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Risk-Sensitive Adaptive Tactics: Models and
Evidence from Subsistence Studies in Biology
and Anthropology

Bruce Winterhalder,' > Flora Lu,' and Bram Tucker?

Risk-sensitive analysis of subsistence adaptations is warranted when (i) outcomes
are to some degree unpredictable and (ii) they have nonlinear consequences for
fitness and/or utility. Both conditions are likely to be common among peoples
studied by ecological anthropologists and archaeologists. We develop a general
conceptual model of risk. We then review and summarize the extensive empirical
literatures from biology and anthropology for methodological insights and for their
comparative potential. Risk-sensitive adaptive tactics are diverse and they are
taxonomically widespread. However, the anthropological literature rarely makes
use of formal models of risk-sensitive adaptation, while the biological literature
lacks naturalistic observations of risk-sensitive behavior. Both anthropology and
biology could benefit from greater interdisciplinary exchange.

KEY WORDS: risk; adaptation; subsistence economics; behavioral ecology.

INTRODUCTION

As they seek more refined models of nonmarket economic behavior and eco-
logical adaptation, archaeologists (see Halstead and O’Shea, 1989; Tainter and
Tainter, 1996) and ethnographers (Cashdan, 1990; de Garine and Harrison, 1988)
have turned attention to questions of stochasticity and subsistence risk. This paral-
lels a trend in biology, where a large body of literature now has shown sophisticated
risk-sensitive behavioral capacities in a variety of organisms (see below; sum-
maries by Bernstein, 1996; Ellner and Real, 1989; Kacelnik and Bateson, 1996;
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McNamara and Houston, 1992; Real and Caraco, 1986; Stephens and Krebs, 1986,
pp. 128-150; and American Zoologist, Vol. 36, 1996). The taxonomic ubiquity of
risk-sensitive tactics suggests that they are a common evolutionary phenomenon,
thus one of potential importance to hominid evolution as well. We seek through this
review to demonstrate that ecologically minded ethnographers and prehistorians
could benefit substantially by greater attention to the conceptual developments and
comparative potential found in the broader behavioral ecology literature on risk.

Although we focus on subsistence economics, especially foraging, the con-
ceptual developments surveyed should transfer to any behaviors that produce more-
or-less unpredictable outcomes with nonlinear consequences for utility or fitness.
This includes habitat choice and territoriality, life history, and reproductive and
social behaviors (see Bednekoff, 1996; Benton et al., 1995; Caraco and Chasin,
1984, p. 81; Rubenstein, 1982; Winterhalder and Leslie, 1998). O’Connell (1995)
has made the case that archaeology requires an evolutionary theory of behav-
ior; risk-sensitive models seek to advance that theory with respect to subsistence
adaptations.

We begin with definitions. Next we develop a conceptual framework for risk-
sensitive analyses. These sections are followed by reviews of empirical studies
in biology and anthropology, drawing only occasionally on literature from eco-
nomics and psychology. Although this ordering—concepts, biology, and only then
anthropology—may seem perverse to an anthropological readership, it in fact is es-
sential to one of our most important findings: neglect by anthropologists of formal
models and comparative materials from biology threatens our ability to accurately
appraise the role of risk in shaping behavioral adaptations.

Throughout we attempt to develop an integrated view of existing models,
whether they have been used in biology or anthropology. In the concluding section,
we compare and assess the present state of knowledge in the focal disciplines and
direct attention to gaps and to promising avenues for future study. For economy
of presentation, the empirical studies we summarize are described in Tables I
through IV.

DEFINITIONS

Risk is unpredictable variation in the outcome of a behavior, with conse-
quences for an organism’s fitness or utility. Subsistence outcomes that by chance
fall short of needs are an example. Neodarwinian theory predicts that creatures tend
to adapt so as to avoid harmful dietary shortfalls by minimizing them to the degree
possible. Thus, behavioral ecologists treat risk with some of the same analytical
tools as other adaptive problems—optimization premises (Foley, 1985; Parker and
Maynard Smith, 1990), simple models (Levins, 1966; Richerson and Boyd, 1987),
and a hypotheticodeductive methodology (Smith and Winterhalder, 1992). Utility
theory, the basis of much economic and biological modeling on this subject, makes
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additional, axiomatic assumptions that choice is rational and logically consistent
(see Friedman and Savage, 1948, pp. 287-288; von Neumann and Morgenstern,
1944). For brevity, in what follows we present the relevant models in graphical
form. Readers are referred to the relevant citations for the underlying assumptions
and mathematics.

Common usage sometimes confounds the economic meaning of risk with
related concepts that we wish to distinguish. With risk the probability distribu-
tion of outcomes is in some sense known to the organism, but stochasticity makes
any particular outcome unpredictable. Outcomes can be assigned odds but not
determined in advance. Uncertainty refers to incomplete knowledge of outcome
probabilities (Knight, 1921). Uncertainty can be overcome by acquiring informa-
tion about an environment (see Stephens, 1987, 1989); risk cannot. An organism
can have certain knowledge (know precisely the probability distribution of out-
comes) but still face risk. As well, in economics and behavioral ecology, risk does
not mean exposure to danger (e.g., a “risky” situation). We use hazard to refer
to potential sources of harm to an organism. Inadequate food is a hazard. As we
demonstrate below, an organism can seek to avoid the hazard of food shortfalls by
being risk averse (avoiding behaviors linked to unpredictable outcomes in favor
of more certain ones) or risk prone (favoring behaviors linked to unpredictable
over more certain outcomes). Finally, biological theory uses fitness as its ultimate
“currency,” whereas economic theory has developed in terms of utility. Because
we draw from literature in both fields we gloss these two currencies with the word
value. Fitness and utility differ in important respects, but the generality of the
concepts discussed here will bear the refinements that might be required by their
more specific use.

THE THEORY OF RISK SENSITIVITY

In this section we review and synthesize the concepts and models necessary to
analyze risk-sensitive adaptations. It is our experience that much of this literature
is unfamiliar to anthropologists (as it was to us, until fairly recently). This is an
unfortunate state of affairs and an impediment to progress in human ecological
studies, ethnographic and archaeological. The atheoretical approach adopted in
much of the anthropological literature on subsistence risk is a handicap. Our sub-
sequent discussion of empirical analyses is organized around concepts introduced
in this section. We highlight those biological and anthropological case studies that
draw on the appropriate theoretical tools.

Deterministic optimization models of subsistence decisions assume that an
organism continuously experiences the average conditions of its behavior and en-
vironment. Each behavioral option has a predictable outcome with an associated
value. In contrast, risk-sensitive models allow for the stochasticity that character-
izes most real situations, to greater or lesser degrees. An organism cannot count
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on a particular result. It faces a range of possibilities, their frequencies given by a
probability distribution. In moving from deterministic to risk-sensitive models, a
predictable average outcome gives way to odds over a known range of outcomes.
We wish to understand to what extent this stochasticity matters to the adaptive
problems that organisms must solve.

A risk-sensitive analysis entails two steps. We must first associate each behav-
ioral option with its probability distribution of outcomes. We must then specify the
relationship between outcomes or rewards (say net acquisition rate of resources)
and their values (utility, fitness). The set of cultigen varieties and field locations
chosen by the farmer has an associated probability distribution of yields. Each
yield has a particular fitness or utility (value).

The overall value of a behavioral option is given by the sum of the weighted
likelihood of each possible outcome multiplied by its value. This distinction be-
tween a distribution of values and a probability distribution of outcomes is implicit
in Pascal’s Wager (ca. 1669) but was first formalized by Bernoulli [1954 (1738)].
We have

Ei[V(x)] = / V(x)fi(x)dx 0))

The expected value of alternative i, E;[V (x)], is the product of the value func-
tion V(x) and the outcome probability distribution f;(x) specific to alternative i,
summed over each possible outcome (x). The best choice among the alternatives
is that having the highest expected value. In the language of economics: the ob-
jective probabilities of the outcome distribution f;(x) must be weighted by their
subjective utilities V (x). To minimize confusion, we consistently use outcome or
reward when referring to the probability distribution and value when referring to
the utility or fitness function.

Relationship Between Qutcome and Value in Terms of Fitness or Utility

A sigmoid or convex—concave value function is likely to be especially im-
portant with respect to subsistence adaptations (Fig. 1b) (see Rubenstein, 1982;
Schaffer, 1978; Smallwood, 1996). Value always rises with increasing resources
(e.g., kcal/hr acquired), but it does so at an accelerating marginal rate when re-
sources are scarce (to the left of the inflection point) and a decelerating marginal
rate when they are abundant (to the right of the inflection point). Consider the
fitness function relating atmospheric oxygen concentration (a needed metabolic
resource) to the work capacity of a mammal. Food operates similarly: with too lit-
tle, added increments have high value; with too much, added increments count for
little. Some portion or variant form of the convex—concave value function covers
most of the circumstances for which we require hypotheses about subsistence risk.
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Fig. 1. Functional relationships between resource out-
come and value (fitness, utility). (a) The step function,
adopted by the Z-score model. (b) A general sigmoid
function. The sigmoid function illustrates the basic
logic of risk sensitivity. For the concave portion, in
which marginal returns are decreasing, an organism
will prefer a constant outcome (k) to equal probabili-
ties of a variable outcome (k + ¢, k —c). For the convex
portion of increasing marginal returns, it will do better
with the variable outcome.

Consider an organism with a simple, two-way choice: a fixed reward (k) or
an unpredictable reward with equal probability of being either (k — ¢) or (k + ¢),
for small values of ¢ (Fig. 1b). The average outcome of these two options is equal
but their values are likely to be different. To the right of the inflection point the
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value gained from alternative (k + ¢) does not offset the larger loss of value when
(k — c) is the outcome. The mean or expected value of the variable reward is less
than the vaiue of the constant reward. The organism optimizes fitness or utility by
avoiding the variable option. It is variance or risk averse. In contrast, to the left of the
inflection point, the expected value of the variable tactic is the greater: (k+ ¢) more
than offsets (k — ¢). Given choices of equal expected value, the organism doing
relatively poorly opts for the tactic producing variable outcomes. It is variance
or risk prone. Jensen’s inequality formulates the mathematics underlying these
relationships (Smallwood, 1996).

Daniel Bernoulli [1954 (1738), p. 25] first stated the generality and impor-
tance of the concave (risk averse) portion of this function:

.. .the utility resulting from any small increase in wealth will be inversely proportionate
to the quantity of goods previously possessed. Considering the nature of man, it seems to
me that the foregoing hypothesis is apt to be valid for many people to whom this sort of
comparison can be applied. (italics in original 1954 translation)

Economists did not formally recognize arguments for a convex segment until
over two centuries later (Friedman and Savage, 1948). The applicability of this
function is not limited to Homo economicus. In an important experimental study,
Caraco er al. (1980) show that the utility function for yellow-eyed juncos (Junco
phaenotus) has the sigmoid form.

We make several observations about the sigmoid value function. First, its
precise form is time sensitive. If value is expressed as a rate, it must be deter-
mined in relation to a set duration (dg,, ) of time that fixes the consequences of
that rate. The same result can be achieved with greater conceptual transparency
if the x-axis has units of absolute amount/dr_,,. For example, the fitness conse-
quences for a large mammal given an option between k liters/hr water acquisition
and equal probabilities of O or 2k liters/hr depend on the duration over which it
must live with its choice. Consider a 0-liter/hr result suffered for 6 hr, 6 days, or
6 weeks before the choice and outcome are iterated. Similarly, given a dg,, =~
week, the value functions for key metabolic resources vary from a near step func-
tion (oxygen) to more smoothly curved sigmoid (water and calories) to a curve
more nearly linear in form (trace minerals). Responses to risk depend on the time
frame, urgency, and consequences of decisions that cannot be reversed over some
interval.

Second, the ongoing experience of the organism with respect to resources
determines its preferences with respect to reward variability or constancy. To get a
qualitative sense of this relationship, compare the magnitude of upside gain of the
variable reward (k + ¢) to the downside loss (k — ¢) as k, or the average anticipated
reward, moves from left to right (Fig. 1b). Because organisms presumably spend
most of their time in positive energy balance, to the right of the inflection point,
they typically will avoid variable options in favor of more certain results having
the same average.
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Third, using Fig. 1b we have compared a constant reward to a symmetrical,
two-outcome choice (k £ ¢, with equal probabilities) with an equal mean. Even
this very simple situation has impressive generality. For instance, we will get the
same qualitative predictions as above if the variable reward has multiple outcomes,
as long as they are symmetrically distributed about their mean—for example, when
they are normally distributed. In the next section we show how this same logic is
used to compare behavioral alternatives that differ by both mean and variance.

The Z-Score Model

For analytical convenience, we can approximate the sigmoid curve with a
step function (Fig. 1a). Below the resource level set by (Ry;n) the value is zero;
above (Rpy) it is 1. By this simplification we fully characterize the value function
with a single parameter, (Rpin), While preserving a semblance of the sigmoid
form. We also can invoke the central limit theorem to suggest that over large time
intervals the distribution of energy gains (a continuous, random variable) from a
particular subsistence choice approximates a normal distribution. Consistent with
this result, we describe the outcome of each subsistence option by its mean (@)
and standard deviation (o). The expected value [Eq. (1)] of each option then is the
summed product of the step function [V (x)] and the normal curve representing
that option’s outcomes { f; (x)].

The step function and normal outcome distribution are the basis for the
widely used Z-score model of shortfall minimization (Stephens, 1981; Stephens
and Charnov, 1982). In this model the shortfall-minimizing alternative is the choice
that reduces to the extent possible the likelihood of zero fitness, the area beneath the
outcome distribution that lies to the left of Ry,. Because the area beneath normal-
ized distributions are symmetric around the mean, this is equivalent to maximizing
the high-fitness area to the right of Ry, or

Z = (1 — Rmn)/0 03

Rearranging terms, we have 4 = Rpin + 0 Z, the slope—intercept equation for
a straight line (Figs. 2a and b). Here u is the y-axis coordinate, o is the x-axis
coordinate, Ry, is the y-intercept, and Z is the slope of the line. The decision maker
intent on minimizing the harmful consequences of risk will choose the outcome
with a mean/SD pair (¢, o) on the line of highest possible slope. Because all points
on a particular line have a fixed Z, they represent (¢, ') pairs among which the
forager should be indifferent. The set of lines emanating from R, constitutes a
risk indifference or isovalue map, with value increasing from vy, to vy, etc. (Figs. 2a
and b).

The Z-score isovalue map gives us several rules of shortfall minimization
widely used in biology. The expected energy budget rule predicts that organisms
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in negative energy balance (4 < Ry,) always prefers a variable to a constant
reward, if the means of the rewards are equal (b preferred over a; Fig. 2a). Those
in positive balance (1 > Ryy,) prefer the constant reward (d preferred over e).
The extreme variance rule compares options with a constant mean and nonzero

(a)
=
[+F)
1=
Q
Q
=]
o Rmin
=
<
5]
=
0
0
(b)
=
[<5]
E
Q
=]
=]
© R min —
=
S
Qd
=
0

0
Standard Deviation of Outcome (o)

Fig. 2. Isovalue maps for two risk-sensitive models and normal out-
come distributions: (a) the Z-score model, showing expected energy
budget and extreme variance rule; (b) Z-score, showing a general
distribution of outcomes; (c) the linear variance discounting (ILVD)
model. The variables v; through v, designate isoclines of increasing
value. Each of the dots in b represents the mean and standard deviation
(the 1, o pair) of one alternative with the set of behavioral options.
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variances. Organisms in negative energy balance maximize variance (c preferable
to b), whereas those in positive energy balance minimize it (e preferable to ). More
generally, the Z-score rule (Fig. 2b) identifies the shortfall-minimizing alternative
from any array of (1, o) combinations. Itis that alternative with an outcome [(©, 0)
pair] tangent to the indifference line of highest value (steepest slope).

The Z-score model has been used widely in biology and occasionally in an-
thropology. However, it has several important limitations. (i) It is based on the
discrete interval, dg_,,. At the start of a time period the organism selects the tactic
most likely to surpass Rm;n at its conclusion. The organism does not adjust tactics
dynamically according to its ongoing experience during that period. dg_,, is partly
a modeling artifice. Ideally it also reflects the organism’s natural history. For a
small song bird nightfall ends foraging, and the requirements of overnight survival
set the fitness consequences of the day’s yield. A logical dg,,, is the diurnal cycle.
Onset of a migratory (see Moore and Simm, 1986) or reproductive season that
requires a minimum body weight for success or onset of a lean season requiring a
minimum-sized food cache might determine other potentially significant intervals.
(ii) The Z-score approach makes no provision for carryover of a surplus to a suc-
cessive interval. The outcome that surpasses Ry, by a wide margin is treated as
if it is no more valuable than the outcome that exceeds it only by a hair’s breadth.
(iii) Additionally, the model performs poorly as outcome variability approaches
zero. The value of all possible tactics for which o = Ois set ateither O (v;; Fig. 2a),
forall 4 < Ryin,or 1 (vy;Fig. 2a), for all 4 > Ryin. This violates our intuition that
fitness or utility should be a more continuous function of mean outcome (u). Put
simply, the Z-score model is not effective in comparing constant or near to con-
stant food rewards. It also predicts complete indifference to variance (represented
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by o) if 4 = Ryy,- The significance of these limitations depends on the behavior
in question, on the natural history of the organism, and on its environment.

Linear Variance Discounting

A second model, linear variance discounting (LVD), is used widely in eco-
nomics and occasionally in biology (Ellner and Real, 1989; Real, 1980). It assumes
that the value function V(x) is a negative exponential (concave, with a shape
roughly like that of the sigmoid curve to the right of the inflection point; Fig. 1b).
LVD organisms are indifferent among normalized mean/variance combinations
given by

v=pu —ko? 3)

The value (v) is a function of the expected reward (1), discounted to a fixed extent
(k) by the variance (o). In effect, k measures the undesirability of variance. The
formula shows the increase in mean reward required for indifference to a certain
increase in variance. By rearranging terms to i = v + ko2, the LVD formula can
be represented like the Z-score model, but with variance (o ?) rather than standard
deviation (o) on the abscissa (Fig. 2c). A value-minded forager always prefers
higher to lower lines but should be indifferent among choices lying along a line
(v1, v, etc.).

Whereas the Z-score model predicts that risk sensitivity changes as mean
intake increases, the LVD model assumes constant aversion, irrespective of the
mean (Caraco and Lima, 1985). Stephens and Paton (1986) use this divergence
in an ingenious test to evaluate which model better fits experimental results with
risk-sensitive, rufous hummingbirds (Selaphoruous rufus). They examined food
intake choices between two options with the same low mean but different variances
(e.g., b and c; Fig. 2a). They then added a constant amount of food to each reward
in the experimental schedule. This elevates the average intake but does not change
o or % (e.g., e and f; Fig. 2a). From the first to the second test the birds switched
their preference from the higher to lower variability. Such a change is predicted by
the Z-score model (extreme variance rule; Fig. 2a) but contrary to the prediction
of the LVD model (Fig. 2¢). Rufous hummingbirds do not behave as if k is the
constant assumed by the linear variance discounting model.

Salient limitations of the LVD model are as follows. (i) The model violates
our intuition that an organism’s response to variability will be a function of its mean
expectations. Constant risk (variance) aversion seems unlikely. The exchange rate
fluctuations that doom the impoverished student traveler may be little more than
a nuisance to the affluent vacationer. (ii) Because it draws only on a concave
value function, LVD predicts universal risk aversion. Unlike the Z-score model, it
forces us to conclude that risk-neutral or risk-prone behavior is always irrational.
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(iii) Because the predictions of LVD are independent of u, it ignores the forager’s
current energy budget. There is no equivalent of Ry, in this model. (iv) In contrast,
the LVD model solves one shortcoming of the Z-score approach. It can represent
relative value as a continuous function of mean outcome even at o2 = 0 (see
Fig. 2c).

General Variance Discounting

General variance discounting (GVD) draws on the full flexibility of Eq. (1).
For normally distributed outcomes, GVD produces an isovalue map according to
the formula

V= — G(x)a2 4

This is Eq. (3) with a discounting function G (x) in place of the constant (k). We
might, for instance, specify that variance is to be discounted as a function of the
mean {G(x) = f(u)] and thereby avoid the assumption of constant risk aversion.

Using variant forms of the sigmoid value function, we show how the Z-
score and LVD models serve as special cases of the GVD approach (Fig. 3). This
substantiates our earlier claim that a sigmoid curve has a high level of generality
in the analysis of subsistence adaptations. The value function, V(x), is shown in
Fig. 3 as a near-step function (Fig. 3d), a smooth sigmoid function (Fig. 3¢), and a
near-linear function (Fig. 3f), with their corresponding isovalue maps (Figs. 3a—).
Figure 3a approaches the indifference topography of the Z-score model (rotated
90°), including its relative insensitivity to mean outcomes when ¢ = 0. As the
value function approaches the linear, the isovalue curves become more vertical
(Fig. 3c). The expected value is determined almost solely by the mean of the
outcome distribution. The smoothed sigmoid function (Fig. 3b) produces a risk-
sensitive indifference map that responds to both  and to o over their full ranges. It
thus avoids many of the counterintuitive features of the Z-score and linear variance
discounting models.

The various approaches to shortfall minimization can be integrated by ob-
serving that as the sigmoid value function is transformed toward a step function
(Fig. 3d), the corresponding isovalue map shifts toward the fanlike form in Fig. 3a,
pinching off, at low variance, its sensitivity to mean outcome. As the sigmoid value
function becomes increasingly linear (Fig. 3f), the indifference map becomes in-
creasingly vertical and thus insensitive to outcome variance (Fig. 3¢). Comparison
of Figs. 3a through 3c demonstrates when we should expect the simplified Z-score
or LVD models to make qualitatively sound predictions (that is, predictions closely
matching those of the more robust sigmoid function). For instance, the Z-score
indifference map (Fig. 3a) is like that for the sigmoid value function (Fig. 3b)
for values of o not located near 0. In this range it sheds some of its limitations
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by reliably mimicking the more complicated but more general model. The utility
function governing the LVD approach is like that for the segment of the sigmoid
function to the right of the inflection point. Note that the corresponding portion of
Fig. 3b (that for which i > Rp,) would give indifference curves like the linear
ones of the LVD model were the x-axis transformed to o2 (see Fig. 2c). In quali-
tative terms, the LVD model fits situations in which behavior is not affected by a
convex or accelerating segment of the value function.

Confounding Factors

Various factors can complicate the predictions of these simple risk-sensitive
models. We mention four of them.

Variable Reward Versus Variable Delay

Risk-sensitive subsistence may arise from unpredictably sized outcomes en-
countered on a regular schedule, from regularly sized outcomes at intervals of
unpredictable duration, or from some combination of these possibilities. If inter-
vals are unpredictable, reward value may be complicated by future discounting
(see Rogers, 1994). Because (positive) discounting decreases the present value of
a delayed reward, it favors immediacy (Kagel ez al., 1986a). Consequently, it shifts
preferences toward temporally variable outcomes compared to a same (average)
reward at regular intervals. Variable delay favors risk-prone choices. Research with
pigeons indicates that they typically are risk prone in time and risk averse in quan-
tity (Hamm and Shettleworth, 1987). This is a growing research area in biology
(Benson and Stephens, 1996; Green and Myerson, 1996; Kacelnik and Bateson,
1996; Reboreda and Kacelnik, 1991).

Skew Outcome Distributions

Normal distributions have two useful attributes: they are robust in the face of
potentially restrictive assumptions and they are symmetrical. Caraco and Chasin
(1984) show that if the outcome distribution is nonsymmetrical, foragers with
constant or decreasing risk aversion generally benefit by electing positive over
negative skew for reward distributions with equal means and variances. Negative
skew may be preferred for Ry, equal to or very close to the mean outcome. A
dearth of naturalistic studies forestalls knowing if skew (third-moment) outcome
distributions are needed for realism.

Continuous Risk-Sensitive Adjustments

The Z-score approach envisions risk sensitivity as a sequence of choices that
are set for the duration of the critical interval (dg ) rather than as a continuous
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process of adjusting tactics to conditions. Analysis of continuous adjustments
requires the more complicated technique of dynamic optimization. Houston and
McNamara (1985; see also Bednekoff, 1996) model the dynamic choices of a
risk-sensitive forager with two resources. The organism continuously monitors its
energy reserves and remaining foraging time. It has the twin goals of maintaining
positive energy balance and surmounting an end-of-day threshold of reserves. Its
best tactic is risk averse (take both prey) except if low reserves late in the day create
the possibility of ending below its threshold. Then it must gamble and switch to the
higher variance, one-prey option. The trade-off here acts like the extreme variance
rule applied within the foraging interval.

Uncertainty

Uncertainty also may affect risk sensitivity, especially in an environment in
which the basic parameters of subsistence choices are changing rapidly. McNamara
(1996) argues that selecting an unpredictable option in order to sample its outcome
distribution accurately is costly, and the usefulness of the information may be
ephemeral. Such appraisal difficulties bias choices toward less variable outcomes,
making the uncertain organism more risk averse than would be predicted from a
pure, risk-sensitive model.

Summary

The analysis of risk-sensitive subsistence adaptations requires a two-step
procedure: outcome distributions for each alternative behavior must be specified,
and appropriate values must be assigned to the outcomes and then summed. The
Z-score, LVD, and GVD approaches each accomplish this, albeit with important
limitations. Using isovalue maps (Fig. 3), we have shown how these models relate
to one another, how their respective limitations affect their performance, and how
these limitations can sometimes be overcome. The Z-score and LVD approaches
are restricted cases of a convex—concave, GVD, model. The Z-score approach is
poorly suited to situations of zero or near-zero variances but allows for changes in
variance discounting as a function of mean outcome. The LVD approach requires
constant discounting of variance but gives more satisfactory results for compar-
isons involving constant (nonvarying) outcomes. Compared to the Z-score model,
the more general curvilinear form of the sigmoid value function has significant
advantages. We can assign the inflection point of the sigmoid value function a
role comparable to that of Ry, in the Z-score model. This places the minimum
requirement within a smoothed or graded set of changing marginal values. Com-
pared to the Z-score mode, it also allows us to represent the enhanced value that
arises from a carryover surplus. The exact form of the sigmoid can be varied to
represent the behavior of interest and the natural history of the organism and its
environment in a wide variety of circumstances.
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Relationship Between Tactic and OQutcome

Applying risk-sensitive models also requires that we understand (or speculate
about) reward distributions. Assuming normality, this entails specifying the mean
and standard deviation of each alternative within a set of behavioral options. The set
of (i, o) pairs makes an array of shortfall-minimizing possibilities on the isovalue
map (Fig. 2b). Its shape and the distribution of the pairs with respect to tactics
determine how risk sensitivity affects choice. If the array is narrowly concave
or sharply pointed on its upper surface (with greater dispersion about w than
o), then the shortfall-minimizing tactic (i) converges with the rate-maximizing
option, (i1) is relatively insensitive to Rpyp or the sigmoid inflection point, and
(iii) is also relatively insensitive to the precise form of the value function. A
narrowly concave outcome array also makes it difficult to observe risk-sensitive
choices in naturalistic or experimental settings [e.g., Cartar and Abrahams (1996,
Fig. 2c)]. The contrasting set of statements apply if the array has arelatively shallow
and broad upper surface (e.g., greater dispersion about o than p). The shortfall-
minimizing option (i) will likely diverge from the deterministic optimum, (ii) will
be sensitive to Ry, and (iii) will be sensitive to the precise form of the value
function.

Patch Residence

Risk-sensitive variants of two key foraging models are available. The firstis a
stochastic variant of the marginal-value theorem (Charnov, 1976). The marginal-
value theorem specifies how long an organism should continue harvesting a patch
of declining value before incurring the travel costs to find a similar location not
depleted of resources. Stephens and Charnov (1982) derive the (i, o) pairs of
energy gain for a shortfall-minimizing forager faced with stochastic variation in
the time required to locate a fresh patch. The Z-score model result produces
these qualitative predictions: (i) for a wide range of Rpni, values, the safety-first
(risk-sensitive) residence time will be close to the rate-maximizing time (f4yax)
that would be specified by the deterministic version of the model; (ii) if Rpin <
fimax, the risk-sensitive forager will remain longer than would be predicted by the
deterministic model; and (iii) if Rpin > fmax, the forager will depart sooner.

Resource Selection

Two analyses examine outcome distributions for the encounter-contingent
resource selection model (Stephens and Krebs, 1986). Winterhalder (1986a,b)
simulated stochastic variation in prey encounter rates and handling times for six
resource species, ranked and harvested in the six combinations of “diet breadth”
given by the deterministic version of the model. Diet breadths 1 through 6 were
arrayed counterclockwise around a concave parabola. Tucker (1996) has identified
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several shortcomings in this analysis. Most importantly, there is no a priori rea-
son that the optimal shortfall-minimizing combination of resources will be found
among the six options that are adequate for the deterministic form of the model.
Tucker found several combinations (among the 64 possibile permutations of a
data set of six resources) that outperformed any of those used by Winterhalder.
Weissburg’s (1991) simulation examined (i, o) arrays for encounter-contingent
diets under a variety of assumptions about the functional relationships between
prey size, profitability, and encounter rates. However, like Winterhalder, Weissburg
looked only at resource combinations given by the deterministic model, leaving
the generality of his results uncertain.

Summary

The very limited progress in analyzing stochastic outcome distributions for
subsistence adaptations stands in sharp contrast to the advanced analytical work
on value functions. Theoretical efforts are few. They are limited to patch and
resource selection models and are compromised by known limitations. We are
unaware of any empirical studies that would allow us to formulate and compare
outcome distributions empirically, or to assess the fidelity of modeling efforts to
field conditions. This is a serious gap. Given basic similarities in the value functions
examined above (Figs. 3a—c), predictions about risk-sensitive subsistence choices
may depend largely on the shape of (u, o) arrays, about which we know little.
Further, only the most general of statistical principles give us any assurance that
these distributions are normal, as is assumed in the models that are used most
commonly.

APPLICATIONS IN BIOLOGY

Table I lists and describes biological research reports that specifically test for
shortfall minimization with respect to resource selection (see also Kacelnik and
Bateson, 1996; Stephens and Krebs, 1986, p. 135). Table 11 lists biological papers
describing how other behaviors function to mitigate the subsistence consequences
of unpredictable environmental variability. Our comments are given in summary
from, drawing on these tables and the literature that they cite. We begin our review
of cases with the nonhuman literature because it illuminates both the logic and the
widespread applicability of the risk-sensitive models just summarized.

In biology, most research motivated by shortfall minimizing models of re-
source choice has been experimental and laboratory based. Field experiments
or naturalistic observations are rare (for exceptions see Barkan, 1990; Cartar,
1991; Gillespie and Caraco, 1987; and Uetz, 1996). Biological studies of risk-
sensitive resource selection now are of sufficient duration, number, and variety that
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methodological pitfalls have become evident (Kacelnik and Bateson, 1996), alter-
native models are available (Bednekoff, 1996; McNamara, 1996), and competing
explanations for some results have been proposed (Smallwood, 1993, 1996). The
expected energy budget rule has gained in importance because it makes predic-
tions that appear to be unique to a risk-sensitive framework (Kacelnik and Bateson,
1966, p. 419).

Following pioneering work by Caraco et al. (1980), the majority of papers
test the expected energy budget rule. Organisms are given a choice between a fixed
interval to constant or stochastically variable rewards with equal means. Analyses
of the extreme variance rule or multioption, Z-score trade-offs are less common. In
such experiments, virtually all the species (but sometimes not all individuals) ob-
served in laboratory and field studies demonstrate fairly consistent, risk-sensitive
behavior. Indifference to reward variability is rare. It is clear that risk-sensitive be-
haviors have taxonomically widespread evolutionary significance, which suggests
that they may be present in primates as well as our hominid ancestors.

Risk-prone resource selection under negative energy balance is predicted and
isregularly observed in passerines (e.g., juncos, sparrows), shrews, and other small,
temperate-zone endotherms. These species tend to be solitary, feeding specialists
with low reserves, high metabolic requirements, and periodic and relatively lengthy
interruptions of foraging (e.g., long, cold nights). Bitterlings, an ectothermic fish,
can be induced to make risk-prone choices only if they are far below energy balance
(Young et al., 1990).

Two examples illustrate this work. Caraco et al. (1990) recorded seed con-
sumption of juvenile and adult yellow-eyed juncos (Junco phaeonotus) at ambient
temperatures of 19, 10, and 1°C. The birds ate significantly more seeds at each drop
of temperature, signaling increasing energy requirements. The birds were then of-
fered a choice between a constant reward and a variable reward (equal mean). With
a negative energy budget at 1°C, only one bird showed significant risk aversion;
42% were risk prone. With a positive energy budget at 19°C, there was only one
case of risk proneness, and 61% of the birds were risk averse. The response under
each condition is largely consistent with the expected energy budget rule, thus with
adaptive risk sensitivity.

Moore and Simm (1986) proposed that yellow-rumped warblers (Dendroica
coronata) would become risk prone during the premigratory fattening period, when
they are under pressure to gain weight rapidly. In their experiment five birds served
as controls and five were stimulated to anticipate migration by manipulating the
photoperiod of their laboratory environment. After forced-choice (learning) trials,
the birds were given open-choice trials with a fixed delay to the option of a constant
or variable reward (same mean). Consistent with the expectation, premigratory
birds chose the variable rewards, whereas controls preferred the constant reward.
Notably, when the experimental (risk-prone) birds attained maximum weight they
shifted back to the risk-averse (constant) outcome.
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In contrast to studies like those summarized immediately above, it has proven
difficult to induce risk-prone resource selection in omnivorous species (e.g., ba-
nanaquits, blue jays, elephant shrews), those with larger body size (laboratory
rats, gray jays), or those with alternative shortfall-minimizing tactics such as tor-
por (e.g., elephant shrew) or nocturnal hypothermia [some chickadees (Rogers,
1987)]. Likewise, it has been difficult to show risk-prone resource selection in
some social insects, perhaps because an individual’s food intake is not dependent
on its own, immediate foraging success. These studies suggest that the expected
energy budget rule may apply only rarely to hominids, nonhominid primates, and
modern humans, which are omnivorous and relatively large species.

Animals are commonly risk averse when quantity is variable. They often
are risk prone when the time to reward is variable. This is observed both across
studies and within them when both treatments have been used (e.g., Bateson and
Kacelnik, 1995). Trials manipulating delay before reward provide less evidence
for the expected energy budget rule than those manipulating the amount of reward
(Kacelnik and Bateson, 1996). As we noted earlier, such results suggest that these
species are discounting the value of delayed rewards.

It should be noted that risk-prone behavior is a desperation measure in which
the best choice available nonetheless has low odds of success (<50% chance
of making R, for a cumulative normal distribution). The ability to induce this
tactic in some species offers a striking confirmation of the importance to them
of subsistence risk. However, the environmental setting that leads to risk-prone
choices obviously will have placed strong selection pressures on tactics that would
forestall the need for them. That is, a ready shift to risk-prone food selection may
be characteristic only of species with severely constrained alternatives. Because
quantitative tests in the field are rare, we do not know the extent to which the
risk-prone choices that can be observed in the laboratory are used in nature. For
instance, uncertainty due to environmental change in field settings may have the
consequence of greater risk aversion (McNamara, 1996).

Finally, biologists have proposed and investigated a variety of alternative
behaviors believed to minimize the likelihood of shortfalls. In order to demon-
strate the organizing potential of the theory introduced in the prior section, we
have grouped these by their presumed effect on variables of the Z-score model
(Table II). For instance, torpor and related physiological states, as well as ac-
quisition of fat reserves, lessen Ryin. Group foraging, pooling, theft (scrounging,
scavenging), and hoarding (caching, storage) reduce o . Table II (see also Table IV)
presents each of these tactics in its risk-averse orientation. Thus, if we assume a
concave value function, joining a group of increasing size may lessen an individ-
ual’s chance of a shortfall by reducing consumption variance. Table II does not
explicitly show but we emphasize that the inverse of each behavior also may serve
as a shortfall-minimizing tactic when risk-prone behavior is the better adaptive
option. For instance, if leaving a group increases individual variance, then it may
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be a risk-sensitive adaptive tactic when the value function is convex (if 4 < Rpyn)-
Other of these variance related behaviors may be similarly reversible, although
this has been little investigated.

There has been relatively little work on cost-benefit trade-offs among the
various shortfall-minimizing alternatives in Table II (see Smith and Reichman,
1984; Wrazen and Wrazen, 1982) and, to our knowledge, no attempt to place such
studies within the formal framework of outcome functions and isovalue maps.
Although experimental demonstration of the switch from risk-averse to risk-prone
behavior offers impressive confirmation of sensitivity to risk, more subtle cost—
benefit trade-offs among various types and degrees of risk-averse behaviors are
likely to dominate the behavioral repertoire of an organism. In model terms, most
of the adaptive action, most of the time, will be among behavioral alternatives
whose outcomes lie to the right of the sigmoid inflection point (e.g., those above
vy; Fig. 2b).

In the following paragraphs we briefly discuss some of the other shortfall-
minimizing tactics described in the biological literature. These studies provide
archaeologists and anthropologists with a diverse set of models, concepts, and
comparative evidence that are potentially applicable to primates, hominids, and
prehistoric/historic human foragers.

Organisms able to drop their basal metabolic requirements can use torpor to
wait out temporary periods of limited food availability. Endogenous storage of fat
reserves is a related option. Rogers (1987) found lower fat reserves in bird guilds
exploiting more predictable resources. Similarly, Ekman and Hake (1990) found
that greenfinches put on more reserves in situations of lower temperatures and less
predictable foraging success.

Group foraging is common in cliff swallows feeding on ephemeral swarms
of insects, a clumped, patchy resource of short duration and high density. Brown
(1988) compared solitary- and group-foraging sparrows and found that food in-
take “variance declined markedly with increasing group size” (p. 787). Pulliam and
Millikan (1982) and Ekman and Rosander (1987) gave various ways in which gre-
garious foraging can mitigate variance. In local enhancement, swallows (Brown,
1988) and greenfinches (Ekman and Hake, 1988) reduce intake variability through
observational learning as naive members watch the more knowledgeable group
members locate prey. Information sharing about the location of ephemeral food
patches also reduces variance in individual food intake (Caraco and Pulliam, 1984).
It can be incidental and passive [colonial spiders monitoring web vibrations (Uetz,
1996)]. Or it can be active. For instance, on cold, cloudy, calm days when foraging
success is poor, cliff swallows use a “squeak call” to alert conspecifics that a mass
of insects has been found (Brown et al., 1991). The caller benefits by watching
others track the erratic swarms.

Prey that bounce off one spider’s web may be entangled in another’s (Uetz,
1996); insects flying out of the path of one bird end up in the beak of its neighbor
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(Pulliam and Millikan, 1982). This is known as the “ricochet” effect. In addition,
group foragers sometimes share in vigilance efforts (Binford and Rypstra, 1992;
Pulliam, 1973). More effective predator detection increases the time that individu-
als are able to spend feeding. Finally, scrounging from successful foragers reduces
intake variance (see Beauchamp and Giraldeau, 1996; Binford and Rypstra, 1992;
Koops and Giraldeau, 1996).

Social insects are masters at variance reduction through the “pooling” of re-
sources. Honeybees are risk indifferent to the choice between constant and variable
levels of nectar in artificial flowers (Banschback and Waddington, 1994). Because
hundreds, if not thousands, of foraging workers may be active at any given time,
colony survival is not dependent on the risk-sensitive foraging of individual work-
ers (see debate by Cartar and Abrahams, 1996; Cartar and Dill, 1990; Harder
and Real, 1987). Food sharing has been proposed to reduce consumption variance
of separately foraging group members in social carnivores (Packer and Ruttan,
1988), chimpanzees (Stanford, 1995), common ravens (Heinrich and Marzluff,
1995), bats (Wilkinson, 1988), and killer whales (Hoelzel, 1991).

Storage (also known as hoarding or caching) is a common tactic during peri-
ods of unreliable or low productivity (Vander Wall, 1990). It is more common in
variable environments [e.g., high latitude, terrestrial (Smith and Reichman, 1984)].
Larder hoarding concentrates a food store in one protected location. Scatter hoard-
ing disperses small caches within a home range (Formanowicz ez al., 1989; Hurly
and Robertson, 1990, p. 95). Hoard recovery itself is prone to stochastic varia-
tion as a result of theft, rot, mildew, or insect infestation. For example, European
nuthatches retrieve more sunflower seeds from a larder hoard as the temperature
decreases. On days with high temperatures they meet needs with ordinary forag-
ing (Nilsson et al., 1993). Scatter hoarding may reduce variation in recovery if
at least some hoards escape loss (Daly et al., 1992; Jenkins et al., 1995). Scatter
hoarding also may minimize the loss of food due to theft (Formanowicz et al.,
1989; Shaffer, 1980). Clarke and Kramer (1994) propose that the decline of scatter
hoarding with age in eastern chipmunks is explained by their growing ability to
defend a centralized larder.

APPLICATIONS IN ANTHROPOLOGY

Studies of risk-sensitive behaviors of course are not limited to birds, insects,
and rodents. Table ITII summarizes recent anthropological research on subsistence
risk in a variety of human societies. Table IV categorizes the observed behavioral
tactics in terms of their presumed effect on Z-score variables. Our comments again
take summary form.

The number and diversity of these studies suggest a widespread anthropo-
logical interest in shortfall-minimizing tactics. Several of these papers use the
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concept of risk sensitivity to provide an alternative explanation for hunter-gatherer
or peasant decisions that fail to conform to the rate-maximizing definition of ration-
ality often espoused by development agencies (Browman, 1987; Cashdan, 1985,
pp- 454-455; Colson, 1979; Forbes, 1989; Goland, 1993a, pp. 334-336; Legge,
1989; Ortiz, 1990, p. 303). Others relate risk to cultural change (Larson et al.,
1994), the frequency and prevalence of warfare (Ember and Ember, 1992), the
origins of political complexity (Garnsey and Morris, 1989; Halstead, 1989), the
origins of agriculture (Redding, 1988; Winterhalder and Goland, 1997), or pres-
sures for imperialism and colonization (Garnsey and Morris, 1989; Jongman and
Dekker, 1989).

However, very few anthropological studies of subsistence risk have made use
of formal models or concepts. This leaves many of the analytical arguments in this
literature suggestive but inconclusive. For instance, it is routine to find statements
that the adoption of a particular tactic (e.g., “generalizing” resource use) lessens
the chance of a food shortfall, presumably because it reduces variance. The same
argument may give no attention to the consequence of the tactic for average yield.
But risk-sensitive models make it clear that both the mean and the average effect
on outcome must be specified, and then assessed relative to the value function,
in order to assess correctly the adaptive consequence of such a tactic. In many
of these studies, such omission of key variables leaves critical gaps in the logic
of shortfall minimizing. Variance reduction alone bears no unique relationship to
shortfall minimization.

In contrast, we have located and here describe four studies that exemplify a
full risk-sensitive argument. In the first, Mace and Houston (1989) use stochastic
dynamic programming to model the mix of smallstock (goats, sheep) and camels
that maximizes the long-term probability of household survival in a pastoral en-
vironment characterized by unpredictable droughts. Smallstock reproduce rapidly
but are drought susceptible, while camels reproduce slowly but are drought re-
sistant. Raising only smallstock is a high-mean, high-variance tactic, while an
all-camel tactic has a lower mean and variance. The best risk-sensitive choice of
herd composition depends foremost on household wealth. If wealth is less than
household subsistence requirements (hsr), then the optimal strategy is to invest
only in smallstock. If the household’s wealth is greater than its hsr, the optimal
policy switches to “upstocking,” exchanging sheep and goats for camels and thus
for the low-variance option. Note the parallels between this prediction and the ex-
pected energy budget rule: households below requirements are risk prone in their
management practices, while those above requirements are risk averse. Although
the authors are not explicit about a value function, it appears that they presume
it to be sigmoidal, with an inflection point at Asr. Mace (1990) finds empirical
support for the model’s predictions using data from four African pastoral groups
(the Turkana, Twareg, Meidob, and Somali).

In another study, Goland (1993a,b) uses the Z-score model to examine why
farming households in the Peruvian Andes disperse their agricultural production
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into multiple, small, dispersed plots. She draws on a 2-year, quantitative sam-
ple of over 600 fields planted by 19 families. Using a GIS analysis and data on
trail networks, field locations, number of visits (to till, fertilize, sow, weed, and
harvest), and energy expenditure as a function of load, slope, and distance, she
calculates that scattering imposes a mean cost of 7.5% of production, relative to
4% if fields were consolidated. Demographic, economic, and time allocation data
for the 19 households allow her to calculate Ry, for family agricultural production
of potatoes. She uses data on yields and production inputs, along with regression
analysis, to show that variability in management practices (seeding density, fertil-
ization intensity, weeding effort, altitude, slope, exposure, etc.) accounts for only
about 30% of the yield variance. The remaining variance constitutes risk, induced
by unpredictable factors such as frost, rainfall surfeits or deficits, hail, pests, and
trampling by livestock.

Figure 4 depicts the situation of 1 of the 12 families that effectively eliminated
the chance of a shortfall through field scattering. This family planted eight potato
fields and obtained a pooled (averaged) yield of 4477 kg/ha, somewhat above their
Rmin of 3100 kg/ha. Goland calculated and Figure 4 depicts the potential range of
household outcomes had this family consolidated their total effort in any one of the
locations they held (a one-in-eight chance of a disastrous 958 kg/ha to similar odds
of a luxurious 11,818 kg/ha). This procedure was repeated for all combinations
of two locations, all combinations of three, etc., up to the actual holding of eight
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Fig. 4. Potential range of yields as a function of number of

scattered fields, for a peasant farm household located in Cuyo
Cuyo, Peru. Ry, is the family’s minimum requirement.
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fields. The family scattered just beyond the degree necessary (seven fields) to make
their minimum requirement with a high degree of assurance.

Hegmon (1989) simulated prehistoric Hopi exchange under three scenarios
for interhousehold sharing: (i) complete household independence, (ii) restricted
sharing (meet household needs and then pool the remainder to divide with neigh-
bors), and (iii) unrestricted sharing (pool and redistribute equally the total yield
of all households). Early 20th-century Hopi scattered corn production in differ-
ent microecological zones to reduce unpredictable shortfalls from hail, floods,
and grasshoppers. Yield variation was further reduced by obligatory exchange.
Comparing effectiveness among scenarios, Hegmon found that only 46% of the
independent households would survive 20 years (assuming that each household
planted only 3.15 ha of corn in three fields). That number climbed to 73% for
unrestricted sharing and to 92% for restricted pooling. In especially bad years,
the tactic of restricted exchange protects marginally successful households from
having to share in the catastrophic fates of a few of their neighbors.

Finally, Kohler and Van West (1996) interpret archaeological data on the
Northern Anasazi population of the Mesa Verde region between A.D. 901 and
A.D. 1300 using a risk-sensitive model. They assume a sigmoid utility function.
In a prediction similar to the expected energy budget rule, Kohler and Van West
hypothesize that cooperative (i.e., risk-averse) behaviors such as aggregation and
exchange are expected so long as yields are adequate or better. Conversely, the
best option for the Anasazi households in years of very poor yield would be risk
prone, leading to the expectation that households would withdraw from intragroup
exchange practices. In the extreme, this might lead to the breakup of village-based
social units.

Kohler and Van West tested these predictions with detailed archaeological
and paleoecological data. They found strong support for their model. For instance,
the period with the highest expected value of cooperation coincides with the for-
mation of the “Chacoan System,” whereas its demise and subsequent abandonment
of the region are associated with a period favorable to defection from exchange.
Risk-based adaptive responses apparently contributed to the suprahousehold ex-
pansion and integration of this village-based agricultural society as long as times
were fair to good. Under stressful environmental conditions, that same adaptive
response may have destroyed socioeconomic cohesion. Households defected from
exchange, making the best possible, risk-prone response to an extended run of poor
harvests.

Although the majority of anthropological studies have focused on variance-
averse strategies, there are occasional observations of what appear to be variance-
prone behaviors in populations enduring exceptional economic stress (where © <
Rumin). The Kohler and Van West study just cited is an instance. Colson (1979) tells
of a starving Makah boy who devised a method for processing crabs silently, so
as to conceal the presence of food and avoid sharing. Gwembe Tonga agricultural
households, in bad years, may bring their food-processing tasks inside so as to
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restrict neighbors’ knowledge of how much grain they have harvested and avoid
sharing it (Colson, 1979).

Shortfall odds also may be reduced by decreasing Rmin Or increasing the mean
() of an outcome distribution. For example, reducing the size of the consuming
unit decreases its (Ryi,). Peasant households send family members to live with
relatives in other regions or in urban areas during hard times (Thomas, 1973). States
may forcibly evict marginal groups, as Emperor Augustus did to foreigners living
in Rome in 6 B.C. (Jongman and Dekker, 1989, p. 118) or encourage emigration
to distant colonies (Garnsey and Morris, 1989, p. 99). States also may reduce the
demand for limited food by restricting nonfood uses. A poor wheat harvest in 1630
led authorities in Amsterdam to ban brewers and starch makers from purchasing
the grain (Jongman and Dekker, 1989, p. 118).

Shortfalls in production may be mitigated by forcibly taking the production
of others (presumably increasing u). Raiding and theft increase among Gwembe
Tonga agriculturalists when harvests are poor (Colson, 1979, p. 26). Hellenistic-
age Greek polities used conquest and imperialism to increase grain stores in bad
years (Garnsey and Morris, 1989). These observations are consistent with Ember
and Ember’s (1992) cross-cultural study of the determinants of warfare, in which
the authors demonstrate through multivariate statistical comparison that antici-
pated future nonchronic resource scarcity is the strongest predictor of warfare in
traditional, nonstate societies. They also found that in 73% of documented cases
victors claimed the land of the defeated, while in 90% of cases victors took over
nonland resources.

Another way to increase p is to increase production by extending zones of
cultivation or intensifying use of existing fields. Machiguenga gardeners cultivate
twice the minimum that is required so as to ensure against crop failure (Baksh and
Johnson, 1990, p. 215). Modern Greek communities overproduce for the same rea-
son (Forbes, 1989). The early Greek state or polis sometimes mandated extending
the area of land under cultivation (Garnsey and Morris, 1989, p. 99). Authorities
in Amsterdam between 1590 and 1635 decreed the creation of more farmland by
building dikes and draining lakes (Jongman and Dekker, 1989). Hausa farmers use
ridging (Watts, 1988) and Pawnee and Huron cultivators use mounding (O’Shea,
1989) to intensify agricultural land use and increase production.

The majority of anthropological studies assert that shortfalls are minimized
by lessening variance through diversification. Diversification typically takes four
forms. The first is diversification of crop types or herd composition. Groups such as
the Gwembe Tonga (Colson, 1979), the Massa and Mussey of northern Cameroon
(de Garine and Koppert, 1988), the early 20th-century Hopi (Hegmon, 1989),
10th-century Native American communities in the Black Warrior and Tombigbee
river valleys of Alabama (Scarry, 1993), Hausa peasants of Nigeria (Watts, 1988),
Neolithic Greek farmers (Halstead, 1989), Hellenistic-age Greek farmers (Garnsey
and Morris, 1989), and modern Greek farmers (Forbes, 1989) buffer drought
risk by diversifying crop type and varieties. Pastoralists routinely diversify herd
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composition (see previous discussion of work by Bernus, 1988; Legge, 1989;
Mace, 1990; Malhotra and Gadgil, 1988).

The second is diversification of field and herd location. Crop failure due
to spatially varying hazards is often buffered through field scattering (see Goland
example, above). Field dispersion has been a part of agriculture in Neolithic Greece
(Halstead, 1989), Hellenistic Greece (Garnsey and Morris, 1989), and modern
Greece (Forbes, 1989; Thompson, 1963), among the 20th-century Hopi (Hegmon,
1989), among Amazonian floodplain cultivators (Chibnik, 1994), among Andean
agriculturalists (Browman, 1987; Goland, 1993a,b), and for farmers in Ethiopia,
Japan, Switzerland, Hungary (McCloskey, 1976, pp. 126-127), and the English
Midlands during the Middle Ages (McCloskey, 1976, 1991). Pastoralists achieve
the same result by placing livestock in the herds of spatially dispersed friends and
family. This distributes household subsistence over locations with unsynchronized
exposure to predators, disease, raiders, and lack of water and forage (de Garine
and Koppert, 1988). Pastoralists also can diversify through mobility. In the Sahel
of Africa migration routes change each year according to the variable conditions
experienced in each of the environmental regions traversed (Bernus, 1988; Legge,
1989).

The third possibility is diversification of economic activities. Effective di-
versification may be achieved through the combination of economic activities not
susceptible to the same environmental disruptions (Colson, 1979, p. 22). In the
Old World, agriculture is often linked with pastoralism; in the New World, the
Pawnee combined agriculture with bison hunting, while the Huron complemented
maize cultivation with the harvest of anadromous fish (O’Shea, 1989). Andean
farmers combine tuber and grain cultivation with camelid herding (Browman,
1987). Greek farmers of the Middle Neolithic (Halstead, 1989, p. 72) and Wodaabe
pastoralists of Niger (Legge, 1989) combined agriculture with foraging in bad
years.

Fourth, food transfers such as sharing and exchange diversify over unsyn-
chronized sources. Hunter-gatherers, such as the Ache of Paraguay (Kaplan and
Hill, 1985), the Navajo and Tewa (O’Shea, 1981), the Oto and Twa (Pagezy, 1988)
and Aka of Zaire (Bahuchet, 1993), and the Ju/’hoansi (Goland, 1991; Wiessner,
1982) and other “Basarwa” of southern Africa (Cashdan, 1985; Kent, 1993; Lee,
1979), as well as some foraging horticulturalists [e.g., the Bari (Ludvico et al.,
1991) and Yanomam of Venezuela (Hames, 1990)], mitigate production risk and
consumption shortfalls by widespread sharing of foodstuffs among individuals and
groups (Smith, 1988; Smith and Boyd, 1990). Sharing is effective even in small
groups when there is a negative or low positive correlation in the success rates of
individuals foraging separately (Winterhalder, 1986a).

In a related tactic, the food shortfalls can be mitigated by delaying or ac-
celerating consumption. Hunter-gatherers in more seasonal environments, such
as the Upper Paleolithic and Mesolithic European peoples (Rowley-Conwy and
Zvelebil, 1989), the Makah (Colson, 1979), and the Ainu (Goland, 1991), buffer
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expected seasonal shortfalls as well as unpredictable aspects of their duration,
timing, and intensity with storage. Storage averages consumption over time. Its
efficacy is constrained by preservation costs and the sometimes conflicting need
for mobility (Rowley-Conwy and Zvelebil, 1989). Storage also is integral to agri-
cultural production (Cashdan, 1985; Forbes, 1989; Halstead, 1989; Wright et al.,
1989). In contrast, some agriculturalists, such as the Massa and Mussey of north-
ern Cameroon (de Garine and Koppert, 1988), and the protohistoric Pawnee and
Huron of North America (O’Shea, 1989), harvest and consume a sizable portion
of their crop before it is ripe. “Green corn” is nutritionally inferior to ripe corn and
requires more processing labor. However, the longer grain ripens in the field the
greater the exposure to pests and the greater the chance of loss.

There have been only a few, tentative models of trade-offs among differ-
ent risk-sensitive tactics. Rowley-Conwy and Zvelebil (1989) discuss trade-offs
between storage and mobility, based on the effective spatial distances between
resources and human settlements. Winterhalder (1986a) and Goland (1991) model
the trade-off between storage and sharing among immediate-return hunter-
gatherers. Winterhalder (1986a) notes that food sharing reduces consumption
variance sufficiently that foragers, acting as producers, can opt for high-risk,
rate-maximizing tactics, confident that end-of-day pooling will mitigate the con-
sequences of an unexpected shortfall. Dwyer and Minnegal (1993) provide an
example of this among the Kubo of Papua New Guinea.

The nearly exclusive attention in the anthropological literature on diversi-
fication (or “generalizing”) as a means of variance reduction, and the apparent
presumption that this automatically minimizes the chances of subsistence short-
falls, compels us to reiterate an earlier point: without simultaneous attention to
mean outcomes and to Ry, or its equivalent, and without comparison of outcomes
on an isovalue map, such proposals are logically incomplete and quite possibly
mistaken. Although much of the literature cited in Table III is plausible, diversi-
fication can serve many functions and conceivably might be neutral or harmful
as a risk-sensitive adaptive tactic. This is a case in which the failure to take up
formal models jeopardizes our capacity to assess correctly the functional benefits
of behavior.

CONCLUSIONS

Together, biology and anthropology offer substantial literatures on subsis-
tence risk and impressive analytical and empirical resources for its analysis. How-
ever, these two fields are characterized by uneven progress in the areas of theory,
models, laboratory, and field studies. We conclude with several summary obser-
vations.

A risk-sensitive analysis entails specification of a value function and a set of
outcome distributions corresponding to the behavioral options. Theoretical work
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on value functions is well advanced. Similar work on outcome distributions is
yet quite limited. Empirical research is needed on both. For instance, it is critical
whether the decision maker is to the left or the right of the value function inflection
point (or Ry,), yet we know little about how this point might be set.

Risk sensitivity should be presumed important if (i) the value function is
nonlinear, and (ii) one or more of the behavioral alternatives is characterized by
unpredictable outcomes. We do not yet have the experience to say how widespread
are the behaviors and situations for which value functions are nonlinear. They may
be more ubiquitous than is commonly perceived. For example, Winterhalder and
Leslie (1998) argue that the long-term consequences of human fertility decisions
are subject to nonlinear value functions. Although the specifics have received
little empirical study, it also is a secure prediction that most if not all behavioral
outcomes are characterized by some degree of unpredictable variability.

The existing literature contains several risk-sensitive models and not much
guidance on choosing among them. We have shown with isovalue maps that two
common approaches to risk sensitivity, the Z-score and linear variance discount-
ing (VD) models, are special cases of a general model with a sigmoid value
function and normal outcome distributions. The LVD model operates qualitatively
as if the value function is purely concave (to the right of the inflection point). In
fact, this quite often will be the case. The Z-score model mimics the full range
of the sigmoid, but in the highly simplified form of a step function. The more
general sigmoid value function can be varied from a near-step to a near-linear
function, and it predicts both risk-prone and risk-averse behavior as a continu-
ous function of mean condition, giving it great versatility. These models set a
framework within which it should be possible to make comparative appraisals
of different shortfall-minimization tactics, although little such work has yet been
done.

Outcome arrays may well be unique to the adaptive problem and setting. Their
shape supplies valuable clues to the importance of risk sensitivity, the dependence
of analysis on a precise understanding of the value function, and the applicability
of different models for discounting variance. Unfortunately, we know very little
about outcome arrays for subsistence choices. This should be a priority area for
work, using computer modeling and field observations.

Most nonhuman organisms tested under laboratory conditions are risk sensi-
tive in subsistence choices. To date, risk-prone resource choice under a negative
energy balance (expected energy budget rule) appears to be common only for small
homeotherms that are specialized feeders and that face regular, life-threatening in-
terruptions to subsistence. Risk-prone choice appears to be less common for larger
omnivores, perhaps due to endogenous reserves or to alternative food sources or
behavioral tactics for avoiding shortfalls. This implies that risk- (or variance-)
prone behavior will be rare among humans. In biology, there is a dearth of field
observations of risk-prone behavior.
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In natural settings, torpor, fat reserves, group foraging, sharing/pooling, and
hoarding/caching appear to mitigate subsistence risk in nonhuman organisms,
either by lessening R, or by reducing variance, relative to mean intake. Each of
the variance-lessening mechanisms might be reversed when risk-prone behavior
is optimal. All, to varying degrees, are potentially important in humans.

The extensive archaeological and anthropological literature on subsistence
risk is largely qualitative and anecdotal. Little of it takes advantage of the formal
theory discussed here. For both reasons specific claims must be interpreted with
some caution. Nearly all studies document what appear to be risk-averse behav-
iors, although there are isolated observations of risk-prone choices under extreme
dearth.

Most risk-sensitive tactics adopted by humans have analogues among non-
human organisms. The exceptions appear to be recent institutional or market-based
forms of insurance (Bernstein, 1996). Organisms can decrease consumption vari-
ance in subsistence efforts by (i) spreading exposure over individuals or other
units through scrounging, sharing, or pooling; (ii) spreading exposure over space
by such actions as mobility, field scattering, and scatter hoarding; (iii) spreading
exposure over economic activity types by diversification; and (iv) spreading expo-
sure over time by early or delayed consumption (storage). Consumption variance
can be increased by the inverse of each of these tactics in situations calling for
risk-prone responses.

There is an enormous and largely unexploited potential in this literature for
interdisciplinary sharing of theory, concepts, models, and methodology and for
comparative study of basic evolutionary and adaptive processes. This potential
will be best realized if analysts from different disciplines begin working within a
common theoretical framework like that of behavioral ecology.

Finally, behavioral ecologists working with nonhuman organisms are now
seeking to synthesize and reconcile the evolutionary (functional, ecological) ap-
proach that we have reviewed here with the more mechanistic (perception, cogni-
tion) models of animal psychologists (see Green and Myerson, 1996; Real, 1991,
1996; Smallwood, 1996). Anthropologists could easily explore similar collabora-
tions with psychologists (e.g., Kamil and Roitblat, 1985; Lopes, 1994) interested in
human responses to risk. The statement by Kacelnik and Bateson (1996, p. 425)—
“Our idea is that the general principles of associative learning have evolved under
broader selective pressures than those acting on foraging decisions, and that they
lead to deviations from optimality in some foraging tasks”—might easily have been
made by cognitive (e.g., Tversky and Kahneman, 1992) or Darwinian (Barkow
et al., 1992) psychologists. We do not know to what extent humans are aware, or
able to act as if aware, of underlying outcome distributions and value functions.
The proximate cognitive and perceptual mechanisms by which individuals assess
and respond to risk in various societies are a topic full of potential but scarcely
touched in anthropological studies of subsistence.
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