. Representative Odyssey Western blot of LIN28 expression in WT83 and two clones of

Q83X NPCs quantified in Fig 3F. Blot shows NPC samples from the 3rd passage after thaw.

Four biological replicates are shown per sample.

(PDF)

S4 Fig. MECP2 interacts with the promoter region of LIN28. ChIP-qPCR using MECP2

antibodies show a significant enrichment fold in LIN28 promoter-specific amplification com-

pared to IgG in both WT iPSCs (A) and NPCs (B). This is also seen with primers specific for

BDNF, a gene that is known to be regulated by MECP2. Positive control antibodies for RNA

pol II (RNAP) show the efficiency of the ChIP reaction for each primer set.

(PDF)

Proteomic analyses of MECP2 mutants

PLOS ONE | https://doi.org/10.1371/journal.pone.0212553 February 21, 2019 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212553.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212553.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212553.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212553.s004
https://doi.org/10.1371/journal.pone.0212553


S5 Fig. Many perturbed proteins are astrocyte markers previously profiled in human corti-

cal spheroid cultures derived from iPSCs[35]. A. Proteins that overlap with Early Pseudo-

time Markers.

B. Proteins that overlap with Middle Pseudotime Markers.

C. Proteins that overlap with Late Pseudotime Markers.

D. Proteins that overlap with Mature Astrocyte Markers.

(PDF)

S6 Fig. Generation of ZFN-mediated MECP2 KO hESCs. A. Immunofluorescence staining

for MECP2 (in green) before ZFN-mediated KO (left panel), after ZFN delivery (middle

panel), and after clonal selection (right panel).

B. ddPCR graph showing single Neo cassette integration in MECP2-/y hESC clones.

C. ddPCR data quantification showing Neo cassette copy numbers per haploid genome and

associated data.

D. Immunofluorescence staining for MECP2 (red) and Nestin (green) in WT vs MECP2-/y

hESC-derived NPCs.

(PDF)

S1 Table. Intersectional list of perturbed proteins with known cell-type specific markers.

Spreadsheet of proteins identified in our SILAC MS data shown in S2C Fig and S5 Fig that

overlap with previously published gene lists.

(XLSX)
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