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Abstract

We describe Quanti.us, a crowd-based image-annotation platform that provides an accurate 

alternative to computational algorithms for difficult image-analysis problems. We used Quanti.us 

for a variety of medium-throughput image-analysis tasks and achieved 10–50× savings in analysis 

time compared with that required for the same task by a single expert annotator. We show 
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equivalent deep learning performance for Quanti.us-derived and expert-derived annotations, which 

should allow scalable integration with tailored machine learning algorithms.

Image analysis is increasingly crucial in quantitative biology and medicine1,2. Features in 

images can be accurately annotated by humans, but this approach becomes impractical 

when one is working with hundreds to thousands of images. Therefore, researchers use 

custom-written scripts to analyze images via methods such as contrast-based segmentation, 

edge detection, and tracking2–4. These approaches can give excellent performance under 

specific experimental conditions, but they can respond unpredictably to slight variations 

in experimental setup. Issues related to image volume and diversity have motivated the 

development of machine learning algorithms including convolutional neural networks 

that are trained on extensive sets of human-annotated images5. Synthetic datasets offer 

researchers some ability to circumvent high annotation burdens, but they often do not 

capture the range of real-world phenotypes that algorithms must discriminate between6,7.

Crowdsourcing offers an attractive alternative. Indeed, the scientific community has begun 

to build annotation pipelines that leverage large groups of human annotators working in 

parallel. Specific large-scale image-annotation projects have been custom-built in platforms 

such as EyeWire1 and Project Discovery8. Zooniverse9 aims to make crowd annotation 

accessible to scientists across disciplines by allowing researchers to select from a palette 

of image-annotation tools, and offers a modular interface for use by volunteer annotators. 

However, all of these platforms rely on a volunteer labor pool, which requires continuous 

marketing or ‘gamification’ to draw attention to individual projects, and to make up 

for inconsistent motivation among human annotators and temporal volatility in volunteer 

numbers10,11. Practically speaking, this means that jobs can suffer from lower annotation 

collection rates and quality12 (Supplementary Note 1). Other crowdsourcing approaches, 

such as Amazon’s “Mechanical Turk,” enable operators to circumvent these problems 

through the use of micropayments. However, services like Mechanical Turk are not yet 

used extensively by the life sciences community, perhaps because they lack interfaces for 

generic image annotation and have not been quantitatively validated.

We therefore developed Quanti.us, a flexible portal that helps scientists recruit groups of 

untrained Mechanical Turk workers (‘Turkers’) to annotate images using a set of interaction 

tools that can be applied individually to many types of jobs. Annotations can be collected 

and used in series to refine further rounds of annotation, like pre-segmented input to 

conventional algorithms, or used as training data for machine learning algorithms (Fig. 1a).

The Quanti.us website allows researchers to upload image sets, choose an analysis tool, and 

provide simple sets of instructions. Turkers are presented with individual images or sets of 

sequential images as stacks via a ‘slider’ interface. Each image or stack is referred to as a 

‘task’ within a larger ‘job’. The website automatically interfaces with Mechanical Turk to 

set up tasks and return raw data to the researcher. These data include click location, Turker 

identification numbers, and time stamps. Quanti.us can also provide a link to users for 

access to a free ‘test mode’ that allows them to bypass Turkers and recruit annotators from 

other communities such as classrooms, the general public, or research groups (Methods).
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We first evaluated Quanti.us for a particle-discrimination task involving images of 

fluorescent cells migrating through a porous Transwell membrane (Fig. 1b). Counting such 

cells on the basis of contrast-defined segmentation is difficult because the autofluorescent 

pores of the membrane are hard to distinguish from cells. We tasked Turkers with clicking 

on cells with a crosshair tool and evaluated their performance relative to a ‘ground truth’ 

expert dataset. We found that 59% of Turkers who completed at least one image performed 

better in terms of both precision (the ability to exclude false positives) and recall (the ability 

to exclude false negatives) than a semi-automated FIJI pipeline consisting of brightness 

threshold, watershed, and particle-size threshold steps (Fig. 1c).

We asked multiple Turkers to analyze each image and then leveraged the ‘wisdom of 

crowds’ to improve the overall performance by means of two strategies13. First, subtractive 

spatial clustering of the annotations from ten replicate Turkers produced precision and 

recall metrics of 0.99 and 0.81—0.015 and 0.18 higher, respectively, than the values 

obtained from application of the performance envelope followed by the FIJI algorithm 

for different particle-size thresholds. The ability of crowds to mitigate the effects of rare 

poorly performing workers was accrued for as few as three replicates per image (Fig. 1d). 

Second, we generated an inherent Turker quality score by comparing annotations from each 

Turker with clusters generated from annotations made by their peers, which could allow 

more poorly performing Turkers to be automatically screened out, even without an expert 

dataset for comparison14. When we filtered out the contributions of the bottom third of 

Turkers, the performance of Quanti.us increased to within the range of the performance of 

five other experts who were not involved in generation of the ground truth dataset (Fig. 

1c, inset). Turkers also improved in performance at cell/pore discrimination over their first 

50 annotations, with average false positive rates decreasing from 3.7% to 1.3% per click 

(Fig. 1e). These data suggest opportunities to further improve Turker performance by, for 

example, providing an initial training image set.

In our evaluation of pointing accuracy, we saw that average Turker clicking periods 

correlated with root-mean-square (r.m.s.) errors, according to Fitts’s law of speed–accuracy 

tradeoffs in human pointing tasks15 (Fig. 1f). Median Turker click times were ~2s for r.m.s. 

errors of ~3 pixels. Overall, the 129 Turkers who made at least one annotation had r.m.s. 

errors of less than 13 pixels (the average diameter of the cells they annotated). In agreement 

with other studies of worker contributions in crowds, the number of images attempted by 

each Turker followed the Pareto ‘80/20’ principle: ~20% of Turkers accounted for ~80% of 

images completed10 (Supplementary Fig. 1).

Because Quanti.us pays individuals to annotate images through Mechanical Turk, Turkers 

change their performance and job choice on the basis of the economic tradeoffs inherent 

in completing a task accurately and quickly16. We measured the relationships among 

Turker performance, task complexity, overall task completion rate, and the amount paid 

per task. We ran calibration experiments on synthetic ground truth images containing 

variable numbers of spatially distributed particles. We found that Turkers tolerated around 

60 annotations per image task at a pay rate of $0.02 per image (Supplementary Fig. 2a–

d). Above this image-complexity threshold, the average number of images attempted by 

Turkers dropped from 15 to 8. At complexity levels above 110 particles per image, recall 
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dipped from > 0.8 to ~0.6, and the rate of collected annotations dropped from > 25,000h−1 

to ~3,000h−1. However, an increase in the amount paid per image broadly reversed these 

complexity-associated losses in recall and overall annotation rate (Supplementary Fig. 

2e–g). We observed an annotation collection rate of ~105 h−1 for images requiring 110 

annotations each at $0.06 per image, reflecting a time savings of 10–50× compared with that 

required for a single expert annotator to achieve similar accuracy (Supplementary Fig. 2e 

and Supplementary Note 2).

We next assessed the performance of this approach on more complex annotation tasks. First, 

we asked Turkers to draw polylines (piecewise linear curves) over microtubules recorded in 

a ‘gliding’ motility assay17 (Fig. 2a). Such images are challenging to segment automatically 

because microtubules often overlap. We spatially clustered polyline annotations from 

ten Turkers per image, and used these cluster centers as input to FIJI’s TrackMate 

plugin. We then compared these data with the output of a semi-automated gliding assay 

analysis package, FIESTA4,17. Although both Quanti. us and FIESTA velocity distributions 

approximately matched that recovered from manual microtubule tracking by an expert, the 

Quanti.us microtubule-length distribution matched the expert distribution more closely than 

FIESTA’s. This seemed to be because Turkers were better at ignoring overlap junctions 

between microtubules, whereas FIESTA tended to break microtubule annotations into 

smaller segments bordered by junctions (Fig. 2a).

Pushing Quanti.us toward 3D image analysis, we asked Turkers to draw closed polygons 

over cell nuclei in frames from a stack of fluorescence microscopy images of epithelial 

cysts (Fig. 2b). We clustered outlines from individual Turkers by thresholding their degree 

of overlap, and generated consensus outlines suitable for comparison with outlines from 

a conventional 3D nuclear segmentation algorithm (MINS)3 or from a trained expert. The 

consensus Turker outlines and expert outlines gave similar estimates of the number of 

nuclei in the stack, resulting in precision and recall metrics greater than 0.9 for the Turker 

collective compared with the expert’s values. Certain parameter sets used during MINS 

analyses gave similar performance, although these parameters required optimization to suit a 

particular frame in each stack. We used a pixel-wise scheme to analyze precision and recall 

in order to compare estimates of nuclear area18, and observed moderate performance of the 

Turker collective compared with that of the expert. However, in this analysis the Turker 

collective performed better than MINS across a wide range of parameters. We also saw 

similar outlining performance for Turker collectives and experts in an epithelial organoid 

annotation task that required segmentation of bright-field microscopy images against a 

dynamic background of migrating single cells, which negatively affected the performance of 

an automated segmentation algorithm (Supplementary Fig. 3).

We tasked Turkers with making multiple crosshair annotations to track the nose, digits, 

and tail of a freely moving mouse in a movie showing the mouse’s ventral aspect (Fig. 

2c). Clustered Turker annotations were analyzed by FIJI’s TrackMate, and successfully 

captured the dynamics recovered through manual gait analysis by a trained expert. These 

dynamics were missed by conventional contrast-based segmentation consisting of brightness 

thresholding, particle analysis, and TrackMate because of difficulty in distinguishing the 

mouse from the background. In the more difficult case of tracking ants in low-contrast 
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images acquired near terrestrial nests (Supplementary Note 3 and Supplementary Fig. 4), 

we found that an initial deficiency in Turker performance compared with that of an expert 

for single images could be overcome if Turkers were presented with multiple images via 

the slider interface, which took advantage of the ants’ movement to make them more easily 

detectable. This shows that although the Turkers lacked the prior knowledge and experience 

of experts, this deficit could be compensated for when the task was presented in a more 

tailored context.

Finally, we tested the use of Quanti.us-derived annotations as training data for machine 

learning. As proof of principle, we studied a movie of fluorescently labeled mammary 

epithelial cell clusters spreading over an in vitro culture surface, a particularly challenging 

problem because of frequent cell overlaps and heterogeneous cell morphologies that change 

over time (Fig. 2d). We trained a deep convolutional regression network19,20 on Turker 

annotations to determine whether it could achieve performance similar to that of a network 

trained on expert annotations (Supplementary Note 4). After designing a two-stage training 

procedure, we produced an algorithm trained on the annotations of ten Turkers; this yielded 

an F-score (the harmonic mean of precision and recall) similar to that of an algorithm trained 

on the annotations of an expert (0.68 and 0.71, respectively). Both algorithms showed better 

performance than traditional Bayes-optimal Otsu segmentation (F-score of 0.62). Further, 

the performance of the algorithm trained on the Turker collective was better than the mean 

performance of algorithms trained on annotations from individual Turkers, reflecting a 

‘wisdom of the crowd’ benefit to the training process (Supplementary Fig. 5).

Quantitation of biomedical imaging data remains a major bottleneck. The Quanti.us 

approach addresses this bottleneck by making crowd analysis of scientific images fast 

and applicable to many annotation problems. We show here that Quanti.us can enable 

researchers to gather hand annotations quickly, at significant scale and with high quality, 

by marshaling paid Turkers to annotate a range of image types. Annotations of difficult 

segmentation tasks may be used both for rapid pilot-scale analyses and to train convolutional 

neural networks. Quanti.us is also designed to allow nimble image annotation that better 

suits the iterative cycles of imaging, analysis, and hypothesis reformulation that characterize 

life science research. Pools of even higher-quality Turkers could be curated through dynamic 

performance tracking. Further, Quanti.us tasks could be integrated with machine learning to 

produce multi-stage annotation pipelines. These efforts would simplify quantitative biology 

analyses for fundamental, health-related, and diagnostic ends.

Methods

Annotation collection using Quanti.us.

Image sets were uploaded to quanti.us, a publicly available website developed for this 

work. The website enables a researcher to upload an image set (each image is considered 

a task within the larger job), select an annotation tool, provide instructions to Turkers 

(Supplementary Fig. 6), and specify the desired number of ‘replicates’ (number of 

independent Turkers making annotations on each image task). A cost calculator gives the 

researcher a transparent estimate of the cost of the job before it is submitted. Each image 

task in the job is created by Quanti.us as a ‘human intelligence task’ on Amazon Mechanical 
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Turk16. When all tasks are complete, Quanti.us returns annotations as Cartesian coordinates, 

along with individual anonymized Turker identification numbers. Time stamps are also 

returned for each submitted image, and for each annotation relative to the first annotation 

made by a given Turker on that image.

Quanti.us can also be used in a free test mode that has two key uses. First, it enables users 

to test-drive their own job as if they were Turkers, which allows them to check the rendering 

of their images, how their annotation tool operates, how their instructions appear to Turkers, 

the format of the raw annotation data they can expect to be returned to them, etc. Second, 

it can provide a public link to the job that the user can disseminate to any other annotators 

from other communities such as classrooms, the general public, or their own research group.

We encourage users to experiment with small trial batches of five to ten images before 

submitting larger batches intended for final analysis in order to determine a set of 

instructions that best informs Turkers of the intended annotation outcome. Users can also 

‘stress test’ their annotation experiment by sending a link to the Quanti.us test mode version 

of the job to non-expert peers. These peers can then provide feedback on image quality, 

instruction clarity, and overall difficulty of the task, for example.

A detailed Matlab pipeline with instructions and example images that covers automated 

image pre-processing for upload to Quanti.us and many annotation post-processing and 

overlay options is publicly available (see “Code availability”)

Annotation post-processing.

Annotations were overlaid onto images and postprocessed with custom scripts in Matlab 

R2015b (Mathworks, Natick, MA). Descriptions of annotation methods by figure are 

presented in Supplementary Table 1. Spatial subtractive clustering was performed on 

individual annotations made with the crosshair tool, or on centroids of sets of annotations 

made with the polyline tool (subclust.m). In analyses of crosshair annotations made by 

individual Turkers, false positive annotations (fp) were taken as those more than x pixels 

from the nearest annotation in the corresponding expert ground truth dataset (true positives 

(tp)), and false negative annotations (fn) were taken as ground truth annotations more than 

x pixels from the nearest annotation made by the Turker. The value of x was set to twice 

the average full width at half-maximum of the objects being annotated. The collective 

performance of Turkers was evaluated via similar computations for clusters rather than for 

individual annotations. A simple Turker score was defined as 1 – ((fp’+ k × fn’)/(2 × tp’)), 

where fp’ and fn’ are the numbers of false positives and false negatives determined for the 

Turker under consideration relative to Turker annotation clusters (tp’) rather than the expert 

ground truth annotations. The score can be tailored to specific job types through the arbitrary 

parameter k (we set k = 0.2 for Fig. 1). More complex inherent worker quality scores have 

also been defined14.

Spatial r.m.s. errors for each Turker were computed from the minimal distances between 

their true positive annotations and corresponding ground truth annotations. Performance 

metrics were precision (tp/(tp + fp)) and recall (tp/(tp + fn)). Fitts’s law was fit using the 
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Levenberg–Marquardt algorithm22 (fit.m) as t = a + blog2 ((c + σ)/σ), where a, b, and c are 

fitting parameters, and σ is the r.m.s. error.

The centroids of polyline objects associated with each image were clustered and an arbitrary 

distance threshold was used to determine the membership of a given polyline in a consensus 

group describing a putative image structure. Polylines outside this threshold were discarded. 

For microtubule polylines, centroids were computed from the set of annotations in each 

group and passed as input to FIJI’s TrackMate23 (National Institutes of Health, Bethesda, 

MD, USA) to determine velocity distributions. The annotations in each group could also 

be fit by Deming regression24 to extract consensus polylines and their length distributions 

(deming.m). For polygon and freehand annotations, we used a threshold on the spatial 

overlap of outlines to assign them to local consensus groups in each image. We converted 

outlines in each group to a consensus outline by summing their associated masks and 

performing thresholding, erosion, and dilation. Overlapping consensus outlines within an 

image were discarded via a similar thresholding step. For 3D image stacks, a threshold 

on the overlap between consensus outlines in successive z frames was used to ‘connect’ 

annotations to form 3D segmentations.

The MINS analysis3 in Fig. 2b was conducted for 18 parameter sets comprising all 

combinations of expected nucleus diameter (20, 30, 40 μm), noise level (2, 3), and kernel 

smoothing (1.0, 1.5, 2.0).

Users should undertake their own data quality assessment for each job type to ensure 

interpretability and accuracy of the raw Quanti.us output. This typically involves, first, 

overlaying raw annotations onto the input images as a visual check for a rough 

correspondence between image features and annotations. Second, spatial clustering of 

Turker annotations should be performed, and the results of the Turker collective should 

be compared with corresponding expert annotations for a small, representative subset of 

each batch of images submitted. Qualitative or quantitative evaluation of precision and recall 

metrics is suited to this. The user can generate these expert annotations with the image 

analysis software of their choice—for example, FIJI—or through the Quanti.us test mode 

that provides users with a link to a test area where they can annotate their own image sets 

(see “Annotation collection using Quanti.us”).

Machine learning.

We trained a machine learning system to predict the center locations of cell nuclei in 500 × 

500 pixel images. Conventional approaches such as the extraction of regional features25 to 

develop a region-level detector did not offer viable options owing to the small size of the 

cellular objects. In contrast, a convolutional neural network (CNN) allowed an end-to-end 

system design without extraction of separate features to be fed into the learning system. The 

CNN transforms the image channels by applying a set of ‘learnable’ filters, successively, 

directly into an output matrix (as big as the input image) containing high scores in the 

locations of nuclei centers and very small to almost zero scores elsewhere. The objective of 

a fully convolutional regression network19 is to regress this Gaussian weighted output matrix 

from the input image channels. Here, the term “fully convolutional” refers to the fact that 

the target variable is a matrix of full image size instead of a vector quantity. The output 
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matrix yields the center locations of the nuclei upon local thresholding. The hierarchical 

(layered) filter structure constitutes a ‘deep’ neural net. The filters encapsulate both linear 

(convolution) and nonlinear (rectified linear unit (ReLU)26) operations. We adapted an 

elegant regression framework for cellular object detection19. Further, we implemented 

a simple CNN architecture that minimizes an L2 loss with an exponentially decreasing 

learning rate20,27.

For effective stabilization of the network weights (to avoid overfitting), the training process 

proceeded in two stages19: a pre-training stage (with cropped 100 × 100 pixel images and 

augmented by geometric transformations such as flipping and rotation) followed by final 

training with full images. The test set had five images annotated by six experts. The images 

were further augmented (by rotation) to make a final test set of 20 images in total.

The deep CNN had layers comprising convolutional kernels and ReLUs. The CNN layers, 

along with all parameters, were specified in the following order from the input channels to 

the output20,27: convolution (3×3×2×32 kernels), ReLU, convolution (3×3×32×32 kernels), 

ReLU, convolution (3×3×32×1 kernel). The convolution kernels were initialized with Xavier 

weights28. The peaks of the Gaussian weights in the target matrix were set at 7, in 

accordance with prior convention19. The learning rate started at 10−3 for pre-training and at 

10−2 for final training, and decayed exponentially. The weight decay was set at 10−3 for both 

cases. The scores were thresholded at 1.0, with a window for non-maximum suppression as 

large as 25×25 pixels.

The center locations of image objects from the thresholded output matrix were scored for 

false positives and negatives against the expert ground truth as described in the section 

“Annotation post-processing.”

Reporting Summary.

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Code availability.

Source code is available at https://github.com/quantius-science/. This code is published 

under the open source MIT license. Researchers are free to use it without restriction. This 

repository includes code for the Quanti.us pre- and post-processing pipelines and machine 

learning pipeline.

Data availability.

Raw data are available on request from the corresponding author.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Leveraging the wisdom of crowds for scientific image analysis with Quanti.us.
a, Scientists designate a tool that human Turkers then use to annotate uploaded images 

according to a set of brief instructions. The resulting annotations can be interpreted in 

raw form and used as input to conventional algorithms, or be used as training data for 

machine learning algorithms. b, Left, raw example image of cell nuclei (true positives) and 

autofluorescent pores (true negatives). Right, corresponding overlay of expert, Turker, and 

clustered Turker crosshair annotations. False positive and false negative annotations were 

scored against those provided by a trained expert for individual Turkers, or for spatially 

clustered annotations from all Turkers (Methods). Each of 300 images was annotated by ten 

Turkers (a subset of 20 images was used to determine Turker performance). The scale bar 

applies to the higher-magnification (bottom) images, which represent the regions outlined 

by dashed squares in the corresponding images above; high magnification is 3× that in 

the lower-magnification image. c, Precision and recall metrics for individual Turkers (n 
= 46), for the clustered annotations from ten Turkers completing each image (“Turker 

collective”), for other experts not involved in ground truth annotation, and for a conventional 

FIJI object-detection pipeline over a range of particle-size thresholds. An inherent Turker 

quality score is shown. The gray dashed box indicates the portion of the graph highlighted 

in the inset to the right. Inset: the arrow indicates the effect of filtering out the bottom 

one-third of workers, assessed in terms of their performance, on the basis of this score. d, 

Annotations from every combination of a representative set of one to six ‘good’ Turkers 

and one ‘bad’ Turker who completed the same five image tasks were clustered and used to 

determine the indicated performance metrics. e, False positive errors contributed over the 

first k annotations submitted by a Turker (in chronological order), fit by a quadratic function 

(n = 29 Turkers). f, Spatial error of annotations versus the time between annotations, with 

Fitts’s law tradeoff (n = 129 Turkers). Fit envelopes are 95% confidence intervals. Data are 

representative of two experimental replicates.
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Fig. 2 |. Case studies and machine learning integration of Quanti.us.
a, Left, raw example image (top) and corresponding overlay of Turker annotations and 

clustered annotations (bottom) of fluorescent microtubules in a gliding assay, annotated 

with a polyline tool. Each of 50 images was annotated by ten Turkers. Right, FIESTA 

output (top). Plots (bottom) show microtubule speed and length distributions. The scale bar 

applies to the higher-magnification images, which represent the regions outlined by dashed 

squares in the corresponding images; high magnification is 2.75× that in the larger, lower-

magnification images. b, Top, raw image frames of a 3D z-stack spanning an organoid. 

Middle, raw Turker outlines of nuclei, Turker consensus outlines, expert outlines, and MINS 

algorithm outlines associated with one frame of the stack (outlined by a dashed rectangle). 

Ten Turkers annotated 30 frames. The plot in the lower right shows performance metrics 

(prec., precision; rec., recall) for MINS for 18 runs spanning a range of parameter settings 

(Methods), and for the Turker collective, relative to results from an expert. c, Left and 

top, raw example images and corresponding overlays of Turker annotations and clustered 

annotations of the nose, digits, and tail of a walking mouse (images adapted with permission 

from ref. 21, Springer Nature). Each of 29 images was annotated by 20 Turkers. We input 

expert or spatially clustered Turker annotations into FIJI’s TrackMate to construct gait plots 

(bottom) and also compared them to results of a conventional segmentation (seg.) pipeline in 

FIJI. “Hind” and “fore” refer to limbs. d, Left, raw example images (top) and corresponding 

overlays (bottom) of Turker annotations and clustered annotations for 2 of 48 frames from a 

movie of mammary epithelial cell spreading (ten Turkers per frame). Right, F-score plotted 

for five experts; the Turker collective; automated Otsu segmentation; and convolutional 
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neural networks trained on annotations from five randomly chosen Turkers, clustered Turker 

annotations, or expert annotations. Data are shown as mean ± s.d. and are representative of 

at least two experimental replicates.
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