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Abstract 
Are numerals divorced from a sense of the actual quantities 
they represent? We show that accessing a sense of how much 
a numerical symbol actually represents is a surprisingly 
difficult and non-trivial process. Irrespective of numerical 
size or distance, direct comparison of the relative quantities 
represented by symbolic and non-symbolic quantities leads to 
performance markedly worse than when comparing two non-
symbolic quantities. Experiment 2 shows that this effect 
cannot be attributed to differences in perceptual processing 
streams. Experiment 3 shows that there is no additional cost 
of mixing two formats that are both symbolic; that is, the 
decrement in mixing formats is specific to mixing symbolic 
and non-symbolic representations. Our data are consistent 
with the view that numerical symbols operate primarily as an 
associative system in which relations between symbols come 
to overshadow those between symbols and their quantity 
referents. 

Keywords: Numerical Cognition; Symbolic Representation. 

Introduction 
Does one really have a meaningful sense of very large 

quantities, like a million or a billion? Or does representing 
quantities in exact, symbolic form come to change the way 
we think about (and with) these numerical symbols 
themselves? In recent years, evidence has accumulated in 
favor of a strong overlap between symbolic and non-
symbolic number-representation systems (Dehaene, 1997, 
2008; Dehaene et al., 2003; Nieder & Dehane, 2009; Piazza 
et al., 2007, 2010; Fias et al., 2003; Condry & Spelke, 2008; 
McCrink & Spelke 2010; Gilmore et al., 2010; Halberda et 
al., 2010; Santens et al., 2010). Considerable attention has 
been paid to the notion that complex mathematical concepts 
are grounded in an evolutionarily ancient and 
developmentally fundamental sense of quantity (e.g., which 
basket contains more apples, which tribe comprises more 
members, which of two bushes contains more berries?) 
(Nieder & Dehaene, 2009; Halberda et al., 2008; Pica et al., 
2004). Furthermore, this view proposes that an intuitive 
sense of approximate quantity (i.e., the approximate number 
system – ANS) should be a fundamental aspect of any 

numerical symbol – that is, there should be considerable 
overlap between symbolic and non-symbolic numerical 
processes (Dehaene, 2008). Thus, accessing this sense of 
quantity from a symbol should be a relatively fast and 
effortless process. 

On the other hand, it may be that through repeated use 
and mastery of numerical symbols, the ties between exact 
numerical symbols (e.g., Arabic numerals) are weakened to 
the point that these symbols are often used with very little 
access to a sense of the actual quantities they presumably 
represent. For example, it is hard to conjure a sense of what 
a million actually looks or feels like – one’s intuitive sense 
of what 1,000,000 actually means seems divorced from the 
symbol that is meant to represent that quantity. Of course, 
we can still use 1,000,000 in myriad ways; for example, it 
should be easy enough to understand that 999,999 < 
1,000,000 < 1,000,001. In other words, the symbol 
1,000,000 makes perfect sense in terms of its relative 
(ordinal) position with respect to other numerical symbols 
(Verguts & Fias, 2004), even if it is possibly divorced from 
the quantity it represents.  

In sum, a crucial facet of numerical symbols is how they 
relate to other symbols; indeed, it may even be the case that 
with repeated exposure to numerical symbols, symbol-
symbol relations in literate adults come to usurp symbol-
quantity relations. As has been found in abstract semantic 
representation more generally (Crutch & Warrington, 2010), 
how a (numerical) symbol relates to other symbols may thus 
become more central to that symbol’s meaning than how it 
relates to the quantity it supposedly represents (Deacon, 
1997; Nieder, 2009). If so, then eliciting a sense of the 
actual quantity represented by a numerical symbol may be 
an onerous process, in that it is not typically necessary when 
using such symbols in a normal mathematical context. That 
is, the link between numerical symbols and the quantities 
they represent (at least in terms of the ANS) may actually be 
considerably weaker than previously assumed. 

One way to distinguish these hypotheses directly is to ask 
participants to use numerical symbols in a context that 
forces them to access how much a given symbol represents 

1515



explicitly. In the current study, we asked participants to 
compare quantities represented either in symbolic (Arabic 
numeral or written number-word) or non-symbolic format 
(an array of dots flashed too briefly to be counted). In 
Experiments 1-2, we had adult participants make 
comparison judgments (decide which item depicts the 
greater quantity) in three different conditions: 
numeral/numeral judgments, dot/dot judgments, and mixed 
dot/numeral (or numeral/dot) judgments. In Experiment 3, 
participants compared quantities in numeral-numeral, 
number-word/number-word, and number-word/numeral (or 
numeral/number-word) conditions. 

If numerical symbols retain a strong link to an 
approximate sense of the quantities they represent, then 
mixing formats should be akin to comparing two entities 
that ostensibly differ only in representational quality (i.e., 
sharpness of approximate tuning curves; Piazza et al., 2004; 
Nieder & Merten, 2007). Adults are faster and more 
accurate when comparing two numeral-stimuli than two dot-
stimuli (Buckley & Gillman, 1974; Lyons & Beilock, 2009). 
Thus, replacing one dot-stimulus with a (superior) numeral-
stimulus should improve mixed-format comparison (relative 
to dot-dot comparison) performance. According to the 
hypothesis that symbolic and non-symbolic quantities draw 
from the same neural populations (Dehaene, 2008; Santens, 
2010), mixed-format comparisons (which combine a 
broadly tuned dot-stimulus with a finely tuned numeral-
stimulus) in Experiments 1-2 should yield performance 
somewhere in between that of numeral-numeral (two finely 
tuned stimuli) and dot-dot comparisons (two broadly tuned 
stimuli); or more conservatively, mixed performance should 
at least be no worse than dot-dot comparisons.  
 
Figure 1 

  By contrast, if symbolic numbers have become detached 
from an intuitive sense of the non-symbolic quantities to 
which they presumably refer, accessing this sense of 
quantity directly from a numerical symbol may incur an 
additional processing cost. According to this hypothesis, 
mixed-format comparisons should lead to performance 
significantly worse than either numeral-numeral or dot-dot 
comparisons.  

In Experiment 3, we tested whether the potential cost of 
mixing formats observed in Experiments 1 and 2 might 
simply be due to mixing representational or visual format, 
rather than to asymmetric accessing of quantity information. 
We expected quantities presented as number words to be 
represented symbolically, as in the case of numerals. We 
thus predicted that directly comparing a numeral with a 
number-word should not yield performance worse than 
number-word/number-word comparisons (which were 
expected to yield less efficient performance than numeral-
numeral comparisons; Damian, 2004). Such a result would 
suggest that the performance degradation seen for mixed 
comparisons is not simply due to mixing representational or 
visual formats. 

Methods 
In Experiment 1 (N=21 University of Chicago students), 

subjects decided which of two simultaneously presented 
visual stimuli (dots and/or numerals) was numerically larger 
(Figure 1a-c). In Experiment 2 (N=21 Dartmouth College 
students), the two stimuli (dots and/or numerals) were 
presented sequentially (Figure 1d-f). In Experiment 3 (N=21 
University of Chicago students), stimuli (numerals and/or 
number-words) were presented sequentially (timing was the 
same as in Experiment 2). 

Figure 1 shows stimulus 
examples from Exps. 1 
[a-c] and 2 [d-f] (Exp. 3 
trial timing was the 
same as in Exp. 2). Note 
that for DD trials, the 
two dot-arrays in a 
given comparison trial 
were equated with 
respect to two of four 
continuous parameters
(individual dot-size, 
total dot-area, inter-item 
density, total array 
perimeter), such that, 
across all trials, relying 
exclusively on any one 
of these parameters 
would lead to 
performance no better 
than chance. No array 
was ever presented to a 
subject twice.
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 In all Experiments, subjects’ task was to decide which 
stimulus represented the greater quantity (Figure 1 depicts 
sample trials). In Experiments 1-2, there were three format 
conditions: numeral/numeral (NN), dot/dot (DD), mixed-
format (MX) numeral/dot (or dot/numeral). In Experiment 
3, there were three format conditions: numeral/numeral 
(NN), number-word/number-word (WW), mixed-format 
(MX) numeral/number-word (or number-word/numeral. 
Trials were always blocked by condition (with rest and 
instructions between blocks), so participants always knew 
which presentation-order to expect. The order of condition-
blocks was randomized across participants. For MX trials in 
Experiment 1, which side (left or right) contained the dot-
array was randomized across trials. For MX trials in 
Experiments 2 and 3, which stimulus-type was presented 
first in was also balanced across trials. Subjects were to 
press a key with their left middle finger if they thought the 
left (Experiment 1) or first (Experiments 2-3) stimulus was 
greater, press a key with their right middle finger if they 
thought the right (Experiment 1) or second (Experiments 2-
3) stimulus was greater, or press a third key (space bar) with 
both index fingers if they thought the two stimuli were 
numerically equal (catch trials). 

Figure 2 shows the cost – in milliseconds – of mixing 
formats. Red error bars are 95% confidence intervals. For 
Experiments 1-2, the y-axis is the mean difference between 
MX and DD conditions (white bars) and MX and NN 
conditions (black bars). The critical contrast (see text) was 
between MX and DD conditions. For Experiment 3, the y-
axis is the mean difference between MX and WW 
conditions (grey bars) and MX and NN conditions (black 
bars). The critical contrast (see text) was between MX and 
WW conditions. Terms and abbreviations are the same as 
in Figure 1. Raw cell means for both response-times and 
error-rates can be found in Table 1. 

In all experiments, there were 48 critical trials and 16 
catch trials in each condition. In all conditions, half of 
critical trials were numerically small (1,2,3,4), and half were 
large (10,20,30,40); orthogonally, half of critical trials were 
numerically close (|n1–n2| = 1 or 10) and half were far (|n1–
n2| = 2,3,20 or 30). In this way, for each format condition, 
stimuli were subdivided into four categories: small-far, 
small-close, large-far, large-close. Performance differences 
were tested within each of these categories separately: all 
contrasts were two-tailed, within-subjects contrasts with 20 
degrees of freedom. 

Results 
In all experiments, two behavioral measures were 

collected: response-times (RTs) and error-rates (ERs). RT 
and ER condition means are summarized in Table 1. 
Contrast results for RTs are shown in Figure 2. In all 
experiments, our hypotheses concerned the difference 
between the MX and the single-format condition (NN, DD 
or WW) that yielded the worst performance in that 
experiment. 

In Experiment 1, RTs tended to be longer on DD than NN 
trials (large-close: p=.056; large-far: p=.245; small-close: 
p=.001; small-far: p=.138). ERs were higher on DD close 
(ps<.001) but not far (ps≥.336) trials. This result is 
unsurprising in that performance on numerical comparisons 
using symbols is typically better than on comparisons using 
non-symbolic quantities (e.g., arrays of dots) (Buckley & 
Gillman, 1974; Lyons & Beilock, 2009). Thus, our critical 
contrasts were between MX and DD trials. RTs were 
significantly longer for MX than DD trials in all categories 
(all ps<.001; Figure 2a). ERs were higher for MX than DD 
trials in all four categories as well (large-close: p=.137; 
large-far: p<.001; small-close: p=.023; small-far: p=.014). 

Figure 2 
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Table 1 
Condition means for 
both response times 
(RT: msec) and error 
rates (ER: percent 
errors) broken down 
by category for: 
[a] Experiment 1,
[b] Experiment 2, 
[c] Experiment 3. 
Values in italics are 
standard errors of 
the mean.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In sum, RTs were significantly longer for MX than DD 
trials (and ERs showed a similar pattern). Accessing a sense 
of quantity entails additional processing costs over and 
above typical numerical or dot comparisons and thus does 
not appear to be an automatically accessible aspect of 
symbolic number representation. 
 However, it may be that the difference between DD and 
MX performance arises, not because of a weak link between 
the ANS and numerical symbols, but due to the cost of 
switching between different perceptual input streams (in the 
case of MX trials) (Dehaene et al., 2003; Santens, 2010; 
Dehaene & Cohen, 1995). In Experiment  1,  (simultaneous   
presentation),   the   average difference between DD and 
MX conditions in terms of response-times was 370msec, 
with the maximum difference arising for large-close trials 
(M=426msec, Figure 2a). Thus, in Experiments 2-3, we 
chose an inter-trial-interval (ITI) that far exceeded (roughly 
doubled) this potential switch-cost window (700msec; total 
time between stimulus 1 and 2 onsets: 850msec; see Figure 
1). In addition, 850msec is also well in excess of the 
maximum duration typically observed in visual attentional 
blink paradigms (Raymond et al., 1992; Kranczioch et al., 
2005), which further reduces the possibility that any effect 
of mixing formats in Experiments 2-3 would be due to 
switching between input processing streams. Note that a still 
longer ISI was not chosen to avoid placing undue demands 
on working-memory maintenance processes.  

In Experiment 2, RTs tended to be longer on DD than NN 
trials (large-close: p=.078; small-close: p=.111; small-far: 
p=.099), with the exception of large-far trials, which 
showed a trend in the opposite direction (p=.178). ERs were 
higher on DD than NN large-close trials (p<.001) but not in 
any other category (ps≥.329). Thus, excepting large-far 
trials, our critical contrasts were between MX and DD trials. 
Note that in Experiment 2, MX trials could be presented 
either dot-first (DN) or numeral-first (ND). The main effect 
of presentation-order and all interaction terms involving this 
factor were non-significant for both RTs and ERs (all 
Fs<1); Experiment 2 MX results were thus collapsed across 
presentation-orders. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RTs were significantly longer for MX than DD trials in all 

categories (all ps≤.006; Figure 2b); RTs were also 
significantly longer for MX than NN trials in all categories 
(all ps≤.001; Table 1b). ERs tended to be higher for MX 
than DD trials as well (large-close: p=.144; large-far: 
p=.001; small-close: p=.084; small-far: p=.046). In sum, 
RTs were significantly longer for MX than DD and NN 
trials (and ERs showed a similar pattern). The results from 
Experiment 2 thus provide further evidence that accessing a 
sense of quantity entails an additional processing cost, 
beyond any cost of switching between different perceptual 
input streams that may have been observed in Experiment 1. 

In Experiment 3, we tested whether the potential cost of 
mixing formats observed in Experiments 1 and 2 might be 
due to mixing visual format. In contrast to the MX 
conditions above, we predicted that mixing symbolic visual 
formats (numerals and number-words) would not lead to 
performance significantly worse than that seen for the 
worst-performing single-format condition (NN or WW). 
Quantities used and other parameters were the same as in 
Experiment 2. Number-words were presented in English in 
the center of the screen (24-point Arial font). 

In Experiment 3, responses on WW trials tended to be 
slower than on NN trials (large-close: p<.001; large-far: 
p=.072; small-close: p=.145; small-far: p=.203). ERs were 
higher on WW than NN large-close trials (p=.047) but not 
in any other category (ps≥.605). Thus, our critical contrasts 
were between MX and WW trials.  

Crucially, performance did not significantly differ 
between MX and WW conditions for either RTs (all 
ps≥.390) or ERs (all ps≥.636). In sum, Experiment 3 results 
are consistent with the hypothesis that switching between 
visual numerical formats – so long as both formats point to 
symbolic representations – does not incur the same cost that 
arises when switching between symbolic and non-symbolic 
numerical formats, as was seen in Experiments 1 and 2. 
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Discussion 
Experiments 1 and 2 provide clear evidence that 

numerical comparisons between a symbolic and a non-
symbolic quantity are considerably more difficult than 
comparing two non-symbolic quantities. This is surprising 
in that one might expect the comparison of a highly accurate 
stimulus (numeral) and an inaccurate stimulus (dot-array) to 
be easier (or at least no worse) than comparison of two 
inaccurate stimuli (two dot-arrays). Our data reject this view 
and suggest instead that symbolic numbers do not provide 
automatic access to an approximate sense of the quantity 
that they represent. Rather, it appears that additional, 
seemingly inefficient processing is required to compare 
symbolic with non-symbolic quantities.  

Interestingly, MX performance was worse than DD 
performance even for small numbers. First, this indicates 
that inefficiency of directly comparing symbolic and non-
symbolic numbers is present even for highly familiar 
quantities. Furthermore, the small numbers used here (1-4) 
are within the subitizing range for adults (Mandler & Shebo, 
1982; Revkin et al., 2008; Demeyere et al., 2010). Non-
symbolic quantities in this range tend to be represented in 
exact (as opposed to approximate) fashion since they do not 
exceed the limited capacity of visual short-term memory 
(Luck & vogel, 1997; Pylyshyn, 2001; Ansari et al., 2007). 
Inefficient mixed-format comparisons for small quantities 
suggests that neither familiarity nor representational acuity 
(i.e. sharpness of approximate tuning curves; Piazza et al., 
2004; Nieder & Merten, 2007) is the primary cause of this 
cost. Instead, it appears that symbolic and non-symbolic 
representations of quantity are incompatible seemingly 
across the board. 

At a theoretical level, our results are partially consistent 
with the place-code model of symbolic number 
representation proposed by Verguts and Fias (2004), in 
which a numerical symbol is represented in terms of its 
relative ordinal position. Our results go beyond this model, 
however, in that they suggest that numerical symbols 
operate primarily as an associative system in which relations 
between symbols come to overshadow those between 
symbols and their quantity referents, and may even become 
devoid of a strong sense of quantity per se (Deacon, 1997; 
Nieder, 2009). Thus, an important step for future research 
will be to understand symbolic representation of number in 
a way that is not necessarily tied explicitly to actual quantity 
referents. This may be especially interesting to consider in a 
developmental context and with respect to the individual 
differences that limit exactly how and when numerical 
symbols are best understood in conjunction with or separate 
from one’s more intuitive number sense (Lyons & Beilock, 
2009; Santens et al., 2010; Ansari, 2008; Holloway & 
Ansari, 2010). 

Here it is important to note that one potentially simple 
explanation for the current results is that number sense and 
numerical symbols were simply never associated with one 
another in the first place. We do not believe this to be the 

case, however, for two important reasons. First, 
considerable neural evidence has accrued suggesting that the 
neural substrates underlying the ANS do overlap at least to 
some extent with those thought to underlie symbolic 
representations of number (Dehaene et al., 2003; Nieder & 
Dehane, 2009; Piazza et al., 2007; Fias et al., 2003; Santens 
et al., 2010). Furthermore, recent developmental evidence 
suggests that individual differences in ANS acuity are 
linked with symbol-based math abilities from a relatively 
young age (Piazza et al., 2010; McCrink & Spelke 2010; 
Gilmore et al., 2010; Halberda et al., 2010). Therefore, our 
assertion is that, perhaps via years of practice with and over-
learned associations between symbols, these representations 
may have become functionally distinguishable from the 
ANS, at least in that the link between symbol and quantity 
has been weakened or perhaps relegated to a more indirect 
status. In conclusion, the data reported here plainly call into 
question the strength of the link between numerical symbols 
and a sense of the quantities they are meant to represent in 
literate adults. Therefore, future studies aimed at 
understanding the cognitive and neural basis of more 
complex math skills in particular should consider not only 
the commonalities across systems, but also the unique 
properties that symbolic representations of number bring to 
the table. 
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