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Derivative Free Gradient Projection

Algorithms for Rotation

August 5, 2003

A simple modification substantially simplifies the use of the gradient pro-

jection (GP) rotation algorithms of Jennrich (2001, 2002). These algorithms

require subroutines to compute the value and gradient of any specific rota-

tion criterion of interest. The gradient can be difficult to derive and program.

It is shown that using numerical gradients gives almost precisely the same

results as using exact gradients. The resulting algorithm is very easy to use

because the only problem specific code required is that needed to define the

rotation criterion. The computing time is increased when using numerical

gradients, but it is still very modest for most purposes. While used exten-

sively elsewhere, numerical derivatives seem to be under utilized in statistics.
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1 Introduction

This note introduces a simple very useful modification to the gradient projec-

tion (GP) algorithms of Jennrich (2001, 2002). These algorithms are appli-

cable to orthogonal and oblique rotation, and are themselves simple and very

general, applying not just to factor analysis, but to other forms of rotation

as well. As there name suggests GP algorithms use gradients of the rotation

criterion they are designed to optimize. For many standard methods of rota-

tion these gradients are easy to derive and implement, but this need not be

the case, especially when experimenting with new methods or comparing a

variety of methods. We will show that the gradients in GP algorithms may

be replaced by numerical approximations with essentially no effect on the

results produced. The numerical gradients may be produced using a simple

general method that is not problem specific. Thus the only thing required

for a specific application is a definition of the criterion used.

Browne (2001) has given a rotation algorithm using pairwise rotation and

line searching that is very general and like the derivative free GP algorithm

requires only a definition of the criterion used. Its use is restricted to factor

analysis applications or at least to applications where the argument of the

rotation criterion is square. Since most applications of rotation are to factor

analysis this is a minor restriction.

The use of numerical gradients generally requires more computer time

than using exact gradients, but even on large problems this is small. For

example for a quartimin rotation with 100 variables and 10 factors the com-
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puter time using numerical gradients was 12.97 seconds compared to .157

seconds using exact gradients. For research purposes one may well be will-

ing to trade 12.97 seconds of computer time for the personal effort required

to derive gradient formulas and implement them. When producing software

for a specific form of rotation that will be extensively used, however, exact

derivatives are probably the appropriate choice.

The basic GP algorithms used here employ a minor modification to those

of Jennrich (2001, 2002). This is discussed in Section 3. Matlab (1995) code

employing this modification with and without the numerical gradient modifi-

cation may be downloaded from http://www.stat.ucla.edu/research/gpa.

2 The rotation problem

LetR denote the set of all k by m matrices with k ≥ m and let f be a function

defined on R. The general orthogonal rotation problem is to minimize

f(T ) given T ∈ O

where O is the set of all T in R with orthonormal columns. The general

oblique rotation problem is to minimize

f(T ) given T ∈ N

where N is the set of all T in R with normal columns, that is columns of

length one.

For rotation in factor analysis the matrices in R are square and f has a
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special form. For orthogonal rotation

f(T ) = Q(AT )

and for oblique rotation

f(T ) = Q(A(T ′)−1)

where Q is a factor analysis rotation criterion, for example quartimin, and A

is an initial loading matrix.

3 Basic GP algorithms

Jennrich (2001, 2002) has given GP algorithms for orthogonal and oblique

rotation. To simplify presentation consider the general problem of minimizing

f(T ) given T ∈M

where M is an arbitrary submanifold of R. When M = O this is the

general orthogonal rotation problem and when M = N it is the general

oblique rotation problem.

What makes the orthogonal and oblique GP algorithms work is that in

in either case it is easy to project an arbitrary X in R onto M. Let ρ(X)

denote the projection. The basic GP algorithm proceeds as follows. Let T be

in M and G = df/dT be the gradient of f at T . A step in the GP algorithm

updates T to

T̃ = ρ(T − αG) (1)
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Jennrich (2001,2002) has shown that if T is not a stationary point of f

restricted to M, replacing T by T̃ will decrease f(T ) for all sufficiently small

α > 0. Using this, partial stepping produces a strictly monotone algorithm

for minimizing f restricted to M.

Here we use a modification of this procedure motivated by a desire to

simplify and improve the partial stepping procedure. Let Gp be the projection

of G onto the linear manifold tangent to M at T . Jennrich (2001,2002)

has shown that T is a stationary point of f restricted to M if and only if

Gp = 0. The GP algorithm is stopped when Gp is close to zero. This is a

useful stopping rule because when it stops does not depend on the speed of

the algorithm or even on the algorithm used. The modified GP algorithm

used here replaces G in (1) by Gp. This is a minor modification because

Gp is already computed for use in the stopping rule. The update with this

replacement is

T̃ = ρ(T − αGp) (2)

Like the update in (1) it has the property that if T is not a stationary

point of f restricted to M, replacing T by T̃ decreases f(T ) whenever α >

0 is sufficiently small. Orthogonal and oblique GP algorithms with this

modification may be downloaded from the web site given above.

4 Derivative free GP algorithms

GP algorithms use the gradient G = df/dT of f at points T in M. The

derivative free version of the GP algorithm approximates G by using nu-
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merical derivatives. There are several methods of approximation that might

be used. One may, for example, use the forward differences found in a first

course in calculus, symmetric differences, or some form of Richardson ex-

trapolation (see e.g. Conte and deBoor, 1980). Because they are simple, are

frequently used, and work quite well in our applications, we have used sym-

metric differences. More specifically, we approximated the partial derivative

of f(T ) with respect to the component trs of T using

Grs =
∂f

∂trs

≈ f(T + δJ(r, s))− f(T − δJ(r, s))

2δ

where J(r, s) is a k by m matrix with a one in the (r, s) position and zeros

elsewhere and δ is a small increment. Note that G is approximated one

component at a time. While choosing an appropriate δ is a potential problem,

the value δ = .0001 has never failed in our examples.

5 Testing the numerical derivatives

To test the efficacy of using numerical derivatives we will compare results

of using numerical and exact derivatives in the context of oblique quartimin

(Carroll, 1953) and simplimax (Kiers, 1994) rotation in factor analysis. Fac-

tor analysis was chosen because it represents the most common area of appli-

cation of rotation. Oblique rotation was chosen because it provides a larger

class of potential rotations and is generally more difficult than orthogonal

rotation. Quartimin was chosen because it is extensively used and tends to

be insensitive to starting values. Finally simplimax was chosen because it
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is a promising newer method that differs considerably from quartimin. We

will evaluate the precision of the results produced using numerical derivatives

and the computer times required.

5.1 Numerical precision

Let Λe be the rotated loading matrix produced by a GP algorithm using

exact derivatives and Λn be the corresponding loading matrix produced using

the numerical derivatives described above. We will compute the minimum

number of decimal places of agreement between the components of Λe and

Λn. More specifically we will compute

agre = − log10 max
rs
|λ(n)

rs − λ(e)
rs |

where λ(n)
rs and λ(e)

rs denote the (r, s) components of Λn and Λe respectively.

To generate data for the quartimin comparisons let

A0 = I ⊗ u

where I is a k by k identity matrix, u is a column vector of b ones, and ⊗

denotes the Kronecker product. Then A0 has perfect simple structure, that

is it has at most one nonzero element in each row. Let Z be a p = bk by

k matrix whose components are independent standard normal variables and

let

A = A0 + .25Z (3)

Using 50 variables and 5 factors, that is b = 10 and k = 5, 100 independent

realizations of A were generated for use as initial loading matrices. Note that
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these A are not particularly similar nor are their rotations. This is because

the random term .25Z is not particularly small.

The quartimin GP algorithm using exact and numerical derivatives was

applied to each initial loading matrix and the minimum number of digits of

agreement computed. All rotations used an identity start. The algorithms

converged to a stationary point in every case and required the same number

of iterations in all but one case where the numerical derivative algorithm

required one less iteration than the exact derivative algorithm. The number

of iterations required ranged from 23 to 76. The minimum number of digits

of agreement ranged from 6.86 to 8.64 with a median of 8.29. For many

applications this degree of agreement is almost perfect. This agreement was

for the rotations produced directly. No alignment, that is column sign change

or permutation, was required.

For the simplimax comparisons Thurstone’s (1947) well known 26 variable

box data was used. This may also be found in Kiers (1994). The simplimax

criterion is not continuous, but Kiers has shown how it may be optimized

using an iteratively re-weighted pairwise rotation algorithm. Jennrich (2002)

has shown this may also be done by replacing cycles of pairwise rotations

by GP steps. We will compare numerical and exact gradient versions of

this GP simplimax algorithm. The simplimax criterion tends to have local

minima. To deal with this Kiers recommends using the best of a number

of random starts. We will compare results obtained from 10 random starts,

the number used by Kiers for the box data. By a random start we mean a

rotation matrix T whose columns are statistically independent and uniformly
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distributed over the unit sphere in k dimensions. The exact and approximate

gradient algorithms converged to a stationary point from each of the 10

random starts and required the same number of iterations from all but one

start where the numerical gradient algorithm required one less iteration. The

number of iterations required ranged from 18 to 147. The minimum number

of digits of agreement ranged from 6.68 to 8.40 with a median of 7.98 which

again for many applications is almost perfect. The loading matrix produced

by the best of the 10 random starts agreed exactly to the precision displayed

with that given by Kiers.

5.2 Time comparison.

When many are required, numerical derivatives can be expensive to compute.

To investigate this, independent realizations of initial loading matrices of the

form (3) were generated for b = 10 and k = 2, · · · , 10. Choosing b = 10 is

somewhat arbitrary, but using 10 variables per factor is not unreasonable.

These realizations were rotated using the quartimin GP algorithm with exact

and numerical derivatives. The computing times using a Power Macintosh

G3 ranged from .024 to .647 seconds using exact derivatives and from .051 to

21.73 seconds using numerical derivatives. For each k = 2, · · · , 10 the ratio

of the time required using numerical derivatives to that required using exact

derivatives was computed. These ratios, plotted in Figure 1, ranged from

2.13 for k = 2 to 41.83 for k = 10. Clearly for a production program, such

as a SAS (1999) program, or a simulation study, exact derivatives would be
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preferred, but for general research on rotation methods an investigator may

be eager to trade seconds of computer time for the effort involved in deriving

exact derivatives and implementing the software to compute them.

Exact gradients can be easy to compute. For the quartimin criterion

G = −(Λ′Λ3T−1)′

where Λ3 is the elementwise cube of Λ (Jennrich, 2002). In other cases,

however, exact gradients may be difficult to obtain. McCammon’s (1966)

entropy criterion has the form

Q(Λ) =

∑ ∑
e(sir

s.r
)∑

e(s.r

s..
)

where sir = λ2
ir, e(x) = −x log x, s.r =

∑
i sir, and s.. =

∑
r s.r. Deriving an

exact gradient G is quite difficult requiring, for the author at least, a substan-

tial effort. For other than a large number of applications of McCammon’s

method, there is a real advantage in using a derivative free approach.

6 Discussion

The main point of this note is very simple. Replace the derivatives in the

GP algorithms for rotation by numerical derivatives. This modification is im-

portant because it provides an algorithm for optimization of any orthogonal

or oblique rotation criterion while requiring the minimum possible problem

specific information, namely the definition of the criterion.
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Figure 1: The ratio of the computer time required by the numerical gradient

method to that required by the exact gradient method as a function of the

number of factors
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Although numerical derivatives are extensively used in applied mathe-

matics, they seem to be under-utilized in statistics and psychometrics. A

key word search of the Current Index to Statistics for “numerical deriva-

tives” or “numerical differentiation” produced only two references, neither to

psychometric journals. This is surprising because as we have seen numerical

derivatives can work quite well. That this is often the case seems to be a

well kept secret.
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