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ABSTRACT OF THE DISSERTATION 

 
Texture Preference, Facial Attractiveness, and the Effect of Race on Lightness Perception 

 
By 

 
Kyle David Stephens 

 
Doctor of Philosophy in Psychology 

 
 University of California, Irvine, 2015 

 
Professor Donald Hoffman, Chair 

 
 
 

It’s uncontroversial to point out that people have preferences and these preferences 

can vary considerably from one person to the next. My niece loves the color yellow; my 

grandmother hates the color yellow. But, it’s more interesting to point at how consistent 

preferences can be. Almost everyone likes certain shades of blue. In the first part of this 

dissertation, I examine people’s preferences in two domains.  

First, I examine how well people’s preferences can be predicted for a certain kind of 

images known as visual textures (Chapter 1). I find that people’s preferences can be 

explained well by an ecological model according to which people like visual textures to the 

degree that they like the objects most-associated with those textures. 

Next, I examine people’s preferences for faces (Chapter 2). One of the most robust 

findings in face research is that people rate faces with average configurations as highly 

attractive. Despite the consistency of this finding, we still don’t know why this should be 

true. In Chapter 2, I use a statistical mediation model to investigate why averaged faces are 

so attractive. I find that the result is not explained by any of the mediators tested and argue 

that averageness per se is attractive.  
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Finally, I pivot in the third chapter: Instead of examining the surprising consistency 

of high-level experience (preference ratings), I examine the potential idiosyncrasy of low-

level experience. Low-level experiences – of things like color and lightness – are thought to 

be relatively consistent across people. But, recently, researchers have claimed that low-

level perception can be influenced by idiosyncratic cognitive factors like beliefs or desires. 

In the third chapter, I investigate whether the perceived race of a face (a high-level 

cognitive construct) can influence how light its skin looks (low-level lightness perception), 

regardless of how light its skin actually is. Contrary to previous claims, I do not find 

support for this assertion.  

Overall I find that, on the one hand, people are surprisingly consistent in their 

preferences, both for visual textures and for faces. On the other hand, I find no evidence 

that idiosyncratic cognitive factors can affect low-level perception.  
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INTRODUCTION 

It’s uncontroversial to point out that people have preferences and these preferences 

can vary considerably from one person to the next. My niece loves the color yellow; my 

grandmother hates the color yellow. But, it’s more interesting to point at how consistent 

preferences can be. Almost everyone likes certain hues of blue (Yokosawa, Yano, Schloss, 

Prado-Leon, & Palmer 2010). In the first part of this dissertation, I examine people’s 

preferences in two domains.  

First, I examine how well people’s preferences can be predicted for a certain kind of 

images known as visual textures (Chapter 1). Visual textures are images that are not 

uniform colors, but are also not scenes with decipherable objects; they’re in between. I find 

that people’s preferences can be explained well by the ecological valence theory according 

to which people like basic stimuli to the degree that they like the objects or entities most-

associated with those stimuli (Palmer & Schloss, 2010). The ecological valence theory has 

already been used successfully to account for human color preferences (Palmer & Schloss, 

2010; Taylor & Franklin, 2012) and human odor preferences (Schloss, Goldberger, Palmer, 

& Levitan, 2015). In Chapter 1, I extend the theory to visual texture preference and 

compare its performance to that of more traditional texture-preference models based on 

computational features. Overall, I find that the ecological model does reasonably well – 

explaining 63% of the variance in people’s preference ratings – considering its low 

complexity.  

Next, I examine people’s preferences for faces (Chapter 2). One of the most robust 

findings in face research is that people rate faces with average configurations as highly 

attractive (see, e.g., Rubenstein, Langlois, & Roggman, 2002). Despite the consistency of this 



2 
 

finding, we still don’t know why this should be true. In Chapter 2, I use a statistical 

mediation model to investigate why averaged faces aree so attractive. I conclude that the 

effect is not mediated by skin quality, perceived youthfulness, age, sexual dimorphism, 

processing fluency, or general familiarity, and I argue that averageness per se is attractive. I 

discuss why we might expect such a result because of human sexual selection or as a by-

product of the way our brains solve certain information processing tasks.  

Finally, I pivot in the third chapter: Instead of examining the surprising consistency 

of high-level experience (preference ratings), I examine the potential idiosyncrasy of low-

level experience. Low-level experiences – of things like color and lightness – are thought to 

be relatively consistent across people. But, recently, researchers have claimed that low-

level perception can be influenced by idiosyncratic cognitive factors like beliefs or desires 

(see, e.g. Colins & Olson, 2014; Dunning & Balcetis, 2013). The best affirmative evidence for 

this comes from a study of lightness perception: Levin and Banaji (2006) showed that the 

race of a face (a high-level cognitive construct) can affect how light its skin looks (low-level 

perception) regardless of how light its skin actually is. In the third chapter, I test this claim 

with carefully controlled stimuli, taking special care to obscure the research hypothesis 

from participants. I find no support that the perceived race of a face affects how light its 

skin looks and argue that the original results were due to participant response bias.  
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Chapter 1 

On visual texture preference: Can an ecological theory explain why 

people like some textures more than others?  

Kyle D. Stephens and Donald D. Hoffman (invited revision to Perception). 

  

Abstract 

What visual textures do people like and why? Here we test whether Palmer and Schloss’ 

(2010) ecological valence theory can predict people’s preferences for visual texture. 

According to the theory, people should like visual textures associated with positive objects 

or entities and dislike visual textures associated with negative objects or entities. We 

compare the results for the ecological model to more traditional texture-preference models 

based on computational features – namely, the model of Thumfart et al. (2011) – and find 

that the ecological model performs reasonably well considering its lower complexity, 

explaining 63% of the variance in the human preference data.  

 

Introduction 

For members of the species H. sapiens, textures are ubiquitous. Every day we are 

surrounded by objects and surfaces that give us unique feelings when we touch them – fur 

feels soft, tree bark feels rough, and silk feels smooth. These different feelings arise from 

variations on the surfaces of objects which also lead to variations in the pattern of light that 

reaches our eyes – fur looks soft, tree bark looks rough, and silk looks smooth. We call this 
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visual aspect of surface variation visual texture1. Artists and designers have long used visual 

texture as a tool to evoke emotions and set moods (see, e.g., Brodatz, 1966; Gatto, Porter, & 

Selleck, 1999). In the current paper, we investigate the aesthetics of visual texture more 

formally by empirically exploring the question: What visual textures do people like and 

why? We examine whether the ecological valence theory proposed by Palmer and Schloss 

(2010) for color preferences – and later extended to odor preferences (Schloss, Goldberger, 

Palmer, & Levitan, 2015) – can also be used to explain preferences for visual texture. But, 

first we review previous work on visual texture and the aesthetics of images. 

There are many models that predict perceptual properties of visual textures. For 

example, there are models that predict how rough (Ho, Landy, & Maloney, 2006; Tamura, 

Mori, & Yamawaki, 1978), glossy (Anderson & Kim, 2009; Kim & Anderson, 2010; 

Montoyishi, Nishida, Sharan, & Adelson, 2007), or complex (Amadasun & King, 1989; 

Tamura et al., 1978) they look, as well as how they are segmented (Ben-Shahar, 2006; 

Julesz, 1962, 1981; Landy & Bergen, 1991; Malik & Perona, 1990; Portilla & Simoncelli, 

2000; Rosenholtz, 2000; Tyler, 2004; Victor, 1988) or classified (e.g., Dong, Tao, Li, Ma, & 

Pu, 2015; Guo, Zhang, & Zhang, 2010; Haralik, Shanmugam, & Dinstein, 1973; Randen & 

Husy, 1999; Varma & Zisserman, 2005) by human observers (for reviews, see Bergen, 

1991; Landy & Graham, 2004; Rosenholtz, 2015). 

                                                           

 
1
 More formally, if we think of an image as a 2-D array of pixels and we think of each pixel as a realization of a 

random variable on intensity, then visual textures are those images that have variation in pixel intensity at the limit 

of resolution but whose spatial covariance is relatively homogenous (i.e., moving a small window around the image 

does not significantly alter the statistics within the window; Haindl & Filip, 2013; Julesz, 1962; Portilla & 

Simoncelli, 2000), although other constraints are often employed and precise definitions vary by application (Haindl 

& Filip, 2013; Sebe & Lew, 2001; Tuceryan & Jain, 1998).  Also note that visual texture can arise from variations 

that are not tactile (e.g., a birch table looks different from a mahogany table but they might feel identical). 
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There are also many models that predict aesthetics of images, including how much 

observers like the images (e.g., Chen, Sobue, & Huang, 2008; Kawamoto & Soen, 1993; S. 

Kim, E. Kim, Jeong, & J. Kim, 2006; Lee & Park, 2011; Um, Eum & Lee, 2002; Zhang et al., 

2011; for reviews, see Joshi et al., 2011; Palmer, Schloss, & Sammartino, 2013). But these 

models are typically applications-focused – they were not designed to predict preferences 

for visual textures generally, nor do they necessarily extend well to the general space of 

visual textures (Thumfart et al., 2011).   

There are, however, two extant models that predict preferences for visual textures 

specifically and they are quite similar to one another.  

Current Computational Models of Visual Texture Aesthetics 

Thumfart et al. (2011) and Liu, Lughofer, and Zeng (2015) have both recently 

published parametric models that link aesthetic properties2 of visual textures to 

computational features measured from those textures. Specifically, they both use a 

hierarchical feed-forward model with 3 layers to predict aesthetic properties. In both 

models, the first layer contains primary/physical aesthetic properties (e.g., Cold-Warm, 

Smooth-Rough, Dark-Light), the second layer contains more aggregate aesthetic properties 

(e.g., Artificial-Natural, Simple-Complex, Inelegant-Elegant), and the third layer contains 

emotional aesthetic properties (of primary interest: Dislike-Like). Each layer feeds 

prediction for the next higher layer, so that the properties in the first layer are predicted 

using only computational features, but the properties in the third layer are predicted using 

computational features plus the aesthetic properties from the previous two layers.  

                                                           

 
2
 “Aesthetic properties” are operationalized as antonym pairs such as Warm-Cold, Hard-Soft, or Artificial-Natural. 

Thus, preference is defined by the antonym pair Dislike-Like.  
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Both of these models have been able to predict human preference (i.e., Dislike-Like) 

for visual texture with high accuracy (Liu et al. claim to account for as much as 99% of the 

variance in human preference ratings). However, these models employ a “see what sticks” 

approach which emphasizes model prediction over model understanding. For instance, 

Thumfart et al. characterize each visual texture using a total of 188 computational features 

and 27 aesthetic properties, a veritable grab-bag from the literature on computer vison, 

image processing and aesthetics. To the credit of Thumfart et al. and Liu et al., both models 

are more interpretable than black-box models such as neural networks, and Thumfart et al. 

increase interpretability by using an optimization measure that punishes complexity 

(defined by number of regression terms).  

Still, these models were not constrained by any overarching theory dictating which 

features should be included and which should not, and it’s unclear why certain features are 

so important for predicting preference while others are not. For instance, Thumfart et al. 

found that how “premium,” “sophisticated” and “woodlike” a texture looks were all 

important for predicting how much someone likes that texture, whereas how “elegant” and 

“natural” it looks were not. Likewise, they found that the skewness contained in 12 circular 

ring segments of the Fourier power spectrum of a texture is important for predicting how 

much someone likes that texture, whereas the kurtosis or standard deviation of those same 

12 ring segments is not.  While these results are interesting and useful, they are not 

theoretically motivated and would not have been predicted by any current theory.  

In other words, these models are good at predicting what visual textures people like, 

but they do not give the best sense of why.  
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Ecological Valence Theory 

In contrast to the “see what sticks” computational models described above, Palmer 

and Schloss’ (2010) ecological valence theory is based on a simple premise: People’s 

preferences for basic stimuli (e.g., colors, odors) are derived from how they feel about the 

objects or entities associated with those stimuli. So, for example, a student might have a 

particular affinity for the color blue because they like blueberries and/or attend the 

University of California, Irvine (whose official color is blue), whereas another student 

might have an affinity for the color red because they like cherries and/or attend the 

University of Southern California (whose official color is red). Indeed, there is evidence that 

people like the colors of their own social group more than members of a rival social group 

(Schloss & Palmer, 2014; Schloss, Poggesi & Palmer, 2011).  

But, Palmer and Schloss take this basic premise a step further and claim that 

people’s preferences are dictated by a summary statistic that accounts for the valence 

across all objects associated with a particular stimulus.  That is, how much a person might 

like a given stimulus can be explained by how positive or negative people feel, on average, 

about all objects and entities associated with that stimulus. The motivation for this 

reasoning is evolutionary: Assuming that people have positive feelings about objects that 

lead to beneficial outcomes, then stimuli that are typically associated with those objects 

serve as indicators to the beneficial outcomes. Thus, such preferences should steer 

organisms to approach objects that lead to beneficial outcomes and avoid those that lead to 

harmful outcomes, an evolutionarily advantageous strategy (Palmer & Schloss, 2010; 

Schloss et al., 2015). This is the ecological valence theory.  
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Palmer, Schloss and colleagues have already found support for this theory for colors 

and odors: Average color preferences are well predicted by how people feel about all 

objects associated with the colors (Palmer & Schloss, 2010; Taylor & Franklin, 2012), and 

average odor preferences are well predicted by how people feel about all objects associated 

with the odors (Schloss et al., 2015). Furthermore, the theory predicts that preferences 

across cultures or social groups should vary only to the degree that these groups associate 

different objects with the same stimuli or have different feelings about the same objects, 

and there is empirical support that this is the case with colors (Schloss, Hawthorne-Madell, 

& Palmer,  in press; Yokosawa, Yano, Schloss, Prado-Leon, & Palmer, 2010).   

Thus far, Palmer, Schloss and colleagues have only tested the ecological valence 

theory with colors and odors, but the theory should be generally applicable to different 

kinds of stimuli in any modality (see, e.g., Schloss et al., 2015). The goal of the present 

research was to test how well the ecological valence theory accounts for preferences for 

visual texture: Can people’s average preferences for visual textures be predicted by how 

positive or negative they feel about all objects associated with the textures?  

Present Study 

Testing the ecological valence hypothesis. To test whether preference for a given 

visual texture can be predicted by the average valence for all objects or entities associated 

with that visual texture, we adapted the procedure of Palmer and Schloss (2010) to visual 

textures. This procedure required data from four different groups of participants.  

The first group gave the to-be-predicted preference ratings. These participants were 

simply asked to rate how much they liked each visual texture on a line-mark ratings scale 

coded from −100 (dislike) to +100 (like).  
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The next three groups of participants were needed to calculate the predicted 

preference3 for each texture: one group typed out descriptions of objects they associated 

with each visual texture (the object-description group); another group rated their 

emotional response (positive/negative) to a condensed set of these object descriptions (the 

description-valence group); and the final group rated how well each visual texture matched 

all of the descriptions ascribed to that texture (the texture-description match group). The 

prediction for any given visual texture was then given by the sum of the average valence 

ratings for each object associated with the texture, weighted by how well those objects 

match the texture:  

 𝑃𝑡 =
1

𝑛𝑡
∑ 𝑤𝑡𝑑𝑣𝑑

𝑛𝑡

𝑑=1

 (1.1) 

where, 𝑃𝑡  is the predicted preference for texture 𝑡 (−100 to 100), 𝑛𝑡  is the number 

of descriptions ascribed to texture 𝑡, 𝑤𝑡𝑑 is the average match weighting between texture 𝑡 

and description 𝑑 (0 to 1), and 𝑣𝑑  is the average valence rating for description 𝑑  (−100 to 

100). Using this formulation, Palmer and Schloss (2010) accounted for 80% of the variance 

in average color preferences, and Schloss et al. (2015) account for 76% of the variance in 

average odor preferences.  

Testing other hypotheses. One might (reasonably) question whether applying this 

formulation to visual textures is sensible. After all, isn’t it generally obvious what object a 

(natural) visual texture corresponds to? In this case, preference for a visual texture would 

boil down to how people feel about the single associated object, an uninteresting result. 

                                                           

 
3
 Palmer and Schloss (2010) and Schloss et al. (2015) refer to their preference predictions as weighted affective 

valence estimates, or WAVEs.  
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Schloss et al. (2015) faced a similar problem when applying the ecological valence theory 

to odors, since they used odor pens that were designed to smell like a particular object (e.g., 

honey, apple, leather). But, they found that the associated objects were more ambiguous 

than one would think and that odor preference was better explained by the valence for all 

objects associated with the odor pens, rather than just the object the pen was designed to 

smell like. We hypothesized a similar outcome for visual textures.  

To test this outcome, we examined two additional hypotheses: the single-associate 

hypothesis and the namesake hypothesis (see also, Schloss et al., 2015). The single-associate 

hypothesis states that preference for a visual texture is best predicted by the valence of the 

single object that the texture is most associated with. The namesake hypothesis states that 

preference for a visual texture is best predicted by the valence of the namesake object that 

produced the visual texture. So, for example, one of the visual textures used was a close-up 

of a strawberry (see Figure 1.1). The ecological valence theory predicts that preference for 

this texture is best explained by the weighted average valence ratings for all descriptions 

ascribed to this texture (e.g., ‘beans’, ‘flowers’, ‘eggs’, ‘peacock tail’, ‘seeds’, ‘strawberry’, 

‘insect eyes’, etc.); the single-associate hypothesis predicts that preference for this texture 

is best explained by the average valence of the description ‘eggs,’ since this was the 

description most often associated with the texture; and the namesake hypothesis predicts 

that preference for this texture  is best explained by the average valence of the description 

‘strawberry,’ since this is the namesake object that the texture was produced from. 

Comparing to the computational models. After testing the single-associate and 

namesake hypotheses, we also compared the results of the ecological valence model to the 

computational model of Thumfart et al. (2011). First, we compared the error of the 
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ecological model to the error of Thumfart et al.’s model using an error term that punishes 

the model for complexity (see Equation 1.2 in results section). Then, we tested Thumfart et 

al.’s model more directly.  

Thumfart et al. found that texture preference was best predicted by six factors: (1) 

how “premium” a texture looks, (2) how “sophisticated” a texture looks, (3) how “rough” a 

texture looks, (4) how “woodlike” a texture looks, (5) the skewness of the distribution of 

Fourier energy in concentric rings in the Fourier space of the texture (cSkew), and (6) the 

strength of the texture, a computational feature derived from the neighborhood graytone 

difference matrix. Thus, we had participants rate textures on line-mark rating scales for 

each of the antonym pairs described above (NotPremium-Premium, NotSophisticated-

Sophisticated, Smooth-Rough, and NotWood-Wood), and we calculated their cSkew and 

their strength. We recruited two groups of participants: one group rated the textures on the 

scales for premium, sophisticated, and rough, and the other group rated the textures on the 

scale for woodlike.  

Materials and Methods 

Participants 

There were six separate groups of participants, all of whom were undergraduate 

students at the University of California, Irvine and received course credit for participation.  

36 participants (19 male) took part in the texture-preference rating task, rating how 

much they liked each visual texture. The mean age was 20.8 years (range 18-28 years).  

32 participants (15 male) took part in the object-description task, describing objects 

associated with each visual texture. Once all of the descriptions were consolidated (see 

Procedure section), one of the authors (K. Stephens) rated how well he thought the 
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descriptions matched the visual textures they were ascribed to on a 0-100 line-mark scale. 

We ended up excluding one female participant because 38 of her descriptions were given a 

0 match-rating by this author (this was 4.5 standard deviations above the mean number of 

0 match-ratings for the rest of the group). After excluding this participant, the mean age 

was 21.6 years (range 18-37 years).   

37 participants (18 males) took part in the description-valence rating task, rating 

how positive or negative they felt about each object description. The mean age was 20.7 

years (range 18-32 years).  

27 (14 male) participants took part in the texture-description match rating task, 

rating how well each description matched the texture it was ascribed to. We excluded one 

male participant because he did not finish the experiment (we lost connection to our 

Matlab license three-quarters of the way through). After excluding this participant, the 

mean age was 22.5 years (range 18-40 years).  

24 (11 male) participants took part in the first perceptual-property rating task, 

rating how “premium”, “sophisticated”, and “rough” the textures looked. The mean age was 

21.1 years (range 18-36 years).  

Finally, 22 (6 male) participants took part in the second perceptual-property rating 

task, rating how “woodlike” the textures looked. We excluded one female participant 

because her mean reaction time was more than 2 standard deviations faster than the mean 

for the group. After excluding this participant, the mean age was 20.7 years (range 18-34 

years).  

 

 



13 
 

Stimuli 

Texture-preference rating, object description, and perceptual-property rating. 

For these tasks the stimuli consisted of 62 different visual textures. 52 of these textures 

were from Brodatz’s (1966) album, and 10 were from shutterstock.com. We used the same 

Brodatz textures as those used by Rao and Lohse (1993, 1996), excluding D43, D75, D102, 

and D108 (see tables in the appendix for a complete list). Of the Shutterstock images, eight 

were chosen specifically to have either high valence (chocolate, fresh lettuce, fresh 

strawberry, sea/ocean) or low valence (mud, mold, rotten strawberry, infected skin); the 

remaining two images were Gaussian blurred versions of the chocolate and the mud images 

respectively. All images were grayscale and viewed at 256-by-256 pixels (see Figure 1.1 for 

the Shutterstock images; see tables in the appendix for a complete list of all visual textures. 

See Brodatz, 1966 or Rao and Lohse, 1993 for pictures of the Brodatz textures).  

Texture-description match rating. Because of the large number of descriptions for 

each texture (even after consolidation; see Procedure section), it would have taken too long 

to show participants all texture-description pairs for all 62 textures in the texture-

description match rating task. Thus, we only included 47 of the original 62 textures in this 

task. We included all 10 of the shutterstock.com images, but only 37 of the original 52 

Brodatz textures. We chose which 15 Brodatz textures to exclude (D11, D25, D29, D31, 

D39, D40, D42, D55, D63, D80, D82, D83, D89, D94, D101) based on their similarity to other 

textures already included (see table A1 in the appendix for a complete list of all visual 

textures used in this experiment).   

Description-valence rating. For the description-valence rating task, the stimuli 

consisted of black text presented in 28-point Arial font.  
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Figure 1.1. The ten visual textures from Shutterstock used for all tasks. The rightmost 
pictures are Gaussian-blurred versions of the preceding pictures. From top left to bottom 
right: lettuce, strawberry, tropical ocean, chocolate, Gaussian-blurred chocolate, mold, 
rotted strawberry, skin infection, mud, Gaussian-blurred mud.  

 

Displays 

Monitor for visual textures. For any task displaying visual textures (i.e., the 

texture-preference rating, object description, texture-object match rating, and perceptual-

property rating tasks), stimuli were presented using an 27-inch Apple iMac display set at a 

resolution of 2560x1440 and a refresh rate of 60Hz. All stimuli were presented against a 

neutral gray background with luminance 28.8 cd/m2 (as measured using Photo Research 

PR-670 spectroradiometer). The monitor was calibrated using an X-Rite ColorMunki Photo 

spectrophotometer. Participants were all run in the same room, one at a time.  

Monitor for descriptions. For the task displaying only text (i.e., the description-

valence rating task), stimuli were presented using Dell computers attached to 17-inch Dell 

LCD monitors set at a resolution of 1280x1024 and a refresh rate of 60Hz. The text stimuli 

were displayed against a white background. Participants were run in groups of one to five 

in a room containing 8 computers.  
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Line-mark rating scale. Five of the tasks – the texture-preference rating, 

description-valence rating, texture-description matching rating, and perceptual-property 

rating tasks – gathered ratings using a line-mark rating scale, located at the bottom of the 

display. This scale consisted of a dark-gray rectangular box demarcated into 10 equally 

spaced regions (5 below the center point and 5 above), with text above the scale indicating 

what rating was being performed (e.g., “How much do you like this texture?”), text at the 

end-points of the scale to indicate the extreme ratings (e.g., “not at all” vs. “very much”), 

and a black slider bar that participants could slide along the scale with the mouse to 

indicate their rating. Participants could either click and drag the slider bar or move the bar 

by pointing and clicking (i.e., without dragging). When displayed on the larger monitor (i.e., 

for the texture-preference rating, texture-object match rating, and perceptual-property 

rating tasks), the top edge of the question text was approximately 247 pixels below the 

bottom edge of the texture, the rating scale was 768 pixels wide by 72 pixels high, and the 

scale’s top edge was approximately 41 pixels below the bottom edge of the question text. 

When displayed on the smaller monitor (i.e., for the description-preference rating task), the 

rating scale was made smaller – 384 pixels wide by 52 pixels high – in proportion to the 

smaller resolution of the screen. The black slider bar was always 6 pixels wide by the 

height of the scale (either 72 or 52 pixels), and all text was black, in 24-point Arial font. The 

scale and the question text were always horizontally centered. The code for all tasks using a 

line-mark rating scale was written in Matlab, using the Psychophysics Toolbox extensions 

(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007).    

Description edit boxes. The object-description task gathered descriptions using 

edit boxes located below the textures. There were five edit boxes in total, where 
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participants could click and enter text. The edit boxes were 200 pixels wide by 50 pixels 

high and were located approximately 137 pixels below the bottom edge of the texture. 

They were horizontally centered and evenly spaced approximately 123 pixels apart from 

one another. Below the edit boxes was a pushbutton labeled ‘submit’ where participants 

could click to input their responses and move on to the next trial. This pushbutton was 150 

pixels wide by 50 pixels high, horizontally centered, and the top edge was approximately 

96 pixels below the bottom edge of the edit boxes.  The code for this task was written using 

Matlab’s uicontrol functions. 

Procedure 

The present study included five between-subject tasks: (i) texture-preference rating, 

(ii) object description, (iii) description-valence rating, (iv) texture-description match 

rating, and (v) perceptual-property rating. For all tasks, there was a blank 500ms ISI in 

between trials, and participants sat approximately 60cm away from the monitor. At this 

viewing distance, the visual textures spanned approximately 5.7 degrees of visual angle.  

Texture-preference rating task. On each trial, participants viewed one of the 62 

visual textures, vertically and horizontally centered on a neutral gray background with the 

text “How much do you like this texture?” displayed below the texture. Participants 

indicated their preference using a line-mark rating scale labeled “not at all” on the left end 

(coded as -100) and “very much” on the right end (coded as +100). Participants used the 

mouse to indicate their preference. They pressed the spacebar to input their rating and 

move on to the next texture. The textures were displayed in random order and all 

participants gave ratings for all textures.  
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Object description task. Participants saw each texture individually against a 

neutral gray background and were instructed to type out as many objects as they could 

think of (up to five) that might describe or be associated with the given visual texture. They 

were instructed not to name adjectives (e.g., ‘heavy,’ ‘light,’ ‘furry’), abstract entities (e.g., 

‘dreams,’ ‘hopes,’ ‘fears’), or objects that would not be known to other people (e.g., ‘my 

aunt’s blanket’). They were also told that the experimenters were interested in all 

associated objects, whether pleasant or unpleasant. They typed their responses into one of 

five edit boxes located below the texture on the screen and clicked a pushbutton  labeled 

‘submit’ to move on to the next texture once they were satisfied with their descriptions. 

They were not given a time-limit. The textures were displayed in random order and all 

participants gave descriptions for all 62 textures.  

After combining exact repeats, we were left with 1,264 unique descriptions (from an 

initial total of 4,858). We compiled these descriptions into a single list of 206 items using a 

procedure similar to that of Palmer and Schloss (2010). First, we discarded items from the 

list if they: (i) were abstract concepts instead of objects (e.g., ‘anger’, ‘dream’, ‘joy’); (ii) 

were adjectives instead of objects (e.g., ‘big’, ‘bumpy’, ‘blurry’, ‘curvy’, ‘dark’, ‘heavy’); or 

(iii) were ambiguous or could describe many different things (e.g., ‘arrangement’, ‘game’, 

‘layers’, ‘material’, ‘mixture’, ‘surface’, ‘painting’). We excluded 366 descriptions this way, 

leaving 898 items on the list. We then categorized the descriptions to reduce the number 

that needed to be rated in the description-preference rating and the texture-object match 

rating tasks. We combined descriptions into a single object category if they seemed to refer 

to the same object (e.g., ‘blanket’, ‘quilt’ and ‘piece of a blanket’; ‘beehive’, ‘bee’s nest’ and 

‘bee cells’; ‘carpet’, ‘carpret [sic.]’ and ‘rug’) and, in certain cases, we combined descriptions 
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into superordinate categories if there were several exemplars referring to the same type of 

object. In the latter case, exemplars were included in the category description (e.g., 

‘bedding (covers, sheets, pillows)’; ‘bricks (brick wall, brick building, brick sidewalk)’; 

‘reptile skin (snake, crocodile, lizard)’). Descriptions were further excluded if they were 

given by only one person for only one image and they didn’t fit into any other object 

categories. After this process, we ended up with the final list of 206 consolidated object 

descriptions.  

Even after this consolidation, each texture still had, on average, 20.4 descriptions 

attributed to it. With this many texture-description pairings, the texture-description 

matching task would have been too long (even after pairing the textures down from 62 to 

47), so two independent raters ran a preliminary version of the texture-description match 

rating task and we excluded any texture-descriptions pairings that were given by only one 

participant and assigned a 0 match rating by both independent raters. After this procedure, 

the textures had an average of 18.4 descriptions each.  

Description-valence rating task. Following Palmer and Schloss (2010), 

participants were first given a list of 8 sample items (sunset, bananas, diarrhea, sidewalk, 

boogers/snot, wine (red), chalkboard, chocolate) to give them an idea of the range of 

descriptions they would see. They were then presented with each of the 206 consolidated 

descriptions in black text, horizontally and vertically centered against a white background. 

The procedure was the same as for the texture-preference rating task, but the instruction 

text was different. Below each description was the text, “What’s your emotional reaction to 

the object(s)/thing described above?” and participants indicated their rating using a line-

mark rating scale labeled “negative” on the left end (coded as -100) and “positive” on the 
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right end (coded as +100). The descriptions were displayed in random order and all 

participants gave ratings for all descriptions.  

Texture-description match rating task. Because of the large number of texture-

description pairings, we used only 47 of the original 62 visual textures in this task to keep 

it from being too long (see discussion in the Stimuli section for more details). On each trial, 

participants viewed one of the 47 textures along with one of the descriptions ascribed to 

that texture against a neutral gray background. The description was displayed in black, 28-

point Arial font, horizontally centered, approximately 110 pixels above the top edge of the 

texture. Below each texture-description pairing was a line-mark rating scale with the text 

“How well does this description match the image?” The scale was labeled “very poorly” on 

the left end (coded as 0) and “very well” on the right end (coded as 1). Participants saw all 

possible parings of texture images and descriptions ascribed to those textures. We split the 

participants for this experiment into two groups: One group saw the same description for 

all textures given that description before moving on to the next description, and the other 

group saw the same texture for all descriptions given to that texture before moving on to 

the next texture. The order of the descriptions and the textures was randomized.   

Perceptual-property rating tasks. Participants viewed each of the 62 visual 

textures, one at a time, against a neutral gray background with the text “This texture looks:” 

displayed below the texture. They indicated their rating for the requested perceptual 

property using a line-mark rating scale coded from -100 to +100.  

For the first perceptual-property rating task, participants rated the textures on 

three different antonym pairs: NotPremium-Premium, NotSophisticated-Sophisticated, and 

Smooth-Rough. The experiment was blocked so that participants rated all textures on one 
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perceptual property before moving on to the next, and they were given a short break 

between blocks. The order of the perceptual properties was randomized as was the order 

of the textures within a block.  

The second perceptual-property rating experiment was identical to the first, except 

that participants rated the textures on only one antonym pair:  NotWood-Wood. 

Results and Discussion 

We first describe participants’ texture preference ratings for the 47 visual textures 

used in all tasks. We then test the ecological valence hypothesis for these textures, namely 

that texture preferences can be explained by the combined valence of all objects associated 

with the textures. Next, we test this account against the single-associate and namesake 

hypotheses. Finally, we fit the model of Thumfart et al. (2011) and compare the results of 

this model to those of the ecological valence model.  

Texture preferences  

We used Cronbach’s coefficient alpha (Cronbach, 1951; see also, Ritter, 2010) to 

assess interrater reliability for texture-preference ratings. Reliability was high (0.83), so 

we averaged across participants to get mean preference ratings.  Figure 1.2 shows the 

mean preference ratings for the 47 visual textures used in all experiments (see table A2 in 

the appendix for preference ratings for the other 15 visual textures used in this 

experiment). The most preferred textures included clouds, lettuce, lace, and tropical sea. 

The least preferred textures were the two blurred images, mud, and rotted strawberry.  
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Figure 1.2. Average texture-preference ratings (𝒚-axis) for each of 47 visual textures (𝒙-axis). For Brodatz textures, the 
Brodatz’s (1966) identifier is given in parentheses, and the labels are his descriptions. For the other textures, the labels come 
from the Shutterstock search terms that produced the images. Error bars represent the standard errors of the means.    
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Testing the ecological account of texture preferences 

We used Cronbach’s coefficient alpha to assess interrater reliability separately for 

the groups that rated description-valence and description-texture matching. Reliability was 

high for these groups (0.96, 0.99), so we averaged across participants to obtain mean 

valence-ratings for each description (𝑣𝑑) and mean match-ratings4 for each texture-

description pairing (𝑤𝑡𝑑). Using these ratings along with the consolidated descriptions 

from the object description task, we were able to predict preference ratings for the each 

texture using Equation 1.1.  

Figure 1.3 shows the strong positive correlation (𝑟 = 0.79, 𝑝 < .001) between the 

measured texture preferences, averaged across participants, and the preferences as 

predicted by Equation 1.1. This indicates that people like textures that remind them of 

positive objects and dislike textures that remind them of negative objects, and it supports 

the ecological valence hypothesis. It is also worth noting that the prediction equation 

accounted for less variance if we either dropped the normalizing term 1/𝑛𝑡  (𝑟 = 0.66), or 

set all of the non-zero weights (𝑤𝑡𝑑’s) to 1 (𝑟 = .72).  

                                                           

 
4
 Recall that we split the participants in the texture-description match rating task into two groups: both groups saw 

all pairings of textures and descriptions ascribed to those textures, but one group saw the same description for all 

textures given that description before moving on to the next description, and the other group saw the same texture 

for all descriptions given to that texture before moving on to the next texture. The latter group went significantly 

slower (mean difference in reaction time per trial = 2.05 𝑠𝑒𝑐, 𝑡(24) = 10.36, 𝑝 < .001), but, as Cronbach’s alpha 

indicates, the groups’ ratings were in strong agreement, and using data from either group led to the same correlation 

coefficient.  
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Figure 1.3. For a set of 47 visual textures, shows the correlation (𝑟 = 0.79, 𝑝 < .001) 
between measured preferences, averaged across participants, and the preferences 
predicted by Equation 1.1. Numbers represent ratings on a line-mark rating scale, where     
-100 indicates that the texture is liked “not at all” and +100 indicates that it is liked “very 
much.”  

 

The main problem with the predicted ratings is that their range is compressed 

compared to the measured ratings and that most of the predicted ratings are positive while 

many of the measured ratings are negative. Schloss and colleagues reported similar issues 

when predicting color preferences (Palmer & Schloss, 2010) and odor preferences (Schloss 

et al., 2015). To explain why the model underpredicts negative ratings, they hypothesized 

that participants in the object-description group either underreport negative objects 

because they are too shy to report gross or disgusting things, or they are just biased toward 

generating/thinking about positive objects. To explain why the ratings for the prediction 

are compressed relative to the measured ratings, we posit that people likely have weaker 

feelings about text describing objects than they have about actual images.  
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Despite these failings, the model does reasonably well: The predictions account for 

62.5% of the variance in measured preference with a single predictor.  

Evaluating the single-associate hypothesis 

We tested the single-associate hypothesis by first identifying the object named most 

frequently for each visual texture (see table A1 in the Appendix). We then calculated the 

correlation between average preference ratings for the 47 visual textures and average 

valence ratings for the most frequently named objects. Although there was a significant 

positive correlation (𝑟 = 0.47, 𝑝 < .001), it was weaker than the relation between 

measured preferences and preferences predicted by Equation 1.1 (correlations compared 

using the Fisher 𝑟-to- 𝑧 transformation: 𝑧 = 2.63, 𝑝 = .01). Therefore, texture preferences 

were better predicted by a summary statistic of valence for all objects associated with a 

texture than by valence for the single object most frequently associated with a texture.  

It is also worth noting that, although the valence of the most frequent description 

did not predict texture preference better than the valence of all associated descriptions, 

texture preference was negatively correlated with the number of descriptions (𝑟 =

−0.67, 𝑝 < .001), so that the textures with fewer descriptions were better liked. Taylor and 

Franklin (2012) found this to be the case with colors as well, but Schloss et al. (2015) did 

not find this with odors. On average, each texture had 18.4 descriptions associated with it 

(range = 6-34).  

Evaluating the namesake hypothesis 

We tested the namesake hypothesis by first identifying the “namesake” object for 

each visual texture, that is, the object from which the texture image was created. We then 
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calculated the correlation between average preference ratings for the visual textures and 

average valence ratings for the namesake objects.  

To identify the namesake objects, we chose the consolidated description that was 

closest either to Brodatz’ (1966) description (for the Brodatz textures) or to the 

Shutterstock search term that produced the image (for the Shutterstock textures).  The 

matches were not always exact, but were reasonably close. For example, Brodatz described 

texture D37 as “water,” but we used “ocean/sea” as the namesake object. Similarly, one of 

the Shutterstock textures was produced from the search term “rotten strawberry,” but we 

used “rotten/spoiled food” as the namesake object (see table A1 in the appendix for more 

details). We excluded texture D32 because nothing close to Brodatz’ description for the 

texture (pressed cork/corkboard) was ever given as an object description and thus D32’s 

namesake was never given a valence rating. We also excluded the two Gaussian blurred 

visual textures because the namesake objects for these textures would be too difficult to 

visually determine. Thus, overall, the correlation was based on ratings for 44 of the visual 

textures.   

Although there was a significant positive correlation (𝑟 = 0.60, 𝑝 < .001), it was 

weaker than the relation between measured preferences and preferences predicted by 

Equation 1.1 (with the 44 textures: 𝑟 = 0.82, 𝑝 < .001; correlations compared using the 

Fisher 𝑟-to- 𝑧 transformation: 𝑧 = 2.10, 𝑝 = .04). Thus texture preferences were better 

predicted by the average valence over all objects associated with that texture than by the 

valence of the namesake object that produced the texture.  
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Comparing to the computational models of Thumfart et al. and Liu et al.  

While the ecological model accounted for 62.5% of the variance in texture 

preference ratings, the accuracy of this prediction was not nearly as good as that provided 

by the computational models of Thumfart et al. (2011) and Liu et al. (2015), the latter of 

which claimed to account for 99% of the variance in human preference ratings.  However, 

the ecological model utilized only a single predictor, whereas the models of Thumfart et al. 

and Liu et al. utilized 6 and 5 predictors respectively. Since Thumfart et al. optimized their 

model using an error measure that punished the model for complexity5, we were able to 

compare the results of the ecological model to the results of Thumfart et al.’s model, taking 

into account the lower complexity of the ecological model. The punished error measure 

was a convex combination of the following form (see Thumfart et al., 2011, Equation 2):  

 𝐸𝑟𝑟𝑜𝑟𝑝𝑢𝑛𝑖𝑠ℎ𝑒𝑑 = 𝛼 × 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + (1 − 𝛼) × 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (1.2) 

with 𝛼 in the range [0,1]. Thus, the parameter 𝛼 controls the ratio of accuracy versus 

complexity, with lower complexity emphasized for decreasing values of 𝛼. Using this 

formulation, we found that the punished error for the ecological model matched that of 

Thumfart et al.’s model when 𝛼 ≈ 0.35. Thus, although the ecological model is less accurate 

than Thumfart et al.’s model, it has comparable performance when the modeler values low 

complexity over high accuracy. We were unable to make such a comparison with Liu et al.’s 

model since they did not work with a punished error term.  

We also tested Thumfart et al.’s model more directly by measuring the six factors in 

their final texture-preference prediction equation:  (1) how “premium” a texture looks, (2) 

                                                           

 
5
 For linear models like the ones we are discussing here, complexity refers to the number of predictors in the model. 

e.g., a complexity of 6 means the model has 6 predictors.   
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how “sophisticated” a texture looks, (3) how “rough” a texture looks, (4) how “woodlike” a 

texture looks, (5) the skewness of the distribution of Fourier energy in concentric rings in 

the Fourier space of a texture (cSkew), and (6) the strength of the texture, a computational 

feature derived from the neighborhood graytone difference matrix. We gathered ratings for 

“premium,” “sophisticated,” “rough” and “woodlike” in the perceptual-property ratings 

tasks, and we measured the computational features cSkew and strength following Thumfart 

et al. (2011) and Amadasun and King (1988) respectively. We used Cronbach’s coefficient 

alpha to assess interrater reliability separately for ratings of “premium”, “sophisticated”, 

“rough”, and “woodlike,” Reliability was generally high for all rating scales (0.76, 0.81, 0.75, 

and 0.93 respectively), so we averaged across participants and used the average ratings as 

predictors for each texture.  

 A multiple linear regression revealed that “premium” was the only significant 

predictor (Full Model: 𝐹(6,40) = 12.2, 𝑝 < .001, multiple-𝑅2 = 0.65; Premium: 

𝑡(40) = 7.56, 𝑝 < .001). Interestingly though, how “premium” a texture looks accounted for 

62.3% of the variance in texture preference ratings (𝑟 = 0.79, 𝑝 < .001), almost identical to 

the variance accounted for by the ecological valence model. Furthermore, “premium” 

seemed to track better with preference than the ecological predictions since it was not 

compressed relative to preference, nor was it inflated in the positive direction (see Figure 

1.2). We hypothesize that this is simply because participants in our experiment viewed 

Dislike-Like as synonymous with NotPremium-Premium.  
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Figure 1.4. For a set of 47 visual textures, shows the correlation (𝑟 = 0.79, 𝑝 < .001) 
between measured preferences and measured premiumness, averaged across participants.  
Numbers represent ratings on a line-mark rating scale, where -100 indicates that the 
texture is liked “not at all” or is “not premium” and +100 indicates that it is liked “very 
much” or is “premium.”  

 

We should also note that this is not necessarily a critique on Thumfart et al.’s model 

since they did not intend the model to be tested in this way. In personal communication, S. 

Thumfart indicated that they intended only to investigate the feature set as a whole (i.e., all 

188 computational features + 27 aesthetic antonym pairs) and that any particular equation 

from the paper may not necessarily be applicable to other samples of textures. 

Finally, we did not explicitly test the model of Liu et al. (2015), but we note that they 

found the aesthetic property Mussy-Harmonious to be an important predictor of 

preference, and we hypothesize that, as with NotPremium-Premium, Mussy-Harmonious 

may serve as a synonym for Dislike-Like (indeed, “preference” and “harmony” are often 

conflated in color research; see Palmer et al., 2013 for discussion).  
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General Discussion 

The goal of the present study was to test whether the ecological valence theory – 

already used to explain color preferences (Palmer & Schloss, 2010) and odor preferences 

(Schloss et al., 2015) – could be extend to account for people’s preferences for visual 

textures. The theory posits that preference for a given stimulus is determined by the 

combined valence of all objects associated with that stimulus, and that those preferences 

steer organisms to approach beneficial outcomes and avoid harmful ones (Palmer & 

Schloss, 2010; Schloss et al., 2015). We found some support for the theory for visual 

textures: The combined valence of all objects associated with a set of visual textures 

accounted for 62.5% of the variance in texture preference ratings, which was more than 

was explained by the valence of the single most-frequently associated object for each 

texture or by the valence of the single namesake object that produced each texture.  

While this prediction accuracy is reasonable, the model did better explaining 

average preferences for colors (where it accounted for 80% of the variance; Palmer & 

Schloss, 2010) and odors (where it accounted for 76% of the variance; Schloss et al., 2015). 

At first blush this may seem curious, especially for colors: If the model states that people’s 

preferences for a stimulus are determined by what objects are associated with that 

stimulus, then the model should perform better for visual textures than for colors because 

it should be more obvious what objects are associated with visual textures than with 

colors. However, the objects associated with each visual texture were not as obvious as one 

would think: Each texture had an average of 18 descriptions associated with it. 
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Furthermore, visual textures are not homogeneous fields like colors, and other factors such 

as composition, style or context likely play a role in determining preferences for visual 

texture (for review, see Palmer et al., 2013).  

The prediction accuracy of the ecological valence model also pales in comparison to 

the computational models of Thumfart et al. (2011) and Liu et al. (2015) – the latter of 

which claims to account for 99% of the variance in texture preference ratings – although 

we found that the ecological valence model performs similarly to the Thumfart et al. model 

when one uses an optimization measure that emphasizes lower complexity (the ecological 

model has only 1 predictor; the Thumfart et al. model has 6). One problem with the 

computational models is their use of some aesthetic properties that participants may 

interpret as synonymous with preference (e.g., NotPremium-Premium for Thumfart et al., 

Mussy-Harmonious for Liu et al.). Still, for practical applications (e.g., in marketing or 

advertising), a computational model like Thumfart et al.’s or Liu et al.’s is preferable not 

only because of the increase in prediction accuracy, but also because the end result of such 

a model is able to predict texture preference for novel images based only on computational 

features measured from the images (i.e., with no human intervention). While the ecological 

valence model has low complexity in a statistical sense – it only uses one predictor – it has 

high complexity in a pragmatic sense – computing that single predictor requires a lot of 

experimentation.   

The real benefit of the ecological valence theory is as a theoretical tool. The 

computational model of Liu et al. (2015) may be able to account for 99% of the variance in 

human texture-preference, but it utilizes predictors that have no theoretical significance. 

For example three of the predictors in their equation for texture preference come from a 
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set of 20 features which were generated from a larger set of 106 computational features 

whose dimensionality was reduced using stochastic neighbor embedding. Because of the 

nature of this reduction technique, these features don’t even have a clear physical 

interpretation (unlike the starting 106 computational features) let alone a compelling 

theoretical one. The ecological valence theory, on the other hand, stems from a basic, 

evolutionarily-inspired premise: An observer’s preferences for low-level stimuli should be 

driven by the real-world objects those stimuli are most associated with, and how harmful 

or beneficial those objects are to the observer.  This premise leads to an entire theory of 

preferences (i.e., the ecological valence theory) and generates testable predictions.  

The main limitation of the present study was the range of visual textures used. We 

used only 63 visual textures (only 47 for prediction), most of which were Brodatz textures, 

and all of which were naturalistic and grayscale. This set of visual textures does not span 

the range of possibility, and it could be the case that the ecological valence model performs 

poorly for abstract, non-natural textures. Furthermore, it is known that adding color to a 

visual texture can affect a person’s emotional response to that texture (e.g., Lucassen, 

Gevers, & Gijsenij, 2010). Any future study should utilize a more complete set of textures, 

perhaps sampling from a range of texture databases (as in, e.g., Thumfart, Heidl, Scharinger, 

& Eitzinger, 2009).    

In sum, we conclude that – despite the limitations and although there are likely 

other mechanisms at play – it is reasonable to think of a person’s preference for a visual 

texture as a summary statistic of how they feel about all the objects associated with that 

texture. 
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*** 

We have seen that people are consistent in their preferences for natural visual textures, 

and these preferences can be predicted well by an ecological model. We turn our attention 

now to preferences for faces. People consistently rate faces with averaged configurations to 

be highly attractive. In the following chapter we use a statistical mediation model to 

investigate why this should be the case.  
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Chapter 2 

Why Are Averaged Faces Attractive? A Mediation Model  

Kyle D. Stephens and Donald D. Hoffman (in preparation).  

  

Abstract 

It is a curious fact that taking the mathematical average of a set of faces produces a 

composite face that is highly attractive (often, more attractive than any of the starting 

faces). It is also a curious fact that researchers still don’t know exactly why this should be 

the case. Current theory suggests that averaged faces are attractive because either: (1) 

averaged faces are more easily/fluently processed than individual faces, (2) averaged faces 

seem more generally familiar/less distinctive than individual faces, or (3) averageness per 

se is attractive because it indicates mate fitness or is a byproduct of the way our brains 

solve certain information processing tasks.  In the current paper, we use data from Trujillo, 

Jankowitch and Langlois (2014) in a multiple mediator model to tease out the mechanism 

by which averageness affects attractiveness. We find that – at least with this dataset – the 

effect is not mediated by how fluently the faces are processed or by how distinctive the 

faces look. This lends support to theories claiming that averageness in itself is attractive.  

 

Introduction 

Consider a population of faces, any population (say, academics). Now, consider a 

face whose configuration of features is close to the average configuration for this 
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population. It is an astonishing fact that this “average” face will be highly attractive, 

regardless of the underlying population. Francis Galton (1878) was the first to notice this – 

in an attempt to fashion a prototype for the ‘criminal face,’ he composited several portraits 

of criminals together and was surprised to discover that, not only did the resulting 

composite not look ‘criminal,’ it was beautiful. “The result is a very striking face, thoroughly 

ideal and artistic, and singularly beautiful. It is, indeed, most notable how beautiful all 

composites are” (Galton, 1907, p. 240).  

Since Galton, several groups of researchers have confirmed this finding: When 

researchers morph faces together to create an averaged composite, the resulting face is 

highly attractive, often more attractive than any of the individual faces (Langlois & 

Roggman, 1990; Langlois, Roggman, & Musselman, 1994; Rhodes, Sumich, & Byatt, 1999; 

Rhodes, Harwood, Yoshikawa, Nishitani, & McLean, 2002). The more faces researchers add 

to the composite, the more attractive the composite gets (Langlois & Roggman, 1990; 

Langlois, et al., 1994; Rhodes et al., 1999, 2002), and faces can be made more or less 

attractive by increasing or decreasing their similarity to an averaged composite face 

(Rhodes et al., 1999; Rhodes & Tremewan, 1996).  Researchers have also found that 

averageness predicts attractiveness in computational/morphometric models (Bronstad, 

Langlois, & Russell, 2008; Komori, Kawamura, & Ishihara, 2009a, 2009b; Valenzano, 

Mennucci, Tartarelli, & Cellerino, 2006; but see DeBruine, Jones, Unger, Little, & Feinbert, 

2007; Said & Todorov, 2011).  Averaged faces are found attractive across cultures (Apicella, 

Little, & Marlowe, 2007; Rhodes et al., 2002; Rhodes, et al., 2001a), and even in infants 
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(Rubenstein, Langlois, & Kalakanis, 1999).  In other words, the attractiveness of averaged 

faces is well-established.6 But, are average faces attractive because of their averageness?  

We know that experimental control of averageness – by, for example, changing the 

number of faces included in a computer-averaged composite – systematically alters 

attractiveness. This is demonstrated in the simple path diagram in Figure 2.1 and suggests 

that averageness precedes attractiveness.  

 

Figure 2.1. A path diagram demonstrating the total effect of averageness on attractiveness. 
Attractiveness is expected to change by 𝑐 units overall given a 1 unit increase in 
averageness.  

 

But, it is still unclear whether averageness directly influences attractiveness. It could 

be the case that averageness affects attractiveness through some mediating variable like 

skin quality or symmetry. Figure 2.2 shows a path diagram including the wide array of 

mediating variables that have been proposed in the literature.  

In what follows, we will first argue that general familiarity and processing fluency 

are the only suggested mediators that haven’t yet been accounted for. Then, we will use 

existing data (from Trujillo, Jankowitsch, & Langlois, 2014) and the statistical mediation 

techniques of Hayes and colleagues (Hayes, 2013; Montoya & Hayes, submitted) to test 

whether fluency or general familiarity can account for the influence of averageness on 

attractiveness for faces.  

                                                           

 
6
 However, we should note that this only seems to be true for faces whose identity is not previously known (see 

Halberstadt, Pecher, Zeelenberg, Wai, & Winkielman, 2013).  
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Figure 2.2. A path diagram for the effect of averageness on attractiveness, including all of 
the mediating variables that have been proposed in the literature. 𝑐′ represents the direct 
effect of averageness on attractiveness given these mediators. That is, attractiveness is 
expected to change by 𝑐′ units given a 1 unit increase in averageness with skin quality, 
youthfulness, symmetry, sexual dimorphism, general familiarity, and fluency held constant. 
The diagram has been drawn as strictly parallel mediation, but in principle the mediators 
could also affect each other (e.g., fluency could influence general familiarity).  

 

Rounding up the mediators 

Skin quality. One natural hypothesis is that averaged composite faces are attractive 

because the compositing process produces smooth, uniform skin-tones, free from 
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blemishes. This fact alone could account for the boost in attractiveness. While it is true that 

skin quality is predictive of facial attractiveness (see, e.g., Jones, Little, Burt, & Perrett, 

2004), this does not account for the attractiveness of computer-averaged faces.  

Langlois and colleagues (Landglois & Roggman, 1990; Langlois et al., 1994; 

Rubenstein et al., 1999) smoothed and blurred individual faces to match any smoothing or 

blurring that occurs in averaged faces as a result of the averaging process, and found that 

this did not increase ratings of attractiveness. Langlois et al. (1994) found that averaging 

together different portraits from the same individual (which should also smoothen the 

skin) did not produce more attractive composites, unlike averaging together portraits from 

different individuals. Rhodes and Tremewan (1996) found that even line-drawn faces – 

which do not contain blurring or smoothing artifacts when composited – are more 

attractive in an average configuration. All of this suggests that skin quality does not 

mediate the effect of averageness on attractiveness.  

Youthfulness. An alternative explanation is that the averaging process makes the 

faces look more youthful and hence more attractive (see Alley & Cunningham, 1991). Again, 

while it is true that ratings of attractiveness decline with age, especially for women (see, 

e.g., Alley, 1988; Deutsch, Zalenski, & Clark, 1986; Henss, 1991; Mathes, Brennan, Haugen, 

& Rice, 1985), this does not account for the attractiveness of computer-averaged faces 

because the faces used in averaging studies are typically all youthful. Furthermore, 

Langlois et al. (1994) found that, for the set of faces used in their original 1990 averaging 

study (Langlois & Roggman, 1990), attractiveness was not correlated with perceived age. In 

other words, youthfulness does not mediate the effect of averageness on attractiveness.  
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Symmetry. Perhaps the most tantalizing explanation for why averaged faces are 

attractive is that averaged faces also happen to be highly symmetrical and symmetric faces 

are attractive. This explanation is tantalizing because averaged faces do tend to have a high 

degree of bilateral symmetry (though they may still contain directional asymmetries; see 

Rhodes et al., 1999), and symmetry is linked to attractiveness in faces – both for naturally 

occurring faces (Grammer & Thornhill, 1994; Zebrowitz, Voinescu, & Collins, 1996 ), and 

for faces that are artificially (but carefully) made to be symmetric (Perrett et al., 1999; 

Rhodes, Proffitt, Grady, & Sumich, 1998; although effect sizes for symmetry tend to be 

smaller than the effect size for averageness or sexual dimorphism, see Brondstad, Langlois, 

& Russell, 2008; Rhodes, 2006).  

However, while there is evidence that averageness and symmetry may 

independently influence attractiveness7 (Komori et al., 2009a; Rhodes et al., 1999; 

Valentine, Darling, & Donnelly, 2004), the prevailing evidence suggests that symmetry does 

not significantly mediate the effect of averageness on attractiveness. In particular, Rhodes 

et al. (1999) found that averageness accounts for a significant amount of the variance in 

attractiveness even when symmetry is partialed out, and that manipulating the 

averageness of perfectly symmetrical faces still influences their attractiveness. 

Furthermore, Valentine et al. (2004) found that increasing the averageness of a face in 

profile view – where symmetry does not play a role – still increases its attractiveness. 

Taken together, these results suggest that symmetry, though itself important for 

attractiveness, does not significantly mediate the effect of averageness on attractiveness.  

                                                           

 
7
 For an argument that symmetric faces are attractive only because increasing symmetry increases averageness, see 

Enquist, Ghirlanda, Lundqvist, & Wachtmeister (2002) 
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Sexual dimorphism. Another possibility is that averaged faces are attractive 

because averaging makes the faces look more masculine or feminine which in turn makes 

them more attractive (note that computer-averaging likely makes all faces look more 

feminine since the averaging process tends to diminish masculine traits like coarse skin 

textures and square jaws; see Little & Hancock, 2002; Rhodes, 2006). While it’s true that 

sexual dimorphism is an important component of facial attractiveness, particularly for 

female faces (for review, see Rhodes, 2006), it’s not true that sexual dimorphism mediates 

the effect of averageness on attractiveness. Komori et al. (2009b) found that averageness 

and sexual dimorphism influence attractiveness independently.  Lee, Mitchem, Writght, 

Martin, and Keller (2015) found that measures of sexual dimorphism (both objective and 

subjective) did not correlate with facial averageness and that controlling for the effect of 

sexual dimorphism did not significantly influence the correlation between averageness and 

attractiveness. Thus, sexual dimorphism does not mediate the effect of averageness on 

attractiveness.  

General familiarity. Perhaps averaged faces are attractive because they seem more 

generally familiar. In this context, “general familiarity” refers to a subjective feeling of 

familiarity that researchers have defined as the degree to which a face resembles other 

faces in memory (Peskin & Newell, 2004; Vokey & Read, 1992). This has been distinguished 

from “episodic familiarity” for a face which is induced by prior exposure to that face 

(Peskin & Newell, 2004; Vokey & Read, 1992). A face that has never been seen before can 
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still seem generally familiar; such faces are also referred to as looking “typical” or “not 

distinctive” (Peskin & Newell, 2004).8 

Several studies have found that attractiveness is negatively correlated with how 

distinctive faces look and positively correlated with how typical they look or how generally 

familiar they seem (Langlois et al., 1994; Light, Hollander, & Kayra-Stuart, 1981; Peskin & 

Newell, 2004; Trujillo et al., 2014; Rhodes & Tremewan, 1996; Vokey & Read, 1992). But, 

there are conflicting reports about whether general familiarity mediates the effect of facial 

averageness on attractiveness: Halberstadt, Rhodes and Catty (2003) reported that the 

correlation between averageness and attractiveness remained when general familiarity 

was controlled, whereas Rhodes, Halberstadt, Jeffery, and Palermo (2005, p. 214-215) 

reported that the correlation between averageness and attractiveness was eliminated 

when general familiarity was controlled (although the later data-set was never formally 

published).  

In the current paper, we will use Trujillo et al.’s (2014) ratings of attractiveness and 

distinctiveness – which, for present purposes, can be considered the converse of general 

familiarity (but see General Discussion) – for averaged and non-averaged faces to test 

whether distinctiveness mediates the effect of averageness on attractiveness.   

Fluency. Finally, since averaged faces are close to the central tendency of facial 

configuration, they might simply be easier to process which makes them more pleasing 

(Langlois & Roggman, 1990, Trujillo et al., 2014).  

                                                           

 
8
 There is a lot of confusion in terminology in the literature. For instance, Rhodes et al. (1999) obtained ratings of 

how typical a face looks and refered to these as ratings of “averageness” (which they connoted as the converse of 

distinctiveness).  Here, we reserve the term “averageness” for mathematical averages of faces obtained via computer 

manipulation; we refer to any ratings of how typical a face looks to ratings of general familiarity or distinctiveness. 
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In one regard, this is an uncontroversial position. It has long been known that, for 

many categories of objects, people prefer exemplars close to the central tendency for that 

category (so-called prototypes; see Hampton, 1997, 2006; Reed, 1972; Rosch, 1978; Rosch, 

Mervis, Gray, Johnson, & Boyes,-Braem, 1976). For example, people prefer prototypical (i.e., 

mathematically average) arrangements of dot patterns (Bomba & Siqueland, 1983; 

Winkielman, Halberstadt, Fazendeiro, & Catty, 2006), and they rate averaged 

configurations of birds, fish, cars,  and, of course, faces as more attractive (Halberstadt & 

Rhodes, 2003; Langlois & Roggman, 1990).  

But, only recently has processing fluency been offered as an explanation for why 

people should prefer prototypes. According to this account, people prefer prototypical 

stimuli not because of their averageness per se but because prototypical stimuli are 

processed fluently and fluent processing leads to positive affect (Harmon-Jones and Allen, 

2001; Principe & Langlois, 2011, 2012; Winkielman and Caciopo, 2001; Winkielman et al., 

2006). Presumably, this is because fluency indicates successful processing (Winkielman & 

Cacioppo, 2001; Winkielman et al., 2006). 

There is some evidence for this fluent processing account for faces. In reaction time 

studies, attractive faces are correctly classified by gender (Hoss, Ramsey, Griffin, & 

Langlois, 2005) and as “human” vs. “chimpanzee” (Trujillo et al., 2014) faster than 

unattractive faces. In electroencephalographic (EEG) studies, the event-related potential 

evoked by faces – the N170 – is smaller when participants view averaged or individual 

attractive faces than when they view individual unattractive faces (Halit, de Haan, & 

Johnson, 2000; Trujillo et al., 2014). Taken together, this suggests that averaged and 

attractive faces are both processed more fluently than unattractive faces.  
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However, it’s unclear from this data whether averaged faces are attractive because 

they are processed fluently, or whether averageness just also happens to be correlated with 

fluency. In the current paper, we will use Trujillo et al.’s (2014) fluency measurements and 

attractiveness ratings for averaged and non-averaged faces to test whether processing 

fluency mediates the effect of averageness on attractiveness.   

The mediation model 

Figure 2.1 represents the effect of averageness on attractiveness without 

considering any mediating variables. In this diagram, 𝑐 represents the total effect of 

averageness on attractiveness, i.e., attractiveness is expected to change by 𝑐 units overall 

given a 1 unit increase in averageness.9   

We are interested in the process by which this effect operates which we can 

investigate using statistical mediation analysis (cf.  Hayes, 2013).  Using simple principles 

of linear modeling, mediation analysis can be used to quantify and test the pathways of 

influence from a causal variable to an outcome variable. The basic idea is that the 

presumed causal variable may not influence the outcome variable directly, but rather 

through one or more mediator variables: The causal variable affects the mediator variables, 

which in turn causally influence the outcome variable.   

In the present paper, the causal variable is facial averageness and the outcome 

variable is facial attractiveness (see Figure 2.1). The discussion from the previous section 

suggests the effect of averageness on attractiveness might be mediated by one of the 

pathways depicted in Figure 2.3. In this diagram, the pathways 𝑎1𝑏1, 𝑎2𝑏2, and 𝑎1𝑎3𝑏2 
                                                           

 
9
 Since, for the dataset analyzed here, averageness is a categorical variable (i.e., each face is either an individual face 

or an averaged composite of 32 individual faces – see Materials and Methods), a “1 unit increase in averageness” 

means going from a non-composite face (coded, for example, as averageness = 1) to a composite face (coded, for 

example, as averageness = 2). See Montoya and Hayes (submitted) for further discussion.  
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represent the indirect effects of averageness on attractiveness, and 𝑐′ represents the direct 

effect. Thus, for example, attractiveness is expected to change by 𝑎1𝑏1 units via fluency 

given a 1 unit increase in averageness with distinctiveness held constant. Likewise, 

attractiveness is expected to change by 𝑐′  units given a 1 unit increase in averageness with 

fluency and distinctiveness held constant. The pathway 𝑎1𝑎3𝑏2 represents serial mediation 

in which the effect of averageness on attractiveness operates through more than one 

mediator, namely, averageness affects processing fluency, which in turn causally influences 

distinctiveness, which in turn causally influences attractiveness. We included this serial 

pathway because processing fluency is correlated with general familiarity but generally 

considered to be more fundamental (Winkielman & Cacioppo, 2001).  

In analytical terms, the path diagrams (Figures 2.1 and 2.3) represent a set of linear 

equations and the values along the pathways are the coefficients of these equations, all of 

which can be estimated using ordinary least squares regressions (Hayes, 2013; Montoya & 

Hayes, submitted). It is worth noting that the values along the pathways in Figures 2.1 and 

2.3 are all related by the equation: 𝑐 = 𝑐′ + 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎1𝑎3𝑏2. For the specific 

regression equations that these path diagrams correspond to, see Equations 7 and 10-12 in 

Montoya and Hayes (submitted).  
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Figure 2.3. A path diagram for the effect of averageness on attractiveness with two 
mediators, fluency and distinctiveness. This is a serial mediation model.  

 

Materials and Methods 

The data from Trujillo et al. (2014) 

We used data from Trujillo et al. (2014). The stimuli included three groups of faces 

(all of which were young-adult Caucasian females): high-attractive individual faces, low-

attractive individual faces, and averaged composite faces. The groups of high- and low-

attractive individual faces were created on the basis of a priori attractiveness ratings from 

55 participants. The averaged faces were created by mathematically averaging the pixels 

between corresponding points on 32 individual faces.   

The fluency data was obtained from another group of 55 participants (7 of which 

ended up being dropped due to technical problems with EEG) who participated in a 

species-categorization task. On each trial of this task, the participants viewed either one of 

the high-attractive individual faces, one of the low-attractive individual faces, one of the 

averaged composite faces, or a chimpanzee face and were instructed to indicate whether 

the face was “human” or “chimpanzee” as quickly and as accurately as possible. We used 
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participant reaction time in this categorization task as our measure of processing fluency, 

noting that lower reaction-times lead to increased fluency.  

After the categorization task, these participants also rated all three groups of faces 

for facial attractiveness and distinctiveness (defined as the ease of spotting a face in a 

crowd). We used these ratings as our measures of attractiveness and distinctiveness. See 

Trujillo et al. (2014) for more details on the subject make-up and specific procedures. 

Model analysis 

Considering the data from Trujillo et al. (2014) along with the path diagram in 

Figure 2.3, we first note that participants saw either non-averaged individual faces or 

averaged composite faces – that is, averageness was manipulated and not measured. Next, 

we note that all participants contributed measurements for both averaged and non-

averaged faces on all measured variables (fluency, distinctiveness, and attractiveness). 

Thus, this data, along with the path diagram in Figure 2.3 is consonant with a two-condition 

within-participant serial multiple mediator model, as described by Montoya and Hayes 

(submitted; see their Figure 6). They provide an SPSS macro to analyze such a model – 

MEMORE (MEdeiation and MOderation analysis for REpeated measures designs) – and we 

used this macro to analyze the path diagram in Figure 2.3. Roughly, this involves comparing 

the measurements for fluency, distinctiveness and attractiveness for faces that are not 

averaged-composites against those that are averaged-composites (for more details, see 

Montoya and Hayes, submitted). We did this twice, once with low-attractive individual 

faces and once with high-attractive individual faces.  
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Results and Discussion 

Results 

The results of the mediation analysis are shown in Figures 2.4 and 2.5. 

For the effect of averageness on attractiveness when the non-averaged faces are 

low-attractive (Figure 2.4), we found that 𝑐 = 3.677, 𝑎1 = −3.893, 𝑎2 = −1.356, 

𝑎3 = −.009, 𝑏1 = .004, 𝑏2 = −.032, and 𝑐′ = 3.649. The indirect effect of averageness 

through fluency alone is 𝑎1𝑏1 = −.014, with a 95% bootstrap confidence interval of 

(−.192, .139). The indirect effect of averageness through distinctiveness alone is 

𝑎2𝑏2 = .043, with a 95% bootstrap confidence interval of (−.209, .344). The serial indirect 

effect through both fluency and distinctiveness is 𝑎1𝑎3𝑏2 = −.001, with a 95% bootstrap 

confidence interval of (−.030, .033). These indirect effects sum to the total indirect effect of 

. 028, with a 95% bootstrap confidence interval of (−.260, .323). Note that none of the 

indirect effects are significant and the difference between the total effect, 𝑐, and the direct 

effect, 𝑐′ is minimal (only . 018).  

For the effect of averageness on attractiveness when the non-averaged faces are 

high-attractive (Figure 2.5), we found that 𝑐 = .531, 𝑎1 = .291, 𝑎2 = −.748, 𝑎3 = −.008, 

𝑏1 = .025, 𝑏2 = 088, and 𝑐′ = .590. The indirect effect of averageness through fluency alone 

is 𝑎1𝑏1 = .007, with a 95% bootstrap confidence interval of (−.074, .106). The indirect 

effect of averageness through distinctiveness alone is 𝑎2𝑏2 = −.066, with a 95% bootstrap 

confidence interval of (−.355, .102). The serial indirect effect through both fluency and 

distinctiveness is 𝑎1𝑎3𝑏2 = .000, with a 95% bootstrap confidence interval of (−.011, .012). 
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These indirect effects sum to the total indirect effect of −.059, with a 95% bootstrap 

confidence interval of (−.354, .122). Again, note that none of the indirect effects are 

significant and the difference between the total effect, 𝑐, and the direct effect, 𝑐′ is minimal 

(only −.059). 

 

Figure 2.4. Model parameter values for averaged faces vs. low-attractive individual faces. 
The numbers indicate how many units the consequent variable is expected to change given 
a 1 unit increase in the antecedent variable. * indicates a significant effect at 𝑝 = .005. ** 
indicates a significant effect at 𝑝 = .001. Lack of a * indicates lack of significance at 𝑝 = .05.  
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Figure 2.5. Model parameter values for averaged faces vs. high-attractive individual faces. 
The numbers indicate how many units the consequent variable is expected to change given 
a 1 unit increase in the antecedent variable. * indicates a significant effect at 𝑝 = .005. ** 
indicates a significant effect at 𝑝 = .001. Lack of a * indicates lack of significance at 𝑝 = .05. 

 

Discussion 

In the results section we noted that none of the indirect effects were significant. 

Perhaps this is easier to see by looking at the individual effects for each model: While 

averageness significantly decreases distinctiveness and significantly decreases processing 

speed (i.e., increases fluency; also, this is only true when the averaged faces are compared 

to low-attractive individual faces), neither fluency nor distinctiveness has a significant 

effect on attractiveness once the direct effect of averageness has been accounted for. This 

can also be seen by noting how similar 𝑐 is to 𝑐′ in both figures: The total effect of 

averageness on attractiveness is almost identical to the direct effect of averageness on 

attractiveness once fluency and distinctiveness have been accounted for. In other words, 
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the effect of averageness on attractiveness does not seem to be mediated by fluency or 

distinctiveness.  

Looking at the models together, note that the effects are moderated by how 

attractive the individual faces are to begin with. In particular, changes in distinctiveness 

and attractiveness are more prominent when the averaged faces are compared to low-

attractive individual faces than when they are compared to high-attractive individual faces. 

Also, while face averages are processed more fluently than low-attractive individuals, they 

are not processed significantly differently from high-attractive individuals. None of this is 

surprising given everything we already know about averageness and attractiveness: 

averaged faces are simply more similar to attractive individual faces than they are to 

unattractive individual faces.  

General Discussion 

It is now well-known that averaged configurations of faces are attractive. The 

interesting question is why. In the introduction, we argued that the effect is not mediated 

by skin quality, youthfulness, symmetry, or sexual dimorphism. In the subsequent 

mediation model, we showed that the effect is not mediated by general 

familiarity/distinctiveness or fluency. There must be something else about averaged faces 

that makes them attractive. But what?  

Problem with the measures 

One possibility is that our measures of distinctiveness and/or fluency were not 

adequate and better measures may yield significant indirect effects. For instance, Morris, 

Wickham and colleagues have argued (and found empirically) that distinctiveness as 

measured by the ease of spotting a face in a crowd (the measure used in the present study) 
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is different from general familiarity as measured by how much a face looks like a typical 

face, and that only the latter is linearly related to attractiveness (Morris & Wickham, 2001; 

Wickham & Morris, 2003; Wickham, Morris, & Fritz, 2000). However, we used data from 

Trujillo et al. (2014) who found that distinctiveness as defined by the ease of spotting a face 

in a crowd is linearly related to attractiveness (strong, negative correlation),  so this 

criticism may not apply to this particular dataset.  Alternatively, reaction time on a species-

categorization task (like the one used in the present study) may not be the best way to 

measure processing fluency.  Perhaps fluency would mediate the effect of averageness on 

attractiveness with an alternative measure, like reaction time on a gender-based 

categorization task.   

Averageness in its own right  

Alternatively, perhaps we haven’t found a significant mediator because there isn’t 

one; averageness is per se attractive. There is already a wealth of evidence that the visual 

system has a prior expectation for the geometry and other features of a face – based on a 

moving window of faces that we have actually seen – and that the visual system 

automatically compares incoming faces against this prior expectation (Giese & Leopold, 

2005; Leopold, O’Toole, Vetter, & Blanz, 2001; Loffler, Yourganove, Wilkinson, & Wilson, 

2005;  Malpass & Hughes, 1986; Rhodes, et al., 2004; Valentine, 1991). The visual system 

could easily compute averageness per se from a 2D image of a face by estimating how close 

the face is to this stored prior. 

However, the fact that the visual system could easily compute the averageness of a 

face doesn’t explain why averageness should be attractive. Two essential arguments have 

surfaced to explain why averaged faces might be attractive in their own right: One based on 
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evolution and sexual selection, the other based on information-processing biases inherent 

in the nervous system. 

Sexual selection. According to this argument, facial averageness is a signal for mate 

quality so that a preference for averaged faces evolved as an adaptation for finding good 

mates (for recent reviews, see Little, Jones & DeBruine, 2011; Rhodes, 2006). Facial 

averageness could either signal direct benefits for a potential mate (e.g., enhanced resource 

attainment or reduced risk of contagion) or indirect benefits which would not benefit a 

mate directly but would be passed on to offspring (e.g., heritable resistance to disease).  

Direct benefits. Facial averageness has been argued to signal direct benefits 

because natural environments militate against extreme phenotypic traits in a population 

and tend to stabilize on mean or modal trait values (for discussion, see Symons, 1979). 

Thus, according to this line of thought, average facial morphology should be associated 

with above-average performance on tasks such as chewing and breathing, leading to a 

more robust, healthier mate (Symons, 1979).  

Empirically, averaged faces look healthier (Rhodes, Yoshikawa, Palermo et al., 2007; 

Rhodes et al., 2001b), but no one has yet tested the connection between mathematical 

averageness and medical health as measured from actual medical records10 (but, see 

Rhodes et al., 2001b for the connection between actual health and ratings of 

distinctiveness). 

It is also worth noting that simply avoiding unusualness is in itself a viable mate 

selection strategy – even if averaged traits aren’t necessarily the most fit – since unusual 
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 It should also be noted that attractiveness itself is only weekly related to actual, medical health (for review, see 

Rhodes, 2006), but this may be the result of good nutrition and modern medicine and not reflective of the 

evolutionary utility of attractiveness for our ancestors (Daly & Wilson, 1999; Thonhill & Gangestad, 1996; 1999). 
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mutations are deleterious more often than they are beneficial (Koeslag 1990; Koeslag & 

Koeslag, 1994). Computational models show that such a strategy can lead to evolutionarily 

stable populations with average trait values (Koeslag, 1990; Koeslag & Koeslag, 1994). A 

few authors have recently proposed that this mate-selection strategy could explain why 

people find averaged faces attractive (Iyengar, Kulkarni, & Vidya, 2015; Unnikrishnan, 

2012), but there is no empirical data concerning how face preferences evolve or whether 

face preferences are even heritable.  

Indirect benefits. Facial averageness has also been argued to signal indirect benefits 

via genetic quality, or “good genes” (see Andersson, 1994; Roberts & Little, 2008). The line 

of reasoning is as follows: For continuously distributed, heritable traits, trait values near 

the average for a population tend to be heterozygous (Markow & Gottesman, 1993; Soule & 

Cuzin-Roudy, 1982) which is beneficial because heterozygosity (genetic diversity) is 

associated with developmental stability, outbreeding, and resistance to parasites (Coltman 

& Slate, 2003; Mitton & Grant, 1984; Thornhill & Gangestad, 1993). Since facial averageness 

is continuously distributed and heritable (Lee et al., 2015), it serves as a viable cue to “good 

genes” and there should be evolutionary pressure to pick up on such a cue (Roberst & 

Little, 2008; Thornhill & Gangestad, 1993, 1999). Empirical support for this line of thinking 

is mixed.  

On the one hand, there is empirical evidence connecting heterozygosity, 

averageness, and attractiveness for faces: Heterozygosity in the major histocompatibility 

complex (MHC) – a complex of genes that code for proteins involved in immune response – 

is positively associated with both facial averageness (Lie, Rhodes, & Simmons, 2008) and 

facial attractiveness (Roberts, Little et al., 2005).  
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On the other hand, in a study of twins and their siblings, Let et al. (2015) failed to 

find evidence that the genes that affect averageness also affect attractiveness. They used 

twin data to examine the genetic vs. environmental determinants of facial attractiveness 

and facial averageness. They found that, while the genetic component explained a 

significant amount of the variation for both attractiveness and averageness for faces, the 

genetic component for the covariation between attractiveness and averageness was not 

significant. This suggests that, while both facial attractiveness and facial averageness are 

heritable, the genes that affect one are not necessarily the same as the genes the affect the 

other. However, the authors note that this lack of finding may be due to a lack of power. 

More research needs to be done on the genetic determinants of facial averageness and the 

degree to which these genes can be considered “good” for mate quality.  

Information processing. Contrary to the sexual selection account, researchers 

have argued that a preference for the average is the optimal way to solve certain signal 

processing tasks, so the attractiveness of averaged faces evolved as a byproduct of how our 

brains process information (for reviews, see Enquist et al., 2002; Rhodes, 2006).  

For instance, Enquist et al. (2002) proposed a simple model where observers are 

faced with only two face-processing tasks: (1) to discriminate between sexes and (2) to 

respond similarly to variation within a sex (e.g., adult female faces are all different but 

should all be recognized as adult females).  Solving the first task leads to a preference for 

sexual dimorphism (i.e., feminized females and masculinized males) and solving the second 

task leads to a preference for averageness within a sex. Thus, according to this model, 

averaged faces (within a sex) should be generally attractive, but not necessarily most 

attractive, and the attractiveness of an averaged face could be improved by making it look 
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more feminine or masculine. There is empirical evidence that this might be the case, at 

least for female faces (Ghirlanda, Jansson, & Enquist, 2002; Perrett et al., 1998; Rhodes, 

Hickford, & Jeffery, 2000; for a counterargument, see Rubenstein, Langlois, & Roggman, 

2002. See also, DeBruine et al., 2007). There is also evidence that a simple model like this 

can explain preferences across species. For example, chickens peck more furiously at 

attractive faces (as judged by human raters) after being trained to discriminate faces by 

gender (Ghirlanda et al., 2002).  Furthermore, if a preference for averageness is a by-

product of the way we process information, then we would expect it occur for more 

categories of objects than just faces, and it does. In addition to faces, people prefer 

averaged configurations of dot patterns (Bomba & Siqueland, 1983; Winkielman, 

Halberstadt, Fazendeiro, & Catty, 2006), birds, fish and cars (Halberstadt & Rhodes, 2003). 

However, it should be noted that averaged faces are attractive even when viewed by 

someone, like Galton, who is not under the demands of an experimenter, trying to perform 

an artificial task.  

Taken together, all of this suggests that a by-products account is a plausible 

explanation for why averaged faces are attractive, but more empirical work needs to be 

done.  

Concluding remarks 

In this paper we have considered six different mediating variables to explain why 

averaged faces are attractive – skin quality, youthfulness, symmetry, sexual dimorphism, 

fluency and distinctiveness (see Figure 2.2) – and argued or demonstrated that none of 

them actually mediate the effect of averageness on attractiveness.  This suggests that there 

is just something about averageness that makes faces attractive. It could be that 
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averageness indicates mate quality, or perhaps a preference for averageness is a by-

product of how our brains process information. More research needs to be done to figure 

out which alternative is most likely, but we are closer to solving what makes averaged faces 

attractive.   

 

*** 

We have seen that people’s preferences for visual textures and for faces are surprisingly 

consistent. We found that visual texture preferences can be predicted well by an ecological 

model and we investigated why averaged faces are consistently judged to be attractive, 

concluding that averageness per se is attractive. We turn our attention now to lower-level 

perception, specifically lightness perception. Lightness perception is thought to be 

consistent across human observers – and thus not influenced by cognitive factors such as 

beliefs or desires – because all humans have a similar vision system. In the following 

chapter, we investigate whether a high-level cognitive factor (perceived race of a face) can 

influence lightness perception (i.e., the skin-tone of the face).  
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Chapter 3 

Changing the perceived race of a face does not change how light its skin 

looks 

Kyle D. Stephens, Daniel A. Stehr, and Donald D. Hoffman (submitted). 

  

Abstract 

Can the race of a face alter how light its skin looks, regardless of how light its skin actually 

is? The answer to this question has important implications for any theory of perception 

because it could provide evidence that a high-level cognitive construct (race) can alter low-

level visual experience (lightness perception). 

But reports that deal with this question are conflicting, with some researchers 

claiming that race affects lightness perception (Levin & Banaji, 2006; MacLin & Malpass, 

2003, 2001), and others challenging this claim (Firestone & Scholl, 2015). 

In the current paper, we test whether race can affect lightness perception by 

combining the approaches of Levin and Banaji (2006) and MacLin and Malpass (2003, 

2001). First, we create a set of morphed African-American/Caucasian faces that are judged 

to be Caucasian when wearing a Caucasian hairstyle but African-American when wearing 

an African-American hairstyle. Next, we use an adjustment procedure to show that, even 

though changing the hairstyle changes the perceived race of the faces, it does not change 

how light the skin-tone is judged. Finally, we argue that previous results are likely due to 

response bias and not a change in lightness perception. Overall, we conclude that the 

perceived race of a face does not affect how light it looks. 
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Introduction 

Can cognitive states such as beliefs, desires or expectations directly affect our 

perceptual experience of the world? (Bruner & Goodman, 1947; Colins & Olson, 2014; 

Dunning & Balcetis, 2013). Or is perception encapsulated from the influence of such 

cognitive states? (Fodor, 1988; Marr, 1982; Pylyshyn, 1999). This question has been the 

subject of many perceptual experiments. 

For instance, Bruner and Goodman (1947) showed that poorer children estimate 

coins to be larger than richer children, presumably because their greater desire for money 

alters their perception of size. Carter and Schooler (1949) countered that this effect is only 

maintained when the children estimate coin-size from memory and argued that poorer 

children misjudge coin-size because they are less familiar with money, not because the 

coins actually look larger. 

Bhalla and Proffitt (1999) showed that students judge the slant of a hill to be steeper 

when wearing a heavy backpack, presumably because their greater expectation of effort 

alters their perception of slant. Durgin et al. (2009) countered that this effect goes away 

when students are given a deceptive cover story that justifies the backpack’s presence and 

argued that backpack-wearing students misjudge hills because they are motivated to 

comply with the anticipated results of the experiment, not because the hills actually look 

steeper (see also Durgin, Klein, Spiegel, Stawser, & Williams, 2012; Nichols & Maner, 2008; 

Orne, 1962). 

Many studies claim to demonstrate cognitive influences on perception (for reviews, 

see Colins & Olson, 2014; Dunning & Balcetis, 2013; Proffitt, 2006; Witt, 2011; Zadra & 
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Clore, 2011; Zeimbekis & Raftopoulos, 2015) and many studies challenge these claims (e.g., 

Firestone, 2013; Firestone & Scholl, 2014, 2015; Francis, 2012; Shaffer, McManama, Swank, 

& Durgin, 2013). 

Here we investigate one instance of this larger debate: Can the race of a face (a high-

level cognitive construct) alter how light its skin looks (a low-level perception), regardless 

of how light its skin actually is?11 Levin and Banaji (2006) provided evidence that this 

might be true: They showed that observers rate a prototypical African-American face as 

darker than a prototypical Caucasian face even when the faces have the same average 

luminance and contrast.12 This study has been singled out in the literature because, unlike 

other studies purporting to show cognitive influences on perception, it provides a 

convincing visual demonstration that any observer can “see for themselves” (Firestone & 

Scholl, 2015, see Figure 3.1). Thus, Levin and Banaji’s result has been cited as one of the 

strongest examples of a cognitive influence on perception, both by psychologists (Colins & 

Olson, 2014; Firestone & Scholl, 2015) and by philosophers (Macpherson, 2012). 

However, Firestone and Scholl (2015) showed that Levin and Banaji’s stimuli are 

confounded. They heavily blurred the faces and found that, although observers could no 

longer determine race, they still rated the blurred African-American face as darker than the 

blurred Caucasian face (Figure 3.1). Indeed, even observers who categorized the African-

American face as Caucasian still judged it to be darker. In other words, they argued that the 

                                                           

 
11

 In the literature on lightness perception, “how light something actually is” refers to its luminance, the objective 

intensity of light radiating from it (measured in cd/m2), whereas “how light something appears to be” refers to its 

lightness, the technical term for its subjectively perceived shade (see Adelson, 2000). 
12

 For a digital image, average luminance and contrast are measured by the mean and the standard deviation of the 

image’s gray-level histogram respectively. 
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African-American face looks darker than the Caucasian face because of a low-level stimulus 

confound, not because the faces differ in race. 

 

Figure 3.1. The top row shows the original, luminance-matched Black/African-American 
and White/Caucasian faces used by Levin and Banaji (2006). The bottom row shows the 
blurred versions of the faces used by Firestone and Scholl (2015). The African-American 
face (left) was rated as darker in both cases, although participants could not determine the 
race of the blurred faces 

 

However, Levin and Banaji (2006) obtained similar results with line-drawn faces 

that do not vary in local luminance (and are thus not confounded), and MacLin and Malpass 

(2003, 2001) showed that people label a racially blended face as darker when it’s perceived 

to be African-American than when it’s perceived to be Hispanic. Thus, the question 

remains: Can the perceived race of a face alter how light its skin looks? Or, are all such 

results due to stimulus confounds or response biases? We investigate these questions in 

the current paper.  

First, we argue that the most compelling results thus far are those of MacLin and 

Malpass (2003, 2001) with blended faces, but that these results need to be tested using 

better methodology. In particular, MacLin and Malpass measured lightness judgments on a 

response scale with text anchor points (light and dark), rather than with the direct gray-
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level sample matches typical of lightness perception research; they created their stimuli 

using a composite program which produces face sketches that lack photographic detail; 

and they made no attempt to obscure their research hypotheses from participants, which 

may encourage response bias (Orne, 1962). 

To improve the methodology, we combine the approaches of Levin and Banaji 

(2006) and MacLin and colleagues (MacLin & MacLin, 2011; MacLin & Malpass, 2003, 

2001), and also take special care to obscure the purpose of the experiment to control for 

response bias (Durgin et al., 2009; Nichols & Maner, 2008; Orne, 1962). Following MacLin 

and MacLin (2011), we create a set of morphed Afro/Caucasian faces that are judged to be 

Caucasian when wearing a Caucasian hairstyle but African-American when wearing an 

African-American hairstyle. Then, we use the adjustment procedure of Levin and Banaji 

(2006) to test whether changing the perceived race of the faces (via their hairstyle) also 

changes how light their skin looks. Before going into the details, we will first discuss our 

motivation by examining the other evidence that race affects lightness perception. 

Other evidence that race affects lightness perception 

Line-drawn faces. Firestone and Scholl (2015) showed that Levin and Banaji’s 

initial stimuli are confounded (Figure 3.1), but they did not venture to guess what low-level 

confound, specifically, might be causing the lightness distortion. They just noted that, 

although the average luminance for the prototypical Caucasian and African-American faces 

is the same, the local luminance changes are quite different. 

But Levin and Banaji (2006) themselves noted a potential problem with local 

luminance differences:  

[I]t is possible that subjects adjusted the faces differently because they focus 
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their attention on different parts of a face when they believe it represents one 

race instead of another. For example, if subjects believe a face to be Black, they 

may focus on the eyes (a darker region), and, when they believe it is White, 

they may focus on the nose (a lighter region). If so, they might adjust the 

sample patch to be relatively dark for the Black face because they are matching 

it with the face’s eyes. Conversely, White faces would be overbrightened 

because subjects are focused on the relatively light nose. Thus, attentional 

focus could cause our effect instead of lightness perception. (p. 506) 

To counteract this problem, they ran an additional experiment with line-drawings of 

faces that do not vary in local luminance (Figure 3.2). They were especially careful and 

used line-drawings that had both white and black outlines. Using an adjustment procedure 

where subjects adjusted gray patches to match the perceived shade of the faces, they 

reported that the African-American faces were matched to darker samples on average than 

the Caucasian faces. 

Firestone and Scholl (2015) write off these results as not perceptually convincing – 

“the Black and White line-drawing faces just don’t look differentially light” – and note that 

“the lack of an associated ‘demo’ leaves these results open to alternative explanations” (p. 

13). 
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Figure 3.2. Line-drawn faces used by Levin and Banaji (2006). Each left face is 
prototypically Black/African-American; each right face is prototypically White/Caucasian. 
They used both black and white outlines to control for the effect of line color. They found 
the African-American face was rated darker than the Caucasian face overall in both cases, 
but these results were not consistent across subjects. 
 

A more forceful argument against these results is that they are not consistent. Levin 

and Banaji (2006) report that only 27 out of 45 subjects chose darker samples for the line-

drawn African-American faces than for the line-drawn Caucasian face (𝜒2(1, 𝑁 = 45) =

1.80, p = 0.180). Thus, although the African-American face got matched to darker samples 

on average, quite a few participants decided that the Caucasian face actually looks darker 

than the African-American face (18 out of 45 to be exact), contrary to the proposed 

lightness distortion. To their credit, Levin and Banaji (2006) acknowledge the problem – “A 

look at the stimuli [Figure 3.2] suggests that the race-specifying information they contained 

was subtle... Accordingly, we may have traded a fair amount of validity for control” (p. 507-

508). Overall, this does not provide strong evidence that the perceived race of a face, in 

general, affects how light it looks. 

Blended faces. In an alternative demonstration, MacLin and Malpass (2003, 2001) 

showed that people label a racially blended face as darker when it’s perceived to be 

African-American than when it’s perceived to be Hispanic. They created blended faces 

using a facial composite program such that facial features overlapped across Afro/Hispanic 
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racial lines. When they added a racial marker characteristic of either an African-American 

or a Hispanic face – in this case hairstyle – they found that the blended faces were 

perceived as being either African-American or Hispanic, consistent with the racial marker, 

and that the faces were labeled as darker when wearing the African-American hairstyle 

than when wearing the Hispanic hairstyle. 

In light of the confounds discovered in Levin and Banaji’s stimuli, this is a 

compelling result. In this case, changing the perceived race of an identical face changes how 

observers rate its skin tone. This does not leave much room for confounds – since the faces 

are identical save for the hairstyle, the only potential confound is with the hairstyle. It 

could be that a darker hairstyle makes a face look darker due to attentional focus (see 

Levin and Banaji block quote in previous section). However, MacLin and Malpass note that 

the Hispanic hairstyles were darker overall, so this hypothesis is inconsistent with the fact 

that the faces were labeled as lighter when wearing a Hispanic hairstyle. Alternatively, a 

darker hairstyle might make a face look lighter due to contrast. However, MacLin and 

Malpass (2003) found that the lightness judgments did not change when the faces were 

displayed on black vs. white backgrounds, suggesting that contrast does not significantly 

influence ratings of skin tone. Thus, these results seem to provide strong, non-confounded 

evidence that the perceived race of a face can affect how light it looks. 

But, as noted above, there are some problems with MacLin and Malpass’ (2001, 

2003) experiments.13 In particular, (1) they measured lightness judgments on a response 

scale with text anchor points (light and dark), rather than with direct gray-level sample 
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 3It’s worth pointing out that Levin and Banaji (2006) cited MacLin and Malpass’ (2001, 2003) result and noted 

some of the same problems. 
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matches typical of lightness perception research, (2) they created their stimuli using a 

composite program which produces face sketches that lack photographic detail, and (3) 

they made no attempt to obscure their research hypotheses from participants which may 

encourage response bias (Orne, 1962). The purpose of the current research is to replicate 

MacLin and Malpass’ results in a way that addresses these problems. 

Overview of experiments 

Before testing MacLin and Malpass’ results, we first replicate Levin and Banaji’s 

results with their original stimuli using their adjustment procedure (Experiment 3.1). We 

run this experiment as a check on the adjustment procedure, to make sure we are able to 

measure an effect when we know one exists. 

Then, to test MacLin and Malpass’ results, we start by creating a set of morphed 

Afro/Caucasian faces using face-morphing software. We create two version of each face, 

one with the hairstyle of the original Caucasian face, the other with the hairstyle of the 

original African-American face. In Experiment 3.2a, we determine which morphed faces 

look Caucasian when wearing the Caucasian hairstyle but African-American when wearing 

the African-American hairstyle. In Experiment 3.2b, we have participants match the skin-

tone of these morphed faces using the same adjustment procedure as in Experiment 3.1. To 

obscure the purpose of the experiment, we also have participants match the gray-level of 

other objects that are not human faces and we inform them that the experiment is about 

“how people perceive the shading of objects,” with no mention of “faces” or “race.” If the 

lightness distortion is maintained, this provides strong evidence that race can affect 

lightness perception. However, if the lightness distortion is not maintained, then this brings 

previous results into question. 
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Experiment 3.1: Replicating Levin and Banaji (2006) 

For this experiment, our goal was to replicate Levin and Banaji’s results with their 

original face stimuli, using their adjustment procedure. Participants matched the shading of 

the faces by adjusting the gray-level of uniform, rectangular patches. Following Levin and 

Banaji’s original protocol, there was no deception involved, as participants were told the 

experiment was about “how people perceive the shading of faces from different races.” The 

purpose of this experiment was to test the adjustment procedure and make sure we are 

able to measure an effect when we know one exists. 

Participants 

We recruited 31 participants (11 male) through the University of California subjects 

pool. We ended up excluding one female participant because of the number of times she 

made no adjustment on two consecutive trials (which was 4.1 standard deviations above 

the mean for all participants). After excluding this participant, the racial make-up (gathered 

by self-report) was as follows: 11 Asian/Pacific Islander, 13 Hispanic/Latino and 6 

White/Caucasian. The mean age was 20.3 years (range 18-24 years). All subjects were 

undergraduate students at the University of California, Irvine and all received extra credit 

for participation. 

Apparatus 

Stimuli were presented using Dell computers attached to 17-in. Dell LCD monitors 

set at a resolution of 1280x1024 and a refresh rate of 60Hz. Participants were run in 

groups of one to five in a room containing 8 computers. Participants responded using the 

computer’s keyboard and presentation was controlled by a program written in Matlab, 
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using the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner, Brainard, & Pelli, 

2007). 

Stimuli 

The stimuli consisted of three morphologically distinct faces, representing a 

prototypical Caucasian face, a prototypical African-American face and a racially Ambiguous 

face. These faces were graciously provided by Levin and Banaji and are displayed in Figure 

3.3. The Caucasian and African-American prototypes were created by blending a set of 16 

faces from the race the prototype was to represent and the Ambiguous face was created by 

morphing the Caucasian face and the African-American face in a 50-50 blend (for more 

details on how the faces were created, see Levin, 1996; Levin & Banaji, 2006). 

For each face, we created 13 gray-level variations. The initial images (level 0) all had 

a mean 8-bit gray-level of 141 out of 256 (all gray-levels are reported using these 8-bit 

units), which is equivalent to 37.2 cd/m2, as measured using a Photo Research PR-670 

spectroradiometer on one of the computers used in the experiment. The remaining 12 

gray-level variations were created by changing the mean gray-level, in increments of 5, to 

six levels below and six levels above the 0 level. This lead to a set of faces whose (scaled) 

gray-levels varied from -30 to +30 in increments of 5 (for some sample stimuli, see Figure 

2B in Levin & Banaji, 2006). The contrast range for all faces – as measured by the standard 

deviation of their gray-level histograms – was kept relatively constant. Each face measured 

58 (horizontal) by 73 (vertical) pixels at 72 dots per inch. Each gray patch measured 80 

(horizontal) by 100 (vertical) pixels. 
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Figure 3.3. The face stimuli used in Experiment 3.1 (at 0 gray-level). These represent a 
prototypical African-American face (left), a racially Ambiguous face (middle) and a 
prototypical Caucasian face (right). These faces were graciously provided by Levin and 
Banaji. 
 

Procedure 

Participants used the method of adjustment to give lightness judgments for the 

faces. On each trial, they viewed a reference face and an adjustable gray patch, and were 

informed to match the patch to the shade14 of the skin on the reference face. They used the 

up and down arrow keys on the keyboard to adjust the gray-level of the patch (in 

increments of 5) and pressed the spacebar to move on to the next adjustment once they 

perceived a match. After each stimulus, there was a 500ms interstimulus interval with 

Gaussian noise that was just large enough to cover the area of the reference face and the 

gray patch. The reference face and the gray patch were vertically centered and horizontally 

10cm apart on the screen (center-to-center) with a viewing distance of approximately 

50cm. At this viewing distance, the faces subtended approximately 2.2 degrees of visual 

angle, and the gray patches subtended approximately 3.0 degrees of visual angle. All stimuli 

were set against a white background. On each trial, the reference face was set to one of five 

different gray-levels (-10, -5, 0, +5, +10), and the initial gray-level of the adjustable patch 

was offset from the reference face by +/-10 or +/-20. Thus, there were 20 trials for each 
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 We used the words “shade” and “shading” in the instructions to match the instructions given by Levi and Banaji 

(2006). 
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face, for a total of 60 trials per subject. The trials were randomly ordered and the screen-

side of the reference face (left vs. right) was counterbalanced across subjects. 

In accordance with Levin and Banaji’s original protocol, there was no deception – 

subjects were told that this study is about “how people perceive the shading of faces from 

different races.” To gauge each subject’s knowledge of the experiment, we also gave them a 

post-experiment survey where we asked them to guess with free response what they 

thought the experiment was about. 

Results 

For all subjects, we calculated the average lightness distortion for each face 

prototype. The lightness distortion is defined as the chosen gray-level of the adjustment 

patch minus the actual mean gray-level of the reference face. Thus, a lightness distortion of 

0 indicates perfect matching by the subject, while positive or negative lightness distortions 

indicate that the subject rated the face to be lighter or darker than it actually is 

respectively. 

The average distortion for each face prototype is shown in Figure 3.4. A repeated-

measures ANOVA revealed a significant effect of race on lightness distortion, 𝐹(2,58) −

27.8, 𝑝 < .001. While there is a bias for all faces to be rated lighter than they actually are – 

Levin and Banaji (2006) reported a similar bias – we are interested in the differences 

between faces. Paired t-tests revealed that the African-American face (𝑀 = 7.05, 

𝑆𝐷 = 4.59) was rated significantly darker than both the Caucasian face (𝑀 = 15.0, 

𝑆𝐷 = 4.95), 𝑡(29) = −5.77, 𝑝 < .001, 𝑑 = 0.98,15 and the Ambiguous face  (𝑀 = 10.6, 
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 Cohen’s d gives a standardized difference between two group means (Cohen, 1988). It is a measure of effect size, 

intended to signify the magnitude of the difference between the two groups (Kelley & Preacher, 2012). Cohen 
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𝑆𝐷 = 2.39), 𝑡(29) = −4.39, 𝑝 < .001, 𝑑 = 0.44, and the Ambiguous face was rated 

significantly darker than the Caucasian face, 𝑡(29) = −4.73, 𝑝 < .001, 𝑑 = 0.59. The mean 

difference in judgments between the Caucasian face and the African-American face was 

7.95 gray-level units, which corresponds to approximately1.60 cd/m2. Although this 

difference is small in luminance, it was consistent across subjects: 26 out of 30 subjects 

chose darker samples for the African-American face than for the Caucasian face, 

𝜒2(1, 𝑁 = 30) = 16.1, 𝑝 < .001.  

 

Figure 3.4. Lightness distortion for the faces in Experiment 3.1. Error bars represent 
within-subjects 95% confidence intervals (Cousineau, 2005; Morey, 2008). Overall, the 
African-American face was rated as darker than the Ambiguous face which was rated as 
darker than the Caucasian face. 

 

We also analyzed the subjects’ post-experiment guesses about the nature of the 

research. We had 5 independent raters judge each subject’s response on a 5-point Likert 

                                                                                                                                                                                           

 

(1988) recommends distinguishing between ‘small’ (d = 0.2), ‘medium’ (d = 0.5) and ‘large’ effects (d = 0.8) as a 

helpful guide. 
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scale, where 1 means “They definitely did not know the research hypothesis” and 5 means 

“They definitely did know the research hypothesis.” The raters considered the research 

hypothesis to be the following: “Identifying the race of a face will affect the perceived 

lightness/shading of the face. Specifically, African-American/Black faces will be perceived 

as darker than Caucasian/White faces.” The average rating across subjects was 3.17 with 

standard deviation 1.16. 

Discussion 

In Experiment 3.1, we successfully replicated the results of Levin and Banaji (2006). 

Using Levin and Banaji’s original stimuli, we showed that participants rate the African-

American face as having darker skin on average than the luminance-matched Caucasian 

face using an adjustment task. Of course, these stimuli have already been shown to be 

confounded (Firestone & Scholl, 2015), so we did not run this experiment to determine 

whether race affects lightness perception. Rather, we wanted to show that we could 

measure a known effect with established stimuli using an adjustment procedure. We 

succeeded in that task as we measured the predicted effect with an effect size similar to 

that of Levin and Banaji (our effect size was 0.98. Theirs ranged from 0.75 to 1.65). 

 With the procedure established, we used it in the next experiment to test whether 

morphed Afro/Caucasian faces look darker when they are perceived to be African-

American than when they are perceived to be Caucasian. 

Experiment 3.2a: Creating morphed faces 

For this experiment, our goal was to create faces that would be perceived as 

African-American when wearing an African-American hairstyle but Caucasian when 

wearing a Caucasian hairstyle. Thus, following MacLin and MacLin (2011), we first created 
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several morph continuums with pairs of Caucasian and African-American faces and then 

tested which ones would be perceived as Caucasian with Caucasian hair but 

African-American with Afro hair. 

Participants 

We recruited 42 participants (14 male) through the University of California subjects 

pool. The racial make-up (gathered by self-report) was as follows: 22 Asian/Pacific 

Islander, 10 Hispanic/Latino, 9 White/Caucasian, and 1 Middle Eastern. The mean age was 

21.2 years (range 18-37 years). All subjects were undergraduate students at the University 

of California, Irvine and all received extra credit for participation. 

Apparatus 

Same as in Experiment 3.1. 

Stimuli 

To create the stimuli, we first obtained photographs of Caucasian and African-

American faces (150 African-American, 184 Caucasian) from the database of Meissner, 

Brigham, and Butz (2005), and used Adobe Photoshop to remove their hair. Then, following 

MacLin and MacLin (2011), we used image-morphing software (FataMorph 3) to create 

morph continuums between different Caucasian and African faces (see Figure 3.5). The 

starting Caucasian face represents 0% on the continuum, the starting African-American 

face 100%, and percentages in between represent percentages of African-American face in 

the blend. We used a pilot study to narrow the set of morph continuums down to six using 

the following criteria: (1) The pure African-American face should look sufficiently African-

American, (2) the pure Caucasian face should look sufficiently Caucasian, and (3) blends in 

the middle should look relatively ambiguous and not strongly African, Caucasian, or some 
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other race (as can happen; MacLin & MacLin, 2011). We used faces from these six 

continuums as stimuli in the experiment (see Figure 3.6 for a sample of some of the faces 

used). 

 

Figure 3.5. An example morphological continuum between a Caucasian face (0%, left) and 
an African-American face (100%, right). Each step along the continuum represents a 
16.67% increase in the proportion of the African-American face to the blend. Any stimuli 
used in an experiment would first be cleaned up using Adobe Photoshop (i.e., any 
“ghosting” would be removed) and grayscaled. 

 

MacLin and MacLin (2011) found that the maximally ambiguous morph percentage 

(i.e., the morph percentage at which observers have close to a 50-50 chance of categorizing 

the face as either Caucasian or African-American) did not occur at 50% morph, but rather 

was biased toward the Caucasian face. Thus, for our stimuli, we chose the 42%, 46% and 

50% morphs from each of the six morph continuums. 

Furthermore, we thought the categorization boundary was stronger when the faces 

were lightened (perhaps because it is more common to see a “light-skinned” Black person 

than a “dark-skinned” White person. See, e.g., Peery & Bodenhause, 2008). Thus, we also 

included a lightened version of each face in addition to the original. To create the lighted 

version, we simply increased the mean gray-level of each image by 20 − 25 units, while 

keeping the contrast relatively constant. 

Finally, we created two versions of each face: one wearing the hairstyle of the initial 

Caucasian face, and one wearing the hairstyle of the initial African-American face. We used 
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Adobe Photoshop to select and copy the hair from the starting faces onto the morphed 

faces. 

Overall, we created 72 face stimuli: 6 morph continuums × 3 morph percentages 

from each continuum × 2 mean gray-levels × 2 hairstyles. All images were roughly 290 

(vertical) by 160 (horizontal) pixels. 

Procedure 

On each trial, subjects were shown one of the faces and asked to categorize it as 

Caucasian (by pressing “c” on the keyboard) or African-American (by pressing “a” on the 

keyboard). Subjects were also informed that some of the faces might look ambiguous or 

multi-racial, but they should choose the race that the face looks most like. After choosing a 

racial category, subjects pressed the return key to submit their response. Each submission 

was followed by a 500ms interstimulus interval containing a 375 (vertical) by 300 

(horizontal) pixel rectangle of Gaussian noise. All faces were shown against a white 

background at central fixation. Subjects sat roughly 50cm away from the screen. At this 

viewing distance, the faces subtended approximately 8.8 degrees of visual angle. 

We were concerned that our results might be compromised if subjects saw a face 

morph with both hairstyles and recognized it to be the same face. Thus we had two groups 

of participants: The first group saw half of the faces with Caucasian hair and the other half 

with African-American hair. The second group saw the same faces as the first group, but 

the hairstyles were switched. Thus, the faces with the Caucasian hair in the first group had 

African-American hair in the second group and vice-versa. In this way, each group saw 

faces with both African-American and Caucasian hairstyles, but no subject saw the same 
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face with two different hairstyles. Each subject saw a total of 36 different stimuli (18 

unique faces at two different mean gray levels). 

The stimuli were presented to subjects in pseudo-random order: Each morph type 

(of the 6) was shown once before another of that type was shown, but the morph-

percentage, gray-level and order of the 6 morph-types was randomized. 

Each participant ran through the entire experiment twice, both times in the same 

random order. Thus, they categorized each face twice. 

Results 

For a given face, we counted a subject’s categorization of that face as either 

Caucasian, African-American or Ambiguous. Their categorization was counted as Caucasian 

if they rated the face Caucasian both times they saw it, as African-American if they rated the 

face African-American both times they saw it, and as Ambiguous if they rated the face 

Caucasian on one viewing but African-American on another. 

Of the 6 unique face-morphs, there were 4 that participants consistently judged to 

be Caucasian on both viewings when they saw it wearing the Caucasian hair and African-

American on both viewings when they saw it wearing the African-American hair. Figure 3.6 

shows each of these four face-morphs at the gray-level and morph percentage that led to 

the highest percentage of desired racial categorization. 
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Figure 3.6. The four best face morphs from Experiment 3.2a, used in Experiment 3.2b. 
Along each row, the left face is identical to the right face, but the faces have different 
hairstyles. Each left face has the Caucasian hairstyle; each right face has the African-
American hairstyle (the hairstyles come from the original, pre-morphed faces). The 
numbers represent the proportion of participants who judged the face to be either 
Caucasian (left faces) or African-American (right faces) both times they saw it. 
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The best face was categorized as Caucasian 95.2% of the time when wearing the 

Caucasian hair and as African-American 90.5% of the time when wearing the African-

American hair. The worst face was categorized as Caucasian 90.5% of the time when 

wearing the Caucasian hair and as African-American 71.4% of the time when wearing the 

African-American hair (see Figure 3.6). We used these eight faces (4 morphs × 2 hairstyles) 

in the lightness-matching experiment. 

Experiment 3.2b: Lightness-matching morphed faces 

For the lightness-matching experiment, we wanted to see if the four face-morphs 

displayed in Figure 3.6 would be seen as lighter when wearing Caucasian hair than when 

wearing African-American hair. To test this, we used the same adjustment procedure as in 

Experiment 3.1 – we had subjects adjust the gray-level of a uniform rectangular patch to 

match the skin-tone of each face. To obscure the purpose of the experiment, we also 

included 9 other gray-scale images of things that were not human faces (three animals, 

three fruits, and three tools), and informed participants that the experiment was about 

“how people perceive the shading of objects” with no mention of “faces” or “race.” 

Participants 

We recruited 30 participants (12 male) through the University of California subjects 

pool. Assuming an effect size similar to that of MacLin and Malpass (2001), this should 

result in a power16 of 0.90. We ended up excluding one male participant because of the 

number of times he made no adjustment on two consecutive trials (which was 4.8 standard 

deviations above the mean for all participants). After excluding this participant, the racial 

make-up (gathered by self-report) was as follows: 11 Asian/Pacific Islander, 7 
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 All power calculations computed using G*Power software (Faul, Erdfelder, Lang, & Buchner, 2007). 
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Hispanic/Latino, 9 White/Caucasian, and 2 Black/African-American. The mean age was 

22.4 years (range 18-58 years). All subjects were undergraduate students at the University 

of California, Irvine and all received extra credit for participation. 

Apparatus 

Same as in Experiment 3.1. 

Stimuli 

The stimuli consisted of 17 unique gray-scale images. This included the 8 faces from 

Experiment 3.2a (four face-morphs with both Caucasian and African-American hair, Figure 

3.6), as well as 9 images of objects that were not human faces (three animals, three fruits, 

and three tools). The object images consisted of a dog, a cat, and a monkey, a saw, a clamp 

and a mallet, and a slice of watermelon, some blueberries, and a banana. They were 

collected from internet image searches. All faces were roughly 290×160 pixels, and all 

other object images were this size or slightly smaller. 

To create the gray patches, we first measured the average gray-level of each 

object/face on an 8-bit channel (i.e., 0-255). We created the darkest gray-patch to be 

approximately 20 gray-levels darker than the darkest stimulus and the lightest gray-patch 

to be approximately 20 gray-levels lighter than the lightest stimulus. This corresponded to 

a darkest gray-level of 44/255 (luminance = 2.61 cd/m2) and a lightest gray-level of 

210/255 (luminance = 104.8 cd/m2) respectively (luminance measured using a Photo 

Research PR-670 spectroradiometer on one of the computers used in the experiment). The 

remaining gray-patches were constructed in increments of 2 gray-levels from darkest to 

lightest. Each gray patch was 375 (vertical) by 300 (horizontal) pixels. 
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Procedure 

Participants used the same adjustment procedure as in Experiment 3.1 to give 

lightness judgments for the faces/objects. On each trial they viewed a reference object and 

an adjustable gray patch and were informed to match the shade of some particular feature 

of each object. For example, for the dog image, subjects were told to “match the shade of the 

dog’s fur” and for the banana image, subjects were told to “match the shade of the banana’s 

peel.” For the faces, subjects were told to “match the shade of the person’s skin.” They used 

the up and down arrow keys on the keyboard to adjust the gray patch (in increments of 2 

gray-levels) and pressed the spacebar to move on to the next adjustment once they 

perceived a match. The object images and the patches were vertically centered on the 

screen and horizontally separated by 10cm, center-to-center. After each stimulus, there 

was a 500ms interstimulus interval with Gaussian noise that was just large enough to cover 

the area of the object image and the gray-patch. Subjects sat approximately 50cm from the 

screen. At this viewing distance, the object images subtended approximately 8.8 degrees of 

visual angle or slightly less, and the gray-patches subtended approximately 11.3 degrees of 

visual angle.  

Each participant saw all of the faces, but the experiment was blocked so that they 

saw half of the faces with Caucasian hair and half with African-American hair in the first 

block. Then, in the second block, the faces with Caucasian hair in the first block were given 

African-American hair and those with Afrrican-American hair were given Caucasian hair. 

Participants took a mandatory break in between blocks and were informed that they would 

be completing the exact same experiment (with the same stimuli) after the break. They 

were not informed that the hair on the faces had been switched, and only one participant 
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guessed as much during post-experiment questioning. Which faces had Afro/Caucasian 

hair first was counterbalanced across participants. All stimuli (faces and other objects) 

were shown in random order. 

After completing all trials, participants guessed what they thought the experiment 

was about with free response. 

Results 

The average lightness distortion for the morphed faces is shown in Figure 3.7. A 

two-way repeated-measures ANOVA did not reveal a significant effect of race on lightness 

distortion, 𝐹(1,28) = 0.183, 𝑝 = 0.672. While there was a significant effect of face morph 

on lightness distortion, 𝐹(1,28) = 14.2, 𝑝 < .001, and each face was judged to be lighter 

than it actually is (Figure 3.7), we are only interested in the lightness difference between 

faces with different hairstyles.  

Since the the ANOVA did not reveal a significant effect of race on lightness 

distortion, we decided to conduct a post-hoc analysis using Bayes factors since they take 

into account both evidence for and against the null hypothesis (see, e.g., Wagenmakers, 

2007). A Bayes factor compares the data under the null hypothesis (that the faces look 

equivalent in lightness when wearing different hairstyles) to the data under the alternative 

hypothesis (that the faces look different in lightness when wearing different hairstyles)17 to 

determine which hypothesis is more likely.  

                                                           

 
17

 Although the initial hypothesis was one-tailed (i.e., that the morphed faces should look darker when wearing the 

African-American hairstyle), we decided to run the post-hoc analysis with the two-tailed hypothesis since the data is 

not clearly trending in one direction or the other (see Figure 3.7). 
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Figure 3.7. Lightness distortion for the face morphs in Experiment 3.2b. Error bars 
represent within-subjects 95% confidence intervals (Cousineau, 2005; Morey, 2008). 
Which hair the face morphs wear (African-American vs. Caucasian) does not appear to 
affect how light they look.  

 

For each face morph, we estimated a Bayes factor (null/alternative) using the JZS 

prior with a scale factor of 1.0 (Jarosz & Wiley, 2014; Rouder, Speckman, Sun, Morey, & 

Iverson, 2009). For Morph 1, this estimate suggested that the data were 5.48 : 1 in favor of 

the null; for Morph 2, the data were 3.80 : 1 in favor of the null; for Morph 3, the data were 

6.12 : 1 in favor of the null; and for Morph 4, the data were 6.11 : 1 in favor of the null. In 

other words, the Bayes factor estimates suggested that, given the data, it is 3.8 to 6.1 times 

more likely that the faces look equivalent in lightness than different in lightness when 

wearing different hairstyles. 
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Additionally, participants were not consistent with their ratings for any of the face 

morphs. For faces wearing the African-American hairstyle, only 12 out of 29 subjects chose 

darker samples for Morph 1, 𝜒2(1, 𝑁 = 29) = 0.862, 𝑝 = .353; 11 out of 29 chose darker 

samples for Morph 2, 𝜒2(1, 𝑁 = 29) = 1.69, 𝑝 = .194; 13 out of 29 chose darker samples 

for Morph 3, 𝜒2(1, 𝑁 = 29) = 0.310, 𝑝 = .578; and 15 out of 29 chose darker samples for 

Morph 4, 𝜒2(1, 𝑁 = 29) = 0.035, 𝑝 = .853.  

We also analyzed the participants” post-experiment guesses about the nature of the 

research. We had 5 independent raters judge each participant’s response using the same 5-

point Likert scale as in Experiment 3.1. The average rating across participants was 1.69 

with standard deviation 0.85, which was significantly lower than the ratings for the 

participants in Experiment 3.1, 𝑡(57) = −5.59, 𝑝 < .001. This indicates that we successfully 

concealed the research hypothesis.  

Discussion 

Using the morphed face stimuli from Experiment 3.2a, we failed to find support for 

the assertion that the perceived race of a face affects how light its skin-tone looks. That is, 

even though changing the hair on these faces changed how they were racially categorized 

(Experiment 3.2a), it did not change how light observers rated their skin-tone (Experiment 

3.2b). 

A critic might protest that we haven’t shown there isn’t an effect, just that our study 

was not powerful enough to find it. However, MacLin and Malpass (2001) reported an 

effect size of 0.55 in their study with blended Caucasian/Hispanic faces. Presumably we 

should find an even larger effect for blended Caucasian/African-American faces (Levin & 

Banaji, 2006), but if we conservatively assume the same effect size as MacLin and Malpass, 
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then our 30 recruited participants would give us a power of 0.90, well above Cohen’s 

(1988) recommended power level of 0.80.18 Additionally, we established the efficacy of our 

adjustment procedure in Experiment 3.1. In other words, if an effect exists, then we had a 

well-established procedure with well-above the recommended power to find it. 

An alternative criticism is that the hair confounds the stimuli. That is, since the 

African-American hair tends to be darker, it may cause the faces to look lighter by contrast 

which would offset any effect of race. However, such a criticism does not seem to be 

supported by the results. For example, Morphs 1 and 3 have the exact same African-

American hair, but Morph 1 is rated as lighter when wearing the African-American hair, 

whereas Morph 3 is rated as darker. Furthermore, MacLin and Malpass (2003) found that 

observers gave equivalent lightness ratings for faces regardless of whether the background 

behind the face was white or black, suggesting that skin-tone judgments are not 

significantly affected by contrast. We also failed to find an effect when we ran this 

experiment with blurred versions of the faces where race can no longer be identified (not 

reported here), suggesting that a low-level confound is not influencing the results 

differentially from race. 

Finally, we should comment on the results of the post-hoc analysis using Bayes 

factors. We didn’t just fail to reject the null hypothesis of no effect, but our analysis actually 

supported the null. Given the data, the null hypothesis was 3.8 to 6.1 times more likely than 

the alternative hypothesis. Jeffreys (1961) considers Bayes factors in this range to provide 

“substantial” support for the null, and, in an analysis of 855 published t tests, Wetzels et al. 

(2011) found that Bayes factors in this range generally correspond to p-values of 0.01 or 
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 Since we ended up dropping a participant, we actually only ran 29 subjects, which still results in a power of 0.89. 
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less (supposing we are trying to prove the null hypothesis is true). In other words, our 

results provide fair support for the assertion that, even though the face morphs look 

different in race when wearing different hairstyles, they don’t look different in lightness. 

General Discussion 

We set out to examine whether the race of a face can influence how light its skin 

looks regardless of how light its skin actually is. In review: 

Levin and Banaji (2006) reported that a prototypical African-American face appears 

to have darker skin than a prototypical Caucasian face even when the faces are matched for 

mean luminance and contrast (Figure 3.1). However, Firestone and Scholl (2015) showed 

that this effect is driven by the local luminance variations in the faces (a low-level 

confound) and not their race. Levin and Banaji (2006) also reported a lightness distortion 

with line-drawn faces that do not vary in local luminance (and thus are not confounded, 

Figure 3.2), but we argued that this result is not convincing because it is not consistent 

across observers. Finally, MacLin and Malpass (2001, 2003) reported that blended African-

American/Hispanic faces are labeled darker in complexion when they are perceived to be 

African-American than when they are perceived to be Hispanic. Reasoning that this last 

result is the most compelling current evidence that race influences lightness perception, we 

set out to test its veracity using morphed African-American/Caucasian faces. But, we failed 

to replicate the result. 

Why the discrepancy? Why did MacLin and Malpass find that race affects lightness 

judgments, while we did not? There are two important distinctions between our 

experiment and MacLin and Malpass’ (2001, 2003) experiments that may explain this 
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discrepancy, both of which suggest that their results may be due to response bias rather 

than altered lightness perception. 

First, while we had participants make direct lightness judgments using gray-level 

samples, MacLin and Malpass used text anchor points (light and dark) so their participants 

did not make direct lightness judgments. This might encourage participants to respond 

how they think they are supposed to respond rather than in a way that matches their 

perceptual experience. At the very least, an experimental design with text-based responses 

makes it difficult to determine whether response bias might be a plausible explanation for 

the results (Firestone & Scholl, 2014). 

Second, while we took special care to obscure the purpose of the study from our 

participants, MacLin and Malpass did not – it was clear to their participants that the study 

was about how race affects how people view a face. In our own experiments, we found that 

participants in Experiment 3.1 – exposed to instructions similar to those of MacLin and 

Malpass – were much better at guessing the research hypothesis than participants in 

Experiment 3.2, where the research hypothesis was obscured. This is problematic because 

it places a demand on the participants to respond in certain ways regardless their visual 

perceptions (Orne, 1962). For example, participants who are aware of the research 

hypothesis may respond in a way they believe with confirm the hypothesis in order to be 

“good” participants and not “ruin” the research (Nichols & Maner, 2008; Orne, 1962; Rubin, 

Paolini, & Crisp, 2010). Furthermore, this kind of bias has already been explicitly 

demonstrated in recent perceptual psychophysics research. Bhalla and Proffitt (1999) 

claimed that students perceive hills to be steeper when wearing a heavy backpack, but 

Durgin et al. (2009, 2012) showed that this effect is driven entirely by subjects who 
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correctly guess the research hypothesis (i.e., that wearing a heavy backpack makes hills 

look steeper) and that the effect disappears when participants are given a deceptive cover 

story that justifies the backpack’s presence (for other recent examples of response bias in 

perceptual psychophysics, see Firestone & Scholl, 2014; Shaffer et al., 2013). 

Thus, we propose that MacLin and Malpass’ participants may have judged African-

American-looking faces as darker than Hispanic-looking faces because they felt they were 

supposed to do so – they know that African-American faces are darker than Hispanic faces – 

not because they perceived African-American faces as darker. 

Furthermore, there is evidence of this kind of bias in the results of Levin and Banaji 

(2006). In their first experiment, they made no attempt to obscure the purpose of the 

experiment, telling participants that the experiment was about “how people perceive the 

shading of faces from different races” (p. 504). But, in their second experiment, they 

explicitly told participants the race of the faces – one group saw the Caucasian face labeled 

Caucasian and an Ambiguous face labeled African-American, and the other group saw the 

African-American face labeled African-American and the Ambiguous face labeled Caucasian 

– which makes it especially obvious to participants how they should respond. Indeed, Levin 

and Banaji reported that the effect size more than doubled (from 0.75 to 1.65) from their 

first experiment to their second experiment. They attributed this to a change in 

methodology (obtaining lightness judgments using gray-patches instead of other faces), but 

using the patch methodology, we obtained an effect size of only 0.96 for the 

African/Caucasian photographic faces (Experiment 3.1). Furthermore, their reported effect 

size of 1.65 is gigantic, more than twice what Cohen (1988) would consider a large effect 

(0.8). According to Cohen (1988, p. 27), an effect size of 0.8 should be blatantly obvious, or 
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“grossly perceptible”, and he uses as his example the height difference between 13 and 18 

year-old girls. In more technical terms, to obtain a power of 0.99 with an effect size of 1.65, 

one should only need 8 subjects. Now consider that this huge effect size was for the 

difference in lightness between the Ambiguous face and the African-American/Caucasian 

faces depicted in Figure 3.3. Is this difference in lightness more blatantly obvious than the 

difference in heights between 13 and 18 year-old girls? Certainly it’s not more perceptually 

obvious. We argue, then, that this difference must, at least in part, be due to response bias 

and, since MacLin and Malpass utilized similar instructions, that their results are also, at 

least in part, due to response bias. 

Overall, we find no support for the assertion that the race of a face affects how light 

its skin looks. In this particular case then, it appears that there is no cognitive penetration 

of perception. 

 
 

***  
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CONCLUSION 

 In this dissertation, I examined the surprising consistency of people’s preferences 

for visual textures and for faces. I found that preferences for visual texture can be explained 

well using Palmer and Schloss’ (2010) ecological valence theory. For faces, I found that 

none of the currently proposed mediators can explain why averaged configurations of faces 

are attractive and argued that averageness is, in itself, attractive. Finally, I examined 

whether low-level perception (specifically, of lightness) can be influenced by high-level 

cognitive factors. I found that the best current evidence for this does not hold up to 

scrutiny. Specifically, I found – contrary to Levin and Banaji (2006) – that the perceived 

race of a face does not influence how light its skin-tone looks.  

Overall I found that, on the one hand, people are surprisingly consistent in their 

preferences, both for visual textures and for faces. On the other hand, I found no evidence 

that idiosyncratic cognitive factors can influence low-level perception.  
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Appendix A 

Table A1shows all of the information needed to run the calculations in Chapter 1, for 

the 47 visual textures that we predicted preferences for. Table A2 shows information for 

the remaining 15 textures whose preferences we did not predict. The title (first column for 

both tables) of each texture is either the description given by Brodatz (1966), with his 

numbering in parentheses, or the search term that produced the image on Shutterstock. 
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Table A1. For the 47 visual textures whose preference was predicted, shows the average preference rating, rating predicted by the 

ecological valence theory, number of descriptions, average premium rating, most frequently associated object description with its 

average valence rating, and namesake description with its average valence rating. All rating scales vary from -100 to +100. Note: there 

is no valence rating for pressed cork because it was not listed during the object description task, and the blurred chocolate and mud 

were not given namesake descriptions. 

 

 

Visual Texture Preference Ecological Prediction nDescriptions Premium Most Frequent Description (MFD) Valence of MFD Namesake Description (ND) Valence of  ND

wire mesh (D1) 2.46 2.05 17 14.77 fence / gate 8.67 wire mesh -13.33

crocodile skin (D10) -27.65 1.10 29 -7.98 reptile skin (snake, crocodile, lizard) -25.66 reptile skin (snake, crocodile, lizard) -25.66

Japanese rice paper (D107) -11.96 3.99 24 -31.49 branches / roots (of a tree) 15.86 paper 25.66

grassy fiber (D110) -9.16 6.44 16 -25.24 grass 31.57 grass 31.57

plastic bubbles (D112) -16.52 5.31 24 -5.72 bee hive -29.03 bubbles 35.6

straw (D15) 10.7 9.24 14 -34.35 grass 31.57 straw 10.94

raffia weave (D18) 21.64 11.44 21 -15.65 woven basket 20.31 woven basket 20.31

beach pebbles (D23) 31.31 20.13 12 7.75 rocks / pebbles / stones 22.35 rocks/pebbles/stones 22.35

brick wall (D26) 19.21 6.28 6 -6.41 bricks (brick wall / brick building / brick sidewalk) 4.42 bricks (brick wall / brick building / brick sidewalk) 4.42

reptile skin (D3) -26.96 1.72 25 3.99 reptile skin (snake, crocodile, lizard) -25.66 reptile skin (snake, crocodile, lizard) -25.66

beach pebbles (D30) 32.32 12.90 13 21.21 rocks / pebbles / stones 22.35 rocks/pebbles/stones 22.35

pressed cork (D32) 2.76 4.43 22 -28.99 wall of a house / building 13.02 pressed cork --

netting (D34) -6 2.07 21 -6.64 net / netting -6.08 net / netting -6.08

water (D37) 26.7 24.46 9 14.85 ocean / sea 67.34 ocean / sea 67.34

lace (D41) 38.29 28.34 17 35.32 flowers 59.28 lace / embroidery 35.15

mica (D5) 6.13 13.64 14 -17.51 rocks / pebbles / stones 22.35 wall of a house / building 13.02

raffia woven with cotton (D50) 14.74 11.55 12 -10.07 tree bark 12.47 cloth / fabric 27.49

oriental straw cloth (D52) -6.85 7.61 19 -17.04 cloth / fabric 27.49 cloth / fabric 27.49

handmade paper (D57) -10.11 8.64 20 -29.71 wall of a house / building 13.02 paper 25.66

European marble (D58) -12.87 -0.12 26 -28.28 ocean / sea 67.34 granite / marble 31.39

European marble (D61) -15.84 4.76 24 -8.30 rocks / pebbles / stones 22.35 granite / marble 31.39

European marble (D62) 0.62 14.52 14 0.89 rocks / pebbles / stones 22.35 granite / marble 31.39

handwoven rattan (D64) 30.31 10.30 16 8.39 woven basket 20.31 woven basket 20.31

wood grain (D69) 19.19 13.40 11 28.18 tree bark 12.47 wood 28.52

wood grain (D71) 22.48 10.48 18 24.25 wood 28.52 wood 28.52

tree stump (D72) 19.39 13.01 6 -4.79 tree bark 12.47 tree bark 12.47

soap bubbles (D73) -16.19 4.18 34 -32.20 bubbles 35.6 bubbles 35.6

coffee beans (D74) 13.69 13.04 12 17.61 coffee beans 40.37 coffee beans 40.37

Oriental straw cloth (D78) 10.15 14.26 18 -21.13 wood 28.52 cloth / fabric 27.49

ceiling tile (D86) -17.99 5.65 22 -39.24 wall of a house / building 13.02 wall of a house / building 13.02

fossilized sea fan with coral (D87) -2.99 6.94 23 -4.01 leaves 34.87 coral / coral reef 42.84

dried hop flowers (D88) 10.15 8.11 20 1.24 insects / bugs -35.54 flowers 59.28

grass lawn (D9) -21.42 2.72 21 -41.91 grass 31.57 grass 31.57

clouds (D90) 0.83 3.49 16 6.46 clouds 61.82 clouds 61.82

clouds (D91) 63.88 22.74 8 27.75 clouds 61.82 clouds 61.82

fur, hide of unborn calf (D93) 10.78 5.47 6 5.47 animal fur (e.g., dog, cat) 6.69 animal fur (e.g., dog, cat) 6.69

crushed rose quartz (D98) 18.11 12.65 16 8.60 rocks / pebbles / stones 22.35 crystals / diamonds / gems 52.46

chocolate spread 28.67 10.07 20 38.47 chocolate 61.7 chocolate 61.7

chocolate (Gaussian blurred) -54.01 4.17 21 -43.37 X-ray / ultrasound -1.04 -- --

mud -51.91 -1.52 23 -49.88 mud -21.09 mud -21.09

mud (Gaussian blurred) -66.27 1.64 21 -63.15 people 40.24 -- --

lettuce 49.81 22.30 15 34.32 flowers 59.28 lettuce 37.99

mold -23.27 1.50 29 -41.54 dirt / gravel / soil -9.74 mold -66.16

rotted strawberry -48.37 -0.27 27 -25.08 beans 8.09 rotten / spoiled food -74.77

strawberry -12.57 9.31 27 1.84 eggs 33.25 strawberry 49.51

infected skin -26.48 0.78 28 -17.61 ocean / sea 67.34 infection -71.47

tropical sea 36.73 31.83 9 30.20 ocean / sea 67.34 ocean / sea 67.34
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Table A2. For the 15 visual textures whose preference was not predicted, shows the average 

preference rating, number of descriptions, average premium rating, and most frequently 

associated object description with its average valence rating. All rating scales vary from -100 to 

+100.  

 

 

 

Visual Texture Preference nDescriptions Premium Most Frequent Description (MFD) Valence of MFD

woven cane (D101) 1.88 19 15.22 cloth / fabric 27.49

woolen cloth (D11) 12.13 17 -6.75 clothing (shirt / pants / sweater / jacket) 57.07

brick wall (D25) 18.43 6 -11.12 bricks (brick wall / brick building / brick sidewalk) 4.42

beach sand (D29) -5.24 17 -29.34 cement / concrete / pavement 7.43

beach pebbles (D31) 45.84 10 19.52 rocks / pebbles / stones 22.35

lace (D39) 11.18 28 7.95 flowers 59.28

lace (D40) 38.27 23 42.47 flowers 59.28

lace (D42) 35.24 23 44.54 curtain 20.1

straw matting (D55) -2.11 20 -1.38 clothing (shirt / pants / sweater / jacket) 57.07

European marble (D63) -21.67 31 -19.67 spider web -40.72

Oriental straw cloth (D80) -20.28 21 -28.33 carpet / rug 15.51

Oriental straw cloth (D82) -1.41 24 -7.00 carpet / rug 15.51

woven matting (D83) 7.91 21 -0.58 cloth / fabric 27.49

dried hop flowers (D89) -26.21 23 -8.20 insects / bugs -35.54

brick wall (D94) 31.42 5 3.01 bricks (brick wall / brick building / brick sidewalk) 4.42




