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H I G H L I G H T S

• The effect of the adjustment strategy on the building design process is analyzed.

• Uncertainty analysis, sensitivity analysis, performance optimization are involved.

• Shading, window ventilation, and dimming are considered in the adjustment strategy.

• Energy, thermal and visual comfort are included in building performance.

• Various climate zones in China are compared given the impact of climate.

A R T I C L E I N F O
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A B S T R A C T

Adjustment strategies including window ventilation and shading have important improvements in energy con-
sumption, thermal and light environments, furthermore, the upper limit for improvement is affected by design
parameters. However, studies incorporating adjustment strategies in the building design process are very lim-
ited. To address this research gap, we explore the effects of window ventilation and shading on building design
performance from uncertainty analysis, sensitivity analysis, and multi-objective optimization. Furthermore,
China’s typical climate zones are compared given climate effects. Results indicate that (1) the uncertainty of total
energy demand in the severe cold climate is most affected with the uncertainty increase rate being 32.0%, the
uncertainty of thermal comfort ratio in the hot summer and cold winter climate and the hot summer and warm
winter climate is most affected with the uncertainty increase rate being 16.3% and 14.0%, respectively. (2) the
sensitivity analysis of the thermal comfort ratio is more sensitive to adjustment strategies than to total energy
demand. The severe cold climate is more vulnerable than in other climates. (3) when multi-objective optimi-
zation is performed with maximum thermal comfort and minimum total energy demand when considering
adjustment strategies, the severe cold climate has the greatest energy-saving potential (38.1%) and the hot
summer and cold winter climate has the largest potential to improve thermal comfort (17.6%). More im-
portantly, the light environment is within the comfort range from the daylight glare index, the illuminance, and
illuminance uniformity ratios.

1. Introduction

Buildings account for about 40% of global energy consumption and
more than 30% of carbon dioxide emissions [1]. The building design
process is of wide concern, as most decisions about building sustain-
ability are made at this stage [2]. This is currently highlighted in nu-
merous high-performance building guidelines [3].

Many scholars have researched building design process, including
uncertainty assessment of building performance, sensitivity analysis of

design parameters, and building performance optimization. Uncertainty
assessment refers to analyzing the uncertain distribution of building
performance under the influence of various uncertain factors [4]. Sen-
sitivity analysis can be used to identify the important factors affecting
building performance [5]. Building performance optimization refers to
establishing an optimization model between building design para-
meters and building performance (such as building energy, indoor
thermal comfort), obtaining optimal design solutions using optimiza-
tion methods [6]. The independent variables involved in these three
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types of research are steady-state design parameters, such as the
building orientation, wall thermal resistance, wall specific heat,
window U-value and solar heat gain coefficient (SHGC) [3].

Generally speaking, the main factors affecting building performance
can be divided into two types: building design parameters (steady-state)
and adjustment strategies (dynamic) [7]. Building design parameters
are determined during the building design stage. Adjustment strategies
(AS) are closely related to occupant behavior in the building operation
stage. Although these adjustment behaviors are unknown at the
building design process, research on occupant behaviors shows that
occupants generally adjust the shading device and open the window
according to self-comfort [8]. Through long-term field surveys in var-
ious regions, many studies have revealed some shared behavior pat-
terns. For example, seasonal changes in window-opening behavior: the
window-opening frequency was higher in non-heating seasons, espe-
cially in the transition season [9]. More important, outdoor and indoor
air temperatures directly link to an occupants’ window adjustment
decision [10]. Rijal et al. formulated an adaptive algorithm to predict
window opening using logistic regression [11]. Some adaptive thermal
comfort models can be used to predict occupants’ window opening
behavior, based on indoor and outdoor air temperatures [12]. Fior-
entini et al. applied adaptive thermal comfort criteria to windows
opening in a controller, and its performance was tested via simulations
and experiments [13]. For shading, internal blinds are the focus of a
majority of studies, because they largely allow occupant responses
through manual adjustment [14]. Occupant preference is to avoid vi-
sual discomfort with a minimum number of interactions with lighting
and blind, and little consideration is paid to the exploitation of daylight
dynamically, to offset electric lighting. In general, ensuring the indoor
illuminance levels and avoiding glare are prerequisites for optimization
analysis of shading control [15].

The impact of AS on the building design process is noteworthy be-
cause there is an interaction between AS and design parameters. The
upper limit of the effect of shading and window ventilation on building

performance is influenced by design parameters. For example, the
window ventilation effect is the product of a complex interaction of
personal behavior, building design parameters, and the outdoor en-
vironment. Its effect is all strongly related to some controllable design
parameters, such as window configuration and the window to wall ratio
(WWR) [16]. When a larger WWR is set up for greater ventilation, it
will lead to extra heat gain through external windows and increase
cooling energy demand [17]. Building orientation is also a major factor,
the ventilation effect is better when the orientation of the outer window
aligns with the dominant wind direction [18]. In turn, the AS also af-
fects the optimal design parameters by changing the original heat
transfer structure of building envelopes. For example, shading will
change the heat exchange through the external glazing, thereby af-
fecting the choice of SHGC. The demand for SHGC in winter and
summer is reversed, which is bound to involve trade-offs. However,
when using shading measures in the summer, the external window can
adopt glass with a higher SHGC to get more heat gain in the winter
[19]. In other words, the robustness of building performance related to
operation strategies is often disregarded. A building design scheme that
is optimal for one profile of determined design scenarios is not ne-
cessarily the optimal solution for most sets of occupants [20].

Only a few studies have discussed the impact of AS on building
design process. For example, Chen et al. compared the preferable design
solutions of a prototype high-rise residential building under design
scenarios of single-sided ventilation and cross-ventilation. Optimization
variables include the building layout, envelope thermophysics, building
geometry, infiltration, and air-tightness [21]. Based on an office
building model in a hot-dry climate, Singh et al. performed uncertainty
and sensitivity analyses of energy and visual performance under the
influence of external venetian blind shading. Results indicated a large
uncertainty in lighting (45%), HVAC (33%) and useful daylight illu-
minance (106%) [22]. Rouleau et al. quantified the impacts of occupant
behavior including opening windows on the residential building per-
formance include energy consumption and comfort. Results show the

Nomenclature

Abbreviation

CEUI Annual cooling energy demand [kWh/(m2a)]
HEUI Annual heating energy demand [kWh/(m2a)]
LEUI Annual lighting energy demand [kWh/(m2a)]
EUI Annual total energy demand [kWh/(m2a)]
CTR Annual thermal comfort ratio [%]
DCTR Annual thermal discomfort ratio [%]
SC Severe cold climate
C Cold climate
HSCW Hot summer and cold winter climate
HSWW Hot summer and warm winter climate
M Moderate climate
TC Thermal comfort
DS Design scenario
NV Natural ventilation by opening window
AS Adjustment strategies
DGI Daylight glare index
ISV Illuminance standard value
DI Daylight illuminances [lux]
WU Wall U-value [W/(m2K)]
WSH Wall specific heat [J/(kg·K)]
SA Solar absorptance of wall coating
WWU Window U-value [W/(m2K)]
SHGC Solar heat gain coefficient
VLT Window visible light transmittance
ACH Air change rate [hr]

OA Orientation [o]
WWR Window-wall ratio [%]
OD South overhang depth [m]
FD West fin depth [m]
υ The coefficient of variation
μ The mean value
σ The standard deviation
IUR The illuminance uniformity ratios
PRCC Partial rank correlation coefficient
MD The maximum depth of trees
N The number of trees
MF The maximum of features
ESR The energy-saving potential
CIR The improvement rate of thermal comfort
NMBE The standard mean deviation [%]
CVRMSE The coefficient of variation of root mean square error [%]

Method

ANN Artificial neural network algorithm
SVR Support vector regression
GBDT Gradient boosted decision trees
NSGA-II Non-dominated sorting genetic algorithms

Subscript

s South
w West
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AS caused great uncertainty in building performance with a coefficient
of variation of about 50% [23].

A systematic analysis of the effects of shading and window venti-
lation on the building design process is seldom addressed by existing
research. To bridge this research gap, we identified several AS modes
based on the prior probability, then analyzed their impact on the
building design process including uncertainty analysis, sensitivity
analysis, and building performance optimization. Furthermore, the re-
sults of four typical climate regions in China are compared considering
climate differences. This research has important reference significance
for robust building design.

2. Literature review

The literature review is mainly focused on methods in building
design process, including (1) uncertainty analysis, (2) sensitivity ana-
lysis, and (3) building performance optimization.

2.1. Uncertainty analysis method

Because it is intuitive and easy to implement compared to other
approaches, Monte Carlo analysis is a commonly used technique for
uncertainty analysis [4]. Monte Carlo analysis includes three important
parts: (1) specify distributions of the input variables, (2) select the
sampling algorithm, and (3) create and run building performance
models. In building design, the uniform distribution is commonly used
in presenting possible changes in various design parameters [24]. The
sampling algorithm is used to obtain the combinations of input variable
values from probability density functions, the random sampling [25],
Latin hypercube sampling (LHS) [26], and Sobol sequence [5] have
been used in the building performance field. LHS is a stratified sampling
method and is the most widely used sampling method as it can provide
converged results with a small sampling number [27]. It is re-
commended that the sampling number is not less than 10 times the
input variable [28]. Uncertainty analysis of building performance
usually involves a large number of samples, which are usually im-
plemented in conjunction with computer languages and simulation
software. Simulation software including EnergyPlus [29], ESP-r [30],

TRNSYS [31] and DOE-2 [32], has been used in uncertainty analysis of
building performance. The uncertainty of building performance can be
presented by the coefficient of variation, which is a good indicator to
evaluate output dispersion [22].

2.2. Sensitivity analysis method

The order of influence of design parameters on building perfor-
mance can be obtained utilizing sensitivity analysis [33]. Sensitivity
analysis has been divided into local and global sensitivity methods.
Global sensitivity is more reliable because it takes into account the
interaction between input factors [34]. The main global sensitivity
analyses are the regression method [5], the Morris method [35] and the
FAST method [36]. The regression method is a commonly used global
sensitivity method due to its simplicity. The standardized rank regres-
sion coefficient (SRRC) and partial rank correlation coefficient (PRCC)
is the main sensitivity indicators extracted from the regression method.
The difference between the two indicators is that PRCC is more suitable
for correlated inputs because it can exclude the influence of the cor-
relation between input variables [37].

2.3. Multi-objective optimization method

The optimization method based on meta-models has been widely
used in related academic research [38]. With the help of machine
learning algorithms, alternative models of simulation software for each
performance can be separately constructed, and participate in optimi-
zation as the fitness function of the optimization algorithm [39]. This
approach can reduce calls to simulation software. The artificial neural
network (ANN) and the support vector regression (SVR) are two com-
monly used machine learning algorithms in meta-models of building
performance. For example, in a study on the passive performance op-
timization of new residential buildings, the ANN was used to construct
meta-models of thermal comfort and total energy demand [18]. In
another study of the integration optimization of energy performance for
high-rise buildings, SVR was used to establish meta-models for heating,
cooling and lighting energy demand [3]. These results show that the
meta-model effectively improves the efficiency of the optimization

Fig. 1. The research framework.

R. Wang, et al. Applied Energy 266 (2020) 114822

3



system within the controllable accuracy range. Some studies introduce
integration algorithms with higher accuracy in the field of meta-
models. For example, Wang et al. applied the Gradient boosted decision
trees (GBDT) algorithm to construct meta-models of building perfor-
mance. The comparison with ANN and SVR highlights its superior ac-
curacy [24].

Building performance optimization is usually a multi-scientific
cross-cutting problem involving multiple performance indicators. Due
to the inconsistent dimensions between each building performance,
such as energy demand indicators and comfort indicators, it is difficult
to integrate them into one goal [24]. For such problems, the Pareto
method is a suitable choice [40]. The Pareto method can provide a set
of Pareto frontal solutions, which have fewer target conflicts than other
solutions. The designer can use the results to make further decisions
according to their preferences [41]. Genetic algorithms belong to the
group of evolutionary algorithms that can handle both continuous and
discrete variables, and it has good robustness for handling complex and
multivariate problems [42]. Therefore, Genetic algorithms, especially
non-dominated sorting genetic algorithms (NSGA-II), are widely and
effectively applied to building optimization problems [43].

3. Methodology

The research framework is composed of four phases: (1) comparison
of AS modes, (2) uncertainty analysis, (3) sensitivity analysis, and (4)
multi-criteria optimization. The research framework is provided in
Fig. 1.

3.1. Building modelling

3.1.1. The simulation tool
A common feature of research in the building design process is the

adoption of simulation software to obtain building performance data
[42]. For example, Pilechiha et al. focus on the trade-offs of window
design on the quality of views, daylight and building energy loads in an
office room [44]. Wate et al. presented a framework for the quantifi-
cation and decomposition of uncertainties in a dynamic building per-
formance (heating and cooling load) simulation of a hypothetical office
building [45]. Najjar et al. proposed an optimization framework for
sustainable building by integrating a building modeling and life cycle
assessment [46]. A case study with an open space office, Echenagucia
et al. worked to optimize the building envelope configuration to
minimize energy demand, including heating, cooling, and lighting [47].

These studies focused on all design parameters that have a potential
impact on building performance, therefore, it appears that the relia-
bility of the simulation results can be guaranteed without the need for
special verification.

EnergyPlus is a very effective building simulation software that has
been accepted widely by the building energy analysis community [48].
The software can be applied well to features in this study, such as
shading and lighting control, window ventilation and dynamic building
performance simulation. For example, Singh et al. analyzed the effects
of an internal woven roller shade and glazing on energy and daylighting
of an office [49]. Ascione et al. used EnergyPlus and Matlab constructed
a multi-objective optimization framework for building design, con-
sidering building energy, comfort and environmental characteristics
[50]. A co-simulation using EnergyPlus and Python was implemented to
analyze the potential of natural ventilation for energy-savings and im-
proved comfort [51]. EnergyPlus uses the split flux method to calculate
daylight, and external illuminance in EnergyPlus is estimated using the
same sky model that is used in the Daysim/Radiance programs [52].
Besides, the shading and lighting model, the airflow network module
and the HVAC systems were designed to explore the maximum energy
saving potential by passive measures.

3.1.2. The building model
An office in a high-rise building is selected as the case for simulation

analysis. As shown in Fig. 2, the case office is located in the southwest
direction. The west and south faces connect with the outside environ-
ment, and the rest sides are in contact with the air conditioning en-
vironment. The internal surface can be treated as a thermal insulation
surface. Fig. 3 shows its isometric view (3.85 m × 5.90 m × 4.20 m).
The window sill height is 0.75 m, and the interior surface reflectance of
the floor, walls, and ceilings are 0.3, 0.5 and 0.8, respectively [53]. The
internal heat gain is through lighting, office equipment, and the occu-
pants. The occupant density in the space is 0.05 person per square
meter (office hours are from 8:00 am to 6:00 pm on weekdays), and the
sensible heat gain from each occupant is 76.0 W. The equipment load
and the lighting power density are 7.6 W/m2 and 11.8 W/m2, respec-
tively [49].

3.1.3. Integrated model
The integrated model mainly involves window ventilation, shading,

and dimming. Different scenarios of occupant behavior about window
ventilation are associated with the thermal sensation. Three different
scenarios of occupant behavior on the opening window were modeled:

Fig. 2. The location on the floor of the case study.
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(1) all-day ventilation, (2) night ventilation, and (3) adaptive adjust-
ment. This criterion of all-day ventilation allows for window open when
the external temperature is above 21 °C (Text ≥ Tsetpoint) when the
venting availability schedule allows it. Night ventilation refers to the
window open only at night when the external temperature is above
21 °C (Text ≥ Tsetpoint) and the venting availability schedule allows it
[54]. Occupant behavior of these two scenarios is considered to be
independent of the indoor temperature, as windows are always open
during this time. The adaptive adjustment scenario involves window
adjustment according to an adaptive thermal comfort model. The sce-
nario allows the window open when the indoor operating temperature
deviates from the thermal comfort zone and as the venting availability
schedule allows it. The adaptive thermal comfort model adopted in this
paper is the ASHRAE-55 model.

The comfort of the indoor light environment can be maintained by
the integration of lighting and daylighting controlled by the shading
device. The lighting is controlled through the two-zoned automatic
dimmer, supplementing daylighting at the working plane (0.75 m from
the floor). The illuminance can be measured at two control points (P1

and P2 in Fig. 3), which correspond to the center of each lighting zone.
Each window is equipped with an interior blind device, and the blinds
are controlled based on the glare. If the window is in a daylight zone,
and if the zone’s daylight glare index (DGI) exceeds the threshold
specified in the daylighting object referenced by the zone, then the
blinds are used. For blinds with “Block Beam Solar”, the slat angle is set
at each time step to just block beam solar radiation. This adjustment
prevents beam solar from entering the window and causing possible
unwanted glare, if the beam falls on work surfaces, while simulta-
neously, allowing near-optimal indirect radiation for daylighting.

The integrated modeling of shading, lighting, and window ventila-
tion can be performed using “WindowShadingControl,”
“DaylightingControls” and “AirFlowNetwork” in the EnergyPlus. The
flowchart of the complete procedure is presented in Fig. 4. Simulations
have a time step duration of 10 min, and the availability statuses are
shown in Table 1.

Fig. 3. Simulation model of the case office with positions of window and daylight photosensors.

Fig. 4. The integrated model flow chart.
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3.2. Building performances

3.2.1. Visual comfort performance
When considering the integration of daylighting and lighting, visual

comfort is generally evaluated in terms of light illuminance and day-
light glare [55]. To ensure visual safety and efficacy during work time,
the illuminance of reference planes should meet the threshold–the il-
luminance standard value (ISV). Based on existing reports and litera-
ture, the daylight illuminance (DI) is considered to be effective either as
the sole source (300–3000 lx) or coordinated with lighting (100–300 lx)
[56]. According to the GB 50034–2013 code, the ISV for offices is
300 lx and the reference plane is 0.75 m horizontally. Besides, the
daylighting available at the work plane should be glare-free. The DGI is
used to represent the glare intensity of daylighting because it is the
most widely accepted index in the literature [49]. According to the
traditional Hopkinson scale, the recommended value of maximum al-
lowable DGI for offices is 22 [57].

The calculation for the DGI is based on [58]:

∑= ⎛

⎝
⎜ +

⎞

⎠
⎟DGI

L ω
L ω L

10·log 0.478
·

0.07· ·i

s i s i

b s i s i

,
1.6

,
0.8

,
0.5

, (1)

where Ls represents the source luminance [cd/m2], Lb represents the
background mean luminance [cd/m2], and ωs represents the solid angle
of the source [sr].

3.2.2. Thermal comfort performance
The ASHRAE-55 model is a typical adaptive thermal comfort model,

designed for the indoor comfort assessment in natural ventilation

conditions. The model is obtained by the analysis of 21,000 sets of data
from field studies in 160 buildings worldwide and different climate
zones [59]. In this paper, the ASHRAE-55 model is used to evaluate
indoor thermal comfort during the transition season.

According to the ASHRAE-55 model, there is a correlation between
the indoor neutral temperature (Tn) and the corresponding monthly
mean outdoor temperature (To).

= × + ⩽ ⩽° °T T T0.31 17.8; 10 C 30 Cn o o (2)

Considering 80% acceptability, thermal comfort fluctuates within
3.5 °C on either side of the neutral temperature (7 °C bandwidth). The
upper and lower limits (Tu and Tl) are calculated based on Eqs. (3) and
(4). Fig. 5 shows the thermal comfort zone of typical cities.

= × +T T0.31 21.3u o (3)

= × +T T0.31 14.3l o (4)

The annual thermal comfort ratio (CTR, %) can be used as the
thermal comfort measure. The formula is as follows:

∑= ×
=

CTR
wf
q

100\%
i

q
i

1 (5)

=
⩽ ⩽
≺ ≻{wf

if
if

T T T
T T or T

1,
0,i

l u

l u (6)

where T is the indoor operating temperature, and q represents the total
hour.

The indoor thermal environment is usually kept comfortable during
the heating and cooling period. According to Chinese living habits,
buildings are free-running during the transition season, the change of
CTR mainly depends on the adjustment effect of optimization variables
on the indoor thermal environment in the transition season. Therefore,
the ideal value for CTR is determined by the maximum improvement
achieved by adjusting design parameters, the lower limit of the CTR is
determined by the minimal improvement achieved by adjusting design
parameters. The CTR ranges are different in each city because the dif-
ference in climate results in different improvements achieved by ad-
justing design parameters. And that will be present in the result section.

3.2.3. Energy performance
Building energy performance covers all building energy demands

that are highly relevant to the outdoor environment, including annual
heating, cooling, and lighting energy demands.

The calculation of energy demand is obtained by using Eqs. (7)–(9):

∑=
=

=

HEUI EU M/
i

i m

hi
1 (7)

Table 1
The availability statuses of shading and window ventilation.

Item Mode Heating period Transition season Cooling period

Window open 1 no no no
2 no all-day no
3 no all-day night
4 no night no
5 no night night
6 no no night
7 no adaptive no
8 no adaptive night

Shading 1 yes no no
2 yes no yes
3 yes yes no
4 yes yes yes
5 no no no
6 no no yes
7 no yes no
8 no yes yes

1 2 3 4 5 6 7 8 9 10 11 12
5

10

15

20

25

30

T 
[o C

]

Month of a year

Beijing Guangzhou Shanghai Harbin

Fig. 5. The thermal comfort zone of typical cities.
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∑=
=

=

CEUI EU M/
i

i n

ci
1 (8)

∑=
=

=

LEUI EU M/
i

i h

li
1 (9)

= + +EUI HEUI CEUI LEUI (10)

Among them, the m, n and h represent the cumulative hours of
annual required heating, cooling, and lighting, respectively. The HEUI,
CEUI, and LEUI represent the annual heating, cooling, and lighting
energy demands in kWh/(m2a). The EUI is the total building energy
demand in kWh/(m2a). The EUhi, EUci, and EUli represent the heating
load, cooling load and lighting power load of the total space in kW/m2.
The M represents the space area in m2.

3.3. Design parameters

The optimization variables involved are mainly passive design
parameters, including the wall U-value (WU), the wall specific heat
(SH), the solar absorptance of wall coating (SA), the window U-value in
the south and west (WWUs and WWUw), the solar heat gain coefficient
in the south and west (SHGCs and SHGCw), the window visible light
transmittance in the south and west (VLTs and VLTw), air change rate
(ACH), orientation (OA), WWR in the south and west (WWRs and
WWRw), south overhang depth (OD) and west fin depth (FD). These
variables are potentially influential in building performance, according
to existing literature.

All variables are continuous with the boundary covering the actual
material properties. The wall is addressed with a combination of vari-
able SH and WU as well as fixed wall dimensions and densities in the
EnergyPlus model. This combination can represent the thermal char-
acteristics of existing wall structures [60]. The ACH complies with the
building code of China and the European Union [61]. The range of VTL
and SHGC can cover existing exterior window products, from ordinary
exterior windows to three-layer low-E (low emissivity)windows [62].
The SA of the wall coating covers the color value from shallow to deep
[18]. The distribution form and range of these design parameters are
shown in Table 2.

3.4. Statistical method

3.4.1. The sensitivity analysis
The PRCC extracted from the regression method can be used as a

sensitive indicator. For input, X = xij…, I= 1, …, n; j= 1,…, m. The n
and m represent the sample size and the number of input variables,
respectively.

The regression method’ form is shown in Eq. (11):

∑= + +y b b x εi o
j

j ij i
(11)

where yi is the output, and εi is the residual due to the approximation.
The coefficient bj is determined by the least square method.

The correlation coefficient (CC) between x and y is shown in Eq.
(12).

= = =
∑ − −

∑ − ∑ −
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i
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1

1
2

1
2j

(12)

PCC is calculated according to Eq. (13).

̂ ̂
̂

̂

= − −

= + ∑

= + ∑
≠

≠

PCC CC Y Y X X

Y b b x

X c c x

(( ), ( ))j j

o
h j

h h

o
h j

h h
(13)

The poor linear fits can often be avoided with the use of rank
transformations, which involves replacing the data with their corre-
sponding ranks. Then, the usual least squares regression analysis is
performed entirely on these ranks. The PRCC is obtained after rank
transformation.

3.4.2. The uncertainty analysis
LHS can be used to extract a representative sample set of input

variables. The coefficient of variation (υ) is used to evaluate the un-
certainty of building performance indicators.

The calculation of υ is as follows:

=υ σ μ/ (14)

∑=
=

μ
n

y1

i

n

i
1 (15)

∑=
−

−
=

σ
n

y μ1
1

( )
i

n

i
1

2

(16)

Among them, “μ” and “σ” are the mean value and the standard
deviation, respectively. “n” represents the sample size. “y” is the output
of each sample.

3.5. Optimization model

An important intent of this paper is to study the impact of AS on the
optimal design scheme. The established optimization model is multi-
dimensional, intending to minimize the total building energy demand
and maximize the dynamic thermal comfort ratio. The optimization
variables are design parameters, defined in Section 3.3. In addition, the
optimization model is constrained by design parameter boundaries and
visual comfort.

The optimization function (OF) is defined as Eqs. (17) and (18).
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=
⩽

x x
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DGI

300
22
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(18)

Table 2
The description and range of design parameters.

Abbreviation Unit Distribution form Range

WU W/(m2K) continuous uniform distribution [0.1, 1.58]
SH J/(kg·K) continuous uniform distribution [800, 2000]
SA / continuous uniform distribution [0.1, 0.9]
WWUs W/(m2K) continuous uniform distribution [1.204, 5.912]
SHGCs / continuous uniform distribution [0.102, 0.897]
VLTs / continuous uniform distribution [0.035, 0.921]
WWUw W/(m2K) continuous uniform distribution [1.204, 5.912]
SHGCw / continuous uniform distribution [0.102, 0.897]
VLTw / continuous uniform distribution [0.035, 0.921]
ACH hr continuous uniform distribution [0.5, 1.5]
OA o continuous uniform distribution [0, 360]
WWRs / continuous uniform distribution [0.275, 0.730]
WWRw / continuous uniform distribution [0.308, 0.619]
OD m continuous uniform distribution [0, 2]
FD m continuous uniform distribution [0, 2]
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3.6. Meta-based optimization method

Under comprehensive consideration, this paper adopts the GBDT-
based NSGA-II as the optimization method. the GBDT, an integrated
machine learning algorithm [63], is used to build meta-models. The
detailed construction process of this algorithm is described in reference
[64]. The main parameters affecting GBDT performance are the max-
imum depth of trees (MD), the number of trees (N), and the maximum
of features (MF) [24]. The accuracy indicators specified in ASHRAE
Guideline 14-2002 can be introduced to evaluate the performance of
meta-models. When the standard mean deviation (NMBE) and the
coefficient of variation of root mean square error (CVRMSE) is less
than± 5% and±15%, respectively, the model is accurate and eliable
[65]. In the Python environment, meta-models established by GBDT can
be used as the fitness function of NSGA-II to participate in the optimi-
zation process.

The calculation of NMBEand CVRMSE is as follows:

̂
=

∑ −
×

×=
=

NMBE
y y

n y
( )

¯
100%i

i n
i i1

(19)

̂
=

∑ −
×=

=

CVRMSE
y y

y

( )

¯
100%n i

i n
i i

1
1

2

(20)

where theyi, ̂yi and ȳrepresents the actual value, the predicted value,
and the average actual value, respectively.

3.7. Weather conditions of the major climatic zones in China

According to China’s national standard GB50176-93 [66], China is
divided into five major climate zones, namely severe cold (SC), cold (C),
hot summer and cold winter (HSCW), hot summer and warm winter
(HSWW), and moderate (M). These divisions are based on the average
temperatures in the coldest and hottest months. Because the building
design in the M climate generally does not consider heating and cooling
demands, this study does not consider the M climate. Typical cities in
the four remaining climates are selected: Harbin, Beijing, Shanghai, and
Guangzhou. The climate zones and the monthly meteorological para-
meters of the corresponding cities are shown in Fig. 6.

4. Results and discussion

4.1. The impact of various strategy modes on building performance.

Fig. 7 shows the influence of various modes of AS on the annual
thermal comfort and the annual heating/cooling/lighting energy de-
mands. As shown in Fig. 7(a), shading, night ventilation, and their in-
teractions, all can reduce the CEUI for the four cities. The AS has the
greatest potential for cooling energy-saving in Beijing, compared to the
other cities. For each city, differences in the cooling energy-saving
potential of different mode AS exist. By mode 1 vs mode 3 or mode 2 vs
mode 4, night ventilation does reduce the cooling load, especially when
shading is not considered. However, by mode 1 vs mode 2, the influence
of shading on CEUI has the opposite result, with changes in the city and
the ventilation mode. When considering shading only, the cooling en-
ergy demand in Guangzhou will increase. The main reason is that
shading not only affects the solar radiation heat but also the lighting
power. When coupling the daylighting and lighting, closed shading will
reduce the solar radiation heat while reducing the available daylighting
illuminance. In the case of maintaining indoor illuminance meeting the
comfort requirements, the lighting energy demand increases. Therefore,
the inner heat gain caused by the heat dissipation of lighting increases,
which leads to increased CEUI. This indicates that the influence of
shading on CEUI will have the opposite result, depending on the solar
radiation distribution and lighting power density, when using coupling
daylighting and lighting. By mode 3 vs mode 4, the interaction of night
ventilation and shading increases the CEUI. This is because night ven-
tilation reduces the daily cooling load by reducing the indoor heat
storage, and their total reduction is greater than the increased heat
dissipation caused by lighting. In conclusion, the impact of AS on CEUI
is determined by a combination of the lighting control mode, solar
radiation distribution, and indoor heat storage.

As shown in Fig. 7(b), shading leads to increased HEUI during the
heating season. The increase is from large to small, Harbin >
Beijing > Shanghai, and it can be largely negligible for Shanghai.
Fig. 7(c) shows the effect of two lighting modes (switch and continuous
dimming control) on the LEUI. Since the power of switch lighting is not
affected by changes in outdoor weather conditions, the LEUI in all cities
is the same, at 26.3 kWh/(m2a). When using continuous dimming
control, daylighting is effectively utilized, and the lighting energy is
saved while maintaining normal illuminance. All four cities have great
energy-saving potentials with continuous dimming control, but the
energy-saving potential of Shanghai is the highest.
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Fig. 7. (continued)
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Fig. 7(d) shows the impact of different strategy modes on indoor
thermal comfort during the transition season. When not considering AS,
the overall thermal comfort level in Shanghai is the worst, and that of
Beijing and Harbin is best. When considering AS, the indoor thermal
comfort in Beijing, Shanghai, and Harbin are almost the same. By mode
1, mode 3 and mode 5 vs mode 7 or mode 2, mode 4, mode 6 vs mode 8,
NV can significantly improve thermal comfort. In addition, by com-
paring modes 1 and 5 or modes 2 and 6, the influenced difference be-
tween all-day NV and adaptive NV is largely negligible. Therefore, for
offices that do not allow window-opening at night, adaptive NV can be
performed. The ability of night NV to improve thermal comfort is much
lower than that of all-day NV and adaptive NV modes. Furthermore, the
lower the basic scenario (without AS), the greater the potential for
improving thermal comfort. By mode 1 vs mode 2, mode 3 vs mode 4,
mode 5 vs mode 6 or mode 7 vs mode 8, the improvement of shading is
largely influenced by NV modes, which is masked by the relatively large
improvement potential of NV. The shading has a significant effect on
thermal comfort, only when without NV or for night NV.

In summary, AS have different emphases on building performance,
in different climate zones. That is, increasing HEUI in SC climates, re-
ducing CEUI in C climates, improving the indoor thermal comfort for
HSCW climates, improving the daylighting effect and reducing the LEUI
for HSWW climates.

4.2. Uncertain analysis of building performances

This section explores how much AS has affected the uncertainty of
early building performance assessments. Because the dimensions are
consistent, the heating, cooling and lighting energy demand can be
integrated into the total energy demand. Fig. 8 shows the uncertainty
index of EUI and CTR in all cities. Among them, the design scenario 1
(DS1) represents not considering AS, and the design scenario 2 (DS2)
represents considering AS.

Fig. 8(a) presents the μ and υ of EUI. By comparing the μ between
two design scenarios, the energy-saving potential of AS is the largest in
Harbin and ranks down by Guangzhou, Beijing, and Shanghai. A higher
υ indicates a large dispersion of EUI. For all cities, there are large dif-
ferences in the υ between the two design scenarios. This means that the
AS will greatly increase the uncertainty in early building energy as-
sessment. Compared with DS1, the uncertainty increase rate of EUI in
DS2 is 32.0%, 17.3%, 28.8% and 14.8% for Harbin, Beijing, Shanghai,
and Guangzhou, respectively. Therefore, the cities in descending order
of impact intensity are Harbin, Shanghai, Beijing, and Guangzhou.

Fig. 8(b) presents the μ and υ of CTR. By comparing the μ between
two design scenarios, the improvement potential for the thermal com-
fort of AS is the largest in Shanghai and then ranked by Guangzhou,
Harbin, and Beijing. By comparing the υ between two design scenarios,
the impact of AS on the uncertainty in CTR assessment in Harbin and
Beijing is relatively small with the υ increase rate being 7.2% and 4.2%,
respectively. However, the impact of AS on CTR in Shanghai and
Guangzhou is relatively significant, with the υ increase rate being
16.3% and 14.0%, respectively.

4.3. Sensitivity analysis

This section explores whether the impact of each design parameter
on building performance changes when considering the potential im-
pact of AS on building performance in the design phase. The influence
of each design variable on building performance indicators can be ex-
pressed by the PRCC index.

Fig. 9 shows the PRCC result in two design scenarios for each city.
The PRCC of CTR is more susceptible to AS than that of EUI in all cities.
Moreover, the influence intensity of most design parameters on CTR is
weakened. For all cities, SHGCw, SHGCs, WWUw, and WU are the most
important factors with PRCC being more than 0.3. At the same time,
their sensitivity is relatively affected by AS. The SH, VLTw, VLTs, ACH,
and SA are considered relatively less important with individual con-
tributions less than 10%. Comparing the PRCC in the two design sce-
narios, the impact of VLTs on CTR is enhanced in DS 2. The main reason
is that daylighting supplements lighting in this design scenario. The
indirect impact of VLT on the indoor thermal environment is enhanced
by affecting the shading state. The effect of AS on the PRCC results of
EUI can be almost ignored except in Harbin. For Harbin, the PRCC
value of WWUs, WWRw, WU, ACH, SHGCs, and WWUw are at the
forefront. These are followed by WWRs, SHGCw, and OA. Among them,
the influence intensity of WWUs, WU, ACH, WWUw, and SHGCw have
significant differences in the two design scenarios. For the other three
cities, the SHGCw is determined to be the most important contributor
for EUI, and WWRw and WWRs are also important factors, while their
ranks are slightly different in different cities. In addition, it should be
mentioned that the importance of ACH to EUI has declined for all cities.
Overall, CTR is more sensitive to AS than EUI. The Harbin is more
vulnerable than in other areas.
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4.4. Pareto frontier solution

GBDT based NSGA-II method is run to obtain the Pareto frontier
design space. The aim is to find the optimal values of the 15 design
variables for maximizing the CTR while minimizing the EUI. Since the
criterion of the NSGA-II algorithm is that all targets are minimized, the
annual thermal discomfort ratio (DCTR) is minimized in the optimiza-
tion process, instead of maximizing the CTR. Tuning hyperparameters
when build meta-models using GBDT, and Table 3 shows the optimized
hyperparameters. Table 4 presents the accuracy metrics of GBDT-based
meta-models in four cities. All meta-models meet the requirements of
ASHRAE Guideline 14-2002 with the NMBE and CVRMSE less than 5%
and 15%, respectively. In terms of the NSGA-II algorithm, several im-
portant optimization settings are summarized in Table 5.

The Pareto frontier solution under two design scenarios is shown in
Fig. 10. In DS 1, For Guangzhou, EUI varies from 98.9 to 106.1 kWh/
(m2a) and DCTR varies from 15.1% to 17.3%; For Shanghai, EUI varies
from 61.0 to 68.0 kWh/(m2a) and DCTR varies from 30.5% to 33.4%.
For Beijing, EUI varies from 75.3 to 91.2 kWh/(m2a) and the DCTR
varies from 11.0% to 14.1%. For Harbin, EUI varies from 53.0 to 99.8
kWh/(m2a) and DCTR varies from 11.6% to 14.7%. In DS 2, the Pareto
frontier solution for four cities all move toward the direction in which
the optimization goal becomes smaller. For Harbin, the AS has the
greatest impact on EUI in the frontier solution, with the maximum and
minimum values reducing by 54.9 and 28.2 kWh/(m2a), respectively.
For Shanghai, the AS has the greatest impact on the DCTR in the
frontier solution, with the maximum and minimum values reducing by
10.5% and 15.3%, respectively.

4.5. Post optimization analysis

In the decision-making stage, indoor comfort is the most important
demand from the occupant's perspective. Therefore, it is a decision-
making direction for designers to priority the solution with the largest
thermal comfort. On the basis of the Pareto solution, the solution that
prioritizes the maximum CTR and then minimum EUI in each design
scenario is shown in Fig. 11. Moreover, the energy-saving potential
(ESR) and the improvement rate of thermal comfort (CIR) are also
calculated and displayed. The energy-saving potential of Guangzhou
reached 20.4%, and that of the other three cities reached more than
30.0%, especially Harbin (38.1%). In terms of the improvement rate of
thermal comfort, Shanghai has the largest potential (17.6%), while the
other three cities have less than 10% potential, especially Beijing
(3.3%).

Table 6 shows the values of the design parameters corresponding to
Fig. 11. For all cities, the design parameters of the optimal solution tend
to a higher insulation level (i.e., WU, WWUs, and WWUw tend to smaller
values) in DS 2. The SH tends to larger values in Harbin and Beijing but
remains almost unchanged in Shanghai and Guangzhou. The value of
SA tends to larger values in all the cities.

In terms of the indoor light environment, the illuminance and DGI of
the two reference points P1 and P2 are shown in Fig. 12. When ex-
cluding the outliers, the DGI of the four cities is within the comfort

threshold of 22. And the difference in DGI between two reference points
is small. Except for point A in Shanghai, the dynamic illumination
throughout the year of all reference points is maintained below
2,000 lx. Since reference point P1 accepts more south and west win-
dows at the same time, its illuminance is higher than point P2. Ac-
cording to existing research, daylight illuminances in the 300–3000 lx
range are often perceived either as desirable or at least tolerable [56].
In addition, human vision is more sensitive to lighting contrast in an
area than to the daylighting amount. Therefore, uniformity is an im-
portant factor for visual comfort in addition to glare and illumination.
This uniformity can be described through illuminance uniformity ratios
(IUR), which refer to the ratio of illuminance P1 to P2. Regarding ac-
ceptable illuminance uniformity, CIBSE in 1987 recommended IUR
from all sources to be less than or equal to 1:3, with supplementary
lighting compensating differences from daylighting [67]. Fig. 13 shows
the boxplot of IUR in each city. The illumination uniformity of the four
cities all can meet the comfort requirements, with the upper quartiles of
IUR being below 3.5. Overall, the indoor light environment is within
the comfort range or acceptable.

5. Conclusion

This paper establishes a framework to analyze the impact of ad-
justment strategies on the building design process. Based on the prin-
ciple of occupant's comfort, the adjustment strategy model is estab-
lished to integrate shading, natural ventilation, and dimming.
Considering and not considering adjustment strategies are two design
scenarios. Four typical climates in China are compared given their cli-
mate differences. The influence of adjustment strategy on building de-
sign process is mainly analyzed from the following four aspects: (1) the
influence of different adjustment strategy modes on various aspects of
building performance, including heating, cooling and lighting energy

Table 3
The optimized hyperparameters of GBDT-based meta-models.

Design scenario Hyperparameter Harbin Beijing Shanghai Guangzhou

EUI DCTR EUI DCTR EUI DCTR EUI DCTR

DS1 MD 10 5 7 10 5 4 5 4
MF 9 15 15 10 15 15 15 15
N 2000 2000 2000 2000 2000 2000 2000 2000

DS2 MD 10 10 10 10 5 10 10 10
MF 15 15 17 17 11 15 15 10
N 2000 1000 2000 2000 2000 1000 2000 2000

Table 4
Accuracy metrics of GBDT-based meta-models.

Indicator Harbin Beijing Shanghai Guangzhou

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

CVRMSE (%) EUI 7.54 0.75 4.75 0.75 4.04 0.47 3.72 0.38
DCTR 5.60 0.33 5.22 0.34 3.12 0.23 4.38 0.37

NMBE (%) EUI 2.43 0.01 1.66 0.00 0.49 0.02 0.21 0.02
DCTR 0.11 0.02 1.73 0.01 0.21 0.01 0.39 0.01

Table 5
The setting of the NSGA-II algorithm.

Parameter Value

Population size 50
The number of maximum generation 200
Generation gap 0.5
Crossover probability 0.7
Mutation probability 1
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demand, as well as dynamic thermal comfort; (2) uncertainty analysis
of total building energy demand and dynamic thermal comfort; (3)
sensitivity analysis of design parameters to total building energy de-
mand and dynamic thermal comfort; and (4) the Pareto frontier solu-
tion aims to minimize total building energy demand (including heating,
cooling and lighting energy demand) and maximum thermal comfort.

The main findings are as follows:

(1) The adjustment strategy has a different influential emphasis in
various climate zones, including increasing the heating energy de-
mand in severe cold climate, reducing the cooling energy demand
in cold climates, improving the indoor thermal comfort in the hot
summer and cold winter climates, and reducing the lighting energy
demand in the hot summer and warm winter climate. Furthermore,
the effect of adjustment strategies on cooling energy demand is
affected by the combination of lighting modes, solar radiation dis-
tribution, and indoor heat storage. The improvement of shading on
indoor thermal comfort is largely influenced by window ventilation
modes, and that is significant only in the without ventilation mode
or night ventilation mode. The powerful improvement potential of
adaptive ventilation and all-day ventilation masks the effect of
shading. Shading will increase the heating energy demand, but the
coupling of shading and dimming will avoid glare and significantly
reduce the lighting energy demand.

(2) The uncertainty of total energy demand in the severe cold climate is
most affected by the adjustment strategy, and the uncertainty in-
crease rate is 32.0%, 17.3%, 28.8% and 14.8% for the severe cold,
the cold, the hot summer and cold winter, as well as the hot summer

and warm winter climate, respectively. The impact of adjustment
strategies on annual thermal comfort ratio in the hot summer and
cold winter and the hot summer and warm winter climate is rela-
tively significant, with their uncertainty increase rates being 16.3%
and 14.0%, respectively. In the cold climate and the severe cold
climate, the uncertainty increase rate is relatively small, at 4.2%
and 7.2%, respectively.

(3) According to the PRCC indicators, the sensitivity analysis results of
the annual thermal comfort ratio are more sensitive to adjustment
strategies than that of total energy demand. The severe cold climate
is more vulnerable than in other climates. The influence intensity of
most design parameters on the annual thermal comfort ratio is
weakened under the design scenarios that consider the adjustment
strategy. For all cities, SHGC for west and south windows, the U-
value for the west window, and the wall U-value are the most im-
portant factors for the annual thermal comfort ratio with PRCC
being more than 0.3. At the same time, their sensitivity is subject to
relatively large impact strength.

(4) Adjustment strategies move the Pareto frontal solutions of all cities
in a better direction. The severe cold climate and the hot summer
and cold winter climate have the greatest potential to reduce total
energy demand and discomfort ratios, respectively. Make further
decisions on the Pareto frontal solution, when the minimum energy
demand is satisfied on the basis of optimal thermal comfort, the
energy-saving potential of the hot summer and warm winter cli-
mate reach 20.4%, and that of the other three cities reach more
than 30.0%, especially the severe cold climate (38.1%). The hot
summer and cold winter climate has the largest potential to
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Fig. 10. The Pareto optimization results.
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Fig. 11. Comparison of optimal solutions for two design scenarios when thermal comfort is optimal.

Table 6
The corresponding design parameters of when priority is given to optimal comfort.
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improve the rate of thermal comfort (17.6%), while the other three
cities have less than 10% potential, especially Beijing's (3.3%).

This study emphasizes that design scenarios have a significant im-
pact on building design process and can guide architectural engineering
design. The results of this study illustrate that the appropriate optimi-
zation scheme can be adopted into the building design process con-
sidering the achievable degree of adjustment strategies.
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