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Combined Effect of Changes in Transit Service and 
Changes in Occupancy on Per-Passenger Energy 
Consumption 

EXECUTIVE SUMMARY 

Many transit providers changed their schedules and route configurations during the COVID-19 
pandemic, providing more frequent bus service on major routes and curtailing other routes, to 
reduce the risk of COVID-19 exposure. This research first assessed the changes in MARTA 
service configurations by reviewing the pre-pandemic vs. during-pandemic General Transit Feed 
Specification (GTFS) files. Energy use per route for a typical week was calculated for pre-
pandemic, during-closure, and post-closure periods by integrating GTFS data with MOVES-
Matrix transit energy and emission rates. MARTA automated passenger count (APC) data were 
appended to the routes, and the energy use per passenger mile was compared across routes 
for the three periods. The results showed that the coupled effect of shift in transit frequency 
and decrease in ridership from 2019 to 2020 increased route-level energy use for more than 
87% of the routes and per-passenger mile energy use for more than 98% of the routes. In 2021, 
although MARTA service had largely returned to pre-pandemic conditions, ridership remained 
in an early stage of recovery. Total energy use decreased to about the pre-pandemic level, but 
per-passenger energy use remained higher than pre-pandemic for more than 91% of the 
routes. The results confirm that while total energy use is more closely associated with trip 
schedules and routes, per-passenger energy use depends on both trip service and ridership. 
The results also indicated a need for data-based transit planning, to help avoid inefficiency 
associated with over-provision of service or inadequate social distancing protection caused by 
under-provision of service.
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Introduction 

After the outbreak of the COVID-19 pandemic, transit ridership in U.S. cities decreased 
significantly, since March 2020 (Ahangari et al., 2020). Ridership decline may be attributable to 
behavioral factors, as mass transportation was considered less safe after the pandemic 
outbreak (Cho and Park, 2021; Wang and Noland, 2021). However, the influence of the 
pandemic has not been experienced uniformly across geographic or demographic groups. For 
example, areas with lower median incomes (Abdoli and Hosseinzadeh, 2021), more essential 
workers (Hu and Chen, 2021), and vulnerable populations (Liu et al., 2020) were found to 
maintain higher ridership levels after the pandemic outbreak. Few studies investigated 
pandemic ridership recovery over time, partly due to the long-lasting impact. Many scholars 
have suggested that the recovery period of the pandemic will be long (Parker et al., 2021; 
Petrunenko et al., 2021; Trump et al., 2020; Wang et al., 2021). 

Transit energy consumption can be expressed in terms of vehicle energy use and energy use 
per-passenger-mile. While transit operations tends to have high system-level energy use given 
the mass of each transit vehicle, the energy use per-passenger-mile tends to be significantly 
lower for transit vehicles than for personal vehicles given the high passenger loads (Liu et al., 
2016). Transportation is usually recognized as a “green” transportation mode, but scholars have 
highlighted that this can only be achieved at high load factors (Chen et al., 2017; Liu et al., 
2016). For example, a study in China found that when the transit load factor declined to below 
40% of full load, transit was in fact less energy efficient than the private vehicles operating with 
carpools (Sui et al., 2020). 

This study examines the issues of transit system energy consumption and energy use per 
passenger-mile in the context of pandemic outbreaks and recovery. The agency selected for this 
assessment was the Metropolitan Atlanta Rapid Transit Authority (MARTA), the principal transit 
agency in Atlanta, GA, providing rail and bus transportation services. Since March 2020, MARTA 
has modified its routes and trip schedules multiple times to cope with changing passenger 
demand and increasing needs for social distancing. However, the interaction between changing 
service and shifting demand, and their combined effects on transit-related energy use and per 
passenger energy use, had not historically been well understood. A number of previous studies 
have modeled transit emissions on a per passenger per distance basis, primarily using 
Automated Vehicle Location GPS data (Attanucci and Vozzolo, 1983; Chu, 2010); however, high-
resolution GPS data are not available for most transit fleets. Using a more generalizable 
approach in this study, the research team employed widely-available APC (Automatic Passenger 
Counter) and GTFS (General Transit Feed Specification) data to model and comparatively 
analyze the per-passenger energy use pre-pandemic, during-closure, and post-closure. 

The objectives of this study were: 1) to demonstrate a set of tools that systematically examine 
transit emissions (total and per passenger based) at a given cross-section of time; 2) to 
investigate the system change and resulting emissions change per passenger per mile before 
and after COVID-19 outbreak, and 3) to provide insights to cause-effect relationships of the 
transit system operations and transit emission determinants.   
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Data and Methods 

This study used two primary datasets, the General Transit Feed Specification (GTFS) for transit 
routes and schedules, and the Automated Passenger Counter (APC) data for onboard transit 
ridership inputs (Chu, 2010). GTFS is a widely used public transportation data specification that 
allows transit providers to share system information of various attributes (schedules, stop 
locations, etc.) that can be used in transit and transportation routing app development and in 
data analysis and predictions. An APC is an automated passenger counting system available 
from a number of companies that has evolved over three decades to provide demonstrated 
accuracy in estimating passenger volumes and serves as a reliable substitute for manual 
counting (Attanucci and Vozzolo, 1983).  

This study identifies three weeks in 2019, 2020, and 2021 to represent pre-pandemic, during-
closure, and post-closure situations. The first COVID-19 case in Georgia was confirmed in March 
2020. In March 2020, companies and schools began suspending in-person meetings and indoor 
activities became much more restricted. Re-opening did not occur until the spring of 2021, at 
which time MARTA also largely reverted to pre-pandemic service level (Ryan, 2021). The first 
complete week of May in each year was selected for the comparison. About one month after 
the closure started, May 2020 is a good representation of during-closure travel conditions. The 
first week of May also represents travel conditions that are not influenced by school and 
college summer breaks and family vacations. MARTA provided both the APC and GTFS datasets 
for the first complete week (Monday to Sunday) of May in 2019, 2020, and 2021, representing 
pre-pandemic, during-closure, and post-closure situations, respectively. 

The analysis was composed of three modules. First, based on passenger count profiles and stop 
identification information of the APC data, route-segment level transit inputs were derived to 
represent observed transit activity. Second, the research team used the TransitSim modeling 
network (Li et al., 2018), which generates the transit network from GTFS data, integrates 
Dijkstra's shortest path algorithm for network analysis, and provides the trip distance and 
average speed for energy and emissions modeling. Third, energy and emissions modeling was 
performed using MOVES-Matrix, energy use, and emission rate lookup array that provides 
exactly the same results as the EPA’s MOVES regulatory model (Guensler et al., 2016). The 
following paragraphs of this section introduce each module in more detail. 

The research team then analyzed transit bus operations at various levels, defined as follows. 
Route refers to a specific type of bus line configuration (including composition and sequence of 
stops, driving paths, etc.). Each route usually has multiple trips departing at various times of the 
day according to a fixed schedule (typically repetitive across days). Each specific trip in the 
schedule on a given day is assigned a “trip-day” record. A trip-day is a unique round of bus 
operations from the first stop to the last stop, along a specific route that contains n stops and 
(n-1) route segments. Geographically, route segments are the paths between pairs of adjacent 
stops. Although the spatial information (distance, etc.) for a specific route segment is the same 
across various trip-days, schedule-specific information may vary across these trip-days, such as 
travel time, passenger load, and so on. 
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Passenger Load Calculations 

The research team used Automated Passenger Counter (APC) data to calculate passenger load. 
In this module, stop-level profiles of raw boarding and alighting counts from APC devices were 
filtered and processed to provide passenger load information at the route segment level. The 
outputs of the QA/QC (quality assurance and quality control) process included stop-to-stop 
route segment information that is ready to be entered into TransitSim network development in 
the next module. 

The following four conditions were accommodated in the QA/QC process. First, dead-heading 
trips that connect the garage to the first revenue stop were excluded from the APC data, 
because this study focuses on per passenger energy use and emissions. Second, route segments 
between two stops were marked as an attribute of the former stop, so that the analyses 
retained only those stops that had subsequent stops (i.e., the last stop of each route is assigned 
to the route segment immediately preceding the stop, and the trip segment from the last stop 
to the garage was discarded). Third, due to what appear to be GTFS specification errors, the 
operational conditions demonstrated by the APC data do not always match the schedule in the 
GTFS data. More specifically, a few real-world trips were unreachable in the recorded GTFS 
route structures due to missing stops and consequently did not correspond to the distance and 
travel time information from the GTFS-based network analysis. This issue was more severe in 
2020. Errors were identified for 155 out of 4,456 route segments in 2020 (likely due to the 
frequent changes of the on-road schedule that were not included in the GTFS data due to the 
pandemic), for only 17 out of 9,749 route segments in 2019, and no route segment errors were 
found in 2021. Given the small number of samples removed in this process, and the relatively 
large disparity across the years, this research removed any route segments that were of 
concern in any one year from the data for all three years (120 route segments were identified 
and removed). Fourth, similar to the third condition, a few stops that were present in the APC 
data were not recorded in the GTFS profiles, and these stops were removed from all three 
years. After the data screening process, 96.4%, 94.9%, and 96.2% of data was retained for 2019, 
2020, and 2021, respectively, as shown in Table 1. Overall, the samples removed from the 
analyses were relatively small, and the difference across the years is not disconcerting. 

After data filtering, stop-based ridership data was processed into a dataset for each route 
segment. The dataset for 2019 and 2021 included around 110 routes (in 2020 MARTA 
condensed these to 43 routes), with approximately 25,000 trip schedules and approximately 
60,000 trip-days in each of the one-week study period. Ridership data were processed at trip-
day level, to convert a chain of n back-to-back stops into a sequence of (n-1) connecting route 
segments (Figure 1), by sorting the stop order (“BLOCK_STOP_ORDER”) attribute in the APC 
data. Each stop was paired with the immediate next stop to form a route segment (and the next 
stop was paired with the one further next). Stop-level attributes include boarding and alighting 
counts, and route segment-level attributes include distance, travel time, and passenger counts, 
as shown in Figure 1. 

Passenger load at route-segment i was calculated cumulatively using boarding and alighting 
counts precedent (from stop 1 to i) or subsequent (from stop i+1 to n) to route-segment i. In 
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this research, two counting methods were employed; a forward counting (FWC) method and a 
backward counting (BWC) method. The FWC is the answer to the question “given that the bus is 
empty when it leaves the garage and arrives at the first stop, how many passengers are present 
after i stops”. The FWC calculates passenger loads as the number of passengers initially on the 
bus (i.e., zero) plus the “net gain” of passengers at every individual bus stop before route-
segment i. The BWC method answers the question “given that the bus is empty when it leaves 
the last stop and returns to the garage, how many passengers have to be on the bus to match 
the passenger changes in the last n-i stops”. It calculates as the final number of passengers on 
the bus (i.e., zero) plus the “net loss” of passengers at every bus stop after route-segment i 
(Figure 1). Equations (1) and (2) show the calculation of passenger load using the two methods. 

𝐹𝑊𝐶𝑖 = ∑ 𝐵𝑘 − ∑ 𝐴𝑘
𝑖
𝑘=1

𝑖
𝑘=1  (1) 

𝐵𝑊𝐶𝑖 = ∑ 𝐴𝑘 − ∑ 𝐵𝑘
𝑛
𝑘=𝑖+1

𝑛
𝑘=𝑖+1  (2) 

 

Figure 1. Relationship between stops and route segments for a random trip-day 

The last step aims at balancing of APC passenger counts profiles. Despite a reported accuracy 
for APC data of 90% to 93%, previous studies suggested the need for balancing and correction 
for systematic and random errors in the counting process (Barabino et al., 2014; Furth et al., 
2005; Koutsopoulos et al., 2019; Lebedeva and Mikhailov, 2017; Siebert and Ellenberger, 2020). 
In an ideal operating condition, for a trip day with n stops, the bus is empty when it arrives at 
the first stop (right before stop 0, C0) and when it leaves the last stop (right after stop n, Cn) of 
the journey, as shown in Figure 1 and Equation (3). Therefore, the change in passenger counts 
and the difference between FWC and BWC at any route segment i would be the same, and in 
ideal operating conditions, they should be both zero, as shown in Equations (4) and (5). 

𝐶0 = 𝐶𝑛 = 0 (3) 

∑ 𝐵𝑖
𝑛
𝑖=1 − ∑ 𝐴𝑖

𝑛
𝑖=1 = 𝐶𝑛 − 𝐶0 = 0 (4) 

𝐹𝑊𝐶𝑖 −  𝐵𝑊𝐶𝑖 = (∑ 𝐵𝑘 − ∑ 𝐴𝑘
𝑖
𝑘=1

𝑖
𝑘=1 ) − (∑ 𝐴𝑘 − ∑ 𝐵𝑘)𝑛

𝑘=𝑖+1
𝑛
𝑘=𝑖+1 = 0 (5) 



 

 5 

In reality, the passenger counts can be off by a small amount, due to the movements of the 
operator and other transit agency staff (Furth et al., 2005), or by a large amount, as the result 
of systematic and random errors that arise from inaccuracies of automatic counters (Chu, 
2010). According to Equation (5), the error at any point k in the trip-day will be counted 
cumulatively in any stop i of that trip-day (i.e., same error across the stops of the same trip-
day). Therefore, the error in this analysis is denoted as the absolute difference between the 
sum of boarding counts versus the sum of alighting counts (trip-day level), which is equal to the 
absolute difference between FWC and BWC (route-segment level). The two representations 
yield the same number for a given trip-day, as shown in Equation (6). 

𝑒 = |𝐹𝑊𝐶𝑖 − 𝐵𝑊𝐶𝑖| = | ∑ 𝐵𝑖
𝑛
𝑖=1 − ∑ 𝐴𝑖

𝑛
𝑖=1 | (6) 

The cumulative nature of the errors makes the passenger load prone to error propagation, and 
in such cases, unreasonable numbers may arise (e.g., negative passenger load). The goal of the 
balancing process is to distinguish between reasonable errors resulting from the normal 
behaviors of bus operators and passengers versus those that arise from malfunction or 
miscalibration of the automated passenger counter. 

Previous studies adopted various criteria for data balancing, varying from 9% to 15% of error 
tolerance (Chu, 2010; Furth et al., 2005). In this study, the research team followed a balancing 
process similar to the approach of Furth et al. (2005) (Furth et al., 2005), and derived two sets 
of filtering criteria (i.e., a strict scenario vs. a somewhat more relaxed scenario). In the strict 
scenario, if the difference between the two counts is larger than or equal to ten passengers, the 
entire trip-day is removed from the analysis for all three years. A route segment receives an 
error flag if its passenger load is less than or equal to minus five passengers, and the trip-day is 
removed from the analysis if it contains over three flags (a trip-day typically contains over one 
hundred route segments). In the more relaxed scenario, trip-days are removed if the difference 
between the two counts are larger than or equal to twenty passengers. An error flag is only 
given when the passenger load is less than or equal to minus ten passengers. 

For the filtered dataset, passenger load was calculated as the average of FWC and BWC. 
Passenger loads smaller than zero (but not small enough to be removed) was treated as zero, as 
shown in Equation (7). 

𝐶𝑖 = max (0,
𝐹𝑊𝐶𝑖+ 𝐵𝑊𝐶𝑖

2
) (7) 

Under the strict scenario, the data balancing process removed 9.1%, 9.6%, and 4.3% of data 
from 2019, 2020, and 2021, respectively. Under the somewhat relaxed scenario, this process 
removed 2.2%, 1.7%, and 0.8% of data from 2019, 2020, and 2021, respectively, as is shown in 
Table 1. Because the analyses in this paper focus on energy use per passenger-mile, it is 
important to ensure that the data screening criteria do not lead to potential bias in the overall 
sample, where perhaps a disproportionate number of high-demand routes (full buses), or low-
demand routes (nearly empty buses), are removed from the analyses due to APC count error. 
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Table 1. Data Information and Sample Sizes  

 Pre-pandemic During-closure Post-closure 

GTFS period 04/09 – 06/01, 2019 04/20 – 05/22, 2020 04/23 – 05/25, 2021 

APC period 05/06 – 05/12, 2019 05/04 – 05/10, 2020 05/03 – 05/09, 2021 

APC Sample Size 2,898,307 2,690,640 2,492,759 

Trips to garage 10,697 7,517 10,616 

Last stops 58,739 52,215 51,949 

Non-reachable 
stops 

33,327 68,349 26,077 

Stops not in GTFS 1,242 8,126 7,056 

APC Sample size 
after screening 

2,794,302 2,554,433 2,397,061 

96.4% 94.9% 96.2% 

Filtering Scenario Strict Relaxed Strict Relaxed Strict Relaxed 

APC Sample size 
after balancing 

2,550,910 2,732,228 2,459,897 2,534,268 2,295,469 2,377,284 

88.0% 94.3% 91.4% 94.2% 92.1% 95.4% 

Network Analysis 

The research team developed a transit simulation network to model transit operations and 
obtain parameters needed for energy use and emissions analysis, including link distances and 
average speed by link. This section introduces the methods used in the network analysis, 
including network development and analysis on inputs. 

As a part of the Roadway Simulator (RoadwaySim) modeling regime developed by Georgia Tech 
for the ARPA-E TRANSNET project (Li et al., 2016), TransitSim is capable of: 1) developing a 
transit network for any U.S. city based on standard-format GTFS data; 2) processing transit 
demand derived from activity-based travel demand models through the simulation network 
(including park-and-ride and transfers among service providers); and 3) producing link-by-link 
passenger travel trajectories. The advantage of TransitSim over other built-in transit modules in 
regional transportation models comes from the level of detail it provides in the results. Instead 
of aggregated results for overall travel time and distance, TransitSim provides link-by-link travel 
trajectories that can be easily transformed into a second-by-second passenger travel patterns 
for use in fine-grained energy and emissions analyses when combined with energy use and 
emission rates from the USEPA’s MOVES model. The TransitSim algorithms can be summarized 
as follows (Li, 2019; Xu et al., 2018a; Yoon et al., 2005). 

• Pre-process GTFS Data - Import GTFS inputs, prepare geographic coordinate 
information, and augment the geographic information with denser reference points; 
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• Reconcile schedule and stop information - Cross-register schedule and geospatial 
information, to find the exact locations and time of arrival/departure at each stop; 

• Create network links - Create transit links (or route segments) between stops and road 
networks, calculate travel time and distance, and code types of links (e.g., walk, transfer, 
ride, or park-and-ride available); 

• Develop the network graph - Depending on user specifications, develop transit-only, 
drive-only, and park-and-ride networks for specified service provider(s); 

• Run O-D pairs - Conduct a network analysis on origin-destination pairs to find link-by-
link travel trajectories. 

Because this study focuses on transit-only trips with inputs in route-segment format, the 
research team reconfigured the TransitSim program to enhance network development 
efficiency. First, the drive-only and park-and-ride networks were trimmed for these analyses, as 
the analysis is focused only on the on-transit activities. Second, the network is constructed in a 
non-schedule-sensitive manner. Due to what appeared to be errors in the GTFS files, the trip 
identification between APC vs. GTFS datasets did not always match, and the departure and 
arrival timestamps were missing for more than 75% of the route-segment level inputs. In 
addition, unlike typical runs of TransitSim scenarios, where the transit schedule has to be 
checked to minimize wait time, this analysis was based on the recorded observations of transit 
boarding counts and alighting counts. The network analysis in this module was carried out with 
a consistent travel time and distance across various schedules (“trips”) of the same route. That 
is, the network for the same route was assumed to remain consistent across time of day. This 
assumption was verified by comparing the predicted link-by-link travel time and distances 
versus the real-world profiles of the recorded trips that traverse this link. Less than 0.2% of all 
links showed non-negligible differences, while 99.8% of the links demonstrated differences 
smaller than 1%. Hence, this study used the median of all predicted travel time and distances as 
the parameters for each transit link. 

Route-segment level inputs from APC data were entered to TransitSim based on the developed 
transit network, and the network analysis was conducted at the route level for each route using 
index matches between APC vs. GTFS data (each route name is coded the same in both 
datasets). In cases where the route names are coded differently in the two datasets, the route 
segment was run through the entire network, and a manual verification was conducted to make 
sure the two datasets landed on the same route. The final output of the network analysis was a 
dataset with passenger load, travel time, and distance for each route segment per trip-day. 

Energy and Emissions Modeling 

The emissions and energy use modeling of pre-pandemic, during-closure, and post-closure was 
performed by implementing MOVES-Matrix, which was developed by Georgia Tech to facilitate 
rapid applications of energy and emissions modeling using the same outputs as the MOVES 
regulatory model (Guensler et al., 2016; Vallamsundar and Lin, 2011). By running MOVES about 
thirty thousand times for a region (specific fuel and inspection and maintenance program), 
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across all combinations of input variables that affect emission rates, a multi-dimensional matrix 
of 90 billion energy use and emission rates is generated. Users can query the emission rates 
directly from the matrix, significantly improving run-time efficiency (Guensler et al., 2016). Link-
by-link average speed was derived from transit travel time between stops and link distance, and 
the source type distributions and transit vehicle age distributions were extracted from the fleet 
composition profiles provided by MARTA. 

Because this study focuses on the effects of service and ridership changes on energy use and 
emissions, analyses should control for any other factors that affect energy use and emissions 
rates, such as ambient temperature and humidity. The meteorology information is estimated 
from the National Weather Service Climate Summary of May 2019 (National Oceanic and 
Atmospheric Administration, 2019), May 2020 (National Oceanic and Atmospheric 
Administration, 2020), and May 2021 (National Oceanic and Atmospheric Administration, 
2021). The average May temperature (70°F) and humidity (70%) in Atlanta is used as 
meteorology input for MOVES-Matrix (consistent meteorology settings for all periods). 

MOVES-Matrix was queried separately for each year to provide the energy use and emissions 
outputs of CO, NOx, PM2.5, PM10, total gaseous hydrocarbons, and VOC for the analyses. Energy 
and emissions per passenger mile results are compared in the following section.   
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Results and Discussion 

This section presents and discusses the results of ridership analyses and emissions modeling. 
The overall changes of transit services, ridership, emissions, and energy use are presented and 
discussed, and the route-level results are discussed for four representative routes. A discussion 
of the geographic results is also provided at the end of this section. In this study, all 
comparisons are presented as percentage change compared to the baseline of 2019 (pre-
pandemic). 

Overall Characteristics 

Figure 2 presents the overall results for both scenarios that employ the strict and somewhat 
more relaxed data screening criteria. The strict scenario filtered out more trips than the relaxed 
scenario (leaving 57,488 trips in May 2021 for the relaxed scenario vs. 53,831 for the strict 
scenario), despite the fact that they retained the same number of routes. The strict scenario 
removed more observations with higher passenger load, as demonstrated by the average trip 
passenger load (12.85 passengers in the relaxed scenario versus 12.22 passengers in the strict 
scenario for May 2019, 6.08 passengers versus 5.68 passengers in May 2020, and 7.94 
passengers versus 7.60 passengers in May 2021). 

The strict scenario also resulted in higher predictions of emission and energy use per passenger 
mile (2,730 KJ per passenger mile in the relaxed scenario versus 2,850 KJ per passenger mile in 
the strict scenario in May 2019), but a lower total emission and energy use (for example, 8.77 
billion KJ in the relaxed scenario versus 8.16 billion KJ in the strict scenario in May 2019). This is 
not surprising, given that the strict data screening criteria removed more of the high occupancy 
trips from the analysis (i.e., fewer passengers to share the total emissions and energy use). The 
strict scenario likely filters more records than intended, and can lead to a potential 
overestimation of modeled energy use and emissions per passenger-mile results. The rest of 
this section focuses on presenting the results based on the more relaxed APC data screening 
scenario. Further discussion of the strict vs. more relaxed scenarios is provided at the end of 
this section. 
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Figure 2. Results of transit operations and ridership changes. 
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Figure 3. Results of emissions and energy use changes. 

MARTA modified its transit service significantly between May 2019 and May 2020, cutting 
routes and then increasing service frequency on remaining routes, and then reverted to near-
original service levels in May 2021. Part of MARTA’s focused pandemic response was to 
decrease the total number of operating routes during the pandemic and increase the frequency 
of service along the highest passenger load routes to reduce the number of persons on each 
bus (to reduce potential passenger exposure to COVID-19). The May 2019 seven-day period 
included 110 routes, while the 2020 pandemic period included only 43 routes, and it increased 
back to 111 routes in 2021. During the May 2020 pandemic period, as routes decreased, the 
frequency on the routes that were retained more than doubled. In May 2019, an average route 
included 523 trip-days in the seven-day period, while this number grew to 1,206 trip-days in 
May 2020 and then dropped back to 455 trip-days in May 2021. Because these two factors 
tended to balance each other, the total number of bus trips operating during the study period 
remained comparable over time, from 57,488 in May 2019, to 51,836 in May 2020, and then to 
50,533 in May 2021. In May 2019, MARTA served about 531,801 route-miles in a week, 
compared to about 728,578 route-miles in May 2020 and about 479,828 route-miles in May 
2021. Although the service coverage (routes served) decreased between May 2019 and May 
2020, the frequency and route length (mileage) of all remaining routes increased (as seen in 
Figure 2), and then largely returned to pre-pandemic levels in May 2021. 
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Most of the routes that were canceled in May 2020 were those with lower passenger loads (ten 
of the ten with lowest passenger loads were canceled and ten of the ten with highest passenger 
loads were retained). Passenger loads also dropped abruptly from May 2019 to May 2020, but 
(unlike transit service) passenger loads did not fully recover in May 2021. In May 2019, the 
seven-day period served a total of 738,658 passengers, which dropped to 315,252 passengers 
in May 2020. May 2021 shows an increase in passenger load compared to 2020, 401,453 
passengers, but is still a significant decrease compared to 2019, indicating a slow recovery. The 
average trip load in May 2019 was 12.22 passengers per trip, which decreased to 5.68 
passengers per trip in May 2020, and returned only to 7.60 passengers per trip in May 2021 
(Figure 2). These results with respect to passenger load recovery are not surprising, given 
passenger efforts to maintain social distancing, even after the closure ended. The slow recovery 
could also be due to a decrease in travel demand (or at least the travel demand by transit) 
itself, given an increased portion of working from home and a higher unemployment rate (less 
commuting), and given that commuters could divert to other modes of transportations (i.e., 
passenger cars) to reduce exposure to other people. 

As discussed earlier, although the number of transit routes decreased by 60.1%, the frequency 
of services on the retained routes nearly doubled. The retained routes were also significantly 
longer (41.8%) on average than the routes that were curtailed, and the route and schedule 
changes led to an increase of 37.0% in total vehicle-miles-traveled. Hence, total energy use and 
emissions in May 2020 increased by approximately 50% from May 2019 (13.5B KJ energy use 
and 963 tons of CO2e emission in May 2020 compared to 8.77B KJ energy use and 623 tons of 
CO2e emission in May 2019). In May 2021, energy and emissions levels returned to near the 
levels of May 2019 (e.g., 7.88B KJ energy use and 560 tons CO2e emission in May 2021), as 
shown in Figure 3. This trend is consistent across energy use and all pollutants. 

Energy use and emissions per passenger mile in May 2020 (7,160 KJ energy use and 509g CO2e 
per passenger) more than doubled compared to May 2019 (2,730 KJ energy use and 194g CO2e 
per passenger). Energy use per passenger decreased in May 2021 (4,490 KJ energy use and 319 
g CO2e per passenger), when transit returned to the original May 2019 schedules, but per 
passenger energy use and emissions were still more than 60% higher than the original May 
2019 levels (Figure 3). 

After the COVID-19 lockdown (May 2020), energy use and CO2e emission per passenger mile 
were much higher than the national average for transit buses and higher than those of an 
average single-occupant vehicle. After the lockdown ended (May 2021), passenger loads 
remained low, and energy use and CO2e emission per passenger mile were still higher than the 
national average for transit buses (Davis and Boundy, 2021). According to the Transportation 
Energy Data Book (Davis and Boundy, 2021), typical transit buses are as energy-efficient as 
personal vehicles only when typical passenger load is greater than or equal to eight persons per 
bus (given the mass of the bus vs. the mass of the automobiles). The low passenger load per 
bus was associated with the need to increase social distancing on each bus, while still providing 
essential transportation for critical workers.  
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Changes in system-level energy use and per-passenger energy use differed from year to year. 
For May 2019 vs. May 2020, system-level energy use increased by 53.9%, while the per-
passenger energy use increased by 162.2%. System-level energy use decreased for May 2019 
vs. May 2021, while per-passenger energy use increased by 64.4% as passenger ridership was 
slow to recover. The system-level transit energy use is more closely related to the changes in 
trip frequency, while per-passenger energy use experiences a combined effect from changes in 
trip frequency and passenger load.  

Results by Geographic Location 

Taking May 2019 as the baseline condition, the frequency of trips was slightly higher on the 
northern and western sides of the city than southern or eastern sides. In May 2020, 70 routes 
were curtailed (63.6% of total routes), with only the main routes in each direction remaining, as 
shown in Figure 4, and only three additional routes were added. A total of 32 routes (out of the 
40 routes that remained) doubled in frequency, 6 remained unchanged, and 2 decreased in 
frequency, as shown in Figure 5. In May 2021, the frequency of trips was predominately 
changed back to the original level or dropped below May 2019. Out of the 106 common routes 
between May 2019 and May 2021, 60 routes had similar frequency (difference in the number of 
trips less than 10%), 45 routes had lower frequency in May 2021, and only one had a higher 
frequency in May 2021 (Figure 5a). Routes that experienced the highest decrease in frequency 
were distributed around the center of the city, and those that experienced increased frequency 
were in the southern and northeastern peripheral areas. 

Routes with the highest passenger load in May 2019 continued to carry the highest passenger 
load in May 2020 and May 2021 (Figure 4). May 2019 and May 2020 shared 40 common routes, 
and 35 of them experienced a decrease in passenger load, with the northeastern side 
experiencing the highest drop (Pleasantdale Road Route), followed by areas in the South (Figure 
5). May 2019 and May 2021 shared 106 common routes, and 104 of these routes experienced a 
decrease in passenger load (with 103 having a decrease of larger than 10%) and only two 
experienced a relatively small (less than 10%) increase. Though a “bounce-back” was observed 
from May 2020 to May 2021 (Figure 4), the increase was much smaller compared to the 
decrease associated with the onset of the pandemic. All these results indicate that the 
passenger load was still in an early stage of the entire recovery process (Figure 5b). 

From May 2019 to May 2020, 5.0% of the routes experienced a decrease in energy use, while 
95.0% experienced an increase, as shown in Figure 5c. From May 2019 to May 2020, the largest 
increase in energy use occurred in the far south of the metropolitan area, with the highest 
increase rate of 537.2%. Two places experienced a decrease in energy use, located around 
northeastern peripherals and downtown Atlanta, and these overlap with decreased trip 
frequency. From May 2019 to May 2021, 70.8% of routes experienced a decrease in energy use 
(81.3% of which were larger than 10%), and 29.2% experienced an increase (9.7% of which 
were larger than 10%). Some of the routes that experienced the highest decrease in energy use 
from May 2019 to May 2021 were located around the city center and western fringes (highest 
decrease of -66.9%), while places that experienced the highest increase were distributed 
sparsely around the southeastern, southern, and western fringes (with the largest increase 



 

 14 

being +26.1%). The spatial distributions of the energy use are largely identical to those of the 
trip frequency in Figure 5, despite the difference in magnitude of change, which again suggests 
that an increase in trip frequency may be an important factor for the increase in total energy 
consumption. 

From May 2019 to May 2020, 97.5% of routes experienced an increase in energy use per 
passenger mile (with the highest increase at 504.8%), while only one route experienced a 
decrease (Peachtree Street Route in Downtown Atlanta, -23.0%). Places that did not see a high 
increase are located around the southwestern and northeastern sides of the city. From May 
2019 to May 2021, 96.2% of routes experienced an increase in per-passenger energy use (with 
the highest increase of 860.8%), while only 3.8% of routes experienced a decrease. Places that 
did not experience a high change were located around the northeastern and western sides of 
the city.



 

 15 

 

(a). Bus frequency (thickness represents frequency) in 2019 (left), 2020 (middle) and 2021 (right) 



 

 16 

 

(b). Bus ridership (color represents passenger load) in 2019 (left), 2020 (middle) and 2021 (right) 
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(c). Energy use per passenger mile (color represents energy use) in 2019 (left), 2020 (middle), and 2021 (right) 

Figure 4. Analysis results across the entire region 
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(a). Changes in bus frequency from 2019 to 2020 (left), and from 2019 to 2021 (right) 
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(b). Changes in passenger load from 2019 to 2020 (left), and from 2019 to 2021 (right) 
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(c). Change in total energy use from 2019 to 2020 (left), and from 2019 to 2021 (right) 
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(d). Change in per passenger mile energy use from 2019 to 2020 (left), and from 2019 to 2021 
(right) 

Figure 5. Changes in (a). Trip frequency; (b). Passenger load; (c). Total energy use; and (d). Per 
passenger mile energy use (histogram: distribution of changes in each link) 

Results for Specific Case Study Routes 

In the following section, four representative case study transit routes are selected to present 
the typical changes. The results for North Decatur Road/Virginia Highland, Campbellton Road, 
Peachtree Street/Downtown, and Pleasantdale Road, are shown in Figure 6. 

North Decatur Road/Virginia Highland (“Decatur”) is located on the eastern side of Atlanta and 
is one of the 67 routes curtailed in May 2020 due to the pandemic. There were multiple other 
routes serving the same area, and the passenger load of this route was not high in May 2019 
(which could be one of the reasons it was curtailed). Trip frequency decreased mildly from May 
2019 to May 2021, while passenger load decreased by more than 50%. The predicted total 
energy use for this route decreased by 25.8% from May 2019 to May 2021, but per passenger 
mile, energy use nearly doubled (86.5% increase). 

Campbellton Road is representative of the majority of the remaining routes, which experienced 
an increase in bus frequency and a decrease in passenger load. It was also one of the routes 
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with the highest baseline passenger load. The popularity of this route was the likely reason that 
it was not curtailed and had a doubled frequency from May 2019 to May 2020 (with a 
decreased passenger load of 64.4%). The total energy use doubled from May 2019 to May 
2020, and energy use per passenger mile increased by 107.4%. 

Peachtree Street/Downtown is located in Downtown, Atlanta. Similar to Campbellton, this 
route also experienced an increase in trip frequency, but the average passenger load did not 
change much from May 2019 to May 2020. The relatively low elasticity of passenger load may 
suggest a higher dependence of surrounding residents on transit. Similar to Campbellton Road, 
this route also experienced an increase in total energy use from May 2019 to May 2020. 
However, the energy use per passenger mile decreased by 23.1% in this period, which was 
likely related to the fact that the average passenger load did not change much. 

Pleasantdale Road is one of only two routes that experienced a decrease in frequency from 
May 2019 to May 2020. This route is located at the northeastern fringe of the city but it is a 
major route serving its neighboring area. The frequency and the total energy use both 
decreased in May 2020, and with a significant decrease in average passenger load, energy use 
per passenger mile still doubled from May 2019 to May 2020.  



 

 23 

 

Figure 6. Analysis of four case routes 
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The four case studies are indicative of how the changes in transit operations during the 
pandemic led to significant variability in changes in energy use and emissions per capita. Some 
routes like Campbellton Road may have seen an over-provision of service (to improve social 
distancing) as passenger loading also dropped, leading to a greater reduction in energy 
efficiency. Other routes like Peachtree Street/Downtown saw an increase in ridership and may 
have needed increased service. More nuanced approaches may be needed to balance social 
distancing, changes in passenger demand, and increased service, especially in neighborhoods 
that are highly transit dependent. 

Limitations and Opportunities for Future Research 

The emissions modeling of this study was based on the emission rates from MOVES with default 
passenger loads; however, emissions and energy use rates do increase with passenger 
occupancy (which leads to a slightly higher required engine load) (Vallamsundar and Lin, 2011). 
Figure 7 illustrates transit bus energy use rates vs. passenger load (Xu et al., 2018b). Increases 
in energy use and emissions are non-trivial, especially when passenger loads drop so 
significantly, that the research team plans to integrate the effect of passenger load on energy 
use and emissions in future analyses. 

 

Figure 7. Sensitivity of energy consumption rate on passenger load 

Accurate passenger occupancy is critical in any analysis that quantifies energy use and 
emissions on a per passenger-mile basis. The APC data quality issues that arose in this study are 
worth noting, in light of the differences in energy use and emissions results per passenger-mile 
derived from the strict and more relaxed data screening procedures. Removing a 
disproportionate number of high ridership or low ridership routes, given the correlation of APC 
accuracy with passenger entry and exit volumes, can bias such results. Without ground truth 
boarding and alighting data to which APC data can be compared (e.g., manual count 
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confirmations), it is impossible to verify the APC data for any analytical scenario. The research 
team recommends that research be conducted to develop new QA/QC methods for APC data 
(which will most likely be combinations of filtering thresholds for specific scenarios) to ensure 
the accuracy of passenger count data, used in comparative energy analyses across modes, as 
potential biases may correlated with the amount and rate of passenger ingress/egress activity). 

The analyses in this report employed GTFS network and schedule data, which only includes the 
operating routes. Hence, another limitation of this study is the lack of inclusion of deadheading 
trips (trips between garage and route locations without passengers, and trips to reposition 
buses between routes) in the analysis. Deadheading trips contribute a significant portion of 
energy use and fuel consumption in urban public transit systems (Li, 2019; Nasibov et al., 2013). 
There are four relevant MARTA bus depots and not routes and their associated buses are 
necessarily assigned to the closest depot. With service schedule changes during the pandemic, 
garage locations also likely changed (Li, 2019). Incorporating deadhead segments associated 
with bus switching between routes mid-day requires access to dispatch bus assignment 
schedules. Specific routes taken by deadheading buses also cannot be easily inferred. Hence, it 
is difficult to assess deadheading metrics for emission and energy analysis without AVL data. 
Future studies should consider including all deadheading trips in the analyses, expanding the 
existing findings, and presenting a more holistic view of the topic. Assessing the impact of 
actual route and schedule adherence (and other reliability metrics) on per-passenger energy 
use and emissions could also be supported once AVL data become available. A logical next step 
is to extend the current methods and results to a large-scale household-specific datasets that 
observe transit rider behavior, so that transit performance can be compared across 
demographic groups. The research team is currently performing a relevant demographic 
assessment in a follow-on NCST project. 

MOVES-based analyses assume that the average bus speed on each transportation link 
correspond to transit driving cycles embedded within the MOVES model. The MOVES modeling 
approach is the best currently available in the absence of second-by-second AVL data (Li, 2019; 
Xu et al., 2018a; Yoon et al., 2005). However, once high-resolution AVL data become available 
for transit routes in Atlanta, researchers will be able to compare operating mode bin 
distributions from monitored, second-by-second speed/acceleration data to those that 
assumed by MOVES via weighting of driving cycles in the MOVES database.   
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Conclusion and Future Work 

This study examined the May 2020 and May 2021 pandemic-related changes in transit service 
and ridership and their combined effects on energy use and per-passenger energy use for the 
MARTA system in Atlanta, GA. The General Transit Feed Specification (GTFS) and the 
Automated Passenger Counter (APC) datasets were used to develop the transit network and 
derive distance and passenger load information. The outputs were coupled with energy use and 
emission rates from MOVES-Matrix to assess how transit service and ridership changes 
impacted energy use and emissions on a per passenger-mile basis. 

Compared to the May 2019 pre-pandemic baseline, many routes were eliminated and the 
frequency of remaining transit services was doubled (to increase social distancing) in the May 
2020 pandemic closure period. Transit ridership also simultaneously decreased by 
approximately 50% in the May 2020 pandemic closure period. In the May 2021 post-closure 
pandemic period, although the transit service had largely been restored to pre-pandemic levels, 
the recovery of passenger load was slow and passenger ridership remained well below the pre-
pandemic baseline. 

Transit energy use in the May 2020 pandemic closure period (13.5B KJ) was approximately 
twice that of the pre-pandemic period (8.77B KJ). Energy use per passenger-mile during the 
May 2020 pandemic closure period (7,160 KJ/passenger-mile) was almost four times that of the 
May 2019 pre-pandemic period (2,730 KJ/passenger-mile). While energy use in the May 2021 
post-closure period (7.88B KJ) was more similar to that of the May 2019 pre-pandemic period 
(8.77B KJ), the energy used per passenger-mile (4,490 KJ/passenger-mile) was still double that 
of the pre-pandemic period (2,730 KJ/passenger-mile). The results confirm prior research 
indicating that transit system-level energy use and energy use per passenger-mile depend on 
different factors. System-level transit energy use tends to be high given the mass of each transit 
vehicle, but transit provides high energy efficiency per passenger mile at high passenger loads. 

The results also suggest that the customer response to changes in transit service differed across 
routes. As some routes were cancelled and others increased in service frequency, ridership may 
have shifted across routes. In addition, some routes may have served passengers with more 
travel flexibility that other routes. During the COVID-19 pandemic, transit agencies faced a 
difficult tradeoff in selecting which routes to curtail and whch routes to enhance to reduce 
COVID exposure. More nuanced analysis of the pandemic response, based upon monitored 
customer ride transactions and rider demographics, might help the agency focus on customers 
involved in essential services and have little travel flexibility so as to optimize route and service 
changes in the event of a future pandemic.  
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Data Summary 

Products of Research 

The research team collected no data for this study. The data employed include: 

• General Transit Feed Specification (GTFS) Data - Open source and readily available 
online (link: https://transitfeeds.com/p/marta/65) 

• Automated passenger count (APC) Data - Proprietary data procured from MARTA under 
a specific end-use agreement 

• MOVES-Matrix Energy and Emission Rates - Open source data available through NCST at: 
https://tse.ce.gatech.edu/ncst/movesmatrix  

Data Format and Content 

• GTFS Data - Standard GTFS format 

• APC Data - Proprietary  

• MOVES-Matrix Energy and Emission Rates - Text arrays 

Data Access and Sharing 

• GTFS Data - Open source available online 

• APC Data - Proprietary 

• MOVES-Matrix Energy and Emission Rates - Open source data available through NCST at: 
https://tse.ce.gatech.edu/ncst/movesmatrix  

Reuse and Redistribution 

There are no restrictions with respect to re-use and redistribution of the results dataset used to 
populate the analyses presented in this report and are available through Zenodo 
(https://zenodo.org/record/7231978#.Y1GseHbMKF4). The GTFS data are public domain. The 
proprietary MARTA APC data cannot be distributed by the research team and must be obtained 
from MARTA. MOVES-Matrix data are public domain. 

https://transitfeeds.com/p/marta/65
https://tse.ce.gatech.edu/ncst/movesmatrix
https://tse.ce.gatech.edu/ncst/movesmatrix
https://zenodo.org/record/7231978#.Y1GseHbMKF4
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Appendix A - TransitSim Processing Flowchart 
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Appendix B - Route-specific data summary 
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