
UC Riverside
UCR Honors Capstones 2019-2020

Title
An Autonomous Robot Capable of Scaling a Self-Built Structure

Permalink
https://escholarship.org/uc/item/2x29074p

Author
Kolb, Jack

Publication Date
2021-01-11

Data Availability
The data associated with this publication are within the manuscript.

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2x29074p
https://escholarship.org
http://www.cdlib.org/

By

A capstone project submitted for
Graduation with University Honors

University Honors
University of California, Riverside

APPROVED

Dr.
Department of

Dr. Richard Cardullo, Howard H Hays Jr. Chair, University Honors

AN AUTONOMOUS ROBOT CAPABLE OF

SCALING A SELF-BUILT STRUCTURE

Jack Kolb

June 4, 2020

Campbell Dinsmore
Mechanicall Engineering

Abstract

Falls from scaffolding and ladders make up 34% of construction site injuries and deaths. To
reduce human involvement on those structures, we developed a detailed design package and
virtual prototype of a robot capable of autonomously constructing, ascending, and descending a
structure. The robot consists of four main systems: a mechanical system, an electrical system, a
software system, and the structure. The robot iteratively constructs a cubic structure around itself
by elevating the structure and positioning the next block underneath the elevated structure. The
robot is then able to climb the structure from the inside. Three electromechanical mechanisms are
used to accomplish this: a lifting and climbing mechanism to elevate and climb the structure, a
cube latch mechanism to pull in the next cube, and a rotating plate mechanism to allow the robot
to perch on top of the cubes while climbing. The robot is able to construct and climb the cube
structure to at least three feet. To verify the design, a finite element analysis was conducted on
each externally-loaded component to determine their maximum deflections, maximum stresses,
and factors of safety. These analyses showed that all components of the robot and structure can
support their worst-case anticipated loads. The robot was also exported into the Gazebo 3D
simulation environment, where the software package was tested on a virtual prototype to verify
that the autonomous systems functioned correctly. Three main recommendations are to improve
the cube structure design so that the maximum structure height can be increased, to research
alternative commercial off-the-shelf components to lessen the manufacturing and operational
limitations, and to research additional uses for this technology at construction sites. In
conclusion, the proposed robot design successfully meets all design requirements, and future
work could further develop the design for commercial use.

1

Executive Summary

Falls from scaffolding and ladders make up 34% of construction site injuries and deaths. To
reduce human involvement on those structures, the engineering team developed a detailed
design package and virtual prototype of a robot capable of autonomously constructing,
ascending, and descending a structure. The robot consists of four main systems: a mechanical
system, an electrical system, a software system, and the structure. The robot iteratively
constructs a cubic structure around itself by elevating the structure and positioning the next
block underneath the elevated structure. The robot is then able to climb the structure from the
inside. Three electromechanical mechanisms are used to accomplish this: a lifting and
climbing mechanism to elevate and climb the structure, a cube latch mechanism to pull in the
next cube, and a rotating plate mechanism to allow the robot to perch on top of the cubes
while climbing. The robot is able to construct and climb the cube structure to at least three
feet. To verify the design, a finite element analysis was conducted on each externally-loaded
component to determine their maximum deflections, maximum stresses, and factors of safety.
These analyses showed that all components of the robot and structure can support their worst-
case anticipated loads. The robot was also exported into the Gazebo 3D simulation
environment, where the software package was tested on a virtual prototype to verify that the
autonomous systems functioned correctly. Three main recommendations are to improve the
cube structure design so that the maximum structure height can be increased, to research
alternative commercial off-the-shelf components to lessen the manufacturing and operational
limitations, and to research additional uses for this technology at construction sites. In
conclusion, the proposed robot design successfully meets all design requirements, and future
work could further develop the design for commercial use.

2

Table of Contents

 Page

Executive Summary 1

Table of Contents 2

1 Introduction 5
1.1 Problem Statement 5
1.2 Problem Identification 5
1.3 Motivation 6
1.4 Presumed Results 6
1.5 Report Summary 6

2 Problem Definition 6
2.1 Background Research 6

2.1.1 Construction Site Hazards 6
2.1.2 Scaffolding and Stable Structures 7

2.2 Specifications and Constraints 7
2.2.1 Functional Performance Requirements 7
2.2.2 Physical Requirements 8
2.2.3 Environment Requirements 8
2.2.4 Life-cycle Requirements 8
2.2.5 Human Factors 8

3 Design Solution 9

3.1 Overview of Final Design 9
3.1.1 Building the Structure 10
3.1.2 Ascending and Descending the Structure 11

3.2 Mechanical Systems 12
3.2.1 Base Plate 12
3.2.2 Lifting and Climbing Mechanism 13

3.2.2.1 Linear Actuator 14
3.2.2.2 Dual Hook Assembly 15

3.2.3 Cube Latch Mechanism 17
3.2.3.1 Linear Slides 18
3.2.3.2 Cube Latch Assembly 19

3.2.4 Rotating Plate Mechanism 21
3.2.4.1 Rotating Plate 22

3.3 Electrical Systems 23
3.3.1 Overview of Electromechanical Systems 23
3.3.2 Power Distribution 24

3.4 Software Systems 25
3.4.1 Webserver 26
3.4.2 Robot Operating System (ROS) 26
3.4.3 Finite State Machines 27
3.4.4 Actuator Relay 29

3

3.4.5 Gazebo 30
3.5 Cube 31

4 Design Verification 32
4.1 Overview of Design Verification 32
4.2 Assumptions 32
4.3 Finite Element Analysis (FEA) 33

4.3.1 Lifting and Climbing Mechanism 33
4.3.1.1 Lifting and Climbing Hooks 33

 4.3.2 Cube Latch Mechanism
 35

4.3.2.1 Linear Slides 35
4.3.2.2 Claw 36

4.3.3 Rotating Plate Mechanism 38
4.3.4 Cube Structure 40

4.4 Gazebo Simulation 43

5 Approach to Solution 44
5.1 Brainstorming Methods 44
5.2 Structure 44

5.2.1 Ladder 44
5.2.2 Cube 45
5.2.3 Pole 45

5.3 Concept Generation 45
5.3.1 Design #1: “Quiver” 45
5.3.2 Design #2: “Cart” 46
5.3.3 Design #3: “Ladder” 46
5.3.4 Design #4: “Spider” 46
5.3.5 Design #5: “Pole” 47

5.4 Concept Selection 47
5.4.1 Advantages and Disadvantages 48
5.4.2 Weighted Decision Matrix 48
5.4.3 Design Justification 49

6 Conclusion 50

7 Recommendations 51

References 52

Appendices 54

A Bill of Materials (BOM) 54
B Part Drawings 55

B1 Lifting and Climbing Mechanism 55
B2 Cube Latch Mechanism 61
B3 Rotating Plate Mechanism 66
B4 Cube 69

4

B5 Electronics Compartment 72
C Assembly Drawings 73
 C.1 Sub-assemblies of Lifting and Climbing Mechanism 73
 C.2 Sub-assemblies of Cube Latch Mechanism 77
 C.3 Sub-assemblies of Rotating Plate Mechanism 82
 C.4 Main Assemblies 83
D Code 89

D1 Webserver(Python) 89
D1.1 webserver.py 89

D2 Robot Initialization Script (Python) 90
D2.1 main.py 90

D3 Robot Shared Variable Controller (Python) 90
D3.1 variables.py 90

D4 Robot Status Controller (Python) 92
D5.1 status.py 92

D5 Finite State Machines (Python) 94
D5.1 Overall State Machine – overall.py 94
D5.2 Construction State Machine – contruction.py 95
D5.3 Ascension State Machine – ascension.py 97
D5.4 Descension State Machine – descension.py 99
D5.5 State Machine Actuator Control – actuations.py 101

D6 Simulation Actuator Relay (Python) 104
D6.1 actuators.py 104

D7 Gazebo Plugins (C++) 107
D7.1 Servo Controller – plugin_servo.cc 107
D7.2 Actuator Controller – plugin_actuator.cc 116
D7.3 Robot Spawner -- plugin_spawner.cc 123

D8 Simulation Description Format (SDF) Files 124
D8.1 Robot (Overall) – lbr_robot.sdf 124
D8.2 Robot (Lifting and Climbing Mechanism) – lbr_forklift_left.sdf 125
D8.3 Robot (Lifting and Climbing Mechanism) – lbr_forklift_right.sdf 129
D8.4 Robot (Cube Latch Mechanism) – lbr_cube_grabber.sdf 132
D8.5 Robot (Rotating Plate Mechanism) – lbr_bottom_plate.sdf 137
D8.6 Cube -- lbr_cube.sdf 138

5

1 Introduction

1.1 Problem Statement

Regions around the world, such as Southern California, have historically been an experiment in
what happens when a metropolis builds “out” rather than “up”. Coming up against the realistic
limits of urban sprawl, there is renewed interest in building taller structures that can support higher
density populations. During construction, however, this approach to building exposes workers to
dangerous heights. To minimize or even eliminate this danger, robots can be innovated to build
the initial framing or scaffolding used for the structure. For this project, the goal is to design a
robot that can efficiently and reliably build, ascend, and descend a free-standing scaffolding
structure. Additionally, the robot must assemble the structure with no human intervention once the
assembly process has started.

1.2 Problem Identification

As more people move into cities, buildings must adapt to accommodate the increasing population.
To house more people, taller buildings are being built while construction sites must devise a
method to safely transport workers and materials to higher elevations. The most common method
construction sites use to work at heights beyond the worker’s reach are ladders and scaffolding.
The Code of Federal Regulations (CFR) lists a set of safety requirements that the Occupational
Safety and Health Administration (OSHA) mandates for ladders and scaffolding. OSHA has a
variety of regulations for manufactured ladders brought onto the site, as well as for job-made
wooden ladders made to scale between stories of a building [1]. OSHA also has limits on the loads
carried by scaffolding and scaffolding construction methods in order to create and maintain a safe
and stable structure for workers to place materials and work upon [2]. Despite these regulations,
there are still thousands of construction site accidents caused by falls from ladders or scaffolding.
These accidents usually result in injuries; however, there are many that result in fatalities. In 2009,
OSHA reported that falls accounted for 34% of fatal occupational injuries. Of these injuries, 18%
were from scaffolding or staging, and 16% were from ladders [3]. Therefore, around one-ninth of
falls in a construction site are due to ladders and scaffolding.

To reduce the number of injuries and fatalities from scaffolding and ladders, ladder-climbing
robots have been explored to transport materials up a ladder without human involvement. In the
early 2000s, the Japanese were among the first to create robots and humanoids that could
successfully ascend and descend ladders. The ASTERISK robot was developed in 2008 by Fuji
and his team to be implemented into search-and-rescue missions [4]. This robot has six legs with
claws at the end of each leg. To climb a ladder, the upper three legs would hold the top rung while
the bottom three legs were used to stabilize the robot. This robot was only tested on a vertical
ladder, and a control algorithm was used to prevent the robot and ladder from tipping as it climbs.
This robot didn’t account for ladders at different angles, which would have been more realistic for
search-and-rescue applications.

Another ladder-climbing robot was developed in 2008 by Yoneda and his group. This
humanoid robot or “Multi-Locomotion Robot (MLR)” aimed to replicate animal-like instincts such
as climbing ladders and biped and quadruped walking [5]. To climb the ladder, the research team
proposed that the robot could maintain good posture to balance its momentum around the “Axis

6

of Yaw”. Control algorithms and a recovery motion model were used to mitigate error and tipping
as it climbs the ladder [5].

1.3 Motivation

Globally, more than 50% of humans live in cities [6]. This statistic is ever increasing as well. In
1885, the Home Insurance Building was constructed in Chicago, and set the pathway for many
other American cities to follow in the creation of vertically integrated buildings [7]. As land
becomes scarce to develop upon in the 21st century, multi-story buildings are considered to be the
quintessential solution to vertically scale construction projects for a given population. But, the
construction of these buildings come at a cost—the cost of construction workers’ lives. This leads
into our motivation of mitigating the percentage of falls in construction sites due to ladders and
scaffolding. The goal of this project is to design a robot that can build, ascend, and descend a
structure autonomously and without human intervention. Introducing this structure-building robot
into construction sites will not only assist workers by transporting materials to higher elevations,
but also reduce injury and fatality rates from falls.

1.4 Presumed Results
The goal is to create a virtual prototype of a robot that is capable of autonomously building a
scaffolding-like structure as well as ascending and descending the structure. The robot shall take
initial user input from a software perspective, but shall remain autonomous thereafter, thus
requiring zero human involvement. The autonomy aspect is a crucial component of the project as
it is the ultimate method in eliminating human fatalities at construction sites.

1.5 Report Summary

The following report encapsulates the entire engineering design process with regards to developing
an autonomous structure-building robot. The problem of construction site fatalities will be
analyzed to design and present an appropriate solution. Moreover, each component used in the
design will be discussed and analyzed. Lastly, the analyses ensuring the solution meets the design
requirements and functions properly will be presented in this report.

2 Problem Definition

2.1 Background Research

2.1.1 Construction Site Hazards

The Code of Federal Regulations contains a list of safety regulations that OSHA mandates for
ladders and scaffolding at construction sites. These requirements mandate the maximum load
ladders and scaffolding can hold as well as how to construct them [1]. Despite these regulations,
thousands of accidents occur in the United States every year from falls. These accidents mainly
result in injuries; however, fatalities are prevalent. OSHA reported in 2009 that there were up to
29,382 injuries and 86 fatalities from falls from scaffolding and ladders [8]. These statistics show

7

a great need to remove human interactions with scaffolding and ladders. A robot that autonomously
builds a structure and is capable of ascending and descending the structure to carry materials could
help mitigate human injuries and deaths at construction sites.

2.1.2 Scaffolding and Stable Structures

A primary goal of the project is to create a structure for the robot to be able to reliably build and
climb. To develop a stable structure for the robot to climb, the most common types of ladders and
scaffolding were analyzed. Ladders are used to elevate workers and materials slightly beyond their
reach. They usually require support from both the wall and the ground, but cannot support heavy
loads. The most common commercially available ladders are the single pole ladder, the extension
ladder, and the step ladder [9]. The single pole ladder consists of two rails connected by rungs. It
requires support from both the wall and the ground and is, therefore, not standalone. Extension
ladders are single pole ladders with another set of rails and rungs to allow it to extend past its
maximum height. Like single pole ladders, these are also not self-supporting as they require
support from both a wall and the ground. Finally, a step ladder consists of two sets of rails and
rungs attached in an A-shape [9]. This makes the step ladder standalone, so workers can climb and
place materials within reach. Since all ladders have a maximum height and reach, ladders are not
as versatile as scaffolding. Another way to reduce the number of falls from ladders and scaffolding
is to choose the proper scaffolding for the application. The most common type of scaffolding is
supported scaffolding [10]. This scaffolding is primarily made from wood or metal depending on
the load the scaffold is predicted to hold. It consists of long horizontal and vertical members
connected together to create a grid structure. Shorter members connect two grids together to create
a 3D structure while diagonal members are added for stiffness [10]. This scaffolding is one of the
strongest types of scaffolding as it is self-supporting and can hold heavy loads. Because it is easy
to assemble, cheap, and standalone, it is one of the most common scaffoldings used in construction
[10].

2.2 Specifications and Constraints

2.2.1 Functional Performance Requirements

FPR-1. The robot shall construct and climb a structure to at least three (3) feet high.
FPR-2. The robot shall construct and climb the structure within twenty (20) minutes.
FPR-3. The robot shall construct and climb to a user-input height within (±1) foot
accuracy.
FPR-4. The robot shall be remotely shut down by the user and turn off within one (1)
minute.
FPR-5. The robot shall be remotely signaled by the user to descend the structure, and
descend within ten (10) minutes.
FPR-6. The robot shall construct, ascend, and descend the structure without human
intervention.

8

FPR-7. The robot can use structure components continuously placed near the structure
within (±1) inch of a target position.

2.2.2 Physical Requirements
PR-1. The robot shall contain mechanisms and processes allowing it to construct and
ascend the structure.
PR-2. The built structure must be able to support the robot’s weight during and after its
ascent and descent.
PR-3. The robot must be within a 2ft by 2ft by 2ft size limit.
PR-4. The robot must not weigh more than 30lbs.
PR-5. The robot must be powered by either a NEMA 5-15 120V/15A power supply or
onboard batteries.

2.2.3 Environment Requirements
ER-1. The robot must be able to operate in temperatures ranging from 32◦F to 100◦F.
ER-2. The robot must demonstrate a particulate and water resistance of IP50 [11].
ER-3. The robot must be able to operate on a flat hard-surface floor.

2.2.4 Life-cycle Requirements
LCR-1.The robot must construct, ascend, and descend the structure at least ten (10) times
 before mechanical failure.
LCR-2.Individual electrical components must be salvageable and the mechanical frame
 reusable or recyclable.

2.2.5 Human Factors

HF-1. A human shall be able to position the robot to a starting orientation.
HF-2. A human shall be able to connect the robot to a NEMA-compatible wall outlet.
HF-3. A human shall be able to position the structural elements around the robot if
necessary

HF-4. A human shall be able to send commands to the robot using a remote interface.

9

3 Design Solution

3.1 Overview of the Final Design

The final design of the structure-building robot is divided into four main systems: (1) mechanical,
(2) electrical, (3) software, and (4) structure. Starting from the top, the mechanical system is
comprised of three main components critical in the construction and ascension of the structure. As
depicted in Figure 1, these components include the lifting and climbing mechanism, cube latch
mechanism, and rotating plate mechanism.

Figure 1: The final robot design featuring its main components.

The electrical system uses a microprocessor, a microcontroller, electromechanical actuators,
and auxiliary components to drive the physical robot. The automation and user interface are
managed by the microprocessor with actuation commands sent to the microcontroller for
relaying to control the actuators. The Robot Operating System (ROS) framework is implemented
to communicate with these two devices, which is where the software system comes in. As for the
structure, it is built upon modified cube elements, each with one open face.

10

3.1.1 Building the Structure

Figure 2: Step-by-step process of building the structure.

As mentioned in the Problem Definition (See Section 2.2.1 Functional Performance
Requirements), the intent of the final robot design is to be scaled down to build a 3-foot high cube
structure. The following steps are described in correspondence with the numbering in Figure 2:

1. The robot begins in its initialization phase. One cube element is already hooked onto the
bottom hooks of the lifting and climbing mechanism. A second cube element is positioned
on the robot’s outer perimeter.

2. The linear actuator traverses upward, lifting the first cube to its maximum height with the
dual hook assembly. There should be enough clearance underneath this cube for a second
cube to be placed.

3. The linear slide assembly extends outward to its maximum distance.

4. The servo-controlled hooks of the cube latch assembly rotate at an angle of 180◦ and grab
onto the vertical segments at the rear end of the second cube.

5. The linear slide assembly retracts and reels in the second cube until it is directly below the
first cube.

11

6. The hooks of the cube latch assembly return back to their “closed” position, and the linear
slide assembly retracts all the way in.

7. The linear actuator slowly lowers the first cube to complete a two-cube stack.

8. The linear actuator lowers even further, so the dual hook assembly can clamp onto the
horizontal segments of the top face of the second cube. A third cube is introduced on the
robot’s outer perimeter.

9. The linear actuator traverses upward, lifting the two-cube stack.

10. The linear slide assembly extends outward to its maximum distance.

11. The servo-controlled hooks of the cube latch assembly rotate at an angle of 180◦ and grab
onto the vertical segments at the rear end of the third cube.

12. The linear slide assembly retracts and reels in the third cube until it is directly below the
two-cube stack. The linear actuator slowly lowers to successfully build the structure with
three cube elements.

3.1.2 Ascending and Descending the Structure

Figure 2: Step-by-step process of building the structure.

After the structure is built, the robot can proceed to climbing up it. As shown in Figure 3,
the following steps demonstrate how the robot utilizes the lifting and climbing
mechanism as well as the rotating plate mechanism to perform this task:

1. At the beginning of ascension, the top hooks of the lifting and climbing mechanism must
grasp onto the horizontal segments of the bottom face of the first cube. By convention,
the first, second, and third cube are the top, middle, and bottom cube, respectively.

2. Since the top hooks are secured onto the cube element, running the linear actuator would
lift the entire robot upwards. The rotating plate should be above the horizontal segments
of the bottom face of the second cube.

12

3. The servo rotates the rotating plate at an angle of 45◦ and locks the position of the robot
at the second level.

4. The top hooks detach from the cube and travel on the linear actuator to its maximum
height.

5. The top hooks now grasp onto the horizontal segments of the top face of the first cube

6. The servo rotates the rotating plate back an angle of 45°, so the rotating plate and base
plate are aligned.

7. The linear actuator runs and lifts the entire robot upwards. The rotating plate should be
above the horizontal segments of the bottom face of the first cube.

8. The servo rotates the rotating plate at an angle of 45° and locks the position of the robot.
The robot successfully ascends up the structure.
It is important to note that to descend down the structure, the robot must follow the steps
above, but in reverse order. As noted by the step-by-step processes, the final design
follows a systematic bottom-up approach that has a rhythm in building, ascending, and
descending the structure.

3.2 Mechanical Systems

3.2.1 Base Plate

Figure 4: Isometric view of the base plate

The base plate is the foundation that supports all the primary mechanisms on the robot. As shown
in Figure 4, the base plate is shaped as a square with side lengths of 10in and a thickness of 5mm
(see Figure B3.1 in Appendix B.3). Aluminum 6061 was chosen as the material because it not
only has strong mechanical properties, but also is cheap for general-purpose use; this particular
metal will be commonly used for several other parts in the final robot design [12].

The rectangular hole in the middle of the base plate has dimensions of 60mm by 39mm, which
will be cut with a Dremel. A servo assembly is mounted on top of the base plate and controls the
rotation of the rotating plate (see Figure C3.1 in Appendix C.3). Since the servo horn is the pivot

13

point, the rectangular hole must be off-centered to position it at the center of the base plate
accordingly. To complete the manufacturing of the base plate, several screw holes must be drilled
to attach all the primary mechanisms.

Figure 5: (Left) front view and (right) bottom view of the base plate

Eight rubber stoppers are to be attached onto the bottom of the base plate with an aluminum-
friendly adhesive such as cyanoacrylate (i.e. super glue) [13]. The rubber stoppers each have a
base diameter of 0.75in that tapers to an end diameter of 0.5in. Because the weight of the robot is
concentrated on the servo horn connected to the rotating plate, these rubber stoppers act as a safety
measure to reduce the stress on the servo horn. In other words, these rubber stoppers redistribute
the robot’s weight more evenly when they make contact with the rotating plate. It is important to
note that the rubber stoppers along the cardinal axes are not redundant, but are necessary for when
the rotating plate is angled at 45◦ during ascension and descension.

3.2.2 Lifting and Climbing Mechanism

Figure 6: (Left) isometric view and (right) exploded view of the lifting and climbing mechanism

14

The lifting and climbing mechanism features a dual hook assembly that travels vertically along a
linear actuator. As shown in Figure 6, the extrusion at the bottom of the mechanism is 3D printed
with acrylonitrile butadiene styrene (ABS) plastic and heightens the linear actuator by 165mm (see
Figure B1.10 in Appendix B.1). Moreover, the extrusion encases and protects the stepper motor
that runs the linear actuator.

To attach the extrusion and linear actuator together, a piece of Aluminum 6061 sheet metal
with a thickness of 4mm is required (see Figure B1.8 in Appendix B.1). Its length and height are
70mm and 154mm, respectively. Screw holes are to be drilled into the attachment plate, so it can
be fastened onto the linear actuator.

To complete the lifting and climbing mechanism, the dual hook assembly must be screwed
onto the double bearing mounts that run along the rods of the linear actuator. Figure 7 depicts how
two individual lifting and climbing mechanisms are attached onto the base plate with commercial
off-the-shelf L-beams.

Figure 7: Isometric view of lifting and climbing mechanism on base plate with enlarged exploded view.

3.2.2.1 Linear Actuator

The function of the linear actuator is to translate the dual hook assembly in the vertical direction.
Because there were no commercial off-the-shelf linear actuators that could accommodate a two-
foot reach, a custom linear actuator was inspired by a contributor on GrabCAD and designed with
several commercial off-the-shelf parts instead, which are listed in Figure 8 (see Figure C1.4 in
Appendix C.1) [14]. The advantage of a custom linear actuator is that the length can be set to best
fit the needs of the robot. The 500mm linear actuator enables the dual hook assembly to not only
reach below the cube for lifting, but also raise above the cube for climbing.

15

Figure 8: (Left) isometric view and (right) exploded view of the linear actuator

3.2.2.2 Dual Hook Assembly

Figure 8: (Left) isometric view and (right) exploded view of the linear actuator

Lifting the cube elements and climbing the cube structure both only require vertical translation,
which is why they were combined into one mechanism. As shown in Figure 10, the dual hook
assembly is composed of the 3D printed hook and servo mount, modified TETRIX parts, and a
servo that controls the rotation of both hooks simultaneously (see Figure C1.3 in Appendix C.1).

16

Figure 10: Exploded view of the dual hook assembly.

The TETRIX at brackets are trimmed on one edge to eliminate the interference with the cube-
stacking (see Figure B1.5 in Appendix B.1). Moreover, two holes are drilled in each at bracket,
so they can be fastened onto the sides of the hook and servo mount. Brass bushings are placed on
both ends of the at brackets; aluminum shafts are inserted through these brass bushings, in which
the hooks can pivot. The lifting and climbing hooks use TETRIX C-channels that are riveted to a
4mm-thick piece of Aluminum 6061 sheet metal (see Figure B1.7 in Appendix B.1). On the
opposing side of the sheet metal, an aluminum rod must be spot welded on each end to solidify the
pieces together (see Figure B1.6 in Appendix B.1). The lifting and climbing hooks are secured
between the two modified TETRIX at brackets. The two aluminum shafts each have 15-tooth gears
that are aligned with one on the servo assembly. These three gears share a timing belt (not shown
in Figures 9 and Figures 10) and, therefore, rotate together.

To visualize how the hooks function, three positions — lifting, closed, and climbing — are
shown in Figure 11. As expected, the top and bottom hooks are used for climbing and lifting,
respectively. When they are in their "closed" position, it can be perceived that the boundary box
of the robot does not interfere with the cube element.

Figure 11: Three positions of the dual hook assembly

17

3.2.3 Cube Latch Mechanism

Figure 12: Isometric view of the cube latch mechanism when it is (left) retracted and (right) extended

Figure 13: Exploded view of the cube latch mechanism

The cube latch mechanism features a cascading linear slide assembly with the cube latch secured
on the free end. The linear slide assembly is mounted onto the edge of the base plate by two 15mm
corner brackets. As alluded in Figure 12, the cube latch mechanism resembles a cantilever beam;
however, the 15mm extrusion carrying the motor and motor mount is in fact supported by the servo
assembly of the rotating plate mechanism. This decision was made to redistribute the weight of
the cube latch and linear slide assembly as highlighted in Figure 14.

18

Figure 14: Exploded view of the cube latch mechanism

3.2.3.1 Linear Slides

Figure 15: (Left) isometric view and (right) exploded view of the linear slide assembly

The four-stage linear slide assembly was chosen to be implemented into the cube latch mechanism
because it is compact and can extend a great distance. This linear slide assembly can be purchased
commercially from REV Robotics, but several modifications are required to accommodate the
robot’s size and functional requirements [15] [16] [17]. First, the 15mm extrusions for the linear
slide assembly must be shortened from 420mm to 218.2mm in length to be within the boundary
box (see Figure B2.2 in Appendix B.2). The commercial off-the-shelf linear slide assembly is
intended to be used in a vertical orientation as it uses a string-and-pulley system for lifting. Gravity
naturally lowers this system down. As a unidirectional pull is unable to retract the cascading linear
slides in a horizontal orientation, the string-and-pulley system must be replaced with a chain-and-
sprocket system to allow the DC motor to both extend and retract the linear slides (see Figure
C2.1 in Appendix C.2). Small 8-teeth sprockets are implemented to enable bidirectional movement
for the cube latch mechanism.

19

To run the four-stage linear slide assembly, a DC motor is required. A custom 3D printed motor
mount was designed to fit into the channel of the 15mm extrusion as well as align the sprocket on
the motor to those on the linear slide assembly (see Figure B2.5 in Appendix B.2). The motor
mount will be made out of ABS plastic and have holes at the base, so it can be directly fastened
onto the 15mm extrusion. To ensure that the DC motor will not sway, it will be secured onto the
motor mount with a Velcro strap (see Figure C2.2 in Appendix C.2) [18].

Figure 16: Exploded view of motor and motor mount.

3.2.3.2 Cube Latch Assembly

20

Figure 17: Isometric view of the cube latch assembly

\

Figure 18: Exploded view of the cube latch assembly.

The cube latch assembly consists of a joint plate, two standard servos, and two claws that are
limited to 180◦ rotation (see Figure C2.5 in Appendix C.2). The joint plate is made out of
Aluminum 6061 with a thickness, width, and length of 2mm, 217.9mm, and 80mm, respectively
(see Figure B2.9 in Appendix B.2). Two rectangular holes of 22mm by 42mm are required, so the
servos can be inserted through. A notch on the top of the joint plate measuring 7.5mm by 153mm
must be cut to prevent any interference with the lifting and climbing mechanism when the linear
slide assembly is fully retracted. The rectangular holes and notch can be cut with a Dremel, but a
CNC machine or stamp is recommended for higher precision. Additionally, several holes must be
drilled to attach the servo mount onto the joint plate and the joint plate on the linear slide assembly.

21

Figure 19:

Top view of the joint plate.

The claw consists of three components: a flat beam, bent piece of sheet metal, and tab. They

are made out of Aluminum 6061 with a thickness of 3mm. The flat beam is cut to 78.94mm by
10mm, and three holes are drilled to attach the claw to the aluminum servo horn (see Figure B2.7
in Appendix B.2). The hook begins with a flat piece of sheet metal with dimensions of 40.4mm by
53.8mm, then bent at an angle of 70◦ (see Figure B2.6 in Appendix B.2). To manufacture the claw,
the hook is riveted onto the flat beam. Thereafter, a small tab must be spot welded onto the edge
of the flat beam; this tab acts as a stopper and limits the range of movement when the cube latch
assembly grasps onto a cube element. The idea behind this claw design is to provide leeway for
the cube latch mechanism to grab slightly misoriented cube elements (see Figure C2.4 in
Appendix C.2).

Figure 20: Top view of the claw.

3.2.4 Rotating Plate Mechanism

22

Figure 21: Isometric views of the rotating plate mechanism in two positions.

The function of the rotating plate mechanism is to perch the robot at each level as it ascends or
descends the cube structure. The rotating plate is attached to the aluminum servo horn on the servo
assembly. To close the gap between the base plate and rotating plate, two extrusions were designed
to elevate the servo assembly (see Figures B3.3 and B3.4 in Appendix B.3). These extrusions are
planned to be 3D printed with ABS plastic. Moreover, two L-beams are attached on top of the
extrusions, in which the servo can be mounted (see Figure B3.5 in Appendix B.3).

Figure 22: Exploded view of rotating plate mechanism.

3.2.4.1 Rotating Plate

23

Figure 23: Isometric view of the rotating plate.

The rotating plate is made out of the same material and has the exact dimensions as the base plate.
As shown in Figure 23, the holes drilled into the rotating plate must match the circular pattern on
the aluminum servo horn (see Figure B3.2 in Appendix B.3). When this manufacturing process is
complete, it can be attached onto the servo assembly with six screws.

24

3.3 Electrical Systems

The electrical system entirely uses commercial off-the-shelf components. These components are
connected either with off-the-shelf standard connectors or 14-gauge multi-strand wires.
Components communicate either through wireless capabilities (Wi-Fi), direct serial
communication, a binary digital signal, or a pulse width modulation (PWM) signal.

3.3.1 Overview of Electromechanical Systems

The detailed schematic of the electromechanical systems is shown in Figure 24. Green-shaded
blocks are computers and blue-shaded ones are other components (i.e. actuators, power distribution
board, etc.). Each arrow represents the communication between two components, and the
components are organized by each main mechanism.

Figure 24: Electromechanical schematic.

Three separate computers are used for the robot: a microcontroller (STM32 Nucleo64), a
microprocessor (Raspberry Pi Zero W), and a user device (cell phone or computer). The user
device is supplied by the user and is external to the robot system. The microprocessor requires a
5V/1A DC power input and communicates with the microcontroller using a micro USB to mini
USB wire connection. The microcontroller is also powered by the microprocessor through a USB
connection.

Each of the five servos’ PWM input connects directly to a PWM output terminal on the
microcontroller. Each servo requires a 5V/1A DC power input.

The DC motor’s power input line is connected to the emitter terminal of a metal-oxide-
semiconductor field-effect transistor (MOSFET), with the collector terminal connected to a
10V/1A power input and the base terminal connected to a PWM output terminal on the
microcontroller. This means a PWM signal from the microcontroller will affect the power input to
the motor, allowing the microcontroller to be a control variable of the motor’s speed. A wiring
diagram of the MOSFET-to-DC motor connection is depicted in Figure 25.

25

Figure 25: Electromechanical schematic.

The stepper motors each have two power input lines. Similar to the DC motor, each power

input is connected to the emitter terminal of a MOSFET. The collector terminal is connected to a
10V/1A power input, and the base terminal is connected to a digital output terminal on the
microcontroller. Instead of the MOSFET being used as a signal amplifier, this configuration means
it will be used as a switch to allow the microcontroller to control the stepper motor’s position and
rotation speed. The MOSFET will be attached closely to the microcontroller, and the terminal
soldering will be insulated with a heat shrink.

3.3.2 Power Distribution

A power distribution board is used to power all components of the robot. The power distribution
board chosen was the MATEKSYS FCHUB-6S, a commercial off-the-shelf component that
contains sufficient output terminals for the robot’s computers and actuators [19]. The power
distribution board’s input terminals are connected to the DC output of a generic NEMA-compatible
12V/8A AC-to-DC power supply, and splits the power input into voltage-regulated outputs at
several 5V and 10V terminals. These terminals are then connected to the power input lines of the
actuators as per their voltage requirements. Figure 26 demonstrates how the power distribution
board connects to each actuator and the power supply. Several actuators share terminal ports due
to the limited number of ports available on the chosen power distribution board; this is safe as the
actuators chosen to share these ports either will have low current draws or will not be activated
simultaneously.

26

Figure 26: Wiring schematic for power distribution board

3.4 Software Systems

The software system has three core components: (1)
a webserver for the user to interact with the robot, (2)
a finite state machine for autonomous control, and (3)
a relay to convert high-level desired actuator
positions to actual actuator actuations. The
microprocessor runs the webserver and the finite state
machine, and the microcontroller runs the actuator
relay. The two computers communicate using the
Robot Operating System (ROS) framework. For the
virtual prototype, the microcontroller code is replaced
with custom plugins for the Gazebo simulation
environment to control a virtual model of the robot. A
flow chart of the overall software system is shown in
Figure 27.

 Figure 27: Data flow from user control (Webserver)

 to virtual prototype (Gazebo).

27

3.4.1 Webserver

The Raspberry Pi Zero W microprocessor was selected because it is cheap, contains sufficient
memory and processing power, and has a Wi-Fi chip. The microprocessor uses its Wi-Fi chip to
broadcast a Wi-Fi network, and also runs a webserver at the static IP address 192.168.1.1. This
allows a user’s cell phone or computer to connect to the robot; through the device’s web browser,
the user can start and stop the robot, specify the height of the structure, and provide other inputs.
To control the robot, the user connects the user device to the microprocessor’s Wi-Fi network,
visits the defined IP address in the user device’s browser, and interacts with the robot through the
web interface. Commands to the robot are then sent using GET requests from the browser. The
broadcasted Wi-Fi network is configured using the “dhcpcd”, “dnsmasq”, and “hostapd” Linux
utilities. The webserver is written in the Python programming language and uses the Flask
webserver library (see Appendix D.1) [20]. Alongside the webserver, the microprocessor runs the
master ROS server and the finite state machines.

3.4.2 Robot Operating System (ROS)

Robot Operating System (ROS) is a software framework that facilitates communication across
multiple devices and processes [21]. ROS works by having a central server (the “master” node)
with which all other ROS-enabled processes connect to for their data exchange. ROS is also
capable of facilitating communication between hardware via a USB serial connection. By using
ROS, we avoid constructing our own serial communication framework between the
microprocessor (Raspberry Pi Zero W) and the microcontroller (STM32 Nucleo64).

Communication in ROS is done by setting ROS variables called topics. Nodes—processes
running on devices—can read and write to topics to get and set the values of these topics. For the
structure-building robot, there is a topic for each actuator’s desired position as well as additional
topics for the states of the robot. The finite state machine sets the actuator topics, which are then
read by the actuator relay to control the robot.

Figure 28: ROS communication network.

28

3.4.3 Finite State Machines

A finite state machine is a set of defined series’ of actuations, interconnected by logic-driven
transitions. The autonomous system contains finite state machines for the idle state, the
construction state, the ascension state, the descension state, and the overall system. The finite state
machines used in this system are written in the Python programming language and store
information as ROS topics. Figure 29 provides the finite state machine of the overall system. Keep
in mind that each block is called a “state”.

Figure 29: Overall state machine.

Initially, the state machine is in the “Idle” state until the robot is given either the “Build” or
“Climb” commands by the user. If the “Build” command is given, the state machine transitions to
the “Construction” state—a state machine that controls the actuator sequence to construct the
structure. If the robot is told to stop during the construction phase, the robot returns back to the
“Idle” state. Alternatively, if the construction is complete, then the robot will transition onto the
“Ascension” state, which controls the actuator sequence to climb up the structure. After climbing
the structure, the state machine transitions to the “Descension” state to climb down the structure,
returning once more to the “Idle” state. A more complex state machine could be designed to allow
the user more control over which level the robot ascends and descends to; however, this overall
state machine satisfies the basic requirements of constructing, ascending, and descending the
structure.

Figure 30: Construction state machine.

The construction state machine shown in Figure 30 primarily consists of the series of
actuations required to build the structure. While each state in the overall state machine from Figure

29

29 represents another state machine, each state in the construction state machine represents a
defined series of actuations.

The state machine begins by assuming a neutral position. If the robot needs to build the
structure with another cube element, it must go through the following steps: elevates the current
structure, reaches for the next cube, pulls the cube back, de-elevates the current structure. This
cycle repeats until there are no further blocks to construct. At this point, the construction state
machine exits.

Figure 31: Construction state machine.

As with the construction state machine, the ascension state machine is a cyclical machine with
states primarily consisting of defined series’ of actuations as described in Figure 31. The robot
begins by assuming a neutral position and transitions to climb the first cube. After each cycle is
completed, if there are still a number of available stacked cubes for the robot to climb, the cycle
repeats. Once the robot has ascended to the target level, the state machine exits.

Figure 32: Construction state machine.

For the most part, the descension state machine is the reverse order of the ascension state

machine. The state machine transitions through actuation sets to descend the structure one cube
element at a time until the robot has reached to the floor level of the structure.

These state machines enable the robot to autonomously construct and scale the structure to
variable heights. By using a state-based system as opposed to a single linear script, we are able to
gain more flexibility with controlling how the robot moves. For example, a future expansion of
this project may consider using the cube latch mechanism to collect an item once the robot has
scaled the structure; the state machine system would account for that change by merely adding
those state blocks wherever desired by the system.

30

3.4.4 Actuator Relay

When executing the state machines, ROS topics are set to move the robot at each state. These are
high-level actuation parameters that need to be converted into raw signal outputs. For instance, the
descension state machine shown in Figure 32 has the state “Rotate bottom plate ‘in’”. This is
represented in the state machine by setting a variable for the rotating plate’s servo’s position to a
specific angle θ. As the actual servo uses a PWM signal instead of a digital representation of θ, a
conversion from θ to the equivalent PWM signal is necessary. Likewise, the stepper motor
controlling the linear actuator require a conversion from the target height of the linear actuator to
the number of stepper motor cycles. Furthermore, the DC motor for the cube latch mechanism
requires a time-based conversion for its extension and retraction. These conversions and
subsequent actuations are managed by the microcontroller. To send the digital value of an
actuator’s desired position to the microcontroller, the microprocessor writes the desired value to a
specific ROS topic; the microcontroller reads that ROS topic as joint positions in Gazebo.

The microcontroller converts the provided high-level actuator position to the actuator’s PWM
value, cycle count, or duration. The microcontroller then sets its output pins accordingly to control
the actuator and writes to a ROS topic when the actuation has completed. Due to the high
manufacturing variability of low-cost actuators, the precise conversion will be tested and defined
for each actuator. The microcontroller code is written in the C programming language. For the
virtual prototype, the relay system is instead written as plugins to Gazebo, but performs the same
functionality of reading a ROS topic and setting joint parameters (see Appendix D.7). These
plugins are written in the C++ programming language.

To connect the three software components together, they are individually run as ROS nodes.
Communication between these nodes is done by reading and writing to the ROS topics, which can
be read by any node. This means individual nodes can be replaced by other systems, and if the
interfaces match the rest of the system, it will not be affected. For example, to test the actuator
relay, a script can be made that sets the actuator ROS topics manually, while normally they would
be written to by the state machine. Likewise, this allows us to “drop in” the Gazebo simulation
environment for the physical robot without requiring any software changes.

 Figure 33: Terminal output of the overall state Figure 34: ROS topics used by the robot
 machine and construction state machine

31

3.4.5 Gazebo

Gazebo is a 3D rigidbody sandbox simulation program. In replacement of the physical prototype,
Gazebo was used to simulate the robot in a 3D test environment [22]. To accomplish this, each
moving component from the SolidWorks model was exported as an STL file. The robot was then
reconstructed by creating Simulation Description Format (SDF) files that joined the parts by
revolute, prismatic, or fixed joints. Inertia properties, collision properties, and joint limits were
assigned to the components based off of SolidWorks’s estimates. Gazebo was then able to import
this reconstructed model, and we were able to write Gazebo plugins to relay the ROS topic values
to these virtual joints. For simplification, the linear actuators and four-stage linear slide assembly
were represented as prismatic joints instead of threaded interfaces or chain-and-sprocket systems.
Figure 35 depicts the structure-building robot in the Gazebo simulation environment.

Figure 35: Robot model in the Gazebo simulation environment running the construction state machine.

The right side of Figure 35 shows the terminal output of the construction state machine. The

last item displayed is “In construction::pull cube”. At this point of the state machine, the cube
structure should be elevated, and the cube latch mechanism should be retracting its linear slides
and pulling the cube to be placed underneath the structure. This matches the visual state of the
robot shown in the Gazebo environment. The Gazebo environment and plugins respond quickly to
the state machine outputs. Finally, the movement speeds of each joint were tuned to mimic those
of their physical actuator equivalents.

32

3.5 Cube

Figure 36: Isometric view of the cube.

Figure 36: Exploded view of the cube.

When making a decision of the final robot design, the type of structure was an important factor.
The cube element was selected because the robot design was made to scale from inside the
structure. Since the center of mass of the robot does not shift when it climbs up the structure, there
is no significant moment produced that could tip the robot and structure over. As seen in the step-
by-step process of building the structure in Figure 2, the cube element was modified to have an
open face to eliminate any interference with the linear actuators from the lifting and climbing
mechanism. The cube element is made out of balsa wood, a light and sufficiently strong type of
wood. As depicted in Figure 37, the cube element consists of four components: (1) segment, (2)
peg, (3) corner piece, and (4) corner piece on the open face (see Figure C4.6 in Appendix C.4).
All components assemble a cube element with side lengths of 1ft. Each cube requires 10 segments,
4 pegs, 4 corner pieces, and 4 corner pieces on the open face.

33

The horizontal and vertical segments both have square cross-sections with side lengths of 0.8in,
and the length of each segment is 10in (see Figure B4.1 in Appendix B.4). On the other hand, the
two variations of the corner piece have either two or three holes to interlock these segments (see
Figures B4.2 and B4.3 in Appendix B.4). These holes are 0.5in in depth to fit the wooden
segments. In addition, 0.75in-diameter holes must be drilled to allow for the pegs to fit and the
cube elements to stack. Because the corner pieces require tight tolerances, blocks of balsa wood
with side lengths of 1.5in must be obtained and cut with a CNC machine at high precision.
Otherwise, the cube elements risk not being uniform, which can cause mechanical failure during
construction or ascension. Wood glue is used to firmly attach all four components of the cube
element together.

4 Design Verification

4.1 Overview of Design Verification

The virtual prototype was constructed to verify that the final design solution would function
properly in a real-world environment. Because the final design solution is not purely mechanical
but includes a software component, two different analyses were conducted to verify the solution.
A structural analysis was conducted on every component to confirm whether or not they would
fail under normal operating conditions. A kinematic analysis was also conducted to ensure that the
robot would perform its tasks as expected with commands from the software package.

The structural analysis was conducted using two finite element analysis (FEA) software:
SolidWorks Simulation and Abaqus. Each component was placed under the worst-case conditions
(i.e. maximum load, etc.); if the components did not fail under these conditions, then it would be
deemed that they would also not fail in a testing environment. On the other hand, the kinematic
analysis was conducted by simulating the robot using Gazebo. With the implementation of this
software, each motor, servo, and actuator can be simulated to mimic their real-world
characteristics. Moreover, Gazebo includes a physics engine, which can demonstrate how the robot
will interact with its environment. If the robot performs as expected in this virtual simulation, we
can assume that it will be suitable in a real-world environment.

4.2 Assumptions

The models for each simulation do not differ drastically from the detail design. For the SolidWorks
and Abaqus simulations, the material for every component was assumed to be uniform. For
example, each 3D printed part was assumed to have 100% infill to simplify the analysis. As none
of the 3D printed parts are being stressed against the plastic’s printing grain, this assumption is
supported. Each component was assumed to be adequately bonded together, and fasteners would
not break under normal operating conditions. The simulation also does not include any wires,
screws, or small cavities, which eliminates the interference with all other components on the robot.
For the Gazebo simulation, code was written to generate a custom linear actuator modeled after
those found commercially, which is listed in the Bill of Materials (see Appendix A). To reduce the
computational stress of the simulation, the linear slides and chain-and-sprocket system were
replaced with prismatic actuations. The Gazebo simulation assumes rigid body dynamics, which

34

is valid for our model as FEA reveals that the maximum bending of components is on the
millimeter scale.

4.3 Finite Element Analysis (FEA)

4.3.1 Lifting and Climbing Mechanism

4.3.1.1 Lifting and Climbing Hooks

For the lifting and climbing mechanism, the dual hook assembly consists of two Aluminum 7005
hooks powered by a single servo. The bottom hook is used to lift cube elements up whereas the
top hook is used to pull the robot up to each level. Therefore, the hooks must be able to support
the weight of the cube structure as well as the weight of the robot. Two SolidWorks simulations
were conducted to ensure that both the lifting and climbing hook
would not fail.

Assuming the servo will constrain the position of the hooks as the robot
either lifts or climbs the structure, a fixed boundary condition was applied
to the shaft. For lifting the structure, a pressure load equal to the weight of a
two-cube structure was applied on the inner face of the hook. Although the
cube structure is built with only three cubes, only the top two are lifted and
the third remains on the ground. For climbing the structure, a pressure load
equal to the weight of the robot was applied on the inner face of the hook.
The load and boundary condition on the hook is shown in Figure 38. Keep
in mind that this takes the worst-case scenario. A more realistic analysis
would be applying half the weights of the robot and two-cube structure since
two hooks are used for lifting and climbing.
 Figure 38: The load and boundary
 condition on the hook

Figure 39: Contour plots of (left) displacement and (right) von Mises stress for the lifting hook.

35

Figure 40: Contour plots of (left) displacement and (right) von Mises stress for the climbing hook.

To determine the stress on the lifting and climbing hooks, the von Mises stress was considered
because it deals with failure criteria. The von Mises stress takes into consideration principal and
shear stresses for an element in the 3D Cartesian plane, which is governed by Equation 1.

In both contour plots of displacement in Figures 39 and 40, it is evident that the maximum

resultant displacement occurs at the tip of the hooks despite the load being applied in opposite
directions. As for the maximum von Mises stress, it is only concentrated on the inner face of the
C-channel closest to the aluminum tube. From the angle of the contour plots, the maximum von
Mises stress (in red) is hidden. Since the loads are perpendicular to the surface, it causes bending
stress and very minimal shear stress. Table 1 organizes the maximum values of displacement and
von Mises stress for each hook.

As previously mentioned, the lifting and climbing hooks are made out of Aluminum 7005,

which has a yield stress of 290 MPa [23]. Since the maximum stress for both hooks are well below
this yield stress, they will not fail. Nonetheless, it should be trivial that the maximum stress of the
climbing hook is significantly higher than that of the lifting hook because of the differences in
weight between the robot and the two-cube stack. Since the minimum factor of safety is the
ultimate stress divided by maximum working stress, the minimum factor of safety of the lifting
hook is 92.

36

4.3.2 Cube Latch Mechanism

The cube latch mechanism is split into two sub-mechanisms: the cascading linear slide assembly
and the claw. Two finite element simulations were conducted to ensure that each mechanism would
not fail under normal operating conditions.

4.3.2.1 Linear Slides

The linear slides consist of four cascading 15mm extrusions connected by several plastic joints,
which provide linear motion for a well-defined range. As mentioned in Section 3.2.3 Cube Latch
Mechanism, the linear slides act like a complex cantilever beam with a downward force on the
free end (i.e. weight of the cube latch) and a support on the fixed end attached to the base plate.
Due to the complex geometry of the linear slides as well as the small cavities between the joints,
FEA could not be performed in SolidWorks Simulation; however, Abaqus was implemented
instead.

To simplify the linear slide assembly for analysis, the 15mm extrusions were approximated as
solid rectangular prisms with a homogeneous section. Since the extrusions are made out of
Aluminum 6063, the material properties were set uniformly for the model [24]. Because the 15mm
extrusions are similar to 80/20 extrusions, the geometry is too complicated to apply an accurate
mesh. Therefore, the decision of using solid rectangular prisms was made. In actuality, the 15mm
extrusions are connected by plastic joints, but the analysis assumed that there was no clearance
between them. With this assumption, it is guaranteed that there would be a clear difference between
the theoretical and actual deflections as the linear slide assembly is fully extended. An encastre
boundary condition was set on the fixed end of the linear slides; in other words, the translation and
rotation in all directions of the 3D Cartesian coordinate system was zero. As for the loads, the force
due to gravity of the linear slides as well as the weight of the cube latch (0.66lbs) were applied
onto the model. The loads and boundary conditions are displayed in Figure 41.

Figure 41: The loads and boundary conditions on the linear slides.

37

Figure 42: The loads and boundary conditions on the linear slides.

In Figure 42, the maximum displacement in the vertical direction (u2 = 1.038mm) occurs on
the tip of the free end of the linear slide assembly. This is to be expected because of the additional
load from the cube latch. Despite the assumptions and parameters used for this analysis, the
maximum bending stress (S11 = 5.284 MPa) was not substantial and remained well below the
yield stress of Aluminum 6063, which was 145 MPa [24]. It is evident that the weight of the cube
latch on the free end and the total length of the fully extended linear slide assembly cause
maximum bending on the fixed end. As the contour plot of bending stress shows, tension (in red)
is concentrated at the top whereas compression (in blue) is concentrated at the bottom (hidden).
Furthermore, the joints are made out of Delrin plastic with a yield stress of 62 MPa [25]. After
taking the probe value at each node along the connecting extrusions, the maximum bending stress
of the joint occurred at the intersection between the two extrusions on the left. This maximum
value was 0.4 MPa, which was below the yield stress. Therefore, the linear slides can fully extend
without significant deflection or stress on each extrusion.

4.3.2.2 Claw

The claw on the cube latch assembly was studied using SolidWorks Simulation to determine how
it would be affected when pulling in a cube element from the outer perimeter. The cube latch
assembly is comprised of two claws, each powered by a servo. Assuming that the servo supplies
enough torque to keep the claw’s position fixed as it reels in a cube, this was taken into
consideration when applying the loads and boundary conditions into the FEA model. The boundary

38

condition was applied on the edge of the flat beam. In contrast, the load had to be theoretically
calculated using a free-body diagram (FBD), which is shown in Figure 43.

Several assumptions had to be made in this calculation.
First, in a real-world environment there would be
friction between the cube and the surface it is on;
however, the coefficient of kinetic friction was assumed
to be 0.5. Second, because it is difficult to quantify the velocity and acceleration that the cube
travels when it is pulled, the velocity is assumed to be constant. Third, although this scenario
involves rigid body dynamics, the cube is representative of a point, so no moments are considered.
Therefore, the load applied onto the claw was the pulling force or 0.22lb.

Figure 44: The load and boundary condition on the claw

Figure 44: Contour plots of (left) displacement and (right) von Mises stress for the claw.

39

From Figure 45, the maximum displacement and maximum von Mises stress are 8.257 µm
and 1.441 MPa, respectively. Since the maximum displacement is approximated to zero, it is
negligible. As mentioned in Section 3.2.3.2 Cube Latch Assembly, the claw is made out of
Aluminum 6061, which has a yield stress of 276 MPa [12]. It is apparent that the claw will not
yield when pulling in a cube element.

4.3.3 Rotating Plate Mechanism

The rotating plate mechanism consists of the base plate and rotating plate connected together by a
servo. As mentioned in Section 3.2.4.1 Rotating Plate, eight rubber stoppers are glued to the
bottom of the base plate to redistribute the load from the servo to the base plate. The finite element
model was used to determine if the rotating plate mechanism would break or deform under the
weight of the robot. After applying all material properties into SolidWorks, the theoretical weight
of the robot was 23.51lbs. To simplify the model for analysis, the servo and screws were removed
from the model. A fixed constraint was then applied to the top face of the base plate; a pressure
load equal to the robot’s weight was applied to the bottom face of the rotating plate. Figure 46
shows the load and boundary conditions applied to this mechanism.

Figure 46: The load and boundary condition on the rotating plate mechanism

40

Figure 47: Contour plots of (top) displacement and (bottom) von Mises stress for the rotating plate mechanism

The von Mises stress was used once again as it relates to failure criteria. Although the rotating
plate mechanism experiences very minimal shear stress, the von Mises still considers it as
expressed in Equation 1. From Figure 47, the displacement is concentrated at the center of the
rotating plate as expected. Although the contour plot of displacement exaggerates the maximum
displacement, its value 8.46µm is so small that it is negligible. On the other hand, the maximum
von Mises stress was 1.69 MPa. Since the yield stress of Aluminum 6061 is 276 MPa, the rotating
plate mechanism should be able to support the robot’s weight without fail [12]. The factor of safety
is expressed as Equation 4, which is the ratio of ultimate tensile strength and maximum stress from
FEA.

41

Since the ultimate tensile strength of Aluminum 6061 is 310 MPa, the factor of safety for the
rotating plate mechanism is 18.6 [12].

4.3.4 Cube Structure

The structure is constructed by stacking several five-sided cube
elements on top of one another. To ensure that the structure can
be sound and function as expected, several finite element
analyses were conducted: (1) on stacked cubes for entire
structure and (2) on cube supported by the robot’s weight at
each level of the structure. To test the first case, the three-cube
structure was placed into the SolidWorks Simulation. A fixed
constraint was applied to the bottom faces on all bottom-faced
corner pieces since they were the only points of contact with
the ground. Moreover, a body force equal to gravity was placed
on the structure, which can be seen in Figure 48.

From Figure 49, the maximum displacement and
maximum von Mises stress on the cube structure in its natural
state are 1.101µm and 5.277 kPA, respectively. Although no
considerable weight is applied to the cube structure for the first
case, the maximum displacement occurs at the very top; since
the cube element was modified to have an open face, there are
no fixed horizontal segments, which makes the top of the cube
structure sink. This sets a baseline as to how the cube structure
could be deformed when the robot’s weight is applied on each
level during ascension or descension.

42

Figure 49: Contour plots of (left) displacement and (right) von Mises stress for the cube structure.

Since the cube structure must be able to support the robot’s weight at every level, the

simulation was modified to include the additional load. Although the rotating plate only makes
contact with part of the horizontal segments of the cube structure, the analysis assumed that it
made full contact instead. The loads and boundary conditions for this second case of the cube
structure is shown in Figure 50.

Figure 50: The loads and boundary conditions on the cube structure when it is supported by the robot at the bottom,
middle, and top.

43

Figure 51: Contour plot of displacement when the Figure 52: Contour plot of von Mises stress when the
 robot is supported on the bottom level. robot is supported on the bottom level.

Figure 53: Contour plot of displacement when the Figure 54: Contour plot of von Mises stress when the
 robot is supported on the middle level. robot is supported on the middle level.

From Figures 52 and 54, the maximum von Mises stress is similar when the robot is supported
by the cube structure on the bottom and middle levels. In terms of maximum displacement, they
also do not differ drastically. On the other hand, in Figures 54 and 56, there was a jump in both
these values when the robot is supported by the cube structure on the top level. Despite that the
structure is only three cubes tall, both maximum displacement and maximum von Mises stress
increases with increasing height of structure. Table 2 organizes these values accordingly.

44

Table 2: Maximum displacement and von Mises stress at each level when the robot is supported by the cube

structure.

Since the cubes are made out of balsa wood, they have a yield stress of 20 MPa [26]. Referring
to each maximum von Mises stress from Table 2, there is no chance that the structure will fail
each time the robot scales to a new level.

Figure 55: Contour plot of displacement when the Figure 56: Contour plot of von Mises stress when the
 robot is supported on the top level. robot is supported on the top level.

4.4 Gazebo Simulation

As confirmed by finite element analysis (see Section 4.3 Finite Element Analysis (FEA)), the
deflection of all contact-interface components is negligible due to maximum deflections around
1mm. This supports an approximation of the physical structure as a rigid body system. Gazebo’s
simulation environment contains a physics engine that uses the rigid body approximation;
therefore, Gazebo can be used to verify the mechanical motion of the design. The state machine
complex and the ROS communication framework were tested using Gazebo as the physical
environment. The component software package was run on an Ubuntu Desktop environment,
which is similar to the Ubuntu MATE environment used by the Raspberry Pi. Utilizing a similar
operating system verifies that the software components would run as expected on the physical
model. Gazebo’s virtual environment verified that the actuators’ responses to the state machines’
outputs accurately reflect the intended autonomy of the system.

45

Figure 57: Robot model in the Gazebo environment, running the construction state machine

5 Approach to Solution

5.1 Brainstorming Methods

When the team was first assigned this project at the beginning of the 2020 Winter quarter, the
ambiguity of the problem statement led to many different interpretations on how to approach to a
solution. These interpretations include the type of structure the robot will build and how the robot
will scale the structure. Ultimately, the latter depends on the former. After thoroughly
understanding the backbone of the problem (see Section 3 Problem Definition), the brainstorming
method was used to generate concepts for both the structure and scaling method.

Formally known as the 6-3-5 method, the 4-3-5 method was used for this brainstorming
process. Here, four team members draw three unique designs on paper in five-minute rotations
[27]. This process is repeated until all four papers have reached every team member or no unique
solutions can be generated. The brainstorming session resulted in 48 concepts generated in 20
minutes.

5.2 Structure

The brainstorming process was also applied to the structure, which was condensed down to three
main elements: ladder, cube, and pole. Each element has its own advantages and disadvantages,
but are elaborated further in the following sections.

46

Figure 58: (1) Ladder, (2) cube, and (3) pole structures

5.2.1 Ladder

The ladder is a common structure used to help people (i.e. construction workers, etc.) elevate
themselves to greater heights. The most common commercially available ladders are the extension
ladder, the step ladder, and the dual purpose ladder [9]. Although these all vary in size, shape, and
material, the traditional ladder was considered in the design. The ladder is constructed using
interlocking rungs, but must be supported by both a wall and the ground. Although the rungs can
be sectioned to easily attach to the overall structure, the design itself poses many challenges.
Because the ladder is not a standalone structure and must be supported by a wall, the ladder must
be at an angle θ above the ground. If this angle is too steep, the ladder will be prone to tipping due
to the robot’s weight and center of mass. Additionally, as more rung elements are added onto the
ladder, it will be more vulnerable to bending and deflection, which could cause the structure to
break and fail.

5.2.2 Cube

The cube structure was considered to allow the robot to climb through the middle of the structure.
This is advantageous because the center of mass of the robot is close to that of the structure,
decreasing the probability of tipping. The cube is a self-supporting structure consisting of several
members connected together to make a six-sided shell. Because multiple cubes can be stacked on
top of one another to create a standalone structure, this design is more promising as it does not
require support from a wall. On the other hand, the disadvantages of the cube structure are that it
is more costly and difficult to manufacture.

5.2.3 Pole

The pole structure consists of interlocking pole elements that can stack. This particular design
requires a foundation or fixture for the robot to build off of. Although this design is considered, it
is inherently less stable than either the cube or ladder. As more pole elements are added to the
structure, it is more vulnerable to bending and deflection. In addition, the pole must be under
optimal conditions (i.e. no external forces, no environmental changes, etc.) to function properly.

47

5.3 Concept Generation

After reviewing each design from the 4-3-5 method as a team, we collectively agreed and narrowed
down the top five most promising robot designs. Since each design must be compatible with a
specific type of structure, the decisions made were not swayed by the structure itself, but the
robustness, effectiveness, and uniqueness of the robot designs that best suited the defined
requirements (see Section 2.2 Specifications and Constraints). The top five robots designs were
the “Quiver”, “Cart”, “Ladder”, “Spider”, and “Pole”.

Figure 59: Sketch of Design #1: "Quiver".

5.3.1 Design #1: "Quiver"

Quiver was first designed to enable the robot to simultaneously build the ladder structure as it
climbs. In Figure 59, the sketch features a rung compartment located behind the robot and a
rotating mill to place rungs onto the structure. An inclined plane is found inside the rung
compartment to assist the rungs to fall down due to gravity. A release door mechanism on the rung
compartment controls the rate at which the rungs can enter the rotating mill. As each rung passes
through the mill, a Plexiglass barrier ensures that the rung will be placed on top of the previous
one with minimal error. A set of linear slides with hooks is located at the front to allow the robot
to climb the structure.

5.3.2 Design #2: "Cart"

Cart was designed to allow the robot to travel along a
bidirectional track. A rung compartment is located on one
end of the track whereas the structure is located on the other
end. The robot must collect a rung, drive to the other end,
stack the rung on the structure, return to the rung
compartment, and repeat. This design utilizes a conventional
ladder with a foundation or fixture as a support. The robot
also features a set of linear slides that share lifting and
climbing hooks used to elevate the rungs and scale the
structure, respectively. As opposed to simultaneously
building and climbing the structure like Design #1, this
design builds the entire structure first, then scales it.

48

5.3.3 Design #3: "Ladder"

Similar to Design #1, this design simultaneously builds
the ladder structure as it climbs. It also includes a rung
compartment attached to the back of the robot; however,
the transportation of the rung elements is different. A two-
link arm mechanism on the robot reaches into the
compartment, grabs a rung, and places it onto the
structure. To ascend the ladder, four claws or grippers are
clamped onto the vertical members of the ladder, and a
driven wheel allows the robot to scale upwards.

5.3.4 Design #4: "Spider"

As opposed to the previous three design of using a conventional ladder, Spider was designed to be
compatible with cube elements. This design employs a bottom-up approach in constructing the
cube structure, which follows the description in Section 5.2.2 Cube. As shown in Figure 62, the
three main features are the cube latch, forklift, and climbing mechanism. The step-by-step process
of building the structure is as follows: (1) the robot raises a cube with its forklift, (2) extends the
cube latch to the outer perimeter, (3) grabs onto a cube, and (4) pulls the cube in to be stacked.
This procedure repeats until the number of cube elements is exhausted and the structure is entirely
built. Then, shall the design utilize its climbing mechanism to scale from the inside of the structure.

Figure 62: Sketch of Design #4: “Spider”.

5.3.5 Design #5: "Pole"

As opposed to the previous four designs, Pole introduces a new element. The structure consists of
interlocked cylindrical elements that assemble like Lego pieces. A two-link arm mechanism on
this robot is used to grab a pole element from a separate compartment and stack it on top of the
structure. As shown in Figure 63, the robot is ring-shaped with three interior wheels that are fully
in contact with the pole structure, so it can translate vertically.

49

Figure 63: Sketch of Design #5: “Pole”.

5.4 Concept Selection

After the team mutually agreed on the top five robot designs in the concept generation phase, we
moved towards selecting a final design. In order to do so, we considered the advantages and
disadvantages of each design, generated a weighted decision matrix based on the requirements
from the problem definition, and made a justification for the design with the highest weighted
total score.

50

5.4.1 Advantages and Disadvantages

Design #1, “Quiver”, was a design that posed several challenges. Despite that it satisfies several
functional requirements, this design would be difficult to achieve in reality. As it utilizes a
traditional ladder with a fixture on the ground, the probability that the robot will tip and fall is
high. Since the robot’s weight and center of mass are not aligned with those of the ladder
structure, a moment is produced. In this design, the height of the ladder is greatly limited by the
rung capacity that the compartment can hold. Another obstacle is determining how the rung
compartment would attach to the robot without interfering with the rotating mill and chassis.
Design #2, “Cart”, experiences similar issues with the previous design in terms of the tipping
moment as well as the limitation of the rung capacity. Despite that the robot’s motion is
constrained on the bidirectional track, it would be difficult to program it execute the states
perfectly. Design #3, “Ladder”, also faces the same barriers as Design #1. On the other hand,
Design #4, “Spider”, is a novel design that enables the robot to climb from the middle of the
cube structure. The main challenge with this design, however, is with ascending and descending
the structure due to the geometric constraints of the structure. Finally, Design #5, “Pole”, is
definitively the simplest to implement. But, the cost of this simplicity is that the structure may
fail due to bending and deflection before the robot scales to the very top. If the three driven
wheels are not fully synchronized, then they could lock and immobilize the robot.

5.4.2 Weighted Decision Matrix

In the concept selection phase, a weighted decision matrix was generated to fairly determine the
best design solution. A weighted decision matrix is a table used to rank the designs based on a
set of requirements and weights [27]. The weights are essentially a magnitude to give each
requirement more influence in the final decision; the weight was scaled from 1-10 depending on
how important each requirement was to the overall goals of the project. After completing the
weighted decision matrix, the design with the highest weighted total would be considered the
best design. The selected requirements are listed as follows: cost, ease of manufacturing,
construction speed, feasibility, size, accuracy, strength, and scalability.

Cost was weighted the highest at a 10 since the solution cannot exceed the budget of $300.
Feasibility, scalability, and strength were also deemed important, so they were weighted a 9.
Since the modeling, prototyping, and analysis must be completed within the 10-week time frame
in the 2020 Spring quarter, the design solution must be feasible to ensure that it can be
completed. Moreover, the solution must also be scaled such that it can be supported in a real-
world environment. Since the weight requirement cannot exceed 30lbs, the structure must be
able to support the robot’s load at the top without failure. Accuracy in grabbing each element and
building the structure was weighted a 7; without a rigid structure, the robot is unable to ascend
and descend it. In terms of manufacturability, it was weighted a 6 because ideally, we would
want to use as many commercial off-the-shelf parts as possible and refrain from making custom
ones. Lastly, construction speed and size were weighted 4 and 5, respectively, because they do
not play a role in the primary objectives of the robot—to build, ascend, and descend the
structure.

51

Figure 64: Weighted decision matrix.

5.4.3 Design Justification

After carefully assigning all scores for each requirement to each design, the completed weighted
decision matrix is shown as Figure 64. As a collective unit, the team believed that Design #4,
“Spider”, was the best design that satisfies all the requirements. Although the weighted total
score of this design was slightly above those of the “Ladder” and “Pole”, a further analysis of
these three designs validated that our selected design was the most feasible. Unlike the ladder
and pole structures, the cube structure is inherently stable and self-supporting. All other designs
had high chances of bending and tipping due to shifts in the center of mass, but since “Spider”
remains in the middle of the structure as it climbs, this is not an issue.

Reviewing several of the physical requirements (see Section 2.2.2 Physical Requirements),
“Spider” satisfies both PR-1 and PR-2. As described in Section 5.3.4 Design #4: “Spider”, the
design features three main mechanisms: cube latch, forklift, and climbing mechanism. Out of the
top five designs, “Spider” is the only one that can support itself at the very top of the cube
structure. Moreover, depending on the size of the robot and each cube element, “Spider” will
also satisfy several functional performance requirements (see Section 2.2.1 Functional
Performance Requirements). Since FPR-1 states that the robot must climb to a height of at
least three feet, the cube element can have side lengths of 1ft, so only three cubes can be stacked
to fulfill this requirement. Although time is relative, the repetitive process of building, ascending,
and descending should reduce the amount of time for completion. This applies to FPR-2, FPR-4,
and FPR-5. Finally, with this design, human factor is limited, but includes user interface (i.e. cell
phone or laptop) and positioning cube elements on the outer perimeter (see Section 2.2.5
Human Factors). Although most requirements are met, the issues of cost and manufacturability
remain important, unanswered questions.

52

6 Conclusion

Through the use of the engineering design process, this project has evolved into the detailed
design package and virtual prototype demonstrated in this report. Starting from detailing the core
requirements for a robot capable of autonomously constructing and scaling a structure, we
brainstormed potential concepts, selected a final solution, and developed the solution into a final
product. Using a virtual prototype, we verified that the project meets all project requirements. An
extensive finite element analysis revealed insight into the components’ factors of safety, and a
3D virtual simulation verified that the autonomous software package allows the robot to
construct, ascend, and descend the structure. While this robot is just a proof-of-concept, it
successfully demonstrates the potential for robots in construction sites to reduce human
involvement on scaffolding structures. To commercialize this project, several aspects of the
design would need to be revised, including redesigning the cube structure to increase the
maximum structure height, searching for alternative commercial off-the-shelf components for
some actuators, and finding exact use cases that this robot could address. Overall, our design
verification has demonstrated that the product design is sound and ready for future testing and
potential commercialization.

53

7 Recommendations

The unique aspect about this project has been that it requires a series of subsystems to consider
during the engineering design process. The overall project is divided into four main systems—
mechanical, electrical, software, and structure, each with their own subsystems. Strictly looking
at physical components of the project, the mechanical subsystems and the structure had to be
designed in conjunction with one another. Moreover, if a design of the structure was revised,
then the mechanical design of the robot had to be reanalyzed in order to ensure the modification
of the structure did not affect the intended functionality of the robot (and vice versa). Many
times, redesign was required for both components, which was a challenging aspect of the
engineering design process. Recognizing this hurdle, the main recommendation for design
implementation would be to begin the engineering design process with the understanding that the
robot and structure are two different entities that must be designed dependent on one another.

To improve upon the design, the cube element should be analyzed more closely in order to
understand the operational constraints of the structure because it does not contain two edges to
form a full six-sided cube. Though the structure has been determined to withstand high stresses,
there is a height limit that the structure will begin to collapse due to the robot’s load while
ascending and descending the structure. This does not warrant any concern in regards to a virtual
prototype; however, if the product is to be intended for future manufacturing, the design should
be examined in greater detail to understand the height limit the robot can operate at which can
affect the intended market focus.

Additionally, if the schedule were more lenient, the commercial off-the-shelf and modified
offthe-shelf components chosen from the supplier could be chosen more carefully. Given the
results from the finite element analysis, certain high stress areas were noted, and a commercial
off-theshelf component can be modified to mitigate the stress concentration. However, if a
commercial off-the-shelf product is modified too much, the time required to perform the
modifications is greater than the benefit of using the part. Therefore, more research should be
done to determine if other commercial off-the-shelf parts will function better in the design, and
the operational envelope can be extended even further.

Finally, it would be wise to complete more research into specific areas at a construction site
that the robot could be used for. The main goal of the project was to reduce the amount of
injuries and fatalities due to falls from scaffolding and ladders; however, use cases were not fully
defined. For example, it would be helpful to see if the robot could be used as a lift for materials
and tools or as an elevator that can operate without human involvement. This research can help
bring the prototype to the market quickly and more effectively.

54

References

[1] Occupational Safety and Health Administration.“Stairways and Ladders - A Guide to
 OSHA Rules.” OSHA, U.S. Department of Labor, 2003, www.osha.gov. Accessed 16
 January 2020.
[2] Occupational Safety and Health Administration.“Safety and Health Regulations for
 Construction.” OSHA, United States Department of Labor, 11 April 2014,
 www.osha.gov. Accessed 16 January 2020.
[3] Occupational Safety and Health Administration.“Construction Focus Four: Fall Hazards.”
 OSHA, U.S. Department of Labor, 2011, www.osha.gov. Accessed 29 January 2020.
[4] Fujii, Shota, Inoue, Kenji, Takubo, Tomohito, Mae, Yasushi, and Arai Tatsuo. “Ladder
 Climbing Control for Limb Mechanism Robot ‘ASTERISK’.” Proceedings of the 2008
 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA, May
 19-23, 2008. DOI:978-1-4244-1647-9/08.
[5] Yoneda, Hironari, Sekiyama, Kosuke, Hasegawa, Yasuhisa and Fukuda, Toshio.
 “Vertical Ladder Climbing Motion with Posture Control for Multi-Locomotion Robot.”
 Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and
 Systems. Nice, France, September 22-26, 2008. DOI: 978-1-4244-2058-2/08.
[6] “68% Of the World Population Projected to Live in Urban Areas by 2050, Says UN—UN
 DESA Department of Economic and Social Affairs.” United Nations, United Nations, 16
 May 2018, www.un.org.
[7] “Home Insurance Building.” The Home Insurance Building. Adams and LaSalle,
 Chicago Map Data OpenStreetMap. Chicago Architecture Info,
 www.chicagoarchitecture.info.
[8] Occupational Safety and Health Administration. “Worker Safety Series - Construction.”
 OSHA, U.S. Department of Labor, 2005, www.osha.gov. Accessed 29 January 2020.
[9] “Ladders in Construction.” SiteSafe, 2019, www. sitesafe.org.nz.
[10] Webb, B. “Major Types of Scaffolding in Construction.” Avontus, 2017,
 www.avontus.com.
[11] DSM&T. “IP Rating Chart.” DSM&T, 2020, www.dsmt.com/. Accessed 29 January
 2020.
[12] “Aluminum 6061-T6; 6061-T651.” ASM Aerospace Specification Metals Inc.,
 http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061T6. Accessed 1
 April 2020.
[13] “Loctite Ultra Gel Control Super Glue, 4-Gram Bottle (Pack of 2).” Amazon, https://
 www.amazon.com/Loctite-Ultra-Control-Super-Glue/dp/B07VMC2YMT/ref=zg bs
 256243011 2? encoding=UTF8&psc=1&refRID=0A8WRG21QDM57ES1XKD6.
[14] Xgentec Jason, “Linear Rail 400mm x 8mm Rail.” GrabCAD, https://grabcad.com/
 library/linear-rail-400mm-x-8mm-rail-1. Accessed 13 April 2020.
[15] “Technical Resources.” REV Robotics, http://www.revrobotics.com/resources/.
[16] “15mm Linear Motion Kit v2.” REV Robotics, https://revrobotics.com/rev-45-1507/.
[17] “15mm Linear Motion System v2 (Guide).” REV Robotics, 2018,
 https://revrobotics.com/content/docs/15mmLinearMotion-Guide.pdf.

55

[18] “Velcro Brand All Purpose Strap.” Velcro, https://www.velcro.com/products/ties-
 andstraps/900600 all-purpose strap/?shape=strap&size=18in-x-1in&color=black.
[19] “FCHUB-6S w/ Current Sensor 184A, BEC 5V&10V, 6S Max (Manual).” MATEK
 Systems, https://www.mateksys.com/downloads/FCHUB-6S manual.pdf.
[20] Armin Ronacher. “Flask: A simple framework for building complex web applications,”
 PyPI. https://pypi.org/project/Flask/.
[21] “Robot Operating System,” Open Source Robotics Foundation. https://ros.org.
[22] “Gazebo - Robot Simulation Made Easy.” Open Source Robotics Foundation,
 https://www.gazebosim.org.
[23] “Aluminum 7005-T6, 7005-T63, and 7005-T6351.” MatWeb,
 http://www.matweb.com/search/ datasheet.aspx
 MatGUID=34c308934f7a4be589a80ecbee94406e&ckck=1.
[24] “Aluminum 6063-T6.” ASM Aerospace Specification Metals Inc.,
 https://asm.matweb.com/ search/SpecificMaterial.asp?bassnum=MA6063T6.
[25] “Delrin (Acetal Homopolymer)” San Diego Plastics Inc.,
 http://www.sdplastics.com/delrin/ delrin[1].pdf.
[26] Green, David W., Winandy, Jerrold E., and David E. Kretschmann. “Chapter 4:
 Mechanical Properties of Wood.” Wood Handbook. https://www.fpl.fs.fed.us/documents/
 fplgtr/fplgtr113 /ch04.pdf.
[27] Dieter, George E. and Linda C. Schmidt. “Engineering Design, 4th edition.” The
 McGraw-Hill Companies, Inc., 2009.

56

Appendices

A Bill of Materials (BOM)

B

57

Part Drawings

B1 Lifting and Climbing Mechanism

Figure B1.1: Part drawing of the back plate of the linear actuator

58

Figure B1.2: Part drawing of the Nema 17 stepper motor mount for the linear actuator.

Figure B1.3 Part drawing of the top mount for the linear actuator.

59

Figure B1.4 Part drawing of the hook and servo mount for the dual hook assembly.

Figure B1.5: Part drawing of the modified TETRIX flat bracket for the dual hook assembly

60

Figure B1.6: Part drawing of the aluminum tube for the lifting and climbing hooks

Figure B1.7: Part drawing of the back plate for the lifting and climbing hooks.

61

Figure B1.8: Part drawing of the back plate attachment that holds the linear actuator and extrusion together.

Figure B1.9: Part drawing of the modified L-beam connecting the lifting and climbing mechanism to the base plate.

62

Figure B1.10: Part drawing of a custom extrusion to elevate linear actuator to desired height.

63

B2 Cube Latch Mechanism

Figure B2.1: Part drawing of the 15mm extrusion to attach linear slide assembly to base plate.

Figure B2.2: Part drawing of the 15mm extrusion for the linear slide assembly.

64

Figure B2.3: Part drawing of the 15mm extrusion to hold the motor and motor mount for the linear slide assembly.

Figure B2.4: Part drawing of a hex shaft for the chain-and-sprocket system on the linear slide assembly

65

Figure B2.5: Part drawing of a custom motor mount for the linear slide assembly.

66

Figure B2.6: Part drawing of the claw’s hook for the cube latch assembly

Figure B2.7: Part drawing of the mount of the claw’s hook to be fastened onto the servo.

67

Figure B2.8: Part drawing of the stopper to constrain motion of cube element within the claw.

Figure B2.9: Part drawing of the joint plate of the cube latch assembly.

68

B3 Rotating Plate Mechanism

69

Figure B3.1: Part drawing of the base plate.

70

Figure B3.2: Part drawing of the rotating plate.

71

Figure B3.3: Part drawing of the servo mount extension (left) for the rotating plate mechanism.

Figure B3.4: Part drawing of the servo mount extension (right) for the rotating plate mechanism.

72

Figure
B3.5: Part drawing of the modified L-beam to attach servo mount onto base plate.

B4 Cube

Figure B4.1: Part drawing of the horizontal and vertical segments of the cube element.

73

Figure B4.2: Part drawing of the corner piece of the cube element

74

Figure B4.3: Part drawing of the open-faced corner piece of the cube element.

Figure B4.4: Part drawing of the peg of the cube element.

75

B5 Electronics Compartment

Figure B5.1: Part drawing of the electronics case.

76

77

C Assembly Drawings

C1 Sub-assemblies of Lifting and Climbing Mechanism

Figure C1.1: Assembly drawing of the lifting and climbing hook.

78

Figure C1.2: Assembly drawing of the servo assembly to control the lifting and climbing hook

79

Figure C1.3: Assembly drawing of the dual hook assembly

80

Figure C1.4: Assembly drawing of the linear actuator

81

C2 Sub-assemblies of Cube Latch Mechanism

Figure C2.1: Assembly drawing of the linear slides.

82

Figure C2.2: Assembly drawing of the motor and motor mount.

83

Figure C2.3: Assembly drawing of the linear slide assembly

84

Figure C2.4: Assembly drawing of the claw for the cube latch assembly

85

Figure C2.5: Assembly drawing of the cube latch assembly.

86

C3 Sub-assemblies of Rotating Plate Mechanism

Figure C3.1: Assembly drawing of the servo assembly for the rotating plate mechanism.

87

C4 Main Assemblies

Figure C4.1: Assembly drawing of the lifting and climbing mechanism.

88

Figure C4.2: Assembly drawing of the lifting and climbing mechanism on base plate.

89

Figure C4.3: Assembly drawing of the cube latch mechanism.

90

Figure C4.4: Assembly drawing of the rotating plate mechanism.

91

Figure C4.5: Assembly drawing of the final robot design

92

Figure C4.6: Assembly drawing of the cube element.

93

D Code
D1 Webserver (Python)
D1.1 webserver.py

from flask import Flask, render_template, request, jsonify,
make_response import rospy
from std_msgs.msg import Bool, Int16

app = Flask(__name__)

active_pub = rospy.Publisher(/active , Bool, queue_size=10) # Robot can
move reset_pub = rospy.Publisher(/reset , Bool, queue_size=10) # Robot
will
,! immediate descend to ground
num_blocks_pub = rospy.Publisher(/num_blocks , Int16, queue_size=10) #
Blocks ,! the robot is working with

climb_enable_pub = rospy.Publisher(/climb_to_height_enable , Bool,
,! queue_size=10) # Robot will climb to a target height
climb_height_pub = rospy.Publisher(/climb_to_height_target , Int16,
,! queue_size=10) # Height the robot will climb to

index route: just returns the index.html webpage @app.route("/")
def index():

return render_template("index.html")

update route: updates a ros topic, used by the web interface
@app.route("/update", methods=["GET"])
def update():

topic =
str(request.args.get("topic"))
value =
str(request.args.get("value"))

if topic == "active":

active_pub.publish(data = False if value == "false" else value ==
"true")

elif topic == "reset":
reset_pub.publish(data = False if value == "false" else value ==
"true")

elif topic == "num_blocks":
num_blocks_pub.publish(Int16(data=value))

elif topic == "climb_to_height_enable":

94

climb_enable_pub.publish(data = False if value == "false" else
value == ,! "true")

elif topic == "climb_to_height_target":

climb_height_pub.publish(Int16(data=value))
else:

return make_response(jsonify({"result": "invalid topic"}))
 return make_response(jsonify({"result": "success"}))

@app.route("/test")
def test():

active_pub.publish(Bool(data=False))
return "test"

starts the webserver and initializes the ros nodes def start_webserver():

rospy.init_node("webserver") # init ros node
app.run(host="0.0.0.0")

D2 Robot Initialization Script (Python)
D2.1 main.py

import web.webserver
import states.overall
import threading
import time
import rospy

if __name__ == "__main__":

rospy.init_node("mission_control")
webserver_thread = threading.Thread(target=web.webserver.start_webserver)
#webserver_thread.start()

print("Starting overall state machine")
states.overall.overall_state_machine()
time.sleep(1)

D3 Robot Shared Variable Controller (Python)
D3.1 variables.py

functions managing persistant variables

import rospy
from std_msgs.msg import Bool, Float64, Int16

95

variables = {

"num_blocks": 0,
"current_block": 0,

"current_height": 0,
"max_height": 0,
"climb_height_enable": False,
"climb_to_height": 0,

"reset": False

}

def get_num_blocks():

return variables["num_blocks"]

def set_num_blocks(value):

variables["num_blocks"] = value

def get_current_block():

return variables["current_block"]

def set_current_block(value):

variables["current_block"] = value

def get_current_height():

return variables["current_height"]

def set_current_height(value):

variables["current_height"] = value

def get_max_height():

return variables["max_height"]

def set_max_height(value):

variables["max_height"] = value

def get_climb_height_enable():

return variables["climb_height_enable"]

def get_climb_to_height():

return variables["climb_to_height"]

96

def set_climb_to_height(value):

variables["climb_to_height"] = value

def get_reset_enable():

return variables["reset"]

def reset_sub_callback(msg):
variables["reset"] = msg.data

reset_sub = rospy.Subscriber(/reset/ , Bool, reset_sub_callback)

def climb_to_height_target_sub_callback(msg):

variables["climb_to_height"] = msg.data
reset_sub = rospy.Subscriber(/climb_to_height_target/ ,
Int16, ,! climb_to_height_target_sub_callback)

def climb_to_height_enable_sub_callback(msg):

variables["climb_height_enable"] = msg.data
reset_sub = rospy.Subscriber(/climb_to_height_enable/ ,
Bool, ,! climb_to_height_enable_sub_callback)

D4 Robot Status Controller (Python)
D4.1 status.py

contains functions that read topics on the status of robot parts

import rospy
from std_msgs.msg import Bool, Int16

robot_statuses = {

"vertical_actuator": "low",
"horizontal_actuator": "low",

"left_grabber_servo": 0,
"right_grabber_servo": 0,

"left_forklift_servo": 0,
"right_forklift_servo": 0,

"bottom_servo": 0

}

97

def status_vertical_actuator():

value = robot_statuses["vertical_actuator"]
#print("The current value of the vertical actuator is " + str(value))

def status_horizontal_actuator(value="none"):

value = robot_statuses["horizontal_actuator"]
#print("The current value of the horizontal actuator is " + str(value))

def status_left_grabber_servo(value="none"):

value = robot_statuses["left_grabber_servo"]
#print("The current value of the left grabber servo is " + str(value))

def status_right_grabber_servo(value="none"):

value = robot_statuses["right_grabber_servo"]
#print("The current value of the right grabber servo is " + str(value))

def status_left_forklift_servo(value="none"):

value = robot_statuses["left_forklift_servo"]
#print("The current value of the left forklift servo is " + str(value))

def status_right_forklift_servo(value="none"):

value = robot_statuses["right_forklift_servo"]
#print("The current value of the right forklift servo is " + str(value))

def status_bottom_servo(value="none"):

value = robot_statuses["bottom_servo"]
#print("The current value of the bottom servo is" + str(value))

def vertical_actuator_sub_callback(msg):

robot_statuses["vertical_actuator"] = msg.data
vertical_actuator_sub = rospy.Subscriber(/vertical_actuator_status/ ,
Int16, vertical_actuator_sub_callback)

def horizontal_actuator_sub_callback(msg):

robot_statuses["horizontal_actuator"] = msg.data
horizontal_actuator_sub = rospy.Subscriber(/horizontal_actuator_status/ ,
Int16, horizontal_actuator_sub_callback)

def left_grabber_servo_sub_callback(msg):

robot_statuses["left_grabber_servo"] = msg.data

98

left_grabber_servo_sub = rospy.Subscriber(/left_grabber_servo_status/ ,
Int16, left_grabber_servo_sub_callback)

def right_grabber_servo_sub_callback(msg):

robot_statuses["right_grabber_servo"] = msg.data
right_grabber_servo_sub = rospy.Subscriber(/right_grabber_servo_status/ ,
Int16, right_grabber_servo_sub_callback)

def left_forklift_servo_sub_callback(msg):

robot_statuses["left_forklift_servo"] = msg.data
left_forklift_servo_sub = rospy.Subscriber(/left_forklift_servo_status/ ,
Int16, left_forklift_servo_sub_callback)

def right_forklift_servo_sub_callback(msg):

robot_statuses["right_forklift_servo"] = msg.data
right_forklift_servo_sub = rospy.Subscriber(
/right_forklift_servo_status/ , Int16,
right_forklift_servo_sub_callback)

def bottom_servo_sub_callback(msg):

robot_statuses["bottom_servo"] = msg.data
bottom_servo_sub = rospy.Subscriber(/bottom_servo_status/ ,
Int16, bottom_servo_sub_callback)

D5 Finite State Machines (Python)
D5.1 Overall State Machine -- overall.py

overall state machine

import states.construction
import states.ascension
import states.descension
import states.actuations
import storage.variables

def overall_state_machine():

state = 0
runs until told to exit
print("Running overall state machine")

while state != -

1:
if state == 0:

print("Running IDLE state machine")

99

idle
states.actuations.force_neutral_posit
ion()
storage.variables.set_num_blocks(3)
storage.variables.set_climb_to_height
(1) state = 2

elif state == 1:
print("Running CONSTRUCTION state machine")
status = states.construction.construction_state_machine()
storage.variables.set_climb_to_height(3)
if status: # check if completed

successfully state = 2
 elif state == 2:

print("Running ASCENSION state machine")
status = states.ascension.ascension_state_machine()
storage.variables.set_climb_to_height(1)
if status: # check if completed

successfully state = 3

elif state == 3:
print("Running DESCENSION state machine")
status = states.descension.descension_state_machine()
if status: # check if completed successfully

state = -1
print("Exited state machines")

D5.2 Construction State Machine -- construction.py

state machine for construction

import simulator.actuators
import simulator.status
import storage.variables
import states.actuations

def construction_state_machine():

state = 0

states = {
0: neutral_position,
1: elevate_tower,
2: reach_cube,
3: pull_cube,
4: deelevate_tower

100

}

print(" Starting construction state machine")

while state != -1:
state = states[state]()
#a = raw_input(">")

print(" Finished construction state machine")
return True

def neutral_position():

print(" In construction::neutral position")
states.actuations.neutral_position()
num_blocks = storage.variables.get_num_blocks()

if num_blocks > 0:

print(" There are " + str(num_blocks) + " blocks to construct")
storage.variables.set_num_blocks(num_blocks - 1)
return 1

elif storage.variables.get_reset_enable():
print(" Asked to reset")
return -1

else:
print(" There are no more blocks to construct")
return -1

def elevate_tower():

print(" In contruction::elevate tower")
states.actuations.elevate_structure()
return 2

def reach_cube():

print(" In contruction::reach cube")
states.actuations.reach_cube()
return 3

def pull_cube():

print(" In contruction::pull cube")
states.actuations.pull_cube()
return 4

def deelevate_tower():

101

print(" In contruction::deelevate tower")
states.actuations.deelevate_structure()
return 0

D5.3 Ascension State Machine -- ascension.py

state machine for ascension

import simulator.actuators
import simulator.status
import storage.variables
import states.actuations

def ascension_state_machine():

state = 0
states = {
 0: start_of_cycle,
 1: elevate_forklift,

 2: forklift_hooks_out,
3: rotate_buttom_in,
4: deelevate_forklift,
5: rotate_buttom_out,
6: forklift_hooks_in,
7: end_of_cycle,

}

print(" Starting ascension state machine")

while state != -1:
state = states[state]()

print(" Finished ascension state machine")
return True

def start_of_cycle():

print(" In ascension::start of cycle")
current_height =
storage.variables.get_current_height() target_height
= storage.variables.get_climb_to_height()
height_difference = target_height - current_height
if height_difference > 0:

print(" There are " + str(height_difference) + " blocks left to ,!
climb")

return 1

102

else:
print(" There are no blocks left to climb")
return -1

def elevate_forklift():

print(" In ascension::elevate forklift")
states.actuations.elevate_forklift()
return 2

def forklift_hooks_out():

print(" In ascension::forklift hooks out")
states.actuations.forklift_forks_out()
return 3

def rotate_buttom_in():

print(" In ascension::rotate bottom in")
states.actuations.rotate_bottom_in()
return 4

def deelevate_forklift():

print(" In ascension::deelevate forklift")
states.actuations.deelevate_forklift()
return 5

def rotate_buttom_out():

print(" In ascension::rotate bottom out")
states.actuations.rotate_bottom_out()
return 6

def forklift_hooks_in():

print(" In ascension::forklift hooks in")
states.actuations.forklift_forks_in()
return 7

def end_of_cycle():

print(" In ascension::end of cycle")
current_height = storage.variables.get_current_height() +
1 storage.variables.set_current_height(current_height)
return 0

103

D5.4 Descension State Machine -- descension.py

state machine for descension

import simulator.actuators
import simulator.status
import storage.variables
import states.actuations

def descension_state_machine():

state = 0

states = {
0: start_of_cycle,
1: rotate_buttom_in,
2: elevate_forklift,
3: rotate_buttom_out,
4: forklift_hooks_in,
5: deelevate_forklift,
6: forklift_hooks_out,
7: end_of_cycle,

}

print(" Starting descension state machine")

while state != -1:
state = states[state]()

print(" Finished descension state machine")
return True

def start_of_cycle():

print(" In descension::start of cycle")
current_height =
storage.variables.get_current_height()
target_height =
storage.variables.get_climb_to_height()
height_difference = target_height - current_height
if height_difference < 0:

print(" There are " + str(-1 * height_difference) + " blocks left to
,! descend")

return 1

else:

104

print(" There are no blocks left to climb")
return -1

def rotate_buttom_in():

print(" In descension::rotate bottom
in")
states.actuations.rotate_bottom_in()
return 2

def elevate_forklift():

print(" In descension::elevate
forklift")
states.actuations.elevate_forklift()
return 3

def rotate_buttom_out():

print(" In descension::rotate bottom
out")
states.actuations.rotate_bottom_out()
return 4

def forklift_hooks_in():

print(" In descension::forklift hooks
in")
states.actuations.forklift_forks_in()
return 5

def deelevate_forklift():

print(" In descension::deelevate
forklift")
states.actuations.deelevate_forklift()
return 6

def forklift_hooks_out():

print(" In descension::forklift hooks
out")
states.actuations.forklift_forks_out()
return 7

105

def end_of_cycle():
print(" In descension::end of cycle")
current_height = storage.variables.get_current_height() - 1
storage.variables.set_current_height(current_height)
return 0

D5.5 State Machine Actuator Control -- actuations.py

contains function for actuator sequences

import simulator.actuators
import simulator.status

lifts the structure def elevate_structure():
rotate forklift servos out forklift_forks_out()

raise top actuator full

simulator.actuators.vertical_actuator(2)

def deelevate_structure():

lower top actuator half
simulator.actuators.vertical_actuator(1)

rotate forklift servos in forklift_forks_in()

low top actuator full

simulator.actuators.vertical_actuator(0)

only raises the forklift actuator def elevate_forklift():

raise top actuator full
simulator.actuators.vertical_actuator(2)

def deelevate_forklift():

low top actuator full
simulator.actuators.vertical_actuator(0)

def forklift_forks_out():
rotate cube grabber servos out simulator.actuators.forklift_servos(-1)

def forklift_forks_in():
rotate cube grabber servos in simulator.actuators.forklift_servos(1)

def reach_cube():

106

extend grabber full
 simulator.actuators.horizontal_actuator(2)

rotate cube grabber servos out simulator.actuators.left_grabber_servo(-
1) simulator.actuators.right_grabber_servo(-1)

def pull_cube():

retract grabber half
simulator.actuators.horizontal_actuator(1)

rotate cube grabber servos in simulator.actuators.left_grabber_servo(1)
simulator.actuators.right_grabber_servo(1)

retract grabber full

simulator.actuators.horizontal_actuator(-2)

def rotate_bottom_out():
rotate bottom servo out simulator.actuators.bottom_servo(1)

def rotate_bottom_in():
rotate bottom servo out simulator.actuators.bottom_servo(1)

assumes a neutral position
def neutral_position():

check the status of the vertical actuator
if simulator.status.status_vertical_actuator() != "low":

simulator.actuators.vertical_actuator(0)
simulator.actuators.vertical_actuator(-2)

check the status of the horizontal actuator
if simulator.status.status_horizontal_actuator() != "low":

simulator.actuators.horizontal_actuator(0)
simulator.actuators.horizontal_actuator(-2)

check the status of the grabber servos
if simulator.status.status_left_grabber_servo() != 1:

simulator.actuators.left_grabber_servo(1)
if simulator.status.status_right_grabber_servo() != 1:

simulator.actuators.right_grabber_servo(1)

check the status of the forklift servos
if simulator.status.status_left_forklift_servo() != 1:

simulator.actuators.left_forklift_servo(1)
if simulator.status.status_right_forklift_servo() != 1:

107

 simulator.actuators.right_forklift_servo(1)

check the status of the bottom servo
if simulator.status.status_bottom_servo() != -1:

simulator.actuators.bottom_servo(-1)

forces a neutral position, used at the start to initialize servos def
force_neutral_position():

deelevate_forklift()
forklift_forks_in()
simulator.actuators.left_grabber_servo(
1)
simulator.actuators.right_grabber_servo
(1)
simulator.actuators.left_forklift_servo
(1)
simulator.actuators.right_forklift_serv
o(1) simulator.actuators.bottom_servo(-
1)

D6 Simulation Actuator Relay (Python)
D6.1 actuators.py

contains functions that convert desired actuator values to ros topic controls

import rospy
from std_msgs.msg import Bool, Float32, Int16
import time

cube_grabber_actuator_middle_pub =
,! rospy.Publisher("/lbr_robot/cube_grabber_actuator_middle_position", Float32, ,!
queue_size=10)

cube_grabber_actuator_top_pub =
,! rospy.Publisher("/lbr_robot/cube_grabber_actuator_top_position", Float32, ,!
queue_size=10)

forklift_left_actuator_pub =
,! rospy.Publisher("/lbr_robot/forklift_left_actuator_position", Float32, ,!
queue_size=10)

forklift_right_actuator_pub =
,! rospy.Publisher("/lbr_robot/forklift_right_actuator_position", Float32, ,!
queue_size=10)

cube_grabber_servo_pub =

108

,! rospy.Publisher("/lbr_robot/cube_grabber_servos_position", Float32, ,!
queue_size=10)

forklift_servos_pub = rospy.Publisher("/lbr_robot/forklift_servos_position",
,! Float32, queue_size=10)

forklift_left_servo_pub =
,! rospy.Publisher("/lbr_robot/forklift_left_servo_position", Float32, ,!
queue_size=10)
forklift_right_servo_pub =
,! rospy.Publisher("/lbr_robot/forklift_right_servo_position", Float32,
,! queue_size=10)
bottom_plate_servo_pub =
,! rospy.Publisher("/lbr_robot/bottom_plate_servo_position",
Float32, ,! queue_size=10)

def vertical_actuator(state):
will need to check the prior state for the time delay if state == 0:

#print("vertical actuator rostopic to stop")
forklift_left_actuator_pub.publish(float(0.0
))
forklift_right_actuator_pub.publish(float(0.
0)) time.sleep(4)

elif state == 1:
#print("vertical actuator rostopic to raise
half")
forklift_left_actuator_pub.publish(float(0.8))
forklift_right_actuator_pub.publish(float(0.8))
time.sleep(4)

elif state == 2:

#print("vertical actuator rostopic to raise
full")
forklift_left_actuator_pub.publish(float(1.6))
forklift_right_actuator_pub.publish(float(1.6))
time.sleep(4)

elif state == -1:

#print("vertical actuator rostopic to lower
half")
forklift_left_actuator_pub.publish(float(0.8))
forklift_right_actuator_pub.publish(float(0.8))
time.sleep(4)

elif state == -2:

#print("vertical actuator rostopic to lower
full")

109

forklift_left_actuator_pub.publish(float(0.1))
forklift_right_actuator_pub.publish(float(0.1))
time.sleep(4)

return True

def horizontal_actuator(state):

if state == 0:
#print("horizontal actuator rostopic to stop")
time.sleep(0)

elif state == 1:
#print("horizontal actuator rostopic to raise half")
cube_grabber_actuator_middle_pub.publish(float(0.1))
cube_grabber_actuator_top_pub.publish(float(0.1))
time.sleep(3)

elif state == 2:
#print("horizontal actuator rostopic to raise full")
cube_grabber_actuator_middle_pub.publish(float(0.6))
cube_grabber_actuator_top_pub.publish(float(0.6))
time.sleep(5)

elif state == -1:
#print("horizontal actuator rostopic to lower half")
cube_grabber_actuator_middle_pub.publish(float(0.1))
cube_grabber_actuator_top_pub.publish(float(0.1))
time.sleep(3)

elif state == -2:
#print("horizontal actuator rostopic to lower full")
cube_grabber_actuator_middle_pub.publish(float(0.01))
cube_grabber_actuator_top_pub.publish(float(0.01))
time.sleep(3)

return True

def bottom_servo(state):

#print(" turning bottom servo to PWM " + str(pwm))
bottom_plate_servo_pub.publish(float(state * 3))
time.sleep(3)

def left_grabber_servo(state):

#print(" turning grabber left servo to PWM " + str(pwm))
cube_grabber_servo_pub.publish(float(state))
time.sleep(2)

def right_grabber_servo(state):

#print(" turning grabber right servo to PWM " + str(pwm))

110

cube_grabber_servo_pub.publish(float(state))
time.sleep(2)

def forklift_servos(state):

#print(" turning forklift left servo to PWM " + str(pwm))
forklift_servos_pub.publish(float(state * 5))
time.sleep(2)

def left_forklift_servo(state):

#print(" turning forklift left servo to PWM " + str(pwm))
forklift_left_servo_pub.publish(float(state * 5))
time.sleep(2)

def right_forklift_servo(state):

#print(" turning forklift right servo to PWM " + str(pwm))
forklift_right_servo_pub.publish(float(state * 5))
time.sleep(2)

D7 Gazebo Plugins (C++)
D7.1 Servo Controller -- plugin servo.cc
#ifndef _PLUGIN_SERVO_
#define _PLUGIN_SERVO_

#include <gazebo/gazebo.hh>
#include <gazebo/physics/physics.hh>

#include <thread>
#include "ros/ros.h"
#include "ros/callback_queue.h"
#include "ros/subscribe_options.h"
#include "std_msgs/Float32.h"

namespace gazebo
{
class ServoControl : public ModelPlugin
{

public: ServoControl() : ModelPlugin()
{
printf("Initializing Servo Plugin\n");

}

111

private: physics::ModelPtr model; // model
pointer

private: physics::JointPtr forklift_left_servo_top_joint; //
forklift
,! left servo joint pointer
private: physics::JointPtr forklift_left_servo_bottom_joint; //
forklift
,! left servo joint pointer

private: physics::JointPtr forklift_right_servo_top_joint; //
forklift
,! right servo joint pointer
private: physics::JointPtr forklift_right_servo_bottom_joint; //
forklift
,! left servo joint pointer

private: physics::JointPtr bottom_plate_servo_joint; // bottom
plate
,! servo joint pointer

private: physics::JointPtr cube_grabber_left_servo_joint; // cube
,! grabber servo joint pointer
private: physics::JointPtr cube_grabber_right_servo_joint; // cube
,! grabber servo joint pointer

private: common::PID vel_pid; // PID
,! controller

private: float initialPosition;
private: std::unique_ptr<ros::NodeHandle> rosNode;
private: ros::Subscriber rosSubForkliftServos;
private: ros::Subscriber rosSubForkliftLeftServo;
private: ros::Subscriber rosSubForkliftRightServo;
private: ros::Subscriber rosSubBottomPlateServo;
private: ros::Subscriber rosSubCubeGrabberServos;
private: ros::CallbackQueue rosQueue;
private: std::thread rosQueueThread;

public: void OnUpdate(const common::UpdateInfo &_info) { this->model-

>GetJointController()->Update(); //this->model-
>GetJoint("lbr_forklift_left::forklift_left_hook_top")->
,! SetVelocity(1, -5.0);

}

public: void Load(physics::ModelPtr _model, sdf::ElementPtr _sdf)

112

{
/ store pointer to the model this->model = _model;

/ check joint count

if (_model->GetJointCount() == 0)
{

std::cout << "Plugin Servo: Joint Count is 0, likely the plugin is not
,! loaded" << std::endl;
return;

}

std::vector<boost::shared_ptr<gazebo::physics::Joint>> joints
= ,! _model->GetJoints();
for (int i=0; i<_model->GetJointCount(); i++)
{

// assign the joint for the left servo forklift TOP

if (joints.at(i)->GetName() ==

,! "lbr_forklift_left::forklift_left_hook_top")
{ this->forklift_left_servo_top_joint = _model->GetJoints()[i]; }

/ assign the joint for the left servo forklift BOTTOM if
(joints.at(i)->GetName() ==

,!"lbr_forklift_left::forklift_left_hook_bottom")
{ this->forklift_left_servo_bottom_joint = _model->GetJoints()[i]; }

/ assign the joint for the right servo forklift TOP

if (joints.at(i)->GetName() ==
,! "lbr_forklift_right::forklift_right_hook_top")
{ this->forklift_right_servo_top_joint = _model->GetJoints()[i]; }

/ assign the joint for the right servo forklift BOTTOM if
(joints.at(i)->GetName() ==

,!"lbr_forklift_right::forklift_right_hook_bottom")
{ this->forklift_right_servo_bottom_joint = _model->GetJoints()[i]; }

/ assign the joint for the bottom plate servo

if (joints.at(i)->GetName() == "bottom_plate_servo")
{ this->bottom_plate_servo_joint = _model->GetJoints()[i]; }

/ assign the joint for the cube grabber left servo if (joints.at(i)-
>GetName() ==

,!"lbr_cube_grabber::cube_grabber_left_servo")
{ this->cube_grabber_left_servo_joint = _model->GetJoints()[i]; }

113

/ assign the joint for the cube grabber right servo
if (joints.at(i)->GetName() ==
,! "lbr_cube_grabber::cube_grabber_right_servo")
{ this->cube_grabber_right_servo_joint = _model->GetJoints()[i]; }

}
this->vel_pid = common::PID(1, 0.1, .01); // set a PID ,!
controller for the servo

// add the PID controller to the joints
const auto &jointController = this->model->GetJointController();

jointController->Reset();
jointController->AddJoint(model->GetJoint("lbr_forklift_left::forklift
,! _left_hook_top"));
jointController->SetVelocityPID(model->GetJoint("lbr_
,! forklift_left::forklift_left_hook_top")->GetScopedName(),
,! common::PID(1.0, 0.1, 0.01));
jointController->SetVelocityTarget(model-
>GetJoint("lbr_forklift_left::
,! forklift_left_hook_top")->GetScopedName(), 0.0);

! jointController->AddJoint(model-
>GetJoint("lbr_forklift_left::forklift_left
,! _hook_bottom"));
jointController->SetVelocityPID(model->GetJoint("lbr_forklift_left::
,! forklift_left_hook_bottom")->GetScopedName(), common::PID(1.0,
0.1,
,! 0.01));
jointController->SetVelocityTarget(model-
>GetJoint("lbr_forklift_left::
,! forklift_left_hook_bottom")->GetScopedName(), 0.0);

jointController->AddJoint(model->GetJoint("lbr_forklift_right::
,! forklift_right_hook_top"));
jointController->SetVelocityPID(model->GetJoint("lbr_forklift_right::
,! forklift_right_hook_top")->GetScopedName(), common::PID(1.0, 0.1,
,! 0.01));

 jointController->SetVelocityTarget(model-
>GetJoint("lbr_forklift_right::

forklift_right_hook_top")->GetScopedName(), 0.0);

jointController->AddJoint(model->GetJoint("lbr_cube_grabber::
,! cube_grabber_left_servo"));
jointController->SetVelocityPID(model->GetJoint("lbr_cube_grabber::
,! cube_grabber_left_servo")->GetScopedName(), common::PID(1.0, 0.1,

114

,! 0.01));
jointController->SetVelocityTarget(model->GetJoint("lbr_cube_grabber::
,! cube_grabber_left_servo")->GetScopedName(), 0.0);

jointController->AddJoint(model->GetJoint("lbr_cube_grabber::
,! cube_grabber_right_servo"));
jointController->SetVelocityPID(model->GetJoint("lbr_cube_grabber::
,! cube_grabber_right_servo")->GetScopedName(), common::PID(1.0, 0.1,
,! 0.01));
jointController->SetVelocityTarget(model->GetJoint("lbr_cube_grabber::
,! cube_grabber_right_servo")->GetScopedName(), 0.0);

jointController->AddJoint(model-
>GetJoint("bottom_plate_servo")); jointController-
>SetVelocityPID(model->GetJoint("bottom_plate_servo") ,! -
>GetScopedName(), common::PID(1.0, 0.1, 0.01));

,! jointController->SetVelocityTarget(model-
>GetJoint("bottom_plate_servo") ,! ->GetScopedName(), 0.0);

// set up ROS stuff
if (!ros::isInitialized())
{

int argc = 0;
char **argv = NULL;

ros::init(argc, argv, "gazebo_client",
,! ros::init_options::NoSigintHandler);

}

this->rosNode.reset(new ros::NodeHandle("gazebo_client")); //
create the ,! ROS node

/ create a ROS topic and subscribe to it ros::SubscribeOptions
so_forklift_servos =

,!
ros::SubscribeOptions::create<std_msgs::Float32
>("/" + ,! this->model->GetName() +
"/forklift_servos_position",

1,

,!
 boost::bind(&Ser
voControl

115

,!
 ::OnRosMsgForkli
ftServos,
,! this, _1),
ros::VoidPtr(),
,! &this-
>rosQueue);

ros::SubscribeOptions so_forklift_left_servo =
,! ros::SubscribeOptions::create<std_msgs::Float32>("/" +

 this->model->GetName() +
"/forklift_left_servo_position", 1,

,!
 boost::bind(&Ser
voControl
,!
 ::OnRosMsgForkli
ftLeftServo
,! , this, _1),
ros::VoidPtr(),
,! &this-
>rosQueue);

ros::SubscribeOptions so_forklift_right_servo =
,! ros::SubscribeOptions::create<std_msgs::Float32>("/" +

 this->model->GetName() +
"/forklift_right_servo_position", 1,

,!
 boost::bind(&Ser
voControl
,!
 ::OnRosMsgForkli
ftRight
,! Servo, this,
_1),
ros::VoidPtr(),
,! &this-
>rosQueue);

ros::SubscribeOptions so_bottom_plate_servo =
,! ros::SubscribeOptions::create<std_msgs::Float32>("/" +

116

 this->model->GetName() +
"/bottom_plate_servo_position", 1,

,!
 boost::bind(&Ser
voControl
,!
 ::OnRosMsgBottom
PlateServo,
,! this, _1),
ros::VoidPtr(),
,! &this-
>rosQueue);

ros::SubscribeOptions so_cube_grabber_servos =
,! ros::SubscribeOptions::create<std_msgs::Float32>("/" +

 this->model->GetName() +
"/cube_grabber_servos_position", 1,

boost::bind(&ServoC
ontrol
,!
 ::OnRosMsgCubeGr
abberServos,
,! this, _1),
ros::VoidPtr(),
,! &this-
>rosQueue);

std::cout << "Initialized ROS nodes" << std::endl;

this->rosSubForkliftServos =
,! this->rosNode-
>subscribe(so_forklift_servos); this-
>rosSubForkliftLeftServo =
,! this->rosNode-
>subscribe(so_forklift_left_servo); this-
>rosSubForkliftRightServo =
,! this->rosNode-
>subscribe(so_forklift_right_servo); this-
>rosSubBottomPlateServo =
,! this->rosNode-
>subscribe(so_bottom_plate_servo); this-
>rosSubCubeGrabberServos =
,! this->rosNode->subscribe(so_cube_grabber_servos);

// start the queue helper thread

117

this->rosQueueThread =
std::thread(std::bind(&ServoControl::QueueThread, ,! this));

std::cout << "Servo Plugin successfully loaded" << std::endl;

}

// handle incoming message from ROS
public: void OnRosMsgForkliftServos(const std_msgs::Float32ConstPtr &_msg)
{

/ sets the position to the value of the ROS topic
/ left servo top

this->model->GetJointController()->SetVelocityTarget(model-
>GetJoint("lbr_ ,! forklift_left::forklift_left_hook_top")-
>GetScopedName(), (int) ,! _msg->data);
// left servo bottom
this->model->GetJointController()->SetVelocityTarget(model->GetJoint("lbr_
,! forklift_left::forklift_left_hook_bottom")->GetScopedName(), (int)
,! _msg->data * -1.0);
// right servo top
this->model->GetJointController()->SetVelocityTarget(model-
>GetJoint("lbr_ ,! forklift_right::forklift_right_hook_top")-
>GetScopedName(), (int) ,! _msg->data);

// right servo bottom
this->model->GetJointController()->SetVelocityTarget(model->GetJoint("lbr_
,! forklift_right::forklift_right_hook_bottom")->GetScopedName(), (int)
,! _msg->data * -1.0);

}

public: void OnRosMsgForkliftLeftServo(const std_msgs::Float32ConstPtr
&_msg)
{

/ sets the position to the value of the ROS topic
/ left servo top

this->model->GetJointController()->SetVelocityTarget(model-
>GetJoint("lbr_ ,! forklift_left::forklift_left_hook_top")-
>GetScopedName(), (int) ,! _msg->data);

// left servo bottom
this->model->GetJointController()->SetVelocityTarget(model->GetJoint("lbr_
,! forklift_left::forklift_left_hook_bottom")->GetScopedName(), (int)
,! _msg->data * -1.0);

118

}

public: void OnRosMsgForkliftRightServo(const std_msgs::Float32ConstPtr
,! &_msg)
{
// right servo top
this->model->GetJointController()->SetVelocityTarget(model->GetJoint("lbr_
,! forklift_right::forklift_right_hook_top")->GetScopedName(), (int)
,! _msg->data);
// right servo bottom
this->model->GetJointController()->SetVelocityTarget(model->GetJoint("lbr_
forklift_right::forklift_right_hook_bottom")->GetScopedName(), (int)
,! _msg->data * -1.0);

}

public: void OnRosMsgBottomPlateServo(const std_msgs::Float32ConstPtr &_msg)
{
// sets the velocity to the value of the ROS topic

,! this->model->GetJointController()->SetVelocityTarget(model-
>GetJoint("bottom ,! _plate_servo")->GetScopedName(), (int) _msg->data);

}
public: void OnRosMsgCubeGrabberServos(const std_msgs::Float32ConstPtr
&_msg)

{
// sets the velocity to the value of the ROS topic this->model-
>GetJointController()->SetVelocityTarget(model->GetJoint("lbr ,!
_cube_grabber::cube_grabber_left_servo")->GetScopedName(), (int) ,!
_msg->data * -1.0);

// sets the velocity to the value of the ROS topic this->model-
>GetJointController()->SetVelocityTarget(model->GetJoint("lbr ,!
_cube_grabber::cube_grabber_right_servo")->GetScopedName(), (int) ,!
_msg->data);

}

/ helper function to process messages private: void QueueThread()

{
static const double timeout =
0.01; while (this->rosNode-
>ok())
{
this->rosQueue.callAvailable(ros::WallDuration(timeout));

}
}

119

/ Pointer to the update event connection

private: event::ConnectionPtr updateConnection;

};
GZ_REGISTER_MODEL_PLUGIN(ServoControl)

}

#endif

D7.2 Actuator Controller -- plugin actuator.cc

#ifndef _PLUGIN_ACTUATOR_
#define _PLUGIN_ACTUATOR_

#include <gazebo/gazebo.hh>
#include <gazebo/physics/physics.hh>

#include <thread>
#include "ros/ros.h"
#include "ros/callback_queue.h"
#include "ros/subscribe_options.h"
#include "std_msgs/Float32.h"
namespace gazebo
{
class ActuatorControl : public ModelPlugin
{

public: ActuatorControl() : ModelPlugin()
{
printf("Initializing Actuator Plugin\n");

}

private: physics::ModelPtr model; // model
pointer

private: physics::JointPtr forklift_left_actuator_joint; // forklift
left
,! actuator joint pointer
private: physics::JointPtr forklift_right_actuator_joint; // forklift
,! right actuator joint pointer

private: physics::JointPtr cube_grabber_actuator_middle_joint; //
cube
,! grabber actuator joint pointer

120

private: physics::JointPtr cube_grabber_actuator_top_joint; // cube
,! grabber actuator joint pointer

private: common::PID cg_pid; // PID
,! controller
private: common::PID la_pid; // PID
,! controller

private: float initialPosition; // target
rotation

private: std::unique_ptr<ros::NodeHandle> rosNode; // ROS node

private: ros::Subscriber rosSubForkliftLeftActuator; // ROS
topic
,! subscriber
private: ros::Subscriber rosSubForkliftRightActuator; // ROS
topic
,! subscriber

private: ros::Subscriber rosSubCubeGrabberActuatorMiddle; // ROS
topic
,! subscriber
private: ros::Subscriber rosSubCubeGrabberActuatorTop; // ROS topic
,! subscriber

private: ros::CallbackQueue rosQueue; // ROS
callback
,! queue
private: std::thread rosQueueThread; // ROS queue
thread

public: void Load(physics::ModelPtr _model, sdf::ElementPtr _sdf)
{
std::cout << "Loading Actuator Plugin" << std::endl;
//store pointer to the model
this->model = _model;

/ check joint count

if (_model->GetJointCount() == 0)
{

std::cout << "Plugin Actuator: Joint Count is 0, likely the plugin is
,! not loaded" << std::endl;
return;

121

}

std::vector<boost::shared_ptr<gazebo::physics::Joint>> joints =
,! _model->GetJoints();
for (int i=0; i<_model->GetJointCount(); i++)
{

/ assign the joint for the left forklift actuator if (joints.at(i)-
>GetName() ==

,!"lbr_forklift_left::forklift_left_actuator")
{ this->forklift_left_actuator_joint = _model->GetJoints()[i]; }

/ assign the joint for the right forklift actuator

if (joints.at(i)->GetName() ==
,! "lbr_forklift_right::forklift_right_actuator")
{ this->forklift_right_actuator_joint = _model->GetJoints()[i]; }

/ assign the joint for the middle cube grabber actuator if
(joints.at(i)->GetName() ==

,!"lbr_cube_grabber::cube_grabber_actuator_middle")
{ this->cube_grabber_actuator_middle_joint = _model->GetJoints()[i]; }

/ assign the joint for the top cube grabber actuator

if (joints.at(i)->GetName() ==
,! "lbr_cube_grabber::cube_grabber_actuator_top")
{ this->cube_grabber_actuator_top_joint = _model->GetJoints()[i]; }

}

this->cg_pid = common::PID(10, 15.0, 1.0); // set a PID
,! controller for the actuator
this->la_pid = common::PID(1000, 15.0, 1.0); // set a PID
,! controller for the actuator

// add the PID controller to the joints this->model-
>GetJointController()->SetPositionPID(this->forklift_left c ,!
_actuator_joint->GetScopedName(),

,! this->la_pid);
this->model->GetJointController()->SetPositionPID(this->forklift_right
c ,! _actuator_joint->GetScopedName(),
,! this->la_pid);
this->model->GetJointController()->SetPositionPID(this->cube_grabber c
,! _actuator_middle_joint->GetScopedName(),
,! this->cg_pid);
this->model->GetJointController()->SetPositionPID(this->cube_grabber c
,! _actuator_top_joint->GetScopedName(),
,! this->cg_pid);

122

// set up ROS stuff
if (!ros::isInitialized())
{

int argc = 0;
char **argv = NULL;
ros::init(argc, argv, "gazebo_client",
,! ros::init_options::NoSigintHandler);

}

this->rosNode.reset(new ros::NodeHandle("gazebo_client")); //
create the ,! ROS node

// create a ROS topic and subscribe to it
ros::SubscribeOptions so_forklift_left_actuator =
,! ros::SubscribeOptions::create<std_msgs::Float32>("/" +

 this->model->GetName() +
"/forklift_left_actuator_position", 1,

,!
 boost::bind(&Act
uatorControl
,!
 ::OnRosMsgForkli
ftLeft
,! Actuator, this,
,! _1),
ros::VoidPtr(),
,! &this-
>rosQueue);

ros::SubscribeOptions so_forklift_right_actuator =
,! ros::SubscribeOptions::create<std_msgs::Float32>("/" +

 this->model->GetName() +
"/forklift_right_actuator_position", 1,

,!
 boost::bind(&Act
uatorControl
,!
 ::OnRosMsgForkli
ftRight
,! Actuator, this,

123

,! _1),
ros::VoidPtr(),
,! &this-
>rosQueue);
ros::SubscribeOptio
ns
so_cube_grabber_act
uator_middle =

,! ros::SubscribeOptions::create<std_msgs::Float32>("/" +
 this->model->GetName() +

"/cube_grabber_actuator_middle_position", 1,

,!
 boost::bind(&Act
uatorControl
,!
 ::OnRosMsgCubeGr
abber
,! ActuatorMiddle,
,! this, _1),
ros::VoidPtr(),
,! &this-
>rosQueue);

ros::SubscribeOptions so_cube_grabber_actuator_top =
,! ros::SubscribeOptions::create<std_msgs::Float32>("/" +

 this->model->GetName() +
"/cube_grabber_actuator_top_position", 1,

,!
 boost::bind(&Act
uatorControl
,!
 ::OnRosMsgCubeGr
abber
,! ActuatorTop,
this,
,! _1),
ros::VoidPtr(),
,! &this-
>rosQueue);

this->rosSubForkliftLeftActuator =

124

,! this->rosNode-
>subscribe(so_forklift_left_actuator); this-
>rosSubForkliftRightActuator =
,! this->rosNode-
>subscribe(so_forklift_right_actuator); this-
>rosSubCubeGrabberActuatorMiddle =
,! this->rosNode-
>subscribe(so_cube_grabber_actuator_middle); this-
>rosSubCubeGrabberActuatorTop =
,! this->rosNode->subscribe(so_cube_grabber_actuator_top);

/ start the queue helper thread this->rosQueueThread =

,!std::thread(std::bind(&ActuatorControl::QueueThread, this));

std::cout << "Actuator Plugin successfully loaded" << std::endl;
}

// handle incoming message from ROS
public: void OnRosMsgForkliftLeftActuator(const std_msgs::Float32ConstPtr
,! &_msg)
{

/ sets the position to the value of the ROS topic this->model-
>GetJointController()->SetPositionTarget(

this->forklift_left_actuator_joint->GetScopedName(), _msg->data);
}

public: void OnRosMsgForkliftRightActuator(const
std_msgs::Float32ConstPtr
,! &_msg)
{

/ sets the position to the value of the ROS topic this->model-
>GetJointController()->SetPositionTarget(

this->forklift_right_actuator_joint->GetScopedName(), _msg-
>data);

}

public: void OnRosMsgCubeGrabberActuatorMiddle(const
,! std_msgs::Float32ConstPtr &_msg)
{

/ sets the position to the value of the ROS topic this->model-
>GetJointController()->SetPositionTarget(

this->cube_grabber_actuator_middle_joint->GetScopedName(),
,! _msg->data);

}

125

public: void OnRosMsgCubeGrabberActuatorTop(const
std_msgs::Float32ConstPtr
,! &_msg)
{

/ sets the position to the value of the ROS topic this->model-
>GetJointController()->SetPositionTarget(

this->cube_grabber_actuator_top_joint->GetScopedName(),
,! _msg->data);

}

/ helper function to process messages private: void QueueThread()

{
static const double timeout =
0.01; while (this->rosNode-
>ok())
{
this->rosQueue.callAvailable(ros::WallDuration(timeout));

}
}

/ Pointer to the update event connection

private: event::ConnectionPtr updateConnection;

};
GZ_REGISTER_MODEL_PLUGIN(ActuatorControl)

}

#endif

D7.3 Robot Spawner -- plugin spawner.cc

#include <ignition/math/Pose3.hh>
#include "gazebo/physics/physics.hh"
#include "gazebo/common/common.hh"
#include <gazebo/gazebo.hh>

namespace gazebo
{
class ObjectSpawner : public WorldPlugin
{

public: ObjectSpawner() : WorldPlugin()
{
printf("Loaded Spawner Plugin\n");

}

126

public: void Load(physics::WorldPtr _parent, sdf::ElementPtr)
{
// initially spawn the LBR Robot
_parent ->
InsertModelFile("model://lbr_robot");
printf("Spawned LBR\n");

}
};
GZ_REGISTER_WORLD_PLUGIN(ObjectSpawner)

}

D8 Simulation Description Format (SDF) Files
D8.1 Robot (Overall) -- lbr robot.sdf
<?xml version= 1.0 ?>
<sdf version= 1.6 >
<model name= lbr_robot

>
<static>false</static>
<!-- MAIN CHASSIS -->
<link name= chassis >

<pose>0 0 .05 0 0 0</pose>
<collision name= collision ><geometry><box><size>.8
.8 ,! .02</size></box></geometry></collision>
<visual name= visual >
<pose>-.79 -.5 -.54 1.57 0 1.57</pose>
<geometry>

<mesh>
<uri>file://lbr_robot/lbr_chassis.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</visual>
<inertial><mass>20</mass></inertial>

</link>

<!-- LEFT FORKLIFT -->
<include>
<uri>model://lbr_forklift_left</uri>
<pose>-.45 0 .3 0 0 0</pose>

</include>

<!-- RIGHT FORKLIFT -->

127

<include>
<uri>model://lbr_forklift_right</uri>
<pose>.45 0 .3 0 0 0</pose>

</include>

<!-- CUBE GRABBER -->
<include>
<uri>model://lbr_cube_grabber</uri>
<pose>0 .3 .4 -1.57 0 0</pose>

</include>
<joint name="cube_grabber" type="fixed">
<parent>chassis</parent>
<child>lbr_cube_grabber::cube_grabber_base</child>

</joint>

<!-- BOTTOM PLATE -->
<include>
<uri>model://lbr_bottom_plate</uri>
<pose>0 0 0 0 0 0</pose>

</include>
<joint name="bottom_plate_servo" type="revolute">
<pose>0 0 .05 0 0 0</pose>
<parent>chassis</parent>
<child>lbr_bottom_plate::bottom_plate</child>
<axis>
<limit>

<lower>0.0</lower><upper>0.785</upper>
</limit>
<xyz>0 0 1</xyz>

</axis>
</joint>

<!-- add the servo control plugin -->
<plugin name="plugin_servo" filename="libplugin_servo.so"/>

<!-- add the actuator control plugin -->
<plugin name="plugin_actuator" filename="libplugin_actuator.so"/>
</model>

</sdf>

D8.2 Robot (Lifting and Climbing Mechanism) -- lbr forklift left.sdf

<?xml version= 1.0 ?>
<sdf version= 1.6 >

128

<model name= lbr_forklift_left >
<static>false</static>

<!-- Base Lift Plate -->
<link name= forklift_plate >
<pose>.041 .109 .6 0 0 -3.14159</pose>
<inertial>
<pose>0 0 0 0 0 0</pose>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iyy
>0< c ,! /iyy><izz>0</izz>

</inertia>
<mass>1.0</mass>

</inertial>
<collision name= collision
><geometry><box><size>.2 .6 ,!
.35</size></box></geometry></collision> <visual
name= visual >
<pose>-1.178 -.308 -2.65 1.57 0
1.57</pose> <geometry>

<mesh>
<uri>file://lbr_forklift_left/lbr_lifter_slide.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</visual>
</link>

<!-- Forklift Hook TOP -->
<link name= forklift_hook_top >
<pose>-2.795 .3648 -.5130 0 0 -1.57</pose>
<inertial>
<pose>0 0 0 0 0 0</pose>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iyy
>0< c ,! /iyy><izz>0</izz>

</inertia>
<mass>.01</mass>

</inertial>
<collision name= collision >
<geometry>
<mesh>
<uri>file://lbr_forklift_left/lbr_hook.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>

129

</geometry>

</collision>
<visual name= visual >

<geometry>
<mesh>
<uri>file://lbr_forklift_left/lbr_hook.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</visual>
</link>

<!-- Forklift Hook BOTTOM -->
<link name= forklift_hook_bottom >
<pose>-2.797 -.3648 1.7070 3.14 0 1.57</pose>
<inertial>
<pose>0 0 0 0 0 0</pose>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iyy>0< c
,! /iyy><izz>0</izz>

</inertia>
<mass>.01</mass>

</inertial>
<collision name= collision >
<geometry>

<mesh>
<uri>file://lbr_forklift_left/lbr_hook.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</collision>
<visual name= visual >

<geometry>
<mesh>
<uri>file://lbr_forklift_left/lbr_hook.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</visual>
</link>

<!-- JOINTS -->

<!-- forklift plate to forklift fork, servo rotator TOP --
> <joint name="forklift_left_hook_top" type="revolute">
<pose>.5 2.777 1.242 0 0 0</pose>

130

<parent>forklift_plate</parent>
<child>forklift_hook_top</child>
<axis>
<limit>

<lower>0</lower><upper>1.57</upper>
</limit>
<xyz>1 0 0</xyz>

</axis>
</joint>

<!-- forklift plate to forklift fork, servo rotator BOTTOM --
> <joint name="forklift_left_hook_bottom" type="revolute">
<pose>.22 2.777 1.238 3.14 0 0</pose>
<parent>forklift_plate</parent>
<child>forklift_hook_bottom</child>
<axis>
<limit>

<lower>0</lower><upper>1.57</upper>
</limit>
<xyz>1 0 0</xyz>

</axis>
</joint>

<!-- forklift tower to forklift plate, linear actuator -->
<joint name="forklift_left_actuator" type="prismatic">
<pose>-.15 .1 .2 0 0 0</pose>
<parent>chassis</parent>
<child>forklift_plate</child>
<axis>
<limit>

<lower>0</lower>
<upper>1.8</upper>
<velocity>.0000001</velocity>

</limit>
<dynamics><damping>10</damping></dynami
cs> <xyz>0 0 5</xyz>

</axis>
</joint>

</model>

</sdf>

131

D8.3 Robot (Lifting and Climbing Mechanism) -- lbr forklift right.sdf

<?xml version= 1.0 ?>
<sdf version= 1.6 >
<model name= lbr_forklift_right >

<static>false</static>

<!-- Base Lift Plate -->
<link name= forklift_plate >
<pose>-.061 -.103 .6 0 0 3.14159</pose>
<inertial>
<pose>0 0 0 0 0 0</pose>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iy
y>0< c ,! /iyy><izz>0</izz>

</inertia>
<mass>1.0</mass>

</inertial>
<collision name= collision
><geometry><box><size>.2 .6 ,!
.35</size></box></geometry></collision> <visual
name= visual >
<pose>1.178 .308 -2.65 1.57 0 -
1.57</pose> <geometry>

<mesh>
<uri>file://lbr_forklift_right/lbr_lifter_slide.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</visual>
</link>

<!-- Forklift Hook TOP -->
<link name= forklift_hook_top >
<pose>2.774 -.360 -.513 0 0 1.57</pose>
<inertial>
<pose>0 0 0 0 0 0</pose>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iy
y>0< c ,! /iyy><izz>0</izz>

</inertia>
<mass>.01</mass>

</inertial>
<collision name= collision >

132

<geometry>

<mesh>
<uri>file://lbr_forklift_right/lbr_hook.stl</uri>
<scale>0.004 0.004 0.004</scale>
</mesh>

</geometry>
</collision>
<visual name= visual >

<geometry>
<mesh>
<uri>file://lbr_forklift_right/lbr_hook.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</visual>
</link>

<!-- Forklift Hook BOTTOM -->
<link name= forklift_hook_bottom >
<pose>2.775 .3684 1.7070 3.14 0 -1.57</pose>
<inertial>
<pose>0 0 0 0 0 0</pose>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iyy>0< c
,! /iyy><izz>0</izz>

</inertia>
<mass>.01</mass>

</inertial>
<collision name= collision >
<geometry>

<mesh>
<uri>file://lbr_forklift_right/lbr_hook.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</collision>
<visual name= visual >

<geometry>
<mesh>

<uri>file://lbr_forklift_right/lbr_hook.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</visual>

133

</link>

<!-- JOINTS -->

<!-- forklift plate to forklift fork, servo rotator TOP -->
<joint name="forklift_right_hook_top" type="revolute">
<pose>.5 2.777 1.242 0 0 0</pose>
<parent>forklift_plate</parent>

<child>forklift_hook_top</child>
<axis>
<limit>

<lower>0</lower><upper>1.57</upper>
</limit>
<xyz>1 0 0</xyz>

</axis>
</joint>

<!-- forklift plate to forklift fork, servo rotator BOTTOM --
> <joint name="forklift_right_hook_bottom" type="revolute">
<pose>.22 2.777 1.238 3.14 0 0</pose>
<parent>forklift_plate</parent>
<child>forklift_hook_bottom</child>
<axis>
<limit>

<lower>0</lower><upper>1.57</upper>
</limit>
<xyz>1 0 0</xyz>

</axis>
</joint>

<!-- forklift tower to forklift plate, linear actuator -->
<joint name="forklift_right_actuator" type="prismatic">
<pose>.15 -.1 .2 0 0 0</pose>
<parent>chassis</parent>
<child>forklift_plate</child>
<axis>
<limit>

<lower>0</lower>
<upper>1.8</upper>
<velocity>.0000001</velocity>

</limit>
<dynamics><damping>10</damping></dynami
cs> <xyz>0 0 1</xyz>

</axis>

134

</joint>

</model>

</sdf>

D8.4 Robot (Cube Latch Mechanism) -- lbr cube grabber.sdf
<?xml version= 1.0 ?>
<sdf version= 1.6 >
<model name= lbr_cube_grabber >

<static>false</static>
<!-- Cube Grabber Actuator Base -->
<link name= cube_grabber_base >
<pose>0 -.20 0 0 0 0</pose>
<inertial>
<pose>0 0 0 0 0 0</pose>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iyy>0<
c ,! /iyy><izz>0</izz>

</inertia>
<mass>0.5</mass>

</inertial>
<visual name= visual ><geometry><box><size>.01
.01 ,! .01</size></box></geometry></visual>

</link>

<!-- Cube Grabber Actuator Extension MIDDLE -->
<link name= cube_grabber_extender_middle >
<pose>-.01 -.2 -.27 0 0 0</pose>
<inertial>
<pose>0 0 0 0 0 0</pose>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iyy>0<
c ,! /iyy><izz>0</izz>

</inertia>
<mass>.5</mass>

</inertial>
<collision name= collision ><geometry><box><size>.06 .06
,! .88</size></box></geometry></collision> <visual name=
visual >
<pose>-.778 1.095 -.495 1.57 -1.57
1.57</pose> <geometry>

<mesh>
<uri>file://lbr_cube_grabber/lbr_cascade_shaft.stl</uri>
<scale>0.004 0.004 0.004</scale>

135

</mesh>
</geometry>

</visual>
</link>

<!-- Cube Grabber Actuator Extension TOP -->
<link name= cube_grabber_extender_top >
<pose>-.01 -.262 -.24 0 0 0</pose>
<inertial>
<pose>0 0 0 0 0 0</pose>
<inertia>
<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iyy>0< c ,!
/iyy><izz>0</izz>
</inertia>
<mass>.5</mass>

</inertial>
<collision name= collision ><geometry><box><size>.06 .06
,! .88</size></box></geometry></collision> <visual name=
visual >
<pose>-.778 1.095 -.495 1.57 -1.57 1.57</pose>
<geometry>

<mesh>
<uri>file://lbr_cube_grabber/lbr_cascade_shaft.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</visual>
</link>

<!-- Cube Grabber Endfixture -->
<link name= cube_grabber_endfixture >
<pose>-.01 -.30 .05 0 0 0</pose>
<inertial>
<pose>0 0 0 0 0 0</pose>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iyy>0< c
,! /iyy><izz>0</izz>

</inertia>
<mass>.5</mass>

</inertial>
<collision name= collision ><geometry><box><size>.875 .02
,! .3</size></box></geometry></collision> <visual name=
visual >

136

<pose>-.7780 1.265 -.685 3.14 -1.57</pose>
<geometry>

<mesh>
<uri>file://lbr_cube_grabber/lbr_cube_grabber_endpiece.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</visual>
</link>

<!-- Cube Grabber Claw -->
<link name= cube_grabber_claw_left >
<pose> .025 .95 .788 3.14 1.57 0</pose>
<inertial>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iyy>0< c
,! /iyy><izz>0</izz>

</inertia>
<mass>.01</mass>

</inertial>
<collision name= collision >
<geometry>

<mesh>
<uri>file://lbr_cube_grabber/lbr_cube_grabber_claw_left.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</collision>
<visual name= visual >
<pose>0 0 0 0 0 0</pose>
<geometry>

<mesh>
<uri>file://lbr_cube_grabber/lbr_cube_grabber_claw_left.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</visual>
</link>

<!-- Cube Grabber Claw -->
<link name= cube_grabber_claw_right >
<pose> 1.52 .95 .788 -3.14 1.57 0</pose>
<inertial>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iyy>0< c

137

,! /iyy><izz>0</izz>
</inertia>
<mass>.01</mass>

</inertial>
<collision name= collision >
<geometry>

<mesh>
<uri>file://lbr_cube_grabber/lbr_cube_grabber_claw_right.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</collision>
<visual name= visual >
<pose>0 0 0 0 0 0</pose>
<geometry>

<mesh>
<uri>file://lbr_cube_grabber/lbr_cube_grabber_claw_right.stl</uri>
<scale>0.004 0.004 0.004</scale>
</mesh>

</geometry>
</visual>

</link>

<!-- JOINTS -->

<!-- forklift plate to forklift fork, servo rotator -->
<joint name="cube_grabber_left_servo" type="revolute">
<pose>.713 1.05 .4077 0 0 0</pose>
<parent>cube_grabber_endfixture</parent>
<child>cube_grabber_claw_left</child>
<axis>
<limit>

<lower>-3.142</lower><upper>0</upper>
</limit>
<xyz>0 0 1</xyz>

</axis>
</joint>

<!-- forklift plate to forklift fork, servo rotator -->
<joint name="cube_grabber_right_servo" type="revolute">
<pose>.713 1.05 1.156 0 0 0</pose>
<parent>cube_grabber_endfixture</parent>
<child>cube_grabber_claw_right</child>
<axis>

<limit>

138

<lower>0</lower><upper>3.142</upper>
</limit>
<xyz>0 0 1</xyz>

</axis>
</joint>

<!-- cube grabber base to cube grabber extender, linear actuator -->
<joint name="cube_grabber_actuator_middle" type="prismatic">
<pose>0 0 -.5 0 0 0</pose>
<parent>chassis</parent>
<child>cube_grabber_extender_middle</child>
<axis>
<limit>

<lower>0</lower>
<upper>.6</upper>

</limit>
<dynamics><damping>10</damping></dynamics>
<xyz>0 -1 0</xyz>
</axis>
</joint>

<!-- cube grabber base to cube grabber extender, linear actuator -->
<joint name="cube_grabber_actuator_top" type="prismatic">
<pose>0 0 -.5 0 0 0</pose>
<parent>cube_grabber_extender_middle</pare
nt>
<child>cube_grabber_extender_top</child>
<axis>

<limit>

<lower>0</lower>
<upper>.6</upper>

</limit>
<dynamics><damping>10</damping></dynami
cs> <xyz>0 -1 0</xyz>

</axis>
</joint>

<!-- cube grabber actuator to cube grabber end fixture, fixed -->
<joint name="cube_grabber_endfixture_joint" type="fixed">
<pose>0 0 .2 0 0 0</pose>
<parent>cube_grabber_extender_top</pare
nt>
<child>cube_grabber_endfixture</child>

</joint>

139

</model>

</sdf>

D8.5 Robot (Rotating Plate Mechanism) -- lbr bottom plate.sdf
<?xml version= 1.0 ?>
<sdf version='1.6'>
 <model name='lbr_bottom_plate'>
 <static>false</static>

 <!-- Bottom Plate -->
 <link name='bottom_plate'>
 <pose>-.005 0 0 0 0 0</pose>
 <inertial>
 <pose>0 0 0 0 0 0</pose>
 <inertia>

<ixx>.51</ixx><iyy>.51</iyy><izz>.51</izz><ixx>0</ixx><iyy>0</iyy><izz>0<
/izz>
 </inertia>
 <mass>2</mass>
 </inertial>
 <collision name='collision'><geometry><box><size>.8 .8
.02</size></box></geometry></collision>
 <visual name='visual'>
 <pose>-.78 -.5 -.487 1.57 0 1.57</pose>
 <geometry>
 <mesh>
 <uri>file://lbr_bottom_plate/lbr_rotating_plate.stl</uri>
 <scale>0.004 0.004 0.004</scale>
 </mesh>
 </geometry></visual>
 </link>

 </model>
</sdf>

140

D8.6 Cube -- lbr cube.sdf

<?xml version= 1.0 ?>
<sdf version= 1.6 >
<model name= lbr_cube >

<static>false</static>

<!-- CUBE -->
<link name= cube >
<pose>0 0 0 1.57 0 1.57</pose>
<inertial>
<pose>.6 .6 .6 0 0 0</pose>
<inertia>

<ixx>.01</ixx><iyy>.01</iyy><izz>.01</izz><ixx>0</ixx><iyy>
0< c ,! /iyy><izz>0</izz>

</inertia>
<mass>.05</mass>

</inertial>
<collision name= collision >
<geometry>

<mesh>
<uri>file://lbr_cube/cube.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</collision>
<visual name= visual >
<geometry>

<mesh>
<uri>file://lbr_cube/cube.stl</uri>
<scale>0.004 0.004 0.004</scale>

</mesh>
</geometry>

</visual>
</link>

</model>
</sdf>

141

	kolb_jack_title_1
	kolb_jack_capstone_3

