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2.1ABSTRACT OF THE DISSERTATION 

Neither animals nor decisions are interchangeable; subjective experience shapes the 

brain and behavior 

by 

Drew Schreiner 

Doctor of Philosophy in Experimental Psychology 

University of California San Diego, 2021 

Professor Christina Gremel, Chair 

 

 Decisions are not made in isolation. Rather, they rely on internal states, 

contextual, temporal, and historical information. This subjective experience is a 

powerful driver of behavior and the associated neural mechanisms. However, most 

neurobiological investigations of decision-making ignore the impact of subjective 
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experience and instead focus on constraining tasks (cues, trials) to isolate specific 

variables (choice, accuracy). By ignoring subjective experience and averaging across 

subjects and decisions, we may be left with an incomplete or inaccurate picture of the 

brain-behavior relationship. In this dissertation, I took a dual-pronged approach using 

relatively unconstrained tasks to investigate how subjective experience affects both 

behavior and the brain, with a focus on rodent premotor cortex (M2), as prior work has 

suggested that M2 is poised to be sensitive to this information. Chapter 1 explored 

how individual variation during learning affected decisions about when to explore 

versus exploit. Results suggested that individual experience with a rule strengthened 

exploitation of that rule, with projections from orbital frontal cortex to M2 necessary for 

this experience-based exploitation. Chapter 2 investigated what aspects of subjective 

experience were used to guide a self-paced, self-generated behavior. Mice used 

diverse sources of information beyond just prior actions and reward, including the 

passage of time and information-checking to guide decision-making. M2 integrated 

these information sources to bias strategy-level decision-making, while its projections 

into dorsal medial striatum (M2-DMS) were specifically necessary to implement a 

recent experience-based strategy. Chapter 3 explored how premotor function and 

sensitivity to subjective experience were affected by psychiatric disease. Prior chronic 

alcohol impaired behavioral flexibility, and this was causally linked to the induction of 
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hyperactivity of M2-DMS neurons, suggesting human premotor regions as novel 

therapeutic targets for alcohol use disorder. These studies show that diverse aspects 

of subjective experience powerfully drive behavior and its neural representation. They 

implicate premotor circuits in integrating subjective experience to drive flexible 

behavior, a role which may be disrupted in psychiatric disease. This suggests that 

attempts to ignore or factor out subjective experience may be misguided; whether we 

take account of it or not, it likely will affect the brain and behavior. 
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INTRODUCTION 

Subjective experience is a powerful driver of behavior. By subjective 

experience, I mean the historical, temporal, contextual, consequential, associative, 

ethological, and internal factors continuously experienced by individual animals 

(Schreiner et al., 2021), all of which can affect decision-making (Ariely & Zakay, 2001; 

Balleine, 2019; Balleine & Dickinson, 1998; Berridge et al., 2008; Bouton & Balleine, 

2019; Costa, 2011). This is distinct from the study of how individual differences or 

genetic variation ramify into different behavioral phenotypes; even genetically identical 

animals exposed to identical environments show variable behavior due to differing 

interactions with, and subjective experience of, that environment (Freund et al., 2013). 

Animals are not interchangeable automatons. But more than that, even superficially 

similar decisions made by the same individual may, in actuality, reflect different 

behavioral processes. For instance, either goal-directed or habitual learning systems 

are sufficient to acquire and perform a variety of behaviors and only careful 

investigation can unmask these behavioral controllers (Balleine, 2019). Thus, neither 

every animal, nor every decision is the same.  

Yet all too often, neurobiological investigations into decision-making treat 

animals and decisions as interchangeable, ignoring how individual subjective 
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experience may have led to different behavioral control and neural representation, 

modulation, and recruitment. I would suggest that this is analogous to how research 

used to be conducted in paleontology and archaeology. Whereas older studies 

focused solely on the artifact or fossil (often destroying its surroundings in the 

process), modern approaches recognize that the context in which an artifact is 

embedded provides crucial information. What information are we missing by ignoring 

how subjective experience contributes to the brain and behavior? In each chapter of 

this dissertation, I try to address this question using a dual-pronged approach, 

investigating both how subjective experience affects behavior and how it may be 

controlled by the brain.  

In contrast to most neurobiological investigations, natural decision-making is 

messy. It occurs continuously across time, as one moment bleeds into the next in a 

richly variable, non-stationary, open world. For instance, crows have the remarkable 

ability to fly up and drop shelled prey items (nuts, shellfish) to break them open. When 

they do this, they keep track of a staggering array of experiential variables, including, 

the hardness of the ground, the type of prey, the amount of kleptoparasitism, and even 

the number of times they dropped a specific item (Cristol & Switzer, 1999). While 

crows are relatively cognitively complex, use of subjective experience is widespread. 
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Like humans building cairns, wood mice leave distinct items as way-markers when 

exploring to aid navigation (Stopka & Macdonald, 2003). Even drosophila show 

experience-dependent differences in behavior and its neural representation (Jacob et 

al., 2021). 

 Indeed, the drive to use experience to guide behavior is so strong that humans 

and other animals use their experience even when it is unnecessary or actively 

harmful. In most perceptual decision-making tasks subjects “should” pay attention only 

to the current sensory stimulus – but they do not. Instead, these tasks show strong 

history dependencies (e.g., Busse et al., 2011). By leveraging these dependencies, 

careful investigation has revealed that there is a principled mechanism involved in how 

mice, rats, and humans use their experience. Namely, reward biases (e.g., win-

stay/lost-shift) are particularly strong when decision confidence is low (Lak et al., 

2020), demonstrating that directed study of experience can provide novel insight.  

The preponderance of non-stationary environments in the natural world and this 

propensity to use subjective experience even when it is “unnecessary” suggests that 

animals are well-adapted to use experience to guide their behavior. The brain should 

therefore represent and control the use of this experiential information. However, 

neurobiological studies typically interpret neural activity in relation to a snapshot of 
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behavior using discrete, averaged task-related variables (e.g. total actions, accuracy, 

etc.). Even in studies directly interrogating experience (e.g., Botta et al., 2020; 

Dhawale et al., 2019; Hattori et al., 2019; Hwang et al., 2019; Iigaya et al., 2018; 

Pisupati et al., 2021), tasks are often constrained (discrete variables, binary choice, 

trials, cues, restraint, etc.) which, aside from being rather different from the natural 

world (analog variables, many choices, continuous time, inconsistent/evolving cues, 

freely moving, etc.), may impair investigation of subjective experience. For instance, 

trials make it difficult to assess how decision-making evolves continuously across time, 

and cues may lead to elicited behavior, which can recruit different neural circuits 

relative to voluntary or self-generated behavior (Yin & Knowlton, 2006). In this 

dissertation, I use un-cued, self-generated behavior with analog variables to address 

these potential issues and investigate several outstanding questions about subjective 

experience including: how do different learning environments and individual variation 

within an environment affect what is learned (Chapter 1), what aspects of subjective 

experience contribute to decision-making (Chapters 2-3), and how is sensitivity to 

experience altered in psychiatric disease (Chapter 3).  

While it is understandable to limit and constrain investigations to increase 

experimental control, there is a real risk that the mechanisms identified by these 
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approaches provide an incomplete or inaccurate picture, and this may be particularly 

relevant for psychiatric disorders which, of course, occur in a fully open world. 

Disorders such as Obsessive Compulsive Disorder (OCD) or Substance Use 

Disorders are in part characterized by disrupted decision-making, including habitual or 

compulsive decisions (Everitt & Robbins, 2005, 2016; Gillan et al., 2011; Graybiel & 

Rauch, 2000). Put another way - actions that are inappropriately sensitive to 

experience and feedback (e.g., insensitivity to the negative consequences of actions in 

compulsivity). These psychiatric disorders are associated with disruption to prefrontal 

and premotor cortex, as well as corticostriatal circuits (e.g. for review, Gillan & 

Robbins, 2014; Graybiel & Rauch, 2000; Gremel & Lovinger, 2017; Lovinger & 

Gremel, 2021). Importantly, unlike deeper brain structures that are the focus of many 

circuit-based investigations, premotor cortices in humans are dorsally located and 

accessible to treatments such as transcranial magnetic stimulation (TMS), which have 

been reported to reduce compulsivity in OCD (Gomes et al., 2012; Hawken et al., 

2016; Mantovani et al., 2013). Thus, in this dissertation I will focus on the role of 

premotor circuits in subjective experience, as mechanistic insight here has the 

potential not only to advance our understanding of the brain-behavior relationship in 

relation to subjective experience, but may also improve the development and targeting 

of novel treatment strategies.  
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Aside from this potential treatment relevance, premotor circuits are also poised 

to be sensitive to and use experience to guide appropriately flexible behavior. In 

humans, this includes pre-supplementary/supplementary motor areas (Pre-

SMA/SMA), while the rodent homologue is the premotor cortex (M2, also referred to 

herein as secondary motor cortex) (Barthas & Kwan, 2017). M2 receives input from a 

variety of sensory and associative cortical and thalamic regions (Reep et al., 1987, 

1990; Zingg et al., 2014), is reciprocally connected with M1 (Reep et al., 1987), and 

has extensive projections into basal ganglia regions, particularly the dorsal striatum 

(Delevich et al., 2020; Hintiryan et al., 2016). Existing research has suggested that M2 

is involved in choice (Barthas & Kwan, 2017; Steinmetz et al., 2019; Zatka-Haas et al., 

2021), evidence accumulation (Erlich et al., 2011, 2015; Hanks et al., 2015; Orsolic et 

al., 2021; Pinto et al., 2019), skilled motor learning (Cao et al., 2015; Makino et al., 

2017), and using history (e.g., prior actions and outcomes) to guide decision-making 

(Hattori et al., 2019; Pisupati et al., 2021; Siniscalchi et al., 2016, 2019; Sul et al., 

2011). It thus seems evident that M2 is sensitive to history. However, it is unclear how 

M2 may be sensitive to subjective experience, particularly in an un-cued, self-paced, 

self-generated context. There remain many open questions about how M2 receives, 

represents, and uses subjective experience. These questions include: what 

information is M2 receiving from associative cortical regions (Chapter 1), what types of 
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subjective experience does M2 represent and use to guide decision-making (Chapter 

2), what information does M2 convey to downstream regions such as the dorsal 

striatum (Chapters 2-3), and how does psychiatric disease affect M2 activity and 

function (Chapter 3).  

First, addressing the question of M2 input; Orbitofrontal cortex (OFC) is one 

associative region that sends projections into M2 (Zingg et al., 2014), and correlative 

studies of OFC-M2 projections have shown that plasticity of this projection is 

associated with rule learning (Johnson et al., 2016). However, it is unclear if OFC-M2 

input is causally necessary for the exploitation of known rules. Behaviorally, while it is 

known that different types of reinforcement schedules can bias different decision 

strategies (Adams, 1982; Adams & Dickinson, 1981; Derusso et al., 2010; Dickinson & 

Balleine, 1994; Hilario et al., 2007, 2012), it is unclear how individual variation within 

identical schedules may contribute, nor is it clear how individual variation affects 

decisions about when to exploit or explore. I set out to address these questions in 

Chapter 1 by training mice to press one lever for a food reward before introducing a 

novel lever at test to determine how subjective experience influenced decisions about 

exploiting the trained lever versus exploring the novel lever. Results suggested that 

the degree of experience individual mice had with a rule strongly predicted subsequent 
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exploitation of that rule. Chemogenetic inhibition of OFC-M2 projections during 

learning reduced exploitation of the learned rule, suggesting a causal link between 

OFC-M2 activity/plasticity and rule learning. 

 Although Chapter 1 showed that individual variation during learning can affect 

strategy-level decisions, it did not provide insight into what aspects of subjective 

experience mice used to control their decision-making, or how these aspects might be 

represented in M2. In Chapter 2, I investigated these questions. Mice were trained to 

press and hold down a lever for at least a minimum duration to earn a food reward 

(Fan et al., 2012; Platt et al., 1973; Yin, 2009). There were no trials or cues and 

reward was delivered at offset. Thus, in this self-paced, self-generated task experience 

was essential for performance, allowing for the investigation and modeling of how 

animals used subjective experience to guide decision-making. Results suggested that 

mice learned to rely on both recent and long-term subjective experience, and that 

typically-neglected variables such as elapsed time and information checking behavior 

played a large role in guiding flexible behavior. Contrary to prevailing dogma from 

binary choice tasks, reward played little role in determining subsequent behavior. 

Following up on the examination of OFC input into M2, Chapter 2 turned towards 

examining M2 itself and its Dorsal Medial Striatum projections (M2-DMS). M2 
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integrated various sources of subjective experience and used this to bias strategy level 

decisions. M2-DMS projections used specific aspects of recent experience to plan 

upcoming actions, implicating M2-DMS in enacting an experience-based strategy. 

These results show that neglected aspects of experience can potently affect both 

behavior and associated neural activity, suggesting that such information should not 

be ignored or factored out as irrelevant (Roy et al., 2021).  

These same premotor corticostriatal circuits are disrupted in psychiatric 

diseases such as Alcohol Use Disorder (AUD). AUD is associated with altered 

premotor function as well as impaired behavioral flexibility in humans (Claus et al., 

2011; Duka et al., 2011; Sjoerds et al., 2014). While these correlative studies are 

suggestive, there has been no demonstration of a causal link. Additionally, it is unclear 

precisely how AUD affects behavioral flexibility as a number of different computations 

support flexible behavior (Schreiner et al., 2020; Shnitko et al., 2020). Nor is it clear 

how chronic alcohol might specifically affect the activity, recruitment, and function of 

M2, as alcohol effects on M2 have only been investigated in the context of brain-wide 

MRI or cFos studies (Dudek et al., 2015; Liu & Crews, 2015). In Chapter 3, I 

addressed these important gaps. Mice were repeatedly exposed to chronic intermittent 

ethanol vapor (or air control) and withdrawal using a well-validated rodent model of 
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alcohol dependence (Becker & Hale, 1993). During protracted withdrawal from chronic 

alcohol (Heilig et al., 2010), mice were trained in the lever hold down task described 

above. Results suggested that prior chronic alcohol specifically impaired the use of 

recent subjective experience in guiding flexible behavior. Furthermore, chronic alcohol 

caused long-lasting alterations to the intrinsic properties of M2 projection neurons, and 

specifically induced hyperactivity in M2-DMS projection neurons during decision-

making. Finally, chemogenetic inhibition of this alcohol-induced hyperactive M2-DMS 

rescued appropriate behavioral flexibility, demonstrating a causal link between chronic 

alcohol’s effects on behavioral flexibility and M2-DMS activity. Importantly, this was 

true during protracted withdrawal from chronic alcohol, and in a food-based foraging 

task, suggesting that this is a long-lasting neuroadaptation with generalized behavioral 

deficits. Furthermore, these results suggest human premotor regions as a therapeutic 

target in AUD. 

Collectively, these three chapters fill an important void in neurobiological 

research. They demonstrate that individual subjective experience can play a large role 

in flexible behavior, with neglected aspects of this experience determining strategy-

level decisions and circuit recruitment. Subjective experience was heavily represented 

in premotor circuits, both input into M2 from OFC (Chapter 1), within M2 itself (Chapter 
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2), and in the projection specific M2-DMS population (Chapters 2-3). By incorporating 

subjective experience into the investigation, results suggested a causal link between 

AUD disruption to premotor function and impaired behavioral flexibility (Chapter 3). 

Accounting for subjective experience has the potential to reveal fundamental insights 

into the brain and behavior, and these insights may also prove relevant for the 

treatment of psychiatric disease.  
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Abstract 

Animals face the dilemma between exploiting known opportunities and 

exploring new ones, a decision-making process supported by cortical circuits. While 

different types of learning may bias exploration, the circumstances and the degree to 

which bias occurs is unclear. We used an instrumental lever press task in mice to 

examine whether learned rules generalize to exploratory situations and the cortical 

circuits involved. We first trained mice to press one lever for food and subsequently 

assessed how that learning influenced pressing of a second novel lever. Using 

outcome devaluation procedures we found that novel lever exploration was not 

dependent on the food value associated with the trained lever. Further, changes in the 

temporal uncertainty of when a lever press would produce food did not affect 

exploration. Instead, accrued experience with the instrumental contingency was 

strongly predictive of test lever pressing with a positive correlation between experience 

and trained lever exploitation, but not novel lever exploration. Chemogenetic 

attenuation of orbital frontal cortex (OFC) projection into secondary motor cortex (M2) 

biased novel lever exploration, suggesting that experience increases OFC-M2 

dependent exploitation of learned associations but leaves exploration constant. Our 

data suggests exploitation and exploration are parallel decision-making systems that 

do not necessarily compete. 
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Introduction  

The concepts of exploration and exploitation have been widely studied with 

focus on the competition between these two processes (Addicott et al., 2017; Cohen et 

al., 2007). However, the classical conception of this dilemma (Sutton & Barto, 1998) 

often neglects the possibility that exploratory decisions might utilize previously learned 

rules and associations. Many tasks which investigate the explore/exploit dilemma are 

well learned and induce exploration by altering reward delay (Hayden et al., 2011), 

magnitude (Daw et al., 2006), or probability (Behrens et al., 2007; Knox et al., 2012). 

What is unclear from these tasks is the degree to which animals use learned rules and 

environmental models to guide their exploration, and how animals might explore in a 

novel circumstance. 

 If animals do not generalize learned rules to novel circumstances, what does 

control exploratory actions, and how do these actions relate to exploitation? The 

explore/exploit dilemma is classically characterized as a direct trade-off (Cohen et al., 

2007). You are either exploring or exploiting, and doing one necessarily precludes the 

other. Tasks like the n-armed bandit have reinforced this view, where the 

mathematically optimal decision (to maximize reward) is defined as “exploit” while all 

other choices are “explore” (Daw et al., 2006). But such a forced choice is rare in the 

real world. While actions controlled by exploration and exploitation decision processes 

cannot occur simultaneously, outside of the lab there are often many choice options 

available that do not explicitly fall into “exploration” or “exploitation”. This raises the 

possibility that the decision-making aspects of exploration and exploitation run in 

parallel and do not necessarily directly compete. Thus, it is unclear both the extent to 
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which exploration utilizes information gleaned from the environment, and if and how 

exploration and exploitation directly compete.   

While a large body of work focuses on the explore/exploit dilemma in relation to 

contextual and cued information, action control may rely on similar processes. The 

prefrontal cortex has substantial evidence implicating it in learning and applying rules 

(Badre et al., 2010; Wallis et al., 2001; White & Wise, 1999) in mediating the 

explore/exploit dilemma (Beharelle et al., 2015; Boorman et al., 2009; Cohen et al., 

2007; Daw et al., 2006; Laureiro-Martínez et al., 2014; Morris et al., 2016) and in 

action control (Balleine & O’Doherty, 2009). For example, the anterior cingulate cortex 

has been strongly implicated in the explore/exploit dilemma (Hayden et al., 2011), 

while orbital frontal cortex (OFC) and secondary motor cortex (M2) have been 

implicated in controlling goal-directed instrumental actions (Gremel & Costa, 2013a, 

2013b). It may be that cortical circuits underlying action control could be differentially 

recruited during explore and exploit processes. Within this framework, OFC has been 

shown to be necessary for actions sensitive to changing action value (Gourley et al., 

2016; Gremel et al., 2016; Gremel & Costa, 2013b; Rhodes & Murray, 2013) and 

partially observable states (Bradfield et al., 2015). M2 has been shown to support 

goal-directed actions (Gremel & Costa, 2013a) and the contingency between actions 

(Ostlund et al., 2009; Siniscalchi et al., 2016; Yin, 2009). OFC and M2 regions are 

reciprocally connected (Zingg et al., 2014), but not onto overlapping populations (i.e. 

OFC terminal fields in M2 do not overlap with M2 somata that project to OFC, and vice 

versa) (Oh et al., 2014). Furthermore, structural plasticity of OFC projections into M2 

(OFC-M2) correlates with rule learning (Johnson et al., 2016) – specifically, bouton 
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gain correlates with rule learning and subsequent exploitation, while bouton loss 

correlates with exploration. This suggests that OFC-M2 projections could contribute to 

or occlude exploration following rule learning.  

We used a self-paced operant instrumental lever press task in mice to 

determine if exploration utilizes learned rules and the extent to which exploration and 

exploitation directly compete. In this task (Hilario et al., 2007, 2012; Iguchi et al., 

2017), mice are trained to press one lever for a food reward. Then during the test 

session a novel but perceptually similar lever is also inserted into the chamber, and we 

measure responses on the trained and novel levers. Different schedules of 

reinforcement can be used to bias either exploitation of the trained lever or exploration 

of the novel lever (Hilario et al., 2007, 2012). Previous studies using this particular task 

have hypothesized that responding reflects either exploration (Hilario et al., 2007; 

Iguchi et al., 2017) or action generalization mechanisms (Hilario et al., 2012), though 

this has not been tested.   

We first probed the ability for outcome value to affect responding on the novel 

lever, and found no evidence that changes in outcome value affect novel lever 

exploration. Next, we evaluated if temporal uncertainty would affect exploration, and 

again found no evidence to suggest that temporal uncertainty affects novel lever 

exploration. Correlative data revealed that the amount of experience mice had with the 

learned action-outcome rule correlated with exploitation of the trained lever. 

Importantly, experience did not correlate – either positively or negatively – with 

exploration. That is, roughly the same level of exploration occurred irrespective of how 

much experience mice had with the learned rule, indicating that the decision-making 
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processes that mediate exploration and exploitation may not directly compete (i.e., 

more exploitation does not necessarily mean less exploration in a free operant 

context). This led us to examine OFC-M2 projection neurons which, as mentioned, are 

involved in rule learning (Johnson et al., 2016). Inhibition of OFC-M2 projection 

neurons during training and testing increased exploration and reduced exploitation. 

Overall our data suggest that mice do not generalize previously learned rules when 

engaging in novel lever exploration, that exploitation and exploration decision 

processes may run in parallel, and that the OFC-M2 circuit is a critical node controlling 

the emergence of exploitative action control.  

Results 

Outcome devaluation does not affect lever generalization 

We first examined whether mice generalize sensory-specific food outcome 

expectancies to the novel lever. We took advantage of two different schedules of 

reinforcement, with a random ratio (RR) schedule biasing sensitivity to sensory-

specific changes in food value and a random interval (RI) schedule biasing relative 

insensitivity to value changes (Dickinson, 1985; Dickinson et al., 1983). Previous work 

has found that RR schedules also bias more exploitation of the trained lever while RI 

schedules bias increased exploration of the novel lever (Hilario et al., 2007, 2012). 

Hence, if mice are generalizing sensory-specific features of the expected food 

outcome, then outcome devaluation should produce decreased exploratory pressing of 

the novel lever under an RR schedule in comparison to a RI schedule.   
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Mice were trained to press a lever located left or right of a food magazine 

(counterbalanced) for food pellets under either a RR or RI schedule. Response 

requirement increased across training, with RI schedules progressing from RI 30s to 

RI 60s, and RR10 progressing to RR20 after two days of schedule training (Figure 

1.1a).  Mice trained under a RR schedule increased their response rate across training 

to a greater degree than those trained under a RI schedule (Figure 1.1b). A two-way 

repeated-measures ANOVA (Day x Schedule) performed on acquisition response rate 

(lever presses/minute) revealed a significant interaction (F(16,224) = 5.22, p < 0.0001) 

and significant main effects of Day (F(16,224) = 17.5, p < 0.0001) and Schedule (F(1,14) = 

19.9, p = 0.0005), with post-hoc analyses (Bonferroni corrected) showing schedules 

differed on most of the training days.  

We then performed an outcome devaluation procedure counterbalanced across 

two days, where the operant outcome is devalued using sensory-specific satiety on the 

devalued (DV) day, while on the valued (V) day an outcome previously experienced in 

the homecage is pre-fed to control for effects of general satiation. Following 1 hour 

free feed access to either the operant or homecage outcome, mice were placed in the 

operant chamber for a 5 minute extinction test. On both the V and DV day, a second 

novel lever was inserted (either left or right of the food magazine, counterbalanced) in 

addition to the trained lever. Mice were re-trained for one day in between the V and DV 

day. 

Outcome devaluation procedures had no effect on exploration of the novel lever 

in mice trained either on RR or RI schedules (Figure 1.1c). A three-way repeated-

measures ANOVA (Lever Type x Valuation State x Schedule) showed a significant 
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three-way interaction (F(1,9) = 14.6, p = 0.004). A significant two-way interaction 

between Schedule and Lever Type (F(1,9) = 11.7, p = 0.008), showed schedule–

induced differences in exploration/exploitation as previously observed (Hilario et al., 

2007, 2012). There was also a significant interaction between Lever Type and 

Valuation State (F(1,9) = 19.4, p = 0.002), indicating that, overall, only the Trained lever 

was sensitive to value manipulations. There was no interaction between Schedule and 

Valuation State (F(1,9) = 3.22, p = 0.11). Main effects of Schedule (F(1,9) = 19.7, p = 

0.002), Lever type (F(1,9) = 27.7, p < 0.001), and Valuation State (F(1,9) = 8.29, p = 0.02) 

were also observed. Planned post-hoc comparisons (Bonferroni corrected) between V 

and DV days were made for each Lever by Schedule combination.  Devaluation 

significantly reduced Trained lever pressing in RR-trained mice (t(8) = 3.33, p = 0.01), 

but had no effect on Trained lever pressing in RI-trained mice (p = 0.23).  Devaluation 

had no effect on Novel lever pressing in either RR (p = 0.71) or RI (p = 0.52) trained 

mice.  

To determine if a conditioned context-outcome association influenced 

performance, we also measured head-entries into the magazine. We found no effect of 

outcome devaluation on the conditioned head-entry response (Figure 1.1d). A two-way 

RM ANOVA (Valuation State x Schedule) showed no significant interaction between 

Valuation State and Schedule (F(1,9) = 0.303, p = 0.60), nor a significant main effect of 

Valuation State (F(1,9) = 2.76, p = 0.13), although there was a main effect of Schedule 

(F(1,9) = 16.3 p = 0.003). Thus, outcome devaluation does not seem to reduce head-

entries, suggesting that the context-outcome pairing was not significantly devalued 

following satiation procedures. 
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 In addition, differences in conditioned response rates acquired between 

schedules did not contribute to these results (Figure 1.S1). We performed linear 

regression analyses on average response rate by Devaluation Index (DV index, see 

methods) to compare the relationship between response rates during training to the 

degree of outcome devaluation. There was no significant relationship when comparing 

late acquisition response rate and DV index on the trained (F(1,9) = 2.96, p = 0.12; R2 = 

0.25) or novel (F(1,9) = 0.52, p = 0.49; R2 = 0.055) lever. Similarly, there was no 

significant relationship between early response rate and DV index on either the trained 

or novel lever (Figures 1.S1 a-b). Since novel lever presses were lower than trained 

lever presses, there is the possibility that floor effects could prevent mice from 

decreasing their novel presses following devaluation. We ran linear regressions of 

lever press rate during testing on the trained and novel levers with DV Index (for the 

respective lever). We found no correlation between press rate on the Valued day and 

DV index for either the trained or novel lever (Figure 1.S1c). Likewise, we found no 

correlation between the average press rate across Valued and Devalued days and DV 

index for either the trained or novel levers (Figure 1.S1d). Hence we found no 

evidence that response rate during either acquisition or test contributes to the 

magnitude of outcome devaluation. Outcome devaluation does not appear to affect 

novel lever exploration, and this was true in mice trained in either a RR or RI schedule, 

which bias sensitivity or insensitivity (respectively) of trained lever pressing to outcome 

devaluation.  
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Figure 1.1. Outcome value does not contribute to novel lever pressing. Mice were 
traine=d to press a lever for an outcome under a random ratio (RR) or random interval 
(RI) schedule and then underwent a combined outcome devaluation/novel lever test. 
(a) Experimental timeline. (b) Response rate (Lever Presses/Min.) during acquisition. 
Days 1-2 were conducted under a RR10/RI30 schedule, remaining days were under a 
RR20/RI60 schedule. Dotted line indicates where first test day occurred, followed by 
one day of re-training and then the second test day. Significance markers indicate 
post-hoc differences between schedules. (c) Combined devaluation novel lever test. 
(d) Head entries into the magazine during the combined devaluation novel lever test. 
RT = Random Time. CRF = Continuous Ratio of Reinforcement. V = Valued Day. DV 
= Devalued Day. V/DV + Novel Lever = Combined Devaluation Novel Lever Test. Error 
Bars = ± SEM. n.s. = Not Significant, * = p < 0.05, ** = p < 0.01, *** = p <0.001, **** = p 
< 0.0001. 
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Supplemental Figure 1.S1. No correlation between acquisition or test response rate 
and sensitivity to devaluation. We ran several linear regressions comparing either 
acquisition (a-b) or test (c-d) response rate to Devaluation Index (DV Index) to 
determine if response rates influenced sensitivity to devaluation for either lever. (a) 
Early acquisition response rate (average of the first two days of schedule training) vs. 
DV Index. Neither the trained (F(1,9) = 0.57, p = 0.47; R2 = 0.059) nor the novel (F(1,9) = 
0.02, p = 0.89; R2 = 0.002) lever slope differed from 0. (b) Late acquisition response 
rate (final three day average) vs. DV Index. Neither the trained (F(1,9) = 2.96, p = 0.12; 
R2 = 0.25) nor the novel (F(1,9) = 0.52, p = 0.49; R2 = 0.055) lever slope differed from 0. 
(c) Response rate during the Valued test day vs. DV Index for the respective lever. We 
found no correlation between press rate on the Valued day and DV index for either the 
trained (F(1,9) = 2.68, p = 0.14; R2 = 0.229) or novel lever (F(1,9) = 2.57, p = 0.14; R2 = 
0.222). (d) Average response rate during test (Valued and Devalued days) vs. DV 
Index for the respective lever. We found no correlation between the average press rate 
across Valued and Devalued days and DV index for either the trained (F(1,9) = 2.06, p = 
0.19; R2 = 0.186) or novel lever (F(1,9) = 0.06, p = 0.81; R2 = 0.007). Dotted linear 
regression lines indicate non-significant slopes (compared to 0). n.s. = Not Significant. 
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Uncertainty does not affect action generalization 

Uncertainty is known to modulate the balance between exploration and 

exploitation (Cohen et al., 2007). Since previous work has shown that increasing 

temporal uncertainty (i.e., uncertainty regarding when a reward is available) in RI 

schedules biases the development of habitual actions (Derusso et al., 2010), and RI 

schedules promote generalization (Hilario et al., 2007, 2012), we hypothesized that 

increases in temporal uncertainty might lead to increased exploration of the novel 

lever. 

Mice were trained under three different schedules (Figure 1.2a) that differed in 

terms of their reward probability distribution, but shared the same average time to 

reward (Figure 1.2b). This was achieved by utilizing different time cycles (T) coupled 

with different probabilities (p). In the Fixed Interval 60s schedule (FI60), T = 60s and p 

= 1.0, such that at every 60s cycle, there is 100% chance of a reinforcer being earned 

following a lever press. In the Random Interval 60s (p = 0.5) schedule, T = 30s and p = 

0.5, such that at every 30s cycle, there is a 50% chance of a press producing a 

reinforcer. In the Random Interval 60s (p = 0.1) schedule, T = 6s and p = 0.1, such that 

at every 6s cycle, there is a 10% chance of a press producing a reinforcer. Importantly, 

the average time to reward is 60s in all three schedules (Figure 1.2b). These 

schedules did not produce different response rates during acquisition (Figure 1.2c), as 

evidenced by a two-way repeated measures ANOVA (Day X Schedule) that showed 

no interaction (F(20,420) = 0.64, p = 0.89) or main effect of Schedule (F(2,42) =  0.25, p = 

0.78), but did show a main effect of Day (F(10,420)= 38.7, p < 0.0001). We confirmed 

that our manipulation led to changes in action-outcome contiguity (the average time 
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between a lever press and an outcome delivery) (Derusso et al., 2010) on the last 

acquisition day prior to the first novel lever test (one-way ANOVA; significant effect of 

schedule (F(2,41) = 3.86, p = 0.029) (Figure 1.2d). Hence mice learned to press the 

lever under different degrees of temporal uncertainty. 

We found no evidence to suggest that temporal uncertainty affects exploration 

of the novel lever. Mice were given two novel lever tests where an additional, novel 

lever was inserted into the chamber along with the trained lever; an early test was 

conducted after initial acquisition at a time point early on in rule learning, and a second 

late test was conducted after extended training, although in this case the additional 

lever was not completely novel. A two-way repeated measures ANOVA (Lever Type X 

Schedule) conducted on lever presses in the early test did not show an interaction (p = 

0.77) or a main effect of Schedule (p = 0.16), but did show a main effect of Lever Type 

(F(1,42) = 47.7, p < 0.0001) (Figure 1.2e). Similarly, a two-way repeated measures 

ANOVA conducted on lever pressing during the late test did not show an interaction (p 

= 0.73) or main effect of Schedule (p = 0.96), but did show a significant main effect of 

Lever Type (F(1,42) = 33.5, p < 0.0001) (Figure 1.2f). As these three interval schedules 

have been demonstrated to differ in their action-outcome contiguity (Derusso et al., 

2010) (Figure 1.2d), we correlated action-outcome contiguity with Generalization Index 

(Gen. Index: values close to 1 indicate complete exploitation of the trained lever, while 

values near 0 indicate generalized responding to both levers, see methods). We found 

no correlation between the action-outcome contiguity on the last training day and the 

degree to which mice generalized lever pressing to the novel lever during testing 

(F(1,88)= 1.40, p = 0.24; R2 = 0.02) (Figure 1.2g). Overall, our data show mice exhibited 
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weak generalization of responding, and we found no evidence that temporal 

uncertainty influenced novel lever exploration. 
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Figure 1.2. Uncertainty does not contribute to novel lever pressing. Mice were trained 
to press a lever for an outcome under one of three different interval schedules which 
varied in their uncertainty. (a) Experimental timeline. (b) Reward distribution of the 
three different interval schedules. Note that while the temporal distribution of reward 
availability differs, all three schedules share the same average time to reward (60s). 
(c) Response rate during acquisition. Dotted lines indicate where novel lever tests 
occurred. (d) Action-outcome contiguity, defined as mean time between a lever press 
and reward on the final acquisition day prior to the first novel lever test. (e) Early and 
(f) late novel lever test lever presses. In both graphs there is a significant main effect 
of lever. (g) Correlation between action-outcome contiguity and generalization index 
(Gen. Index), calculated as (Trained Presses – Novel Presses) / Total Presses. FI60 is 
a Fixed Interval 60s schedule. RI60 p = 0.5 is a Random Interval 60s schedule with 
moderate uncertainty. RI60 p = 0.1 is a Random Interval 60s schedule with high 
uncertainty. RT = Random Time. CRF = Continuous Ratio of Reinforcement. Error 
Bars = ± SEM. n.s. = Not Significant, * = p < 0.05. 
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Action Experience Biases Selective Exploitation 

We next sought to determine if the amount of experience with the learned 

action biased towards exploitation, as previously reported (Iguchi et al., 2017). Utilizing 

data obtained from the mice in the uncertainty experiment above, we calculated the 

total lever presses made since the start of schedule training until either the early or 

late generalization test. We found that experience with the learned action did indeed 

bias towards exploitation. A linear regression analysis of total lever presses during 

acquisition and the generalization index revealed a small but significant positive 

relationship (F(1,88) = 8.43, p = 0.005; R2 = 0 .087) (Figure 1.3a), with more total lever 

presses during acquisition leading to higher generalization index values (i.e., more 

exploitation). We ran separate linear regressions broken up by training schedule (FI 

vs. RI (0.5) vs. RI (0.1)) to determine if this effect was primarily driven by one 

schedule. We found that there was still a significant relationship between total lever 

presses during acquisition and generalization index in the FI (F(1,28)= 6.67, p = 0.015; 

R2 = 0.19), and the RI(0.1) (F(1,32)= 5.88, p = 0.02; R2 = 0.16) schedules, but not in the 

RI(0.5) schedule (F(1,26)= 0.03, p = 0.86; R2 = 0.0013) (Figure 1.S2a). This 

demonstrates that this relationship is not driven by only one schedule, and indeed is 

observed in the schedules that differ most in terms of their uncertainty (that is, 

uncertainty does not appear to contribute to the correlation between experience and 

exploitation). 

An increased generalization index could indicate either an increase in trained 

lever presses and/or a decrease in novel lever presses. We therefore ran linear 

regressions using total lever presses during acquisition by trained or novel lever 
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presses collapsed across early and late tests (Figure 1.3b). Interestingly, we found a 

significant relationship with only trained lever presses (F(1,88) = 18.5, p < 0.0001; R2 = 

0.17), and not with novel lever presses (F(1,88) = 0.07, p = 0.79; R2 = 7.97e-4).  

Furthermore, the slope of these two lines (trained vs. novel lever press) differed 

significantly (F(1,176) = 15.1, p = 0.0001), indicating that the amount of experience with 

the trained lever is highly predictive of trained lever presses on test, but does not 

impact the degree of novel lever exploration. Indeed, this relationship was present on 

the last day of training prior to testing, where we again find a significant relationship 

between last day response rate and generalization index (F(1,88)= 17.2, p < 0.0001; R2 

= 0.16) (Figure 1.3c), and with test response rates on the trained (F(1,88)= 133, p < 

0.0001; R2 = 0 .60) but not the novel (F(1,88)= 3.54, p = 0.06; R2 = 0.04) lever, and again 

the slopes of these two lines differed significantly  (F(1,176) = 62.5, p < 0.0001) (Figure 

1.3d). 

We next sought to determine how early this relationship between response rate 

and generalization index emerged. For these analyses, we used data only from the 

early generalization test to examine the relationship between initial learning and 

testing. Using response rates from the very first day of CRF (Continuous Ratio of 

Reinforcement) training, we found no significant relationship with the subsequent 

generalization index (p = 0.18, R2 = 0.04) (Figure 1.3e). This lack of a significant 

relationship persisted throughout the following 2 days of CRF training (Figures 1.S2a-

c), though it should be noted that the low response rates during this initial CRF training 

might make correlations difficult to detect. However, by the first day of schedule 

training on FI30 or RI30, a significant relationship between response rate and the 
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generalization index emerged (F(1,43) = 10.2, p = 0.003; R2 = 0.19) (Figure 1.3f). This 

suggests that differences in the action-outcome relationships experienced during early 

schedule learning contribute to exploitation on the trained lever. 

These results indicate that the amount of experience with a known action-

outcome relationship is predictive of the subsequent degree of exploitation during a 

probe test, with more experience and higher rates of responding correlating with 

increased exploitation of the trained lever. However, there was no correlation with 

exploration, as might be expected if actions were being generalized. Similarly, if 

exploitation and exploration decision-processes directly competed with one another, 

we should expect to see a negative correlation (that is, as exploitation increases with 

experiences, exploration should decrease), but instead we see no relationship 

between experience and exploration whatsoever. When we measured the duration 

mice hold the trained versus novel lever down in a separate cohort of mice, we found 

that lever press durations can differ between trained and novel levers (Figures 1.S3a-

d), indicating that the motor response itself may not fully generalize. Together, the 

results of our uncertainty experiment provide evidence that the learned Stimulus-

Response association does not generalize to the novel lever. 
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Figure 1.3. Experience with the trained lever correlates with exploitation but not 
exploration. The same mice from Figure 1.2 were used to run these correlations. (a) 
Correlation between total lever presses during acquisition and generalization index 
(Gen. Index). (b) Correlation between total lever presses during acquisition and test 
lever presses on the trained or novel lever. (c) Correlation between last day response 
rate and generalization index. (d) Correlation between last day response rate and test 
response rate on trained and novel levers. (e) Correlation between response rate on 
the final CRF (Continuous Ratio of Reinforcement) training day and generalization 
index. (f) Correlation between response rate on the first day of schedule training and 
generalization index. Dotted linear regression lines indicate non-significant 
correlations, while solid linear regression lines are significant. Acq. = Acquisition. n.s. = 
Not Significant, ** = p < 0.01, **** = p < 0.0001. 
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Supplemental Figure 1.S2. Correlation between experience and exploitation exists 
across different schedules and is not present prior to schedule training. (a) Correlation 
between total lever presses during acquisition and generalization index (Gen. Index) 
separated by schedule. FI60 = Fixed Interval 60s. RI60 (0.5) is a Random Interval 60s 
schedule with moderate uncertainty. RI60 (0.1) is a Random Interval 60s schedule 
with high uncertainty. (b) Correlation between rate on the second day of CRF 
(Continuous Ratio of Reinforcement) training and generalization index. (c) Correlation 
between rate on the third day of CRF training and generalization index. Dotted linear 
regression lines indicate non-significant slopes (compared to 0), while solid lines 
indicate significant slopes. n.s. = Not Significant, * = p < 0.05. 
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Supplemental Figure 1.S3. Lever press duration differs between trained and novel 
levers in ratio-trained mice. To examine how similar action performance itself (the 
response) is on the trained versus novel lever, mice were trained on either a Random 
Ratio (RR) or Random Interval (RI) schedule and the duration of their lever presses 
was recorded. (a) Mean lever press duration on the final day of acquisition. A Mann-
Whitney test of lever durations on the final day of training prior to testing revealed 
significant differences between the two schedules (Mann-Whitney U = 29523, nRI= 
202; nRR= 305, p = 0.002). (b) Distribution of lever press durations on the final day of 
acquisition. (c) Mean lever press durations on the trained and novel lever during the 
novel lever test. While mice trained under a RI schedule made trained and novel lever 
presses of similar durations (Mann-Whitney U = 29523, nTrained = 204; nNovel = 23, p = 
0.64), those trained under a RR schedule pressed the trained and novel levers with 
different durations (Mann-Whitney U = 13782, nTrained = 462; nNovel = 72, p = 0.02) (d) 
Distribution of lever press durations during the novel lever test. Bars = ± SEM. n.s. = 
not significant, * = p < 0.05, ** = p < 0.01. 
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Orbital frontal cortex projections to secondary motor cortex mediate learned action-

outcome associations 

Our data suggests that increased experience drives exploitation of known rules.  

Rule learning in uncertain environments has been proposed to induce structural 

plasticity of OFC terminals in M2, with the magnitude of this plasticity correlating with 

subsequent exploitation of known rules (Johnson et al., 2016). We hypothesized that 

activity of OFC projections to M2 is necessary for rule learning that supports 

exploitation of the trained lever. Hence, inhibiting OFC projections to M2 during both 

learning and testing should occlude this plasticity, and thereby bias exploration during 

the novel lever test.  

We utilized a dual viral vector approach to isolate OFC projections into M2, and 

used chemogenetics to specifically attenuate OFC-M2 activity (Figure 1.4a). Mice 

were given bilateral injections in OFC of a rAAV5/hSyn-DIO-hM4D-mcherry expressing 

a Cre-dependent inhibitory Designer Receptor Exclusively Activated by a Designer 

Drug (DREADD) (Armbruster et al., 2007) or a rAAV5/hSyn-DIO-mcherry expressing a 

Cre-dependent fluorophore control (mCherry). In M2, all mice received bilateral 

injections of AAV5/CamKIIα-GFP-Cre expressing GFP-Cre under the control of the 

CamKIIα promoter that can be transferred retrograde (Rothermel et al., 2013). We 

observed minimal expression of neurons which project in the other direction (M2 to 

OFC: as evidenced by lack of mCherry in M2 and lack of GFP in OFC; Figure 1.4b).  

All mice were trained under a RI schedule. All animals received injections of the 

hM4D agonist CNO (1.0mg/ml) 30 minutes prior to all schedule training and test days, 
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a duration we have previously shown sufficient to reduce OFC cell excitability (Gremel 

et al., 2016; Gremel & Costa, 2013b). hM4D and mCherry control mice showed similar 

acquisition of lever press behavior (Figure 1.4c). A two-way repeated measures 

ANOVA (Day x Virus) did not show a significant interaction (p = 0.82), or main effect of 

Virus (p = 0.46), but did show a main effect of Day (F(10,130)  = 25.3, p < 0.0001). Since 

both OFC (Gremel & Costa, 2013b) and M2 (Gremel & Costa, 2013a) are individually 

necessary for goal-directed actions under outcome devaluation, we first sought to test 

if the projections from OFC to M2 were specifically necessary for goal-directed actions.  

We took advantage of previous findings that action control relatively early in training 

under RI schedules is still goal-directed (Dickinson et al., 1995; Shan et al., 2014), and 

performed outcome devaluation procedures after relatively little training. A two-way 

repeated measures ANOVA (Valuation state x Virus treatment) showed no interaction 

(p = 0.31), nor a main effect of virus (p = 0.26). Only a main effect of Valuation State 

(F(1,13) = 10.1, p = 0.007) was observed, indicating that OFC-M2 activity attenuation 

during training and testing did not disrupt goal-directed control (Figure 1.4d).  

Following devaluation testing, we next assessed the involvement of the OFC-

M2 projection in a second test session in which the novel lever was introduced. In 

contrast to our outcome devaluation results, we found that attenuation of OFC-M2 

projection neuron activity decreased exploitation of the trained lever in relation to 

exploration of the novel lever (Figure 1.4e). While mCherry control mice pressed the 

trained lever to a much greater degree than the novel lever, hM4D mice pressed each 

of the levers a similar amount of times. A two-way repeated measures ANOVA (Lever 

x Virus), revealed a significant interaction (F(1,13) = 5.97, p = 0.03) and significant main 
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effect of Lever (F(1,13) = 27.6, p = 0.0002), but no main effect of Virus (p = 0.87).  

Bonferroni-corrected post-hoc testing revealed that only mCherry control mice 

differentially distributed their presses between the trained and the novel lever (t(13) = 

5.63, adjusted p = 0.0002), while the hM4D mice did not (adjusted p = 0.15). These 

results indicate that the OFC-M2 projection is functionally involved in learning to 

exploit known rules in an uncertain environment.  
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Figure 1.4. Chemogenetic attenuation of OFC-M2 projection neurons reduces 
exploitation of learned rules. Chemogenetic inhibition of OFC-M2 projection neurons 
throughout training and testing. (a) (top) Experimental timeline and (bottom) schematic 
of dual viral vector injection. (b) Representative images of mCherry and GFP 
fluorescence at 3.2x magnification in both OFC and M2. (c) Response rate during 
acquisition. mCherry = Fluorophore control mice expressing mCherry. hM4D = 
Inhibitory DREADD-expressing mice (d) Lever presses during outcome devaluation. 
There is a significant main effect of Valuation State. (e) Lever presses during novel 
lever test. RT = Random Time. CRF = Continuous Ratio of Reinforcement. RI = 
Random Interval. V/DV = Outcome Devaluation Test. Bars = ± SEM. n.s. = Not 
Significant, * = p < 0.05, ** = p < 0.01. 
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Discussion 

Our data suggests that exploitation and exploration are parallel decision 

processes, with OFC-M2 circuits supporting the acquisition and performance of 

exploitation. We have provided multiple, convergent lines of evidence indicating that 

mice do not generalize learned action contingencies in total during exploration on a 

novel lever, but instead choose to exploit known rules while they continue to explore 

for new rules associated with a novel lever. In support of this, learned outcome value 

of the trained lever does not appear to control novel lever pressing, nor does the 

amount of uncertainty experienced during learning. Instead, we find that experience 

with the learned rule predicts subsequent exploitation of that lever during testing, while 

that experience has little effect on continued exploration. In agreement with this, 

chemogenetic inhibition of OFC neurons projecting to M2 – a neural circuit involved in 

rule learning – was sufficient to induce greater exploration. 

Attenuation of the OFC-M2 circuit revealed a functional role for this circuit in 

biasing exploitation of known rules. To our knowledge, this is the first time this circuit 

has been functionally manipulated whatsoever. OFC has a long history of research 

implicating it in representing outcome value (Stalnaker et al., 2015) and in reversal 

learning (Rudebeck & Murray, 2008), and has recently been proposed to incorporate 

expected uncertainty during decisions to guide behavior (Stolyarova & Izquierdo, 

2017). A prominent hypothesis has been that the OFC represents the state space of a 

given task (Wilson et al., 2014). With regards to the latter hypothesis, an unanswered 

question is, where does OFC convey this state space information? OFC projections 

into amygdala (Fiuzat et al., 2017), and dorsal striatum (Gremel et al., 2016) appear to 
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convey information necessary for value-based decision-making, including broader 

state space representations (Stalnaker et al., 2016). Intracortical OFC projections have 

been largely neglected, but are interesting candidate regions for the conveyance of 

this state space information. One such cortical region is M2, which has been proposed 

to utilize evidence – both external sensory and internal information – to guide actions 

(Barthas & Kwan, 2017). What is unclear is whether M2 is directly computing and 

utilizing evidence, or whether this information arrives from other regions (Murakami et 

al., 2014, 2017). OFC is an interesting candidate source, given that M2 and OFC are 

reciprocally connected (Zingg et al., 2014), and bouton gain of OFC axons in M2 

positively correlates with exploitation of learned rules, while bouton loss correlates with 

exploration (Johnson et al., 2016). This provides correlative evidence that OFC is 

indeed conveying task-relevant information to M2. Our results provide a causal link 

between activity in this pathway and subsequent decision-making, suggesting 

contribution of the OFC-M2 projection in arbitrating the exploitation of learned rules.  

Since we inhibited OFC-M2 projections throughout both training and test, we cannot 

conclude if this projection is also involved in using this learned information during 

novel lever testing. However, the results of the structural plasticity study (Johnson et 

al., 2016) would indicate that OFC-M2 projections are specifically involved in learning, 

particularly since there was no differences in structural plasticity between groups of 

mice that had to recall an already known rule vs. those that underwent a reversal.   

We found no evidence for the involvement of OFC-M2 projections in goal-

directed decision-making following outcome devaluation. This is somewhat surprising, 

as both OFC (Gremel & Costa, 2013b) and M2 (Gremel & Costa, 2013a) are 
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individually necessary for goal-directed control following outcome devaluation. In 

agreement with our current results, structural plasticity of OFC projection neurons in 

M2 does not correlate with the experience of reward alone, but instead specifically 

correlated with learning the relationship between actions and outcomes (Johnson et 

al., 2016). Thus it appears that while OFC projections into dorsal striatum (Gremel et 

al., 2016) and amygdala (Fiuzat et al., 2017) are involved in using value change to 

guide actions, we find no evidence that OFC projections to M2 convey outcome value; 

instead they may encode learned rules among outcomes, actions, and stimuli.  

Therefore, our findings suggest a projection-specific dissociation of OFC function, as 

we identify an OFC projection which may utilize state space representations provided 

by OFC to guide decision-making and action selection. 

 The results of our combined novel lever test and outcome devaluation study 

find no evidence that outcome value influences novel lever exploration. These results 

are significant on several different levels. Firstly, they replicate the finding that RR 

schedules bias goal-directed control over behavior and selective exploitation of the 

trained lever during a novel lever test, while RI schedules bias habitual control over 

behavior and exploration of the novel lever (Dickinson et al., 1983; Hilario et al., 2007, 

2012). Thus, we were able to combine the novel lever test with the devaluation test 

and still replicate classical and long-standing schedule-induced differences in action 

control. This combination could prove useful, as it allows for the simultaneous study of 

different action control systems. This experiment also indicates that learned action-

outcome associations do not generalize to the novel lever, as outcome value 
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manipulations – which control responding on the trained lever – have no effect on 

novel lever exploration.  

It has been proposed that generalization on the novel lever test might occur as 

a result of a learned stimulus-response association generalizing to the perceptually 

similar novel lever (Hilario et al., 2012). However, we find that temporal uncertainty, 

which is known to increase habitual control over behavior (Derusso et al., 2010) has 

no effect on novel lever pressing. Additionally, we measured the duration of lever 

presses themselves (i.e., the response) in a separate experiment, and discovered that 

mice trained in RR schedules press the trained and novel lever differently. Thus, 

performance of the learned response itself does not completely generalize to the novel 

lever. It seems therefore that neither the stimulus-response relationship nor the 

response itself are fully generalized to the novel lever. 

If novel lever pressing is not the sole result of generalization of learned rules, or 

of stimulus-response associations, what is controlling responding? It has recently been 

proposed that exploration is a distinct, early stage of learning which disappears 

following extended training (Iguchi et al., 2017). If exploration disappeared with 

training, we should expect a negative correlation between the amount of experience 

an animal had with the instrumental contingency and novel lever pressing. While we 

find evidence that the amount of experience correlates with trained lever pressing, 

there is no such relationship with novel lever pressing. Put another way, roughly the 

same level of novel lever exploration occurs regardless of the amount of experience 

animals have with the trained lever. Thus, animals might appear to explore early in 

training simply because there is relatively less exploitation occurring at this time point.  



51 
 

Classically, the explore/exploit dilemma is treated as a zero-sum game, where 

one necessarily excludes the other. While animals of course cannot simultaneously 

make explore/exploit-related actions, the trade-off between the two is not strictly zero 

sum as evidenced in the self-paced operant task used in this study. Mice in our task 

(and animals foraging in the wild) have many potential actions available to them – 

grooming, locomotion, making head entries – that do not explicitly fall into exploitation 

or exploration. It could be that the trial-based, forced choice structure of many tasks 

forces the apparent direct trade-off between exploration and exploitation. Our results 

suggest that the decision-making processes that arbitrate exploration and exploitation 

may not inherently be in competition; rather, they may run in parallel with action 

selection arising from the winning decision made (Ojeda et al., 2018). This is 

analogous to the current understanding of goal-directed and habitual action control 

systems as parallel processes, either of which may contribute to action control at a 

given time point (Balleine & O’Doherty, 2009). If exploration and exploitation decision 

processes do indeed run in parallel, an intriguing prediction is that it should be 

possible to selectively manipulate one or the other of these processes. 

In support of this view, many studies have found different neuroanatomical 

substrates for exploration and exploitation (Addicott et al., 2017; Boorman et al., 2009; 

Daw et al., 2006; Laureiro-Martínez et al., 2014). However, other regions like the locus 

coeruleus (LC) have been implicated in both exploration and exploitation (Aston-Jones 

& Cohen, 2005). Interestingly, the LC is reciprocally connected with OFC (Aston-Jones 

& Cohen, 2005, p.) and M2 (Condé et al., 1995). It has been proposed that cortical 

input into LC is crucial for its ability to shift behavior between exploration and 
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exploitation (Aston-Jones & Cohen, 2005), and LC input into anterior cingulate (and 

adjacent M2) is critically involved in increasing behavioral variability that could underlie 

exploration (Tervo et al., 2014). LC norepinephrine is an important modulator of 

plasticity in the brain (Marzo et al., 2009); it is unknown if OFC-M2 projection plasticity 

might also be sculpted by LC norepinephrine input during learning. 

We have provided evidence that novel exploration is unlikely to fully utilize 

previously learned rules about actions from the environment. This raises the possibility 

that the decision-making processes that arbitrate between exploration and exploitation 

may run in parallel and may not directly compete with one another.  

Methods 

Animals 

Similar numbers of male and female C57BL/6J mice (> 7 weeks/50 PND) (The 

Jackson Laboratory, Bar Harbour, ME) were used for experiments. All procedures 

were conducted during the light period and mice had free access to water throughout 

the experiment. Mice were food restricted to 90% of their baseline weight 2 days prior 

to the start of experimental procedures, and were fed 1-4 hours after the daily training. 

All experiments were approved by the University of California San Diego Institutional 

Animal Care and Use Committee and were carried out in accordance with the National 

Institutes of Health (NIH) “Principles of Laboratory Care.”  Mice were housed 2-4 per 

cage on a 14:10 light:dark cycle.   

Acquisition 
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Mice were trained once per day in operant chambers in sound attenuating 

boxes (Med-Associates, St Albans, VT) in which they pressed a lever (left or right of 

the food magazine, counterbalanced for location) for an outcome of regular ‘chow’ 

pellets (20 mg pellet per reinforcer, Bio-Serv formula F0071). Each training session 

commenced with an illumination of the house light and lever extension and ended 

following schedule completion (30 reinforcers) or after 60-90 minutes had elapsed with 

the lever retracting and the house light turning off.   

         On the first day, mice were trained to approach the food magazine (no lever 

present) on a random time (RT) schedule, with a reinforcer delivered on average every 

60 seconds for a total of 30 minutes. Next, mice were trained on a continuous ratio 

schedule of reinforcement (CRF) across 3 days, where every lever press was 

reinforced, with the total possible number of earned reinforcers increasing across days 

(CRF 5, 15, and 30).    

Following CRF, mice were trained on either a random interval (RI) schedule to 

bias habitual control over actions (Dickinson, 1985) and action generalization (Hilario 

et al., 2012), or a random ratio schedule (RR) to bias goal-directed action control and 

action exploitation. In a RI(Y) schedule, the first lever press after an average of (Y) 

time has elapsed will be reinforced, using a probability distribution of p = 0.10 (e.g. in 

RI30, the first lever press after 30 seconds – on average – have elapsed will be 

rewarded). In a RR(X) schedule, on average (X) lever presses must occur before a 

reward is delivered. Initial training was conducted on a RI30 and RR10 for two days, 

followed by a progression to RI60 and RR20 (see each experiment for timeline 

details).  
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Generalization Testing 

As described previously (Hilario et al., 2012), mice were placed in the training 

context and at session start two levers were extended; the previously trained lever as 

well as a novel, but identical lever in a different spatial location. Testing took place 

over 5 minutes and was conducted in the absence of reinforcement. Mice that made 0 

presses on the trained lever were excluded from analyses. 

Outcome Devaluation 

         Devaluation procedures occurred across two days. In brief, on the valued day, 

mice had ad libitum access to an outcome previously experienced in the home cage 

for 1 hour before being placed in the training context for a 5 minute, non-reinforced 

test session. On the devalued day, mice were given 1 hour of ad libitum access to the 

outcome previously earned by lever press, and then underwent a 5 minute, non-

reinforced test session in the training context. The order of revaluation day was 

counterbalanced across mice. Mice who did not consume at least 0.1g of food on 

either the valued or devalued day were excluded. 

Combined Outcome Devaluation and Generalization 

         Outcome devaluation was combined with the novel lever test such that both the 

trained and novel lever were presented following outcome devaluation via specific 

satiety. Testing occurred across two days, separated by one day of re-training in 

between. All conditions were counterbalanced between days. 

Drugs 
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The hM4D-selective agonist Clozapine N-Oxide (CNO) was obtained from the 

National Institute of Mental Health (Bethesda, MD). The CNO dosage was 1.0 mg/kg 

at 10 ml/kg per mouse, delivered in saline via intraperitoneal injection. All mice were 

pretreated with CNO 30 minutes prior to the start of training or testing to allow for CNS 

penetration (Gremel & Costa, 2013b).    

Surgical Procedure 

For chemogenetic attenuation of OFC-M2, all viral vectors were obtained from 

the UNC Viral Vector Core (Chapel Hill, NC). Mice were anaesthetized with isoflurane 

(1-2%) and bilateral intracranial injections were performed via Hamilton (Reno, NV) 

syringe targeted at M2 (from Bregma: AP +0.5 mm, L ±0.5 mm and V -1.25 mm from 

the skull), or OFC (from Bregma: AP +2.7 mm, L ±1.65 mm and V -2.65 mm from the 

skull). Mice (n = 16) received 200nl of a viral vector (rAAV5/CamKIIα-GFP-Cre) 

expressing Cre recombinase (Cre) under the control of the calcium calmodulin 

dependent protein kinase II α (CamKIIα) in M2. In OFC, n = 8 mice received 200nl of a 

viral vector (rAAV5/hSyn-DIO-mcherry) as a control, and n = 8 mice received 200nl of 

a viral vector (rAAV5/hSyn-DIO-hM4D-mcherry) expressing a Cre-inducible, inhibitory 

DREADD (hM4D) coupled to a Gi signaling cascade which induces neuronal 

attenuation (Armbruster et al., 2007). Syringes were left in place for five minutes after 

injection to allow for diffusion. Mice were given at least two weeks of recovery before 

the start of experimental procedures. After behavioral testing was concluded, mice 

were euthanized and brains were extracted and fixed in 4% paraformaldehyde. The 

hM4D virus expressed the fluorescent marker mCherry, while the Cre virus expressed 

the fluorescent marker GFP. Localization and spread of viral expression was assessed 
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in 100 µm thick brain slices using fluorescent microscopy (Olympus MVX10). The final 

n’s were: n =7 hM4D mice and n = 8 mCherry control mice.     

Data Analysis 

 For all analyses, α = 0.05 was used as a threshold for significance. All 

analyses were two-tailed. Initial analyses were conducted to assess normal 

distributions and similar standard deviations. Where we found evidence for non-normal 

distributions or different standard deviations, we used Mann-Whitney tests. One-way 

or two-way repeated measures ANOVAs were used to examine acquisition and test 

data unless stated otherwise. The devaluation index was calculated by subtracting 

lever presses on the devalued day (DV) from lever presses on the valued day (V) and 

dividing by the total number of lever presses across both days (V - DV) / (V + DV).  

The generalization index was calculated by subtracting novel lever presses from 

trained lever presses and dividing by the total number of lever presses (Trained - 

Novel) / (Trained + Novel). Action-outcome contiguity was calculated by measuring the 

time in between a lever press and the next reinforcer delivery on average per animal. 

Behavioral data was recorded by MED-PC IV software, and analyzed in Excel, Matlab 

(Mathworks), Prism (Graphpad), and JASP.   

Experiment 1: Role of outcome value in action generalization 

16 C57BL/6J mice were used for this experiment. Two days prior to the start of 

behavioral procedures, mice were habituated to a novel cage for 1.5 hours which 

would later be used in the devaluation procedure. On schedule training days, mice 

were given a non-contingent, home cage outcome of 20% w/v sucrose (Sigma Aldrich, 
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St. Louis, MO) 1-4 hours after training, which would serve as a control for satiety 

during the devaluation test. Half of the subjects (n = 8) were trained under a RR 

schedule, while the other half (n = 8) were trained under a RI schedule of 

reinforcement. Mice were trained for 2 days on either RR10 or RI30, before being 

switched to a RR20 or RI60 schedule for 10 days of training prior to the combined 

outcome devaluation, action generalization test (Figure 1.1a). During the devaluation 

generalization test, several mice were excluded due to failing to consume the 

minimum during pre-feeding (0.1g either day), giving a final sample size n = 6 RI and n 

= 5 RR during the test. 

 Experiment 2: Role of uncertainty in action generalization 

48 C57BL/6J mice were used for this experiment. Subjects were broken up into 

three different uncertainty groups using interval schedules of reinforcement, each with 

an initial n = 16. The three schedules used were a Fixed Interval (FI), a RI p = 0.5 and 

a RI p = 0.1 as described previously (Derusso et al., 2010). 3 mice were excluded for 

failing to acquire the task (1 from FI, 2 from RI p = 0.5) to give final sample sizes of n = 

15 FI, n = 14 (RI p = 0.5), and n = 16 (RI p = 0.1). The schedules differed in terms of 

their reward probability distribution, but all shared the same average time to reward 

(Figure 1.2b). This was achieved by utilizing different time cycles (T) coupled with 

different probabilities (p). In the FI60 schedule, T = 60s and p = 1.0, such that at every 

60s cycle, there is 100% chance of a reinforcer being earned following a lever press. 

In the RI60 (p = 0.5) schedule, T = 30s and p = 0.5, such that at every 30s cycle, there 

is a 50% chance of a press producing a reinforcer. In the RI60 (p = 0.1) schedule, T = 

6s and p = 0.1, such that at every 6s cycle, there is a 10% chance of a press 
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producing a reinforcer. Mice were pre-trained on a RT and CRF schedule as described 

above, before being switched onto a FI30/RI30 schedule for 2 days, followed by 2 

days of a FI60/RI60 schedule, then 1 day of novel lever testing, then 4 additional days 

of FI60/RI60 training, followed by a final day of novel lever testing (Figure 1.2a).  

Experiment 3: Schedule-induced differences in action performance 

7 C57BL/6J mice were used for this experiment, with n = 4 trained under a RI 

schedule and n = 3 trained under a RR schedule. During this experiment, the lever 

press durations were recorded. Mice were trained for 2 days on a RR10/RI30 

schedule, followed by 10 days of RR20/RI60 training, followed by a novel lever test.   

 Experiment 4: Role of OFC to M2 projections in action generalization 

16 C57BL/6J mice were used for this experiment. One hM4D mouse was 

excluded due to poor fluorophore expression leaving final n’s at n = 8 mCherry 

controls and n = 7 hM4D mice. After pre-training, mice were trained for two days on a 

RI30 schedule, followed by 6 days of training on a RI60 schedule, followed by 

outcome devaluation testing. The following day, mice underwent a novel lever test 

(Figure 1.4a). CNO pretreatment began on the first day of schedule training and 

continued throughout training and testing. 

Data Availability 

 The datasets generated and code used during the current study are available 

from the corresponding author on reasonable request. 
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Abstract 

Subjective experience is a powerful driver of decision-making and continuously 

accrues. However, most neurobiological studies constrain analyses to task-related 

variables and ignore how continuously and individually experienced internal, temporal, 

and contextual factors influence adaptive behavior during decision-making and the 

associated neural mechanisms. We show mice rely on learned information about 

recent and longer-term subjective experience of variables above and beyond prior 

actions and reward, including checking behavior and the passage of time, to guide 

self-initiated, self-paced, and self-generated actions. These experiential variables were 

represented in secondary motor cortex (M2) activity and its projections into dorsal 

medial striatum (DMS). M2 integrated this information to bias strategy-level decision-

making, and DMS projections used specific aspects of this recent experience to plan 

upcoming actions. This suggests diverse aspects of experience drive decision-making 

and its neural representation, and shows premotor corticostriatal circuits are crucial for 

using selective aspects of experiential information to guide adaptive behavior. 

Keywords: subjective experience, decision-making, secondary motor cortex, striatum, 

corticostriatal 
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Introduction  

Most neurobiological investigations into decision-making seek to use well-

constrained tasks to isolate specific components of decision-making and illuminate the 

corresponding neural mechanisms. These investigations often institute a trial structure, 

limit choice and movement, and elicit behavior via cues, with the latter leading to a 

historical focus on elicited stimulus-response characterization of involved mechanisms 

(Juavinett et al., 2018). Thus, interpretation of the associated mechanisms and models 

are made within this well-constrained vacuum. There is growing concern that such an 

approach negates the very individualistic, experiential, and continuous nature of 

decision-making (Balleine, 2019; Gomez-Marin et al., 2014; Krakauer et al., 2017; 

Schreiner et al., 2021; Yoo et al., 2021). Presumably, the continuous experiential 

information accrued by the self is reflected in and used by the brain to execute 

adaptive behavior to support ongoing decision-making. Yet such information is often 

treated as task-irrelevant and ignored or factored out (Roy et al., 2021), to an at best 

incomplete, or at worst inaccurate picture of involved neural mechanisms. Indeed, the 

seemingly widespread distribution of similar decision-making information across the 

brain (Allen et al., 2017; Steinmetz et al., 2019) may in part be due to a lack of 

accounting for the unique constellation of internal, experiential, temporal, and 

contextual information encountered by an individual that drives decision-making, 

referred to here as “subjective experience”.  

Evidence from ethological approaches shows that diverse types of subjective 

experience contribute to decision-making. When dropping shelled prey to break them, 

a crow will integrate the type of prey, the number of times the item has been dropped, 
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the hardness of the surface, and the amount of kleptoparasitism to determine how high 

to drop the item (Cristol & Switzer, 1999). Behavior need not be complex; even innate 

behaviors are modified by experience (Remedios et al., 2017) and simple experience-

based strategies such as win-stay and lose-shift persist after performance (a proxy for 

learning) plateaus. Experiential-based emergence of control does not happen within a 

vacuum; an individual’s interactions with their environment drive adaptive behavior 

(Balleine, 2019; Costa, 2011) with contributions from temporal (Ariely & Zakay, 2001), 

historical and contextual (Bouton & Balleine, 2019), and internal state factors (Balleine 

& Dickinson, 1998; Berridge et al., 2008). Indeed, there is an interplay between 

exploration and the accrual of experiential information, with exploration uncovering 

contingency and consequence information that in turn can be used to bias towards 

further exploration or experience-guided decision-making. However, in many 

investigations, experience is either not needed or even actively detrimental to 

performance (e.g., in perceptual decision-making tasks, subjects should ideally attend 

only to the current stimulus). That subjective experience appears to contribute even 

where it is “unnecessary” argues that it is a powerful driver of adaptive behavior (Lak 

et al., 2020). Further, many investigations constrain behavior by using trial-based, 

binary decision tasks unlikely to generalize fully to more ethological, self-generated, 

and continuously evolving types of decision-making (Yoo et al., 2021).  

As subjective experience can play a large role in psychiatric disease (e.g., the 

temporal pattern of drug use is decisive in substance use disorders (Allain et al., 

2015)), there is a need to account for its influence on the behavioral and neural 

mechanisms of decision-making. One neural circuit that is disrupted in disease and 
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presents as a candidate for the integration of such experiential information is 

secondary motor cortex (M2) (Ebbesen et al., 2018). On one hand, M2’s sensory, 

motor, and premotor characteristics have implicated a role in using experience to 

guide decision-making (Erlich et al., 2011; Murakami et al., 2014; Pinto et al., 2019; 

Siniscalchi et al., 2016). On the other hand, several studies have found that M2 

appears to be involved in implementing stochastic or exploratory decisions (Murakami 

et al., 2017; Pisupati et al., 2021; Schreiner & Gremel, 2018; Tervo et al., 2014). 

However, animals may decide to explore based upon their experience; for instance 

making more exploratory decisions when uncertainty is high (Dhawale et al., 2019). 

Thus, attribution of M2 function to seemingly disparate processes may reflect the lack 

of accounting for or limiting the contribution of experiential information. Instead, we 

hypothesize that M2 represents and integrates experiential information to guide 

experience or exploration-based decision-making when use of such information is 

advantageous. This strategy-level control over action selection may be exerted 

through M2 projections into dorsal medial striatum (DMS) (Delevich et al., 2020; 

Hintiryan et al., 2016). Indeed, recently M2-DMS projections have been implicated in 

repetitive actions in a mouse model of Obsessive Compulsive Disorder (Corbit et al., 

2019), suggesting that M2-DMS dysfunction may contribute to disease states. In order 

to capture the contribution of experiential information to decision-making and its 

potential neural implementation, we need to investigate within a framework where the 

use of experience is essential and not merely incidental to decision-making. Here, we 

utilized an unstructured free operant foraging task with continuous variables in mice 

where experience is crucial for efficient performance. We find aspects of experiential 
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information normally considered task-irrelevant play large roles in supporting adaptive 

behavior, often more than that played by reward itself. We then show M2 circuits and 

their output to dorsal medial striatum (DMS) are crucial for use of this subjective 

experience to drive adaptive behavior. 

Results 

Mice learned an unstructured, self-generated, self-paced lever press hold down task 

We adapted an instrumental task (Fan et al., 2012; Platt et al., 1973; Yin, 2009) 

where mice (n = 12 C57BL/6J) were trained to press and hold down a lever for at least 

a minimum duration to earn a food reward, with reward delivered at lever press 

release/offset (Figure 2.1A). There were no external cues signaling reward availability 

or duration, nor any trial structure (lever was always available). Thus lever presses 

were self-initiated, self-paced, and self-terminated and mice had to explore the 

contingency duration to determine the rule, a process termed action differentiation 

(Skinner, 1938).  

We first examined macroscopic aspects of lever pressing. Mice were initially 

trained with an >800ms criterion before being shifted to a >1600ms criterion. Mice 

readily learned that press duration was the operant and quickly reduced the number of 

Total Lever Presses (Figure 2.1B; 1-way ANOVA F2.9, 31.9 = 12.0, p < 0.0001), while 

they increased the percentage of presses that met the minimum duration criterion 

(Figure 2.1C; referred to as %Presses Met Criteria, 1-way ANOVA F4.22, 46.5 = 17.2, p < 

0.0001), and showed little evidence of stereotypies in their lever pressing (see Note 
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S2.1). Mice were sensitive to the minimum duration rule and shifted the distribution of 

press durations from a pretraining session with no duration requirement, to the final 

day of >800ms training, and further still to the final day of >1600ms training (Figure 

2.1D; 2-way RM ANOVA, main effect of Duration Bin F31,1056 = 34.1, p < 0.0001, and 

an interaction (Duration Bin/Criterion) F62,1056 = 10.5, p < 0.0001). To examine whether 

actions were controlled by their expected consequence and operationally goal-directed 

or were instead habitual (Adams & Dickinson, 1981; Dickinson, 1985), we performed 

outcome devaluation testing (Figure 2.S1A). Mice reduced their Total Lever Presses 

on Devalued days relative to Valued days (Figure 2.S1B), consistent with using 

expected outcome value to guide decisions as seen in goal-directed control (Adams & 

Dickinson, 1981). Although Total Lever Presses decreased, the %Presses Met Criteria 

increased following devaluation (Figure 2.S1C) with a small rightward shift in the 

distribution of press durations (Figure 2.S1D), suggesting action selection and 

execution may be differentially controlled by outcome value.  

It is clear that mice can use contingency and consequence information to 

perform this task, but it is unclear how they are doing so. One possibility is that 

executed lever press durations are independent, with mice timing each press. If so, we 

hypothesized that mice may exhibit the scalar property of timing; as lever press 

durations increase, so too does variability (Gibbon et al., 1984; Yin, 2009). We 

calculated the median and interquartile range (IQR) of each animal’s lever press 

durations across training (Figure 2.1E) and found concomitant increases in both the 

median and the IQR across training days during initial short criterion training (2-way 

RM ANOVA, main effect only of Day (F5,55 = 19.5, p < 0.0001). However, when the 



73 
 

duration criterion increased and training continued, the pattern of change in lever 

press IQR departed from the pattern of change in lever press median duration (2-way 

RM ANOVA, main effect of Day F7,77 = 14.0, p < 0.0001, and an interaction 

(Median/IQR x Day) F7,77 = 2.44, p = 0.026), suggesting reduced reliance on timing 

information. Reminiscent of skill learning, mice also showed within session increases 

in median durations during both the first and last day of training (Figure 2.1F). Linear 

regressions showed a significantly non-zero slope on both the first >800ms day (F1,110 

= 28.9, p < 0.0001, R2 = 0.21) as well as the final >1600ms day (F1,115 = 12.6, p = 

0.0006, R2 = 0.099). However, although within session increases in IQR were present 

on the first day of training (F1,110 = 48.5, p < 0.0001, R2 = 0.306), by the final day of 

training IQR no longer increased within a session (F1,115 = 0.28, p = 0.59, R2 = 0.002). 

Furthermore, while the slopes of the within session median and IQR were not different 

on the first day of training (p = 0.27), they were different by the final day (F1,230 = 9.1, p 

= 0.003), in violation of the scalar property of timing. This suggests mice used 

additional information other than solely timing behavior to control lever pressing. 

What is this non-timing information? One possibility is that mice relied on recent 

experience to guide their decision-making. In Figure 2.1G, we plot press durations 

across one session for one well-trained mouse. Immediately clear is the rich behavior, 

both in terms of when presses occurred, and in their duration. However, there also 

appeared to be distinct periods of reduced variability. A cumulative sum (upper bound) 

analysis (Figure 2.1H) uncovered prolonged periods of time when mice emitted press 

durations >2 standard errors (SE) above the mean, (Figures 2.1I-J). This was not due 

to random chance, or the consequence of very long press durations inflating the 
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cumulative sum (2-way RM ANOVA; percentage of >2SE presses: main effect of Day 

F3,33 = 3.98, p = 0.016, main effect of Actual vs. Shuffled F1,11 = 17.1, p = 0.0017. 

Consecutive >2SE presses: main effect only of Actual vs. Shuffled F1,11 = 14.0, p = 

0.0032).  
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Figure 2.1. Mice learned an unstructured, self-generated, self-paced lever press hold 
down task. (A) Behavioral schematic; mice learn to press and hold down a lever for at 
least a minimum duration to earn food reward. (B) Total Lever Presses across training 
days. (C) %Presses that met criteria across training. (D) Histogram of lever press 
durations (100ms bins) on the final pretraining day (CRF = Continuous Ratio of 
Reinforcement), and the final 800ms and 1600ms days. Dashed lines indicate 
criterion. (E) Median and Interquartile Range (IQR) of lever press durations across 
training days. (F) Duration median (Med) and IQR within a session, grouped by 
cumulative number of rewards. (G) Sample behavior of one trained mouse showing 
press durations in order of occurrence. (H) Upper cumulative sum from the same 
mouse/session. (I) Number of consecutive presses and (J) Overall % of presses that 
were >2 Standard Errors (SE) above the mean in the upper cumulative sum. 800ms 
and 1600ms refer to days where criterion was >800ms or >1600ms. **** p < 0.0001, 
*** p < 0.001, ** p < 0.01, * p < .05. Points represent mean+SEM across mice, unless 
noted otherwise. 
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Figure 2.S1, related to Figure 2.1. Outcome value has differential control over action 
selection and execution. (A) Schematic of the outcome devaluation procedure. In a 
within subjects design, mice received 1 hr of pre-exposure to either sucrose (Valued, 
V) or pellets (Devalued, DV), followed by a  5 minute extinction test across 2 days 
(order counterbalanced). (B) Total Lever Presses on V and DV days. Paired t-test, t10 
= 3.09, p = 0.012. (C) %Presses that met criteria on V and DV days. Paired t-test, t10 = 
4.55, p = 0.0011. (D) Histogram of press durations on V and DV days (200ms bins). 2-
way RM ANOVA, main effect of Duration Bin, F15,150 = 12.1, p < 0.0001 and an 
interaction (Duration Bin x V/DV) F15,150 = 2.19, p = 0.009. Data in (D) are mean+SEM 
across mice, bars in (B-C) are mean. ** p < 0.01, * p < 0.05. 
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Subjective experience contributes to internally-generated decision-making 

The relative similarity among serial lever presses suggests that recent 

experience may contribute to adaptive behavior in support of self-generated decision-

making. We modeled the effect of recent press history on performance by creating a 

simple linear mixed effect model (LME) that sought to predict current press duration 

(n) given recently executed durations (n-back). We included random effects of both 

training day and mouse to account for the repeated structure of our data. We also 

included several control variables and compared the actual coefficients to those 

obtained from order shuffled data using permutation tests (Table 2.S1). We found a 

consistent significant linear relationship between current press n duration and the 

durations of n - 1 through n - 6 presses, with the magnitude of this relationship 

decaying across n-back presses (Figure 2.2B). This suggests that recent subjective 

experience contributes to continuous decision-making. 

However, recent lever presses are not the only experiential information 

available (Figure 2.1A). The unstructured nature of this self-generated task allows us 

to capture aspects of decision-making that occur across a continuous space beyond 

just the press duration itself. We created more complex LMEs, first building a “full” 

model that included n - 1 through n - 6 durations, as well as main effect and interaction 

terms for other n-back variables, such as the inter-press interval between press n and 

press n - 1 (see Table 2.S2 for terms). We performed backwards selection on this full 

model using Bayesian Information Criterion (BIC), leaving us with the model in Table 

2.S3. Follow-up permutation tests found that all the variables identified by BIC 
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selection also significantly differed from order shuffled data (shuffled within a single 

mouse/session), suggesting that it is indeed the experienced order of these variables 

that affects subsequent press duration and not correlation across mice or across days. 

Importantly, when we built multiple linear regressions with the same experiential 

predictors, but using only individual mouse/session data, we found a strong correlation 

between model R2 and task performance (repeated measures correlation, Rm = 0.56, 

DF =153, p < 0.0001, slope = 0.38; Figure 2.S2A). Thus, use of experience (as these 

models use only experience to predict duration) correlated with performance. 

Additionally, in the combined (all mice and training days) LMEs, there was a significant 

positive interaction between performance and the use of recent experience (serially 

adjacent presses were more similar in mice with higher performance, Figure 2.2D 

shows that an increase in %Met Criteria of 30% would roughly double the n/n - 1 

relationship). 

Of note, our goal with this model was not to make the most accurate predictions 

(though it predicted 24.1% of all lever press durations within a 95% CI, and accurately 

predicted whether a press did or did not meet criteria 73.8% of the time). Instead, we 

sought to ascertain 1) which experiential variables contributed, 2) if these variables 

interacted with previously made lever press durations, and 3) whether recent (i.e., n - 

1) versus longer-term (i.e., a moving average of durations from n - 7 through n - 60) 

lever press duration experience differentially contributed (Iigaya et al., 2018). 

Beginning with the latter, we found that this long-term duration moving average 

coefficient significantly differed from order shuffled data (Figure 2.2C; permutation test 
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p < 0.001). Thus, both recent and longer-term duration experience contributed to 

emitted durations. 

Observational, but not reward information contributes to decision-making 

Experience can also be driven by information feedback processes. Here, 

headentry into the food magazine (HE) as a checking behavior provided information as 

to whether a lever press was or was not successful. HE behavior increased the 

relationship both between press n and n - 1, and between press n and the moving 

average (Figure 2.2D). The magnitude of this increase was quite large: lever presses 

within a lever press/HE/lever press sequence were effectively twice as related to one 

another relative to those in a lever press/lever press sequence. Thus checking 

behavior was a source of experiential information and influenced the subsequent 

executed behavior. 

Success feedback may also be signaled by reward, and reward feedback is a 

crucial aspect of many decision-making and learning theories (Rescorla & Wagner, 

1972; Sutton & Barto, 1998). Reward can modulate win-stay and lose-shift strategies 

even in well-learned tasks (Busse et al., 2011; Lak et al., 2020). However, it is less 

clear how reward might modulate decision-making in a more unconstrained task where 

one dictates their own behavioral opportunities. In regard to the present task, if mice 

“won and stayed”, we should expect that earning a reward on press n - 1 would cause 

mice to make a similar duration press afterwards.  
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We found no evidence of simple win-stay/lose-switch behavior, either in the use 

of recent (n - 1), or long-term (moving average) experience (Figure 2.2D). Put another 

way, earning a reward did not increase the similarity between press n and press n - 1, 

nor did failing to earn a reward lead to drastic shifts in behavior. We reasoned that 

perhaps the lack of a win-stay effect may have been due to reward being deterministic, 

and thus, only errors of execution could occur (McDougle et al., 2019). Therefore, we 

imposed a probabilistic reward schedule in a separate cohort (25%, 50%, or 75% 

rewarded, n = 5 mice per group) following training. Here, the %Met Criteria increased 

(Figure 2.S2B). A Met Criteria press - whether or not it was rewarded - led to an 

increased relationship between press n and n - 1 (significant positive interaction, 

Figure 2.S2C). The magnitude of this effect was larger when the Met press was 

unrewarded, and this “win-stay” effect was more pronounced in the groups where a 

Met press was least likely to produce a reward. Thus, mice made a press that was 

more similar to the one that preceded it after a Met press, especially if that press 

happened to be unrewarded due to chance. This provides evidence mice used an 

internal representation of press duration to guide behavior and relied less on the 

presence of reward. 

Time contributes to and modifies use of subjective experience in decision-making 

The above findings challenge the assumption that decision-making is solely 

determined by the serial order of actions and their outcome, as is often presumed in 

trial-based experimental designs. That sources of this crucial experiential information, 

such as checking behaviors, accrue across a continuous temporal space raises the 
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question of how the passage of time itself may influence decision-making. We find the 

relationship between two adjacent presses (presses n and n - 1) decreased as the 

inter-press-interval (IPI) increases (Figure 2.2E). To give an example of the 

magnitude, the model predicts that the relationship between n and n - 1 would be 

approximately 0 if they are separated by 120s. This raises the hypothesis that animals 

may rely more on the long-term moving average to guide their behavior following long 

IPIs (Iigaya et al., 2018). Indeed, the use of long-term experience was unaffected by 

the IPI. Further, we found that n and n - 1 became more similar towards the end of a 

session, and again, there was no relationship between time in session and the moving 

average (Figure 2.2E). Collectively, these results suggest that the passage of time is a 

crucial aspect to modifying recent experience, with less effect on the contribution of 

long-term learned contingencies.  
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Figure 2.2. Subjective experience contributes to internally-generated decision-making. 
(A) Sample data from one mouse (as in Figures 2.1G-H) showing the diversity of 
experiential information available. Top shows a zoomed in subset. Dashed line 
indicates 1600ms criterion. (B) β coefficients of LME model relating current lever press 
duration (n) to preceding press durations (n - x) for Actual and order Shuffled data. (C) 
Moving average β coefficient for Actual and Shuffled data. (D-E) β coefficients for the 
interaction between experiential variables and recent (n - 1 duration) or long-term 
(moving average) experience. For display purposes we transformed continuous 
variables to show relevant changes, e.g. time in session, which is in units of ms, was 
transformed to 45 min or half the duration of a session. LP = Lever Press, HE = 
Headentry into food magazine, IPI = Inter Press Interval. Δ = Change. * Markers in D-
E indicate significant F-tests on model terms. **** p < 0.0001, *** p < 0.001, ** p < 
0.01, * p < .05. Data points are mean+SEM. Shuffled data are mean+SEM of 1000 
order shuffled β coefficients. See also Figure 2.S2 and Tables 2.S1-3. 
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Figure 2.S2, related to Figure 2.2. Probabilistic reward induces win-stay behavior and 
use of experience correlates with task performance. (A) Repeated measures 
correlation between task performance (%Presses Met Criteria) and model fit (R2) when 
building LMEs using individual mouse/session data. Intercept was allowed to vary 
across mice while using a common slope. (B-C) Following initial training on 100% 
reward, mice were shifted to either 25%, 50%, or 75% reward and trained for 3 days. 
(B) %Presses met criteria across training. 2-way ANOVA (Probability x Day), no 
interaction, main effects of Day F3,36 = 6.34, p = 0.0015, and probability group F2,12 = 
5.28, p = 0.0226. (C) β coefficients for the interaction between presses that met criteria 
and n - 1 duration. Interaction between n - 1 duration and n - 1 outcome (Met Yes 
Reward vs. Met No Reward): F2,17403 = 30.2; p < 0.0001) and 3-way interaction 
between Duration, Outcome, and Group: F4,17403 = 2.59; p = 0.035. Baseline = Final 
pretraining day with 100% reward. Prob 1, 2, 3 = Training day 1, 2, or 3 of probability 
training. RM r = Repeated Measures correlation R. **** p < 0.0001, * p < 0.05. 
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 M2 represents prior experience and may guide exploration  

M2 has been reported to be involved in both exploration and experience-based 

decision-making, and this apparent discrepancy may be due to neglecting the 

contribution of some of these checking, contextual, and temporal variables. Therefore, 

we performed pretraining lesions of M2 using ibotenic acid (Figure 2.3A; Lesion n = 

10) or vehicle (Sham n = 8). In line with prior reports (Yin, 2009), we found no 

differences between Sham and Lesion mice in coarse behavioral measurements such 

as Total Lever Presses (Figure 2.3B), %Presses Met Criteria (Figure 2.3C), or Press 

Durations (Figure 2.3D). However, M2 lesioned mice executed lever press durations 

that were more similar to their prior action (Figure 2.3E). This was evidenced by a 

specific increase in the magnitude of the n - 1 β coefficient compared to Sham mice (2-

way ANOVA (n-back x Sham/Lesion) main effect of n-back (F9,572740 = 20.2, p < 

0.0001) and Sham/Lesion (F1,572740 = 14.1, p = 0.0002) and significant interaction 

(F9,572740 = 6.33, p < 0.0001). Post-hoc testing revealed a significant group difference 

only at n - 1 (t572740 = 6.87, p < 0.0001), with no differences at further n-back presses, 

nor in the moving average term (Figure 2.3F). Using the complex LME model, M2 

lesions disrupted all n - 1 duration interactions, including Reward, Checking, IPI, and 

Time in Session (Figure 2.3G, see also Table 2.S4). Lesions did not affect moving 

average interactions. Collectively, this suggests M2 lesioned mice were relatively 

inflexible, akin to previous studies where M2 lesions biased use of habitual or model-

free processes (Gremel & Costa, 2013), and were left to rely on the just-made action 

without integration of broad experiential information. 
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Figure 2.3. Pretraining lesions of M2 impair integration of experiential information. (A) 
(top left) Schematic, (bottom left) sample histology, and (right) average/maximal 
(dark/light shading) spread of excitotoxic lesions of M2, slice coordinates relative to 
Bregma. (B) Total Lever Presses across training days. (C) %Presses that met criteria 
across training days. (D) Histogram of lever press durations on the first and last days 
of the 800ms and 1600ms criteria (200ms bins). (E) β coefficient from LME models 
predicting n duration from n-back durations for Actual and order Shuffled data. (F) β 
coefficient for the moving average term. (G) β coefficients for the interaction terms 
from the complex LME model. For display purposes we transformed the continuous 
variables to show relevant changes. B-D are mean+SEM across mice. Shuffled data 
are the mean+SEM of 1000 order shuffled β coefficients. **** p < 0.0001, *** p < 
0.001, ** p < 0.01. See also Table 2.S4. 
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How may subjective experience influence representation of decision-making in 

M2 circuits?  We utilized in vivo fiber photometry (Figure 2.4A; coordinates from 

Bregma: AP +1.0mm, L ±0.5mm and V −1.2mm, -1.4mm from the skull), and 

measured population Ca2+ activity from M2 excitatory neurons (n = 8 mice). Aligning 

baseline z-scored activity to lever press onset (Figure 2.4B), we observed preceding 

ramping activity as has been previously reported (Murakami et al., 2014). However, 

this M2 activity ramping did not differ based on whether that press would go on to 

exceed the criteria duration (Met) or not (Fail) (permutation testing that required 4 

adjacent samples to pass the threshold for significance (Jean-Richard-dit-Bressel et 

al., 2020)). M2 activity during the lever press was modulated by whether that lever 

press would or would not meet the criteria (Figure 2.4C). This difference persisted 

following lever release, where there was an abrupt increase in Ca2+ activity just after 

the offset of Met presses, - i.e. reward delivery - as well as a subsequent sustained 

decrease in activity (Figure 2.4D). Thus M2 activity is modulated during lever pressing 

with ongoing modulation reflecting future success. 

To determine if M2 activity related to ongoing and prior behavior, we created 

LME models to predict Ca2+ activity during epochs of the current lever press given both 

the ongoing action (press n duration) and prior behavior (the duration of press n - 1 to 

n - 6). We included prior activity as a covariate to control for autocorrelation in Ca2+ 

activity and compared β coefficients to 1000 order shuffled datasets. Before the onset 

of press n, there was a significant positive relationship between M2 activity and the 

just prior press durations (Figure 2.4E; n - 1, p < 0.001; n - 2, p = 0.001) and a small 

negative relationship between activity and the upcoming duration (press n, p = 0.048). 
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This representation of both current and prior lever press duration in M2 Ca2+ activity 

continued during the press itself (Figure 2.4F; press n, p < 0.001; n - 1: p < 0.001). At 

press offset, there was no relationship with the just completed press (n), but there was 

a positive relationship with the previous lever press duration (Figure 2.4G; n - 1, p < 

0.001). We used complex LME models to investigate representation of other types of 

experiential information. M2 activity reflected Checking, IPI, and Time in Session, and 

these terms also interacted with the contribution of prior durations (Table 2.S5). In 

particular, at each lever press epoch we observed a significant, positive interaction 

between n - 1 duration and HE checking in between press n and n - 1, suggesting that 

checking increased the relationship between lever press duration and M2 activity. 

These complex LMEs were also better at predicting M2 Ca2+ activity relative to the 

simple LMEs that only included durations (difference in simple/complex prediction %: 

Before Press: +13.7%, During Press: +9.2%, After Press: +16.4%), showing that these 

often neglected variables are powerful drivers of M2 activity. Thus, we see 

representation of diverse aspects of subjective experience, aspects whose 

contributions are lost when M2 is lesioned. This suggests M2 circuits are recruited 

when a broad array of experiential information is used to guide behavior (as is often 

seen in exploration), but not when behavior can be accomplished using less flexible 

(i.e. habitual/model-free) processes. 
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Figure 2.4. M2 Ca2+ activity represents prior experience. (A) (top) Schematic and 
(bottom) example histology of M2 in vivo Ca2+ fiber photometry recordings. (B-D) Ca2+ 

activity z-scored relative to a baseline period and aligned to (B) press onset, (C) the 
hold down period itself (presented as the relative % of a press’s duration), and (D) the 
offset of a lever press. (E-G) β coefficients from LME models relating activity to current 
and prior durations for Actual and order Shuffled data (E) before press onset, (F) 
during the press, and (G) after press offset. Met = Presses that met criterion, Fail = 
Presses that did not meet criterion. Grey shading in B, D indicates 1.6s. Black lines in 
B-D indicate significant differences between Met/Fail via permutation testing. Shuffled 
data are the mean+SEM of 1000 order shuffled β coefficients. *** p < 0.001, ** p < 
0.01, * p < 0.05. See also Table 2.S5. 
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M2-DMS projections use recent experience to plan upcoming actions 

M2 sends dense projections into dorsal medial striatum (M2-DMS) regions 

(Delevich et al., 2020; Hintiryan et al., 2016) that contribute to action selection (Klaus 

et al., 2019), but it is unclear what information is conveyed. We performed in vivo fiber 

photometry of virally targeted M2-DMS activity and examined representation of 

experiential information within this population (n = 7, Figure 2.5A). We again observed 

a ramping in M2-DMS Ca2+ activity prior to lever press onset. This activity reflected 

future success, with larger increases in activity for presses that would meet criteria 

(Figure 2.5B). This relationship was also present during the press itself (Figure 2.5C), 

and upon lever release (Figure 2.5D), raising the hypothesis that M2-DMS projections 

may carry information specifying and/or planning actions based on prior experience.  

Indeed, LMEs using durations to predict M2-DMS activity before press onset 

showed both prior (Figure 2.5E; n - 1, p < 0.001) and upcoming (n, p < 0.001) 

durations were positively related to M2-DMS Ca2+ activity. M2-DMS activity during the 

press did not relate to the current duration, but was positively related to the prior 

duration (Figure 2.5F; n - 1, p < 0.001), and likewise at press offset there was a 

positive relationship only with the n - 1 press duration (Figure 2.5G; p < 0.001). 

Furthermore, complex LMEs revealed significant influences of Checking, prior Reward, 

IPI, and Time in Session on M2-DMS activity (Table 2.S6). As in M2, at every time 

point there was an interaction between checking and n - 1 duration on M2-DMS 

activity. Further, the complex LMEs predicted more of the data relative to the simple 

models (difference in simple/complex prediction %: Before Press: +13.2%, During 
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Press: +9.2%, After Press: +15.2%). Thus M2-DMS activity appears to reflect the use 

of recent experiences to plan upcoming actions. 
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Figure 2.5. M2-DMS Ca2+ activity encodes preceding and upcoming actions. (A) (top) 
Schematic and (bottom) example histology of projection specific M2-DMS Ca2+ fiber 
photometry. (B-D) Ca2+ activity z-scored relative to baseline and aligned to (B) press 
onset, (C) the duration of the press, and (D) press offset. (E-G) β coefficients from 
LME models relating activity to current and prior durations for Actual and Shuffled data 
(E) before press onset, (F) during the press, and (G) after press offset. Met = Presses 
that met criteria. Fail = Presses that did not meet criterion. Grey shading in B, D 
indicates 1.6s. Black lines in B-D indicate significant differences between Met/Fail via 
permutation testing. Shuffled data are the mean+SEM of 1000 order shuffled β 
coefficients. *** p < 0.001. See also Table 2.S6. 
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To test whether M2-DMS activity functionally contributed to planning actions 

based on recent experience, we used a Cre-dependent caspase strategy to selectively 

lesion M2-DMS projection neurons prior to training (Figure 2.6A, n = 8 Lesion, n = 8 

Sham). Again, we observed no effect on coarse measures of behavior including Total 

Lever Presses, %Presses Met Criteria, and Press Durations (Figures 2.6B-D). Simple 

LME modeling showed M2-DMS lesions reduced the relationship between press n and 

press n - 1 (Figure 2.6E; 2-way ANOVA (n-back x Sham/Lesion) main effect of n-back 

(F9,467760= 14.6, p < 0.0001); significant interaction (F9,467760= 2.29, p = 0.0144)). This 

deficit was selective to n - 1 (multiple comparison corrected post-hoc n - 1: t467760 = 

3.09, p = 0.021). There was no effect on the Moving Average (Figure 2.6F). 

Interestingly, complex LMEs revealed a more specific deficit in M2-DMS lesions 

relative to broad M2 populations; M2-DMS lesions reversed the contribution of a 

checking HE between press n and press n - 1, such that checking was now 

detrimental in the use of prior duration information to guide performance (Figure 2.6G; 

t47352 = 3.10, p = 0.002). However, no other terms differed between Sham and Lesion 

groups (Table 2.S7).  
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Figure 2.6. Pretraining M2-DMS lesions impair use of recent experience. (A) (top) 
Schematic, (bottom) example histology and (right) average/maximal (dark/light 
shading) spread of projection specific M2-DMS lesion using a Cre-dependent caspase 
strategy, slice coordinates relative to Bregma. (B) Total Lever Presses across training 
days. (C) %Presses that met criteria across training days. (D) Histogram of lever press 
durations on the first and last days of the 800ms and 1600ms criteria (200ms bins). (E) 
β coefficient from LME models predicting n duration from n-back durations for Actual 
and order Shuffled data. (F) Moving average β coefficient for Actual and Shuffled data. 
(G) β coefficients for the interaction terms from the complex LME model. For display 
purposes we transformed the continuous variables to show relevant changes. B-D are 
mean+SEM across mice. Shuffled data are the mean+SEM of 1000 order shuffled β 
coefficients. ** p < 0.01, * p < 0.05. See also Table 2.S7. 
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The photometry and lesion data together suggest that M2-DMS activity 

represents and is functionally necessary for recent sequential action (pressing and 

checking) experience to contribute to the initiation and execution of the current 

decision. To directly test this hypothesis, we took a behaviorally-dependent, closed-

loop optogenetic approach to inhibit M2-DMS neural activity. We used a dual-virus 

strategy to express an inhibitory opsin (ArchT: n = 5, Figure 2.7A) that reduced M2-

DMS spiking when activated by light (Figure 2.7B). We targeted inhibition to three 

different epochs: the initiation of a lever press, during the press itself, and after lever 

press release. Each manipulation occurred across 6 days of training and only on a 

subset of lever presses. This allowed us to include additional terms in our LME models 

to determine if inhibition directly affected press n duration, and/or if inhibition affected 

the contribution of prior experience (i.e., an interaction between inhibition and n - 1 

duration). In addition to this within subject comparison, we also made between subject 

comparisons to fluorophore control mice (tdTomato: n = 6). 

In order to target inhibition prior to press onset, mice were tracked using an 

overhead camera and light (1s, continuous) was triggered 50% of the time when mice 

entered a zone centered on the lever. We did not find any effect of pre-onset M2-DMS 

inhibition on overall performance (Figure 2.7D), nor any effect on press duration itself 

(i.e., no main effect of inhibition, Figure 2.7E). Within the ArchT group, inhibition prior 

to lever pressing did induce a significant negative interaction with n - 1 duration (F1,2718 

= 10.6, p = 0.001), and a significant difference with the tdTomato group (Figure 2.7F; 

t6645 = 2.04, p = 0.042). However, as this inhibition continued for 1s, it may have 

persisted during lever pressing itself. Indeed, there was no longer an effect of inhibition 
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even within the ArchT group (F1,534 = 0.45, p = 0.50) when we limited our analysis to 

light inhibition that did not spillover into the lever press. Thus, it seems likely that the 

marginal effect of pre-onset inhibition is due to spillover of inhibition to the lever press 

itself as opposed to inhibition that occurred prior to press onset.  

To directly address this question, we next tied inhibition to lever pressing itself. 

We inhibited during the full duration of every 7th lever press. Such inhibition did reduce 

the efficacy of lever pressing (Figure 2.7G; 2-way RM-ANOVA (Opsin/Fluorophore X 

Day), main effect only of Opsin group (F1,9 = 7.59, p = 0.0223)). Again there was no 

main effect of inhibition on press duration itself, and this was true both whether 

inhibition occurred during press n or on press n - 1 (Figure 2.7H). However, M2-DMS 

inhibition during press n prevented the use of n - 1 duration information from guiding 

the current action (Figure 2.7I). Further, inhibition during press n also prevented the 

experiential information gained during the execution of press n from informing the next 

press (F-test within ArchT model, n0: F1,6110 = 11.2, p = 0.0008; n - 1: F1,6110 = 6.91, p 

= 0.009. Group comparison between ArchT/tdTomato 2-way ANOVA (Opsin x n-back) 

main effect only of Opsin group F1,23602 = 10.5, p = 0.0012). This suggests that M2-

DMS activity during the press itself is not important for controlling the duration of the 

current lever press per se. Instead, this activity contributes to using recent experiential 

information to execute current actions, and this abrupt disruption impaired task 

performance. In support of this, when we targeted inhibition to press offset (1s of light 

after press release), there was neither a direct effect of inhibition on subsequent press 

durations, nor an interaction with the use of recent experience, nor any effect on 

performance (Figures 2.7J-L). There was also no interaction with the moving average 
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term at any inhibition time point. The lack of a direct effect of inhibition on press 

duration suggests the deficit in use of recent experience was not due to a non-specific 

motor effect. The lack of any inhibition effect prior to or after execution of the lever 

press also suggests M2-DMS activity does not represent a form of working memory, 

but instead supports use of prior experience to inform action execution. 
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Figure 2.7. Optogenetic inhibition of M2-DMS projections during execution impairs use 
of recent experience. (A) (top left) Schematic and example histology of ArchT 
optogenetic inhibition of M2-DMS projection neurons. (B-C) Slice verification of ArchT-
mediated inhibition in M2-DMS projection neurons. ** = 2-way RM ANOVA (Current x 
Light) interaction: F6,6 = 17.0, p = 0.002. (D-F) Pre-onset inhibition. (D) %Presses that 
met criteria, (E) Main effect of inhibition on duration, and (F) Interaction between 
inhibition and the contribution of the prior duration. (G-I) As in D-F except for inhibition 
during the duration of the press. (J-L) As in D-F except for inhibition occurring after 
press offset. Note that although there is a group difference between ArchT and 
tdTomato mice in K, the main effect itself is n.s. in the model for both groups. n0 = 
Light occurred on press n. n - 1 = Light occurred on press n - 1. tdTomato = tdTomato 
expressing control mice. ArchT = ArchT expressing mice. In all LME graphs, * without 
any lines indicate significant terms via F-test on the model (within group comparison), 
while * with a line indicate significant, between group differences. *** p < 0.001, ** p < 
0.01, * p < 0.05. n.s. = Not significant. Data are mean+SEM. 
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Discussion 

There is a growing concern that neuroscience investigations into decision-

making are “missing the forest for the trees”, or vice versa. Investigations into the 

nature of decision-making that isolate specific task-based computations or focus on 

summary statistics such as accuracy have been indispensable in providing information 

about both the tree and forest, respectively. However, the present data suggests the 

need to account for the mesoscopic context experiential information provides in order 

to link these levels of analysis, akin to understanding the intertwined communication 

among trees in a forest (Gorzelak et al., 2015). Here, sources of experiential 

information often treated as task-irrelevant determined whether and to what degree 

recent experience-information influenced adaptive behavior to support ongoing 

decision-making. Experiential information influenced the neural correlates of decision-

making and determined circuit recruitment and contribution in mice, suggesting such 

information should not be ignored. By using this approach, we show that M2 and M2-

DMS circuits use broad experiential information to instigate exploratory or recent 

experience-based responding. 

Classic temporal difference or reinforcement learning models (Rescorla & 

Wagner, 1972; Sutton & Barto, 1998) emphasize the role played by responses and 

outcomes. By using an unconstrained task with a continuous decision variable, we 

found mice do not drastically shift their strategy solely on their sequence of actions, 

nor based on whether their action earned a reward. Rather, experiential variables such 

as checking and the passage of time strongly influenced the behavior and may serve 

to arbitrate between strategies. Behaviorally the latter could function to bias 
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exploratory responding when the preceding action is more distant in time and hence, 

when the environment, and/or its neural representation may have changed. On the 

other hand, the former suggests information seeking itself increases use of 

experience-based strategies, perhaps as a result of providing definitive feedback. As 

multiple behavioral controllers can be used to make seemingly similar decisions 

(Bouton & Balleine, 2019), experiential information may be used to bias strategy-level 

recruitment for instance, by adjusting the relative degree of exploration (Figure 2.3) or 

the relative similarity between adjacent decisions (Figures 2.6-7). This bias in 

recruitment strategy may arise through experiential modulation of associated neural 

activity (Schreiner & Gremel, 2018), perhaps by setting the “gain” on behavioral 

strategies (Johnson et al., 2016).  

Integration and implementation of subjective experience in M2 and M2-DMS circuits 

We found a robust representation of subjective experience in broader M2 

population activity. That lesions both increase the similarity between adjacent presses 

and reduce the integration of non-action-outcome information (including Checking, IPI, 

Time, and overall performance) suggests M2 lesions may render mice relatively 

inflexible and left to rely more on a simple repetition-based strategy. Though it must be 

noted that the M2 Sham comparison group displays a low n - 1 β coefficient, perhaps 

inflating the overall effect of M2 Lesions. However, the increased relationship is still 

present when comparisons are made to another sham group (M2-DMS Shams; t56426 = 

2.22, p = 0.026), with a similar loss of interactions with other experiential information. 

Collectively, our results extend previous studies implicating M2 populations in goal-
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directed or model-based decision-making (Gremel & Costa, 2013) by providing novel 

insight into precisely how this effect is achieved. Namely, by nullifying the contribution 

of subjective experience in arbitrating between decision-strategies, animals with M2 

lesions rely on repetition-based strategies. 

While M2 is important for a broader representation of experiential information, in 

a subset of M2 projections neurons (M2-DMS) we see a more limited contribution of 

information used to guide ongoing actions. Converging Ca2+ activity, lesion, and 

optogenetic inhibition studies implicate M2-DMS projections specifically in contributing 

recent action information to ongoing actions. The reduction in the use of recent 

experience only when optogenetic inhibition occurred during the press suggests that 

M2-DMS activity may serve as an experience-based guide or reference for ongoing 

actions. This raises the hypothesis that M2-DMS may function as a comparator for 

template or pattern matching during action performance, analogous to the pattern 

matching seen in avian vocal learning, and hypothesized to be implemented in 

premotor regions (Mooney, 2009). In M2-DMS lesioned mice, an intermediate 

behavior of checking in between lever presses reduced the reliance of the current 

action on the prior, providing some evidence that M2-DMS function is necessary to link 

and/or compare recent action experience as has been suggested by work examining 

sequence learning and initiation (Rothwell et al., 2015). Future studies investigating 

M2-DMS function at the single neuron level could reveal important insights into 

precisely how this is instantiated in the brain, and if there is an “embodied engram” of 

recent actions, or a comparator function in M2-DMS projection neurons. 
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Conclusion 

Rarely is behavior in the natural world so neatly constrained as in many 

laboratory tasks; thus it seems likely that animals have adapted to use diverse sources 

of information to guide their behavior. The brain should therefore be sensitive to this 

information, yet several recent studies have demonstrated remarkably widespread 

coding of variables in the brain (Allen et al., 2017; Steinmetz et al., 2019). Perhaps this 

apparent distributed coding is the consequence of attributing relatively static 

measurements of behavior and human-derived constructs to large neural populations. 

That there is a wealth of information available to animals and many neural circuits to 

support decision-making, raises the hypothesis that specific aspects of experiential 

information may modulate neural function differentially depending on the circuit and 

the computation. Indeed, we find that M2 is sensitive to many aspects of this 

experiential information, but examination of a discrete output population (M2-DMS) 

showed a more selective representation and functional role. Investigations into circuit, 

synaptic, and molecular mechanisms controlling how subjective experience modulates 

decision-making will likely be fruitful, akin to increased understanding of arousal 

modulation of sensory processing (Shimaoka et al., 2018). 

Repetitive decision-making is found across many disease states including 

substance use disorders and Obsessive Compulsive Disorder. M2’s potential human 

homologues - the pre-supplementary/supplementary motor areas - are accessible to 

region-specific treatments such as TMS, which have shown promise in disease 

treatment (Gomes et al., 2012; Hawken et al., 2016; Mantovani et al., 2013). Here we 
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establish that M2-DMS is involved in implementing repetitive or recent-experience-

based decisions. This raises the hypothesis that M2-DMS dysfunction may lead to 

decisions that are inappropriately or excessively repetitive (Corbit et al., 2019). 

Incorporating subjective experience into the examination of disease-induced brain 

function during decision-making may increase the likelihood of obtaining enduring 

findings relevant to the clinical treatment of disease. 

Methods 

Experimental Model and Subject Details 

Similar numbers of male and female C57BL/6J mice (>7 weeks/50 PND) (The 

Jackson Laboratory, Bar Harbour, ME) were used for experiments. Exploratory 

analyses for sex differences in the behavioral cohort revealed no differences, and thus 

we collapsed across sex. All procedures were conducted during the light period and 

mice had free access to water throughout the experiment. Mice were housed 2–4 per 

cage on a 14:10 light:dark cycle. Mice were at least 6 weeks of age prior to surgery. 

Mice were food restricted to 85-90% of their baseline weight 2 days prior to the start of 

behavioral procedures, and were fed 1–4 hours after the daily training. All experiments 

were approved by the University of California San Diego Institutional Animal Care and 

Use Committee and were carried out in accordance with the National Institutes of 

Health (NIH) “Principles of Laboratory Care”.  

Behavioral Procedures 
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Mice were trained once per day in operant chambers in sound attenuating 

boxes (Med-Associates, St Albans, VT) in which they pressed a lever (left or right of 

the food magazine, counterbalanced for location) for an outcome of regular ‘chow’ 

pellets (20 mg pellet per reinforcer, Bio-Serv formula F0071). Each training session 

commenced with an illumination of the house light and lever extension and ended after 

either 60 reinforcers were earned or 90 minutes had elapsed, with the lever retracting 

and the house light turning off.  

On the first day, mice were trained to approach the food magazine to retrieve 

the pellet outcome (no lever present) on a random time (RT) schedule, with a 

reinforcer delivered on average every 120 seconds for a total of 60 minutes. Next, mice 

were trained on a continuous ratio schedule of reinforcement (CRF) across 3 days, 

where every lever press was reinforced (no duration requirement), with the total 

possible number of reinforcers increasing (CRF10, 30, and 60). 

Following CRF pretraining, the hold down task was introduced. We instituted a 

duration requirement on lever pressing: animals had to press and hold down the lever 

for >800ms in order to earn food reward (delivered immediately after press release). 

Importantly, there were no cues, no timeout period, nor any discrete trials; the lever 

was always available to mice, until they completed their session. Mice were trained at 

the >800ms criterion for 6 days, followed by at least 6 days of training at the >1600ms 

criterion. During all days, timestamps for lever press onset, lever press offset, the 

onset and offset of headentry into the food magazine, and the delivery of reward were 

recorded. From this timing information, we were able to calculate durations of lever 
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presses and headentries. Of note, use of Med Associates introduced a 20 ms limit on 

our time resolution.  

Outcome Devaluation 

In the behavioral mice (Figure 2.1 and Figure 2.S1, n = 12 total, n = 7 female 

and n = 5 male), after 8 days of training at >1600ms, we performed outcome specific 

satiety. Devaluation procedures occurred across two days. In brief, on the valued day, 

mice had ad libitum access to an outcome previously experienced in the home cage 

for 1 hour before being placed in the training context for a 5 minute, non-reinforced test 

session. On the devalued day, mice were given 1 hour of ad libitum access to the 

outcome previously earned by lever press, and then underwent a 5 minute, non-

reinforced test session in the training context. One mouse consumed less than 0.1g of 

the valued outcome during pretraining exposure and was excluded from all 

devaluation analyses (giving final n = 11). The order of revaluation day was 

counterbalanced across mice.  

Probabilistic Reward 

A naive group of mice (n = 15, n = 4 female and n = 11 male) were trained for 6 

days on >800 ms, followed by 8 days at > 1600ms criteria, and then switched  to 

probabilistic reward, where only a percentage of presses that exceeded the duration 

criterion were rewarded on a random ratio schedule. These animals were separated 

into three different probabilistic reward groups: 25%, 50%, and 75% (n = 5 each group) 

and trained for a further 3 days under the assigned probabilistic schedule.  
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Surgical Procedures 

All viral vectors were obtained from the UNC Viral Vector Core (Chapel Hill, NC) 

or Addgene (Wateron, MA). Mice were anaesthetized with isoflurane (1–2%) and 

intracranial injections were performed via Hamilton syringe (Reno, NV) targeted at a 

relatively posterior portion of M2 (from Bregma: AP +1.0mm, L ±0.5mm and V −1.2mm, 

-1.4mm from the skull), and/or DMS (from Bregma: AP +1.0mm, L ±1.65mm and V 

−3.0mm, -3.2mm from the skull). Syringes were left in place for five minutes after each 

injection to allow for diffusion, and all viruses or drugs were infused at a rate of 

100nl/min. Mice were given at least two weeks to allow for recovery and viral 

expression before the start of experimental procedures (at least four weeks for all M2-

DMS manipulations). After behavioral testing was concluded, mice were euthanized 

and brains were extracted and fixed in 4% paraformaldehyde. Localization and spread 

of viral expression was assessed in 50-100 µm thick brain slices using fluorescent 

microscopy (Olympus MVX10, Shinjuku, Japan).  

For M2 lesions, n = 12 Lesion mice were bilaterally injected with ibotenic acid 

(10mg/ml, ThermoFisher), while n = 12 Sham lesion mice were injected with vehicle 

(saline) at M2 (2 injections of 120nl at V -1.4mm and -1.2mm from the skull in each 

hemisphere). In order to assess excitotoxic lesion presence and spread, brains were 

sliced at 50um thick, and incubated with propidium iodide (1:10000 in 1xPBS, 

Chemodex: P0023) and Isolectin-GS IB4 Alexa Fluor 488 Conjugate (20:10000, 

ThermoFisher: l21411), a marker of microglial cells which are recruited via lesions 

(Lünemann et al., 2006). Brain slices were incubated for 1hr, followed by 3 x 10min 
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washes. 4 Sham mice were excluded due to technical difficulties during training, and 2 

Lesion mice were excluded due to histology, giving final n’s of 10 Lesion (n = 6 female, 

n = 4 male) and 8 Sham (n = 4 female, n = 4 male) mice.  

For M2 GCaMP experiments, n = 8 mice (n = 4 female, n = 4 male) were 

injected (2 injections of 200nl at V -1.4mm and 1.2mm from the skull) with 

rAAVDJ/PAAV-CaMKIIa-GCaMP6s to express GCaMP6s under control of the Ca2+ 

calmodulin dependent protein kinase IIα (CamKIIα) promoter and implanted with an 

optical fiber unilaterally in M2. 

For M2-DMS GCaMP experiments, n = 8 mice were unilaterally injected with a 

viral vector expressing Cre recombinase (AAV5/Ef1a-Cre-WPRE) in DMS (2 injection 

depths: V -3.0mm and -2.8mm from the skull, 250nl each), and were injected with a 

viral vector expressing a Cre-dependent GCaMP6s 

(pAAV.CAG.FLEX.GCaMP6s.WPRE.SV40 (Addgene: 100842); 2 injection depths: V: -

1.4mm, and -1.2mm from the skull, 200nl each) followed by fiber implantation in 

ipsilateral M2. One mouse was excluded due to histology (n = 4 female, n = 3 male). 

For M2-DMS lesion, n = 8 Lesion (n = 4 female, n = 4 male) and n = 8 Sham (n 

= 4 female, n = 4 male) mice were bilaterally injected with 200nl of a viral vector 

expressing CamKIIα-Cre in DMS (rAAV5/CamKII-GFP-Cre; 2 injection depths: V: -

3.1mm and -2.9mm from skull, 200nl each). Lesion and Sham mice were also injected 

with a viral vector expressing Cre-dependent tdTomato in M2 (rAAV5/Flex-tdTomato; 

100nl at V -1.4mm from the skull). Lesion mice additionally received a viral vector 

expressing a Cre-dependent caspase virus in M2 to induce apoptosis of M2-DMS 
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projections (rAAV5/AAV-Flex-taCasP3-TEVP; 2 injection depths: V -1.4mm and -

1.2mm from the skull, 200nl each). 

For M2-DMS optogenetic inhibition experiments, n = 8 Archaerhodopsin (ArchT) 

and n = 8 tdTomato mice were bilaterally injected with a viral vector expressing 

CamKIIα-Cre in DMS (rAAV5/CamKII-GFP-Cre; 2 injection depths: V -3.1mm and -

2.9mm from the skull, 200nl each). Following exclusion for viral expression or low 

levels of behavior, there were n = 5 ArchT mice (n = 3 male, n = 2 female), and n = 6 

tdTomato control mice (n = 3 male, n = 3 female). Due to the proximity of bilateral M2 

at this posterior portion (~1.0mm) for ferrule implantation, we injected virus and 

implanted fibers at a 10° angle, and adjusted the M2 coordinates accordingly. 

Experimental ArchT mice received a viral vector expressing a Cre-dependent inhibitory 

opsin (rAAV5/Flex-ArchT-tdTomato), while fluorophore control mice received a viral 

vector expressing Cre-dependent fluorophore only (rAAV5/Flex-tdTomato), in both 

cases receiving the same injection volume (300nl at V -1.42mm from the skull), with 

bilateral M2 fibers implanted at V -1.37mm from the skull. 

Fiber Photometry 

Animals underwent pre-training as described above, but received one additional 

day of CRF training during which animals were first hooked up to 400 um optical fiber 

tethers with ferrule to ferrule connectivity. A 470nm LED (Thorlabs, Newton, NJ) was 

used for excitation of GCaMP6s (< 70 µW/mm2), and fluorescence emissions were 

collected with a bifurcated fiber (Thorlabs, Newton, NJ) which allowed for 

simultaneous, independent recordings of two mice. We imaged the dual fiber core 
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using a 4x objective (Olympus, Shinjuku, Japan) focused onto a CMOS camera (FLIR 

Systems, Wilsonville, OR). Regions of interest (i.e., the fiber cores) were selected 

using Bonsai software (Lopes et al., 2015) to acquire fluorescence intensity signals (at 

a rate of 20Hz). Bonsai software simultaneously collected analog behavioral data and 

timestamps for lever presses, head entries, and reinforcer delivery sent via TTL Med-

PC pulses using microprocessors (Arduino Duo, from Arduino, Sumerville, MA) with 

custom code. Photometry and behavioral data were imported into Matlab (Mathworks 

Inc., Natick, MA) for analysis using custom scripts. To account for decay across the 

session (photobleaching), we fit the fluorescence intensity signal to a double 

exponential. To check for bad coupling of the fiber to the ferrule, or low expression 

each session we calculated the 97.5 percentile of dF/F and ensured that there was at 

least a 1% change, sessions failing to meet this criterion were excluded from analyses 

(Markowitz et al., 2018), and also excluded sessions with visual anomalies in the 

session long traces (e.g., a sudden, sustained decrease in activity partway through the 

session that could indicate fiber decoupling). We used the mean and standard 

deviation during a baseline period -15s to -5s prior to lever pressing to z-score press-

related activity (i.e., from -5s prior to onset up to 5s post offset). To compare Met and 

Fail lever presses, we performed running permutation tests, requiring that at least 4 

adjacent samples were significantly different from one another to control for 

fluctuations in the data (functions implemented in Matlab from (Jean-Richard-dit-

Bressel et al., 2020)). We smoothed Ca2+ activity data using a 10 sample (or 5 sample 

for interpolated activity) long Gaussian filter for display purposes only. 

Optogenetic Inhibition 
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For bilateral light delivery, Arduino Duos with custom code were used to receive 

TTL pulses from Med-PC operant chambers and trigger onset of 2 LEDs (595nm, 

Thorlabs) coupled to 200um sheathed fiber optic cable with ferrule to ferrule 

connectivity (>= 1mW at ferrule tip). We used 595nm light as this has been shown to 

optimally activate ArchT while avoiding non-specific effects (Setsuie et al., 2020). We 

used several different protocols to target the closed-loop inhibition to different task 

epochs. Inhibition during the duration of the lever press occurred across the 6 >800ms 

training days, with light delivery (continuous, not pulsed) tied to the lever pressing 

itself. As we observed a decaying relationship between n-back press durations and n - 

0 press duration, every 7th lever press triggered light delivery, which persisted for the 

duration of the lever press (with a time resolution of 20ms for light offset). During days 

1-6 of the >1600ms training, we instead tied light delivery to press offset, again, on 

every 7th lever press. Thus, after every 7th lever press, mice were given 1s of light. 

Finally, after undergoing 4 days of baseline training without any light inhibition (though 

while still being hooked up to fibers), we shifted to inhibiting prior to press onset for 6 

days. In order to achieve this, animals were recorded with an overhead camera (1080p 

wide angle webcam, Logitech) and tracked in real time using Bonsai software. We 

individually defined regions of interest centered on the lever (approximately twice the 

width and length of the lever itself). 50% of entrances into this region generated a TTL 

pulse to turn on the LEDs, which remained on for 1s. 

ArchT Slice Validation 
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Coronal slices (250 μm thick) containing M2 were prepared using a Pelco 

easiSlicer (Ted Pella Inc, Redding, CA). Mice were anesthetized by inhalation of 

isoflurane and brains were rapidly removed and placed in 4°C oxygenated ACSF 

containing the following (in mM): 210 sucrose, 26.2 NaHCO3, 1 NaH2PO4, 2.5 KCl, 11 

dextrose, bubbled with 95% O2/5% CO2. Slices were transferred to an ACSF solution 

for incubation containing the following (in mM): 120 NaCl, 25 NaHCO3, 1.23 NaH2PO4, 

3.3 KCl, 2.4 MgCl2, 1.8 CaCl2, 10 dextrose. Slices were continuously bubbled with 

95% O2/5% CO2 at pH 7.4, 32°C and were maintained in this solution for at least 60 

min prior to recording. 

Whole-cell current clamp recordings were made in pyramidal cells of M2. 

Pyramidal cells that expressed ArchT were identified by the fluorescent tdTomato label 

using an Olympus BX51WI microscope mounted on a vibration isolation table and a 

high-power LED (LED4D067, Thorlabs). Recordings were made in ACSF containing 

(in mM): 120 NaCl, 25 NaHCO3, 1.23 NaH2PO4, 3.3 KCl, 0.9 MgCl2, 2.0 CaCl2, and 10 

dextrose, bubbled with 95% O2/5% CO2. ACSF was continuously perfused at a rate of 

2.0 mL/min and maintained at a temperature of 32°C. Picrotoxin (50 µM) was included 

in the recording ACSF to block GABAA receptor-mediated synaptic currents. 

Recording electrodes (thin-wall glass, WPI Instruments) were made using a PC-10 

puller (Narishige International, Amityville, NY) to yield resistances between 3–6 MΩ. 

Electrodes were filled with (in mM): 135 KMeSO4, 12 NaCl, 0.5 EGTA, 10 HEPES, 2 

Mg-ATP, 0.3 Tris-GTP, 260–270 mOsm (pH 7.3). Access resistance was monitored 

throughout the experiments. Cells in which access resistance varied more than 20% 

were not included in the analysis. 
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Recordings were made using a MultiClamp 700B amplifier (Molecular Devices, 

Union City, CA), filtered at 2 kHz, digitized at 10 kHz with Instrutech ITC-18 (HEKA 

Instruments, Bellmore, NY), and displayed and saved using AxographX (Axograph, 

Sydney, Australia). A series of fixed current injections (20 pA increments from 0 to 120 

pA) were used to elicit action potential firing and the number of spikes were counted at 

each current step. For verification of ArchT function, ArchT was optically stimulated 

using 590nm light, delivered via field illumination using a high-power LED (LED4D067, 

Thorlabs). Optical stimulation was done under constant illumination for 1s during 

current injections.  

Data Analysis 

Linear Mixed Effects Models of Behavior 

We built simple Linear Mixed Effects (LME) models to model the relationship 

between the duration of lever press n and n-back (n - 1 through n - 10) lever press 

durations. We included random intercept terms for mouse and day of training to 

account for the repeated structure of our data. To determine how far back a significant 

relationship existed between press n and any particular n-back press, we shuffled the 

order of a particular n-back (e.g., only n - 3) 1000 times and compared the shuffled 

distribution of beta coefficients to the actual value via permutation test. Of note, we are 

shuffling here within individual mouse/sessions, thus preserving the overall statistics of 

the data, and shuffling only the order in which a specific type of event occurred.   

n = β0 + βn-1n-1 + βn-2n-2 + … + βn-10n-10 + βt(t) + β%(%) + (1|M) + (1|D) + εi 
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Where n is the current lever press duration, n - 1 through n - 10 are the 

previous 1 through 10 lever press durations and βx is the linear regression coefficient 

for term x (β0 being the intercept term). We also included covariates of time in session 

(t) and the percentage of presses that met criteria (%). We included random intercept 

terms for both mouse (M) and day (D).  

In order to determine which other experiential variables affect lever press n 

duration, we also built more complex LME models that included additional variables. 

To select variables for this model, we created a “full” model that included n-back 

durations up to n - 6 (as that is as far back as we see a consistent difference from 

shuffled data in the simple models), and then main effects of other variables and their 

interactions with n-back durations, also up to n - 6 (e.g., a binary for if mice made a 

checking headentry after the previous lever press). We individually removed terms 

from this full model, and compared Bayesian Information Criterion (BIC) to assess if 

adding a term improved the model. If any term did not improve the model, we removed 

it, and also removed any further n-back examples of it. However, we kept main effect 

terms in the model if the interactions were significant, and kept all the same interaction 

terms for n - 1 and the moving average term to be able to directly compare how 

various events might differentially affect the contribution of press n - 1 versus the 

moving average. To ensure that terms in this reduced model did not improve the 

model due to overall correlations across days or mice, we also compared beta 

coefficients from the actual data to those obtained from 1000 order shuffled datasets, 

where we individually permuted a given term within individual mouse/sessions. This 

analysis conducted on our “reduced” model agreed with the BIC selection for terms 
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that improved the model. We were ultimately left with the model in Table 2.S3 (see 

also Table 2.S2 for a description of the terms), signified by the equation below. 

n = β0 + βn-1n-1 + βn-2n-2 + … + βn-6n-6 + βMAMA + βtt + β%% + βIPIIPI-1 + βIPIIPI-2+ βRR-1 + 

βHEHE-1+  βt*n-1t*n-1 + β%*n-1%*n-1 +βIPI*n-1IPI-1*n-1 + βIPI*n-2IPI-2*n-2 + βR*n-1R-1*n-1 + 

βHE*n-1HE-1*n-1 + βt*MAt*MA + β%*MA%*MA +βIPI*MAIPI-1*MA + βR*MAR-1MA + βHE*MAHE-

1*MA + (1|M) + (1|D) + εi 

Where βx represents the linear regression coefficient for a given term. This 

model has the same terms as the simple model, though only back to n - 6 durations, 

as that is as far back as there is a reliable difference to shuffled data. In addition, there 

is the MA term which is a moving average from presses n - 7 through n - 60 (length 

selected via BIC using different window lengths). Additionally, we have main effects of 

time in session (t, in ms), the percentage of presses that met criteria (%), inter-press 

interval (IPI in ms, for both time in between press n and press n - 1 (IPI-1), and 

between press n and press n - 2 (IPI-2)), outcome of press n - 1 (R-1: binary where 0 is 

no reward and 1 is reward), and headentry between press n - 1 and press n (HE-1: 

binary where 0 is no headentry and 1 is headentry). Again, we have random intercept 

terms for mouse (M) and day of training (D). We also included interaction terms 

between the n - 1 duration term and: t, %, IPI, Rn-1, and HEn-1. These interaction terms 

are specified with the general format of  βx*n-1x*n-1 where x represents an individual 

interaction term (e.g., for time in session t interacting with n - 1 duration: βt*n-1t*n-1). 

These same interaction terms were included with the moving average term (MA, of the 

general format βx*MAx*MA) in order to see if very recent experience (n - 1) and long-
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term experience (MA) were differentially influenced by variables such as time. 

Interestingly, when examining further n-back interactions, only the interaction between 

IPIn-2 and n - 2 duration survived the BIC selection process, indicating that individual 

further n-backs were less open to modification by these variables.  

In the probabilistic reward experiment, we added a trinary term for if a lever 

press was unsuccessful (0), successful and rewarded (1), or successful and 

unrewarded (2), and included interactions between this term and n - 1 as well as the 

MA. Additionally, we ran all three probability groups together in the model and included 

indicator variables for which group (25%, 50%, or 75% reward) a mouse belonged to. 

This allowed us to include a 3-way interaction to determine if the groups differed in 

how this trinary outcome term interacted with prior press durations (e.g., does the 

probability of reward influence the presence/magnitude of win-stay behavior?). For the 

optogenetic inhibition LME models, we included a binary term indicating if a lever 

press received light delivery (before, during, or after for the three different 

manipulations) as both a main effect and as an interaction with n - 1 duration and the 

MA to determine if light reduced the relationship between press n and press n - 1/the 

MA.  

Ca2+ Activity Linear Mixed Effect Models 

For the M2 and M2-DMS Ca2+ activity recordings, we built LME models that 

sought to predict Ca2+ activity given behavior. For this, we used data only from the 

1600ms training days. First, we built simple LME models that included only current (n) 

and prior (n-back, up to n - 6) durations to predict activity (calculated as area under the 
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curve) at three different time points: -1s to 0s before press onset, during the lever 

press itself, and 0s to +1s after press release. For activity during the lever press itself, 

we used modified Akima interpolation, implemented using Matlab’s interp1 function to 

get presses of different durations on the same relative scale, and we excluded any 

lever presses with fewer than 2 samples which would preclude interpolation. We also 

included terms for prior activity (up to n - 6) to control for autocorrelation in the Ca2+ 

activity signal. We again compared beta coefficients from the actual data to 1000 order 

shuffled datasets for these simple models.  

A = β0 + βnn0 + βn-1n-1 + … + βn-6n-6 +  βA-1A-1 + ... + βA-6A-6 + (1|M) + (1|D) + εi 

Where A is current Ca2+ activity and βx is the regression coefficient for term x. Of 

note, these models included n duration (n0) as a predictor (whereas this was what we 

predicted in the pure behavioral models).  We predicted A given both current (n0) and 

prior (n - 1, up to n - 6) press durations, included prior Ca2+ activity (A - 1, up to A - 6) 

as a covariate, and included random intercepts of mouse (M) and training day (D).  

Additionally, we built more complex LME models to predict Ca2+ activity data. 

For these, we used the complex behavioral model above for the predictors, as we 

were interested in seeing if these variables  - which we know influence the behavior - 

are also represented in Ca2+ activity, and also still included prior Ca2+ activity data to 

control for autocorrelation in the Ca2+ data. This took the form of the following 

equation, using the same variables as the preceding equations.  
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A = β0 + βA-1A-1 + ... + βA-6A-6 +  βn0n0 + βn-1n-1 + … + βn-6n-6 + βMAMA + βtt + β%% + 

βIPIIPI-1 + βIPIIPI-2+ βRR-1 + βHEHE-1+  βt*n-1t*n-1 + β%*n-1%*n-1 +βIPI*n-1IPI-1*n-1 + βIPI*n-

2IPI-2*n-2 + βR*n-1R-1*n-1 + βHE*n-1HE-1*n-1 + βt*MAt*MA + β%*MA%*MA +βIPI*MAIPI-1*MA + 

βR*MAR-1MA + βHE*MAHE-1*MA + (1|M) + (1|D) + εi 

When trying to predict activity after lever press offset, we also included a binary 

term for outcome on lever press n (R0 i.e., the lever press that was just completed with 

0 being no reward and 1 being reward). We did not include this term at the other time 

points since it would introduce a “post diction” confound (i.e., including a term for the 

outcome of a press before the press even occurred at onset). For the same reason, 

we did not include interactions with the n0 variable. 

Quantification and Statistical Analysis 

All analyses were two-tailed with α = 0.05 as a threshold for significance. For 

analyzing coarse behavioral measurements (e.g., Total Lever Presses) one-way or 

two-way RM ANOVAs were used, with Greenhouse-Geisser correction for one-way 

ANOVA and Bonferroni corrections for post-hoc multiple comparisons unless 

otherwise noted. We used the RMcorr package (Bakdash & Marusich, 2017) 

implemented in R (R Core Team) to calculate a repeated measures correlation 

between individual model fit and mouse performance to account for the repeated 

nature of this data (sampling individual mice across days). We used Matlab’s cusum 

function to get the upper cumulative sum in Figures 2.1I-J, using 2 SD as the criterion. 

In our simple LME models, we used permutation tests comparing actual β coefficient 

values to a distribution of 1000 order shuffled versions of the same variable, and thus 
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the resolution of our permutation p-values was p < 0.001. We excluded presses over 

10s in duration from all modeling datasets. For event-aligned Ca2+ activity comparing 

Met vs. Fail lever presses, we used permutation tests that required either 4 (for onset 

and offset-aligned activity) or 3 (for interpolated activity during the press) consecutive 

samples passed the threshold for significance. To assess the relationship between 

Ca2+ activity and various aspects of behavior in our complex LME models, we 

performed F-tests on the individual parameters. For group comparisons (e.g., Sham 

vs. Lesion) of LME model coefficients, we used t-tests with Benjamini-Hochberg false 

discovery rate correction (Q = 5%) on all of the model terms shown in Tables 2.S4 and 

2.S7. Behavioral data was analyzed using Excel (Microsoft), Matlab (Mathworks), R (R 

Core Team), and Prism (Graphpad).  

Data Availability 

The data reported in this paper will be shared by the lead contact upon request. 
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https://github.com/gremellab/Hold-Down-Behavior-GCAMP-Opto-analysis 
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Supplemental Information 

Note 2.S1, related to Figure 2.1. As previous reports have indicated that rats in 

a similarly unstructured task may sometimes make short, stereotyped lever presses 

after reward (Platt et al., 1973), we investigated our data for evidence of stereotypies. 

Of the 13 behavioral mice, we found evidence of 1 mouse that appeared to adopt this 

stereotyped strategy, making presses after a reward that were  450 ± 434ms (mean ± 

SD) in duration, while the average for all other animals was 1051 ± 757ms. 

Permutation tests comparing to order shuffled data found that this same mouse 

exhibited a smaller SD after a rewarded press in actual versus shuffled data on 7 out 

of 14 days, while no other mouse in this (or subsequent) experiments did so for more 

than 2 days. Thus, while it is possible for animals to adopt a stereotyped strategy to 

perform this task, only a very small minority of animals appear to do so. Aside from the 

difference in species (rats versus mice), the results of Platt et al. (1973) may have 

been due to the extensive 2 week pretraining period without a duration requirement, 

wherein rats would have been incentivized to press as rapidly as possible to earn 
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maximal reward and might develop a habitual or stereotyped response that persisted 

even after introduction of the duration requirement. 
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Abstract  

Background 

Alcohol Use Disorder (AUD) disrupts behavioral flexibility, but alterations to 

underlying neural circuit mechanisms are unclear. One candidate is the premotor 

corticostriatal circuit which has been implicated in compulsive and inflexible behaviors 

and shows altered activity in AUD. However, whether AUD alters mechanisms within 

premotor corticostriatal circuits to disrupt behavioral flexibility is unknown.  

Methods 

Male and female C57BL/6J mice underwent chronic intermittent ethanol (CIE) 

or Air vapor exposure and repeated withdrawal. Mice were subsequently trained on an 

instrumental lever hold-down task, which allowed for modeling the contribution of 

recent experience important for behavioral flexibility. Ex vivo slice recordings 

examined effects of vapor exposure on intrinsic properties of premotor cortex (M2). In 

vivo calcium fiber photometry in vapor-exposed mice examined activity and modulation 

of M2 neurons with projections into dorsal medial striatum (M2-DMS) during task 

performance. Finally, a projection-specific inhibitory chemogenetic approach was used 

to examine a causal link between CIE disruption to both M2-DMS activity and 

behavioral flexibility. 

Results 

Prior CIE impaired behavioral flexibility and was accompanied by a CIE-induced 

increase in M2 excitability as well as increased in vivo activity of M2-DMS projection 
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neurons at baseline and during task performance. Chemogenetic reduction of this CIE-

induced hyperactivity in M2-DMS neurons rescued behavioral flexibility.  

Conclusions 

This is the first evidence of a direct, causal relationship between chronic alcohol 

disruption to premotor circuits and behavioral flexibility and provides mechanistic 

support for targeting activity of human premotor regions as a potential treatment in 

AUD.  
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Introduction 

Alcohol Use Disorder (AUD) is associated with disruptions to behavioral 

flexibility (Claus et al., 2011; Duka et al., 2011; Scaife & Duka, 2009; Shnitko et al., 

2020; Sjoerds et al., 2014), defined as the ability to appropriately adapt behavior 

based on changing circumstances. These disruptions contribute to daily dysfunction, 

continued alcohol abuse, and relapse (Belin et al., 2013; Everitt & Robbins, 2005; 

Hogarth, 2020), suggesting that targeting restoration of function has treatment 

potential (Gremel & Lovinger, 2017). Preclinical work has found AUD-related 

alterations to regions important for behavioral flexibility, including cortex (den Hartog et 

al., 2016; Morningstar et al., 2020; Nimitvilai et al., 2016, 2017; Renteria et al., 2018, 

2021) and cortical output into dorsal striatum (Carlson, 2018; Carlson et al., 2011; 

Lovinger & Alvarez, 2017; Ma et al., 2018; Muñoz et al., 2018; Patton et al., 2021; 

Renteria et al., 2018, 2021), the main input nucleus of the basal ganglia. However, the 

specific circuits and mechanisms disrupted in AUD that result in behavioral inflexibility 

are not clear. As novel strategies are being explored in the treatment of AUD, including 

rTMS targeting of dorsal cortex, it is essential to identify circuit-specific mechanisms 

involved. 

One potential but understudied candidate is the primate pre-supplementary and 

supplementary motor areas (Pre-SMA/SMA) which send projections into the caudate 

nucleus and are disrupted in AUD (Claus et al., 2011; Duka et al., 2011; Morris et al., 

2018; Sjoerds et al., 2014). Pre-SMA/SMA are involved in supporting behavioral 

flexibility (Aron, 2011; Aron et al., 2007; Morris, Kundu, et al., 2016), with altered 
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activity implicated in compulsive disease states (Gomes et al., 2012; Hawken et al., 

2016; Mantovani et al., 2013). Correlative studies have shown that SMA activity 

positively correlates with AUD severity, with more severe symptoms associated with 

greater recruitment of SMA activity during delayed discounting (Claus et al., 2011). In 

addition, abstinent individuals with AUD show impaired response inhibition and 

reduced SMA volume (Duka et al., 2011) and reduced activity in a response inhibition 

task (Sjoerds et al., 2014). However, missing is a causal link between AUD effects on 

Pre-SMA/SMA function and impaired flexibility. 

Limited preclinical work has examined Pre-SMA/SMA’s rodent homologue 

(Barthas & Kwan, 2017), the premotor cortex (M2, also known as secondary motor 

cortex) in relation to AUD. Research has shown M2 activity represents information 

important for behavioral flexibility (e.g., prior as well as future actions), and is 

modulated by experience (Hattori et al., 2019; Murakami et al., 2014, 2017; Siniscalchi 

et al., 2019). M2 sends dense projections to the dorsal medial striatum (DMS, akin to 

primate caudate nucleus) (Delevich et al., 2020; Hintiryan et al., 2016). This M2-DMS 

projection is strengthened in Obsessive Compulsive Disorder (V. L. Corbit et al., 

2019), and is involved in working memory deficits associated with Parkinson’s disease 

(Magno et al., 2019) in rodent models. However, only limited examination of M2 has 

been done in the context of alcohol. Brain-wide scans revealed acute alcohol 

increased cFos within M2 (Liu & Crews, 2015) and chronic alcohol increased M2 

activity assessed via MRI (Dudek et al., 2015). This suggests chronic alcohol exposure 

may affect the activity and function of M2, and may alter its contribution to behavioral 

flexibility.  
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Here we examined whether chronic alcohol induced long-lasting changes to M2 

activity and function. We used a well-validated model of chronic alcohol exposure 

(Becker & Hale, 1993; Becker & Lopez, 2004, 2006; Cazares et al., 2021; Lopez & 

Becker, 2005; Renteria et al., 2018), and examined neural activity and behavior in 

protracted withdrawal (Heilig et al., 2010). Of note, we employed an instrumental task 

(Cazares et al., 2021; Fan et al., 2012; Platt et al., 1973; Yin, 2009) that allowed for 

the continuous analysis of behavioral flexibility from one decision to the next and 

online investigation of associated neural mechanisms. Use of this task bypassed 

limitations often present in traditional reversal learning, set-shifting, or response 

inhibition investigations which may occlude examination of how recent experience is 

used to flexibly control behavior (e.g., often averaging a limited number of discrete 

responses across time (Schreiner et al., 2021)). Thus, we were able to examine 

persistent chronic alcohol effects on M2 activity, and its contribution to behavioral 

flexibility in a continuous manner. 

Methods and Materials 

Experimental Model and Subject Details 

Similar numbers of male and female C57BL/6J mice (>7 weeks/50 PND) (The 

Jackson Laboratory, Bar Harbor, ME) were used for all experiments. As exploratory 

analyses for sex differences in the behavioral cohort (50% M/F split) revealed no 

differences, data were collapsed across sex. All procedures were conducted during 

the light period and mice had free access to water. Mice were housed 2–4 per cage on 

a 14:10 light:dark cycle. Mice were food restricted to 85-90% of their baseline weight 2 
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days prior to starting behavioral procedures, and fed daily 1–4 hours after training. All 

experiments were approved by the University of California San Diego Institutional 

Animal Care and Use Committee and were carried out in accordance with the National 

Institutes of Health (NIH) “Principles of Laboratory Care”.  

Surgical Procedures 

Viral vectors were obtained from the UNC Viral Vector Core (Chapel Hill, NC) or 

Addgene (Watertown, MA). Mice were anesthetized with isoflurane (1-2%) and 

intracranial injections (100 nl/min) were targeted at a relative posterior portion of M2 

(from Bregma: AP +1.0mm, L ±0.5mm and V -1.2mm, -1.4mm from the skull), and 

DMS (from Bregma: AP +1.0mm, L ±1.65mm and V -3.0mm, -3.2mm from the skull). 

Mice were given at least one week of recovery prior to the start of CIE procedures. 

After behavioral testing was completed, mice were euthanized and brains were 

extracted and fixed in 4% paraformaldehyde. Virus localization and spread was 

assessed in 100 μm thick brain slices via fluorescent microscopy (Olympus MVX10, 

Shinjuku, Japan).  

For M2-DMS calcium imaging, n = 8 AIR and n = 8 CIE mice (4 M/F per group) 

were unilaterally injected with a virus expressing a cre-dependent GCaMP6s in M2 

(pAAV.CAG.FLEX.GCaMP6s.WPRE.SV40 (Addgene: 100842): 2 injection depths, 

200nl each), and a retrograde-capable virus (Rothermel et al., 2013) expressing cre 

recombinase (AAV5/Ef1a-Cre-WPRE) in DMS (2 injection depths, 250nl each). 

Animals were then implanted with an optical ferrule centered on M2. Two AIR mice 

were excluded due to poor viral expression (to give final n = 6 AIR).  
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For chemogenetic inhibition of M2-DMS, control animals (n = 6 AIR (4/2 MF), n 

= 6 CIE (3/3 M/F) were injected with a virus expressing cre-dependent tdTomato in M2 

(rAAV5/Flex-tdTomato), while experimental animals (n = 9 AIR, n = 8 CIE) were 

injected with a virus expressing a cre-dependent inhibitory chemogenetic receptor 

hM4Di (H4) in M2 (pAAV5-hSyn-DIO-hM4D(Gi)-mCherry: 2 injection depths, 150nl 

each). Both groups were injected with a retrograde-capable virus (Rothermel et al., 

2013) expressing cre recombinase in DMS (rAAV5/hSyn-GFP-Cre: 2 injection depths, 

200nl each). One AIR H4 mouse, and one CIE H4 mouse were excluded due to viral 

expression (final n = 8 AIR H4 (4/4 M/F) and n = 7 CIE H4 (4/3 M/F)). 

Chronic Intermittent Ethanol Exposure and Withdrawal  

Mice (>8 weeks of age) were exposed to chronic intermittent ethanol vapor 

(CIE) or Air (Becker & Hale, 1993; Becker & Lopez, 2004, 2006; Cazares et al., 2021; 

Lopez & Becker, 2005; Renteria et al., 2018). As previously described (Cazares et al., 

2021; Renteria et al., 2018, 2021), mice were exposed to Air/CIE vapor for 16 hrs/day, 

for four consecutive days, and this procedure was repeated for 4 weeks. Ethanol was 

volatilized by bubbling air through a flask containing 95% ethanol at a rate of 2/3 

L/min, delivered to the mice housed in Plexiglas containers (Plas Labs Inc.). No 

loading dose of ethanol or pyrazole pretreatment was administered to avoid 

confounding effects of 1) stress on behavior (Dias-Ferreira et al., 2009) and 2) 

pyrazole on neural activity (Becker & Lopez, 2004; Pereira et al., 1992). Blood alcohol 

concentration was collected from sentinel animals, with a mean±SEM of 27.9 ± 

2.0mM. 
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Behavioral Procedures 

To examine CIE-effects that persist into protracted withdrawal (Heilig et al., 

2010), five days post the final vapor exposure, mice began daily operant training in 

sound-attenuating boxes (Med-Associates, St Albans, VT) in which they pressed a 

lever (left or right of the food magazine, counterbalanced) for an outcome of regular 

‘chow’ pellets (20 mg pellet per reinforcer, Bio-Serv formula F0071). Each training 

session commenced with an illumination of the house light and lever extension and 

ended after either 60 reinforcers were earned or 90 minutes had elapsed, with the 

lever retracting and the house light turning off. 

On the first day, mice were trained to approach the food magazine to retrieve 

the pellet outcome (no lever present) on a random time (RT 120s) schedule, for a total 

of 60 minutes. Next, mice were trained on a continuous ratio schedule of reinforcement 

(CRF) across 3 days, where every lever press was reinforced, and the total possible 

number of reinforcers increased (CRF10, 30, and 60) across days. 

Following CRF pretraining, the lever-press duration contingency was 

introduced, in which mice had to press and hold down the lever for a minimum 

duration in order to earn food reward (delivered immediately after press release). 

Importantly, there were no cues, no timeout period, nor any discrete trials; the lever 

was always available to mice, until the session was complete. Mice were trained at the 

>800ms criterion for 6 days, followed by at least 6 days of training at the >1600ms 

criterion. Timestamps for lever press onset and offset, headentry into the food 

magazine onset and offset, and reward delivery were recorded. From these 
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timestamps, we calculated durations of lever presses and headentries (limit of 20ms 

resolution).  

Fiber Photometry 

Animals received one additional day of CRF pretraining when they were first 

connected to 400 um optical fiber tethers with ferrule-to-ferrule connectivity. GCaMP6s 

was excited using a 470nm LED at < 70 µW/mm2 (Thorlabs, Newton, NJ). GCaMP6s 

fluorescence emission was collected using a bifurcated fiber (Thorlabs, Newton, NJ) 

that allowed for simultaneous, independent recordings from two mice. The dual fiber 

core was imaged using a 4X objective (Olympus) focused onto a CMOS camera (FLIR 

Systems, Wilsonville, OR). Bonsai software (Lopes et al., 2015) was used to select the 

fiber cores and acquire fluorescence intensity signals at 20 Hz. Bonsai simultaneously 

collected analog timestamps for lever presses, headentries, reward delivery via TTL 

pulses sent from MED-PC and collected using Arduino Duo microprocessors (Arduino, 

Somerville, MA) with custom code. Photometry and behavioral data were imported into 

Matlab (Mathworks Inc., Natick, MA) for analysis using custom scripts 

(https://github.com/gremellab/Hold-Down-Behavior-GCAMP-Opto-analysis). We fit the 

fluorescence intensity signal to a double exponential to account for photobleaching 

across a session. To check for bad coupling of the fiber to the ferrule or low 

expression, each session we calculated the 97.5 percentile of dF/F and ensured that 

there was at least a 1% change; sessions failing to meet this criterion were excluded 

from analyses (Markowitz et al., 2018). We also excluded sessions with visual 

anomalies in the session long traces (e.g., a sudden, sustained jump in activity that 
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could indicate fiber decoupling). For calcium transient analyses (Figures 3.3B-C), we 

used Matlab’s findpeaks function, with the “MinPeakHeight” argument set to the 

4*median absolute deviation plus the mean of the session-long calcium signal (Pribiag 

et al., 2021). We used the mean and standard deviation during a baseline period -15s 

to -5s preceding the lever press to z-score press-related activity (i.e., from -5s prior to 

onset up to 5s post offset). The session long mean was used to calculate DF/F as: ((F 

- Fmean)/Fmean) x 100%. We bootstrapped 99% confidence intervals using the 

boot_CI function (Jean-Richard-dit-Bressel et al., 2020). For examining activity during 

lever pressing, we used Makima interpolation with Matlab’s interp1 function. To 

compare activity in AIR and CIE mice, we performed running permutation tests that 

required at least 4 adjacent samples to significantly differ from one another (Jean-

Richard-dit-Bressel et al., 2020). Calcium activity data was smoothed using a 10 

sample (or 5 sample for interpolated activity) long Gaussian filter for display purposes 

only. 

Chemogenetic Inhibition 

Animals underwent behavioral training as above. To target behavioral 

measurements to a time period overlapping with circuit attenuation (Gremel & Costa, 

2013, p. 2) that also avoids indirect effects of agonist treatment (Gomez et al., 2017), 

all mice were given intraperitoneal injections of the hMm4Di selective agonist  

Clozapine-N-Oxide (CNO, 1.0 mg/kg, 10 ml/kg, Sigma Aldrich) 30 minutes prior to 

each hold down training session. 

Slice Electrophysiology 
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Coronal slices (250 μm thick) containing M2 were prepared using a Pelco 

easiSlicer (Ted Pella Inc, Redding, CA). Mice were anesthetized by isoflurane and 

brains were rapidly removed and placed in 4°C oxygenated ACSF containing the 

following (in mM): 210 sucrose, 26.2 NaHCO3, 1 NaH2PO4, 2.5 KCl, 11 dextrose, 

bubbled with 95% O2/5% CO2. Slices were transferred to an ACSF solution for 

incubation containing the following (in mM): 120 NaCl, 25 NaHCO3, 1.23 NaH2PO4, 3.3 

KCl, 2.4 MgCl2, 1.8 CaCl2, 10 dextrose. Slices were continuously bubbled with 95% 

O2/5% CO2 at pH 7.4, 32°C and maintained in this solution for at least 60 min prior to 

recording. Whole-cell current clamp recordings were made in M2 pyramidal cells. 

Pyramidal cells were identified using an Olympus BX51WI microscope mounted on a 

vibration isolation table. Recordings were made in ACSF containing (in mM): 120 

NaCl, 25 NaHCO3, 1.23 NaH2PO4, 3.3 KCl, 0.9 MgCl2, 2.0 CaCl2, and 10 dextrose, 

bubbled with 95% O2/5% CO2. ACSF was continuously perfused at a rate of 2.0 

mL/min and maintained at a temperature of 32°C. Picrotoxin (50 μM) was included in 

the recording ACSF to block GABAA receptor-mediated synaptic currents. Recording 

electrodes (thin-wall glass, WPI Instruments) were made using a PC-10 puller 

(Narishige International, Amityville, NY) to yield resistances between 3–6 MΩ. 

Electrodes were filled with (in mM): 135 KMeSO4, 12 NaCl, 0.5 EGTA, 10 HEPES, 2 

Mg-ATP, 0.3 Tris-GTP, 260–270 mOsm (pH 7.3). Access resistance was monitored 

throughout the experiments, and cells in which it varied more than 20% were 

excluded. Recordings were made using a MultiClamp 700B amplifier (Molecular 

Devices, Union City, CA), filtered at 2 kHz, digitized at 10 kHz with Instrutech ITC-18 

(HEKA Instruments, Bellmore, NY), and displayed and saved using AxographX 
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(Axograph, Sydney, Australia). A series of fixed current injections (20 pA increments 

from 0 to 240 pA) were used to elicit action potential firing and the number of spikes 

were counted at each current step. For CNO verification, we used a concentration of 

10μM CNO in recording ACSF as described above. First, we took a baseline measure 

using the series of fixed current injections. CNO was washed on for 5 minutes prior to 

recording and again, a series of fixed current injections were used to elicit action 

potential firing. CNO was washed off for 5 minutes and a baseline was recorded again.  

Data Analysis 

Linear Mixed Effect Models 

We built Linear Mixed Effects models (LME) to model the relationship between 

the duration of lever press n and n-back (n - 1 through n - 10) lever press durations. 

We included random intercept terms for mouse and day of training to account for the 

repeated structure of our data. To determine how far back a significant relationship 

existed between press n and any particular n-back press, we shuffled the order of a 

particular n-back (e.g., only n - 3) 1000 times and compared the shuffled distribution of 

beta coefficients to the actual value via permutation test. Of note, we are shuffling here 

within individual mouse/sessions, thus preserving the overall statistics of the data, and 

shuffling only the order in which a specific type of event occurred.  

n = β0 + βn-1n-1 + βn-2n-2 + … + βn-10n-10 + βt(t) + β%(%) + (1|M) + (1|D) + εi 

Where n is the current lever press duration, n - 1 through n - 10 are the 

previous 1 through 10 lever press durations and βx is the linear regression coefficient 
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for term x (β0  is the intercept term). We also included covariates of time in session (t) 

and the percentage of presses that met criteria (%). We included random intercept 

terms for both mouse (M) and day (D).  

Decoding 

We used a support vector machine (SVM) classifier trained on individual 

mouse/sessions to predict press durations using M2-DMS calcium activity data. We 

created four equal sample duration bins within each individual mouse/session - thus, 

chance performance was 25%. Next, we used several calcium activity measurements 

as predictors including the area under the curve, and the slope of the calcium signal 

from: -1s to 0s prior to press onset, during the press, 0s to +1s after press release, and 

from +2s to +5s after press release. We then trained the SVM classifier using Matlab’s 

fitcoec function, using additional arguments to standardize the calcium activity data 

and to specify a linear kernel function. We performed 10 k-fold cross validations on the 

model, subtracted the classification loss from 1, and multiplied by 100 to get the 

classification accuracy %. 

Quantification and Statistical Analysis 

All analyses were two-tailed with α = 0.05 as a threshold for significance. For 

analyzing coarse behavioral measurements (e.g., Total Lever Presses) Repeated 

Measures (RM) ANOVAs were used (with Greenhouse-Geisser corrections if 

preliminary analyses indicated different sample standard deviations), with Bonferroni 

corrections for post-hoc multiple comparisons. We used Mann-Whitney tests when 

preliminary tests indicated non-normal distributions. In our LME models, we used 
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permutation tests comparing actual β coefficient values to a distribution of 1000 order 

shuffled versions of the same variable, and thus the resolution of our permutation p-

values was p < 0.001. We excluded anomalous presses (>16s in duration) from all 

datasets. For group comparisons (e.g., AIR vs. CIE) of LME model coefficients, we 

used 2-way ANOVA, with follow-up post hoc corrected comparisons for individual n-

backs. Behavioral data was analyzed using Excel (Microsoft), Matlab (Mathworks), R 

(R Core Team) and the rmcorr package (Bakdash & Marusich, 2017), JASP, and 

Prism (Graphpad).  

Results 

Prior CIE impairs the use of recent experience to guide flexible behavior 

The same number of M/F C57BL/6J mice were exposed to 4 weeks of chronic 

intermittent ethanol exposure and withdrawal (CIE), or air vapor control (AIR) (Figure 

3.1A) (Becker & Hale, 1993; Becker & Lopez, 2004, 2006; Cazares et al., 2021; Lopez 

& Becker, 2005; Renteria et al., 2018). During protracted withdrawal (Heilig et al., 

2010), mice were trained to press and hold down a lever for at least a minimum 

duration in order to earn a food reward (Figure 3.1B). There were no cues or trials and 

reward was delivered when mice released the lever. In this fully self-initiated and self-

paced task, mice were left to rely on their prior experience to guide performance 

(Figure 3.1C). Thus, our paradigm allowed us to ask if and how prior CIE altered the 

use of recent experience supporting behavioral flexibility.  

We first assessed coarse measurements of behavior and found prior CIE 

exposure did not affect the number of lever-presses executed (Figure 3.1D) nor the 
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percentage of presses that met the criterion (Figure 3.1E). In both cases, there was 

only a main effect of training day, and no Air/CIE group differences. CIE also did not 

induce a sustained difference in the rate of lever pressing overall, or in the number, or 

rate of presses that met criteria (Figures 3.S1A-C). Further, the distribution of press 

durations on the final 800ms and final 1600ms day of training (Figure 3.1F) did not 

differ between Air and CIE mice, and all mice significantly shifted the distribution of 

their press durations based on the criterion duration. Collectively, this data suggests 

that Air and CIE mice were able to acquire and perform this task to relatively similar 

levels. However, Air and CIE mice could use different behavioral strategies to reach 

similar levels of performance (e.g. the relative degree of goal-directed/habitual control, 

or exploration/exploitation, both of which AUD is known to affect (Morris, Baek, et al., 

2016; Renteria et al., 2018, 2021)).  

One possibility is that Air and CIE mice could rely on prior experience to varying 

degrees. For instance, CIE may lead to mice making lever press durations that are 

more or less related to prior durations. To address this question, we built linear mixed 

effect models (LMEs) to predict the duration of each lever press (n) given the durations 

of prior lever presses (n - 1 through n - 10). In Figure 3.1G, we report the β coefficients 

of the individual n-back press covariates in our model. The data shows Air mice relied 

on the durations of their recent lever presses to inform their current press duration, 

with the contribution of such experience rapidly decaying across n-back presses. 

However, reliance on this recent experience was attenuated following CIE exposure, 

as the lever press durations in CIE-exposed were less related to the duration of the 

immediately prior lever press. Furthermore, LMEs built using individual session data 
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showed that only in Air mice did the magnitude of the n - 1 β coefficient positively 

correlate with rewarded performance (Figure 3.1H). That is, the more Air mice used 

duration information from their recent experience, the better they performed at the 

task. This was not present in CIE mice (Figure 3.1I). Collectively these results suggest 

that CIE impaired the ability for mice to use recent experience to guide subsequent 

lever presses and drive efficient performance, a hallmark of flexible behavior. 
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Figure 3.1. Prior CIE impairs the use of recent experience to guide flexible behavior. 
(A) CIE (Chronic Intermittent Ethanol) vapor exposure timeline. Training began 4 days 
(d) post final vapor exposure. (B) Hold down task schematic, mice had to press and 
hold down the lever for at least a minimum duration to earn food reward, without trials 
or cues. (C) Sample hold down session data, showing lever pressing durations across 
a single session for individual AIR and CIE mice. (D) Mean number of Total Lever 
Presses across days for all mice (n = 8 AIR, n = 8 CIE). 800ms indicates days with a 
duration criterion of >800ms, while 1600ms indicates days with a criterion of >1600ms. 
There was a main effect of training day during both 800ms (2-way RM ANOVA, (Day x 
Group): F5,70 = 6.94, p < 0.0001) and 1600ms training days (F5,70 = 9.45, p < 0.0001) 
but no group differences nor an interaction. (E) The % of lever presses that met criteria 
across days. Main effects of Day during both the 800ms (F5,70 = 8.12, p < 0.0001) and 
1600ms days (F5,70 = 9.45, p < 0.0001). (F) The distribution of lever press durations on 
the final (i.e., the 6th) 800ms and final 1600ms training days. A 3-way RM ANOVA 
(Duration Bin x Group x Criterion) revealed a main effect only of Duration Bin (F15,420 = 
74.6, p < 0.001), and a Duration Bin x Criterion interaction (F15,420  = 9.17, p < 0.001). 
(G) A linear mixed effect model predicting the duration of the current lever press (n) 
given the durations of prior lever presses (n-back). Here we show Beta (Ꞵ) coefficients 
for the individual n-back presses. A 2-way ANOVA (n-back x Group) revealed main 
effects of both n-back (F9,500960 = 18.6, p < 0.0001) and Group (F1,500960 = 26.4, p < 
0.0001), and an interaction (F9,500960= 8.56, p < 0.0001). Bonferroni-corrected post-hoc 
tests found a significant Group difference only for press n - 1 (t500960 = 8.76, p < 
0.0001). (H) Ꞵ coefficients for linear mixed effect models built using individual session 
data and correlated with the %Presses that Met Criteria in AIR mice. Shades show 
individual subject data across days. A repeated measures correlation revealed a 
significant relationship (RM r = 0.285, DF = 87, slope = 0.002, p = 0.0069). (I) As in 
(H), except for CIE mice, where there was no significant relationship between Ꞵ and 
%Presses Met (RM r = -0.038, DF = 87, slope = -0.0003 p = 0.72). Data points 

represent Mean ± SEM. n.s. = Not Significant. ** = p < 0.01, *** = p < 0.001, **** = p < 
0.0001. 
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Figure 3.S1. No sustained difference in rate of lever pressing between Groups. (A) 
Mean rate of total lever presses (presses/minute) across days of training. During 
800ms training, a 2-way RM ANOVA (Day x Group) revealed a main effect of day 
(F5,70 = 21.0, p < 0.0001), and a Day x Group interaction (F5,70 = 3.07, p = 0.015). No 
individual days differed in post hoc testing. Further, during 1600ms training, there was 
a main effect only of Day (F5,70 = 4.03, p = 0.0028). (B) Average number of Met Lever 
Presses (i.e., rewarded presses) across days. Main effect only of day, only during 
1600ms training (2-way RM ANOVA, (Day x Group): F5,70 = 5.92, p = 0.0001). (C) Rate 
of Met lever presses (per minute). There were no main effects or interactions during 
800ms training. During 1600ms training 2-way RM ANOVA (Day x Group) revealed a 
main effect of day (F5,70 = 13.5, p < 0.0001) and an interaction (F5,70 = 4.19, p = 
0.0022), though no individual days differed in post hoc testing. Collectively, we see 
only transient and inconsistent differences (increased rate in CIE in A, but decreased 
in C) in rate of responding between AIR and CIE mice. Data points are Mean ± SEM. 
800ms = days with a >800ms criterion, 1600ms = days with a >1600ms criterion. * = p 
< 0.05, ** = p < 0.01, **** = p < 0.0001. 
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Prior CIE increases the excitability of M2 projection neurons 

We next sought to investigate how prior CIE affected the intrinsic properties of 

M2 projection neurons, which have been implicated in flexible behavior (Morris, 

Kundu, et al., 2016; Schreiner & Gremel, 2018; Siniscalchi et al., 2016, 2019). We 

performed ex vivo slice electrophysiological recordings of M2 projection neurons 1-3 

weeks post CIE. Prior CIE significantly increased the excitability of M2 projection 

neurons (Figures 3.2A-B). Although we did not aim to examine the time course of 

effects, there was no obvious relationship between time from the last CIE exposure 

and excitability levels (Figure 3.S2A). There was a significant difference in input 

resistance (Figure 3.S1B-D), and no differences in resting membrane potential, first 

spike latency, threshold, afterhyperpolarization, amplitude, rise time, or half width 

(Table 3.S1). Thus, CIE seems to cause long-lasting increases in the intrinsic activity 

of M2 projection neurons.  
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Figure 3.2. Prior CIE increases the excitability of M2 projection neurons. (A) (left) 
schematic of M2 ex vivo electrophysiological recording site and (right) representative 
traces of action potential firing at 200 picoamps (pA). (B) Average number (#) of 
spikes plotted against the amount of injected current. AIR n = 9 cells, 4 mice; CIE n = 
10 cells, 7 mice. 2-way RM ANOVA (Group x Current), main effect of current (F12,204 = 
31.9, p < 0.0001) and an interaction (F12,204 = 2.30, p = 0.0091). mV = millivolts. Data 
represent Mean ± SEM. ** = p < 0.01. 
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Figure 3.S2. Vapor exposure induces long-lasting changes in M2 excitability and input 
resistance. (A) Average spikes at 240 pA (picoamps) plotted against days from final 
vapor exposure. There was no significant linear relationship in either AIR (slope = 
0.33, F = 0.77, p = 0.41), or CIE (slope = 0.12 F1,8 = 0.02, p = 0.90) cells. (B) Input 
resistance in Megaohms (MΩ). There was a significant increase in input resistance in 
CIE cells (unpaired t-test with Welch’s correction t12.3 = 2.35, p = 0.036). (C) Input 
resistance plotted against excitability at 240 pA. There was a significant linear 
relationship in both AIR (slope = 2.69, F = 15.1, p = 0.006, R2 = 0.68), and CIE (slope 
= 0.24, F = 5.97, p = 0.041, R2 = 0.43), but no difference in the slopes (F = 0.55) or 
intercepts (F = 1.75) between AIR/CIE. (D) Input Resistance plotted against days from 
final vapor exposure. No significant relationship in either AIR (slope = 1.1, F = 0.81, p 
= 0.40), or CIE (slope = -3.37, F = 0.29, p = 0.61). n.s. = Not Significant. * = p < 0.05, 
** = p < 0.01. 
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Prior CIE induces hyperactive calcium activity of M2-DMS projection neurons and 

uncouples activity and behavior 

To address if and how CIE affects M2-DMS activity, modulation, and function 

during flexible behavior, we used a dual virus cre-dependent strategy to express the 

fluorescent calcium indicator GCaMP6s only in M2-DMS projection neurons, and 

implanted optical ferrules centered on M2 prior to CIE exposure (Figure 3.3A). We 

then recorded population calcium activity of M2-DMS projection neurons in Air and CIE 

mice using in vivo fiber photometry during task performance. Peak analysis of the 

session-long calcium signal (Pribiag et al., 2021) showed that prior CIE led to a 

significant increase in overall calcium transients (Figures 3.3B-C).  

Prior CIE may also lead to alterations in the recruitment and/or modulation of 

calcium activity during task performance. We aligned calcium activity to the onset, 

duration, and offset of lever pressing. Figure 3.3D shows the varied modulation of 

calcium activity across lever pressing in a representative Air and CIE mouse that is 

significantly higher in the CIE-exposed mouse (assessed via running permutation 

tests, see Methods and (Jean-Richard-dit-Bressel et al., 2020)). We z-scored and 

averaged the calcium activity across all mice relative to a baseline period (-15s to -5s 

prior to press onset). Overall, CIE led to increased calcium activity throughout the 

entire press-aligned window (Figure 3.3E). We also alternatively analyzed this data 

using average traces per mouse (Figure 3.S3A), or calculating calcium activity as DF/F 

with a session-long mean to control for baseline periods which included prior lever 

presses (Figure 3.S3B). Both analyses yielded similar results. 
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The increased calcium activity in both Air and CIE mice just after press offset 

(Figure 3.3E, right) may reflect altered reward-related processing. Therefore, we 

segmented all lever presses based on whether they Met or Failed to meet the duration 

criteria. In both Air and CIE mice, the increased calcium activity after press offset was 

selective for Met presses (Figure 3.3F, right). There were also Met/Fail differences in 

calcium activity both before press onset and during action execution itself (Figure 

3.3F). Thus, M2-DMS activity is differentially modulated by press durations before, 

during, and after those durations occur, suggesting M2-DMS activity may predict and 

encode press durations. Further, the average difference between Met/Fail lever 

presses was larger in CIE mice than Air mice at all three timepoints (Figure 3.3G). This 

raises the hypothesis that CIE alters the relationship between M2-DMS activity and 

press duration. To directly investigate this, we trained a linear SVM decoder to predict 

lever press duration using calcium activity data with 10 k-fold cross validations. We 

found significant decoding accuracy (chance at 25%) of lever press duration from M2-

DMS activity, and this decoding accuracy significantly reduced in CIE relative to Air 

mice (Figure 3.3H). Collectively, these results suggest that CIE induced hyperactivity 

of M2-DMS projections neurons, which eroded the usual relationship between M2-

DMS activity and behavioral output. 
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Figure 3.3. Prior CIE induces hyperactive calcium activity of M2-DMS projection 
neurons and uncouples activity and behavior. (A) (top) Schematic of dual virus 
targeting of GCaMP6s to M2-DMS projection neurons to n = 6 AIR and n = 8 CIE 
exposed mice, and (below) representative spread and fiber placement. (B) 
Representative calcium activity traces showing calcium transient analysis. Calcium 
signals above the dashed line were subjected to peak analysis, and those identified as 
events are indicated with tick marks above. (C) Average calcium events (in Hertz) 
across a session in AIR and CIE mice. There was a significantly increased rate of 
events in CIE mice (Mann-Whitney test, U = 449, AIR n = 46 (sessions), CIE n = 61 
(sessions), p < 0.0001). (D) Representative calcium activity from sample mice showing 
calcium activity z-scored to a baseline period (-15s to -5s prior to press onset) aligned 
to the onset (left) duration (center) and offset (right) of lever pressing. Black bars 
indicate timepoints for which there is a significant AIR/CIE difference (Sig.) determined 
via permutation tests. (E) As in (D) except showing data from all mice collapsed 
together (lever presses n = 11,200 AIR, n = 14,792 CIE). (F) As in (E) except 
segmenting out lever presses based on whether they met the criterion (Met) or failed 
to do so (Fail) in both AIR and CIE mice. Here, significance markers indicate 
permutation tests comparing Met versus Fail activity within AIR (AIR-Met/Fail Sig.) and 
CIE (CIE-Met/Fail Sig.) mice. (G) The mean difference (Met - Fail) in the Met/Fail 
traces from (F). AIR and CIE mice differed at all three event windows (Mann-Whitney 
tests, Onset: U = 447, AIR/CIE n = 61 (samples, collected at 20 Hz for 3s), p < 0.0001. 
Duration: U = 72, AIR/CIE n = 20 (samples), p = 0.0003. Offset: U = 1303, AIR/CIE n = 
61 (samples), p = 0.0041). (H) Decoding accuracy using calcium activity to predict 
press duration quartile. Data points are accuracy from individual sessions, dotted line 
indicates chance performance (25%). AIR and CIE mice significantly differed in 
decoding accuracy (unpaired t-test, t105 = 3.19, p = 0.0019). Data in (D) and (G) 

represent Mean ± SEM, while data in (E-F) are Mean ± 99% bootstrapped confidence 
intervals. Sig. = Significant difference.  ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. 
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Figure 3.S3. Alternative calcium activity analyses still show hyperactive M2-DMS in 
CIE-exposed mice. (A) As in Figure 3E, calcium activity is aligned to press onset (left) 
duration (middle) and offset (right), only showing mean baseline z-scored values per 
individual mice (n = 6 AIR, n = 8 CIE), rather than collapsing across all mice (note 
intra-subject variance is lost in this measurement). 2-way RM ANOVAs (Group x Time 
point) reveal at onset: a main effect of Time point (F100,1200 = 15.2, p < 0.0001) and an 
interaction (F100,1200 = 1.56, p = 0.0006), during lever pressing: a main effect only of 
Group (F19,228 = 1.41, p = 0.046), and at offset: a main effect of Time point (F60,720 = 
4.07, p < 0.0001) and an interaction (F60,720 = 2.41, p < 0.0001). (B) As in Figure 3E, 
only using ΔF/F with a session-long mean rather than z-scoring calcium activity 
relative to a baseline window. Thus, calcium activity still differs between AIR and CIE-
exposed mice when using ΔF/F or mouse average measures. Black bars in (B) 
indicate significant Group differences assessed via running permutation test. Data are 
Mean ± SEM in (A), and Mean ± 99% Bootstrapped CI in (B). Sig. = Significant 
Difference. int = Significant Interaction. * = p < 0.05, *** = p < 0.001, **** = p < 0.0001. 
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Chemogenetic inhibition of hyperactive M2-DMS rescues behavioral flexibility 

CIE disrupted M2-DMS in vivo activity and behavioral flexibility, but it was 

unclear whether M2-DMS activity changes causally led to the observed deficit in 

behavioral flexibility. To examine this, we applied a chemogenetic approach to rescue 

M2-DMS hyperactivity resulting from CIE. We used a dual viral vector strategy to 

target expression of the cre-dependent inhibitory chemogenetic receptor hM4Di (H4) 

or the cre-dependent fluorophore tdTomato as a control (Ctl) to M2-DMS projection 

neurons in both AIR and CIE exposed mice (Figure 3.4A, Figure 3.S4A), giving four 

groups of comparison (AIR Ctl, AIR H4, CIE Ctl, and CIE H4). All mice received the 

H4-agonist CNO 30 minutes prior to every lever hold down session (Figure 3.4B). In a 

subset of mice, we verified that CNO application reduced the excitability of M2-DMS 

neurons only in H4-expressing mice via ex vivo slice electrophysiology (Figure 3.S4B).  

As in our other manipulations, there was little difference among groups in 

coarse measurements of behavior including Total Lever Presses (Figure 3.4C), 

%Presses Met Criteria (Figure 3.4D), and Lever Press Durations on the final training 

day (Figure 3.4E). The one exception was a significant Air/CIE group difference in 

%Presses Met Criteria during 1600ms training, where there was a significant Air/CIE 

difference, but not H4/Ctl difference, nor a significant interaction between these 

factors. Furthermore, there were no group differences in the rate of lever pressing, nor 

in the number or rate of met criteria lever presses (Figures 3.S4 C-E). Thus, neither 

CIE nor M2-DMS inhibition led to large changes in coarse behavior, but again - mice 

may reach largely similar levels of performance using different behavioral strategies.  



159 
 

We once more built LMEs to determine if mice were using their recent 

experience to guide behavior (Figure 3.4F). We found a significant interaction between 

Vapor Exposure and H4/Ctl group on the magnitude of the n - 1 β coefficient (no main 

effects). Post-hoc comparisons showed a replication of our initial finding, with Air Ctl 

mice having a significantly larger magnitude n - 1 β coefficient relative to CIE Ctl mice. 

Further, H4 expression in Air mice led to a significantly reduced magnitude n - 1 β 

coefficient relative to that observed in Air Ctl mice, showing M2-DMS activity 

contributes to the use of recent experience. In contrast, comparing CIE H4 mice to CIE 

Ctl mice (i.e., the treatment group), we found an increase in the magnitude of the n - 1 

β coefficient in CIE H4 mice. Indeed, the n - 1 β coefficient magnitude in CIE H4 mice 

did not differ that of Air Ctl animals. Thus, by reducing CIE-induced M2-DMS 

hyperactivity, we rescued the use of recent experience (recently executed durations) 

to flexibly guide behavior. 

 

 

 

 

 

 

 

 

 



160 
 

Figure 3.4. Chemogenetic inhibition of hyperactive M2-DMS rescues behavioral 
flexibility. (A) Schematic of chemogenetic inhibition of M2-projection neurons (left) and 
representative viral spread (right). (B) Timeline of experiments. 1 week (w) after 
surgery, mice underwent 4 rounds of vapor exposure. 4 days (d) after exposure, mice 
began pretraining, and then were introduced to the hold down task with a criterion of 
>800ms for 6 days, followed by >1600ms for 6 days. Each day of hold down training, 
all mice were given intraperitoneal (i.p.) injections of the H4-agonist Clozapine-N-
Oxide (CNO, 10 mg/ml) 30 minutes prior to the start of the session. (C) Mean total 
lever presses across days of training (AIR Ctl n = 6, AIR H4 n = 8, CIE Ctl n = 6, CIE 
H4 n = 7). Main effect only of day (3-way RM ANOVA, Vapor Group x DREADD Group 
x Day) during both 800ms training (F5,115 = 73.4, p < 0.001) and 1600ms days (F5,115 = 
22.8, p < 0.001). (D) Average % of presses that met criteria across days of training. 3-
way RM ANOVA (Vapor Group x DREADD Group x Day) showed only a main effect of 
day during 800ms training (F5,115 = 99.2, p < 0.001). During the 1600ms training there 
was a main effect of day (F5,115 = 14.0, p < 0.001), as well as Vapor Group (F1,23 = 
4.33, p = 0.049), but there was no main effect of DREADD Group, nor an interaction 
between these two factors. (E) Distribution of lever press durations on the final day of 
1600ms training, with a 3-way RM ANOVA (Vapor Group x DREADD Group x Duration 
Bin) showing a main effect only of Duration Bin (F15,345 = 43.2, p < 0.001). Dashed line 
indicates the 1600ms criterion. (F) Magnitude of the n - 1 Beta (Ꞵ) coefficient from a 
linear mixed effect model using n-back durations to predict n press duration. A 2-way 
ANOVA (Vapor Group x DREADD Group) found no main effects, but did find a 
significant interaction (F1,85311 = 31.2, p < 0.0001). Bonferroni-corrected post hoc 
testing revealed that there were significant differences between: AIR Ctl and CIE Ctl 
(t85311 = 3.85, p = 0.0007), AIR Ctl and AIR H4 (t85311 = 3.77, p = 0.0010), CIE Ctl and 
CIE H4 (t85311 = 4.14, p = 0.0002), and between AIR H4 and CIE H4 (t85311 = 4.13, p = 
0.0002). Data are Mean ± SEM. * = p < 0.05, *** = p < 0.001, **** = p < 0.0001. 
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Figure 3.S4. Viral spread, DREADD verification, and rate of lever pressing for 
chemogenetic inhibition experiment. (A) Average (dark blue) and maximal (light blue) 
spread of H4 expression, assessed via mCherry fluorescent tag. Distances (+1.5, 
+1.0, and +0.5mm) are anterior relative to Bregma. (B) (left) sample trace of a cell 
expressing the inhibitory DREADD receptor (H4) at Baseline and after washing on the 
H4-agonist Clozapine-N-Oxide (CNO, 10uM). pA = Picoamps. mV = Milivolts. s = 
seconds. (right) %Change in spiking as a result of CNO relative to baseline at 300 pA 
in 1 Control (Ctl) cell and 1 H4 cell (cells are from 2 AIR exposed mice). Data 
represent 3 replicates. An unpaired t-test revealed a significant Group difference (t4 = 
4.52, p = 0.011). (C) Mean rate of total lever presses per minute. 3-way RM ANOVAs 
(Day x Vapor Group x DREADD Group) revealed a main effect only of Day during both 
800ms (F5,115 = 42.2, p < 0.001) and 1600ms training (F5,115 = 10.4, p < 0.001). (D) 
Mean number of Met Criteria Presses across training. There were no main effects of 
Day, Vapor Group, or DREADD Group. (E) Mean rate of Met Criteria Presses (per 
minute) across training. 3-way RM ANOVA (Day x Vapor Group x DREADD Group) 
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revealed a main effect only of Day, only during 800ms training (F5,115 = 8.41, p < 
0.001). Data are Mean ± SEM. * = p < 0.05, *** = p < 0.001. 

 

Discussion 

Premotor corticostriatal regions in humans and rodents are thought to support 

behavioral flexibility (Morris, Kundu, et al., 2016), and their disruption is linked to 

compulsive disorders (V. L. Corbit et al., 2019; Gomes et al., 2012; Hawken et al., 

2016; Mantovani et al., 2013). While there have been reports of alterations to premotor 

circuits in AUD (Claus et al., 2011; Duka et al., 2011; Morris et al., 2018; Sjoerds et al., 

2014), there has been a dearth of insight into the precise neural mechanisms and the 

behavioral consequences of such disruption. Here we show that prior chronic alcohol 

exposure reduces the use of recent experience to flexibly guide behavior due to an 

alcohol-induced increase in the activity of M2 and M2-DMS circuits. Thus our findings 

reveal one specific circuit through which chronic alcohol can disrupt behavioral 

flexibility and support the targeting of Pre-SMA/SMA to treat altered executive function 

in AUD.  

Substantial evidence suggests that AUD can disrupt behavioral flexibility (Claus 

et al., 2011; Duka et al., 2011; Scaife & Duka, 2009; Shnitko et al., 2020; Sjoerds et 

al., 2014) and goal-directed control (Barker et al., 2015; L. H. Corbit & Janak, 2016; 

Dickinson et al., 2002; Everitt & Robbins, 2005; Renteria et al., 2018; Sjoerds et al., 

2013). However, a host of different computational mechanisms support flexibility and 

goal-directed decision-making (Schreiner et al., 2020; Shnitko et al., 2020). By using a 

continuous task, we were able to show that one specific aspect of flexibility - the use of 

recent experience to guide behavior - was disrupted by AUD and controlled by M2-
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DMS projection neurons. Our results have important implications for AUD; we saw a 

disruption in experience-based computations for a non-drug reward in protracted 

withdrawal. This suggests long-lasting neuroadaptations in M2 arising in response to 

chronic alcohol exposure and withdrawal, as evidenced by increased calcium activity, 

excitability, and input resistance. These long-lasting changes may contribute to deficits 

in behavioral flexibility observed in AUD, including impulsivity and impaired response 

inhibition (Claus et al., 2011; Duka et al., 2011; Sjoerds et al., 2014). Impaired 

sensitivity to recent experience was causally tied to M2 and M2-DMS activity. This 

supports and extends previous correlative evidence in humans showing AUD is 

associated with disruption to both premotor regions and flexibility (Claus et al., 2011; 

Duka et al., 2011; Sjoerds et al., 2014). We report increases in M2-DMS activity, while 

prior studies of premotor and prefrontal cortex function in humans with AUD variously 

report increases and decreases in activity (Claus et al., 2011; Duka et al., 2011; Morris 

et al., 2018; Sjoerds et al., 2014). This highlights the need to examine activity in a 

nuanced manner in relation to the computations being performed in order to 

understand the functional consequences. This is likely to be especially important for 

precise targeting of novel region-specific treatments. 

To our knowledge, this is the first study investigating the function of M2 neurons 

that project to dorsal striatum in the context of chronic alcohol. Hypotheses related to 

habitual control in AUD (Gremel & Lovinger, 2017; Lovinger & Gremel, 2021) have 

suggested increased motor and sensory input into the dorsal striatum may contribute 

to habit-related phenotypes. The present findings provide some support for this; 

chronic alcohol induced hyperactivity of M2-DMS calcium activity in vivo during task 
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performance and disrupted behavioral flexibility. However, we found weaker decoding 

of press durations from this hyperactivity and chemogenetically inhibiting this 

hyperactivity restored the usual activity-duration relationship. One of the most 

intriguing findings of the present study was that both increases (from prior CIE) and 

decreases (from chemogenetic inhibition) in M2-DMS activity led to similar behavioral 

alterations. While the present work did not examine whether in vivo hyperactivity 

translated into increased M2-DMS transmission, this does suggest that the potential 

increased drive from M2-DMS following CIE does not directly support the observed 

phenotype, since reduced drive also leads to a similar phenotype. Rather, there may 

be an optimal level, amount, or timing of M2-DMS activity, such that any shift may 

erode the fidelity of the activity-duration relationship. This adds to a growing body of 

literature suggesting that the patterning of neural activity is decisive and that there is 

not a simple linear relationship between brain activity and behavioral output 

(Tecuapetla et al., 2016).  

How might prior chronic alcohol produce hyperactive M2-DMS? In part, this 

may reflect alterations within M2 itself, as we found that chronic alcohol altered the 

intrinsic properties of M2 projection neurons. Chronic alcohol may also affect local 

circuitry transmission and/or input into M2. One interesting candidate is the 

orbitofrontal cortex, as it is affected by alcohol (Moorman, 2018; Shields & Gremel, 

2020) and its projection to M2 is implicated in behavioral flexibility (Johnson et al., 

2016; Schreiner & Gremel, 2018). A further question is whether there are synapse-

specific alterations of M2 projections onto dorsal striatum neurons (Renteria et al., 

2018, 2021; Rothwell et al., 2015). Rodent models have implicated these M2-DMS 
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projections in mediating compulsivity in OCD (V. L. Corbit et al., 2019), as well as 

motor and working memory deficits in Parkinson’s disease (Magno et al., 2019). Given 

the above findings, how chronic alcohol alters M2 recruitment of dorsal striatal circuitry 

for behavioral control remains to be investigated.  

The human homologues of M2 - Pre-SMA/SMA - are dorsally located and 

accessible to region-specific treatments such as rTMS. Indeed, such treatments have 

shown promise in reducing compulsivity and improving behavioral flexibility in 

Obsessive Compulsive Disorder (Gomes et al., 2012; Hawken et al., 2016; Mantovani 

et al., 2013). These prior works demonstrate a preclinical to clinical translation for 

premotor circuits involved in psychiatric disease, and suggest that Pre-SMA/SMA may 

be fruitful therapeutic targets for the treatment of AUD in human patients. Here, we 

provide preclinical evidence supporting this potential treatment avenue, as well as 

mechanistic insight into the involved behavioral and neural controllers of behavioral 

flexibility that are disrupted by AUD.  
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CONCLUSION 

Three sets of studies examined how individual subjective experience affected 

behavior and the associated neural mechanisms. In Chapter 1, the amount of 

experience individual mice had with a rule predicted subsequent exploitation of that 

rule, with OFC-M2 projection neurons involved in this experience-based exploitation. 

In Chapter 2, results suggested that a diverse array of experiential information was 

represented in and used by M2 and its DMS projections to guide behavior. In Chapter 

3, prior chronic alcohol impaired behavioral flexibility specifically through its induction 

of hyperactive M2-DMS. Collectively, these studies make the larger point that 

subjective experience is not an annoyance to be factored out. Rather, it makes large 

contributions both to behavior and its neural control, and may help to explain and 

understand deficits in decision-making associated with psychiatric disease. 

What do we miss by neglecting subjective experience? 

Traditional approaches in neurobiological research that ignore subjective 

experience and average across mice and across decisions may leave us with a 

blinkered view of what is controlling behavior. Even if one is primarily interested in 

understanding, say, perception, it may still be difficult to divorce this from subjective 

experience given the existence of stimuli-based history-dependencies (e.g., Adam & 
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Serences, 2021). Indeed, different environmental interactions may also drive 

differences in brain structure and function in genetically identical animals (Freund et 

al., 2013), and in human twins (Gao et al., 2014), suggesting that averaging discrete 

variables across subjects may obscure differences in neural circuit recruitment. 

While experimenters may have some idea of what subjects “should” do, use, or 

pay attention to their subjects of course do not. This presupposition of what subjects 

ought to do is revealed in the language used to describe history dependencies: 

“biases”, “lapses”, or the use of “irrelevant” information (e.g., Busse et al., 2011). 

Rather than asserting that subjects are making suboptimal decisions (optimality is truly 

in the eye of the beholder), careful behavioral analyses can reveal experience-based 

determinants of decision-making (e.g., Lak et al., 2020; Pisupati et al., 2021). By 

incorporating subjective experience in Chapters 1-3, I show that neither every mouse, 

nor every decision made by an individual mouse, is the same. If I had taken only 

traditional approaches of data analysis, averaging across mice and computing 

between group differences of measures such as accuracy, I would have been left with 

largely null results. In Chapter 1, I would have seen that temporal uncertainty during 

learning had no effect on the degree of explore/exploit, and missed that individual 

experience predicted subsequent exploitation. This would have also made it difficult to 
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make sense of reduced exploitation following OFC-M2 inhibition. In Chapter 2, I would 

have been largely at a loss to explain how mice performed the task, and ignorant of 

the many different aspects of experience used to guide performance. Furthermore, I 

would have been unable to see that prior reward did not dramatically affect 

subsequent strategy (i.e., no win-stay/lose-shift). This result challenges the prevailing 

dogma arising from traditional binary choice tasks, and highlights the utility of 

broadening our investigative techniques. In Chapters 2-3, given the lack of coarse 

behavioral differences, I would have concluded that M2, M2-DMS, and prior chronic 

alcohol all had little to no role to play in the behavior. Instead, by designing tasks that 

allowed for the modeling of how subjective experience contributed, I was able to show 

data to suggest that rodent premotor circuits integrated diverse sources of experiential 

information to guide flexible behavior, and that this was specifically disrupted by 

chronic alcohol.  

From Pictures to Movies 

Though they certainly provide value, 2-dimensional snapshots of the brain-

behavior relationship may miss a crucial dimension; how has the relationship evolved 

across time and been influenced by subjective experience? Although there is a rich 

field of study targeting history-dependencies (e.g., Busse et al., 2011; Hattori et al., 
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2019; Lak et al., 2020; Pinto et al., 2018; Pisupati et al., 2021; Siniscalchi et al., 2016, 

2019), most studies still use quite constrained tasks. For instance, many involve 

perceptual decision-making directed towards discrete, binary options (go/no-go, 

respond left/right). These may not be the ideal approaches given that, as mentioned, 

use of experience is not required for performance. Indeed, that it oftentimes takes 

rodents and primates weeks or months of training to achieve a modicum of 

performance on perceptual decision-making tasks suggests that this is not a task they 

are well-adapted to solve, perhaps in part because they need to learn to ignore their 

experience in favor of attending only to the current stimuli. Such tasks may also 

introduce conflict between prior and new learning through the need for involved 

shaping procedures, and prior experience can affect subsequent learning/performance 

and the involved neural circuitry (Gire et al., 2016; Jacob et al., 2021; Sharpe et al., 

2021). In contrast, many animals reached maximal performance in the lever hold down 

task after only a few days of training in Chapters 2-3. This suggests that researchers, 

in addition to examining subjective experience in existing tasks, ought to design and 

tweak tasks with the consideration that animals might be strongly adapted to use this 

sort of information. This is analogous to the notion that researchers should consider 

the “umwelt” or the unique perceptual world of an organism (Von Uexküll, 1934) when 

investigating animal perception (Caves et al., 2019). 
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The natural world is not chopped up into discrete trials or bins; one moment 

flows irrevocably into the next. Thus, though useful for analyses, it may be problematic 

to truncate tasks into trials and bins and assume that no relevant computations occur 

during intertrial periods. Consistent, static cues delineating discrete choices to be 

made or withheld may also be relatively rare in the non-stationary natural world, and 

there is a risk that the use of such cues could lead to elicited behavior. This is 

particularly noteworthy since voluntary and elicited behaviors can recruit distinct neural 

circuits, including primate Pre-SMA/SMA which is recruited in voluntary, but not cued 

movement (Okano & Tanji, 1987; Thaler et al., 1995). The all-or-nothing nature of 

discrete variables may also make it difficult to understand how experience alters 

behavior in a more continuous fashion (e.g., alterations in action execution or timing). 

Thus, while we may wish to study how some specific process or computation is 

implemented in the brain, this implementation may be context and experience-

dependent (Bouton & Balleine, 2019; Jacob et al., 2021; Sharpe et al., 2021).  

A series of recent studies have reported remarkably widespread encoding of 

sensation, movement, and decision-variables in the brain (Allen et al., 2017, 2019; 

Musall et al., 2019; Peters et al., 2021; Pinto et al., 2019; Steinmetz et al., 2019). This 

has sparked a number of interpretations (e.g., distributed motor commands, re-
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afferents, predictive processing (Kaplan & Zimmer, 2020)). However, by averaging 

across discrete decisions and animals without regard to subjective experience, these 

approaches may essentially provide us with a 2-dimensional snapshot of the brain-

behavior relationship. Based purely on such studies, it may be difficult to say if/how 

any neural circuit uniquely contributes to neural computation (including M2, which is 

one of the many regions identified in the above studies). Given that the perceptual 

decision-making tasks used in these studies show history dependencies (Busse et al., 

2011; Lak et al., 2020; Pinto et al., 2018), this ought to be reflected in the brain. In fact, 

widefield calcium recordings have revealed that many dorsal cortical regions appear to 

be modulated by history (Hattori et al., 2019). If we ignore the different behavioral 

determinants of individual decisions in individual animals, we essentially neglect an 

entire dimension of data; a dimension likely to have extreme relevance for adaptive 

behavior and human disease.  

Subjective experience in psychiatric disease 

Psychiatric disease research could benefit from a renewed focus on subjective 

experience. Human disease exists in a fully open, continuously evolving world, where 

experiential effects are likely to play a role. Indeed, the pattern of drug consumption 

can prove pivotal in the etiology of a substance use disorder (Allain et al., 2015). Thus, 



182 
 

modeling the behavioral controllers of decisions concerning “when, how, and how 

much” may be informative. Additionally, there has been a drive to categorize disrupted 

decision-making in psychiatric disorders, including the concepts of behavioral 

inflexibility, impulsivity, compulsivity, and habits (Everitt & Robbins, 2005, 2016; Gillan 

et al., 2011; Graybiel & Rauch, 2000; Winstanley et al., 2010). While these are useful 

concepts (especially in diagnosis), each of them is supported by a plethora of different 

computations. Investigation of how specific aspects of subjective experience are 

affected in psychiatric disease may be essential for mechanistic insight to inform novel 

treatment development, especially since these different computations are supported 

by different neural mechanisms (Everitt & Robbins, 2005, 2016; Lerner, 2020; Yin & 

Knowlton, 2006). Chapter 3 shows the possible utility of this approach, as results 

suggest that prior chronic alcohol specifically reduces sensitivity to recent experience, 

and does so via long-lasting neuroadaptations that cause hyperactivity in M2-DMS 

projection neurons. This may provide a mechanistic explanation for previously 

observed deficits in behavioral flexibility associated with AUD (Claus et al., 2011; Duka 

et al., 2011; Scaife & Duka, 2009; Shnitko et al., 2020; Sjoerds et al., 2014), and 

suggests human premotor regions as a novel target for AUD treatment.  

How does M2 contribute to experience-based decision-making? 
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Chapters 1-3 show that, at least in the case of M2, subjective experience is a 

powerful driver of neural circuit activity and recruitment. While M2 has been proposed 

to be involved in sensory-based decision-making (Barthas & Kwan, 2017), the present, 

as well as prior works (Hattori et al., 2019; Murakami et al., 2017; Siniscalchi et al., 

2016, 2019; Sul et al., 2011), suggest a broader role for M2 in using subjective 

experience - effectively integrating perceptual, experiential, and internal information - 

to guide decision-making and develop experience-based motor plans. 

Given this fairly broad hypothesis, it is important to note what M2 is not needed 

for. As we saw in Chapters 1-3, M2 lesion or inhibition generally had no obvious effect 

on the acquisition of coarse behavioral measures, consistent with prior literature 

(Gremel & Costa, 2013). While M2 seems to be needed for the integration of 

subjective experience to modify behavior, not all behavior necessarily needs this 

integration and/or fine-grained modification. Pavlovian or habitual learning are 

sufficient to acquire many behaviors (Yin and Knowlton, 2006). This highlights the 

problem with treating decisions as interchangeable, since careful investigation is 

required to understand the behavioral controllers of decision-making (Balleine, 2019). 

While prior works suggest that habitual strategies may control behavior with M2 offline 

(Gremel & Costa, 2013; Sul et al., 2011), Chapter 2 reveals a specific deficit that may 
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be responsible for habitual control; an inability to integrate different aspects of 

experience to appropriately adapt behavior.  

How does M2 integrate subjective experience? Separate populations within M2 

itself have the capability to provide both the input and output of an integrator 

(Murakami et al., 2014). On the other hand, M2 likely also receives important sensory, 

associative, and historical information from other neural circuits (Reep et al., 1987, 

1990; Zingg et al., 2014). Chapter 1 suggests OFC-M2 projections are one such 

circuit, serving as a crucial mediator of rule learning to control the relative balance of 

exploit (i.e., experience-based) versus explore decisions. Although I have argued that 

M2 is involved in using subjective experience, given the behavioral relevance of 

subjective experience, it is unlikely to be the only such neural circuit. For instance, 

retrosplenial cortex (RSC) also represents historical information, and in fact, relative to 

M2 its activity can more accurately decode historical information (Hattori et al., 2019). 

M2 and RSC cortex are reciprocally connected (Yamawaki et al., 2016), though it is 

unknown what role (if any) these projections play. It may be that RSC-M2 projections 

convey information about the history of rewarded actions, and this is integrated with 

other information sources (e.g., posterior parietal cortex (Hwang et al., 2021)) to plan, 

select, or modify actions based on experience.  
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After integrating experiential information, M2 may convey these experience-

based motor plans to downstream structures such as dorsal striatum. In Chapters 2-3, 

M2-DMS projections were specifically needed to implement a recent experience-based 

strategy. This also helps to explain the role of M2 (Yin, 2009) and M2-dorsal striatal 

projections in sequence learning (Rothwell et al., 2015), as proper sequence execution 

requires that animals respond appropriately based on recent experience (e.g., after 

action A make action B). Of particular note, in Chapters 2-3 pre-training lesions, 

chemogenetic inhibition, and optogenetic inhibition all induced similar effects, 

suggesting that M2-DMS plays an instructive role, i.e., it provides 

information/computations not otherwise available (Otchy et al., 2015). Additionally, this 

instructive role seems to be restricted to during performance itself (Chapter 2), rather 

than before or after. This is somewhat suggestive of a role for M2-DMS as a 

comparator – comparing current actions with prior ones – as has been hypothesized to 

occur in premotor regions in avian vocal learning (Mooney, 2009). This also sheds 

some light on the fact that, while M2 is not needed to acquire simple lever press 

behaviors, it is required for learning some complex motor skills (Cao et al., 2015; 

Kawai et al., 2015; Makino et al., 2017), where such a comparator process is likely to 

be essential. If M2-DMS is functioning as a comparator, any disruption to the fidelity of 

the comparison should affect performance. This is supported by one of the more 
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intriguing results of Chapters 2-3; increases (prior alcohol), decreases (chemogenetic 

or optogenetic inhibition), and disruptions (lesion) in M2-DMS activity all led to similar 

behavioral deficits – namely, a reduced sensitivity to recent experience. This suggests 

that there is an optimal level or pattern of M2-DMS activity such that increases or 

decreases (or lesion) impairs the faithfulness of M2’s representation/integration of prior 

experience, the comparison function itself, or communication to downstream regions. 

However, at the moment such a role remains speculative. Future work – particularly at 

the level of single cells – would be invaluable to determine if M2/M2-DMS does 

function as a comparator. Additionally, though some work has been done (Emmons et 

al., 2017; Rothwell et al., 2015; Vargo and Marshall, 1995), examination of the 

downstream consequences of changes in M2 activity would also be of interest, 

particularly in disease states like AUD (Chapter 3), OCD (Corbit et al., 2019), or 

Parkinson’s Disease (Magno et al., 2019).  

Conclusion 

Though there is a clear trade-off between relatively unconstrained/naturalistic 

versus controlled laboratory approaches (Juavinett et al., 2018), I believe we have 

drifted somewhat too far in the direction of control, and join others in calling for a 

renewed focus on behavior (Gomez-Marin et al., 2014; Gomez-Marin & Ghazanfar, 
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2019; Krakauer et al., 2017; Schreiner et al., 2021; Yoo et al., 2021). We need not shift 

too greatly; in this dissertation, just by using relatively unconstrained tasks without 

trials, cues, restraint, or discrete choices, I found data to suggest that mice can use a 

wealth of individually experienced information, including internal state, time, and 

checking behavior to guide their decision-making. Subjective experience powerfully 

affected the activity in, and was controlled by, premotor corticostriatal circuits. These 

premotor circuits integrated diverse experiential sources to bias strategy-level 

decisions, and this computation was specifically impacted by prior chronic alcohol to 

impair behavioral flexibility.  

Greater investigation of subjective experience may prove to be a generally 

useful approach. Although most psychological and neurobiological investigations do 

not seek to model how these aspects of subjective experience are affecting their data, 

they likely are. Ironically, by constraining and limiting our investigations to increase 

control, specificity, and replicability, we may have occluded our ability to reveal 

fundamental and generalizable mechanisms.  

Heinrich Schliemann was a 19th century archaeologist famous for his 

excavation of the ancient city of Troy. Although Schliemann claimed to have found the 

Troy of Homer’s The Iliad, as well as “King Priam’s Treasure”, subsequent analysis 
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revealed that Schliemann’s Troy and “Priam’s Treasure” were much too old (Easton, 

1998). Unfortunately, Schliemann‘s hasty digging and single-minded pursuit of 

Homer’s Troy not only neglected important contextual details, it also significantly 

damaged the more superficial layers, which were actually the ruins of Troy. Looking at 

the current neurobiological focus on constraining behavior to identify specific task-

related variables, I am left wondering; what treasures are we misidentifying – or 

missing entirely?  

 

 

 

 

 

 

 

 

 

 



189 
 

References 

Adam, K. C. S., & Serences, J. T. (2021). History modulates early sensory processing 
of salient distractors. Journal of Neuroscience. 
https://doi.org/10.1523/JNEUROSCI.3099-20.2021 

Allain, F., Minogianis, E.-A., Roberts, D. C. S., & Samaha, A.-N. (2015). How fast and 
how often: The pharmacokinetics of drug use are decisive in addiction. 
Neuroscience & Biobehavioral Reviews, 56, 166–179. 
https://doi.org/10.1016/j.neubiorev.2015.06.012 

Allen, W. E., Chen, M. Z., Pichamoorthy, N., Tien, R. H., Pachitariu, M., Luo, L., & 
Deisseroth, K. (2019). Thirst regulates motivated behavior through modulation 
of brainwide neural population dynamics. Science, eaav3932. 
https://doi.org/10.1126/science.aav3932 

Allen, W. E., Kauvar, I. V., Chen, M. Z., Richman, E. B., Yang, S. J., Chan, K., 
Gradinaru, V., Deverman, B. E., Luo, L., & Deisseroth, K. (2017). Global 
Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse 
Neocortex. Neuron, 94(4), 891-907.e6. 
https://doi.org/10.1016/j.neuron.2017.04.017 

Balleine, B. W. (2019). The Meaning of Behavior: Discriminating Reflex and Volition in 
the Brain. Neuron, 104(1), 47–62. https://doi.org/10.1016/j.neuron.2019.09.024 

Barthas, F., & Kwan, A. C. (2017). Secondary Motor Cortex: Where ‘Sensory’ Meets 
‘Motor’ in the Rodent Frontal Cortex. Trends in Neurosciences, 40(3), 181–193. 
https://doi.org/10.1016/j.tins.2016.11.006 

Bouton, M. E., & Balleine, B. W. (2019). Prediction and control of operant behavior: 
What you see is not all there is. Behavior Analysis: Research and Practice, 
19(2), 202–212. https://doi.org/10.1037/bar0000108 

Busse, L., Ayaz, A., Dhruv, N. T., Katzner, S., Saleem, A. B., Schölvinck, M. L., 
Zaharia, A. D., & Carandini, M. (2011). The Detection of Visual Contrast in the 
Behaving Mouse. The Journal of Neuroscience, 31(31), 11351–11361. 
https://doi.org/10.1523/JNEUROSCI.6689-10.2011 

Cao, V. Y., Ye, Y., Mastwal, S., Ren, M., Coon, M., Liu, Q., Costa, R. M., & Wang, K. 
H. (2015). Motor Learning Consolidates Arc-Expressing Neuronal Ensembles in 
Secondary Motor Cortex. Neuron, 86(6), 1385–1392. 
https://doi.org/10.1016/j.neuron.2015.05.022 

Caves, E. M., Nowicki, S., & Johnsen, S. (2019). Von Uexküll Revisited: Addressing 
Human Biases in the Study of Animal Perception. Integrative and Comparative 
Biology, 59(6), 1451–1462. https://doi.org/10.1093/icb/icz073 



190 
 

Claus, E. D., Kiehl, K. A., & Hutchison, K. E. (2011). Neural and Behavioral 
Mechanisms of Impulsive Choice in Alcohol Use Disorder. Alcoholism, Clinical 
and Experimental Research, 35(7), 1209–1219. https://doi.org/10.1111/j.1530-
0277.2011.01455.x 

Corbit, V. L., Manning, E. E., Gittis, A. H., & Ahmari, S. E. (2019). Strengthened Inputs 
from Secondary Motor Cortex to Striatum in a Mouse Model of Compulsive 
Behavior. Journal of Neuroscience, 39(15), 2965–2975. 
https://doi.org/10.1523/JNEUROSCI.1728-18.2018 

Duka, T., Trick, L., Nikolaou, K., Gray, M. A., Kempton, M. J., Williams, H., Williams, S. 
C. R., Critchley, H. D., & Stephens, D. N. (2011). Unique Brain Areas 
Associated with Abstinence Control Are Damaged in Multiply Detoxified 
Alcoholics. Biological Psychiatry, 70(6), 545–552. 
https://doi.org/10.1016/j.biopsych.2011.04.006 

Easton, D. F. (1998). Heinrich Schliemann: Hero or Fraud? The Classical World, 
91(5), 335–343. https://doi.org/10.2307/4352102 

Emmons, E. B., Corte, B. J. D., Kim, Y., Parker, K. L., Matell, M. S., & Narayanan, N. 
S.  (2017). Rodent Medial Frontal Control of Temporal Processing in the 
Dorsomedial Striatum. Journal of Neuroscience, 37(36), 8718–8733. 
https://doi.org/10.1523/JNEUROSCI.1376-17.2017 

Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug 
addiction: From actions to habits to compulsion. Nature Neuroscience, 8(11), 
1481–1489. https://doi.org/10.1038/nn1579 

Everitt, B. J., & Robbins, T. W. (2016). Drug Addiction: Updating Actions to Habits to 
Compulsions Ten Years On. Annual Review of Psychology, 67(1), 23–50. 
https://doi.org/10.1146/annurev-psych-122414-033457 

Freund, J., Brandmaier, A. M., Lewejohann, L., Kirste, I., Kritzler, M., Krüger, A., 
Sachser, N., Lindenberger, U., & Kempermann, G. (2013). Emergence of 
Individuality in Genetically Identical Mice. Science, 340(6133), 756–759. 
https://doi.org/10.1126/science.1235294 

Gao, W., Elton, A., Zhu, H., Alcauter, S., Smith, J. K., Gilmore, J. H., & Lin, W. (2014). 
Intersubject Variability of and Genetic Effects on the Brain’s Functional 
Connectivity during Infancy. Journal of Neuroscience, 34(34), 11288–11296. 
https://doi.org/10.1523/JNEUROSCI.5072-13.2014 

Gillan, C. M., Papmeyer, M., Morein-Zamir, S., Sahakian, B. J., Fineberg, N. A., 
Robbins, T. W., & de Wit, S. (2011). Disruption in the Balance Between Goal-
Directed Behavior and Habit Learning in Obsessive-Compulsive Disorder. The 
American Journal of Psychiatry, 168(7), 718–726. 
https://doi.org/10.1176/appi.ajp.2011.10071062 



191 
 

Gire, D. H., Kapoor, V., Arrighi-Allisan, A., Seminara, A., & Murthy, V. N. (2016). Mice 
Develop Efficient Strategies for Foraging and Navigation Using Complex 
Natural Stimuli. Current Biology, 26(10), 1261–1273. 
https://doi.org/10.1016/j.cub.2016.03.040 

Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M., & Mainen, Z. F. (2014). Big 
behavioral data: Psychology, ethology and the foundations of neuroscience. 
Nature Neuroscience, 17(11), 1455–1462. https://doi.org/10.1038/nn.3812 

Gomez-Marin, A., & Ghazanfar, A. A. (2019). The Life of Behavior. Neuron, 104(1), 
25-36. https://doi.org/10.1016/j.neuron.2019.09.017 

Graybiel, A. M., & Rauch, S. L. (2000). Toward a Neurobiology of Obsessive-
Compulsive Disorder. Neuron, 28(2), 343–347. https://doi.org/10.1016/S0896-
6273(00)00113-6 

Gremel, C. M., & Costa, R. M. (2013). Premotor cortex is critical for goal-directed 
actions. Frontiers in Computational Neuroscience, 7. 
https://doi.org/10.3389/fncom.2013.00110 

Hattori, R., Danskin, B., Babic, Z., Mlynaryk, N., & Komiyama, T. (2019). Area-
Specificity and Plasticity of History-Dependent Value Coding During Learning. 
Cell, 177(7), 1858-1872.e15. https://doi.org/10.1016/j.cell.2019.04.027 

Hwang, E. J., Dahlen, J. E., Mukundan, M., & Komiyama, T. (2021). Disengagement of 
Motor Cortex during Long-Term Learning Tracks the Performance Level of 
Learned Movements. Journal of Neuroscience, 41(33), 7029–7047. 
https://doi.org/10.1523/JNEUROSCI.3049-20.2021 

Jacob, P. F., Vargas-Gutierrez, P., Okray, Z., Vietti-Michelina, S., Felsenberg, J., & 
Waddell, S. (2021). Prior experience conditionally inhibits the expression of new 
learning in Drosophila. Current Biology, 31(16), 3490-3503.e3. 
https://doi.org/10.1016/j.cub.2021.05.056 

Juavinett, A. L., Erlich, J. C., & Churchland, A. K. (2018). Decision-making behaviors: 
Weighing ethology, complexity, and sensorimotor compatibility. Current Opinion 
in Neurobiology, 49, 42–50. https://doi.org/10.1016/j.conb.2017.11.001 

Kaplan, H. S., & Zimmer, M. (2020). Brain-wide representations of ongoing behavior: A 
universal principle? Current Opinion in Neurobiology, 64, 60–69. 
https://doi.org/10.1016/j.conb.2020.02.008 

Kawai, R., Markman, T., Poddar, R., Ko, R., Fantana, A. L., Dhawale, A. K., Kampff, A. 
R., & Ölveczky, B. P. (2015). Motor Cortex Is Required for Learning but Not for 
Executing a Motor Skill. Neuron, 86(3), 800–812. 
https://doi.org/10.1016/j.neuron.2015.03.024 



192 
 

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. 
(2017). Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron, 
93(3), 480–490. https://doi.org/10.1016/j.neuron.2016.12.041 

Lak, A., Hueske, E., Hirokawa, J., Masset, P., Ott, T., Urai, A. E., Donner, T. H., 
Carandini, M., Tonegawa, S., Uchida, N., & Kepecs, A. (2020). Reinforcement 
biases subsequent perceptual decisions when confidence is low, a widespread 
behavioral phenomenon. ELife, 9, e49834. https://doi.org/10.7554/eLife.49834 

Lerner, T. N. (2020). Interfacing behavioral and neural circuit models for habit 
formation. Journal of Neuroscience Research, 98(6), 1031–1045. 
https://doi.org/10.1002/jnr.24581 

Magno, L. A. V., Tenza-Ferrer, H., Collodetti, M., Aguiar, M. F. G., Rodrigues, A. P. C., 
Silva, R. S. da, Silva, J. do P., Nicolau, N. F., Rosa, D. V. F., Birbrair, A., 
Miranda, D. M., & Romano-Silva, M. A. (2019). Optogenetic stimulation of the 
M2 cortex reverts motor dysfunction in a mouse model of Parkinson’s Disease. 
Journal of Neuroscience, 39(17), 3234–3248. 
https://doi.org/10.1523/JNEUROSCI.2277-18.2019 

Makino, H., Ren, C., Liu, H., Kim, A. N., Kondapaneni, N., Liu, X., Kuzum, D., & 
Komiyama, T. (2017). Transformation of Cortex-wide Emergent Properties 
during Motor Learning. Neuron, 94(4), 880-890.e8. 
https://doi.org/10.1016/j.neuron.2017.04.015 

Mooney, R. (2009). Neural mechanisms for learned birdsong. Learning & Memory, 
16(11), 655–669. https://doi.org/10.1101/lm.1065209 

Murakami, M., Shteingart, H., Loewenstein, Y., & Mainen, Z. F. (2017). Distinct 
Sources of Deterministic and Stochastic Components of Action Timing 
Decisions in Rodent Frontal Cortex. Neuron, 94(4), 908-919.e7. 
https://doi.org/10.1016/j.neuron.2017.04.040 

Murakami, M., Vicente, M. I., Costa, G. M., & Mainen, Z. F. (2014). Neural 
antecedents of self-initiated actions in secondary motor cortex. Nature 
Neuroscience, 17(11), 1574–1582. https://doi.org/10.1038/nn.3826 

Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S., & Churchland, A. K. (2019). 
Single-trial neural dynamics are dominated by richly varied movements. Nature 
Neuroscience, 22(10), 1677–1686. https://doi.org/10.1038/s41593-019-0502-4 

Okano, K., & Tanji, J. (1987). Neuronal activities in the primate motor fields of the 
agranular frontal cortex preceding visually triggered and self-paced movement. 
Experimental Brain Research, 66(1), 155–166. 
https://doi.org/10.1007/BF00236211 



193 
 

Otchy, T. M., Wolff, S. B. E., Rhee, J. Y., Pehlevan, C., Kawai, R., Kempf, A., Gobes, 
S. M. H., & Ölveczky, B. P. (2015). Acute off-target effects of neural circuit 
manipulations. Nature, 528(7582), 358–363. 
https://doi.org/10.1038/nature16442 

Peters, A. J., Fabre, J. M. J., Steinmetz, N. A., Harris, K. D., & Carandini, M. (2021). 
Striatal activity topographically reflects cortical activity. Nature, 591(7850), 420–
425. https://doi.org/10.1038/s41586-020-03166-8 

Pinto, L., Koay, S. A., Engelhard, B., Yoon, A. M., Deverett, B., Thiberge, S. Y., Witten, 
I. B., Tank, D. W., & Brody, C. D. (2018). An Accumulation-of-Evidence Task 
Using Visual Pulses for Mice Navigating in Virtual Reality. Frontiers in 
Behavioral Neuroscience, 12, 36. https://doi.org/10.3389/fnbeh.2018.00036 

Pinto, L., Rajan, K., DePasquale, B., Thiberge, S. Y., Tank, D. W., & Brody, C. D. 
(2019). Task-Dependent Changes in the Large-Scale Dynamics and Necessity 
of Cortical Regions. Neuron, 104(4), 810-824.e9. 
https://doi.org/10.1016/j.neuron.2019.08.025 

Pisupati, S., Chartarifsky-Lynn, L., Khanal, A., & Churchland, A. K. (2021). Lapses in 
perceptual decisions reflect exploration. ELife, 10, e55490. 
https://doi.org/10.7554/eLife.55490 

Reep, R. L., Corwin, J. V., Hashimoto, A., & Watson, R. T. (1987). Efferent 
Connections of the Rostral Portion of Medial Agranular Cortex in Rats. Brain 
Research Bulletin, 19(2), 203–221. https://doi.org/10.1016/0361-
9230(87)90086-4 

Reep, R. L., Goodwin, G. S., & Corwin, J. V. (1990). Topographic organization in the 
corticocortical connections of medial agranular cortex in rats. The Journal of 
Comparative Neurology, 294(2), 262–280. 
https://doi.org/10.1002/cne.902940210 

Rothwell, P. E., Hayton, S. J., Sun, G. L., Fuccillo, M. V., Lim, B. K., & Malenka, R. C. 
(2015). Input- and Output-Specific Regulation of Serial Order Performance by 
Corticostriatal Circuits. Neuron, 88(2), 345–356. 
https://doi.org/10.1016/j.neuron.2015.09.035 

Scaife, J. C., & Duka, T. (2009). Behavioural measures of frontal lobe function in a 
population of young social drinkers with binge drinking pattern. Pharmacology, 
Biochemistry, and Behavior, 93(3), 354–362. 
https://doi.org/10.1016/j.pbb.2009.05.015 

Sharpe, M. J., Batchelor, H. M., Mueller, L. E., Gardner, M. P. H., & Schoenbaum, G. 
(2021). Past experience shapes the neural circuits recruited for future learning. 
Nature Neuroscience, 24(3), 391–400. https://doi.org/10.1038/s41593-020-
00791-4 



194 
 

Shnitko, T. A., Gonzales, S. W., Newman, N., & Grant, K. A. (2020). Behavioral 
Flexibility in alcohol drinking monkeys: The morning after. Alcoholism, Clinical 
and Experimental Research, 44(3), 729–737. 
https://doi.org/10.1111/acer.14289 

Schreiner, D. C., Yalcinbas, E. A., & Gremel, C. M. (2021). A push for examining 
subjective experience in value-based decision-making. Current Opinion in 
Behavioral Sciences, 41, 45–49. https://doi.org/10.1016/j.cobeha.2021.03.020 

Siniscalchi, M. J., Phoumthipphavong, V., Ali, F., Lozano, M., & Kwan, A. C. (2016). 
Fast and slow transitions in frontal ensemble activity during flexible 
sensorimotor behavior. Nature Neuroscience, 19(9), 1234–1242. 
https://doi.org/10.1038/nn.4342 

Siniscalchi, M. J., Wang, H., & Kwan, A. C. (2019). Enhanced Population Coding for 
Rewarded Choices in the Medial Frontal Cortex of the Mouse. Cerebral Cortex, 
29(10), 4090–4106. https://doi.org/10.1093/cercor/bhy292 

Sjoerds, Z., Brink, W. van den, Beekman, A. T. F., Penninx, B. W. J. H., & Veltman, D. 
J. (2014). Response inhibition in alcohol-dependent patients and patients with 
depression/anxiety: A functional magnetic resonance imaging study. 
Psychological Medicine, 44(8), 1713–1725. 
https://doi.org/10.1017/S0033291713002274 

Steinmetz, N. A., Zatka-Haas, P., Carandini, M., & Harris, K. D. (2019). Distributed 
coding of choice, action and engagement across the mouse brain. Nature, 1–8. 
https://doi.org/10.1038/s41586-019-1787-x 

Sul, J. H., Jo, S., Lee, D., & Jung, M. W. (2011). Role of rodent secondary motor 
cortex in value-based action selection. Nature Neuroscience, 14(9), 1202–1208. 
https://doi.org/10.1038/nn.2881 

Thaler, D., Chen, Y. C., Nixon, P. D., Stern, C. E., & Passingham, R. E. (1995). The 
functions of the medial premotor cortex. I. Simple learned movements. 
Experimental Brain Research, 102(3), 445–460. 

Vargo, J. M., & Marshall, J. F. (1995). Time-dependent changes in dopamine agonist-
induced striatal fos immunoreactivity are related to sensory neglect and its 
recovery after unilateral prefkontal cortex injury. Synapse, 20(4), 305–315. 
https://doi.org/10.1002/syn.890200404 

Von Uexküll, J. (1934). A stroll through the worlds of animals and men: A picture book 
of invisible worlds. Semiotica, 89(4). https://doi.org/10.1515/semi.1992.89.4.319 

Winstanley, C. A., Olausson, P., Taylor, J. R., & Jentsch, J. D. (2010). Insight Into the 
Relationship Between Impulsivity and Substance Abuse From Studies Using 



195 
 

Animal Models. Alcoholism: Clinical and Experimental Research, 34(8), 1306–
1318. https://doi.org/10.1111/j.1530-0277.2010.01215.x 

Yamawaki, N., Radulovic, J., & Shepherd, G. M. G. (2016). A Corticocortical Circuit 
Directly Links Retrosplenial Cortex to M2 in the Mouse. The Journal of 
Neuroscience, 36(36), 9365–9374. https://doi.org/10.1523/JNEUROSCI.1099-
16.2016 

Yin, H. H. (2009). The role of the murine motor cortex in action duration and order. 
Frontiers in Integrative Neuroscience, 3, 23. 
https://doi.org/10.3389/neuro.07.023.2009 

Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. 
Nature Reviews Neuroscience, 7(6), 464–476. https://doi.org/10.1038/nrn1919 

Yoo, S. B. M., Hayden, B. Y., & Pearson, J. M. (2021). Continuous decisions. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 
376(1819), 20190664. https://doi.org/10.1098/rstb.2019.0664 

Zingg, B., Hintiryan, H., Gou, L., Song, M. Y., Bay, M., Bienkowski, M. S., Foster, N. 
N., Yamashita, S., Bowman, I., Toga, A. W., & Dong, H.-W. (2014). Neural 
Networks of the Mouse Neocortex. Cell, 156(5), 1096–1111. 
https://doi.org/10.1016/j.cell.2014.02.023 




