
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
The Matrix Profile: Scalable Algorithms and New Primitives for Time Series Data Mining

Permalink
https://escholarship.org/uc/item/2x4419fp

Author
Zhu, Yan

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2x4419fp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

The Matrix Profile: Scalable Algorithms and New Primitives for Time Series Data

Mining

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Yan Zhu

September 2018

Dissertation Committee:

Dr. Eamonn Keogh, Chairperson

Dr. Christian Shelton

Dr. Stefano Lonardi

Dr. Evangelos Papalexakis

Copyright by

Yan Zhu

2018

The Dissertation of Yan Zhu is approved:

 Committee Chairperson

University of California, Riverside

 iv

ACKNOWLEDGEMENTS

My deepest gratitude goes to my advisor Dr. Eamonn Keogh, who has guided me

through an amazing Ph.D. journey with immense support. Eamonn is the best Ph.D.

advisor I could ever ask for: he is the most knowledgeable person that I know, and he is

always there whenever I need him. When I get stuck and need inspirations, he is there;

when I am stressed and need encouragement, he is there. He patiently taught me how to

identify interesting and impactful research problems, guided me through numerous

obstacles and most importantly, showed me what a great researcher should be like.

Eamonn, I can never thank you enough. It is my greatest fortune to have you as my

advisor.

I humbly thank my committee members Dr. Christian Shelton, Dr. Stefano Lonardi

and Dr. Evangelos Papalexakis for their valuable suggestions throughout my Ph.D. study.

I would also like to thank Dr. Abdullah Mueen for all the inspirations, encouragement

and support; Dr. Daniel Nikovski, Dr. Ethan Jackson and Dr. Kang Li for their great

mentorship during my summer internships at MERL, MSR and Google.

In the last five years, I have met a lot of fantastic people at UCR and received great

friendship. I owe many thanks to my lovely colleagues from the data mining lab: Chin-

Chia Michael Yeh, Hoang Anh Dau, Zachary Zimmerman, Nader Shakibay Senobari,

Diego Silva, Shaghayegh Gharghabi, Shima Imani, Frank Madrid, Alireza Abdoli, Sara

AlaeeJordehi, Kaveh Kamgar, Renjie Wu, Dr. Shailendra Singh, Dr. Liudmila Ulanova,

Dr. Nurjahan Begum, Dr. Yanping Chen and Dr. Mohammad Shokoohi-Yekta. I would

 v

also like to thank Jing Sun, Meng Zhao, Fei Ye, Xing Zheng and many other friends for

accompanying me through this wonderful journey.

Last but not the least, I would like to thank my dad Gehai Zhu, my mum Sufen Tan,

and my husband Zhuobo Feng for their unconditional love and continuous support. They

are my biggest motivation to chase my dreams and strive for excellence.

 vi

To my dad Gehai, my mum Sufen and my husband Zhuobo

 vii

ABSTRACT OF THE DISSERTATION

The Matrix Profile: Scalable Algorithms and New Primitives for Time Series Data

Mining

by

Yan Zhu

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, September 2018

Dr. Eamonn Keogh, Chairperson

Primitives such as motifs, discords, shapelets, etc., are widely used in time series

data mining. A versatile approach to find these primitives is through computing similarity

joins for time series subsequences. The last decade has seen a significant amount of

research effort on similarity joins in domains such as text and DNA, but not much

progress has been made on similarity joins for time series subsequences. The lack of

progress is probably due to the daunting nature of the problem: for even modest sized

datasets the brute-force algorithm can take months to complete. Typical speed-up

techniques such as indexing and lower-bounding at best produce only one or two orders

of magnitude speedup, and their performance can degrade significantly in the face of an

unfavorable dataset.

In this dissertation we introduce a suite of algorithms that significantly expand the

limit of scalability for time series subsequences similarity joins. These algorithms not

 viii

only provide the fastest exact solution to the discovery of time series motifs, one of the

most extensively-studied time series data mining primitives in the last decade, but also

allow the invention of new primitives that the state-of-the-art could not support.

Specifically, we present a novel batch algorithm which, when combined with the

GPU framework, can find the full set of exact motifs on a dataset two orders of

magnitude larger than the literature limit in feasible time. A novel fast-converging

anytime algorithm further expands this scalability, allowing motif discovery for million-

scale datasets to be performed in interactive sessions with an off-the-shelf desktop. We

also show how these techniques can be combined with a novel lower bound to allow fast

motif discovery in the presence of missing data. Furthermore, we introduce time series

chains, a new time series data mining primitive that can capture the evolution of systems

and help predict the future.

We demonstrate the utility of our ideas in domains as diverse as seismology,

entomology, human activity monitoring, electrical power-demand monitoring and

medicine.

 ix

Table of Contents

List of Figures .. xiii

List of Tables .. xx

List of Algorithms .. xxi

Chapter 1 Introduction ... 1

1.1 Time Series Motifs ... 3

1.2 Time Series Chains... 5

1.3 Organization of the Dissertation .. 7

Chapter 2 The Matrix Profile: Basic Concepts and Applications 9

2.1 Notation and Definitions .. 10

2.2 Discovering Time Series Motifs and Discords with the Matrix Profile 13

2.3 Discovering Time Series Shapelets with the Matrix Profile 16

2.4 Conclusions .. 18

Chapter 3 Computing the Exact Matrix Profile with STOMP 19

3.1 Background and related work .. 20

3.1.1 Motif Discovery Background ... 20

3.1.2 Seismology Background ... 25

3.1.3 A Brief Review of the STAMP Algorithm ... 26

3.2 Algorithms .. 27

3.2.1 The STOMP Algorithm .. 27

3.2.2 Incrementally Maintaining the Matrix Profile with STOMPI 31

3.2.3 Porting STOMP to a GPU Framework ... 34

3.2.4 Further Parallelizing STOMP with multiple GPUs 37

3.2.5 A Technique to Further Accelerate GPU-STOMP 38

3.2.6 A Final Optimization: Breaking the Ten Quadrillion Pairwise Comparison

Barrier 40

3.3 Empirical Evaluation .. 46

3.3.1 STAMP vs STOMP .. 47

3.3.2 GPU-STOMPOPT Breaks the Ten Quadrillion Pairwise Comparison Barrier

 49

 x

3.3.3 STOMP vs State-of-the-Art Motif Discovery Algorithms 50

3.3.4 Case Studies in Seismology: Infrequent Earthquake Case 54

3.3.5 Parameter Settings .. 56

3.3.6 Case Studies in Seismology: Earthquake Swarm Case............................... 57

3.3.7 Case Studies in Seismology: Detection of Repeated Low Frequency

Earthquakes ... 59

3.3.8 A Case Study in Animal Behavior .. 63

3.3.9 Incrementally Maintaining Motifs .. 65

3.4 Conslusions .. 67

Chapter 4 SCRIMP++: An Anytime Algorithm to Compute the Matrix Profile 69

4.1 Motif Analytics: An Insatiable Need for Speed ... 70

4.2 Related Work and Background .. 73

4.2.1 Definitions... 73

4.2.2 Matrix Profile Background ... 73

4.2.3 General Motif Search .. 75

4.3 Algorithms .. 76

4.3.1 Our Initial Solution: The SCRIMP Algorithm ... 77

4.3.2 Limitations of the SCRIMP Algorithm... 79

4.3.3 Our Ultimate Solution: The SCRIMP++ Algorithm 81

4.4 Empirical Evaluation .. 85

4.4.1 Comparing Convergence Behaviors ... 86

4.4.2 Runtime Comparison of SCRIMP++ and STOMP..................................... 89

4.4.3 Comparison to Rival Methods .. 91

4.4.4 Case Study: Multiscale-Motifs ... 92

4.4.5 Case Study: Motif Joins .. 94

4.4.6 Case Study: Electrical Power Demand ... 96

4.4.7 When can PreSCRIMP fail? ... 97

4.5 Conclusions .. 99

Chapter 5 Lower-bounding the Matrix Profile: Admissible Time Series Motif

Discovery with Missing Data.. 100

5.1 Related Work and Background .. 101

5.1.1 Dismissing Apparent Solutions .. 104

5.1.2 Pseudo Missing Data... 107

 xi

5.1.3 Definitions and Notations ... 108

5.2 Algorithms .. 109

5.2.1 An Intuitive Preview ... 109

5.2.2 The Lower Bound Matrix Profile ... 110

5.2.3 The Lower Bound Euclidean Distance ... 112

5.2.4 The MDMS Algorithm ... 118

5.3 Experimental Evaluation .. 121

5.3.1 Case Study: Seismological Data ... 122

5.3.2 Case Study: Activity Data from Video ... 125

5.3.3 Quantifying the Robustness of MDMS... 127

5.4 Conclusions .. 130

Chapter 6 Time Series Chains: A New Primitive for Time Series Data Mining....... 132

6.1 On the Ubiquity of Time Series Chains ... 133

6.2 Related Work and Background .. 134

6.2.1 Developing Intuition for Time Series Chains ... 136

6.2.2 Time Series Notation .. 139

6.2.3 Formal Definitions of Time Series Chains ... 142

6.3 Discovering Time Series Chains .. 148

6.3.1 LRSTOMP Algorithm .. 148

6.3.2 Computing the Time Series Chains .. 150

6.3.3 Uniform Scaling Time Series Chains ... 153

6.4 Empirical evaluation .. 158

6.4.1 Case Study: Hemodynamics ... 159

6.4.2 Backtracing ... 161

6.4.3 Case Study: Penguin Behavior.. 164

6.4.4 Case Study: Human Gait ... 165

6.4.5 Case Study: Web Query Volume .. 166

6.4.6 Parameter Setting .. 168

6.4.7 Quantifying the Robustness of Chains .. 169

6.4.8 Finding Uniform Scaling Time Series Chains .. 173

6.5 Conclusions and Future Work .. 174

Chapter 7 Conclusions ... 175

 xii

Bibliography ... 178

 xiii

List of Figures

Figure 1.1. A pair of repeating earthquake sequences (motifs) we discovered from

seismic data recorded at a station near Mammoth Lakes on February 17th, 2016. One

occurrence (fine/red) is overlaid on top of another occurrence (bold/blue) that

happened hours earlier. ... 4

Figure 1.2. Visualizing time series subsequences as points in high-dimensional space.

left) A time series motif can be seen as a collection of points that approximate a

platonic ideal, represented here as the crosshairs. right) In contrast, a time series

chain may be seen as an evolving trail of points in the space. Here the crosshairs

represent the first link in the chain, the anchor. ... 6

Figure 1.3. A time series chain discovered in an electrical power demand dataset

monitoring domestic freezer usage [49]. Note that through the early afternoon, the

valley becomes narrower and the peak that follows it becomes sharper. 7

Figure 2.1. top) One distance profile (Definition 2.3) created from a random query

subsequence Q of T. If we created distance profiles for all possible query

subsequences of T, the element-wise minimum of this set would be the matrix

profile (Definition 2.4) shown at (bottom). Note that the two lowest values in P are

at the location of the 1st motif [14][47]. .. 11

Figure 2.2. An illustration of the relationship between the distance profile, the matrix

profile and the full distance matrix. For clarity, note that we do not actually create

the full distance matrix, as this would have untenable memory requirements. 12

Figure 2.3. top) Normalized number of NYC taxi passengers over 10 weeks [4][60].

middle) The matrix profile produces high values where the corresponding

subsequences are unusual. bottom) The top motif corresponds to two consecutive

Saturdays. .. 14

Figure 2.4. top and middle): Two time series A and B formed by concatenating instances

of each class of GunPoint dataset. bottom.left) The difference between PBA and PBB.

The top-10 peak values (highlighted with red circles) are suggestive of good

shapelet candidates. bottom.right) The best shapelet found. 17

Figure 3.1. left) Samples from three datasets, ECG, Human Activity, and Seismology

(available in [56]). right) The tightness of lower bounds, averaged over 10,000

random pairs, using PAA and DFT... 23

 xiv

Figure 3.2. Mapping the computation of the distance matrix (left) to the computation of

its correponding dot product matrix (right). ... 28

Figure 3.3. Division of work among threads in the third step of GPU STOMP. 37

Figure 3.4. Modifying the third step of GPU-STOMP. top) Launch only n-m-i+2 threads

(instead of the n-m+1 threads in Figure 3.3) this time at the ith iteration. bottom)

Launch another kernel to evaluate the final value of Pi. ... 39

Figure 3.5. An optimization scheme for the the third step of GPU-STOMP. We only need

to launch one kernel to evaluate all the rows of the distance matrix in Figure 2.2. .. 41

Figure 3.6. We reduced the matrix profile to 32 bits, then combined each matrix profile

entry and its corresponding matrix profile index entry into a double-precision value

to allow fast atomic updates. ... 44

Figure 3.7. a) Each thread block evaluates one meta diagonal of the distance matrix. b)

The parallelograms in a meta diagonal are evaluated iteratively by a thread block. c)

The threads in a block evaluate diagonals of a parallogram in parallel. 45

Figure 3.8. Motifs (colored) shown in context (gray). top) The top motif discovered in the

Sonoma County dataset is a sensor artifact, as are the next three motifs (not shown).

bottom) The fifth motif is two true occurrences of an earthquake that happen 4,992

days apart. ... 55

Figure 3.9. top) Thirty minutes of seismograph data that has the two earthquakes from

Figure 3.8.bottom occur at 6min-40s and 20min. bottom) The matrix profile

computed if we use the suggested subsequence length 2,000 (blue), or if we use

twice the length (red), or half that length (green). .. 57

Figure 3.10. The matrix profile of a seven-minute snippet from a seismograph recording

at Mount St Helens.. 58

Figure 3.11. LFEs can be detected from the seismograph recording of HRSN stations. . 61

Figure 3.12. The sum of three matrix profiles of the 24-hour seismograph recording at

three HRSN stations near the central San Andreas fault. ... 62

Figure 3.13. The 40-second LFE snippet detected from the three HRSN station time

series. .. 63

Figure 3.14. left) The Magellanic penguin is a strong swimmer. right) A four-minute

snippet of the full dataset reveals high levels of noise and no obvious structure. 64

 xv

Figure 3.15. The top motif of length 2,000 discovered in the penguin dataset. Only three

examples are shown for visual clarity, there are eight such patterns. This behavior

may be part of a ‘porpoise’ maneuver. ... 64

Figure 3.16. top) The matrix profile of the first 9,864 minutes of data. bottom) The

minimum value of the matrix profile corresponds to a pair of time series motifs in

the power usage data. right) The time series motif detected. 66

Figure 4.1. A five-hour sample of Electrical Penetration Graph (EPG) data hints at the

difficulty of motif search. See also Figure 4.14/Figure 4.15. 70

Figure 4.2. Adapted from [33]. “Repeats” in the neuroscience literature are simply time

series motifs. ... 71

Figure 4.3. STAMP is able to detect the motifs located towards the right side of a time

series when it is only 10% completed due to its random computation order. In

contrast, STOMP’s left-to-right sequential computation means it cannot detect them

even when 50% completed. .. 74

Figure 4.4. The SCRIMP++ algorithm consists of an ultra-fast preprocessing algorithm,

PreSCRIMP, and an O(n2) anytime algorithm, SCRIMP. PreSCRIMP provides a

very accurate approximation of the matrix profile at an early stage; SCRIMP further

refines the approximate matrix profile until it becomes the exact/final solution. The

user can interupt the algorithm at any time (during either PreSCRIMP or SCRIMP)

to inspect the current approximate solution. Thus overall, SCRIMP++ is also an

anytime algorithm. .. 77

Figure 4.5. A single iteration of SCRIMP evaluates a randomly selected diagonal in

Figure 2.2, thus updating the matrix profile in an anytime fashion. 79

Figure 4.6. top) Motifs (highlighted, located at 12 and 137) correspond to the minimum

values of the matrix profile. middle) Ideally, SCRIMP can locate the motifs after its

first iteration. bottom) In the pathological worst case, SCRIMP cannot locate the

motifs until fully completed. ... 80

Figure 4.7. The matrix profile index of time series T in Figure 4.6.top. 81

Figure 4.8. Visualizing the CNP property of time series subsequences in the vicinity of

the 1st motif pattern. .. 82

Figure 4.9. top) Subsequences are sampled from time series T with a fixed interval s.

bottom) After running PreSCRIMP, the running matrix profile becomes very similar

to the oracle matrix profile, especially at the low values we care about. 83

 xvi

Figure 4.10. a) Random-walk data with one pair of embedded random-walk motif

patterns. b) Random-walk data with 10 embedded random-walk motif pairs. c)

Seismology data with two repeated earthquake signals. d) Random noise without

any embedded motif patterns. ... 86

Figure 4.11. The average percentage of embedded motif pairs discovered at each time

instant for the dataset shown in Figure 4.10.b. Note that the time for STAMP’s

convergence is truncated. .. 88

Figure 4.12. left-to-right) The observed probability for the top-1 motif discovered at each

time instant for the dataset shown in Figure 4.10.a, Figure 4.10.c and Figure 4.10.d.

Note that the full time for STAMP’s convergence is truncated. 89

Figure 4.13. The time needed to discretize data and the time needed to perform

PreSCRIMP for increasingly long data... 92

Figure 4.14. top.left) An Asian citrus psyllid feeding on a citrango leaf. top.right) The

top-1 multiscale-motif discovered. bottom) the two motif occurrences in context. . 93

Figure 4.15. top) The three EPG time series under investigation. bottom-left to right)

There is little evidence of conserved patterns when the insects are feeding on

different citrus plants, but there are strongly conserved patterns when feeding on a

single plant type. ... 95

Figure 4.16. The top two motifs in an electrical power data set. 96

Figure 4.17. top) A pathological random walk time series with a pair of embedded motifs.

The level of the data dramatically changes just before and after the first motif

pattern, which invalidates the CNP property. bottom) the observed probability for

the top-1 motif discovered at each time instant. Note that the probability for STOMP

is binary, and flips to 100% as soon as it encounters the first motif. That could

happen arbitrarily late (i.e. to the far right) in the worse case. 98

Figure 5.1. A four-second long motif that appears in the pitch contour time series of a

Cypriot folk song, Kotsini Trantafillia (Red Rose-tree). Note that both occurrences

have multiple instances of missing data [50]. ... 101

Figure 5.2. left) A contrived dataset in which the pair A|B is a perfect motif. right) If A

had its second value replaced by the most common imputation algorithm, we would

fail to discover A|B as the motif. .. 102

Figure 5.3. A snippet of an Electrooculogram (EOG) exhibits three kinds of pseudo

missing data. ... 107

 xvii

Figure 5.4. top) A subsequence with missing values. bottom) A subsequence without

missing values. .. 112

Figure 5.5. Different setting of μ and σ changes the offset and the scale of Ti,m
R . Note that

the offset and scale of Tj,m
R are fixed. .. 114

Figure 5.6. Two subsequences with missing values. .. 115

Figure 5.7. Two subsequences with missing values. The real-valued parts of the

subsequences look very different from each other, but if we fill the missing parts

with infinitely large numbers, the z-normalized Euclidean distance of the two

subsequences will become zero. ... 116

Figure 5.8. To evaluate our method, we compare our result with that of linear imputation.

... 122

Figure 5.9. A raw seismograph contrived such that two earthquakes from the same region

happen 15 seconds apart. The matrix profile computed with no missing data (red

curve) finds the true event, as does MDMS even in the presence of missing points

(green curve) or missing blocks (orange curve). .. 123

Figure 5.10. We removed 400 consecutive data points at the center of the second

earthquake pattern. The oracle matrix profile computed with no missing data (black

curve) finds the true event, as does MDMS (red curve) even in the presence of a

large missing block. The Matrix Profile generated after linear imputation (green

curve) fails to capture the minimum points within the oracle matrix profile. 124

Figure 5.11. The first motif found by the MDMS algorithm (right) in the presences of a

large missing block is identical with the first motif found in the oracle data (left). 124

Figure 5.12. A raw activity time series. We removed 12 consecutive data points in one of

the 1st motif patterns in the time series. The oracle matrix profile computed with no

missing data (black curve) finds the true motif starting at the 540th and the 622nd data

points. With the presence of 12 missing data points, the MDMS algorithm finds the

same motif as the oracle result (red curve), starting at 520th and 602nd data points.

The Matrix Profile generated after linear imputation (green curve) fails to capture

the two deep valleys within the oracle matrix profile and thus misses the 1st motif.

... 126

Figure 5.13. The first motif found by the MDMS algorithm (right) is identical to the first

motif within the oracle data (left), despite a small phase shift................................ 126

Figure 5.14. Lower bound matrix profiles corresponding to different missing block

lengths. We removed 2 blocks of length p from the seismograph. The oracle matrix

profile (black curve) finds the true motif. For p=100, p=400 and p=700, MDMS is

 xviii

able to find the true event as the 1st motif. When p=800, MDMS finds a false

positive as the 1st motif. .. 128

Figure 5.15. The 1st motif found by the MDMS algorithm when p=800. 128

Figure 5.16. Lower bound matrix profiles corresponding to various percentage of data

missing. left) random-missing data right) block-missing data................................ 130

Figure 6.1. The left matrix profile, right matrix profile and matrix profile of a toy time

series. The deep valleys within the (left/right) matrix profiles indicate that the

corresponding subsequence has close (left/right) nearest neighbors. The matrix

profile shows general nearest neighbor information. .. 140

Figure 6.2. The left nearest neighbor index and right nearest neighbor index of the toy

example. .. 143

Figure 6.3. Visualizing left matrix profile index and right matrix profile index: every

arrow above the time series points from a number to its right nearest neighbor; every

arrow below the time series points from a number to its left nearest neighbor. 144

Figure 6.4. STOMP keeps track of the general nearest neighbor of every subsequence in

the time series. .. 149

Figure 6.5. LRSTOMP keeps track of both the left and right nearest neighbors of every

subsequence in the time series. ... 150

Figure 6.6. A uniform scaling time series chain we discovered in a household electrical

demand time series [24]. Over twenty months the dishwasher cycle became

progressively longer, perhaps as an inlet valve became progressively more clogged.

... 154

Figure 6.7. top) A time series containing a uniform scaling chain. bottom) the chain

discovered with a fixed subsequence length 50. ... 155

Figure 6.8. top) The original time series. bottom) Rescaling the original time series by

200%. The first (red) pattern in the original time series matches very well with the

second (pink) pattern in the rescaled time series. ... 156

Figure 6.9. left-to-right, top-to-bottom) A patient lying on a medical tilt table has his

arterial blood pressure monitored. Nomenclature for a standard beat. The chain

discovered in this dataset shows a decreasing height for the dicrotic notch. 160

Figure 6.10. The prefix of the ABP data shown in Figure 6.9. There are no chain elements

discovered in this region, although it is compressed of dense motifs. 161

 xix

Figure 6.11. top) An expanded view of the ABP data shown in Figure 6.9. We trace back

from an abnormal pattern located at the end of the data. middle) The chain

discovered. bottom) The length of chains starting from every anchor. 163

Figure 6.12. top) A random three-minute snippet of X-Axis acceleration of a Magellanic

penguin (from a total of 7.2 hours). bottom) An eighteen-second long section

containing the time series chain. In the background, the red time series records the

depth, starting at sea-level and leveling off at 6.1 meters. 164

Figure 6.13. top) A 30-second snippet of data from an accelerometer on a mobile phone.

The phone was placed in the user’s front pocket (inset). bottom) The extracted chain

shows an evolution to a stable and symmetric gait. .. 166

Figure 6.14. top) Ten years of query volume for the keyword Kohl’s. bottom) The z-

normalized links of the time series chain discovered in the data hints at the growing

importance of “Cyber Monday”. ... 167

Figure 6.15. left) Our predicted shape (blue) is very similar to gound truth (red), with a

Root Mean Squared Error (RMSE) of 0.17. right) Persistence prediction result

(blue) is less similar to the ground truth (red), with a RMSE of 0.18. 168

Figure 6.16. The chains discovered from the Kohl’s data in Figure 6.14 as we vary the

subsequence length m. .. 169

Figure 6.17. Synthetic time series embedded with a chain of five subsequences. The

subsequences evolve from a sine-wave to a random-walk pattern. 171

Figure 6.18. top) Recall (R) and Precision (P) both decrease as the noise amplitude

increases. bottom) A snippet of a “perfect” time series versus the same snippet with

20% noise added. .. 172

Figure 6.19. A snippet of a synthetic time series with 100 repeated patterns................. 173

Figure 6.20. top) A random walk dataset into which we embedded a uniform scaling

chain (highlighted). The UniformScaleChain algorithm recovers exactly the same

chain. bottom.left) the four elements of the chain. Note that we used the any element

of the chain to do similarity search on the full time series, we find that it is not

particularly similar to any other element under classic Euclidean distance.

bottom.right) However, rescaling the shorter links of the chain reveals the conserved

structure... 174

 xx

List of Tables

Table 3.1. Time required for motif discovery with m = 256, varying n, for the three

algorithms under consideration ... 47

Table 3.2. Time required for motif discovery with various m and various n, for the three

algorithms under consideration ... 48

Table 3.3. Time required for motif discovery with n = 217, varying m, for the three

algorithms under consideration ... 48

Table 3.4. Time required for motif discovery with m = 256, varying n, for the three

algorithms under consideration ... 49

Table 3.5. Time required for kernel launch, data synchronization and memory writes with

m = 256, varying n, for the two GPU-based algorithms ... 50

Table 3.6. Time required for motif discovery with n = 218, varying m, for various

algorithms ... 51

Table 3.7. Time and memory required for STOMP, with m = 256, varying n 54

Table 4.1. Time Needed for Motif Discovery with m = 4096, varying n 90

Table 4.2. Time Needed for Motif Discovery with n = 218, varying m 90

 xxi

List of Algorithms

Algorithm 1: SlidingDotProduct(S, T) .. 29

Algorithm 2: STOMP(T, m) .. 30

Algorithm 3: STOMPI(T, t, m, P, I, μ, σ) ... 32

Algorithm 4: SCRIMP(T, m) .. 78

Algorithm 5: PreSCRIMP(T, m, s) ... 84

Algorithm 6: MDMS(T,m) .. 119

Algorithm 7: CalculateLBDistance(n, m, vmax, vmin, QZ, QB, BZ, ZB, BX, XB, μz, σz,

μb, σb, i) .. 120

Algorithm 8: ATSC(IL, IR, j) ... 151

Algorithm 9: ALLC(IL, IR) .. 152

Algorithm 10: UniformScaleChain(T, m, Scales) ... 157

 1

Chapter 1 Introduction

The explosion of new sensing technology is continuously generating a massive

amount of time series data in every aspect of our lives, from seismometers monitoring

earthquake activities to smartwatches measuring our heartbeats. In order to turn such

massive and diverse time series data into actionable insights, the research community has

developed primitives such as motifs [15][49][37], discords [13], shapelets [95], etc., to

extract important features/patterns from the data. These primitives can be used both as

standalone exploratory tools, and as sub-routines in higher-level data mining tasks.

A basic requirement for time series data mining primitives is that they must be

computed very fast. Recent algorithmic advances have largely improved the

computational efficiency for each of the fore-mentioned primitives [49][37][32][50].

However, existing approaches suffer from a lack of generality, as they are highly

optimized for individual primitives based on their unique characteristics. If an analyst

would like to obtain a more comprehensive view of the data and compute several

different primitives, she must run each of the specialized algorithms from scratch, and

carefully tune their parameters based on the specific dataset she is trying to analyze.

Is there a way to unify all these useful primitives? The answer is affirmative: we

can find them through computing the similarity joins for time series subsequences. The

basic statement for the similarity join problem is this: Given a collection of objects,

retrieve the nearest neighbor for every object. Time series subsequences similarity joins

 2

encode all the information needed to answer both time series motif and time series

discord queries, and can be used in other tasks such as shapelet discovery and semantic

segmentation. However, the brute force solution to this problem is intractable for large

datasets. For example, to obtain the similarity join for a dataset with 500,000

subsequence objects, the obvious nested loop algorithm requires 250,000,000,000

pairwise Euclidean distance computations. If each one took 0.0001 second, then the join

would take 289 days, which is infeasible.

In this dissertation we introduce the Matrix Profile, a scalable, general and versatile

time series data mining tool which solves the similarity join problem for time series

subsequences. We present a suite of highly efficient algorithms to compute the Matrix

Profile, and demonstrate that our algorithms not only outperform the state-of-the-art

specialized methods in discovering time series motifs, arguably the most important time

series data mining primitive, but also allows the invention of time series chains, a useful

new primitive for time series data mining.

Specifically, our contributions can be divided into the following four aspects:

• We propose an efficient batch algorithm to compute the Matrix Profile. As we

shall demonstrate, our algorithm incidentally provides the fastest exact solution

for time series motif discovery. When combined with the GPU framework, our

algorithm can find the full set of exact motifs in hundred-million-scale time

series in feasible time. This expands the largest size considered in the literature

by two orders of magnitude.

 3

• We propose a fast-converging anytime algorithm to compute the Matrix Profile.

For the first time, our algorithm allows the possibility of real-time interactive

discovery of motifs in million-scale time series, using an off-the-shelf consumer

desktop.

• Given the ubiquity of missing data in real world applications, we propose the

first algorithm that can find motifs in the presence of missing data without

producing false negatives.

• We introduce time series chains, a new time series data mining primitive built

on top of the Matrix Profile. Time series chains can capture the evolution/drift

of systems and help predict the future.

In the next two sections, we briefly review time series motifs and introduce time

series chains.

1.1 Time Series Motifs

Time series motifs are approximately repeating subsequences found within a longer

time series. Since their formulation in 2002 [56] they have emerged as one of the most

important primitives in time series data mining. Each year there are at least a dozen new

research efforts that exploit this primitive. Motif discovery has been used as a sub-routine

in algorithms as diverse as classification, clustering, complex-event-processing [8],

visualization [26], and rule-discovery [68]. Moreover, in recent years motif discovery has

received significant attention beyond the data mining community, and has been applied to

a wide variety of problems such as understanding the network of genes affecting the

 4

locomotion of the C. elegans nematode [10], cataloging speech pathologies in humans

[6], severe weather prediction [44], robotics, music processing, medicine [78] and

seismology [101]. Figure 1.1 shows an example of a repeating earthquake sequence pair

(essentially a time series motif) we discovered from seismic data.

Figure 1.1. A pair of repeating earthquake sequences (motifs) we discovered from seismic data

recorded at a station near Mammoth Lakes on February 17th, 2016. One occurrence (fine/red) is

overlaid on top of another occurrence (bold/blue) that happened hours earlier.

With a little introspection, it is easy to see why time series motifs are so useful and

widely used. If a pattern is repeated (or conserved), there must be a latent system that

occasionally produces the conserved behavior. For example, this system may be an

overcaffeinated heart, sporadically introducing a motif pattern containing an extra beat

(Atrial Premature Contraction [40]), or the system may be an earthquake fault,

infrequently producing highly repeated seismograph traces because the local geology

produces unique wave reflection/refractions (see Figure 1.1/Chapter 3).Time series

motifs are a commonly used technique to gain insight into such latent systems. In

essence, they can be best seen as “generalizing the notion of a regulatory motif to operate

robustly on non-genomic data” [78].

5:31:09 @37.58 N 118.86 W Depth:5.13 Magnitude:1.29

7:59:24 @37.58 N 118.86 W Depth:5.00 Magnitude:1.24

0 10 20
seconds

 5

Although significant progress has been made in how we score, rank, and visualize

motifs, discovering them in large datasets remains a computational bottleneck. To date,

we are unaware of any attempts to mine any dataset larger than one million data points

[37]. In Chapter 3, we show how we can significantly improve the scalability of exact

motif discovery both by exploiting a novel batch algorithm and by leveraging GPU

hardware.

We further argue that while all data mining algorithms benefit from improvements

in speed, for the particular case of motif discovery, improvements in speed are game-

changing. Motif discovery benefits from interactivity more than most data mining

processes. In Chapter 4, we propose an anytime algorithm which, for the first time,

allows motif discovery for million-scale time series to be performed in an interactive

session (i.e. real-time) with an off-the-shelf desktop.

Moreover, despite the well-documented ubiquity of missing data in scientific,

industrial, and medical datasets, there is still no technique to allow the discovery of

motifs in the presence of missing data. We address this problem in Chapter 5. Our

method is admissible, producing no false negatives.

1.2 Time Series Chains

We expand the notion of time series motifs to the new primitive of time series

chains (or just chains). Time Series Chains are related to, but distinct from, time series

motifs. Informally, time series chains are a temporally ordered set of subsequence

patterns, such that each pattern is similar to the pattern that preceded it, but the first and

 6

last patterns can be arbitrarily dissimilar. In the discrete space, this is similar to extracting

the text chain “data, date, cate, cade, code” from text stream. The first and last words

have nothing in common, yet they are connected by a chain of words with a small mutual

difference. Figure 1.2 symbolically illustrates the difference between time series motifs

and time series chains (we defer formal definitions until Chapter 6).

Both motifs and chains have the property that each subsequence is relatively close

to its nearest neighbor. However, the motif set also has a relatively small diameter (the

maximum distance between any pair in the set). In contrast, the set of points in a chain

has a diameter that is much larger than the mean of each member’s distance to its nearest

neighbor. Moreover, the chain has the property of directionality. For example, in Figure

1.2.left, if a tenth member was added to the motif set, its location will also be somewhere

near the platonic ideal, but independent of the previous subsequences. In contrast, in

Figure 1.2.right, the location of the tenth member of the chain would be somewhere just

North-West of item nine. This potential regularity immediately suggests exploitability;

we can use chains to (weakly) predict the future.

Figure 1.2. Visualizing time series subsequences as points in high-dimensional space. left) A time

series motif can be seen as a collection of points that approximate a platonic ideal, represented here

as the crosshairs. right) In contrast, a time series chain may be seen as an evolving trail of points in

the space. Here the crosshairs represent the first link in the chain, the anchor.

1

2

3
4

5 6

78

9
1

2
3456789

 7

While we can clearly define chains, it may not be obvious that such constructs

actually exist in the real-world. In fact, as we preview in Figure 1.3, time series chains

appear to be near ubiquitous in many domains, so long as the data trace is sufficiently

long.

Figure 1.3. A time series chain discovered in an electrical power demand dataset monitoring

domestic freezer usage [52]. Note that through the early afternoon, the valley becomes narrower and

the peak that follows it becomes sharper.

In Chapter 6, we introduce two robust definitions of time series chains, and scalable

algorithms that allow us to discover them in massive complex datasets.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2 we introduce the

Matrix Profile, a general and versatile time series data mining tool which has implications

for a variety of time series data mining tasks. In Chapter 3 we present an ultra-fast

algorithm to compute the Matrix Profile, and demonstrate its effectiveness and efficiency

in exact motif discovery. In Chapter 4 we describe a fast-converging anytime algorithm

which further expands the scalability limits of the Matrix Profile and allows motifs for

million-scale time series to be discovered at interactive speeds with a standard desktop. In

Minutes
0 1 2 3

12:07
20 March 2014

13:04

13:33

14:04

 8

Chapter 5 we consider motif discovery in the presence of missing data. Chapter 6

introduces time series chains, a new time series data mining primitive built on top of the

Matrix Profile. Chapter 7 concludes the dissertation and discusses future directions.

 9

Chapter 2 The Matrix Profile: Basic

Concepts and Applications

In this chapter, we introduce the Matrix Profile, a general and versatile time series

data mining tool that solves the similarity join problem for time series subsequences. We

formally define the Matrix Profile, and briefly show its implication for various time series

data mining tasks.

 10

2.1 Notation and Definitions

We begin by defining the data type of interest, time series:

Definition 2.1: A time series T is a sequence of real-valued numbers ti: T = t1, t2,

..., tn , where n is the length of T.

We are interested in local, not global properties of a time series. A local region of a

time series is called a subsequence.

Definition 2.2: A subsequence Ti,m of a time series T is a continuous subset of the

values from T of length m, which begin at position i. Formally, Ti,m = ti, ti+1,…, ti+m-1,

where 1 ≤ i ≤ n-m+1.

We can take a subsequence and compute its distance to all subsequences in the

same time series. This is called a distance profile.

Definition 2.3: A distance profile Di of time series T is a vector of the Euclidean

distances between a given query subsequence Ti,m and each subsequence in time series T.

Formally, Di = [di,1, di,2,…, di,n-m+1], where di,j (1 ≤ i, j ≤ n-m+1) is the distance between

Ti,m and Tj,m.

We assume that the distance is measured by Euclidean distance between z-

normalized subsequences [89].

We are interested in finding the nearest neighbors of all subsequences in T, as the

closest pairs of this are the classic definition of time series motifs [15][49]. Note that by

definition, the ith location of distance profile Di is zero, and it is close to zero just before

and after this location. Such matches are defined as trivial matches [49]. We avoid such

matches by ignoring an “exclusion zone” of length m/4 before and after the location of

 11

the query. In practice, we simply set di,j to infinity (i-m/4 ≤ j ≤ i+m/4) while evaluating

Di.

We use a vector called matrix profile to represent the distances between all

subsequences and their nearest neighbors.

Definition 2.4: A matrix profile P of time series T is a vector of the Euclidean

distances between each subsequence Ti,m and its nearest neighbor (i.e. the closest match)

in time series T. Formally, P = [min(D1), min(D2),…, min(Dn-m+1)], where Di (1 ≤ i ≤ n-

m+1) is the distance profile Di of time series T.

We call this vector a matrix profile, since it could be computed by using the full

distance matrix of all pairs of subsequences in time series T, and evaluating the minimum

value of each column (although this method is naïve and space-inefficient). Figure 2.1

illustrates both a distance profile and a matrix profile created on the same raw time series

T.

Figure 2.1. top) One distance profile (Definition 2.3) created from a random query subsequence Q of

T. If we created distance profiles for all possible query subsequences of T, the element-wise minimum

of this set would be the matrix profile (Definition 2.4) shown at (bottom). Note that the two lowest

values in P are at the location of the 1st motif [15][49].

T, synthetic data

D, a distance profile

Q, query of

length m

m/4m/40 2,500

Note that |D| = |T|-|Q|+1

0 2,500

Note that |P| = |T|-|Q|+1

T, synthetic data

P, a matrix

profile

 12

It is important to note that the full distance matrix is symmetric: Di is both the ith

row and the ith column of the full distance matrix. Figure 2.2 shows this more concretely.

Figure 2.2. An illustration of the relationship between the distance profile, the matrix profile and the

full distance matrix. For clarity, note that we do not actually create the full distance matrix, as this

would have untenable memory requirements.

The ith element in the matrix profile P indicates the Euclidean distance from

subsequence Ti,m to its nearest neighbor in time series T. However, it does not indicate the

location of that nearest neighbor. This information is recorded in a companion data

structure called the matrix profile index.

Definition 2.5: A matrix profile index I of time series T is a vector of integers:

I=[I1, I2, … In-m+1], where Ii=j if di,j = min(Di).

By storing the neighboring information in this manner, we can efficiently retrieve

the nearest neighbor of query Ti,m by accessing the ith element in the matrix profile index.

Note that as we presented it, the matrix profile is a self-join [96]: for every

subsequence in a time series T, it records information about its (non-trivial-match)

nearest neighbor in the same time series T. However, we can trivially generalize it to be

an AB-join [96]: given two different time series A and B, for every subsequence in time

D1 D2 … Dn-m+1

D1 d1,1 d1,2 … d1,n-m+1

D2 d2,1 d2,2 … d2,n-m+1

… … … … …

Dn-m+1 dn-m+1,1 dn-m+1,2 … dn-m+1,n-m+1

P min(D1) min(D2) … min(Dn-m+1)

 13

series A, record information about its nearest neighbor in time series B. Note that A and B

can be of different lengths, and that in general, AB-join ≠ BA-join.

For clarity of presentation, we have confined this work to the single dimensional

case; however, nothing about our work intrinsically precludes generalizations to

multidimensional data.

To briefly summarize this section, we can create two Meta time series, the matrix

profile and the matrix profile index, to annotate a time series T with the distance and

location of all its subsequences’ nearest neighbors in itself (in the self-join case), or in

another time series (in the AB-join case). The reader may already have realized, the

smallest pair of values in the self-join matrix profile correspond to the best motif pair by

the classical definition [15][37][49], and the corresponding values in the matrix profile

index indicate the location of the motif. As Mueen et al. [49] argues, the top-k motifs,

range motifs, and any other reasonable variant of motifs can also trivially be computed

from the information encoded in the matrix profile. Moreover, the matrix profile also

yields the exact solution for time series discords, a popular definition for anomalies in

time series [13]. In the next section, we use a concrete example to show how we can

discover motifs and discords with the matrix profile.

2.2 Discovering Time Series Motifs and Discords with

the Matrix Profile

Unlike other motif/discord discovery systems, the matrix profile computes a score

for every subsequence in the dataset. Here, we use an example to demonstrate the utility

of this more comprehensive annotation of data. Consider the New York Taxi dataset of

 14

Rong and Bailis [63]. As shown in Figure 2.3.top, the data is the normalized number of

NYC taxi passengers over 10 weeks, October 1st to December 15th 2014. The authors

show this dataset to demonstrate the versatility of their “Attention Prioritization”

technique for finding unusual patterns [4][63]. In essence, they transform the data (not

shown here) in a way to make the discovery of anomalies easier. They note that

Thanksgiving, on Thursday, November 27th, can be considered an “anomaly” in this

dataset, since the patterns of travel apparently change during this important US holiday.

Figure 2.3. top) Normalized number of NYC taxi passengers over 10 weeks [4][63]. middle) The

matrix profile produces high values where the corresponding subsequences are unusual. bottom) The

top motif corresponds to two consecutive Saturdays.

We computed the matrix profile for this dataset, with a subsequence length of one

and a half days. As Figure 2.3.middle shows, the matrix profile peaks at the location that

indicates Thanksgiving. However, there are additional observations that we can make

with the matrix profile. There is a secondary anomaly occurring on Sunday, November

2nd; there appears to be a spike in taxi demand at about 2:00 am. With a little thought, we

1000 2000 3000

1000 2000 3000

0

0

“Anomaly”

corresponding to

Thanksgiving

“Anomaly”

corresponding to

daylight saving time

“Anomaly”

corresponding to

Columbus Day

10 20 30 40 50 60 700

The top motif in the Taxi data

Saturday 18th w ith part of Sunday

Saturday 25th w ith part of Sunday

 15

realize this is exactly the hour in which daylight saving time is observed in the US.

Setting the clock back one hour gives the appearance of doubling the normal demand for

taxis at that hour. There is arguably a third anomaly in the dataset, with a more subtle, but

still significant peak at October 13th. This day corresponds to Columbus Day. This

holiday is all but ignored in most of the US, but it is still observed in New York, which

has a strong and patriotic Italian community.

In Figure 2.3.bottom, we show the top-1 motif from the dataset (corresponding to

the minimum value of the matrix profile), which is extremely well conserved. In many

natural datasets, for example the circadian rhythm of an animal, the best motifs are

typically exactly twenty-four hours apart (a phenomenon known as persistence).

However, because this motif’s two occurrences are exactly seven days apart, the

importance of artificial divisions of the calendar on human behaviors becomes apparent.

It is possible that the regions of lower conservation with the motif are also telling. For

example, from 24 to 26 (about 10 to 11am), the motif corresponding to the 25th

(green/bold) is a little higher than the previous week. It was lightly raining (about 0.12

inches) at the time, which may explain the slightly higher taxi demand in the late

morning.

Besides motif discovery and discord discovery, the matrix profile also has

implications for a host of other time series data mining tasks. In the next section, we

show how we can use the matrix profile to discover time series shapelets, another useful

time series data mining primitive.

 16

2.3 Discovering Time Series Shapelets with the Matrix

Profile

Time series shapelets are time series subsequences that best represent a class [95].

Here we use the GunPoint dataset [14] to show how we can use the matrix profile to

quickly identify good shapelet candidates. This dataset has two classes, Gun and NoGun

(also known as Point, hence the name GunPoint). As shown in Figure 2.4, we construct

time series A by concatenating all the instances of the Gun class, and time series B by

concatenating all the instances of the NoGun class. Between every two concatenated

exemplars, we insert a NaN value to avoid introducing artificial subsequences that are not

present in the original data. We compute two matrix profiles PBB and PBA: PBB is the self-

join matrix profile for time series B; PBA is the BA-join matrix profile for time series B

and time series A. For simplicity, we use a subsequence length of 38, which is the length

of the best shapelet reported for this dataset [95].

We evaluate the difference between PBA and PBB (we denote it as Pdiff = PBA - PBB),

as shown in Figure 2.4.bottom.left. Intuitively, the peak values in Pdiff are indicators of

good shapelet candidates, because they suggest patterns that are well conserved in the

NoGun class but are very different from their closest match in the Gun class. We pick the

top-10 candidates from time series B (corresponding to the top-10 peaks in Figure

2.4.bottom), and among them select the one that renders the highest classification

accuracy on the training data. As shown in Figure 2.4.bottom.left, the selected shapelet

reflects a distinct characteristic of the NoGun class, as discussed by Ye and Keogh [95]:

“the NoGun class “has a “dip” where the actor put her hand down by her side, and

 17

inertia carries her hand a little too far and she is forced a correct it…a phenomenon

known as ‘overshoot’”. In contrast, in the opposite Gun class, the actor carries a gun; she

needs to put the gun back in the holster and then bring her hand to a complete rest

position, generating a different pattern.

Figure 2.4. top and middle): Two time series A and B formed by concatenating instances of each class

of GunPoint dataset. bottom.left) The difference between PBA and PBB. The top-10 peak values

(highlighted with red circles) are suggestive of good shapelet candidates. bottom.right) The best

shapelet found.

The selected shapelet achieves the same classification accuracy (93.33%) on the

test data as the original shapelet algorithm [95]. However, note that while the original

shapelet algorithm needs to go through a time-consuming process to exhaustively

evaluate the classification power of every possible shapelet candidate in the dataset, the

matrix profile readily finds us the most promising shapelet candidates for free.

0 4000

A: Concatenation of all exemplars from the Gun class

0 4000

B: Concatenation of all exemplars from the NoGun class

Pdiff = PBA - PBB

0 4000 0 80 160

Best

shapelet

An instance from

the NoGun class

 18

2.4 Conclusions

We introduced two meta time series, the matrix profile and the matrix profile index,

to annotate a time series T with the distance and location of all its subsequences’ nearest

neighbors within T. We briefly showed the implication of the matrix profile on various

time series data mining tasks without explaining how we computed it. In the next four

chapters, we introduce a suite of highly scalable algorithms to compute the matrix profile,

and discuss in detail the effectiveness and efficiency of our ideas in discovering two

useful time series data mining primitives: time series motifs and time series chains.

 19

Chapter 3 Computing the Exact Matrix

Profile with STOMP

In this chapter, we introduce STOMP, an ultra-fast exact algorithm to compute the

Matrix Profile. We demonstrate the scalability and effectiveness of STOMP in

discovering time series motifs, one of the most studied primitives in time series data

mining. When combined with a high-performance GPU, STOMP can find the full set of

exact motifs on a dataset with one hundred and forty-three million subsequences, which

requires ten quadrillion pairwise comparisons and is by far the largest dataset ever mined

for time series motifs/joins, in feasible time.

Though this chapter only considers motif discovery, as introduced in Chapter 2, the

Matrix Profile is a versatile tool that can also be applied to other time series data mining

tasks such as discord discovery and shapelet discovery. As a fundamental algorithm to

compute the Matrix Profile, STOMP can also benefit these tasks.

 20

3.1 Background and related work

3.1.1 Motif Discovery Background

Motif discovery for time series was introduced in 2003 [15] (although the classic

paper of Agrawal, Faloutsos and Swami foreshadows motifs by computing all-pair

similarity for time series [2]). Since then, it increased in research activity. One critical

direction has been applying motifs to solve problems in a wide variety of domains such

as bioinformatics [10], speech processing [6], robotics, human activity understanding

[80][85], severe weather prediction [44], neurology, and entomology [49]. The other key

research focus has been in the extensions and generalizations of the original work,

especially in the attempts to improve scalability [37][49]. These attempts to improve the

scalability of motif discovery fall into two broad classes; approximate and exact motif

discovery [37][47][49].

Clearly approximate motifs can be much faster to compute, and this may be useful

in some domains. However, there are domains in which the risk of false negatives is

unacceptable. Consider seismology, which is the domain motivating our work [101]. This

is a domain in which false negatives could affect public policy, change insurance rates for

customers, and conceivably cost lives by allowing a dangerous site to be developed for

dwellings. Given that the task at hand is to find exact motifs, all known methods based on

hashing [101] and/or data discretization [15][47] can be dismissed from consideration.

Beyond being exact, the proposed approach has many advantages that are not

shared by rival methods.

 21

• The proposed method is simple and parameter-free: In contrast, other methods

typically require building and tuning spatial access methods and/or hash

functions [15][37][41][47][80][85][101].

• It is space efficient: Our algorithm requires an inconsequential space overhead,

just linear in the time series length, with a small constant factor. In particular,

we avoid the need to actually explicitly extract the individual subsequences

[15][47][49], something that would increase the space complexity by two or

three orders of magnitude.

• It is incrementally maintainable: Having computed motifs for a dataset, we

can incrementally update the best motifs very efficiently if new data arrives.

• It can leverage hardware: As we show below, our algorithm is embarrassingly

parallelizable on multicore processors.

• Our algorithm has time complexity that is constant in subsequence length:

This is a very unusual and desirable property; virtually all time series

algorithms scale poorly as the subsequence length grows (the classic curse of

dimensionality) [15][37][41][47][80][101].

• Our algorithm takes deterministic time, dependent on the data’s length, but

completely independent of the data’s structure / noise level etc. This is also an

unusual and desirable property for an algorithm in this domain. For example,

even for a fixed time series length, and a fixed subsequence length, all other

algorithms we are aware of can take radically different times to finish on two

(even slightly) different datasets [15][37][41][47][80][101]. In contrast, given

 22

only the length of the time series, we can predict precisely how long it will take

our algorithm to finish in advance.

Virtually every time series data mining technique has been applied to the motif

discovery problem, including indexing [37][88], data discretization [15], triangular-

inequality pruning [49], hashing [80][85][101], early abandoning, etc. However, all these

techniques rely on the assumption that the intrinsic dimensionality of the time series is

much lower than the recorded dimensionality [15][80][85][89][101]. This is generally

true for data such as short snippets of heartbeats and gestures, etc.; however, it is not true

for seismographic data, which is intrinsically high dimensional. To ascertain this, we

performed a simple experiment.

We measured the Tightness of Lower Bounds (TLB) for three types of data, using

the two most commonly used dimensionality reduction representations for time series,

DFT and PAA. Additionally, PAA is essentially equivalent to the Haar wavelets for this

purpose [89]. The TLB is defined as:

TLB = LowerBoundDist(A,B) / TrueEuclideanDist(A,B)

It is well understood that the TLB is near perfectly (inversely) correlated with wall-

clock time, CPU operations, number of disk access or any other performance metric for

similarity search, all-pair-joins, motifs discovery, etc. [89]. As the mean TLB decreases,

we quickly degrade to simple brute-force search. The absolute minimum value of TLB is

dependent on the data, the search algorithm, and the problem setting (main-memory

based vs disk based). However as [89] demonstrates, lower bound values less than 0.5

generally do not “break even.”

 23

Figure 3.1 shows unambiguous results. There is some hope that we could avail

current speed-up techniques when considering (relatively smooth and simple) short

snippets of ECGs, but there is little hope that the noisy and more complex human activity

would yield to such optimizations, and there is no hope that anything currently in the

literature will help with seismological data. This claim is further proven in our detailed

experiments in Section 3.3.

Figure 3.1. left) Samples from three datasets, ECG, Human Activity, and Seismology (available in

[59]). right) The tightness of lower bounds, averaged over 10,000 random pairs, using PAA and DFT.

Even if we ignore this apparent death-knell for indexing/spatial access techniques,

we could still dismiss them for other reasons, including memory considerations. As

demonstrated in Section 3.2, a critical property of our algorithm is that it does not need to

explicitly extract the subsequences, which is unlike the indexing/spatial access methods.

For example, consider a time series of length 100 million, with eight bytes per value,

requiring 0.8 GB. Our algorithm requires an overhead of seven other vectors of the same

size (including the output), for an easily manageable total of 6.4 GB (if memory was a

bottleneck, we could reduce this by using reduced precision vectors or compression).

However, any indexing algorithm that needs to extract the subsequences will increase

0

0.5

1
T

ig
h
tn

es
s

o
f

L
o

w
er

 B
o

u
n
d

s

0 400

 24

memory requirements by at least O(d), where d is the reduced dimensionality used in the

index [41]. Given that d may be 20 or greater, this indicates the memory requirements

grow to at least 16 GB. With such a large memory footprint, we are almost certainly

condemned to a random-access disk-based algorithm, dashing any hope of any speedup.

A related advantage of our framework is that we can choose the subsequence length

just prior to performing the motif discovery. In contrast, any index-based technique must

commit to a subsequence length before building the index, and it could take hours/days to

build the data structure before any actual searching could begin [61][89]. If such an index

is built to support subsequences of say length 200, it cannot be used to join subsequences

of length 190 or 205, etc. (See Section 1.2.3 of Rakthanmanon et al. [61]). Thus, if we

change our mind about the length of patterns we are interested in, we are condemned to a

costly rebuilding of the entire index. It is difficult to overstate the utility of this feature. In

Section 3.3.8, we will demonstrate how we can use STOMP to explore the behavior of a

penguin. At the beginning of this case study, we had no idea of what time frame the

penguin’s behavior might be manifest. However, with no costly index to build, we simply

tried a few possible lengths until it was obvious that we found a reasonable value.

In summary, while we obviously are unable to absolutely guarantee that there is no

other scalable solution to our task-at-hand, we are confident that there is no existing off-

the-shelf technology that can be used or adapted to allow us to get within two orders of

magnitude of the results we obtain on the largest datasets.

 25

3.1.2 Seismology Background

While our algorithms are completely general and can be applied to any domain,

seismological data is of particular interest to us, due to its sheer scale and importance in

human affairs.

In the early 1980s, it was discovered that in the telemetry of seismic data recorded

by the same instrument from sources in given region, there will be many similar

seismograms [22]. Geller and Mueller [22] have suggested that, “The physical basis of

this clustering is that the earthquakes represent repeated stress release at the same

asperity, or stress concentration, along the fault surface.” These patterns are called

“repeating earthquake sequences” in seismology, and correspond to the more general

term “time series motifs.”

A more recent paper notes that many fundamental problems in seismology can be

solved by joining seismometer telemetry in locating these repeating earthquake sequences

[101], which includes the discovery of foreshocks, aftershocks, triggered earthquakes,

swarms, volcanic activity, and induced seismicity. However, the paper further notes that

an exact join with a query length of 200 on a data stream of length 604,781 requires 9.5

days. Their solution, a transformation of the data to allow LSH based techniques, does

achieve significant speedup, but at the cost of false negatives and necessary careful

parameter tuning. For example, Yeh et al. [96] notes that they need to set the threshold to

precisely 0.818 to achieve decent results. While we defer a full discussion of

experimental results to Section 3.3, the ideas introduced in this paper can reduce the

quoted 9.5 days for exact motif discovery from a dataset of size 604,781 to less than one

 26

minute, without tuning any parameters and also guaranteeing that false negatives will not

occur.

It is vital to note that this kind of speed up really is game changing in this domain.

It allows seismologists to quickly identify or detect earthquakes that are identical or

similar in location without needing trilateration, and it can also provide useful

information on relative timing and location of such events [3][33][34].

More controversially, some researchers have suggested that the slow slip on the

fault accompanying non-volcanic tremors (a sequence of Low Frequency Earthquakes,

many of which are repeated) may temporarily increase the probability of triggering a

large earthquake. Therefore, detecting and locating these repeating LFEs allows more

accurate short-term earthquake forecasting [33].

Finally, we note that seismologists have been early adopters of GPU technology

[46] and other high-performance computing paradigms. However, their use of this

technology has been limited to similarity search, not motif search.

3.1.3 A Brief Review of the STAMP Algorithm

The recently introduced STAMP algorithm can compute the full and exact matrix

profile and matrix profile index of a time series [96]. The STAMP algorithm essentially

evaluates the distance profile Di of a query subsequence Ti,m by utilizing the FFT(Fast

Fourier Transform) to calculate the dot product between Ti,m and all of the subsequences

of the time series T. The overall time complexity of the algorithm is O(n2logn), and the

space complexity is O(n), where n is the length of time series T. The STAMP algorithm

can process a time series with up to a million data points in feasible time. However, to

 27

solve the problems in our motivating domain seismology, it is necessary to process even

larger datasets. It would take STAMP more than 20 years to analyze a seismology time

series sampled at 20Hz for about 2 months, which is of length 100 million (see Table

3.2). In the next section, we will show a new and fast algorithm, which can finish

processing the same time series in only 4 days when it is built on top of a GPU.

3.2 Algorithms

In this section, we begin by demonstrating that we can improve upon the STAMP

algorithm [96] to create the much faster STOMP algorithm. Then we demonstrate that the

structure of STOMP lends itself to porting to GPUs.

3.2.1 The STOMP Algorithm

As explained below, STOMP is similar to STAMP [96] in that it can be viewed as

highly optimized nested loop searches with repeating calculations of distance profiles in

the inner loop. However, while STAMP must evaluate the distance profiles in a random

order (to allow its anytime behavior), STOMP performs an ordered search. By exploiting

the locality of these searches, we can reduce the time complexity by a factor of O(logn).

Before we explain the details of the algorithm, we first introduce a formula to

calculate the z-normalized Euclidean distance di,j of two time series subsequences Ti,m

and Tj,m by using their dot product, Qi,j:

𝑑𝑖,𝑗 = √2𝑚(1 −
𝑄𝑖,𝑗 −𝑚𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗
)

(3.1)

 28

Here m is the subsequence length, μi is the mean of Ti,m, μj is the mean of Tj,m, σi is

the standard deviation of Ti,m, and σj is the standard deviation of Tj,m.

The technique introduced in Rakthanmanon et al. [61] allows us to obtain the

means and standard deviations with O(1) time complexity; thus, the time required to

compute di,j depends only on the time required to compute Qi,j. Here, we claim that Qi,j

can also be computed in O(1) time, once Qi-1,j-1 is known.

Note that Qi-1,j-1 can be decomposed as the following:

𝑄𝑖−1,𝑗−1 = ∑ 𝑡𝑖−1+𝑘𝑡𝑗−1+𝑘

𝑚−1

𝑘=0

 (3.2)

And Qi,j can be decomposed as the following:

𝑄𝑖,𝑗 = ∑ 𝑡𝑖+𝑘𝑡𝑗+𝑘

𝑚−1

𝑘=0

 (3.3)

Thus we have:

𝑄𝑖,𝑗 = 𝑄𝑖−1,𝑗−1 − 𝑡𝑖−1𝑡𝑗−1 + 𝑡𝑖+𝑚−1𝑡𝑗+𝑚−1 (3.4)

Therefore, our claim is proved.

Figure 3.2 visualizes the algorithm. Based on (3.1), we can map the distance

matrix in Figure 2.2 (also shown in Figure 3.2.left) to its corresponding dot product

matrix (shown in Figure 3.2.right).

Figure 3.2. Mapping the computation of the distance matrix (left) to the computation of its

correponding dot product matrix (right).

D1 d1,1 d1,2 d1,3 … d1,n-m+1

D2 d2,1 d2,2 d2,3 … d2,n-m+1

D3 d2,1 d2,2 d3,3 … d2,n-m+1

… … … … … …

Dn-m+1 dn-m+1,1 dn-m+1,2 dn-m+1,3 … dn-m+1,n-m+1

Q1,1 Q1,2 Q1,3 … Q1,n-m+1

Q2,1 Q2,2 Q2,3 … Q2,n-m+1

Q2,1 Q2,2 Q3,3 … Q2,n-m+1

… … … … …

Qn-m+1,1 Qn-m+1,2 Qn-m+1,3 … Qn-m+1,n-m+1

 29

The arrows in Figure 3.2.right show the data dependency indicated by (3.4): once

we have Qi-1, j-1, we can compute Qi,j in O(1) time. However, note that (3.4) does not

apply to the special case when i=1 or j=1 (the first row and the first column of Figure

3.2.right, shown in red). This problem is easy to solve: we can pre-compute the dot

product values in these two special cases with FFT, as shown in Algorithm 1.

Concretely, we use SlidingDotProduct(T1,m, T) to calculate the first dot product vector:

Q1 = [Q1,1, Q1,2, …, Q1,n-m+1] = [Q1,1, Q2,1, …, Qn-m+1,1]. The dot product vector is stored

in memory and used as needed.

Algorithm 1: SlidingDotProduct(S, T)

 Input: A query subsequence S, and a user provided time series T

Output: The dot product between S and all subsequences in T

1

2

3

4

5

6

7

n ← Length(T), m ← Length(S)

Ta ← Append T with n zeros

Sr ← Reverse(S)

Sra ← Append Sr with 2n-m zeros

Sraf ← FFT(Sra), Taf ← FFT(Ta)

Q ← InverseFFT(ElementwiseMultiplication(Sraf, Taf))

return Qm:n

After the first row and the first column in Figure 3.2.right are computed, the rest of

the dot product matrix is evaluated row after row.

We are now in the position to introduce our STOMP algorithm (Algorithm 2).

The algorithm begins in line 1 by computing the matrix profile length l. In line 2,

the mean and standard deviation of every subsequence in T are pre-calculated. Line 3

calculates the first dot product vector Q with the algorithm in Algorithm 1. In line 5, we

initialize the matrix profile P and matrix profile index I. The loop in lines 6-13 calculates

the distance profile of every subsequence of T in sequential order. Lines 7-9 update Q

according to (3.4). We update Q1 in line 10 with the pre-computed Q’i in line 3. Line 11

 30

calculates distance profile D according to (3.1). Finally, line 12 compares every element

of P with D: if Dj < Pj, then Pj = Dj, Ij = i.

Algorithm 2: STOMP(T, m)

 Input: A time series T and a subsequence length m

Output: Matrix profile P and the associated matrix profile index I of T

1

2

3

4

5

6

7

8

9

10

11

12

13

14

n ← Length(T), l ← n – m + 1

μ, σ ← ComputeMeanStd(T, m) // see [61]

Q ← SlidingDotProduct(T1,m, T), Q’ ← Q

D ← CalculateDistanceProfile(Q, μ, σ, 1) // see (3.1)

P← D, I← ones // initialization

for i = 2 to l // in-order evaluation

 for j= l downto 2 // update dot product, see (3.4)

 Qj ← Qj-1 -Tj-1×Ti-1+Tj+m-1×Ti+m-1

 end for

 Q1 ← Q’i

 D ← CalculateDistanceProfile(Q, μ, σ, i) // see (3.1)

 P, I ← ElementWiseMin(P, I, D, i)

end for

return P, I

The time complexity of STOMP is O(n2); thus, we have achieved a O(logn) factor

speedup over STAMP [96]. Moreover, it is clear that O(n2) is optimal for any exact motif

algorithm in the general case. The O(logn) speedup makes little difference for small

datasets and for those with just a few tens of thousands of data points [15]. However, as

we consider the datasets with millions of data points, this O(logn) factor begins to

produce a very useful order-of-magnitude speedup.

To better understand the efficiency of STOMP, it is important to clarify that the

time complexity of the classic brute force algorithm is O(n2m). The value of m depends

on the domain, but in Section 3.3.8, we consider real world applications where it is 2,000.

Most techniques in the literature gain speedup by slightly reducing the n2 factor;

however, we gain speedup by reducing the m factor to O(1). Moreover, it is important to

 31

remember that the techniques in the literature can only reduce this n2 factor if the data has

a low intrinsic dimensionality (recall Figure 3.1), and the domain requires a short

subsequence length. In contrast, the speedup for STOMP is completely independent of

both the structure of the data and the subsequence length.

3.2.2 Incrementally Maintaining the Matrix Profile with STOMPI

Up to this point we have discussed the batch version of STOMP. By batch, we

mean that the STOMP algorithm needs to see the entire time series T before creating the

matrix profile. However, in many situations it would be advantageous to build the matrix

profile incrementally. Given that we have performed a batch construction of matrix

profile, when a new data point arrives, it would clearly be preferable to incrementally

adjust the current profile, rather than starting from scratch.

Because the matrix profile solves both the times series motif and the time series

discord problems, an incremental version of STOMP would automatically provide the

first incremental versions of both these algorithms. In this section, we demonstrate that

we can create such an incremental algorithm.

We name the incremental algorithm STOMPI (STOMP Incremental, shown in

Algorithm 3).

As a new data point t arrives, the size of the original time series T increases by one.

We denote the new time series as Tnew, and we need to update the matrix profile Pnew and

its associated matrix profile index Inew corresponding to Tnew. For clarity, note that the

input variables Q, μ and σ are all vectors, where Qi is the dot product of the ith and the last

 32

subsequences of T; μi and σi are, respectively, the mean and standard deviation of the ith

subsequence of T.

Algorithm 3: STOMPI(T, t, m, P, I, μ, σ)

 Input: The original time series T, a new data point t following T, subsequence

length m, the matrix profile P and its associated matrix profile index I of T, dot

product vector Q, mean vector μ and standard deviation vector σ

Output: The updated matrix profile Pnew and its matrix profile index Inew

corresponding to the new time series Tnew= [T, t], the updated dot product vector

Qnew, updated mean vector μnew and standard deviation vector σnew

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

n ← Length(T), l ← n-m+1, Tnew = [T, t], S ← 𝑇𝑙+1:𝑛+1
𝑛𝑒𝑤

tdrop ← Tl // tdrop is the first item of the last subsequence of T

for j= l+1 downto 2 // update dot products with (3.4)

 𝑄𝑗
𝑛𝑒𝑤 ← Qj-1 - 𝑇𝑗−1

𝑛𝑒𝑤 × tdrop + 𝑇𝑗+𝑚−1
𝑛𝑒𝑤 × t

end for

𝑄1
𝑛𝑒𝑤← 0

for j= 1 to m // calculate the first dot product with simple brute-force

 𝑄1
𝑛𝑒𝑤 ← 𝑄1

𝑛𝑒𝑤+ 𝑇𝑗
𝑛𝑒𝑤 × Sj

end for

μS ← μl +(t - tdrop) / m // update mean of S

σS ← σl
 2 + μl

 2 + (t2 - tdrop
2) / m - μS

 2 // update standard deviation of S

μnew ← [μ, μS], σnew ← [σ, σS]

D ← CalculateDistanceProfile(Qnew, μmew, σnew, l+1) // see (3.1)

P, I ← ElementWiseMin(P, I, D1:l, l+1) // note that we ignore trivial match here

pnew, inew ← Min(D) // note that we ignore trivial match here

Pnew ← [P, pnew], Inew ← [I, inew]

return Pnew, Inew

In line 1, S is a new subsequence generated at the end of Tnew. Lines 2-5 evaluate

the new dot product vector Qnew according to (3.4), where 𝑄𝑖
𝑛𝑒𝑤 is the dot product of S

and the ith subsequence of Tnew. Note that the length of Qnew is one item longer than that of

Q. The first dot product 𝑄1
𝑛𝑒𝑤 is a special case where (3.4) is not applicable, so lines 6-9

calculate it with simple brute-force. In lines 10-12 we evaluate the mean and standard

deviation of the new subsequence S, and update the vectors μnew and σnew. After that we

calculate the distance profile D with regard to S and Tnew in line 13. Then, similar to

STOMP, line 14 performs a pairwise comparison between every element in D and the

 33

corresponding element in P to see if the corresponding element in P needs to be updated.

Note that we only compare the first l elements of D here, since the length of D is one item

longer than that of P. Line 15 finds the nearest neighbor of S by evaluating the minimum

value of D. Finally, in line 16, we obtain the new matrix profile and associated matrix

profile index by concatenating the results in line 14 and line 15.

The time complexity of the STOMPI algorithm is O(n) where n is the length of size

of the current time series T. Note that as we maintain the profile, each incremental call of

STOMPI deals with a one-item longer time series, thus it gets very slightly slower at each

time step. Therefore, the best way to measure the performance is to compute the

Maximum Time Horizon (MTH), in essence the answer to this question: “Given this

arrival rate, how long can we maintain the profile before we can no longer update fast

enough?”

Note that the subsequence length m is not considered in the MTH evaluation, as the

overall time complexity of the algorithm is O(n), which is independent of m. We have

computed the MTH for two common scenarios of interest to the community.

• House Electrical Demand [52]: This dataset is updated every eight seconds.

By iteratively calling the STOMPI algorithm, we can maintain the profile for at

least twenty-five years.

• Oil Refinery: Most telemetry in oil refineries and chemical plants is sampled

at once a minute [83]. The relatively low sampling rate reflects the “inertia” of

massive boilers/condensers. Even if we maintain the profile for 40 years, the

update time is only around 1.36 seconds. Moreover, the raw data, matrix profile

 34

and index would only require 0.5 gigabytes of main memory. Thus the MTH

here is forty-plus years.

For both these situations, given projected improvements in hardware, these

numbers effectively mean we can maintain the matrix profile forever.

As impressive as these numbers are, they are actually quite pessimistic. For

simplicity we assume that every value in the matrix profile index will be updated at each

time step. However, empirically, much less than 0.1% of them need to be updated. If it is

possible to prove an upper bound on the number of changes to the matrix profile index

per update, then we could greatly extend the MTH, or, more usefully, handle much faster

sampling rates. We leave such considerations for future work.

3.2.3 Porting STOMP to a GPU Framework

As we will show in Section 3.3, STOMP is extremely efficient, much faster than

real time for many motif discovery tasks. Nevertheless, it still takes STOMP

approximately 5-6 hours to process a time series of length one million. Can we further

reduce the time?

It is important to note that the STOMP algorithm is extremely amenable to parallel

computing frameworks. This is not a coincidence; the algorithm was conceived with

regards to eventual hardware acceleration. Recall that the space requirement for the

algorithm is only O(n); there is no data dependency in the main inner loop of the

algorithm (lines 7-9 of Algorithm 2), so we can update all entries of Q in parallel. The

evaluation of each entry in vectors D, P, and I in lines 11 and 12 are also independent of

each other. In the next section, we will introduce a GPU-based version of STOMP,

 35

utilizing these observations to further speed up the evaluation of the matrix profile and

thus motif discovery.

The Graphic Processor Unit, or GPU, is “especially well-suited to address

problems that can be expressed as data-parallel computations” [54]. It has its own

memory, and it can launch multiple threads in parallel. Here, we use the ubiquitous

Single Instruction Multiple Data (SIMD) NVIDIA CUDA architecture, where we can

assign multiple threads to process the same set of instructions on multiple data.

The threads on the GPU are managed in thread blocks. Threads in a thread block

run simultaneously, and they can cooperate with each other through shared local

resources. A CUDA function is called a kernel. When we launch a kernel, we can specify

the number of blocks and the number of threads in each block to run on GPU. For

example, the NVIDIA Tesla K80 allows launching at most 1024 threads within a block

and as many as 263 blocks (a total of 273 threads), which is plentiful for processing a time

series of length 100 million.

The GPU implementation of the STOMP algorithm in Algorithm 2 can be

decomposed into four steps:

• CPU copies the time series to GPU global memory.

• CPU launches GPU kernels to evaluate μ, σ, the initial Q, D, P and I.

• CPU iteratively launches GPU kernels to update QT, D, P, and I.

• CPU copies the final output (P and I) from GPU.

In the first step, the CPU copies time series T (input vector of Algorithm 2) to the

global memory of GPU. The time used to copy a time series of length 100 million takes

 36

less than a second. Note that in order to run the STOMP algorithm, we need to allocate

space to store eight vectors in the GPU global memory: T, μ, σ, Q, Q’, D, P and I. A

double-precision time series of length 100 million is approximately 0.8GB, so the

algorithm utilizes approximately 6.4GB global memory space. This is feasible for

NVIDIA Tesla K40 and K80 cards; however, if the device used has less memory space

available, we can split the time series into small sections and evaluate one section at a

time with the GPU.

In the second step, the CPU launches GPU kernels to evaluate the vectors in

parallel. The mean and standard deviation vectors in line 2 of Algorithm 2 can be

efficiently evaluated by CUDA Thrust [54]. The first QT vector in line 3 can be evaluated

in parallel by applying cuFFT, the NVIDIA CUDA Fast Fourier Transform [55] to the

SlidingDotProduct function in Algorithm 1. We assign a total of n-m+1 threads to

evaluate Q’, D, P, and I in lines 3-5 in parallel. The jth thread processes the jth entry of

these vectors one by one.

Now that we have initialized Q, D, P, and I, we update them iteratively. In the third

step, the CPU runs the outer loop in lines 6-13 of Algorithm 2 iteratively. In every

iteration, the CPU launches a GPU kernel with n-m+1 threads, parallelizing the

evaluation of Q, D, P, and I. As shown in Figure 3.3, the first thread reads Q1 from the

pre-computed Q’ vector, while the second to the last threads evaluate their corresponding

entry of Q using (3.4).

Note that in contrast to the CPU STOMP algorithm, which uses only one vector Q

to store both Qi-1 and Qi, here we use two vectors to separate them. This is necessary

 37

because as the threads evaluate entries in Q in parallel, we need to avoid writing entries

before they are read. A simple and efficient way to accomplish this is to create two

vectors, Qodd and Qeven. When the outer loop variable i in line 6 is even, the threads

read from Qodd and write to Qeven; when i is odd, the threads read data from Qeven and

write to Qodd. Following this, the threads evaluate D with (3.1), and the jth thread

updates P and I if Dj < Pj.

Figure 3.3. Division of work among threads in the third step of GPU STOMP.

When all of the iterations are complete, we have reached the last step of GPU

STOMP, where the CPU copies P and I back to the system memory.

3.2.4 Further Parallelizing STOMP with multiple GPUs

The parallelization scheme above is suitable if we only have one GPU device. Can

we further reduce the processing time if there are two or more GPUs available?

Thus far, we have been using CPU to iteratively control the outer loop of the

STOMP algorithm in Algorithm 2. We start by computing the first distance profile (the

first row) in Figure 2.2 and its corresponding Q vector. Then in each iteration, we

compute a new row of the distance matrix in Figure 2.2, and maintain the minimum-so-

P1 P2 P3 … Pn-m+1

di,1 di,2 di,3 … di,n-m+1

Qi,1 Qi,2 Qi,3 … Qi,n-m+1

(4)

(1)

Update
if Smaller

Qi-1,1 Qi-1,2 … Qi-1,n-m Qi-1,n-m+1

…

 38

far values of each column in vector P. When the iteration is complete, P becomes the

exact matrix profile.

This outer loop computation can be further parallelized. Assume we have k

independent GPU devices, and we also have (n-m+1)/k = q. We can then divide the

distance matrix in Figure 2.2 into k sections: device 1 evaluates the 1th to the qth rows,

device 2 evaluates the (q+1)th to the (2q)th rows, etc. Essentially, device k uses the

parallelized version of SlidingDotProduct function in Algorithm 1 to calculate Qq(k-1)+1

and Dq(k-1)+1, then it evaluates the following q-1 rows iteratively. The k devices can run in

parallel, and after the evaluation completes, we can simply find the minimum among all

the k matrix profile outputs. In summary, we can achieve a k-times speed up by using k

identical GPU devices.

By porting all the introduced techniques to NVIDIA Tesla K80, which contains two

GPU devices on the same unit, we are able to obtain the matrix profile and matrix profile

index of a seismology time series of length 100 million within 19 days. Are there any

further optimizations left?

3.2.5 A Technique to Further Accelerate GPU-STOMP

Figure 3.3 showed the process to compute the ith row of the distance matrix in

Figure 2.2 by n-m+1 parallel threads. Recall that the distance matrix corresponding to a

self-join matrix profile is symmetric; half of the distance computations can be saved if we

only evaluate the ith to the last columns. We show this strategy in Figure 3.4.top.

However, note that it is desirable to maintain the O(n) space complexity of our

algorithm; if we move on to the (i+1)th row of Figure 2.2 without further processing,

 39

then Pi = min(d1,i, d2,i, …, di,i), and it would no longer be updated. To correct this, it is

necessary to launch another kernel after Figure 3.4.top is completed. The new kernel is

shown in Figure 3.4.bottom.

Essentially, we have used an analogous reduction technique as in [27] to obtain dmin

= min(di,i+1, di,i+2, …, di,m+n-1), which also is equivalent to min(di+1,i, di+2,i, …, dn-m+1,i) as a

result of symmetry. If dmin < Pi, we set Pi = dmin, so Pi = min(Di). Although it is necessary

to launch an additional kernel to process each row, which will require extra time, the

extra time is still less than what is saved when handling large time series.

Figure 3.4. Modifying the third step of GPU-STOMP. top) Launch only n-m-i+2 threads (instead of

the n-m+1 threads in Figure 3.3) this time at the ith iteration. bottom) Launch another kernel to

evaluate the final value of Pi.

For example, this new technique reduced the time to process a time series of length

100 million from 19 days to approximately 12 days on NVIDIA Tesla K80. This

indicates that it is possible to finish five quadrillion pairwise comparison of subsequences

within 12 days.

Pi

Pi Pi+1 … Pn-m+1

Qi,i Qi,i+1 … Qi,n-m+1

See (4)

di,i di,i+1 … di,n-m+1

Qi-1,i-1 Qi-1,i … Qi-1,n-m Qi-1,n-m+1

…

See (1)

di,i+1 di,i+2 … di,n-m+1

Update if Smaller

Second Kernel Launch: Evaluate Final Value of Pi

min
dmin

Update if Smaller

First Kernel Launch: Update Pi to Pn-m+1

 40

Note that fewer and fewer threads are being launched in each iteration. To apply

this new technique to multiple GPUs, it is necessary to ensure that each GPU is loaded

with similar amount of work, so they will finish in similar time. Here, for NVIDIA Tesla

K80, we computed the first (n-m+1)(1-1/√2) distance profiles with the first GPU and the

last (n-m+1)/√2 distance profiles with the second GPU.

3.2.6 A Final Optimization: Breaking the Ten Quadrillion Pairwise

Comparison Barrier

In the last section, we demonstrated a technique to use parallel threads to evaluate

the rows of the distance matrix in Figure 2.2 iteratively. Note that to compute one row,

the technique needs to launch two kernels, all threads need to be synchronized following

the evaluation, and the corresponding Q vector needs to be updated in GPU global

memory. As there are n-m+1 rows in Figure 2.2, when n becomes large, the time cost for

kernel launch, and the thread synchronization and memory writing becomes nontrivial.

As impressive as the results are in the last section, which breaks the 5 quadrillion

pairwise comparison barrier, there is one more optimization we can perform to further

speed up the GPU code. We denote this optimized version GPU-STOMPOPT. To help the

reader better understand how the GPU-STOMPOPT works, we will first show our initial

optimization scheme in Figure 3.5, then further refine it in Figure 3.6 and Figure 3.7.

 41

Figure 3.5. An optimization scheme for the the third step of GPU-STOMP. We only need to launch

one kernel to evaluate all the rows of the distance matrix in Figure 2.2.

Figure 3.5 shows our key scheme to save the kernel launch and thread

synchronization time: instead of launching a kernel for every single row in Figure 2.2,

we issue only one single kernel to generate the entire matrix profile. Note that based on

the one-one correspondence between di,j and Qi,j (as shown in (3.1)), we can convert the

symmetric distance matrix computation into Figure 3.5, where we evaluate the upper-

right half of the dot product matrix. Since the value of Qi,j is only dependent on Qi-1,j-1

(according to (3.4)), the computation of each diagonal in Figure 3.5 is independent of

any other diagonal. Thus, we assign n-m+1 threads to compute these diagonals in

parallel.

Once we obtain Qi,j , we can easily evaluate di,j based on (3.1). Then we examine

two elements of the matrix profile: if di,j < Pi, we set Pi = di,j; and if di,j < Pj, we set Pj =

di,j. Note that as each thread in Figure 3.5 operates independently, multiple threads may

attempt to update the same entry of the matrix profile at the same time. We need to use

CUDA atomic operations to organize this. Essentially, we set a lock for each entry of the

Q2,2 Q2,3 … Q2,n-m Q2,n-m+1

Q1,1 Q1,2 … Q1,n-m+1 Q1,n-m Q1,n-m+1

…

Q3,3 Q3,4 … Q3,n-m+1

… … …

Qn-m,n-m Qn-m,n-m+1

Qn-m+1,n-m+1

 42

matrix profile. When multiple threads try to update the same matrix profile entry, they

line up to get the lock, and perform an atomic Min operation in order. The reader may

doubt that this can result in a significant cost of time, as it is possible that all threads can

be lining up to update the same single matrix profile entry. However, in practice, we find

that a large portion of these atomic operations can be pruned from the calculation.

Assume we have twenty atomic operations lined up to update a matrix profile

entry, which has an initial value of 6.81, with the following distance values in order:

0.6, 4.46, 1.99, 6.98, 2.29, 2.95, 7.05, 1.47, 6.04, 2.72, 2.31, 3.2, 6.25, 9.33, 0.27,

2.62, 2.00, 2.74, 6.67, 2.34.

Since the matrix profile entry keeps track of the minimum distance value, only two

updates would be executed: 0.6 and 0.27. That is only 10% of this short sequence of data.

Now let us randomly shuffle the data:

7.05, 2.29, 1.47, 0.27, 2.74, 2.95, 9.33, 2.34, 4.46, 2.00, 6.04, 2.72, 2.31, 3.2, 6.25,

6.98, 0.6, 2.62, 1.99, 6.67.

This time three updates would be executed: 2.29, 1.47, 0.27. That is only 15% of

the data; so again, it is only a small portion.

Note that our toy example here is a very short data sequence. In practice, for most

time series only less than 0.1% distance values end up smaller than their corresponding

matrix profile elements. For example, for a random-walk time series of length one

million, we executed on average only 39 atomic calls for each matrix profile entry; more

than 99.996% of the atomic operations are pruned.

 43

By implementing the optimization scheme shown in Figure 3.5, we have obtained

about 3X speedup over GPU-STOMP for medium-size time series (i.e. with less than 4

million data points). However, as the time series gets even longer, less speedup is

observed, as the time spent on atomic operations and global memory writes become

nontrivial.

To solve this, we use two strategies to refine our optimization scheme in Figure

3.5.

The first strategy aims to accelerate each atomic write. As stated previously,

multiple independent threads can be attempting to update the matrix profile at the same

time, so we are using CUDA atomic Min operation to organize them. Note that when a

matrix profile entry (which is a 64-bit double precision value) is updated, the

corresponding matrix profile index value (a 32-bit integer value) also needs to be

updated. However, currently CUDA only supports atomic operations on either one single

32-bit value or one single 64-bit value. To tackle this, we initially set a lock on every

entry of the matrix profile, and used a critical section to update both the matrix profile

entry and the matrix profile index value when a thread gets the lock; however, this

solution is not scalable with longer time series inputs. As a result, we turned to a better

solution as shown in Figure 3.6. Instead of using a time-consuming critical section, we

lower the precision of the matrix profile to 32 bits. We then combine the matrix profile

and the matrix profile index into one double-precision vector in the global memory that

can be atomically updated. For the ith entry of the double-precision vector, 32 bits are

 44

used to store the ith matrix profile value, and another 32 bits are used to store the ith

matrix profile index.

This refinement strategy largely accelerated the speed for atomic operations. Note

that the strategy will not result in large precision loss, as only the precision of the output

is reduced; we are still using 64 bits to store all the intermediate results during the

evaluation process.

Figure 3.6. We reduced the matrix profile to 32 bits, then combined each matrix profile entry and its

corresponding matrix profile index entry into a double-precision value to allow fast atomic updates.

The second strategy is to utilize the CUDA shared memory to ease the contention

for global memory writes. The strategy, as shown in Figure 3.7, can be viewed as 2-level

hierarchy of Figure 3.5. Here we define TPB as the number of threads per block on

CUDA.

Different from Figure 3.5, in which each thread evaluates one single diagonal of

the distance matrix, here we divide the distance matrix into k meta diagonals (as shown in

Figure 3.7.a, a meta diagonal consists of TPB diagonals of the distance matrix; (k-

1)×TPB<n-m+1≤ k×TPB). Each meta diagonal is evaluated by one CUDA thread block.

As shown in Figure 3.7.b, the thread block evaluates one parallelogram at a time,

managing a local copy of the matrix profile in the shared memory. The threads in a block

(shown in Figure 3.7.c) work very similarly as those in Figure 3.5, except that they

atomically update the shared memory instead of the global memory. After a

parallelogram (Figure 3.7.b) is evaluated, all the threads in the block are synchronized. If

 45

any value in the shared memory is smaller than its corresponding entry in the global

memory, the global memory is updated.

Figure 3.7. a) Each thread block evaluates one meta diagonal of the distance matrix. b) The

parallelograms in a meta diagonal are evaluated iteratively by a thread block. c) The threads in a

block evaluate diagonals of a parallogram in parallel.

With this refinement strategy, the contention of atomic updates in Figure 3.5 is

largely relieved. The original scheme in Figure 3.5 allowed a global memory location to

be visited by all active threads in all the thread blocks (which can be as many as (n-m+1)

threads) simultaneously. In contrast, with the refined scheme in Figure 3.7, the number

of threads racing for a shared memory location cannot be larger than TPB, and a global

memory location cannot receive more than k atomic update requests at the same time.

This brings about a large performance gain.

…

Qi,j Qi,j+1 … Qi,j+TPB-1

Qi+1,j+1 Qi+1,j+2 … Qi+1,j+TPB

Qi+2,j+2 Qi+2,j+3 … Qi+2,j+TPB+1

… … … …

Qi+TPB,j+TPB Qi+TPB,j+TPB+1 … Qi+TPB,j+2*TPB-1

a)

TPB

TPB+1

block 1

b)

TPB TPB TPB

block 2

block 3
block 4

synchronize threads

 46

Similar to GPU-STOMP, GPU-STOMPOPT can easily be adapted to multiple GPUs

as well. For example, to evenly divide the work for an NVIDIA Tesla K80, we compute

the odd (1st. 3rd, 5th, etc. from the left) meta diagonals in Figure 3.7.a with the first GPU,

and the even (2nd, 4th, 6th, etc. from the left) meta diagonals in Figure 3.7.a with the

second GPU.

With all the optimization strategies, GPU-STOMPOPT achieved more than 2X

speedup over GPU-STOMP for large datasets. Concretely, it further reduces the time to

process a time series of length 100 million from 12 days to about 4 days on NVIDIA

Tesla K80. Furthermore, for the first time in the literature, we are able to process a time

series of length 143 million, which is slightly more than ten quadrillion pairwise

comparison of subsequences, within just 9 days.

3.3 Empirical Evaluation

Although some parts of our experiments require access to a GPU, we have

designed them so they can be reproduced easily. To allow for the reproduction of our

experiments, we have constructed a webpage [59], which contains all datasets and code

used in this work. We begin with a careful comparison to STAMP [96], which is

obviously the closest competitor, and we consider more general rival methods later.

Unless otherwise noted, we used an Intel i7@4GHz PC with 4 cores to evaluate all

the CPU-based algorithms; we used a server with two Intel Xeon E5-2620@2.4GHz

cores and an NVIDIA Tesla K80 GPU to evaluate GPU-STOMP.

 47

3.3.1 STAMP vs STOMP

We begin by demonstrating that STOMP is faster than STAMP, and also that this

difference grows as we consider increasingly large datasets. Furthermore, we measure the

gains made by using GPU-STOMP. In Table 3.1, we measure the performance of the

three algorithms on increasingly long random walk time series with a fixed subsequence

length 256.

Table 3.1. Time required for motif discovery with m = 256, varying n, for the three

algorithms under consideration

Algorithm Value of n 217 218 219 220 221

STAMP 15.1 min 1.17 hours 5.4 hours 24.4 hours 4.2 days

STOMP 4.21 min 0.3 hours 1.26 hours 5.22 hours 0.87 days

GPU-STOMP 10 sec 18 sec 46 sec 2.5 min 9.25 min

Note that we choose m’s length as a power-of-two only to offer the best case for

(the FFT-based) STAMP; our algorithm is agnostic to such issues.

A recent paper on finding motifs in seismograph datasets also considers a dataset of

about 219 in length and reports taking 1.6 hours, which is approximately the same time it

takes STOMP [101]. However, their method is probabilistic and allows false negatives

(twelve of which were actually observed, after checking against the results of a 9.5 day

brute-force search [101]). Moreover, it requires careful tuning of several parameters, and

it does not lend itself to GPU implementation.

We wish to consider the scalability of even larger datasets with GPU-STOMP.

However, in order to do so, we must estimate the time it takes the other two other

algorithms. Fortunately, both of the other algorithms allow for an approximate prediction

of the time needed, given the data length n. To obtain the estimated time, we evaluated

 48

only the first 100 distance profiles of both STAMP and STOMP and multiplied the time

used by (n-m+1)/100. In Table 3.2, we consider even larger datasets, one of which

reflects the data used in a case study in Section 3.3.4.

Table 3.2. Time required for motif discovery with various m and various n, for the

three algorithms under consideration

Algorithm m | n 2000 | 17,279,800 400 | 100,000,000

STAMP (estimated) 36.5 weeks 25.5 years

STOMP (estimated) 8.4 weeks 5.4 years

GPU-STOMP (actual) 9.27 hours 12.13 days

Note that the 100-million-length dataset is one hundred times larger than the largest

motif search in the literature [37].

In all three algorithms under consideration, the time required is independent of the

subsequence length m, which is desirable. This is demonstrated in Table 3.3, where we

measure the time required with n fixed to 217, for increasing m.

Table 3.3. Time required for motif discovery with n = 217, varying m, for the three

algorithms under consideration

Algorithm Value of m 64 128 256 512 1,024

STAMP 15.1 min 15.1 min 15.1 min 15.0 min 14.5 min

STOMP 4.23 min 4.33 min 4.21 min 4.23 min 2.92 min

GPU-STOMP 10 sec 10 sec 10 sec 10 sec 10 sec

Note that the time required for the longer subsequences is slightly shorter. This is

true since the number of pairs that must be considered for a time series join [96] is (n-

m+1)2, so as m becomes larger, the number of comparisons becomes slightly smaller.

 49

3.3.2 GPU-STOMPOPT Breaks the Ten Quadrillion Pairwise

Comparison Barrier

In Table 3.4, we measure the performance of STAMP, STOMP, GPU-STOMP,

and GPU-STOMPOPT on increasingly long random walk time series with a fixed

subsequence length 256. The shaded cells are duplicated from Table 3.1, but they are

included for comparison. Note that while some numbers are estimated, as explained in

the next section, we can predict the time and memory requirement of STAMP and

STOMP very precisely (with less than 5% error) for large datasets.

Table 3.4. Time required for motif discovery with m = 256, varying n, for the three

algorithms under consideration

Algorithm Value of n 217 218 219 220 221 17,279,800 100,000,000 143,000,000

STAMP 15.1 min 1.17 hours 5.4 hours 24.4 hours 4.2 days
36.5 weeks

(estimated)

25.5 years

(estimated)

51.2 years

(estimated)

STOMP 4.21 min 0.3 hours 1.26 hours 5.22 hours 0.87 days
8.4 weeks

(estimated)

5.4 years

(estimated)

10.9 years

(estimated)

GPU-STOMP 10 sec 18 sec 46 sec 2.5 min 9.25 min 9.27 hours 12.13 days
24.5 days

(estimated)

GPU-STOMPopt 8 sec 9 sec 17 sec 49 sec 2.93 min 3.29 hours 4.51 days 9.33 days

We note in passing that this experiment on a time series of length 143 million is the

largest time series ever searched for exact motifs. Moreover, we are confident that this is

the first time ten quadrillion pairwise comparisons have been made on a single dataset, in

any context.

The time required for GPU-based algorithms can be divided into two parts. The

first part includes the data reading time and computation time; the second part includes

the time needed for kernel launch, data synchronization and memory writes. GPU-

STOMP and GPU-STOMPOPT spent the same time in the first part. To further compare

 50

the effectiveness of the two methods, in Table 3.5 we measure their run time in the

second part.

Table 3.5. Time required for kernel launch, data synchronization and memory

writes with m = 256, varying n, for the two GPU-based algorithms

Algorithm Value of n 218 219 220 221 17,279,800 100,000,000

GPU-STOMP 17 sec 41 sec 2.2 min 8.17 min 8.04 hours 10.39 days

GPU-STOMPopt 8 sec 12 sec 32 sec 1.85 min 2.06 hours 2.77 days

We can wee that GPU-STOMPOPT achieved more than 4X speedup over GPU-

STOMP in the second part for large datasets.

3.3.3 STOMP vs State-of-the-Art Motif Discovery Algorithms

Beyond the independence of the subsequence length demonstrated in Table 3.3, all

three matrix profile-based algorithms are also independent of the intrinsic dimensionality

of the data, which is also desirable. To demonstrate this, we will compare to the recently

introduced Quick-Motif framework [37] and the more widely known MK algorithm [49].

The Quick-Motif method was the first technique to perform an exact motif search on one

million subsequences.

To level the playing field, we do not avail of GPU acceleration, but instead, we use

the identical hardware (a PC with Intel i7-2600@3.40GHz) and programming languages

for all algorithms. Note that for a fair comparison with STAMP [96], which is written in

Matlab, in Section 3.3.1, we measured the performance of STOMP based on its Matlab

implementation. However, because the two rival methods in this section (Quick-Motif

and MK) are written in C/C++, here we measure the runtime of (the CPU version of)

STOMP based on its C++ implementation.

 51

We use the original author’s executables [60] to evaluate the runtime of both MK

and Quick-Motif. The reader may wonder why the experiments here are less ambitious

than in the previous sections. The reason is that beyond time considerations, the rival

methods have severe memory requirements. For example, for a seismology data with m =

200, n = 218, we measured the Quick-Motif memory footprint as large as 1.42 GB. In

contrast, STOMP requires only 14MB memory for the same data, which is less than

1/100 of this. If this ratio linearly interpolates, Quick-Motif would need more than ½

terabyte of main memory to tackle the one hundred million benchmark, which is

infeasible. Moreover, for Quick-Motif, it is possible that a different dataset of the same

size could require a larger or smaller footprint. In contrast, the space required for STOMP

is independent of both the structure of data and the subsequence length.

This severe memory requirement makes it impossible to compare the STOMP

algorithm with Quick-Motif on the seismology data, since Quick-Motif often crashed

with an out-of-memory error as we varied the value of m. However, we noticed that the

memory footprint for Quick-Motif tends to be much smaller with smooth data. Therefore,

instead of comparing performance of the algorithms on seismology data, in Table 3.6, we

utilized the much smoother ECG dataset (used in Rakthanmanon et al. [61]), which is an

ideal dataset for both MK and Quick-Motif to achieve their best performance.

Table 3.6. Time required for motif discovery with n = 218, varying m, for various

algorithms

Algorithm m 512 1,024 2,048 4,096

STOMP 501s (14MB) 506s (14MB) 490s (14MB) 490s (14MB)

Quick-Motif 27s (65MB) 151s (90MB) 630s (295MB) 695s (101MB)

MK 2040s (1.1GB) N/A (>2GB) N/A (>2GB) N/A (>2GB)

 52

Clearly, both the runtime and memory requirement for STOMP are independent of

the subsequence length. In contrast, Quick-Motif and MK both poorly scale in

subsequence length in both runtime and memory usage. Note that the memory

requirement of Quick-Motif is not monotonic in m, as reducing m from 4,096 to 2,048

requires three times as much memory. This is not a flaw in implementation (we used the

author’s own code), but a property of the algorithm itself.

As indicated in Figure 3.1, the Quick-Motif algorithm [37], the MK algorithm

[49], and the original motif discovery by projection algorithm [15] can all be fast in the

best case. For example, if there happens to be a perfect (zero Euclidean distance) motif in

the dataset, they will all discover it with O(n) work (with high constants), and all

algorithms can use this zero-valued best-so-far to prune all other possibilities for motif

pairs. While we generally do not expect to have a zero-distance motif in real-valued data,

a very close motif pair in a dataset with low intrinsic dimensionality (recall Figure 3.1)

can offer similar speed ups. However, that describes the best case for all three algorithms.

Consider instead the worst case (for example, the input signal is white noise, and all

subsequences are effectively equidistant from each other), all three rival algorithms

degenerate to O(mn2) (again, with high constants). In contrast, STOMP is unique in that

its best case and worse case are identical, just O(n2). Because m can be as large as 2,000

(see Figure 3.8), this can produce a significant speedup. Moreover, as we will show in

the next two sections, STOMP computes much more useful information than the two

rival methods.

 53

Before demonstrating this, we show that the experiments in the previous table were

spurious for STOMP. We do not need to measure its time or memory footprint, because

we can predict it precisely. To the best of our knowledge, this property is unique among

all motif discovery algorithms proposed in the literature [15][37][49].

For STOMP (assuming only that m ≪ n), given only n, we can predict how long

the algorithm will take to terminate and how much memory it will consume, which is

completely independent of the value of m and the data.

To do this, we need to do a single calibration run on the machine in question. With

a time series of length n, we measure T, the time taken to compute the matrix profile, and

M, the (maximum) amount of memory consumed. Then, for any new length nnew, we can

compute Trequired, the time needed as the following:

𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑇

𝑛2
× 𝑛𝑛𝑒𝑤

2 (3.5)

and we can compute Mrequired, the memory needed as the following:

𝑀𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑀

𝑛
× 𝑛𝑛𝑒𝑤 (3.6)

As long as we avoid trivial cases, such as m ~ n, nnew is very small or n is very

small, this formula will predict the resources needed with an error of less than 5%. To

demonstrate this, we performed the following experiment. On our machine (a PC with

Intel i7-2600@3.40GHz) we ran STOMP (Matlab version) on a random walk dataset of

size 218, measuring the resources consumed. Then, as shown in Table 3.7, we use the

formulas above to predict the resources needed to compute the Matrix Profile for datasets

of size {218, 219, 220, 221}. Then we measured these values with actual experiments on

 54

random walk data. From Table 3.7, the agreement between our predictions and the

observed values is clear.

Table 3.7. Time and memory required for STOMP, with m = 256, varying n

Resources n 218 219 220 221

STOMP time (memory)

measured
19.0 min (30MB) 75.6 min (60MB) 313 min (121MB) 1253 min (242MB)

STOMP time (memory)

predicted
19.0 min (30MB) 76.0 min (60MB) 304 min (120MB) 1216 min (240MB)

Relative Error 0% (0%) 0.5 % (0%) 3% (0.8%) 3% (0.8%)

This property has several desirable implications: we can carefully plan resources

when performing analytics on large data archives; we can easily divide the work to

parallel computing resources to finish our task in time; and we can show a perfectly

accurate “progress bar” to a user who is using STOMP interactively.

3.3.4 Case Studies in Seismology: Infrequent Earthquake Case

To allow confirmation of the correctness and utility of STOMP, we begin by

considering a dataset for which we know the result from external sources. On April 30th

1996, there was an earthquake of magnitude 2.12 in Sonoma County, California1. Then

on December 29th 2009, about 13.6 years later, there was another earthquake with a

similar magnitude. We concatenated the two full days in question to create a single time

series of length 17,279,800 (see Table 3.2 for timing results) and examined the top

motifs with m = 2,000 (twenty seconds). Note that we are using the raw data as provided

1 A small earthquake of that magnitude would only be felt by attentive humans in the immediate vicinity of the

epicenter.

 55

to us by the seismologists, we are not preprocessing it in anyway. As Figure 3.8.top

illustrates, the top motif here is not an earthquake but an unusual sensor artifact [28].

Figure 3.8. Motifs (colored) shown in context (gray). top) The top motif discovered in the Sonoma

County dataset is a sensor artifact, as are the next three motifs (not shown). bottom) The fifth motif is

two true occurrences of an earthquake that happen 4,992 days apart.

There are a handful of other such artifacts; however, as shown in Figure

3.8.bottom, the fifth best motif is the two occurrences of the earthquake. These

misleading sensor artifacts are common, but they could be eliminated easily [28]. For

example, the sensors could have a zero crossing rate that is an order of magnitude lower

than true earthquakes.

This example allows us to demonstrate yet another advantage of STOMP over rival

methods. All the existing rival techniques can be expanded from top-1 motif discovery to

top-k motif discovery; however, increasing k by a modest amount will significantly

degrade their speed.

Furthermore, consider again the example in Figure 3.8. It is not possible to have

known the “magic” value of k = 5 beforehand. If k was set to a large value to “be on the

0 1000 2000 3000

1996

2006

1996, ID:30104990

2006, ID:371327705

 56

safe side,” say k = 10, then all existing techniques would slow down because the best-so-

far lower bound that prunes unnecessary computations would be much looser. If we set k

as a more conservative value, say k = 3, then we would miss the most valuable

information in this seismology dataset. You might imagine that the rival methods could

slowly increase from k to k+1 based on the user’s lack of satisfaction with the k motifs

she has examined thus far; however, each adjustment of k will require all existing

techniques to perform significant extra computation, even if they have cached the results

of every calculation they have performed.

In contrast, the time needed for STOMP is completely independent of k. We only

need to run STOMP once; as the matrix profile obtained already contains all necessary

information, and it takes minimal additional effort to find the top k motif, no matter how

large k is.

3.3.5 Parameter Settings

As we have previously noted, STOMP (together with STAMP) is unique among

motif discovery algorithms because it is parameter-free. In contrast, Random Projection

[15] has four parameters, Quick-Motif [37] has three parameters, Tree-Motif has four

parameters [88], MK [49] has one parameter, and FAST has three parameters [101].

That being said, the reader may wonder about the only input value besides the time

series of interest: the subsequence length m. Note that this is also a required input for all

the other existing techniques. However, we do not consider m to be a true parameter, as it

is a user choice, reflecting her prior knowledge of the domain. Nevertheless, it is

 57

interesting to ask how sensitive motif discovery is to this choice; at least in the

seismology domain that motivates us.

To test this, we edited the data above such that the two earthquakes in Figure

3.8.bottom happen exactly 13 minutes 20 seconds apart. We reran motif discovery with

m=2,000 (twenty seconds), with double that length (m=4,000), and with half that length

(m=1,000). Figure 3.9 shows the result.

Figure 3.9. top) Thirty minutes of seismograph data that has the two earthquakes from Figure

3.8.bottom occur at 6min-40s and 20min. bottom) The matrix profile computed if we use the suggested

subsequence length 2,000 (blue), or if we use twice the length (red), or half that length (green).

The results are reassuring. At least for earthquakes, motif discovery is not sensitive

to the user input. Even a poor guess as to the best value for m, it will likely give accurate

results.

3.3.6 Case Studies in Seismology: Earthquake Swarm Case

In the previous section, we discovered a repeating earthquake source that has a

frequency of about once per 13.6 years. Here, we consider earthquakes that are tens of

millions of times more frequent.

Forecasting volcanic eruptions is of critical importance in many parts of the world

[74]. For example, on May 18th, 1980, Mount St. Helens had a paroxysmal eruption that

raw seismograph data

matrix profiles

0min 30min

 58

killed 57 people [34]. It is conjectured that explosive eruptions are commonly preceded

by elevated or accelerated gas emissions and seismicity; thus, seismology is a major tool

for both monitoring and predicting such events.

In Figure 3.10, we illustrate a short section of the matrix profile of a seismograph

recording at Mount St Helens. It is important to restate that this is not the raw

seismograph data, but it is the matrix profile that STOMP computed from it.

Figure 3.10. The matrix profile of a seven-minute snippet from a seismograph recording at Mount St

Helens.

The image demonstrates a stunning regularity. Repeated earthquakes are occurring

approximately once every thirty-eight seconds. This is consistent with the findings of a

team from the US Geological Survey who reported that the earthquakes, which

accompanied a dome-building eruption, appeared “... so regularly that we dubbed them

‘drumbeats’. The period between successive drumbeats shifted slowly with time, but was

30–300 seconds” [34].

This example shows a significant advantage of our approach that we share with

STAMP but no other motif discovery algorithm. Instead of computing only O(1) distance

values for the top k motifs, STOMP is computing all O(n) distances from every

subsequence to their nearest neighbors. By plotting the entire matrix profile, we gain

unexpected insights by viewing the motifs in context. For example, in the example above,

1:45am 1:52am

38 seconds

1st February 2006

 59

we can see both the surprising periodicity of the earthquakes, and by comparing the

smallest values in the matrix profile with the mean or maximum values, we can get a

sense of how well the motifs are conserved relative to “chance” occurrences. It could also

potentially indicate whether there were changes to the earthquake source, reflecting

changes in eruptive behavior over time.

A recent paper performed a similar analysis on the Mount Rainier volcano, making

the interesting and unexpected discovery that the frequency of earthquakes is correlated

with snowfall [3]. However, the paper bemoans at the number of ad-hoc “hacks” that

needed to make such an exploration tenable. For example, “In order to save on

computing time, we cut out detections that are unlikely to contain a repeating earthquake

event by excluding events with a signal width,” and “To save on computing time, we

define that in order to be detected…” etc. [3]. However, the results in Table 3.4 indicate

that we could bypass these issues by spending a few hours computing the full exact

answers. This would eliminate the risk that some speedup “trick” erases an interesting

and unexpected pattern.

3.3.7 Case Studies in Seismology: Detection of Repeated Low

Frequency Earthquakes

In the previous sections, we showed how STOMP could help us detect repeating

earthquake sources by evaluating the matrix profile of a single seismograph recording

time series. Here we show that by providing the matrix profiles of multiple seismograph

recording time series, STOMP allows us to detect low frequency earthquakes (LFEs).

LFEs are of great importance to the seismology community, as they could “potentially

 60

contribute to seismic hazard forecasting by providing a new means to slow slip at depth”

[66]. LFEs recur episodically, often during bursts of tectonic ‘tremor’, which are

considered superpositions of many LFEs in a short period of elevated seismic activity

[65]. One traditional approach, known as ‘matched filtering’ identifies repeated LFEs by

evaluating the cross-correlation between continuous waveform data (time series) and a

template waveform (subsequence) (e.g. [67]). However, this requires a suitable, carefully

recorded template waveform of an LFE (an LFE subsequence) to have been identified in

advance, which is very difficult or even impossible in many cases. In the face of this,

similarity-join search through autocorrelation (e.g. [11]) has been used to detect LFEs in

several studies. However, the traditional similarity-join search approach is

computationally intensive (typically only one hour or less of continuously waveform data

can be searched in feasible time), severely limiting the number and range of LFEs that

can be detected.

Consider an example of LFE detection along the central San Andreas fault near

Parkfield, CA. We search for LFEs in waveform data from a tremor burst that occurred

on October, 6, 2007, in which many LFEs were detected by matched filtering [67]. As

before, note that we are using the raw data as provided to us by the seismologists, we are

not preprocessing it in anyway. The LFE template (subsequence) in Shelly et al. [67] was

found by careful visual examination of seismic recording from multiple temporary

seismic stations located close to the source (the green triangles in Figure 3.11; temporary

stations were set up near a well-known earthquake source in this area), and subsequently

also identified on more distant, permanent High Resolution Seismic Network (HRSN, the

 61

red triangles). Note that our task here is to detect all the LFEs automatically, and the only

data available are those from the HRSN stations (the red triangles in Figure 3.11), since

in most applications we do not know the earthquake source location (thus the data from

the temporary stations) until well after the event.

Figure 3.11. LFEs can be detected from the seismograph recording of HRSN stations.

Apart from the lack of the temporary station data, what makes our task even more

difficult is that the data from HRSN stations are noisy and many contain a lot of false

positives. For example, the top 15 motifs (repeating templates) found from the data of an

HRSN station near central San Andreas fault are either sensor artifacts (similar to Figure

3.8) or instrument noise in the station itself. However, in spite of all these difficulties, we

will demonstrate that STOMP allows us to detect LFEs from long seismic recordings.

We ran GPU-STOMPOPT on the seismic recording time series from three HRSN

stations for a 24-hour period spanning the tremor burst. The three HRSN stations are

located close to each other. The data was sampled at 20Hz, for a total of ~1.7 million

samples per station time series. Figure 3.12 shows the sum of the three matrix profiles

obtained.

Earthquake source

Station 1 Station 2 Station 3Temporary Stations

Only data from HRSN stations are
available. When an LFE occurs, it
should be detected by the three
stations at similar time.

Data from these stations
are not available

 62

Figure 3.12. The sum of three matrix profiles of the 24-hour seismograph recording at three HRSN

stations near the central San Andreas fault.

The reader may wonder why we are summing the three matrix profiles here. This

simple step greatly reduces the false positives in the data. As the three HRSN stations are

located close to each other, when an LFE occurs, the stations should detect it at a similar

time. As a result, the matrix profile values of the three stations should all be low at the

occurrence of the LFE. The sum of the matrix profiles shows low values at such time

instants, which strengthens the LFE signal and thus weakens the false positives, which

are local to each sensor. We discovered that the top seven motifs identified in this way

were either glitches in the waveform data (sensor artifacts, again, recall Figure 3.8), or

signals that could not be separated into individual LFEs; however, as shown in Figure

3.13, the 8th best motif showed strong characteristics, in terms of frequency content,

waveform shape and duration, of an LFE, and the origin time of this LFE is consistent

with the results in Shelly et al. [67], which may be regarded as the ground truth.

0 24 hrs

 63

Figure 3.13. The 40-second LFE snippet detected from the three HRSN station time series.

In contrast to Shelly et al. [67], which detects the LFE pattern with weeks of

enormous human effort, we are able to complete the same task automatically in

approximately 3 minutes with GPU-STOMPOPT on NVIDIA Tesla K80.

3.3.8 A Case Study in Animal Behavior

While seismology is the primary motivator for this work, nothing about our

algorithm assumes anything about the data’s structure, or precludes us from considering

other datasets. To demonstrate this, in this section, we briefly consider telemetry

collected from Magellanic penguins (Spheniscus magellanicus). Adult Magellanic

penguins can regularly dive to depths of between 20m to 50m deep in order to forage for

prey, and may spend as long as fifteen minutes under water. The data was collected by

attaching a small multi-channel data-logging device to the bird. The device recorded tri-

axial acceleration, tri-axial magnetometry, pressure, etc. As shown in Figure 3.14, for

simplicity we consider only Y-axis magnetometry. Note that, as with the seismology, we

are not preprocessing this data source in anyway, no smoothing, not down sampling, etc.

0 40s

 64

Figure 3.14. left) The Magellanic penguin is a strong swimmer. right) A four-minute snippet of the

full dataset reveals high levels of noise and no obvious structure.

An observer with binoculars labels the data; thus, we have a coarse ground truth for

the animal’s behavior. The full data consists of 1,048,575 data points recorded at 40 Hz

(about 7.5 hours). We ran GPU-STOMPOPT on this dataset, using a subsequence length of

2,000. This took our algorithm just 49 seconds to compute. As shown in Figure 3.15, the

top motif is a surprisingly well conserved “shark fin” like pattern.

Figure 3.15. The top motif of length 2,000 discovered in the penguin dataset. Only three examples are

shown for visual clarity, there are eight such patterns. This behavior may be part of a ‘porpoise’

maneuver.

What (if anything) does this pattern indicate? Suggestively, we observed this

pattern does not occur in any of the regions labeled as nesting, walking, washing, etc., but

only during regions labeled foraging. Could this motif be related to a diving (for food)

behavior?

Fortunately, diving is the one behavior we can unambiguously determine from the

data, as the pressure sensor reading increases by orders of magnitude when the penguin is

under water. We discovered that the motif occurs moments before each dive and nowhere

else. This pattern appears to be part of a ritual behavior made by the bird before diving. It

514,000 524,000

-0.1

0

0.1

0.2
Y-axis magnetometry

1000 20000

 65

has been reported that “The only time penguins are airborne is when they leap out of the

water. Penguins will often do this to get a gulp of air before diving back down for fish.”

Thus, we suspect this pattern is part of a ‘porpoise’ behavior [71].

Generally speaking, we see this example as typical of the interactions that motif

discovery supports. In most cases, motif discovery is not the end of analyses, but only the

beginning. By correlating the observed motifs with other (internal or external) data, we

can form hypotheses and open avenues for further research. Recall the previous section;

this is rather similar to the team studying Mount Rainier’s seismology discovered that its

earthquakes are correlated with snowfall [3]. We believe that the STOMP algorithm may

enable many such unexpected discoveries in a vast array of domains.

3.3.9 Incrementally Maintaining Motifs

In the previous sections, we have demonstrated the ability and efficiency to detect

time series motifs using the matrix profile. However, we assumed that the entire time

series was available beforehand. Here we remove this assumption and show how

STOMPI allows us to incrementally maintain time series motifs in an online fashion.

There are many attempts of this task in the literature [7][82], but they are all approximate

and allow false dismissals.

In Section 3.2.2, we introduced the STOMPI algorithm. The ability to

incrementally maintain the matrix profile implies the ability to exactly maintain the time

series motif [49] in streaming data. We simply need to keep track of the minimum value

of the incrementally-growing matrix profile, and report a new pair of motifs when a new

minimum value is detected.

 66

We demonstrate the utility of this idea on the AMPds dataset [42]. While this is a

real dataset, it lacks ground truth annotation so we slightly contrived it such that we can

check the plausibility of the outcomes. For simplicity, we assume that the kitchen fridge

and the heat pump are both plugged into a single metered power supply. For the first

week, only the refrigerator is running. At the end of the week, the weather gets cold and

the heat pump is turned on. The sampling rate is one sample/minute, and the subsequence

length is 100 (i.e. one hour and forty minutes). We apply the STOMP algorithm to the

first three days of data, then invoke the STOMPI algorithm to handle newly arriving data.

Whenever we detect a new minimum value, we report a new motif.

As shown in Figure 3.16, a new minimum value is detected at the 9,864th minute (6

day 20 hour 24 minute), which indicates a new time series motif. The just-arrived 100-

minute-long pattern looks very similar to another pattern that occurred five hours earlier.

While there is a lot of regularity in the fridge data in general, the exceptional similarity

observed here suggested some underlying physical mechanism that caused such a

perfectly-conserved pattern, perhaps a mechanical ice-making “subroutine.”

Figure 3.16. top) The matrix profile of the first 9,864 minutes of data. bottom) The minimum value of

the matrix profile corresponds to a pair of time series motifs in the power usage data. right) The time

series motif detected.

The maximum time needed to process a single data point with STOMPI in this

dataset is 0.0003 seconds, which is less than 0.004% of the data sampling rate. Thus, on

0 5,000 10,000

0 100

new minimum value
new motif

Matrix Profile

Power Usage Data

 67

this dataset we could continue monitoring with the STOMPI algorithm for several

decades before running out of time or memory.

STOMPI may have implications for real-time earthquake warning systems, which

will reduce the probability of false alarms by quickly searching dictionaries of previously

confirmed events [101]. We leave such consideration for future work.

3.4 Conslusions

In this chapter we introduced STOMP, a new algorithm for time series motif

discovery, and showed that it is theoretically and empirically faster than its strongest

rivals in the literature, STAMP [96], Quick-Motif [37] and MK [49]. In the limited

domain of seismology, we showed that STOMP is at least as fast as the recently

introduced FAST algorithm [101], but STOMP does not allow false negatives and does

not need careful parameter tuning. Moreover, for datasets and subsequences lengths

encountered in the real world, STOMP requires one to three orders of magnitude less

memory than rival methods. Thus, even if we are willing to wait a longer period of time

for the rival methods to search a large (ten million-plus) dataset, we will almost certainly

run out of main memory. Given that these algorithms require random access to the data,

disk-based implementations are infeasible. This is not a gap that is likely to be closed by

a new implementation of these algorithms, because STOMP is unique among motif

discovery algorithms in not extracting subsequences, but performing all the computations

in-situ.

 68

We also introduced STOMPI, the incremental version of STOMP that allows us to

maintain time series motifs in an online fashion, and demonstrated its utility in electricity

power monitoring.

We further demonstrated optimizations that allow STOMP to take advantage of

GPU architecture, opening an even greater performance gap and allowing the first exact

motif search in a time series of length one hundred and forty-three-million.

In future work, we plan to investigate the multidimensional version of our

algorithms.

 69

Chapter 4 SCRIMP++: An Anytime

Algorithm to Compute the Matrix

Profile

In previous chapters, we have shown that the Matrix Profile is a flexible and

generic data tool to solve a host of time series data mining problems, including motif

discovery. There are two algorithms to compute the Matrix Profile, STOMP (Chapter 3),

which requires O(n2) time, and STAMP [96], which is an O(logn) factor slower. In spite

of being slower, STAMP is actually the preferred solution for some applications, as it is a

fast converging anytime algorithm. In favorable scenarios STAMP needs only to be run

to a small fraction of completion to provide a very accurate approximation of the top-k

motifs. In this chapter we introduce SCRIMP++, an O(n2) time algorithm that is also an

anytime algorithm, combining the best features of STOMP and STAMP. As we shall

show, SCRIMP++ maintains all the desirable properties of the original algorithms, but

converges much faster, in almost all scenarios producing the correct output after spending

a tiny fraction of the full computation time. SCRIMP++ further expands the purview of

the Matrix Profile and allows us to consider even larger datasets. More critically,

SCRIMP++ allows us to perform motif discovery interactively, rather than the typical

offline batch processing that is the norm.

 70

4.1 Motif Analytics: An Insatiable Need for Speed

While all data mining algorithms benefit from improvements in speed, here we

argue that for the particular case of motif discovery, improvements in speed are game-

changing. Motif discovery benefits from interactivity more than most data mining

processes. To see this, consider the following analytics session scenario, which while

slightly fictionalized, is based on an ongoing project supporting data-intensive

entomology [92].

An entomologist wants to examine a five-hour, 1,080,000-point time series (as

shown in Figure 4.1) she recorded overnight. From her previous experience, she suspects

that a motif length of 100, corresponding to one-second, is about the right scale for this

insect’s behavior to be manifest. However, because she notices the motifs discovered are

so well conserved at this scale, she decides to consider two-second long motifs. When she

sees these new motifs, she realizes that they correspond to snippets from the setup time,

when her assistant was adjusting the conductive glue on the insect’s back. She therefore

crops off the first few minutes and runs motif discovery again. She then…

Figure 4.1. A five-hour sample of Electrical Penetration Graph (EPG) data hints at the difficulty of

motif search. See also Figure 4.14/Figure 4.15.

If the entomologist was to use STOMP (Chapter 3), the state-of-the-art exact motif

discovery algorithm, then on a modern desktop each run would take about 0.7 hours.

This is an important data resource, and a diligent entomologist may find it worth the

effort to visit her machine every hour or so, but clearly such long cycle time dashes any

 71

hope of interactively. As [84] notes “In interactive data analysis processes, the dialogue

between the human and the computer is the enabling mechanism that can lead to

actionable observations. It is of paramount importance that this dialogue is not

interrupted by slow computation”.

As we will show in this work, SCRIMP++ allows us to perform the above analytic

workflow interactively; in the above scenario, we can reduce the cycle time to just a few

seconds.

Beyond the above anecdote that reflects our research interests, the literature is

replete with examples that suggest the need for faster motif discovery. A recent paper

considering several fundamental questions in neuroscience notes that some such

questions reduce to determining if neural activity “repeats” happen more than expected

by chance [35]. As Figure 4.2 suggests, these repeats are simply time series motifs.

Figure 4.2. Adapted from [35]. “Repeats” in the neuroscience literature are simply time series motifs.

To find such motifs in even a minute’s worth of data, the authors resorted to

various approximations to “increase processing speed.” For example, they downsampled

their data by 1 in 10, and rather than use a sliding window, they use a “jumping” window

to reduce the number of comparisons. Even then, the authors noted that to obtain timely

 72

answers their “repeat-finding algorithm was parallelized and performed on a high-

performance computing (HPC) cluster.” [35].

However, consider their 2-kHz data, and further assume that we search for their

longest motif length of 2.7 seconds (5,400 datapoints), and test all possible subsequences

(not just “jumping” overlaps) in their largest dataset, which is 8,258,064 data points

corresponding to 68.8 minutes of wall clock time.

With an off-the-shelf desktop we can run SCRIMP++ to 1%, in 27.4 minutes, and

reproduce their quality of results (cf. [75]). Note that even here, with the original authors’

most challenging task, we can still process the data faster than they can collect it [35].

The authors go on to bemoan the fact that even with their approximations and use of

HPC, that their findings “represent a lower limit on the duration and prevalence of motifs

which might be observed if longer segments of intracellular dynamics could be

analyzed”. The algorithm presented in this paper will trivially allow this possibility to be

explored, not with batch processing on an HPC, but in real-time interactive sessions on a

laptop.

Before moving on, we note that the Matrix Profile has implication for other time

series tasks, including discord discovery (Chapter 2), chain discovery (Chapter 6),

semantic segmentation [23], etc. While SCRIMP++ can benefit these tasks, for simplicity

and concreteness we only consider motif discovery in this chapter.

 73

4.2 Related Work and Background

4.2.1 Definitions

In this chapter, we inherit all the definitions and notations for time series

(Definition 2.1), time series subsequence (Definition 2.2), distance profile (Definition

2.3), matrix profile (Definition 2.4) and matrix profile index (Definition 2.5) from

Chapter 2.

4.2.2 Matrix Profile Background

It has been shown in [96] that one can trivially compute all top-k motifs (for any k),

range motifs (for arbitrary ranges), and a host of other useful time series primitives, if one

has access to the matrix profile. Thus, fast motif discovery simply reduces to fast

computation of the matrix profile.

To date there are two algorithms to compute the matrix profile, STAMP [96] and

STOMP (Chapter 3).

The STAMP algorithm [96] evaluates the distance profiles (Definition 2.3; the

columns/rows in Figure 2.2) in random order. Each distance profile Di is evaluated by

the MASS algorithm [51], which exploits Fast Fourier Transform (FFT) to calculate the

dot product between Ti,m and every subsequence in T. The evaluation of a distance profile

thus takes O(nlogn) time where n is the length of time series T, and the overall process

takes O(n2logn) time.

In contrast to STAMP, the STOMP algorithm introduced in Chapter 3 evaluates the

distance profiles in Figure 2.2 in-order by exploiting the computation dependency

 74

between consecutive distance profiles. The algorithm only costs O(n2) time, an O(logn)

factor faster than STAMP. STOMP algorithm was forcefully demonstrated as more

efficient than the previous state-of-the-art motif discovery algorithms, the Quick-Motif

algorithm [37] and the MK algorithm [49] in both time and space (see Section 3.3.3 and

Section 3.3.4).

Both STAMP and STOMP maintain the element-wise minimum-so-far values of

the evaluated distance profiles in a running matrix profile. Note that although STAMP is

an O(logn) factor slower than STOMP, it shows better interactivity. As shown in Figure

4.3, STAMP is able to locate the highlighted motifs in the time series T when it is only

10% completed, as the running matrix profile already contains two deep valleys in the

vicinity of the motifs. In contrast, STOMP cannot locate the motifs even when it is 50%

completed (no deep valleys show up), because the running matrix profile converges to the

oracle from left to right in order.

Figure 4.3. STAMP is able to detect the motifs located towards the right side of a time series when it

is only 10% completed due to its random computation order. In contrast, STOMP’s left-to-right

sequential computation means it cannot detect them even when 50% completed.

However, when the time series is very long and motifs are rare, the probability of

STAMP finding the top-k motifs within 10% of its computation greatly decreases.

4000 200

time series T

Oracle Matrix Profile

Running Matrix Profile of STAMP (10%)

Running Matrix Profile of STOMP (50%)

 75

Furthermore, as STOMP is a factor of O(logn) faster, by the time STAMP has completed

10% of its computation, STOMP may already converge to the exact solution. These

conflicting strengths of the two algorithms require careful reasoning by the analyst, based

on her goals and her tentative knowledge of the data. SCRIMP++ eliminates any

dilemma, by combining the speed of STOMP with the anytime convergence property of

STAMP.

4.2.3 General Motif Search

It is important to make the distinction between approximate algorithms (of which

there are many, see [81] for a survey) and anytime algorithms for motif discovery [96].

Suppose a user runs a fast, but approximate algorithm on a large dataset. It is possible

that when the motifs are returned, she is satisfied. However, suppose that the motifs are

not as well conserved as she expected, given her domain knowledge and her intuitions for

the data. She is now in a quandary, are the expected motifs simply not there, or did the

algorithm fail to find them? The problem is compounded by the fact that no approximate

motif discovery algorithm we are aware of come with any kind of probabilistic

guarantees, and all require at least three unintuitive parameters to be set [81]. What can

our user do? If the approximate algorithm was stochastic, she can run it again, and/or

change the parameters, but she may repeatedly face the same problem. Otherwise, she is

condemned to run the fastest exact algorithm she has access to (which is STOMP).

If the approximate algorithms took a tiny fraction of the time of the best exact

algorithm, this issue would require some careful reasoning about trade-offs. However, as

 76

we will show in Section 4.4.3, all approximate algorithms take a large fraction of the time

needed by SCRIMP++, especially for longer motifs.

For this reason, we argue that an anytime algorithm is necessary. In most cases, in a

few seconds the user has acceptable results. If she has any doubts, she can simply let the

algorithm run a little longer. There is no need to start the fastest exact algorithm, because

it is already running!

Finally, we need to qualify the claim that STOMP is the fastest exact algorithm for

motif discovery. On “cooperative data” (relatively smooth data, motifs highly conserved

relative to the rest of the data, short motif lengths etc.), other exact algorithms such as

Quick-Motif [37], IMD [24], or MK [49] can be fast. But in less-than-cooperative data

(e.g., the seismology data in Chapter 3) these algorithms degenerate to O(n2m), with very

high constant factors. The authors of [24] are to be commended for stating this explicitly

“…in the worst case, the algorithm still has a time complexity of O(n2m)”.

As we show in our case studies (see Figure 4.14), m can be as large as 15,000 or

greater for real-world problems. In contrast STOMP (and SCRIMP++) takes O(n2) time,

completely independent of the data and the value of m. Thus, for realistic problems with

high dimensionality, STOMP can be thousands of times faster than Quick-Motif [37],

IMD [24], or MK [49].

4.3 Algorithms

The SCRIMP++ Algorithm consists of two parts: PreSCRIMP and SCRIMP (as

shown in Figure 4.4). In this section, we will first introduce the SCRIMP algorithm,

 77

which is an O(n2) anytime algorithm with better convergence characteristics than

STOMP (Chapter 3). We will then further extend SCRIMP to SCRIMP++, a robust

anytime algorithm which, thanks to the addition of an ultra-fast preprocessing algorithm

PreSCRIMP, is capable of detecting essentially all the motifs within a time series at an

early stage, even when the motifs are subtle and/or extremely rare. For simplicity we only

consider self-join here; however, all the algorithms introduced can be easily extended to

AB-join [96].

Figure 4.4. The SCRIMP++ algorithm consists of an ultra-fast preprocessing algorithm,

PreSCRIMP, and an O(n2) anytime algorithm, SCRIMP. PreSCRIMP provides a very accurate

approximation of the matrix profile at an early stage; SCRIMP further refines the approximate

matrix profile until it becomes the exact/final solution. The user can interupt the algorithm at any

time (during either PreSCRIMP or SCRIMP) to inspect the current approximate solution. Thus

overall, SCRIMP++ is also an anytime algorithm.

4.3.1 Our Initial Solution: The SCRIMP Algorithm

Before we introduce the SCRIMP algorithm, let us first briefly review the STOMP

algorithm (Chapter 3). Based on (3.1) and (3.4), the STOMP algorithm evaluates the

distance matrix in Figure 2.2 row-by-row in-order and updates the matrix profile

accordingly, rendering an O(n2) time complexity. However, as indicated in Figure 4.3,

this in-order computation prevents motifs at the end of a time series from being

discovered at an early stage. Can we fix this undesirable property?

PreSCRIMP SCRIMP

SCRIMP++

time series exact Matrix Profile

approximate Matrix Profile

 78

Note that (3.4) also implies that we can evaluate the diagonals of the distance

matrix in Figure 2.2 in random order. The SCRIMP algorithm (Algorithm 4) exploits

this, evaluating the matrix profile in an anytime fashion while keeping the same O(n2)

time complexity.

Algorithm 4: SCRIMP(T, m)

 Input: A time series T and a subsequence length m

Output: Matrix profile P and the associated matrix profile index I of T

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

n ← Length(T)

μ, σ ← ComputeMeanStd(T, m) // see [61]

P ← infs, I ← ones // initialization

Orders← RandPerm(m/4+1 : n-m+1) // randomize evaluation order

for k in Orders //evaluating diagonals in random order

 for i ← 1 to n-m+2-k

 if i=1 do q ← DotProduct(T1,m, Tk,m)

 else q ← q - ti-1 ti+k-2 + ti+m-1 ti+k+m-2 // see (3.4)

 end if

 d ← CalculateDistance(q, μi, σi , μi+k-1, σi+k-1) // see (3.1)

 if d < Pi do Pi ← d, Ii ← i+k-1 end if

 if d < Pi+k-1 do Pi+k-1 ← d, Ii+k-1 ← i end if

 end for

end for

return P, I

Line 2 precomputes the means and standard deviations of all subsequences in T.

The matrix profile P and matrix profile index I are initialized in line 3. In lines 5-14, we

iteratively evaluate the diagonals of the distance matrix in Figure 2.2 in random order.

Figure 4.5 visualizes this. The distance values d1,k, d2,k, …, dn-m+2-k,n-m+1 are calculated

one by one; if di,i+k-1 (denoted as d in line 10, 1 ≤ i ≤ n-m+2-k) is smaller than Pi (line 11)

or Pi+k-1 (line 12), we update the corresponding matrix profile (and index) values. At any

time, the user can interrupt the algorithm to inspect the current P and I.

 79

Figure 4.5. A single iteration of SCRIMP evaluates a randomly selected diagonal in Figure 2.2, thus

updating the matrix profile in an anytime fashion.

4.3.2 Limitations of the SCRIMP Algorithm

As motifs in the time series correspond to the minimum points of the oracle (or

exact) matrix profile (indicated in Figure 4.6.top), we hope that SCRIMP could “focus”

on these minimum points rather than at other locations. This has an element of a chicken-

and-egg paradox to it, we want the algorithm to focus on where the motifs are, but we are

using the algorithm to discover where the motifs are.

Recall that in each iteration of SCRIMP (as shown in Figure 4.5), we evaluate a

random diagonal of the distance matrix. To locate the motifs of time series T in Figure

4.6.top, we need to evaluate the diagonal starting from d1,126 (126-1=137-12) as early as

possible. As shown in Figure 4.6.middle, if SCRIMP evaluates that diagonal in its first

iteration, the running matrix profile already overlaps perfectly with the oracle at the

minimum points. However, if SCRIMP does not evaluate that diagonal until its very last

iteration (Figure 4.6.bottom shows the running matrix profile before the last iteration),

we need to wait until the algorithm is 100% completed to locate the motifs. In fact, the

probability to evaluate the diagonal of d1,126 before the kth iteration is k/(n-m+1). While

d1, k

d2, k+1

…

dn-m+2-k, n-m+1

Pk Pk+1 … Pn-m+1P

P

P1

P2

…

Pn-m+2-k

Update
if smaller

Update if smaller

 80

SCRIMP has a chance to find the motif early no matter where they are located (which is

its advantage over STOMP), that probability is not high.

Figure 4.6. top) Motifs (highlighted, located at 12 and 137) correspond to the minimum values of the

matrix profile. middle) Ideally, SCRIMP can locate the motifs after its first iteration. bottom) In the

pathological worst case, SCRIMP cannot locate the motifs until fully completed.

However, note that Figure 4.6.top shows the hardest possible scenario for motif

discovery; there is only a single pair of motifs in the time series. When the data contain

more motifs, SCRIMP will perform much better. This is much like how the famous

birthday paradox has an unexpectedly fast converge to probability 1 as we consider more

individuals. The chance of SCRIMP making an early discovery of some pair from a motif

set, increases dramatically if there are more members in that motif set. In the next section,

we will introduce SCRIMP++, an extended version of SCRIMP which has a much higher

probability of discovering not some, but all the true motifs at an early stage, even when

the motifs are very rare.

0 20 40 60 80 100 120 140 160 180 200

Running Matrix Profile (ideal)

Oracle Matrix Profile

Running Matrix Profile (worse case)

Oracle Matrix Profile

time series T

 81

4.3.3 Our Ultimate Solution: The SCRIMP++ Algorithm

The SCRIMP++ Algorithm is simply the SCRIMP algorithm (Algorithm 4)

augmented by an additional preprocessing stage called PreSCRIMP (recall Figure 4.4).

We begin by introducing the Consecutive Neighborhood Preserving Property of time

series subsequences, upon which PreSCRIMP is based.

Let us examine the matrix profile index of the example time series T in Figure

4.6.top. Figure 4.7 shows its first 25 entries.

Figure 4.7. The matrix profile index of time series T in Figure 4.6.top.

Here Index = [1, 2, 3, …, n-m+1] is the locations of all the subsequences in T, I is

the matrix profile index (Definition 2.5) of T. We can see that the matrix profile index

can be divided into multiple sections of consecutive values: within each section, a set of

consecutive subsequences find another set of consecutive subsequences as their nearest

neighbors. We call this the Consecutive Neighborhood Preserving (CNP) Property of

time series subsequences.

With a little introspection, one can see that the CNP property should exist: since

consecutive subsequences overlap by a large portion, if the ith subsequence is very similar

to the jth subsequence, then there is a very high probability that the (i+1)th subsequence is

also very similar to the (j+1)th subsequence. In Figure 4.8, we can see that the 11th, 12th,

13th, and 14th subsequences find the 136th, 137th, 138th and 139th subsequences as their

Index 1 2 3 4 … 7 8 9 … 24 25 …
I 56 57 112 113 … 116 133 134 … 149 150 …

 82

nearest neighbors, respectively; the subsequence-neighbor pairs remain a constant

location difference of 125.

Figure 4.8. Visualizing the CNP property of time series subsequences in the vicinity of the 1st motif

pattern.

Exploiting the CNP property, we propose a preprocessing algorithm PreSCRIMP,

that produces a very close approximation of the oracle matrix profile while costing only a

tiny fraction of its O(n2) computation time. Essentially, we sample subsequences from the

time series with a fixed interval s (Figure 4.9.top shows the starting location of these

sampled subsequences). For each sampled subsequence, we find its exact nearest

neighbor. Assume that Ti,m is a sampled subsequence, and its nearest neighbor is Tj,m,

then according to the CNP property, there is a high probability that the nearest neighbor

of Ti+k,m is Tj+k,m (k=-s+1, -s+2, …, -2, -1, 1, 2, …, s-2, s-1). We compute the distances

between these pairs of subsequences and update the matrix profile if a smaller distance

value shows up.

time series T

0 20 40 60 80 100 120 140 160 180 200

Nearest Neighbor

T11, 20

T12, 20

T13, 20

T14, 20

T136, 20

T137, 20

T138, 20

T139, 20

 83

Figure 4.9. top) Subsequences are sampled from time series T with a fixed interval s. bottom) After

running PreSCRIMP, the running matrix profile becomes very similar to the oracle matrix profile,

especially at the low values we care about.

The overall algorithm is outlined in Algorithm 5. Line 2 precomputes the means

and standard deviations of all subsequences in T. In line 3, we sample subsequences from

time series T with a fixed interval s (Figure 4.9.top shows their starting position), then

process these subsequences in random order. Each sample subsequence is processed with

two stages (lines 4-22).

In the first stage (lines 4-7), we evaluate the distance profile corresponding to the

current sample subsequence Ti,m with the MASS algorithm [51], then update the running

matrix profile (and index) if we find a smaller distance value. Note that after this stage,

we already know the nearest neighbor of Ti,m (assume it is Tj,m), and the matrix profile

and matrix profile index are exact at the ith entry. As a result, we can see from Figure

4.9.bottom that the running matrix profile aligns perfectly with the oracle matrix profile

at the sampled locations.

In the second stage (lines 8-22), we refine the running matrix profile (and index)

near the ith entry by exploiting the CNP property. Starting from the current sample

subsequence Ti,m and its nearest neighbor Tj,m, we move forward to evaluate the pairwise

distances between (Ti+1,m, Tj+1,m), (Ti+2,m, Tj+2,m), …, until we reach the next sampled

time series T
s

0 20 40 60 80 100 120 140 160 180 200

Oracle Matrix Profile

Running Matrix Profile

 84

location or the end of the time series (lines 10-15). After that, we traverse backward from

Ti,m and Tj,m to evaluate the pairwise distance between (Ti-1,m, Tj-1,m), (Ti-2,m, Tj-2,m), …,

until we reach an earlier sampled location or the beginning of the time series (lines 17-

22). The corresponding running matrix profile (and index) entries are updated once we

find a smaller distance value.

Algorithm 5: PreSCRIMP(T, m, s)

 Input: A time series T, a subsequence length m and a sampling interval s

Output: The running matrix profile P and matrix profile index I of T

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

n ← Length(T), P← infs, I← ones // initialization

μ, σ ← ComputeMeanStd(T, m) // precomputation, see [61]

for i ← RandPerm(1 : s : (n-m+1)) do //sampling with interval s

 seq ← Ti,m //obtain a sample subsequence

 D ← MASS(T, seq) // evaluate a distance profile, see [51]

 P, I ← ElementWiseMin(D, P, i)

 Pi , Ii ← min(D)

 j ← Ii // the nearest neighbor of the sample subsequence

 q ← CalculateDotProduct(Pi, μi, σi, μj, σj), q’ ← q // see (3.1)

 for k ← 1 to min(s-1, n-m+1- max(i,j)) do

 q ← q - ti+k-1 tj+k-1 + ti+k+m-1 tj+k+m-1 // see (3.4)

 d ← CalculateDistance(q, μi+k, σi+k , μj+k, σj+k) // see (3.1)

 if d < Pi+k do Pi+k ← d, Ii+k ← j+k end if

 if d < Pj+k do Pj+k ← d, Ij+k ← i+k end if

 end for

 q ← q’

 for k ← 1 to min(s-1, i-1, j-1) do

 q ← q - ti-k+m tj-k+m + ti-k tj-k // see (3.4)

 d ← CalculateDistance(q, μi-k, σi-k , μj-k, σj-k) // see (3.1)

 if d < Pi-k do Pi-k ← d, Ii-k ← j-k end if

 if d < Pj-k do Pj-k ← d, Ij-k ← i-k end if

 end for

end for

return P, I

The overall time complexity of the algorithm is O(n2logn/s), where n is the length

of the time series and s is the sampling interval. The space complexity is O(n). From

Figure 4.9.bottom, we can see that after running PreSCRIMP, the running matrix profile

 85

aligns very well with the oracle matrix profile, especially at the minimum points, which

for motif discovery, are all we care about.

The reader may wonder how we determine the sampling interval s. Note that any

unsampled subsequence must overlap with one of the sampled subsequences by at least

1-s/(2m). Therefore, the smaller s is, the more accurate is our running matrix profile (and

the longer PreSCRIMP takes to compute it). As a practical matter (as we will

demonstrate later in Section 4.4), we set s=m/4, which guarantees that all the

subsequences overlap with at least one sampled subsequence by at least 87.5%. This

setting renders PreSCRIMP an O(n2logn/m) time complexity. As the subsequence length

m is normally much larger than logn, the time needed for PreSCRIMP is a tiny fraction

required for SCRIMP/STOMP.

After running PreSCRIMP, we continue to refine the matrix profile with SCRIMP,

until it converges to the exact solution. We call the augmentation of SCRIMP with

PreSCRIMP, SCRIMP++ (recall Figure 4.4). Note that SCRIMP++ can be interrupted at

any stage (including during the PreSCRIMP stage), to produce an approximate solution.

4.4 Empirical Evaluation

To ensure that our experiments are reproducible, we have built a website which

contains all data/code/raw spreadsheets for the results, in addition to many experiments

that are omitted here for brevity [75]. All experiments were run on a Dell XPS 8920, with

Intel Core i7-7700 CPU @ 3.6GHz and 64GB RAM.

 86

4.4.1 Comparing Convergence Behaviors

We begin by comparing the convergence behavior of STAMP [96], STOMP

(Chapter 3) and SCRIMP++. Note that STOMP is not regarded as a true anytime

algorithm but is included for completeness.

To stress-test these algorithms with different circumstances (different numbers and

locations of motifs, different data type, etc.), we created four different synthetic datasets.

Figure 4.10 shows one example from each of the four datasets.

Figure 4.10. a) Random-walk data with one pair of embedded random-walk motif patterns. b)

Random-walk data with 10 embedded random-walk motif pairs. c) Seismology data with two

repeated earthquake signals. d) Random noise without any embedded motif patterns.

Each dataset includes 100 time series of length 40,000. Within each time series we

embed various numbers of motif patterns of length m=400 at random locations. The first

dataset (Figure 4.10.a) is a set of random-walk time series; within each of these time

series we embed a single pair of random-walk motif patterns (they are similar, but not

identical). The second dataset (Figure 4.10.b) is also random-walk data, but contains 10

pairs of different random-walk motif patterns. The third dataset (Figure 4.10.c) is

adapted from Section 3.3.4, where we have a continuous recording of seismograph

0 40000

Embedded Motif

0 40000

0 40000 0 40000

(a) (b)

(c) (d)

 87

background noise, and embed in it one pair of repeated earthquake signals (similar but

not identical) at random locations. The fourth dataset (Figure 4.10.d) is random noise

time series; we embed no motifs in it, but regard its natural top-1 motif pattern of length

400 as target.

As the algorithms evaluate the matrix profile of a time series, we constantly

interrupt it, mark the current runtime t, then extract the top-k motif patterns (we set k =

10 for Figure 4.10.b; k = 1 for Figure 4.10.a, Figure 4.10.c and Figure 4.10.d) from the

running matrix profile and check to see if the embedded motif patterns have been

discovered. We regard an embedded motif pattern as discovered if it overlaps with one of

the k extracted motif patterns by at least 95%. We use a value p to represent the

percentage of embedded motif pairs discovered at each time instant t.

We first consider Figure 4.10.b, where the random-walk time series includes 10

pairs of embedded motifs. Figure 4.11 shows the average value of p as the three

algorithms search for motifs.

We can see that SCRIMP++ shows much faster convergence characteristics than

STAMP or STOMP in locating the top 10 motif pairs. After the PreSCRIMP phase

(requiring only 0.26 seconds) finishes, all the 10 embedded motifs randomly located in

all 100 random-walk time series are successfully discovered. In contrast, to be just 99%

sure that we have discovered all the true motifs, STAMP takes about 8 times longer and

STOMP needs to almost run to completion (about 9 times longer).

 88

Figure 4.11. The average percentage of embedded motif pairs discovered at each time instant for the

dataset shown in Figure 4.10.b. Note that the time for STAMP’s convergence is truncated.

Now let us consider the harder scenarios in Figure 4.10.a, Figure 4.10.c and

Figure 4.10.d, where there are only one pair of motif patterns in the data. We

experimented in these scenarios because: 1) The top-1 motif in these datasets are hard to

locate as they are rare. 2) The seismology data in Figure 4.10.c is a typical example of

“less-than-cooperative” data discussed in Section 4.2.3, which would degenerate rival

motif discovery methods such as Quick-Motif [37] or MK [49] to their worst case time

complexity (recall Figure 3.1). 3) The random-noise data in Figure 4.10.d shows an

extremely hard case for motif discovery, as essentially all pairs of time series

subsequences are approximately equidistant. Nevertheless, as shown in Figure 4.12,

SCRIMP++ shows a very fast convergence characteristic in all these datasets. After the

PreSCRIMP phase is completed (0.26 seconds), all the top-1 motifs in all the time series

within all three datasets are already successfully discovered, costing only a tiny fraction

of time needed by STOMP or STAMP. Note that here STAMP does not perform as well

as in Figure 4.11, as the motifs are very rare.

…
PreSCRIMP finished SCRIMP++

finished

STAMP
finishes at
26.2s

STOMP
finished

t (sec)

SCRIMP++

0 1 2 3

0%

50%

100%

p

 89

Figure 4.12. left-to-right) The observed probability for the top-1 motif discovered at each time instant

for the dataset shown in Figure 4.10.a, Figure 4.10.c and Figure 4.10.d. Note that the full time for

STAMP’s convergence is truncated.

As we show in the next section, SCRIMP++ maintains this advantage over different

lengths of time series and motif lengths. We chose to consider 40,000 data points here,

because based on our informal survey of practitioners that use motif discovery, this is

about the median size of datasets2 considered [10][79]. Here we can find such motifs in

just ¼ of a second, truly interactive time [84].

4.4.2 Runtime Comparison of SCRIMP++ and STOMP

In this section, we compare the run time of SCRIMP++ with the state-of-the-art

exact motif discovery algorithm, STOMP (Chapter 3). The time measurements are based

on the C++ implementation of both algorithms. Note that the runtime for both algorithms

is invariant to the type of time series data we are using. Table 4.1 shows the time

required by both algorithms with a fixed subsequence length m, on random noise time

series with increasing length n.

2 To be clear, many biologists produce terabytes of data, but often each “run” or “treatment” is only of the order of tens to hundreds of

thousands in length.

PreSCRIMP finished

t (sec)
1 2 30

seismology data

PreSCRIMP finished

0 1 2 3

random noise data

t (sec)

0%

50%

100%

p

random-walk (1 motif)

t (sec)0 1 2 3

PreSCRIMP finished

SCRIMP++

STAMP

 90

Table 4.1. Time Needed for Motif Discovery with m = 4096, varying n

Algorithm n 217 218 219 220 221

STOMP 22.5 sec 1.78 min 7.37 min 37.1 min 2.22 hours

SCRIMP++
PreSCRIMP 0.51 sec 2.33 sec 17.2 sec 1.52 min 6.83 min

SCRIMP 23.9 sec 1.94 min 7.96 min 40.9 min 2.46 hours

We can see that the runtime of the SCRIMP Algorithm is similar to the STOMP

algorithm, as they vary only in evaluation order. The PreSCRIMP algorithm consumes

only a very small fraction (less than 6%) of their time3.

In Table 4.2, we fixed the time series length n and vary subsequence length m. We

can see that the runtime of STOMP and SCRIMP are essentially invariant to the

subsequence length m. PreSCRIMP, with a time complexity O(n2logn/m), costs less and

less time while we increase m. As m can be in the thousands for real-world problems (cf.

Sections 4.4.4-4.4.6), this is a desirable feature.

Table 4.2. Time Needed for Motif Discovery with n = 218, varying m

Algorithm m 1024 2048 4096 8192 16384

STOMP 1.83 min 1.78 min 1.78 min 1.8 min 1.67 min

SCRIMP++
PreSCRIMP 9.22 sec 4.81 sec 2.33 sec 1.23 sec 0.58 sec

SCRIMP 2.17 min 2.12 min 1,94 min 2.05 min 1.96 min

Furthermore, as PreSCRIMP is based on iterative vector operations, the

computation process is highly parallelizable. Implementing PreSCRIMP with high-

performance computing platforms such as GPU is trivial, and we make the GPU version

freely available at [75].

3 Note that though we could further speed up PreSCRIMP with multi-threading or piece-wise FFT, we reported its run time here

without any of these optimizations.

 91

4.4.3 Comparison to Rival Methods

We have argued that there is a critical difference between approximate algorithms

and anytime algorithms for motif discovery. By definition, anytime algorithms are also

approximate algorithms (if stopped early), but the converse is not true. If the motifs

returned by an approximate algorithm are not satisfactory, the user has no recourse but to

adjust parameters and try again, or resort to the fastest exact algorithm STOMP (Chapter

3).

Nevertheless, it may be instructive to compare our proposed algorithm to the state-

of-the-art approximate algorithm. But which algorithm is state-of-the-art for this task? A

recent survey reviews more than a dozen algorithms without explicitly answering that

question [81]. Fortunately, we can bypass this issue, and effectively compare to all of

them. All such algorithms, whether they use hashing, grammars, Markov models, suffix

trees etc. [81], must first convert the data into a symbolic representation. The time taken

to do this is clearly a lower bound on the time to produce any motifs. Note that we cannot

bypass this time requirement with any precomputation/indexing, as this is only possible if

one knows the length of motifs, but as we have shown, this can be changed in an ad-hoc

manner during the user’s interactive session.

We used the code written by L. Wei [91] (which is the code used by the majority

of papers reviewed in [81]), to discretize increasingly long time series, while keeping m

fixed to 4,096 and a dimensionality of 8 and cardinality of 5 (typical values for most

research efforts [81]). As Figure 4.13 shows, we compare the runtime of this

preprocessing discretization step of the rival algorithms to that of PreSCRIMP.

 92

Figure 4.13. The time needed to discretize data and the time needed to perform PreSCRIMP for

increasingly long data.

We can see that when the time series length is smaller than 219, SCRIMP++ has

already reported a very high-quality solution with PreSCRIMP, before any approximate

algorithm is even in a position to finally start the hashing or suffix tree construction that

they hope will yield an approximate answer.

Note that this experiment offers an extremely weak lower bound for the cost of the

rival approximate algorithms. In practice, the searching such algorithms take is 3 to 20

times longer than this preprocessing [81]. Finally, all these methods are reporting motifs

found in a lossy data representation with the inherent error that produces, whereas

SCRIMP++ is searching the original data.

4.4.4 Case Study: Multiscale-Motifs

We believe that the extraordinary speed of PreSCRIMP will allow the community

to invent novel time series primitives. To give an example, we consider a question

suggested by an entomologist collaborator: are there any multiscale-motifs in the EPG

datasets [92] previously discussed in Section 4.1? We informally define a multiscale-

motif as a pair of patterns that are very similar to each other but differ by at least a factor

of two in length.

800,000 1,000,000
0

50

100

600,000400,000200,0000

Ti
m

e
(s

)

 93

Clearly finding multiscale-motifs is computationally challenging, because beyond

comparing all pairs of subsequences, we must now compare all pairs of subsequences,

and at all possible combinations of scales. It may be possible to create a scalable novel

algorithm to find multiscale motifs, but the speed of PreSCRIMP suggests a very easy

“fast-enough” method that we can implement in a handful of lines of code, given

PreSCRIMP as a primitive.

Recall we can use PreSCRIMP to do self-joins or AB-joins. Suppose we set B =

rescale(A,300%) and compute an AB-join. The resulting motifs discovered will reflect a

short pattern in A that matches a much longer pattern in B, after the patterns are scaled to

a common length. In this case, we do not know what the “right” rescaling length is, but

PreSCRIMP is fast enough to allow us to run it fifty times and simply test all possible

scalings from 200% to 300%, in 2% increments. We have done this for a 1.8 hour

(650,000 datapoints) long trace of Asian citrus psyllid (Diaphorina citri) feeding on

Citrangor, a subspecies of orange. Figure 4.14 shows that the best multiscale-motif

occurs for a rescaling of 218%.

Figure 4.14. top.left) An Asian citrus psyllid feeding on a citrango leaf. top.right) The top-1

multiscale-motif discovered. bottom) the two motif occurrences in context.

258365 268365 498365 508365

0 15000

Rescaled

by 218%
Asian

citrus

psyllid

 94

Note that one may wish to normalize the Euclidian distance for length when

comparing multiscale-motifs (it happens to make no difference in this case). Further note

that we are not claiming any particular entomological significance here, although it is

interesting that this insect has behaviors that manifest themselves at such different scales.

Our point is simply to show that PreSCRIMP is fast enough to be considered as a

primitive we can call multiple times for higher-level analytics. The time taken for this

entire experiment was just 84 seconds (m=15,000).

This ability to handle motifs that occur at different lengths may also be of interest

to the neuroscience/neuroinformatics community, which has recently adopted time series

motifs as one of their most used analytic tools [10][79]. However, some of these authors

have criticized current motif discovery algorithms because they “considers only exactly

equal duration sequences as potential matches” [79]. The authors of [79] note that motifs

of “turning maneuvers” of Drosophila larval have a variable length scale, with µ = 0.83s

and σ = 0.27s. Using the simple algorithm described above, we can find multiscale motifs

in the range of µ ±2σ in a dataset of 40,000 points, searching all rescalings in 5%

increments ([35%, 40%, … ,160%, 165%]) in just 17 seconds.

4.4.5 Case Study: Motif Joins

The EPG domain considered in the previous section is a rich source of fundamental

problems that can be addressed with motif discovery, below we consider another such

problem.

As shown in Figure 4.15.top, we consider three datasets, each of length 7,560,000,

representing 21-hours of insect behavior. One of them, in which the insect was feeding on

 95

Valencia (a type of orange), we designated as reference sample, ValenciaRef. We are

interested to know if any elements of this reference behavior are to be found in the two

other datasets, in one of which an insect was feeding on a Yamaguchi (a different type of

citrus), and the other in which a different insect is feeding on a Valencia. We hope to

understand what elements of the Asian citrus psyllid may be attributed to the type of

plant it is feeding on, and what may be attributed to simple differences between

individuals. Such studies have implications for breeding resistant strains and hybrids.

Figure 4.15. top) The three EPG time series under investigation. bottom-left to right) There is little

evidence of conserved patterns when the insects are feeding on different citrus plants, but there are

strongly conserved patterns when feeding on a single plant type.

It is instructive to think of the cost of a brute-force-search here. The motifs are of

length 4,000, requiring (at least) 4,000 real-valued operations. Each AB-join requires

about 5.71 * 1013 pairwise comparisons of subsequences, requiring 2.28 * 1017 real-

valued operations. Even at one hundred gigaFLOPS, this would require 26.4 days. In

contrast, PreSCRIMP took just 2 hours.

0 7,000,000

1 4000 1 4000

ValenciaRef vs Yamaguchi ValenciaRef vs Valencia

 96

4.4.6 Case Study: Electrical Power Demand

As a final example of the scalability of SCRIMP++, and the potential actionability

of motif discovery, we examined the electrical power demand dataset of [62]. Each trace

corresponds to two calendar years or 8,198,756 datapoints, sampled once every 8

seconds. As shown in Figure 4.16, a pair of motifs from trace 3 of House-5 caught our

attention.

Figure 4.16. The top two motifs in an electrical power data set.

The first motif is the (near) binary switching on-and-off of a freezer compressor at

very regular intervals. This unusually “perfect” motif has dozens of occurrences, almost

all at night when there is no kitchen actively that would cause the compressor to “kick-

in” after the freezer was opened and disrupt the perfect spacing. The second motif is more

interesting. It suggests that the compressor was running continuously for at least three

hours. Two common causes of a freezer motor running for a long time are a faulty

thermostat, or the more prosaic explanation, the homeowner not fully closing the door. In

either case this is clearly a low-hanging fruit for energy conservation.

SCRIMP++ allows us to find such patterns in real-time interactive sessions,

something that no other tool allows [81].

1 1800 1 1800
4 hours 4 hours

 97

4.4.7 When can PreSCRIMP fail?

The previous sections have shown the extraordinary alacrity and effectiveness of

PreSCRIMP. To explore the limits of PreSCRIMP, in Section 4.4.1, we considered all the

possible worst-case scenarios: when the motifs are very rare, when the dataset is of very

high intrinsic dimensionality, when all the subsequence pairs are equidistant, etc.

Nevertheless, PreSCRIMP succeeded in quickly locating all the true motifs in all these

scenarios. It is natural to ask, can PreSCRIMP ever fail? Do we ever need to resort to

running the SCRIMP phase of the SCRIMP++ algorithm, to refine the PreSCRIMP

answer?

In spite of a diligent search of over 100 diverse datasets, we could not find any real

dataset that prevents PreSCRIMP from quickly discovering motifs. However, with

careful introspection, we can create a pathological example that is difficult for

PreSCRIMP. As shown in Figure 4.17.top, we created a synthetic random walk time

series of length 40,000, with a pair of motifs embedded at fixed locations (T21842,400 and

T24871,400, shown in red and yellow respectively). We edited the first/red motif pattern

such that just before and after the pattern, the level of the time series dramatically

changed. In this scenario, the CNP property no longer hold at locations around the motif

patterns. Though T21842,400 is very similar to T24871,400, T21842+k,400 is very different from

T24871+k,400 (k=-3, -2, -1, 1, 2, 3) because of the dramatic level change. As a result,

PreSCRIMP cannot discover the motif pair unless either T21842,400 or T24871,400 is sampled.

 98

Figure 4.17. top) A pathological random walk time series with a pair of embedded motifs. The level of

the data dramatically changes just before and after the first motif pattern, which invalidates the CNP

property. bottom) the observed probability for the top-1 motif discovered at each time instant. Note

that the probability for STOMP is binary, and flips to 100% as soon as it encounters the first motif.

That could happen arbitrarily late (i.e. to the far right) in the worse case.

However, as Figure 4.17.bottom shows, the overall SCRIMP++ algorithm still

converges much faster than STAMP [96] and STOMP (Chapter 3) at the early stage.

Here the result is averaged over 100 runs, and the value p represents the probability that

the embedded motif pair is discovered at each time instant t. Although SCRIMP++ fails

to discover the motif at the PreSCRIMP phase, p quickly increases as the algorithm turns

into the SCRIMP phase thanks to its random computation ordering. In contrast, STOMP

shows a 0% probability in locating the motifs until after 1.2 seconds (recall that STOMP

is deterministic, and reports the same result over the 100 runs); STAMP shows a very low

probability in finding the motifs even when SCRIMP++ finishes. This example

demonstrates the robustness of SCRIMP++, even in the most pathological and contrived

cases that defeat PreSCRIMP.

0 1 2 3

PreSCRIMP
finished

STAMP finishes at 26.2
sec (truncated)

STOMP finishes

STOMP

t (sec)

0%

50%

100%

p

0 40000

Embedded Motif

T21842,400
T24871,400

This “step-up” for STOMP occurs
when it encounters the first motif

SCRIMP++
finishes

 99

4.5 Conclusions

In many domains, including neuroscience [10][35], entomology [79], medicine and

consumer-level energy conservation [62], etc., analysts routinely deal with datasets that

are in the range of a few million data points long. For the first time, SCRIMP++ allows

the possibility of real-time interactive discovery of motifs in such datasets, using off-the-

shelf consumer desktops. We believe that this ability will allow novel discoveries to be

made in the relevant domains, and even new types of analytics to be invented. We have

made all code and data freely available in perpetuity to allow the community to confirm

and extend our findings [75].

 100

Chapter 5 Lower-bounding the Matrix

Profile: Admissible Time Series

Motif Discovery with Missing

Data

The discovery of time series motifs has emerged as one of the most useful

primitives in time series data mining. Researchers have shown its utility for exploratory

data mining, summarization, visualization, segmentation, classification, clustering, and

rule discovery. Although there has been more than a decade of extensive research, there

is still no technique to allow the discovery of time series motifs in the presence of

missing data, despite the well-documented ubiquity of missing data in scientific,

industrial, and medical datasets. In this chapter, we introduce a technique for motif

discovery in the presence of missing data. We formally prove that our method is

admissible, producing no false negatives. We also show that our method can “piggy-

back” off the fastest known motif discovery algorithm STOMP with a small constant

factor time/space overhead. We will demonstrate our approach on diverse datasets with

varying amounts of missing data.

 101

5.1 Related Work and Background

Time Series motifs are short approximately repeated patterns within a longer time

series dataset. The fact that such patterns are conserved often suggests underlying

structure and regularities that can be exploited in many ways. Some examples include:

rule discovery [68][57], forecasting [44], or building better classifiers [12]. However,

despite over a decade of active research [15][49][101], there is no known method to

allow the discovery of motifs in the presence of missing data.

Paradoxically, in spite of improvements in sensor technology, missing data is

becoming more prevalent. This is because sensors are now so cheap that we are willing to

deploy them in hostile environments with intermittent and unreliable bandwidth [73]. In

many cases, sensors have become “throwable” and disposable [21].

Figure 5.1 shows an example of a motif in a music processing domain [53]. Note

that both occurrences of the motif contain sections of missing data.

Figure 5.1. A four-second long motif that appears in the pitch contour time series of a Cypriot folk

song, Kotsini Trantafillia (Red Rose-tree). Note that both occurrences have multiple instances of

missing data [53].

Here the data could be missing for one of two reasons. It might be meaningful, i.e.,

the vocalist may not have produced a sound at these times. It is also possible that the

missing data reflects poor audio quality, loose wires, etc. We are agnostic to such issues

0 100 200

At 34 seconds

At 75 seconds

 102

in this work. We simply note that in either case, there is no motif discovery algorithm

defined in the literature for such data.

More generally, in time series data mining, missing data is often handled by filling

in the missing values with some interpolation or imputation method [31] and running the

analysis unaltered. There are hundreds of imputation algorithms in the literature (see [90]

and the references therein) to choose from, but no matter which one we use, we may

obtain false negatives with respect to the oracle data (the true underlying data, without

missing values).

To see this let us consider a simple example. Suppose we have a dataset that is

composed of just three (sub)sequences:

A={0,2,0,2}, B={0,2,0,2}, C={0,-1,0,2}

Clearly the pair A|B is a perfect motif. Now suppose that the second value in A is

missing. The most obvious imputation technique is interpolation from the two neighbors

of the missing data point, giving us Amiss = {0,0,0,2}. As we can see in Figure 5.2, this

one change means that we no longer discover the pair A|B as a perfect motif, but instead

we are led to believe that the pair A|C is the best motif in the dataset.

Figure 5.2. left) A contrived dataset in which the pair A|B is a perfect motif. right) If A had its second

value replaced by the most common imputation algorithm, we would fail to discover A|B as the motif.

A

B

C

Amissing

C

B

 103

While this is a trivial example, it is easy to see that no matter what imputation

algorithm is used, using a simple adversarial augment we can always construct datasets

for which the classic motif algorithms would produce false negatives. This problem is

even more severe with complex datasets that contain a lot of high-frequency patterns and

noise, for example seismology datasets.

In Figure 3.8 we showed two repeating earthquake patterns that appeared

approximately 14 years apart. We have found that if there were just a handful of missing

data points in one of the earthquake samples, we would be unable to detect a match

between them with any common imputation method, as such high-frequency and noisy

data defies the assumptions that most imputation techniques assume.

Figure 5.2 showed that imputation methods can produce possible false negatives

even if we have a random single value missing in the data. Moreover, another

disadvantage of current imputation methods is that they cannot predict block-missing

data well [100]. In some circumstances, due to malfunction of the sensor or other

anomaly factors, we may lose reading from a sensor at consecutive timestamps (instead

of sparse, single missing timestamps at random locations of the data). This is often called

block-missing data. In [100] the authors proposed a state-of-the-art spatial-temporal

imputation method to predict the block-missing data by learning from not only the real-

valued reading of the same sensor, but also from the reading of several geographically

nearby sensors. The information from other sensors greatly improved their imputation

accuracy. However, this method does not apply when we only have access to one single

 104

sensor, or when all the sensors contain block-missing data at the same timestamps due to

regional power outage or communication errors.

Finally, note that our problem is not artificial or contrived in anyway. The literature

is replete with examples of data analysts frustrated by the inability to perform motif

discovery in the presence of missing data. For example, a recent paper studies recurrent

water consumption behavior by Australian consumers [87]. The authors observe “A small

proportion of all hourly readings are missing…, probably due to server failure or

maintenance”. The authors realize that any imputation method used here has a risk of

producing false negatives by noting that “…hourly water consumption is highly

unpredictable, we ignored the points of missing hours for the routine discovery, rather

than approximating missing readings.” However, their solution of ignoring some data

runs the risk of missing interesting patterns.

5.1.1 Dismissing Apparent Solutions

In this section, we continue the discussion of related work, while explicitly

dismissing some proposed solutions to the task at hand.

The last decade has seen several distance measures for handling uncertain time

series, including PROUD [99], DUST [64], PBRQ [1], PRRQ [1], etc. One might believe

that these measures could be used to replace the Euclidean Distance subroutine in an

existing motif discovery algorithm. However, we believe this is not possible for the

following reasons:

 105

• These methods assume not missing data, but uncertain data. For example, they

can address the situation where an observation is not known precisely but

comes from some known distribution. In [64] for example, they explicitly

model the normal, exponential, and uniform error distributions. However, for

generality, we do not wish to make such strong assumptions.

• Even if we assume that we could somehow avail of an existing uncertain

distance measure, none of them are metrics (only measures). However, all

speedup techniques for exact motif discovery that we are aware of require and

exploit metric properties [15][49]. This suggests we must resort to a O(n2m)

brute force search (n is the length of the time series, m the motif length).

However, our proposed method is O(n2). As m may be in the thousands (see

Section 5.3), this suggests a three orders of magnitude time difference.

• Finally, we want to be able to guarantee that our search produces no false

negatives in the face of missing data. To the best of our knowledge, no existing

uncertain time series similarity measures can support this requirement.

The reader may not appreciate why our task-at-hand is hard, because the analogue

problem with strings is trivial. Suppose we are asked to compare the following text

strings “Norwegian blue” and “Norwegian wood” under the Hamming Distance, and we

encounter missing values, represented here by “*”.

Norwe*ian blu*

N*rwe*ian wood

 106

We can easily compute both the lower and upper bound of the Hamming Distance.

In the former case, we would assume that all the missing values in one word are the same

as their counterparts in the other word. Given that the only letters we can be sure are

differing are “woo” vs “blu,” and we have a lower bound of three. In the latter case, we

would assume that all the missing values in one word are different than their counterparts

in the other word. These three pessimistic differences combined with the three observed

differences give us an upper bound of six.

However, consider the time series version of this problem. Suppose we have the

following two time series:

[0.5, 0.1, ***, ***, -0.6, -0.7, 0.0]

[0.3, 0.1, 1.1, ***, -0.6, ***, 0.1]

One might consider applying similar logic here. For example, accumulating 0.2

error (i.e. |0.5 - 0.3|) from the first pair of numbers, then 0.0 error (i.e. |0.1 - 0.1|) from the

second pair, etc. However, the critical difference is that the time series must be

normalized before comparison. This is because, aside from the rare and well understood

exceptions [18], it is meaningless to compare time series without normalizing them first.

This presents a problem as z-normalization (the most common normalization technique

[17]) requires us to know the exact mean and standard deviation of the data, which are

undefined when we have a single missing data point.

Thus, for any pair of corresponding known points (for example the 0.5 and the 0.3

in the above), it is possible that the true (had we known the mean and standard deviation

of the data to allow the correct normalization) difference between them could stay the

 107

same, increase, or decrease by arbitrary amounts. This suggests that producing tight

upper or lower bounds will be nontrivial.

5.1.2 Pseudo Missing Data

Before introducing our solution to the missing data problem, we take the time to

point out that the problem is more general than one may assume when we consider the

generalization of the Pseudo Missing Data (PMD). Informally, we define PMD as data

that technically is not missing, but effectively is. Figure 5.3 illustrates three kinds of

PMD frequently encountered.

Figure 5.3. A snippet of an Electrooculogram (EOG) exhibits three kinds of pseudo missing data.

In Figure 5.3.A, we see a “spike.” Given what we know about this domain, it is

inconceivable that the human eye could move fast enough to produce this data, so it is

clearly an artifact. Likewise, in Figure 5.3.B, the dramatic increase in variance suggests

that this section of data is not likely to faithfully represent the underlying physical

process. Finally, in Figure 5.3.C the perfectly flat plateau is not reflective of reality, but

is simply a region where the physical process exceeds the 8-bit precision available to

record it.

In all three cases, the best thing to do would be to treat the data as missing. Note

that this decision is domain-dependent; there are clearly domains where a short spike

0

(A) Spike

400 800 1200

-100

-50

0

50

100 (B) Noise

(C) Single Byte

Maximum ValueEOGright

 108

represents some physical event, or where a perfectly flat plateau represents a physical

limitation, which is not a quirk of the hardware/software use.

5.1.3 Definitions and Notations

In this section, we introduce all the notations and definitions needed to explain our

solution.

We first generalize the definition of time series and subsequence in Section 2.1 to

allow for the possibly that at least one value is missing. For clarity, we differentiate such

time series (including subsequences) with a “bar.” To keep both in a common notation

and for implementation purposes (i.e. Matlab, etc.), we use NaNs as a placeholder for

missing values.

Definition 4.1: A missing value time series 𝑇 is a sequence of values that are either

real-valued numbers or NaNs, 𝑡̅i: 𝑇 = 𝑡1̅, 𝑡2̅, ..., 𝑡𝑛̅, where n is the length of 𝑇.

In the rest of the paper, we assume that T is the actual time series of 𝑇 before the

missing values were created by some process. That is to say, we would have obtained T

instead of 𝑇 if the sensors were functioning properly. We do not know T precisely, but we

have 𝑡̅i= ti (1 ≤ i ≤ n) if 𝑡̅i ≠NaN.

For motif discovery, we are not interested in the global properties of the missing

value time series, but in the local regions, known as subsequences:

Definition 4.2: A subsequence 𝑇𝑖,𝑚 of a missing value time series 𝑇 is a continuous

subset of the values from 𝑇 of length m starting from position i. Formally, 𝑇𝑖,𝑚 = 𝑡𝑖̅, 𝑡𝑖̅+1,

..., 𝑡𝑖̅+𝑚−1, where 1 ≤ i ≤ n-m+1.

 109

Note that subsequence 𝑇𝑖,𝑚 may or may not contain missing values (NaNs).

Recall that in Section 2.1, we have introduced two meta time series, the matrix

profile and the matrix profile index, to annotate a time series T with the distance and

location of all its subsequences’ nearest neighbors within itself. For a time series T of

length n, the STOMP algorithm introduced in Chapter 3 is able to compute the two meta

files with a mere O(n2) time complexity and O(n) space complexity, which enables a fast

motif discovery in a massive time series. However, the STOMP algorithm is not

applicable to any time series 𝑇 with missing values (NaNs). To solve this problem, we

introduce a novel algorithm that does not allow false negatives. The method may allow

occasional false positives, but since the discovered motifs are typically examined by the

human eye [49][57][101], or some subsequent analysis, the false positives (if any) can be

filtered out at a later stage.

We call our algorithm Motif Discovery with Missing Data, MDMS. Our MDMS

algorithm is built on top of the Matrix Profile data structure, and here we claim our

MDMS algorithm can solve the missing data problem with the same time and space

complexity as STOMP. We leave the detailed discussion of the algorithm to Section 5.2.

5.2 Algorithms

5.2.1 An Intuitive Preview

We begin by previewing our solution. As shown in Chapter 2, if T is used to

compute a matrix profile then finding the motifs is trivial. The location of the smallest

pair of values in the matrix profile is also the location in T of the optimal motif pair.

 110

Moreover, other definitions of motifs, such as the top-K motifs or range motifs [49][96],

can also be easily extracted from the matrix profile. Given this, our solution to the

missing data problem is to build a special matrix profile using 𝑇. This special matrix

profile will be very similar to the true matrix profile, and be a (in general, very tight)

lower bound for it. If we use the existing motif extraction algorithms [96] to pull out

motifs from this matrix profile, we may have false positives, but we will have no false

negatives [18]. Thus most of our contribution outlined below is to show how we can

build this special matrix profile.

5.2.2 The Lower Bound Matrix Profile

To create the special matrix profile data structure, our MDMS algorithm evaluates

the z-normalized Euclidean distance between every pair of subsequences within a

missing value time series 𝑇. Depending on whether or not the subsequences have missing

values, we may encounter three different situations. Assume that the pair of subsequences

under consideration is 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚.

• Case 1: Neither 𝑇𝑖,𝑚 nor 𝑇𝑗,𝑚 contains any missing value (NaN). Normally, this

applies to most subsequence pairs within time series 𝑇 if 𝑇 contains more real-

valued numbers than NaNs. The traditional exact z-normalized Euclidean

distance between 𝑇𝑖,𝑚 or 𝑇𝑗,𝑚 can be evaluated in this case.

• Case 2: 𝑇𝑖,𝑚 contains missing values (NaNs) while 𝑇𝑗,𝑚 does not, or vice versa.

• Case 3: Both 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 have missing values (NaNs).

 111

In cases 2 and 3, the exact z-normalized Euclidean distance 𝑑𝑖,𝑗 between 𝑇𝑖,𝑚 or

𝑇𝑗,𝑚 cannot be evaluated. However, we can evaluate a lower bound of the distance

between 𝑇𝑖,𝑚and 𝑇𝑗,𝑚, 𝑑𝑖,𝑗
𝐿𝐵, such that 𝑑𝑖,𝑗

𝐿𝐵 ≤ min (𝑑𝑖,𝑗). That is to say, no matter what the

missing values in 𝑇𝑖,𝑚 or 𝑇𝑗,𝑚 are, we guarantee that 𝑑𝑖,𝑗 , the actual distance between

𝑇𝑖,𝑚 and 𝑇𝑗,𝑚, is no less than 𝑑𝑖,𝑗
𝐿𝐵.

Now we are ready to redefine the distance profile (Definition 2.3 in Section 2.1) in

the context of missing values. We keep those 𝑑𝑖,𝑗 values corresponding to Case 1

unchanged, and use 𝑑𝑖,𝑗
𝐿𝐵 to replace the 𝑑𝑖,𝑗 values corresponding to Cases 2 and 3. We

will then obtain a lower bound distance profile:

Definition 4.3: A lower bound distance profile 𝐷𝑖
𝐿𝐵of a missing value time series 𝑇

is a vector 𝐷𝑖
𝐿𝐵=[𝑑̅𝑖,1, 𝑑̅𝑖,2,…, 𝑑̅𝑖,𝑛−𝑚+1,], where 𝑑̅𝑖,𝑗=𝑑𝑖,𝑗 (1 ≤ i, j ≤ n-m+1) if neither

𝑇𝑖,𝑚 nor 𝑇𝑗,𝑚 contains NaNs (Case 1), and 𝑑̅𝑖,𝑗=𝑑𝑖,𝑗
𝐿𝐵 (1 ≤ i, j ≤ n-m+1) otherwise.

Similarly, we can redefine the matrix profile and the matrix profile index

(Definition 2.4 and Definition 2.5 in Section 2.1) in the context of missing values.

Definition 4.4: A lower bound matrix profile 𝑃𝐿𝐵 of a missing value time series 𝑇̅

is a vector of the lower bound Euclidean distances between each subsequence 𝑇̅𝑖,𝑚 and its

nearest possible neighbor (closest possible match) in 𝑇̅ . Formally, 𝑃𝐿𝐵 = [min(𝐷1
𝐿𝐵),

min(𝐷2
𝐿𝐵),…, min(𝐷𝑛−𝑚+1

𝐿𝐵)], where 𝐷𝑖
𝐿𝐵 (1 ≤ i ≤ n-m+1) is the lower bound distance

profile 𝐷𝑖
𝐿𝐵 of the time series T.

Definition 4.5: A lower bound matrix profile index 𝐼𝐿𝐵 of 𝑇̅ is a vector of integers:

𝐼𝐿𝐵=[𝐼1
𝐿𝐵, 𝐼2

𝐿𝐵, … 𝐼𝑛−𝑚+1
𝐿𝐵], where 𝐼𝑖

𝐿𝐵=j if 𝑑̅𝑖,𝑗= min(𝐷𝑖
𝐿𝐵).

 112

The lower bound matrix profile gives us an optimistic approximation of the

distance between every subsequence and its nearest possible neighbor in 𝑇̅ . This

approximation may produce false positives, but it will not allow false negatives.

We believe this is the best approach for the task at hand: as Section 3.3.4 shows,

the cost to filter out false positive motifs is very low once we have the matrix profile, but

we cannot afford the occurrence of any false negatives, since they may include the most

important patterns in the time series. In the following sections, we will introduce the

lower bound Euclidean distances corresponding to Cases 2 and 3 respectively; then we

will introduce our MDMS algorithm, which evaluates a lower bound of the matrix

profile.

5.2.3 The Lower Bound Euclidean Distance

3.2.3.1 Case 2

Let us first consider Case 2, where 𝑇𝑖,𝑚 contains missing values (NaNs) while 𝑇𝑗,𝑚

does not, or vice versa. Without loss of generality, for now we assume 𝑇𝑖,𝑚 is the

subsequence that contains missing values, and 𝑇𝑗,𝑚 is the subsequence without missing

values. Figure 5.4 shows a visual example of this case.

Figure 5.4. top) A subsequence with missing values. bottom) A subsequence without missing values.

0 40 80

𝑇𝑖,𝑚

𝑇𝑗,𝑚

𝑀

 113

Here 𝑀 = {𝑘 | 1 ≤ 𝑘 ≤ 𝑚 and 𝑡𝑖+𝑘−1 = 𝑁𝑎𝑁 } is a set of the locations of missing

values within 𝑇𝑖,𝑚 , and = {𝑘 | 1 ≤ 𝑘 ≤ 𝑚 and 𝑡𝑖+𝑘−1 ≠ 𝑁𝑎𝑁 and 𝑡𝑗+𝑘−1 ≠ 𝑁𝑎𝑁 } is

the intersection of the real-valued locations within 𝑇𝑖,𝑚 and those within 𝑇𝑗,𝑚 . To

evaluate the lower bound distance of the two subsequences, first we need to z-normalize

them [17][49][96].

We assume that 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of 𝑇𝑖,𝑚, 𝜇𝑗 and 𝜎𝑗 are

the mean and standard deviation of 𝑇𝑗,𝑚. Note that because 𝑇𝑖,𝑚 has missing values, we

cannot evaluate 𝜇𝑖 and 𝜎𝑖; however, we can treat them as variables. Assume 𝑑𝑖,𝑗 is the

distance between 𝑇𝑗,𝑚 and the oracle subsequence of 𝑇𝑖,𝑚, we can easily obtain a lower

bound distance of 𝑑𝑖,𝑗 by ignoring the missing part 𝑀 in Figure 5.4:

𝑑𝑖,𝑗
𝐿𝐵 = √min

𝜇𝑖,𝜎𝑖
∑(

𝑡𝑖+𝑘−1 − 𝜇𝑖
𝜎𝑖

−
𝑡𝑗+𝑘−1 − 𝜇𝑗

𝜎𝑗
)

2

𝑘∈𝑅

(5.1)

Assume 𝑓1 = 𝑑𝑖,𝑗
𝐿𝐵2. We can linearly transform 𝑓1 as:

𝑓1 = 𝑑𝑖,𝑗
𝐿𝐵2 = (

𝜎𝑗
𝑅

𝜎𝑗
)

2

𝑚𝑖𝑛
𝜇,𝜎

∑(
𝑡𝑖+𝑘−1 − 𝜇

𝜎
−
𝑡𝑗+𝑘−1 − 𝜇𝑗

𝑅

𝜎𝑗
𝑅)2

𝑘∈𝑅

(5.2)

We assume 𝑇𝑖,𝑚
𝑅 is the real-valued part of 𝑇𝑖,𝑚 , 𝑇𝑗,𝑚

𝑅 is the subset of 𝑇𝑗,𝑚

corresponding to (as indicated in Figure 5.4), 𝜇𝑖
𝑅and 𝜎𝑖

𝑅 are the mean and standard

deviation of 𝑇𝑖,𝑚
𝑅 , 𝜇𝑗

𝑅and 𝜎𝑗
𝑅 are the mean and standard deviation of 𝑇𝑗,𝑚

𝑅 .

Figure 5.5 visualizes (5.2). Note that 𝑇𝑗,𝑚
𝑅 is z-normalized in (5.2), so its offset

and scale are fixed in Figure 5.5; to obtain 𝑑𝑖,𝑗
𝐿𝐵, we would like to adjust 𝜇 (corresponding

 114

to the offset of 𝑇𝑖,𝑚
𝑅) and 𝜎 (corresponding to the scale of 𝑇𝑖,𝑚

𝑅), such that the Euclidean

distance between 𝑇𝑖,𝑚
𝑅 and 𝑇𝑗,𝑚

𝑅 is minimized.

Figure 5.5. Different setting of 𝝁 and 𝝈 changes the offset and the scale of 𝑻𝒊,𝒎
𝑹 . Note that the offset

and scale of 𝑻𝒋,𝒎
𝑹 are fixed.

By solving
𝜕𝑓1

𝜕𝜇
= 0 and

𝜕𝑓1

𝜕𝜎
= 0, and substituting 𝜎 and 𝜇 back into (5.2), we have:

 𝑑𝑖,𝑗
𝐿𝐵 =

{

𝜎𝑗
𝑅

𝜎𝑗
√| | 𝑖𝑓 𝑞𝑖,𝑗 ≤ 0

𝜎𝑗
𝑅

𝜎𝑗
√| |(1 − 𝑞𝑖,𝑗

2) 𝑖𝑓 𝑞𝑖,𝑗 > 0

(5.3)

Here is the intersection of the real-valued locations within 𝑇𝑖,𝑚 and those within

𝑇𝑗,𝑚, 𝑞𝑖,𝑗 is the Pearson Correlation Coefficient between 𝑇𝑖,𝑚
𝑅 and 𝑇𝑗,𝑚

𝑅 :

𝑞𝑖,𝑗 =
∑ 𝑡𝑗+𝑘−1𝑡𝑖+𝑘−1𝑘∈𝑅 − | |𝜇𝑖

𝑅𝜇𝑗
𝑅

| |𝜎𝑖
𝑅𝜎𝑗

𝑅
(5.4)

The analysis of Case 2 is now complete. Let us turn to Case 3, where both 𝑇𝑖,𝑚 and

𝑇𝑗,𝑚 contain missing values.

3.2.3.2 Case 3

Figure 5.6 shows an example of Case 3.

0 40 80

𝑇𝑖,𝑚
𝑅

𝑇𝑗,𝑚
𝑅

offset

scale

 115

Figure 5.6. Two subsequences with missing values.

As both 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 have missing values, their means (𝜇𝑖 , 𝜇𝑗) and standard

deviations (𝜎𝑖, 𝜎𝑗) can be arbitrary values. We have:

𝑑𝑖,𝑗 ≥ 𝑚𝑖𝑛
𝜇𝑗,𝜎𝑗

√𝑚𝑖𝑛
𝜇𝑖,𝜎𝑖

∑(
𝑡𝑖+𝑘−1 − 𝜇𝑖

𝜎𝑖
−
𝑡𝑗+𝑘−1 − 𝜇𝑗

𝜎𝑗
)

2

𝑘∈𝑅

= 𝑑𝑖,𝑗
𝐿𝐵 (5.5)

Here = {𝑘 | 1 ≤ 𝑘 ≤ 𝑚, 𝑡𝑖+𝑘−1 ≠ 𝑁𝑎𝑁, 𝑡𝑗+𝑘−1 ≠ 𝑁𝑎𝑁} is the intersection of the

real-valued locations within 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 (see Figure 5.6). A diligent reader may have

noticed that the lower bound expression 𝑑𝑖,𝑗
𝐿𝐵 in (5.5) subsumes (5.1), the lower bound

expression in Case 2. We can visualize this in Figure 5.6: if we remove 𝑀𝑗, the problem

is transformed to Case 2. Therefore, we can directly substitute (5.3), the result of Case 2,

into (5.5):

 𝑑𝑖,𝑗
𝐿𝐵 =

{

 𝜎𝑗

𝑅√| |min
𝜎𝑗

1

𝜎𝑗
𝑖𝑓 𝑞𝑖,𝑗 ≤ 0

𝜎𝑗
𝑅√| |(1 − 𝑞𝑖,𝑗

2)min
𝜎𝑗

1

𝜎𝑗
𝑖𝑓 𝑞𝑖,𝑗 > 0

(5.6)

We can see from (5.6) that 𝑑𝑖,𝑗
𝐿𝐵 is dependent on 𝜎𝑗 (which is controlled by the

missing part of 𝑇𝑗,𝑚 in Figure 5.6): the larger 𝜎𝑗, the smaller 𝑑𝑖,𝑗
𝐿𝐵. Note that 𝜎𝑗 can be as

𝑇𝑖,𝑚

𝑇𝑗,𝑚

0 40 80

 𝑗𝑀𝑗

 116

large as +∞; in that case 𝑑𝑖,𝑗
𝐿𝐵 becomes zero. This is a very undesirable lower bound, as

any pair of missing value subsequences can be reported as a motif, even if they look very

different from each other. Figure 5.7 shows an example of this.

Figure 5.7. Two subsequences with missing values. The real-valued parts of the subsequences look

very different from each other, but if we fill the missing parts with infinitely large numbers, the z-

normalized Euclidean distance of the two subsequences will become zero.

Fortunately, sensor readings normally have physical limits. The accelerometer

values on an iPhone 7 are limited to ± 8g (± 78.48 m/s2); virtually all medical sensors

come with carefully specified limits to meet regulations (i.e., EU directive 93/42/EEC

mandates that a pediatric lung ventilator monitor produces values in the range of 0 to

125cmH20), etc. Therefore, we can assume that the missing values in 𝑇𝑗,𝑚 are bounded by

[𝑉𝑚𝑖𝑛,𝑗, 𝑉𝑚𝑎𝑥,𝑗]. With this bound, we can derive the following inequality for 𝜎𝑗
2 (we

refer the interested readers to [77] for details):

𝜎𝑗
2 ≤

𝐶𝑗
2

4
+
∑ 𝑡𝑗+𝑘−1

2
𝑘∈𝑅𝑗

+ | 𝑗| (𝐵𝑗 − 𝜇
𝑗

𝑅𝑗𝐴𝑗)

𝑚
 (5.7)

Here 𝑗 is a set of the locations of all the real values within 𝑇𝑗,𝑚 (see Figure 5.6),

𝜇
𝑗

𝑅𝑗
 is the mean of the real-valued part of 𝑇𝑗,𝑚, 𝐶𝑗 = 𝑉𝑚𝑎𝑥,𝑗 − 𝑉𝑚𝑖𝑛,𝑗, 𝐵𝑗 = 𝑉𝑚𝑎𝑥,𝑗𝑉𝑚𝑖𝑛,𝑗,

0 40 80

𝑇𝑖,𝑚

𝑇𝑗,𝑚

 117

𝐴𝑗 = 𝑉𝑚𝑎𝑥,𝑗 + 𝑉𝑚𝑖𝑛,𝑗 . In practice, we set 𝑉𝑚𝑖𝑛,𝑗 and 𝑉𝑚𝑎𝑥,𝑗 as the minimum and

maximum value of the real-valued part of 𝑇𝑗,𝑚.

We can now evaluate 𝑑𝑖,𝑗
𝐿𝐵 by substituting (5.7) back into (5.6):

𝑑𝑖,𝑗
𝐿𝐵 = {

√| |𝑓𝐿𝐵(𝑗) 𝑖𝑓 𝑞𝑖,𝑗 ≤ 0

√| |(1 − 𝑞𝑖,𝑗
2)𝑓𝐿𝐵(𝑗) 𝑖𝑓 𝑞𝑖,𝑗 > 0

(5.8)

Here 𝑓𝐿𝐵(𝑗) = 𝜎𝑗
𝑅2 [

𝐶𝑗
2

4
+

∑ 𝑡𝑗+𝑘−1
2

𝑘∈𝑅𝑗
+|𝑅𝑗|(𝐵𝑗−𝜇𝑗

𝑅𝑗
𝐴𝑗)

𝑚
]⁄ .

Note that 𝑓𝐿𝐵(𝑗) is based on 𝑗 , the real-valued part of 𝑇𝑗,𝑚 (recall Figure 5.6).

However, as in Case 3 both 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 have missing values, we can analogously

derive a lower bound expression similar as (5.8) based on 𝑇𝑖,𝑚 , and set the larger

expression as 𝑑𝑖,𝑗
𝐿𝐵:

 𝑑𝑖,𝑗
𝐿𝐵 = {

√| |𝑚𝑎𝑥(𝑓𝐿𝐵(𝑖), 𝑓𝐿𝐵(𝑗)) 𝑖𝑓 𝑞𝑖,𝑗 ≤ 0

√| |(1 − 𝑞𝑖,𝑗
2)𝑚𝑎𝑥(𝑓𝐿𝐵(𝑖), 𝑓𝐿𝐵(𝑗)) 𝑖𝑓 𝑞𝑖,𝑗 > 0

(5.9)

Here 𝑓𝐿𝐵(𝑝) = 𝜎𝑝
𝑅2 [

𝐶𝑝
2

4
+

∑ 𝑡𝑝+𝑘−1
2

𝑘∈𝑅𝑝 +|𝑅𝑝|(𝐵𝑝−𝜇𝑝
𝑅𝑝
𝐴𝑝)

𝑚
]⁄ .

The analysis of Case 3 is now complete. Finally, for completeness, let us briefly

discuss Case 1.

3.2.3.3 Case 1

As neither 𝑇𝑖,𝑚 nor 𝑇𝑗,𝑚 contains any missing value in Case 1, we set 𝑑𝑖,𝑗
𝐿𝐵 as the

exact z-normalized Euclidean distance between 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 , using the following

equation (recall (3.1) in Chapter 3):

 118

𝑑𝑖,𝑗
𝐿𝐵 = √2𝑚(1 − 𝑞𝑖,𝑗)

(5.10)

Note that all three cases use the same expression of 𝑞𝑖,𝑗 in (5.4).

Now that we have the lower bound distance for any subsequence pair in 𝑇, we can

also evaluate the lower bound matrix profile.

5.2.4 The MDMS Algorithm

3.2.3.1 Case 2

The STOMP algorithm introduced in Chapter 3 can obtain the matrix profile of a

time series that is free of missing values, in O(n2) time with only O(n) space; as we will

now show, in the face of missing data, our MDMS algorithm (Algorithm 6) can obtain

the lower-bound matrix profile with the same time and space complexity.

Before discussing the algorithm in detail, we first need to introduce three important

auxiliary time series (shown in line 3 of Algorithm 6), 𝑍, 𝑋 and 𝐵.

• We define 𝑍 = 𝑧1, 𝑧2, … 𝑧𝑛 , such that 𝑧𝑖 = 𝑡𝑖 if 𝑡𝑖 ≠ 𝑁𝑎𝑁 , and 𝑧𝑖 = 0 if 𝑡𝑖 =

𝑁𝑎𝑁. We can simply obtain 𝑍 by filling zeros in the locations of 𝑇 where the

data is missing.

• We define 𝑋 = 𝑥1, 𝑥2, … 𝑥𝑛 = 𝑧1
2, 𝑧2

2, … 𝑧𝑛
2.

• We define 𝐵 = 𝑏1, 𝑏2, … 𝑏𝑛 , such that 𝑏𝑖 = 1 if 𝑡𝑖 ≠ 𝑁𝑎𝑁, and 𝑏𝑖 = 0 if 𝑡𝑖 =

𝑁𝑎𝑁. We can see that 𝐵 indicates the locations of the real-valued numbers and

missing values in 𝑇.

 119

With these three auxiliary time series and the techniques introduced in [61] and

Algorithm 2, we can evaluate any lower bound distance introduced in the last section in

O(1) time with O(n) space.

Algorithm 6: MDMS(T,m)

 Input: A missing value time series T, subsequence length m

Output: Lower bound matrix profile P and the associated lower bound matrix profile index

I of T

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

n ← Length(T), len ← n-m+1

vmax ← SlidingMax(T), vmin ← SlidingMin(T)

Z ← PadZero(T), B ← OneZero(T), X← ElementWiseSquare(Z)

μz, σz ← ComputeMeanStd(Z, m) // see [61]

μb, σb ← ComputeMeanStd(B, m) // see [61]

QZ ← SlidingDotProduct(Z1:m, Z), QZ’ ← QZ //see Algorithm 1

QB ← SlidingDotProduct(B1:m, B), QB’ ← QB //see Algorithm 1

BZ ← SlidingDotProduct(B1:m, Z), BZ’ ← BZ //see Algorithm 1

ZB ← SlidingDotProduct(Z1:m, B), ZB’ ← ZB //see Algorithm 1

BX ← SlidingDotProduct(B1:m, X), BX’ ← BX //see Algorithm 1

XB ← SlidingDotProduct(X1:m, B), XB’ ← XB //see Algorithm 1

P ← CalculateLBDistance(n, m, vmax, vmin, QZ, QB, BZ, ZB, BX, XB, μz, σz, μb, σb, i)

I← ones // initialization

for i = 2 to len // in-order evaluation

 for j= len downto 2 // update dot product, see Algorithm 2

 QZj ← QZj-1-Zi-1×Zj-1+Zi+m-1×Zj+m-1

 QBj ← QBj-1-Bi-1×Bj-1+Bi+m-1×Bj+m-1

 BZj ← BZj-1-Bi-1×Zj-1+Bi+m-1×Zj+m-1

 ZBj ← ZBj-1-Zi-1×Bj-1+Zi+m-1×Bj+m-1

 BXj ← BXj-1-Bi-1×Xj-1+Bi+m-1×Xj+m-1

 XBj ← XBj-1-Xi-1×Bj-1+Xi+m-1×Bj+m-1

 end for

 QZ1←QZ’i, QB1←QB’i, BZ1←ZB’i

 ZB1←BZ’i, BX1←XB’i, XB1←BX’i

 D ← CalculateLBDistance(n, m, vmax, vmin, QZ, QB, BZ, ZB, BX, XB, μz, σz, μb, σb, i)

 P, I ← ElementWiseMin(P, I, D, i)

end for

return P, I

The MDMS algorithm is very similar to the STOMP framework introduced in

Chapter 3. In line 2 we evaluate the maximum and minimum values of the real-value part

of every subsequence in T. Lines 4-5 evaluate the mean and standard deviation of every

subsequence in 𝑍 and 𝐵. In lines 6-11, SlidingDotProduct(x, y) computes a vector of dot

 120

products between a query subsequence x and every subsequence in time series y

(Algorithm 1). We call this the sliding dot product as we can extract all the subsequences

in time series y by sliding a window of length m across y. Note that μz, σz, μb and σb and

the sliding dot product vectors QZ, QB, BZ, ZB, BX, XB are sufficient statistics to

compute the lower bound matrix profile. We initialize the lower bound matrix profile P

and matrix profile index I in lines 12-13. Lines 14-27 iteratively evaluate the lower bound

distance profile D, and update P and I if necessary. The CalculateLBDistance algorithm

in lines 12 and 25 is shown in Algorithm 7.

Algorithm 7: CalculateLBDistance(n, m, vmax, vmin, QZ, QB, BZ, ZB, BX, XB, μz,

σz, μb, σb, i)

 Input: the length n of time series T, the subsequence length m, the

maximum/minimum possible value vector vmax/vmin, sliding dot product vectors

QZ, QB, BZ, ZB, BX, XB, means and standard deviations μz, σz, μb, σb of time

series Z and B, current subsequence index i.

Output: Lower bound distance profile D

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

for j= 1 to n-m+1

 ui ← ZBj / QBj, uj ← BZj / QBj //𝜇𝑖
𝑅and 𝜇𝑗

𝑅

 vi ← XBj / QBj - ui ^2, vj ← BXj / QBj - uj ^2 //𝜎𝑖
𝑅and 𝜎𝑗

𝑅

 q ← (QZj / QBj - ui × uj) / sqrt(vi × vj) // (5.4)

 if QBj == m then // Case 1, | | = 𝑚

 Dj ←2×m×(1-q) // (5.10)

 else

 if max(μbi, μbj)==1 then // Case 2

 if μbi >μbj then vo ← vi, v ← σzi ^2

 else vo ← vj, v ← σzj ^2

 end if

 if q <=0 then Dj ← QBj × vo / v // (5.3)

 else Dj ← QBj × vo / v × (1 - q^2)

 end if

 else // Case 3

 v1 ← vmaxi, v2 ← vmini, C ← v1 – v2, B ← v1 × v2, A ← v1 + v2

 ur ← μzi /μbi, vr ← (σzi ^2 + μzi ^2) / μbi – ur^2

 f1 = vi / (ubi × (vr + B + ur × (ur – A)) + C^2 / 4) // 𝑓𝐿𝐵(𝑖) in (5.9)

 v1 ← vmaxj, v2 ← vminj, C ← v1 – v2, B ← v1 × v2, A ← v1 + v2

 ur ← μzj / μbj, vr ← (σzj ^2+μzj ^2) / μbj -ur ^2

 f2 = vj / (ubj × (vr + B + ur × (ur – A)) + C^2 / 4) // 𝑓𝐿𝐵(𝑗) in (5.9)

 if q <=0 then Dj ← QBj × max(f1, f2) // (5.9)

 else Dj ← QBj × max(f1, f2) × (1 - q^2) // (5.9)

 121

24

25

26

27

28

 end if

 end if

 end if

end for

return D

The CalculateLBDistance algorithm evaluates all n-m+1 lower bound distance

values in D with equations (5.3), (5.9) and (5.10). Line 4 evaluates (5.4). Case 1 is

handled in lines 5-6. Lines 8-14 handle Case 2, and Case 3 is evaluated in lines 15-24.

We can see that each loop of the CalculateLBDistance algorithm in lines 2-26 can

be evaluated in O(1) time, so the time complexity of CalculateLBDistance is O(n). The

space needed to store all the vectors in the MDMS algorithm is O(n), and each loop in

lines 14-25 of MDMS takes O(n) time. Therefore, the time complexity of MDMS

algorithm is O(n2) and the space complexity is O(n), the same as STOMP (Chapter 3).

Furthermore, we can see that unlike most imputation algorithms [90], our MDMS

algorithm is extremely model-free and parameter-free. The only inputs to the algorithm

are the time series and the subsequence length. In the next section, we will use two case

studies to demonstrate the robustness and efficacy of our ultra-fast, parameter-free motif

discovery algorithm in the face of missing data.

5.3 Experimental Evaluation

We begin by noting that all the code and data used in this work are archived in

perpetuity at [77]. In the following two case studies, we consider both random-missing

data (data with sparsely located, random missing timestamps) and block-missing data

(data with consecutive missing timestamps).

 122

For each case study, we compare our method with the commonly used strawman in

the literature to handle missing data: linear imputation, as shown in Figure 5.8.

Figure 5.8. To evaluate our method, we compare our result with that of linear imputation.

5.3.1 Case Study: Seismological Data

Repeated pattern (i.e. motif) discovery is a fundamental tool in seismology, which

allows for the discovery of foreshocks, triggered earthquakes, swarms, volcanic activity,

and induced seismicity [101]. However, this domain is replete with missing data.

For example, a classic paper notes “A frequent dilemma in spectral analysis (in

seismology) is the incompleteness of the data record, either in the form of occasional

missing data or as larger gaps” (our emphasis) [5]. In this experiment, we demonstrate

that we can handle both cases.

We consider a dataset for which we know the answer from external sources. On

April 30th, 1996, there was an earthquake of magnitude 2.12 in Sonoma County,

California. Then, on December 29th, 2009, about 13.6 years later, there was another

earthquake with a similar magnitude. To allow the results to be visualized in a single plot,

we edited this data such that the two earthquakes happen just 15 seconds apart. We set

the subsequence length as 2,000, which corresponds to one second of data. As shown in

imputation

 123

Figure 5.9 (red curve), when there is no missing data the matrix profile correctly

discovers the locations of the two earthquakes.

Figure 5.9. A raw seismograph contrived such that two earthquakes from the same region happen 15

seconds apart. The matrix profile computed with no missing data (red curve) finds the true event, as

does MDMS even in the presence of missing points (green curve) or missing blocks (orange curve).

To test our algorithm for the “occasional missing data” case, we randomly deleted

50 data points. As Figure 5.9 (green curve) shows, the matrix profile is still minimized at

the correct location, and there are no false positives (no other small values in the matrix

profile besides the two deep valleys). This shows the robustness of our algorithm in the

face of random missing data.

Next, we consider the “larger gaps” (or the block-missing data) case. Here, instead

of removing individual data points, we removed two blocks of length 25. As shown in

Figure 5.9 (orange curve), the shape of the lower bound matrix profile still looks very

similar to that of the oracle matrix profile (red curve). We see only two deep valleys in

the vicinity of the motifs, so no false positive patterns are discovered.

The result demonstrates that our lower bound matrix profile is robust against

producing false positives.

0 25s

Oracle Matrix Profile

Matrix Profile
(Missing blocks)
50 data points missing

Matrix Profile
(Missing points)
50 data points missing

Raw data

 124

To test the robustness of our algorithm against false negatives, we removed a block

of missing data at the center of the second earthquake pattern. The length of the missing

block is 400, which is 20% of the subsequence length. In Figure 5.10, we compared our

lower-bound matrix profile result with the matrix profile generated by linear imputation.

Figure 5.10. We removed 400 consecutive data points at the center of the second earthquake pattern.

The oracle matrix profile computed with no missing data (black curve) finds the true event, as does

MDMS (red curve) even in the presence of a large missing block. The Matrix Profile generated after

linear imputation (green curve) fails to capture the minimum points within the oracle matrix profile.

We can see that the lower-bound matrix profile generated by our MDMS algorithm

(red curve) agrees closely with the oracle matrix profile (black curve) in the vicinity of

the two earthquake patterns, while the matrix profile generated after linear imputation

(green curve) shows a high value at these locations.

Figure 5.11. The first motif found by the MDMS algorithm (right) in the presences of a large missing

block is identical with the first motif found in the oracle data (left).

We removed a block of
400 data points here

Oracle Matrix Profile

Raw data

Matrix Profile (imputation)

Matrix Profile (MDMS)

Oracle Matrix Profile

0 25s

0 2000 0 2000

 125

As a result, the MDMS algorithm successfully captures the 1st motif (as shown in

Figure 5.11) even in the presence of a large missing block within one earthquake pattern,

while the imputation method misses the 1st motif within the oracle data. This illustrates

two major strength of our algorithm over imputation methods. Firstly, our algorithm does

not allow false negatives. Secondly, our algorithm is more robust to large missing blocks

as it does not change the data, while imputation method can change the data a lot. In the

next case study, we will further demonstrate the robustness of MDMS in the presence of

missing blocks.

5.3.2 Case Study: Activity Data from Video

Time series extracted from video often has missing data reflecting “frame drops”

due to bandwidth congestion [20]. To test our algorithm in this context, we examine the

activity dataset of [86]. This dataset consists of a 13.3 minute 10-fps video sequence of

an actor performing various activities. From this data, the original authors extracted 721

channels of the optical flow time series, and the length of each time series is 8,000. We

consider the time series corresponding to the 533th channel, which is suggestive of the

structure in places but is noisy. The data is shown in Figure 5.12.top, the subsequence

length is 120. From the oracle matrix profile in Figure 5.12 (black curve), we can extract

the 1st motif in the oracle data. To test the performance of the MDMS algorithm, here we

remove 12 consecutive data points in the center of one of the 1st motif patterns. In Figure

5.12, we compare our lower-bound matrix profile result (red curve) with the matrix

profile generated by linear imputation (green curve).

 126

Figure 5.12. A raw activity time series. We removed 12 consecutive data points in one of the 1st motif

patterns in the time series. The oracle matrix profile computed with no missing data (black curve)

finds the true motif starting at the 540th and the 622nd data points. With the presence of 12 missing

data points, the MDMS algorithm finds the same motif as the oracle result (red curve), starting at

520th and 602nd data points. The Matrix Profile generated after linear imputation (green curve) fails

to capture the two deep valleys within the oracle matrix profile and thus misses the 1st motif.

We can see that the oracle matrix profile (black curve) shows two apparent valleys

at the locations of the 1st motif, as does the lower bound matrix profile generated by

MDMS (red curve). The 1st motif discovered by the MDMS algorithm (shown in Figure

5.13.right) is identical to the oracle motif (shown in Figure 5.13.left). In contrast, the

matrix profile generated by imputation (green curve) does not have these valleys, and

thus misses the 1st motif of the oracle data.

Figure 5.13. The first motif found by the MDMS algorithm (right) is identical to the first motif within

the oracle data (left), despite a small phase shift.

0 8000

Data

Oracle Matrix Profile

Matrix Profile (MDMS)

We removed a block of 12 data points here

Matrix Profile (Imputation)

1st motif

1st motif

The deep valley disappears

0 120 0 120

 127

We can see from Figure 5.13 that though a large portion of the blue pattern is

missing, our MDMS algorithm still finds it very similar with the red pattern. This

example further demonstrates that our algorithm is robust against missing true motif

patterns.

5.3.3 Quantifying the Robustness of MDMS

As MDMS evaluates the lower bound matrix profile, it naturally does not allow

false negatives, but it can produce false positives. Here we perform two “stress tests” to

evaluate the robustness and limitations of our MDMS algorithm against false positives.

We use the seismograph data in Figure 5.9 again for the stress test. The

subsequence length in this dataset is m=2,000.

We first test the sensitivity of MDMS over the length of missing blocks. Here we

remove two missing blocks of length p, located at 7.5s and 15s respectively, from the

data. In Figure 5.14, we show how the lower bound matrix profile varies as we increase

p.

Note that the removed blocks are not within the two repeated earthquake patterns.

As a result, the lower bound matrix profiles are the same as the oracle matrix profile in

the vicinity of the two repeated patterns, while lower at other locations. In other words, it

is easier to detect false positives with such setting.

 128

Figure 5.14. Lower bound matrix profiles corresponding to different missing block lengths. We

removed 2 blocks of length p from the seismograph. The oracle matrix profile (black curve) finds the

true motif. For p=100, p=400 and p=700, MDMS is able to find the true event as the 1st motif. When

p=800, MDMS finds a false positive as the 1st motif.

We can see that when p=100 (5% of the subsequence length m), the side valleys in

the oracle Matrix Profile become deeper, and two more side valleys show up in the

vicinity of the removed blocks. As p increases, all the side valleys become deeper and

deeper. For p=100, p=400 and p=700, we are able to find the true event as the 1st motif

with MDMS. However, when p=800 (40% of m), the 1st motif (corresponding to the

minimum point of the lower bound matrix profile) is no longer the true event. We show

this false positive motif pair in Figure 5.15.

Figure 5.15. The 1st motif found by the MDMS algorithm when p=800.

Oracle
Matrix Profile

p=100

p=400

p=700

p=800

1st motif

We removed two blocks of length p

1st motif

1st motif

1st motif

Data

0 2000

 129

The two subsequences are both in the vicinity of the second missing block in

Figure 5.14. With a close inspection we can see why this pair is reported as the 1st motif

by MDMS. If we fill in the missing part of each subsequence with their counterpart in the

other subsequence (shown by the arrows in Figure 5.15), the two can be very similar to

each other. Since MDMS does not allow false negatives, it will capture and report this

possible matching pair.

Furthermore, Figure 5.15 implies that p cannot be larger than 50% of the

subsequence length, otherwise MDMS will be able to find a perfect match (with one

subsequence missing the first 50% and the other missing the second 50%). When p > 700

(35% of the subsequence length), we are already very close to this limit. Therefore, in

Figure 5.15 we can see very deep side valleys in the vicinity of the missing blocks, and

we are prone to detect false positives. When p ≤ 400 (20% of the subsequence length),

the two main valleys corresponding to the true events dominate, so we will not detect

false positives.

We have demonstrated that MDMS is robust against discovering false positives

when there are two missing blocks, and when the length of the two blocks are within a

reasonable range. Next, we “stress test” the sensitivity of MDMS over the total number of

missing values in the data. We again use the seismograph dataset in Figure 5.9, which

consists of 50,000 data points. The lower bound matrix profile results are shown in

Figure 5.16.

 130

Figure 5.16. Lower bound matrix profiles corresponding to various percentage of data missing. left)

random-missing data right) block-missing data.

In the first run, we randomly selected 5,000, 10,000, 15,000 and 20,000 points to

remove from the data. From Figure 5.16.left, we can see that the scale of the matrix

profile decreased as more points are missing. However, even when 40% of the data is

missing, the two valleys corresponding to the true events (recall Figure 5.9) still

dominate. In the second run, we removed blocks of length 200 from the data. The missing

blocks were uniformly distributed, and the number of missing blocks increased from 25

to 100. Figure 5.16.right shows that even when 30% of the data is missing, the two main

valleys still dominate. When 40% of the data is missing, the two main valleys are no

longer apparent, but we can still find the true events as the 1st motif. The experiment

demonstrates that MDMS is robust against detecting false positives even if a large

percentage of data is missing.

5.4 Conclusions

We introduced what we believe to be the first time series motif discovery algorithm

that can find motifs in the presence of missing data. The algorithm has the same time and

space complexity as the fastest known algorithm for motif discovery, the STOMP

10%

20%

30%

40%

10%

20%

30%

40%

 131

algorithm (Chapter 3). We formally proved the admissibility of our algorithm, it does not

produce any false negatives. Experimental results show that our algorithm is also robust

against false positives even when a large portion of the data is missing. Because our

algorithm is based on creating a special version of the matrix profile, our work may have

implications for other algorithms that can exploit the matrix profile, including discord

discovery and time series joins. The lower bounds introduced can also be used to

accelerate various length motif discovery. We leave such considerations to future work.

 132

Chapter 6 Time Series Chains: A New

Primitive for Time Series Data

Mining

Time series motifs were introduced in 2002, and have since become a fundamental

tool for time series analytics, finding diverse uses in dozens of domains. In this chapter

we introduce Time Series Chains, which are related to, but distinct from, time series

motifs. Informally, time series chains are a temporally ordered set of subsequence

patterns, such that each pattern is similar to the pattern that preceded it, but the first and

last patterns can be arbitrarily dissimilar. In the discrete space, this is similar to extracting

the text chain “data, date, cate, cade, code” from text stream. The first and last words

have nothing in common, yet they are connected by a chain of words with a small mutual

difference. Time series chains can capture the evolution of systems, and help predict the

future. As such, they potentially have implications for prognostics. We introduce two

robust definitions of time series chains, and scalable algorithms that allow us to discover

them in massive complex datasets.

 133

6.1 On the Ubiquity of Time Series Chains

We have briefly and informally introduced time series chains in Section 1.2 (recall

Figure 1.2 and Figure 1.3). With a little introspection, it is easy to see that time series

chains should exist in a host of diverse systems. Consider the following:

• Human Heart: An overcaffeinated heart can sporadically produce a pattern

containing an extra beat, but over time the caffeine leaves the blood stream, and

the pattern fades [40].

• Distillation Process: A distillation column is a ubiquitous industrial tool used to

separate a mixture into its component parts. Ideally, most telemetry monitoring a

distillation column should reflect a repeating process, over production cycles.

However, most large distillation columns are open to the atmosphere, and the

patterns observed may drift as the seasons change. In addition, a slowly clogging

feed pipe can throttle the feed rate and force the patterns to drift until they become

unacceptable and force maintenance.

• Aggregate Human Behavior: Human behavior is often unpredictable for

individuals, but more structured in aggregate. For example, online shopping

behaviors often shows conserved motifs, but these motifs may drift over time in

response to advertising campaigns or cultural shifts. This has been noted in recent

studies. For example, Krumme et al. [36] note that their attempts to model

consumer e-commerce visitation patterns “suggest the existence of a slow rate of

environmental change or exploration that would slowly undermine the model's

accuracy.”

 134

• Machines: In general, most mechanical and electrical systems such as cars,

motors, elevators, air conditioners, etc., are subject to gradual deterioration over

time. This deterioration can be manifested in shorter or longer duty cycles,

increased vibration, or some other gradually changing pattern. In the field of

prognostics, the degree of deterioration is often called the State of Health (SoH)

of the system. SoH is rarely directly measurable, and its estimation typically

involves advanced modeling and estimation algorithms. Because a time series

chain defines an implicit curve in some high-dimensional space, as shown in

Figure 1.2, the natural coordinate along this curve can serve as a surrogate SoH

measure. If high probability of failure can be associated reliably with a certain

level of SoH, the discovered time series chain can be used successfully for

prognostics and condition-based maintenance of machines.

As we will show in Section 6.4, once given the computational ability to find time

series chains, we begin to find them everywhere, in datasets from ten seconds, to ten

years in length.

6.2 Related Work and Background

Our review of related work is brief. To the best of our knowledge, there are simply

no closely related ideas in the time series domain. However, there are very similar ideas

in the text domain, even to the point of using similar language [102][9][94]. For example,

Zhu and Oates discuss “Finding Story Chains in Newswire Articles” (analogous to our

emphasis, [102]). Likewise, Bögel and Gertz argue for the need to go beyond finding

 135

repeated variants of news articles (like motifs), to allowing “Temporal Linking of News

Stories” (like chains, [9]). Beyond the difference in data type considered, this work is

much more supervised. The user typically selects a particular news article, and asks

“what leads up to this?” or “what happened next?”. In contrast, because we are often

exploring domains for which we have limited intuitions, we want to tell the algorithms

nothing (except the desired length of patterns to consider) and have the algorithm find the

natural chains in the data (if any).

There is a huge body of work in finding periodicity in time series [38]; however,

this work is orthogonal to the task-at-hand. A time series can have perfect periodicity, but

no chains (i.e. a pure sine wave), and a time series can have chains, but no appreciable

periodicity (it is easy to construct artificial examples, for example by embedding

increasing damped sine waves in random walk).

The notion of chains invokes the familiar idea of concept drift in [19], however, we

are not starting with an explicit model to drift away from. Our starting point is a

completely unannotated dataset.

Finally, time series chains are clearly related to time series motifs [56][96].

However, chains are neither a specialization nor a generalization of motifs. It is possible

to have a rich set of motifs in a dataset, without having any chains (Our tilt-table example

later in Section 6.4.1 illustrates that fact). Time series motifs have a rich and growing

literature, we refer the reader to [96] and the references therein.

 136

6.2.1 Developing Intuition for Time Series Chains

To help the reader understand the task at hand, and our contributions to it, we begin

by considering a similar problem in a domain that better lends itself to discussion. In

particular, it will be helpful to sharpen our intuitions on strings, the discrete analog to

time series, and using the Hamming distance, the discrete analog to the Euclidean

distance.

A word ladder is a classic puzzle used to challenge children to build their

vocabulary [45]. The challenge is as follows: given two related words, such as “cat” and

“dog”, find a path between the words that consists of legal English words that differ only

in one letter. For example, this instance is solved by {cat, cot, dot, dog}. By definition,

each word is exactly a Hamming distance of 1 from both its neighbors. Let us consider

variants of this problem. Suppose our words are subwords of length m in a longer,

unpunctuated string S, of length n:

thecatsleepinginthecotwasawokenbydothedogwh…

Further suppose that we are challenged to find the longest ladder (or chain) of

words in this string. We are told only that the words are of length 3, and that each word is

at most a Hamming distance of 1 from both its neighbors. The problem is still tenable by

eye, at least for this short string. However, the problem becomes significantly harder if

the words are no longer constrained to be English words:

uifdbutmffqjohjouifdpuxbtbxplfoczepuifephxi…

This string is actually just the previous string Cesar-shifted by one letter, but

without the intuition of meaningful words, the problem becomes much harder for the

 137

human eye. Solving the problem with computers is also somewhat daunting. The obvious

solution is depth-first-search, which only requires O(n2) space, but requires O(nn) time. If

we constrain the subwords in a chain to have no overlap, the time complexity is slightly

reduced to O(nn/m).

Our consideration of strings allows further intuitive explanation of issues for the

task at hand. Consider the following:

catauygfbatiuvheiucathoeircatiajesathfwecat…

Under the definition that each word is at most a Hamming distance of 1 from both

its neighbors, this string has a chain of length six. However, this chain lacks

directionality: the pattern is not drifting or evolving. Indeed, this “chain” might better be

explained as multiple occurrences of a single prototypical pattern “cat”, with some

spelling errors. In the time series space, we already have a technique to find such

patterns, time series motifs [56][96]. Thus, any definition we wish to formalize should

guard against such pathological solutions.

Another important property that any definition of chains should have is robustness.

Consider the following list of words that we will embed into a string {sad, had, ham, hag,

rag}:

iwassadthatIhadahamsandwichwiththehaginrags…

Here we easily find the five-word chain. However, suppose we had a single letter

misspelling in the string, for example:

iwassadthatIhadajamsandwichwiththehaginrags…

 138

Because of this trivial single letter difference, we can only find two chains of length

two, something that might easily have happened by chance. This brittleness of chains has

been understood for centuries. Alexander Pope noted in 1733 “From Nature’s chain

whatever link you strike, tenth or ten thousandth, breaks the chain alike”. Thus, when

designing the definition of chains for the time series space, we want to make sure that our

definition is robust to one or two links being missing in an otherwise long chain. This is

especially important in the time series domain where we often encounter noisy/missing

data.

In summary, considering a simpler but related problem, we can see that when

designing a formal definition for our task at hand, we must strive (at a minimum) to make

it efficiently computable, directional, and robust. In the next section, we will introduce a

definition of time series chains that satisfy these requirements.

Finally, this is a good place to introduce some nomenclature. We plan to support

two types of time series chains (here we show their analogs in a string):

• Unanchored: In this case we are interested in finding the unconditionally

longest chain in the string. For example, considering S, the first string we

introduced, FindChain(S, m, default) would find the longest chain (with m = 3)

of length 4: {cat, cot, dot, dog}.

• Anchored: In this case we want to start the chain with a particular

subsequence. For example, FindChain(S, m, 20) would find the longest chain

(with m = 3) starting with the subword at index 20, which is {cot, dot, dog}.

 139

Note that if we have discovered all the anchored chains, the unanchored chain is

simply the longest one among them.

6.2.2 Time Series Notation

Before we formally define time series chains, we need to review some related time

series definitions and notations, and create some new ones. Here we inherit the

definitions and notations for time series (Definition 2.1), time series subsequence

(Definition 2.2), distance profile (Definition 2.3), matrix profile (Definition 2.4) and

matrix profile index (Definition 2.5) from Chapter 2.

Recall that the matrix profile is a data structure that stores nearest neighbor

information for every subsequence in a time series, offering the solutions to many

problems in time series data mining, including motif discovery and discord discovery

[96]. We propose to leverage these ideas. However, it is useful for us to “re-factor” the

computation into two halves, independently considering the nearest neighbor to the left,

and the nearest neighbor to the right. Note that the total amount of computation we need

to do is the same. Figure 6.1 previews the two data structures: left matrix profile and

right matrix profile. We could create the original matrix profile (Definition 2.4) by

simply taking the minimum of the two.

 140

Figure 6.1. The left matrix profile, right matrix profile and matrix profile of a toy time series. The

deep valleys within the (left/right) matrix profiles indicate that the corresponding subsequence has

close (left/right) nearest neighbors. The matrix profile shows general nearest neighbor information.

Before introducing the left matrix profile and right matrix profile, we begin by

showing that we can divide a distance profile ((Definition 2.3) into a left distance profile

and a right distance profile.

Definition 5.1: A left distance profile DLi of time series T is a vector of the

Euclidean distances between a given query subsequence Ti,m and each subsequence that

appears before Ti,m in time series T. Formally, DLi = [di,1, di,2,…, di,i-m/4]

Definition 5.2: A right distance profile DRi of time series T is a vector of the

Euclidean distances between a given query subsequence Ti,m and each subsequence that

appears after Ti,m in time series T. Formally, DRi = [di, i+m/4, di, i+m/4+1,…, di,n-m+1].

We can easily find the left nearest neighbor of a subsequence Ti,m from the left

distance profile, and the right nearest neighbor of Ti,m from the right distance profile.

Definition 5.3: A left nearest neighbor of Ti,m, LNN(Ti,m) is a subsequence that

appears before Ti,m in time series T, and is most similar to Ti,m. Formally, LNN(Ti,m)= Tj,m

if di,j = min(DLi).

time series

left matrix profile

right matrix profile

matrix profile

 141

Definition 5.4: A right nearest neighbor of Ti,m, RNN(Ti,m) is a subsequence that

appears after Ti,m in time series T, and is most similar to Ti,m. Formally, RNN(Ti,m)= Tj,m if

di,j = min(DRi).

As shown in Figure 6.1, we use a vector called left matrix profile to represent the

z-normalized Euclidean distances between all subsequences and their left nearest

neighbors:

Definition 5.5: A left matrix profile PL of time series T is a vector of the z-

normalized Euclidean distance between each subsequence Ti,m and its left nearest

neighbor in time series T. Formally, PL = [min(DL1), min(DL2),…, min(DLn-m+1)], where

DLi (1 ≤ i ≤ n-m+1) is a left distance profile of time series T.

The ith element in PL tells us the distance from subsequence Ti,m to its left nearest

neighbor in time series T. However, it does not tell where that left neighbor is located.

This information is stored in a companion vector called the left matrix profile index.

Definition 5.6: A left matrix profile index IL of time series T is a vector of integers:

IL=[IL1, IL2, … ILn-m+1], where ILi=j if LNN(Ti,m)= Tj,m.

By storing the neighboring information this way, we can efficiently retrieve the left

nearest neighbor of query Ti,m by accessing the ith element in the left matrix profile index.

Analogously, we define the right matrix profile (as shown in Figure 6.1) and the

right matrix profile index as follows:

Definition 5.7: A right matrix profile PR of time series T is a vector of the

Euclidean distances between each subsequence Ti,m and its right nearest neighbor in time

 142

series T. Formally, PR = [min(DR1), min(DR2),…, min(DRn-m+1)], where DRi (1 ≤ i ≤ n-

m+1) is a right distance profile of time series T.

Definition 5.8: A right matrix profile index IR of time series T is a vector of

integers: IR=[IR1, IR2, … IRn-m+1], where IRi=j if RNN(Ti,m)= Tj,m.

6.2.3 Formal Definitions of Time Series Chains

We are finally in the position to define time series chains. Before we do so, recall

our guiding principle. We want something very like the definition of time series motifs

[56][96], but with the additional property of directionality. For example, given a choice

between the following:

{ ape → abe → ape → ape → abe → ape }

{ ape → apt → opt → oat → mat → man }

The latter is strongly preferred because the pattern is in some sense “evolving” or

“drifting”. We can now see this intuition in the real-valued space of interest. The

definition below captures this spirit in the continuous case.

Definition 5.9: A time series chain of time series T is an ordered set of

subsequences: TSC={TC1,m, TC2,m, … TCk,m} (C1≤ C2≤...≤Ck), such that for any 1 ≤ i ≤

k-1, we have RNN(TCi,m) = TC(i+1),m, and LNN(TC(i+1),m) = TCi,m. We denote k the length of

the time series chain.

To help the reader better understand this definition, let us consider the following

time series:

47, 32, 1, 22, 2, 58, 3, 36, 4, -5, 5, 40

 143

Assume that the subsequence length is 1, and the distance between two

subsequences is simply the absolute difference between them (to be clear, we are making

these simple and pathological assumptions here just for the purposes of elucidation; we

are actually targeting much longer subsequence lengths and using z-normalized

Euclidean distance in our applications). According to Definition 5.6 and Definition 5.8,

we can store the left and right nearest neighbor information into the left and right matrix

profile indices, as shown in Figure 6.2.

Index 1 2 3 4 5 6 7 8 9 10 11 12

Value 47 32 1 22 2 58 3 36 4 -5 5 40

IR 12 8 5 8 7 12 9 12 11 11 12 -

IL - 1 2 2 3 1 5 2 7 3 9 8

Figure 6.2. The left nearest neighbor index and right nearest neighbor index of the toy example.

Here the Index vector shows the location of every subsequence in the time series,

IR is the right matrix profile index and IL is the left matrix profile index. For example,

IR[2] = 8 means the right nearest neighbor of 32 is 36; IL[3] = 2 means the left nearest

neighbor of 1 is 32.

To better visualize the left/right matrix profile index, in Figure 6.3 we use arrows

to link every subsequence in the time series with its left and right nearest neighbors.

 144

Figure 6.3. Visualizing left matrix profile index and right matrix profile index: every arrow above the

time series points from a number to its right nearest neighbor; every arrow below the time series

points from a number to its left nearest neighbor.

We call an arrow pointing from a number to its right nearest neighbor (arrows

shown above the time series) a forward arrow (i.e. x→y means RNN(x)=y), and an arrow

pointing from a number to its left nearest neighbor (arrows shown below the time series)

a backward arrow (i.e. x←y means LNN(y)=x). Definition 5.9 indicates that every pair of

consecutive subsequences in a chain must be connected by both a forward arrow and a

backward arrow. The diligent reader may quickly discover the longest time series chain

in our toy example:

47, 32, 1, 22, 2, 58, 3, 36, 4, -5, 5, 40 (Raw data)

1 ⇌ 2 ⇌ 3 ⇌ 4 ⇌ 5 (Extracted chain)

We can see that this chain shows a gradual increasing trend of the data. Note that in

this one-dimensional example, the elements of the chain can only drift by increasing or

decreasing. In the more general case, the elements can drift in arbitrarily complex ways.

Our claim is that our definition is also capable of discovering complex drifting patterns in

high-dimensional space. For example, the reader can easily verify that the two-

dimensional chain in Figure 1.2.right, a curvy evolving pattern, is captured by our

47 32 1 22 2 58 3 36 4 -5 5 40

 145

definition. The definition also works for a sin-wave drifting pattern, a zigzag, spirals, etc.

We defer real-world examples in much higher dimensional spaces to Section 6.4.

However, to be clear, we are not claiming that we can discover all kinds of drifting;

we are only targeting chains with directionality (the last item should be very different

from the first item, as suggested previously). Therefore, full closed circles (i.e. {1, 3, 4, 5,

1}) are not captured by our definition. However, if needed, we can still potentially

capture such topologies if we consider combining multiple chains. For example, in {1, 3,

4, 5, 1}, our definition captures two chains: {1, 1} and {3, 4, 5}. The circle is a

combination of the two.

Beyond satisfyingly the directionality requirement, here we provide a simple sanity

check of the robustness of our definition by removing a link from the chain. Imagine that

in Figure 6.3, the number “3” is missing. In this case, RNN(2)=4, LNN(4)=2; we can still

find the chain 1 ⇌ 2 ⇌ 4 ⇌ 5. We defer a more “stressed” and quantified robustness test

to Section 6.4.7.

The reader may wonder why we use a bidirectional chain definition here (i.e., using

both RNN and LNN) instead of a unidirectional one (i.e., using only RNN or LNN).

Consider the following example:

47, 11, 57, 12, 101, 13, 46, 14, 54, 15, 32, 1, 122, 2, 58, 3, 36, 4, -5, 5, 40

If we modify our chain definition such that every pair of consecutive subsequences

are connected by only a forward arrow, then 11 → 12 → 13 → 14 → 15 → 5 would be

valid. However, this sequence does not satisfy the directionality requirement of chains.

Analogously, a chain definition based on only backward arrows would not work either:

 146

11 ← 1 ← 2 ← 3 ← 4 ← 5 conforms to the definition, but violates directionality. In

contrast, our bidirectional definition finds two chains: 11 ⇌ 12 ⇌ 13 ⇌ 14 ⇌ 15

and 1 ⇌ 2 ⇌ 3 ⇌ 4 ⇌ 5, both satisfying directionality.

Note that our bidirectional chain definition can find motifs that show no

directionality, for example 1 ⇌ 1 ⇌ 1 ⇌ 1 ⇌ 1. However, note that time series data

normally contain some level of random noise, and motifs, though very similar to each

other, are typically not exactly the same (especially in the high-dimensional space, see

Section 6.4). Our bidirectional definition prevents motifs like 1.02, 1.01, 1.03, 0.98, 0.99

from being discovered as a chain.

As suggested in Section 6.2.1, we are especially interested in supporting two types

of time series chains: anchored and unanchored chains. We formally define them as

follows.

Definition 5.10: An anchored time series chain of time series T starting from

subsequence Tj,m is an ordered set of subsequences: TSCj,m ={TC1,m, TC2,m, … TCk,m}

(C1≤C2≤...≤Ck, C1=j), such that for any 1≤ i ≤ k-1, we have RNN(TCi,m)=TC(i+1),m, and

LNN(TC(i+1),m)=TCi,m; for TCk,m, we have either TCk,m is the last subsequence in T, or

LNN(RNN (TCk,m))≠TCk,m.

We can “grow” an anchored chain step-by-step as follows. Consider Figure 6.3 as

an example. If we start from 1, we find RNN(1)=2 and LNN(2)=1, so 2 can be added to

the chain; since RNN(2)=3 and LNN(3)=2, 3 can also be added; this process continues

until we reach 5. As RNN(5)=40 and LNN(40) ≠5, the chain terminates, and finally we

find the chain 1⇌2⇌3⇌4⇌5 as the longest chain starting from 1.

 147

Note that our definition produces one and only one anchored time series chain

starting from any user-supplied subsequence Tj,m (1≤ j≤n-m+1), as there is only one right

(and also left) nearest neighbor for every subsequence in T. Based on this observation, we

can find all the time series chains within T.

Definition 5.11: An all-chain set STSC of time series T is a set of all anchored time

series chains within T that are not subsumed by another chain.

Here we are not simply finding all the anchored chains starting from all

subsequences of T; STSC excludes those that are subsumed by another chain. For example,

the all-chain set corresponding to Figure 6.3 is STSC = {47, 32⇌36⇌40, 1⇌2⇌3⇌4⇌5,

22, 58, -5}. STSC does not contain the anchored chain 36⇌40, or 2⇌3⇌4⇌5, as they are

both subsumed by longer chains.

Note that the all-chain set STSC has an important property: every subsequence of T

appears exactly once in STSC. The all-chain set shows all possible evolving trends within

the data.

We believe that of all the chains in STSC, the longest one should reflect the most

general trend within the data. We call this chain the unanchored time series chain.

Definition 5.12: An unanchored time series chain of time series T is the longest

time series chain within T.

Note that there can be more than one unanchored time series chain of time series T

with the same maximum length. In case of such ties, we report the chain with minimum

average distance between consecutive components. However, one might imagine other

 148

tie-breaking criteria, such as choosing the chain with smaller variance of consecutive

pairwise distances.

One can imagine in some situations that the chain of interest may not be the longest

one. In the next section, we provide an algorithm to compute the all-chain set, which we

use to easily find any anchored or unanchored chain, from the set.

6.3 Discovering Time Series Chains

To compute the time series chains, according to Definition 12, we first need to find

the left/right nearest neighbor of every subsequence in the time series. Such information

can be found from two vectors: left matrix profile index and right matrix profile index

(Definition 5.5 and Definition 5.7). The LRSTOMP algorithm is an (optimal) algorithm

to efficiently compute these vectors.

6.3.1 LRSTOMP Algorithm

The STOMP algorithm introduced in Chapter 3 can efficiently compute matrix

profile and matrix profile index in O(n2) time and O(n) space. Here we briefly review

how STOMP keeps track of the nearest neighbor of every subsequence: the algorithm

computes distance profiles D1, D2, …, Dn-m+1 (see Definition 2.3) in order. The matrix

profile P is initialized as D1 and the matrix profile index I is initialized as a vector of

ones. As shown in Figure 6.4, once the computation of Di is completed, we compare

every element of Di with its corresponding element in P: if di,j < Pj, we set Pj = di,j and Ij

=i. In this way, the matrix profile P and matrix profile index I keep track of the nearest

neighbors of every subsequence in the time series.

 149

Figure 6.4. STOMP keeps track of the general nearest neighbor of every subsequence in the time

series.

Instead of finding the general nearest neighbor information as in STOMP, to

support chain discovery, we need to separately find the left and right nearest neighbors of

each subsequence in the time series.

Leveraging off the insights of STOMP (Chapter 3), we call our algorithm

LRSTOMP (Left-Right-STOMP). To initialize our four output vectors, we begin by

setting both the left and right matrix profiles PL and PR as Infs, and both the left and

right matrix profile indices IL and IR as zeros. Then, using the technique in Section 3.2.1,

we compute the distance profiles D1, D2, …, Dn-m+1 (see Definition 2.3) in order. Note

that the ith subsequence can only be the right nearest neighbor of the 1st to the (i-m/4)th

subsequence in the time series, and the left nearest neighbor of the (i+m/4)th to the last

subsequence in the time series. Therefore, as shown in Figure 6.5, after the ith distance

profile Di is computed, we need to divide Di into two halves. For ∀ j∈[1, i-m/4], if di,j<

PRj, we set PRj = di,j and IRj =i. For ∀ j∈[i+m/4, n-m+1], if di,j< PLj, we set PLj = di,j and

ILj =i.

P1 P2 P3 … Pn-m+1

di,1 di,2 di,3 … di,n-m+1

Update if Smaller

Di

P

 150

Figure 6.5. LRSTOMP keeps track of both the left and right nearest neighbors of every subsequence

in the time series.

After evaluating all the distance profiles, we can obtain the final left and right

matrix profiles (and matrix profile indices).

Note that switching the updating process from Figure 6.4 to Figure 6.5 does not

affect the overall complexity of the algorithm. Therefore, the time complexity of

LRSTOMP is O(n2) and the space complexity is O(n), the same as STOMP (see Chapter

3).

6.3.2 Computing the Time Series Chains

Now we are in the position to compute the time series chains. We begin with the

simpler variant, the algorithm (Algorithm 8) to compute the anchored time series chains

(ATSC).

The algorithm is straight-forward. We begin growing the chain from its user-

specified anchor, the jth subsequence. If the right nearest neighbor exists (if it does not

exist, then IR[j] = 0; this indicates that we have reached the end of the time series) and

PR1 PR2 PR3 … PRi-m/4

di,1 di,2 di,3 … di,i-m/4

Update if Smaller

Di [1:i-m/4]

PR

PLi+m/4 PLi+m/4+1 PLi+m/4+2 … PLn-m+1

di,i+m/4 di,i+m/4+1 di,i+m/4+2 … di,n-m+1

Update if Smaller

PL

Di [i+m/4:n-m+1]

 151

LNN(RNN(Tj,m)) = Tj,m, then we set j as RNN(Tj,m) and add it to the back of the chain. The

process iterates until nothing more can be added to the chain.

Algorithm 8: ATSC(IL, IR, j)

 Input: The left matrix profile index IL and right matrix profile index IR generated

by LRSTOMP(T, m), where T is the time series and m is the subsequence length;

and j, location of the anchor subsequence

Output: anchored time series chain C, where C[i] = j means the ith element of the

chain is the jth subsequence in the time series

1

2

3

4

5

6

C ← [j] // initialization

while IR[j]≠0 and IL[IR[j]] ==j do

 j ← IR[j]

 C ← [C, j]

end while

return C

The time and space overhead of the ATSC algorithm are both O(n).

Given that we can efficiently compute the anchored time series chain starting from

any subsequence, the all-chain set (ALLC) can also be computed. The (unanchored) time

series chain is simply the longest chain in the all-chain set.

A simple approach to compute the all-chain set is enumerating all anchored chains

starting from all subsequences, and removing those that are subsumed by longer chains.

However, this brute-force approach would result in an undesirable O(n2) time

complexity. Fortunately, as shown in Algorithm 9, by exploiting several properties of

our definition of time series chains, we can reduce the time complexity of the ALLC

algorithm to O(n).

The vector L in line 1 is a vector of length n-m+1, the same length as the four meta

time series. We use L[i] to store the length of the anchored time series chain starting from

L[i], and initialize L with all ones (as the length of an anchored chain is at least 1). In

lines 2 to 10, we iterate through all possible anchor points, and store in L[i] the length of

 152

the anchored chain starting from the ith subsequence. We store all the chains found in S.

In line 11, we find the unanchored time series chain corresponding to the maximum value

in L.

Algorithm 9: ALLC(IL, IR)

 Input: The left matrix profile index IL and right matrix profile index IR generated

by LRSTOMP(T, m), where T is the time series and m is the subsequence length.

Output: The all-chain set S and the unanchored chain C

1

2

3

4

5

6

7

8

9

10

11

12

L ← ones, S ← ∅ //initialization

for i ← 1 to Length(IR) do

 if L[i] ==1 do

 j ← i, C ← [j]

 while IR[j]≠0 and IL[IR[j]] ==j do

 j ← IR[j], L[j] ← -1, L[i] ← L[i] + 1, C ← [C, j]

 end while

 S ← S ∪ C

 end if

end for

C ← ATSC(IL, IR, MaxIndex(L))

return S, C

Note that in lines 5-7, as we grow an anchored chain from the ith subsequence, we

set L[j] to -1 for every subsequence j visited except the anchor subsequence. This helps us

prune unnecessary computations, as there is only one anchored time series chain starting

from any subsequence. Consider again the toy example in Figure 6.3: when i=3, we

discover the chain 1 ⇌ 2 ⇌ 3 ⇌ 4 ⇌ 5. By marking out the length of the anchored chain

starting from 2, 3, 4 and 5 as -1s, we can avoid spending time on growing a chain like 2

⇌ 3 ⇌ 4 ⇌ 5, which is subsumed by 1 ⇌ 2 ⇌ 3 ⇌ 4 ⇌ 5. With this technique, every

subsequence in the time series is visited exactly once; therefore, the time complexity of

the algorithm is O(n), which is inconsequential compared to the O(n2) time (already

demonstrated as ultra-fast in Chapter 3) to compute the left/right matrix profiles and

matrix profile indices. This O(n)-complexity algorithm is the optimal algorithm to

 153

compute the all-chain set under our definitions and assumptions, as we need to at least

scan through the entire time series once.

Although we will mainly be showing the applications of the unanchored (or

longest) time series chain, sometimes the chain of interest may not be the longest one.

Based on domain knowledge, one may be interested in looking at the top-k chains, a

chain starting from a specific location, a chain with less difference between the links, etc.

All these tasks are trivial given the all-chain set S. Therefore, the ALLC algorithm can

potentially help us discover any possible evolving trend within the time series. We

reserve such considerations for future work.

6.3.3 Uniform Scaling Time Series Chains

In the previous sections, we have introduced the definitions and algorithms for

chains with a fixed subsequence length. That is, we assumed that all the patterns (links)

in a chain are of the same length, and that they evolve by changing the values of the

patterns. The reader may have already speculated that there may exist other forms of

chains which do not evolve by changing the values of patterns, but by changing their

length, with the patterns either getting longer or shorter over time. Figure 6.6 shows one

such example. This idea is familiar in many human endeavors; in music the general term

is called tempo rubato, with ritardando indicating a slowing down, and accelerando

meaning a speed up. Changing tempo is also a key element of many types of dance,

including the Sama (the “Whirling Dervish” dance).

 154

Many other domains may see uniform scaling time series chains. For example,

electrical power demand for a house may show a seasonal effect as the occupants turn on

the air conditioning earlier and earlier each day as the warmer summer looms.

Figure 6.6. A uniform scaling time series chain we discovered in a household electrical demand time

series [25]. Over twenty months the dishwasher cycle became progressively longer, perhaps as an

inlet valve became progressively more clogged.

Note that our previous chain definition and algorithms do not apply to uniform

scaling time series chains. To show this, in Figure 6.7.top we created a synthetic time

series containing an embedded uniform scaling time series chain (the three patterns

within the embedded chain are highlighted in red, located at 100, 200 and 300, with

lengths 50, 25 and 18 respectively). We set a fixed subsequence length 50 and run the

ALLC algorithm (Algorithm 9) to find the unanchored chain. From the results in Figure

6.7.bottom (highlighted in green) we can see the algorithm found another chain with

evolving values instead of the embedded uniform scaling chain. The reason is that the

embedded patterns are unable to locate each other as their left/right nearest neighbors

October 5

May 25

September 25

June 7

June 1

March 12

0 20 40
minutes

60

 155

with a fixed subsequence length. For example, the first embedded pattern (located at 100)

finds its right nearest neighbor at 299 instead of at 200; the second embedded pattern

(located at 200) finds its left nearest neighbor at 43 instead of at 100, etc. Therefore, we

need another approach to discover this special form of time series chains.

Figure 6.7. top) A time series containing a uniform scaling chain. bottom) the chain discovered with a

fixed subsequence length 50.

Our approach is visualized in Figure 6.8. Note that the first embedded pattern

(shown in red at Figure 6.8.top) is of length 50, twice the length of the second pattern

(shown in pink at Figure 6.8.top). If we rescale the length of the original time series T by

200%, we can obtain a new time series T’ (Figure 6.8.bottom): The red pattern in T will

find the pink pattern as its nearest neighbor in T’, and vice versa. Similarly, if we create

another time series T’’ by stretching the original time series to 300%, then the first

pattern in T will find the third pattern (purple) as its nearest neighbor in T’’, and vice

versa.

0 100 200 300 400

 156

Figure 6.8. top) The original time series. bottom) Rescaling the original time series by 200%. The first

(red) pattern in the original time series matches very well with the second (pink) pattern in the

rescaled time series.

Based on this observation, we have created the UniformScaleChain Algorithm to

discover the uniform scaling time series chains, as shown in Algorithm 10.

The algorithm requires the user to input the time series of interest T, a base

subsequence length m and a number of Scales to explore. For the time series in Figure

6.8, m can be 50, and Scales can be [100%, 120%, 140%, …, 300%]. The step size

between the scales can be larger or smaller. Lines 3-11 iterate through these scales. In

line 4, we create a new time series 𝑇’ by rescaling the original time series T. Line 5

evaluates the matrix profiles and matrix profile indices corresponding to the join of T and

T’ with the AB-join version of the STOMP algorithm (Chapter 3). PI[j] is the location of

the nearest neighbor of Tj,m in T’ and PI’[j] is the location of the nearest neighbor of

0 200 400 600 800

original time series T

T’: rescaling T by 200%

 157

T’j,m in T. Line 7 verifies whether the two arrows in Figure 6.8 form a loop: if the red

pattern and the pink pattern are links of a uniform scaling chain, then the pink pattern in

T’ must be the nearest neighbor of the red pattern in T and vice versa. In line 8, if Tj,m

finds such a match in T’, then IValid[j][i] stores the original location of the match in T;

otherwise IValid[j][i] is zero.

Algorithm 10: UniformScaleChain(T, m, Scales)

 Input: time series T, subsequence length m, a set of possible scales Scales.

Output: uniform scaling time series chain C and a companion length vector S,

where C[i]=j means the ith element of the chain is the jth subsequence in the time

series and S[i]=k means the ith element of the chain is of length k × m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

L ← |T|- m + 1

IValid ← Zeros(L,|Scales|) //initialization

for i ← 1 to |Scales| do

 T’ ← T[1 : 1 / Scales[i] : end] // rescale T

 [P, PI, P’, PI’] ← STOMP(T, T’, m) // Chapter 3

 for j ← 1 to L do

 if PI’[PI[j]] == j do

 IValid[j][i] ← PI[j] / Scales[i]

 end

 end

end

ALLC ← ∅, ALLS ← ∅ // initialize all-chain set

for j ← 1 to L do

 C ← j, S ← 1

 [Val, Loc] ← NonzeroElements(IValid[j])

 if Exist(Val) do

 i ←1, C ← C ∪ Val[1], S ← S ∪ Scales[Loc[1]]

 if Val[1] > j do //chain scale increasing

 while i < |Val| and Val[i+1] > Val[i] do

 i ← i+1, C ← C ∪ Val[i], S ← S ∪ Scales[Loc[i]]

 end

 elseif Val[1]<j do //chain scale decreasing

 while i < |Val| and Val[i+1] < Val[i] do

 i ← i+1, C ← C ∪ Val[i], S ← S ∪ Scales[Loc[i]]

 end

 end

 end

 ALLC ← ALLC ∪ C, ALLS ← ALLS ∪ S

end

C, S ← Longest(ALLC, ALLS)

return C, S

 158

In lines 13-29, we attempt to “grow” a uniform scaling chain from every possible

anchor in the original time series T. In line 15, the non-zero elements in IValid[j] indicate

all the possible links that can be included in a chain anchored at j. Note that the length of

each link in the uniform scaling chain can be either increasing over time, or decreasing

over time; We handle the former case in lines 18-21, and the latter case in lines 22-25. In

lines 18-21, we find the longest chain with increasing link lengths starting from j; in lines

22-25, we find the longest chain with decreasing link lengths ending in j. After finding all

the uniform scaling chains starting from all anchors, we return the longest one and the

corresponding scales of its links in line 30.

Finally, it is clearly possible that there may be chains that exhibit both shape and

length evolution at the same time. Such patterns may best be discovered by a fusion

algorithm. We leave such considerations to future work.

6.4 Empirical evaluation

 “You reasoned it out beautifully, it is so long a chain, and yet every link rings true.”

Sir Arthur Conan Doyle: Adventures of Sherlock Holmes, 1892.

We note in passing that all the experimental results in this paper are reproducible.

To ensure this, we have created a website to archive all the datasets and code in

perpetuity [76].

After an extensive literature search, we are convinced that there is no strawman

algorithm to compare to. Moreover, unlike clustering or motif discovery, there is no

formal metric to measure the quality of chains. In a sense, we are not the ideal group that

should invent such a metric, as we could define one that tautologically rewards the

 159

properties we have defined. However, in Section 6.4.7, we provide a pseudo measure of

quality as the gold standard. We measure the length of a chain in a data set, then ask how

robust would our chain discovery algorithm be if we distorted the data in various ways.

Clearly a chain discovery algorithm would engender little confidence if minor changes to

the data could prevent the discovery of the (same basic) chain.

Before this robustness test, we provide four case studies in which we applied our

algorithm to various datasets. These case studies will help the reader gain an appreciation

for the utility of chain discovery. These datasets are designed to span the diverse types of

data encountered in time series data mining, some are stationary, some have trends, some

are smooth, some are noisy, the shortest is ten seconds long, the longest is ten years, etc.

While we can obtain the all-chain set with the ALLC algorithm, in this section, we

are mainly showing the application of the unanchored time series chain. Unless otherwise

stated, in the rest of this section, we use the term “time series chain” to represent

unanchored time series chain in Definition 5.12, rather than Definition 5.9.

6.4.1 Case Study: Hemodynamics

In November 2016, we briefed Dr. John Michael Criley, Professor Emeritus at the

David Geffen School of Medicine at UCLA, and Dr. Gregory Mason of UCLA Medical

Center, a noted expert on cardiac hemodynamics, on the capabilities of time series chain

discovery. They suggested more than a dozen possible uses for it in various clinical and

research scenarios in medicine. Here we consider one example they are interested in.

 160

Syncope is the loss of consciousness caused by a fall in blood pressure. The tilt-

table test (see Figure 6.9.top.left) is a simple, noninvasive, and informative test first

described in 1986 as a diagnostic tool for patients with syncope of unknown origin [29].

Figure 6.9. left-to-right, top-to-bottom) A patient lying on a medical tilt table has his arterial blood

pressure monitored. Nomenclature for a standard beat. The chain discovered in this dataset shows a

decreasing height for the dicrotic notch.

Beyond diagnosing the condition, the test may reveal the cause, neurological

disorder, metabolic disorder, mechanical heart disease, cardiac arrhythmias, etc. [48].

In brief, the clinician will want to contrast any evolving patterns in the patient’s

arterial blood pressure (ABP) that are a response to changes in positon induced by a tilt

table, with evolving patterns that are not associated with changes of posture. As hinted at

in Figure 6.9, time series chains are an ideal way to find and summarize such patterns.

Here we set m=200, as this is the typical length of an ABP signal (Figure

6.9.bottom.left).

Figure 6.9 shows just a snippet of the time series searched. We encourage the

reader to see the full dataset/results at [76]. Nevertheless, even this snippet is visually

0 5000

20

40

60

tilt begins

2040 2220 2440 2620 3040 3220

Peak sy stolic pressure

Dicrotic

notch

m
m

H
g

 161

compelling. It shows that as the table is tilted, the height of the dicrotic notch steadily

decreases. Per Dr. Mason, the change in orientation “dramatically increases central

venous filling and subsequent left ventricular end-diastolic volume, for several heart

beats. Left ventricular stroke volume and effective cardiac output increase

transiently, (likely due to) relative hyperemia, which is well-described during recovery

from transient vascular occlusion”.

As noted above, Figure 6.9 only shows a small section of the data we searched. In

addition to finding meaningful chains, a good algorithm should avoid finding spurious

chains, even if there are dense motifs (recall the distinction visualized in Figure 1.2). In

Figure 6.10 we show the prefix of the data we searched, but truncated out of Figure 6.9,

gratifyingly, the chain we discovered has no element here, even though there are clearly

dense motifs [96].

Figure 6.10. The prefix of the ABP data shown in Figure 6.9. There are no chain elements discovered

in this region, although it is compressed of dense motifs.

6.4.2 Backtracing

We have shown in Figure 6.9 that the unanchored chain reveals the gradual drifting

process of a system. Sometimes it may be interesting to explore the data “backwards”.

That is to say, if we inspect an abnormal signal at the end of the drifting process, can we

go backward to find when the system started to drift and possibly glean some insight as to

what caused the drifting?

tilt begins

-23000 -18000 -13000 -8000 -3000 2000

20

60

m
m

H
g

0

 162

In contrast to the anchored chain definition in Section 6.2.3 which discovers a chain

forward from an anchor, here we try to “grow” a chain backward from the end of a chain

to find its origin. Note that our chain definition is symmetric: as shown in Figure 6.3,

every pair of consecutive subsequences in a chain must be connected by both a forward

arrow and a backward arrow. That is, if Ti,m and Tj,m are two consecutive subsequences in

a chain, then RNN(Ti,m)= Tj,m and LNN(Tj,m)= Ti,m. Therefore, if we grow a chain from its

last link backward, we will find exactly the same chain as the one grown from its first

link forward.

We call this process backtracing. The algorithm to discover a backtracing chain is

just a simple modification of the ATSC algorithm (Algorithm 8): we begin growing the

chain backward from the user-specified anchor (the last link), the jth subsequence. If the

left nearest neighbor of Tj,m exists, and RNN(LNN(Tj,m))=Tj,m, then we set j as LNN(Tj,m)

and add it to the front of the chain. The process iterates until nothing more can be added

to the front of the chain.

We apply the backtracing algorithm to the ABP data from the last section. Figure

6.11.top shows an expanded view of the signal. At the end of the data, we find an

abnormal signal (shown in red), indicating the system has drifted, and we would like to

trace back to discover what causes the drifting. Figure 6.11.middle shows the backtracing

chain discovered backward from the abnormal signal. The discovered chain indicates that

the system starts drifting at around the 15,000th data point, which aligns very well with

the ground truth when the bed starts to tilt.

 163

Figure 6.11. top) An expanded view of the ABP data shown in Figure 6.9. We trace back from an

abnormal pattern located at the end of the data. middle) The chain discovered. bottom) The length of

chains starting from every anchor.

In addition, we have also investigated the relationship between the all-chain set and

the ground truth: Figure 6.11.bottom shows the length of chains starting from every

anchor in the all-chain set, and we can see that the length of the chains becomes

exceptionally large near the drifting point 15,000.

The results suggest that time series chains can automatically identify when the

system starts to drift. This piece of information may be very helpful in prognostics

applications, i.e., locating what causes the system to deteriorate, so that corresponding

maintenance can be scheduled in time.

0

5

15

0 5000 10000 15000 20000

10

tilt begins

 164

6.4.3 Case Study: Penguin Behavior

In this case study, we decided to explore a dataset for which we have no expertise,

to see if we could find time series chains, which we could then show to an expert for

independent evaluation of meaning and significance (if any).

To this end, we consider telemetry collected from a Magellanic penguin

(Spheniscus magellanicus). The dataset was collected by attaching a small multi-channel

data-logging device to the bird. The full data consist of 1,048,575 data points recorded at

40 Hz (about 7.2 hours). While a suite of measurements was recorded, for simplicity we

focus on the X-axis acceleration (the direction of travel for a swimming bird). In Figure

6.12 we show the snippet of the data in which we found a chain, with m = 28. This is

about 0.7 seconds, and the approximate period of the data.

Figure 6.12. top) A random three-minute snippet of X-Axis acceleration of a Magellanic penguin

(from a total of 7.2 hours). bottom) An eighteen-second long section containing the time series chain.

In the background, the red time series records the depth, starting at sea-level and leveling off at 6.1

meters.

In fact, this chain does have a simple interpretation. Adult Magellanic penguins

regularly dive to depths of up to 50 m to hunt prey, and may spend as long as fifteen

minutes under water. One of our sensors measures pressure, which we showed in Figure

6.12.bottom as a fine/red line. This shows that the chain begins just after the bird begins

its dive, and ends as it reached its maximum depth of 6.1 m. Magellanic penguins have

0 18 seconds

3-minute snippet

 165

typical body densities for a bird at sea-level, but just before diving they take a very deep

breath that makes them exceptionally buoyant [58]. This positive buoyancy is difficult to

overcome near the surface, but at depth, the compression of water pressure cancels it,

giving them a comfortable neutral buoyancy [58][93]. To get down to their hunting

ground below sea level, it is clear that “(for penguins) locomotory muscle workload,

varies significantly at the beginning of dives” [93]. The snippet of time series shown in

Figure 6.12 does not suggest much of a change in stroke-rate, however penguins are able

to vary the thrust of their flapping by twisting their wings [93]. The chain we discovered

shows this dramatic sprint downwards leveling off to a comfortable cruise. Fortunately,

our data contain about a dozen major dives, allowing us to confirm our hypothesis about

the meaning of this chain on more data.

Note that our chain does not include every stroke in the dive. Our data are

undersampled (only 40Hz for a bird that can swim at 36kph) and these data are recorded

in the wild, the bird may have changed directions to avoid flotsam or fellow penguins.

However, this is a great strength of our algorithm: we do not need “perfect” data to find

chains; we can find chains in real-world datasets. Also, from Figure 6.12.bottom we can

see that m=28 is longer than the actual period of the data; our algorithm is not sensitive to

this and still discovered a meaningful chain.

6.4.4 Case Study: Human Gait

In the experiments in the previous section we could be sure of the validity of the

discovered chains, because we had access to some ground truth. In this section and the

next, we show examples of chains we discovered in datasets for which we do not have an

 166

obvious way to empirically verify. This demonstrates one use for chains, finding patterns

that are interesting but speculative, and may warrant further investigation.

We first consider a snippet of a gait dataset recorded to test a hypothesis about

biometric identification [30]. The dataset is shown in Figure 6.13.top. We set m = 50

here, as this is the approximate length of a period of the data.

Figure 6.13. top) A 30-second snippet of data from an accelerometer on a mobile phone. The phone

was placed in the user’s front pocket (inset). bottom) The extracted chain shows an evolution to a

stable and symmetric gait.

As hinted at in Figure 6.13.inset (taken from the original paper), the authors of the

study were interested in “the instability of the mobile in terms of its orientation and

position when it is put freely in the pocket” [30]. Given the experimental setup, we

suspected that the gait pattern might start out as being unpredictable as the phone jostled

about in the user’s pocket, eventually settling down as the phone settled into place. This

is exactly what we see in Figure 6.13.top. Note that the first few links are far apart and

asymmetric, but the last few links are close together, and almost perfectly symmetric.

6.4.5 Case Study: Web Query Volume

In contrast to the smooth, stationary, oversampled accelerometer data considered in

the last section, we next consider a dataset that is noisy, undersampled and has a growing

trend. We examined a decade-long GoogleTrend query volume for the keyword Kohl’s,

0 200 400 600 800

160 180 380 420 620 660 760 780 780 820 820 860

 167

an American retail chain (data courtesy of [43]). As shown in Figure 6.14, the time series

features a significant “bump” around the end-of-years holidays, unsurprising for a store

known as a destination for gift buyers. Here we set m = 76 (the approximate length of a

“bump”).

Figure 6.14. top) Ten years of query volume for the keyword Kohl’s. bottom) The z-normalized links

of the time series chain discovered in the data hints at the growing importance of “Cyber Monday”.

The discovered chain shows that over the decade, the bump transitions from a

smooth bump covering the period between Thanksgiving and Xmas, to a more sharply

focused bump centered on Thanksgiving. This seems to reflect the growing importance of

Cyber Monday, a marketing term for the Monday after Thanksgiving. The phrase was

created by marketing companies to persuade people to shop online. The term made its

debut on November 28th, 2005 in a press release entitled “Cyber Monday Quickly

Becoming One of the Biggest Online Shopping Days of the Year” [72]. Note that this date

coincides with the first glimpse of the sharping peak in our chain.

Here we seem to “miss” a few links in the chain. However, note that the data is

noisy and coarsely sampled, and the “missed” bumps are too distorted to conform with

the general evolving trend. This noisy example again illustrates the robustness of our

0 250 w eeks 500 w eeks

45 55 95 105 150 165 305 315 410 420 460 475

2004
2014

Thanksgiving

Xmas

 168

technique. As before, we note that we do not need “perfect” data to find meaningful

chains. Even if some links are badly distorted, the discovered chain will still be able to

include all the other evolving patterns.

Furthermore, consider the potential of using chains to predict the future. Assume

that we are now at mid-2012 (the location of the blue line in Figure 6.14.top. We would

like to forecast the shape S of the fist “bump” after the blue line, given the data before it.

In the data prior to mid-2012, we discovered a chain that consists of the first five

links in Figure 6.14.bottom (call them S1, S2, S3, S4, S5). Our assumption is that the

difference between S4 and S5 is the same as the difference between S5 and S. We compare

our prediction result with a popular strawman in the literature, persistence prediction (i.e.

which assumes S = S5) [70], in Figure 6.15. Our simple, chain-based prediction method

is more accurate (especially in the center part), as it captures the trend of the data.

Figure 6.15. left) Our predicted shape (blue) is very similar to gound truth (red), with a Root Mean

Squared Error (RMSE) of 0.17. right) Persistence prediction result (blue) is less similar to the ground

truth (red), with a RMSE of 0.18.

6.4.6 Parameter Setting

We have demonstrated the efficacy of our discovery algorithm, given a time series

of interest and an appropriate subsequence length m to use. We do not consider m as a

true parameter, as this is a user choice, and it is a required input for all existing motif

 169

discovery algorithms (see [56][96] and the references therein). Nevertheless, the reader

may still wonder how sensitive our chain discovery algorithm is to m.

To explore this, we again consider the Kohl’s data in Figure 6.14 (the original

subsequence length is 76). Here we set m as 57 (25% shorter than the original

subsequence length), 85 (25% longer than original), and 152 (100% longer than original),

respectively, and compare the results of the chain discovery algorithm with that in Figure

6.14.

The result is shown in Figure 6.16. We can see that the discovered chain is

basically the same as m varies (though the length of the links is different, and the total

number of links can vary by +/- 1). The result indicates that m does not need to be

precisely set; we can discover meaningful chains as long as m is in a reasonable range.

Figure 6.16. The chains discovered from the Kohl’s data in Figure 6.14 as we vary the subsequence

length m.

6.4.7 Quantifying the Robustness of Chains

In the previous sections, we showed the broad applicability of time series chains

and implicitly showed the robustness of our algorithm/definitions; given that it can find

meaningful chains even in real-world “non-perfect” datasets. To further demonstrate this

m=57 (75%)

m=76

m=85 (125%)

m=152 (200%)

 170

robustness, we need to provide a measure of the quality of time series chains that does

not tautologically reward the properties we have defined, and can serve as a “gold

standard” to compare the quality of chains before and after we have added some

confounding factors.

To test the quality of our chain-discovery algorithm, we should consider two

different scenarios: If the data include a long intrinsic chain, then a good algorithm

should be able to discover (or “recover”) a large portion of it. On the other hand, if the

time series does not have any intrinsic evolving trend (for example, the data merely

contain k repeated patterns), then we expect the length of the longest chain to be much

shorter than k. We will test our algorithm in both scenarios.

Suppose we have a time series with an intrinsic chain of length k (that is to say, we

know, possibly from external knowledge, that there should be exactly k evolving

subsequences of length m in the time series, and we have a set Lknown: |Lknown| = k × m

that shows the locations of all the data points within the embedded chain). Further

suppose that, without knowing this, an algorithm discovers a time series chain of length

kdiscovered, and the locations of the kdiscovered × m data points within the discovered chain is

stored in the set Ldiscovered. Then we can define the recall of the chain as =

|𝐿𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑∩𝐿𝑘𝑛𝑜𝑤𝑛|

|𝐿𝑘𝑛𝑜𝑤𝑛|
 and the precision as 𝑃 =

|𝐿𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑∩𝐿𝑘𝑛𝑜𝑤𝑛|

|𝐿𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑|
. For a robust chain, we

expect 𝑃 ≈ 1. However, note that does not necessarily need to be as large. Recall the

example in Figure 6.14; although the discovered chain only covers around 60% of the

“bumps”, it still reflects the general trend of the data.

 171

Therefore, once Lknown is given, R and P are excellent measures of quality for the

discovered chain. We propose to exploit this idea by building synthetic time series for

which we know true chains (both length and locations), and distorting the data to “stress-

test” the chain discovery algorithm.

Figure 6.17 shows an example of such a time series, with an embedded chain with

k=5. Here the subsequences evolve gradually from a sine wave to a random-walk pattern,

and in between the chain elements we inserted snippets of random noise.

Figure 6.17. Synthetic time series embedded with a chain of five subsequences. The subsequences

evolve from a sine-wave to a random-walk pattern.

We used 100 different random-walk patterns like the one in Figure 6.17 to generate

our benchmark time series. Each time series includes 20 subsequences of length 50

(k=20, m=50), evolving gradually from a sine wave to a random-walk pattern. Figure

6.18.top shows how the average results of R and P vary, over the 100 runs as we increase

the noise level.

For a large amount of noise (1%~10% of the signal amplitude), we can successfully

recover most of the embedded chain elements (more than 14 out of 20), with R > 70%

and P > 95%. This demonstrates the robustness of our algorithm: though we missed a

small number of embedded patterns, most of them are still recovered.

random noise is added to distort the patterns

0 400

 172

Figure 6.18. top) Recall (R) and Precision (P) both decrease as the noise amplitude increases. bottom)

A snippet of a “perfect” time series versus the same snippet with 20% noise added.

However, when the noise amplitude gets over 20%, R becomes smaller than 50%.

This is because the noise level becomes large enough to hide the evolving characteristics

within some part of the data. To see this, in Figure 6.18.bottom we compared a snippet

from a “perfect” benchmark time series without noise to the same snippet with 20%

noise. The evolving trend is originally clear in the “perfect” time series; when the noise

amplitude increases to 20%, the second and fourth patterns are heavily distorted, so they

can no longer be included in the chain. According to Figure 6.18.top, though with 20%

noise only about half of the embedded patterns (10 out of 20, with ≈ 50%) are

discovered, the precision 𝑃 is still over 90%. Thus, the discovered chain can still reflect

the general trend of the data. Moreover, note that in many cases we could “undo” much

of the ill-effect of noise by simply smoothing the data, but that is orthogonal to the

purpose of our demonstration.

We have demonstrated that our algorithm is robust in the face of (a reasonable

amount of) noise, with a synthetic dataset that contains an intrinsic chain. Conversely, we

20% noise

no noise

noise amplitude / signal amplitude (%)
0 20 40 60 80 100

100% P

R
50%

0%

 173

need to test if kdiscovered is small compared to k, when there is no intrinsic chain within the

data, that is to say, are we robust to false positives?

To test this, as shown in Figure 6.19, we constructed a synthetic time series with k

= 100 repeated random-walk patterns.

Figure 6.19. A snippet of a synthetic time series with 100 repeated patterns.

As before, we added random noise to all the repeated patterns, so they look slightly

different from each other. Unlike the data in Figure 6.17, here the k patterns do not have

an evolving trend. We constructed 100 such synthetic time series, and found that the

average length of the discovered time series chain kdiscovered is 5.04, which is much smaller

than k = 100. This result suggests that our algorithm is robust to discovering spurious

chains, even in the face of frequent and dense motifs.

6.4.8 Finding Uniform Scaling Time Series Chains

The previous sections showed the efficacy and robustness of our algorithms in

finding chains with a fixed subsequence m. Having demonstrated the existence of

uniform scaling chains in Figure 6.6, here we content ourselves with demonstrating our

ability to recover synthetically embedded chains in complex datasets. In Figure 6.20, we

show a chain we discovered from a synthetic dataset with the UniformScaleChain

Algorithm (Algorithm 10), which aligns perfectly with the embedded chain. Note that

while the change of length appears gradual and subtle to human inspection, it is enough

to confound simple motif discovery.

 174

Figure 6.20. top) A random walk dataset into which we embedded a uniform scaling chain

(highlighted). The UniformScaleChain algorithm recovers exactly the same chain. bottom.left) the

four elements of the chain. Note that we used the any element of the chain to do similarity search on

the full time series, we find that it is not particularly similar to any other element under classic

Euclidean distance. bottom.right) However, rescaling the shorter links of the chain reveals the

conserved structure.

6.5 Conclusions and Future Work

We introduced time series chains, a new primitive for time series data mining. We

have shown that chains can be efficiently and robustly discovered from noisy and

complex datasets, to provide useful insights. We have placed all code and data online, to

allow the community to confirm and extend our work. In future work, we plan to

consider applications to several problems, especially problems in prognostics, where a

chain may indicate a system devolving towards failure.

0 200 400 600 800 1000 1200

-2

0

2

0 20 40 60 80

A time series w ith four elements of a chain

The elements of the

chain after rescaling to

the length of the chain’s

anchor, reveal a high

scale invariant similarity

The elements of the chain,

placed together.

Note that if you compare any

of the shorter links to the

“prefix” of a longer link, they
are not very similar

 175

Chapter 7 Conclusions

In this dissertation we introduced the Matrix Profile, a general and versatile time

series data mining tool which has implications for many time series data mining tasks,

including motif discovery, discord discovery, shapelet discovery, etc. We presented a

suite of algorithms that empower the Matrix Profile with computational efficiency, and

introduced useful new primitives that can be extracted from it.

Our core contributions are as follows:

• We introduced a simple, ultra-fast, highly parallelizable and parameter-free

batch algorithm to compute the Matrix Profile, and demonstrated that the

algorithm incidentally provided the fastest known solution to the discovery of

time series motifs, one of the most important time series primitives. When

combined with the GPU framework, our algorithm can find the full set of exact

motifs on a dataset with one hundred and forty-three million data points in just

nine days. This is 143 times larger than the largest dataset ever mined for motifs

and joins.

• We further expanded this scalability by introducing a novel fast-converging

anytime algorithm to compute the Matrix Profile. For the first time, our

algorithm allows the possibility of real-time interactive discovery of motifs in

datasets of a few million data points long, using off-the-shelf consumer

desktops.

 176

• We introduced a novel lower-bound for the Matrix Profile, and proposed what

we believe to be the first time series motif discovery algorithm that can find

motifs in the presence of missing data without producing false negatives. The

lower bound is later adopted and expanded in [39] to allow variable-length

motif discovery.

• We introduced time series chains, a new primitive for time series data mining.

Time series chains are built on top of the Matrix Profile; they can capture the

evolution of systems, helping to predict the future. We demonstrated that time

series chains can be efficiently and robustly discovered from noisy and complex

datasets, to provide useful insights.

To date our published articles have been cited more than 50 times, and there have

been numerous downloads of our software packages. A flurry of follow-up works

adopted our algorithms and further applied the Matrix Profile on problems as diverse as

guided motif search [16], multi-dimensional motif discovery [98], variable-length motif

discovery [39], semantic segmentation [23], weakly labeled data analysis [97], music

similarity search [69], etc. The research on the Matrix Profile is still ongoing. Future

directions include, but are not limited to:

• Further improving the efficiency of existing algorithms. This includes pushing

the computation into the cloud, or developing new lower-bounding techniques

to accelerate the computation.

• Expanding the Matrix Profile to support Manhattan distance, dynamic time

warping (DTW) distance, or other distance measure.

 177

• Automatic discovery of a suitable subsequence length. This will eliminate the

only parameter for our algorithms.

• Applying the Matrix Profile in higher-level time series data mining tasks, such

as classification and clustering.

• Inventing new useful primitives for time series data mining.

We envision that the Matrix Profile will continue to play an important role in time

series data mining research, and the highly scalable algorithms we have introduced will

allow the community to find many uses of, or properties of, the Matrix Profile that did

not occur to us.

 178

Bibliography

[1] Aßfalg J, Kriegel HP, Kröger P et al (2009) Probabilistic similarity search for uncertain time series. In:

SSDBM, pp. 435–443.

[2] Agrawal R, Faloutsos C, Swami A (1993) Efficient similarity search in sequence databases.

Foundations of data organization and algorithmsm, 69–84.

[3] Allstadt K, Malone SD (2014) Swarms of repeating stick-slip icequakes triggered by snow loading at

Mount Rainier volcano. Journal of Geophysical Research: Earth Surface, 119(5):1180–1203.

[4] Bailis P, Gan E, Rong K et al (2017) Prioritizing attention in fast data: principles and promise. In:

CIDR.

[5] Baisch S, Bokelmann GH (1999) Spectral analysis with incomplete time series: an example from

seismology. Computers and Geosciences, 25(7): 739–750

[6] Balasubramanian A, Wang J, Balakrishnan P (2016) Discovering multidimensional motifs in

physiological signals for personalized healthcare. IEEE Journal of Selected Topics in Signal

Processing 10(5):832–841

[7] Begum N, Keogh E (2014) Rare time series motif discovery from unbounded streams. Proceedings of

the VLDB Endowment 8(2): 149-160

[8] Bertens R, Vreeken J, Siebes A (2016) Keeping it short and simple: summarising complex event

sequences with multivariate patterns. In: ACM SIGKDD, pp 735–744

[9] Bögel T, Gertz M (2015) Time will tell: temporal linking of news stories. In: Proceedings of the 15th

ACM/IEEE-CS Joint Conference on Digital Libraries, pp 195–204

[10] Brown AEX, Yemini EI, Grundy LJ et al (2013) A dictionary of behavioral motifs reveals clusters of

genes affecting caenorhabditis elegans locomotion. Proceedings of the National Academy of Sciences,

110(2):791–796.

[11] Brown JR, Beroza GC, Shelly DR (2008) An autocorrelation method to detect low frequency

earthquakes within tremor. Geophys Res Lett 35, L16305. https://doi.org/10.1029/2008GL034560

[12] Buza K, Schmidt-Thieme L (2009) Motif-based classification of time series with bayesian networks

and svms. In: Advances in Data Analysis, Data Handling and Business Intelligence, pp 105–114.

[13] Chandola V, Banerjee A, Kumar V (2007) Anomaly detection: a survey. Technical Report, University

of Minnesota.

[14] Chen Y, Keogh E, Hu B et al (2015) The UCR Time Series Classification Archive. URL:

www.cs.ucr.edu/~eamonn/time_series_data/

[15] Chiu B, Keogh E, Lonardi S (2003) Probabilistic discovery of time series motifs. In: SIGKDD, pp

493–498.

[16] Dau HA, Keogh E (2017) Matrix Profile V: A Generic Technique to Incorporate Domain Knowledge

into Motif Discovery. In: ACM SIGKDD, pp 125–134.

[17] Ding H, Trajcevski G, Scheuermann P et al (2008) Querying and mining of time series data:

experimental comparison of representations and distance measures. VLDB 1(2): 1542–1552

[18] Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series

databases. In: SIGMOD, pp 419–429.

http://www.cs.ucr.edu/~eamonn/time_series_data/

 179

[19] Gama J, Žliobaitė I, Bifet A et al (2014) A survey on concept drift adaptation. ACM Computing

Surveys (CSUR) 46(4): 1–37

[20] Gangadharan D, Phan LT, Chakraborty S, et al (2011) Video quality driven buffer sizing via frame

drops. In: RTCSA 1, pp 319–328.

[21] Gao H, Bi S, Zhang R et al (2012) The design of a throwable two-wheeled reconnaissance robot: In

IEEE Robotics and Biomimetics (ROBIO), pp 2150–2155

[22] Geller RJ, Mueller CS (1980) Four similar earthquakes in central California. Geophysical Research

Letters, 7(10):821–824.

[23] Gharghabi S, Ding Y, Yeh CCM et al (2017) Matrix profile VIII: domain agnostic online semantic

segmentation at superhuman performance levels. In: ICDM, pp 117–126.

[24] Gu Z, He L, Chang C et al (2017) Developing an efficient pattern discovery method for CPU

utilizations of computers. International Journal of Parallel Programming, 45(4): 853–878

[25] Gupta S, Reynolds M, Patel S (2010) ElectriSense: single-point sensing using EMI for electrical event

detection and classification in the home. In: Proceedings of the UbiComp 12th ACM International

Conference on Ubiquitous Computing.

[26] Hao MC, Marwah M, Janetzko H et al (2012) Visual exploration of frequent patterns in multivariate

time series. Information Visualization 11(1): 71–83

[27] Harris M (2007) Optimizing parallel reduction in CUDA. NVIDIA Developer Technology 2.4.

[28] Havskov J, Alguacil G (2004) Instrumentation in earthquake seismology. Vol. 358. Dordrecht:

Springer

[29] Heldt T, Oefinger MB, Hoshiyama M et al (2003) Circulatory response to passive and active changes

in posture. In: Computers in Cardiology, IEEE, pp 263–266

[30] Hoang T, Choi D, Nguyen T (2015) On the instability of sensor orientation in gait verification on

mobile phone. In: 12th IEEE International Joint Conference on e-Business and Telecommunications

(ICETE) 4: 148–159

[31] Honaker J, King G (2010) What to do about missing values in time‐series cross‐section data. American

Journal of Political Science, 54(2): 561-581

[32] Huang T, Zhu Y, Mao Y et al (2016) Parallel discord discovery. In: PAKDD 2016, pp 233–244.

[33] Igarashi T, Matsuzawa T, Hasegawa A (2003) Repeating earthquakes and interplate aseismic slip in

the northeastern Japan subduction zone. J Geophys Res 108, 2249.

https://doi.org/10.1029/2002JB001920

[34] Iverson RM, Dzurisin D, Gardner CA et al (2006) Dynamics of seismogenic volcanic extrusion at

Mount St. Helens in 2004-05. Nature 444(7118): 439–443

[35] Kolb I, Franzesi GT, Wang M et al (2018) Evidence for long-timescale patterns of synaptic inputs in

CA1 of awake behaving mice. Journal of Neuroscience, 38(7): 1821–1834.

[36] Krumme C, Llorente A, Cebrian M et al (2013) The predictability of consumer visitation

patterns. Scientific Reports 3:1645

[37] Li Y, U LH, Yiu ML et al (2015) Quick-motif: An efficient and scalable framework for exact motif

discovery. In: ICDE, IEEE, pp 579–590

[38] Li Z, Han J, Ding B et al (2012) Mining periodic behaviors of object movements for animal and

biological sustainability studies. Data Mining and Knowledge Discovery 24(2): 355–386

[39] Linardi M, Zhu Y, Palpanas T et al (2018) Matrix profile X: VALMOD-scalable discovery of variable-

length motifs in data series. In: SIGMOD, pp 1053–1066.

 180

[40] Lovallo WR, Wilson MF, Vincent AS et al (2004) Blood pressure response to caffeine shows

incomplete tolerance after short-term regular consumption. Hypertension 43(4): 760–765

[41] Luo W, Tan H, Mao H et al (2012) Efficient similarity joins on massive high-dimensional datasets

using mapreduce. In: MDM, IEEE, pp 1–10

[42] Makonin SV (2013) AMPds: a public dataset for load disaggregation and eco-feedback research. 2013

IEEE Electrical Power & Energy Conference (EPEC)

[43] Matsubara Y, Sakurai Y, Faloutsos C (2015) The web as a jungle: non-linear dynamical systems for

co-evolving online activities. In: Proc’ of the 24th WWW, pp 721–731

[44] McGovern A, Rosendahl DH, Brown RA et al (2011) Identifying predictive multi-dimensional time

series motifs: an application to severe weather prediction. Data Mining and Knowledge Discovery,

22(1): 232–258

[45] McLoone J (2012) The longest word ladder puzzle ever. blog.wolfram.com/2012/01/11/the-longest-

word-ladder-puzzle-ever. Retrieved 6 Sept 2016

[46] Meng X, Yu X, Peng Z et al (2012) Detecting earthquakes around salton sea following the 2010

mw7.2 El Mayor-Cucapah earthquake using GPU parallel computing. Procedia Computer Science

9:937–946.

[47] Minnen D, Isbell CL, Essa I et al (2007) Discovering Multivariate Motifs using Subsequence Density

Estimation and Greedy Mixture Learning. In: AAAI, pp 615–620

[48] Moya A (2009) Tilt testing and neurally mediated syncope: too many protocols for one condition or

specific protocols for different situations?. Eur Heart J 30(18): 2174-2176

[49] Mueen A, Keogh E, Zhu Q et al (2009) Exact discovery of time series motifs. In: SDM, pp 473–484.

[50] Mueen A, Keogh E, Young N (2011). Logical-shapelets: an expressive primitive for time series

classification. In: SIGKDD, pp. 1154–1162.

[51] Mueen A, Zhu Y, Yeh M et al (2015) The fastest similarity search algorithm for time series

subsequences under Euclidean distance. http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html.

Retrieved 2 Feb 2017

[52] Murray D, Liao J, Stankovic L (2015) A data management platform for personalised real-time energy

feedback. In: EEDAL

[53] Neocleous A, Petkov N, Schizas C (2013) Finding repeating Stanzas in monophonic folk songs of

Cyprus. In: 6th Cyprus Workshop on Signal Processing and Informatics, pp 26

[54] NVIDIA CUDA C Programming Guide (2016) Version 7.5.

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[55] NVIDIA CUFFT Library User’s Guide (2016) Version 7.5.

http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf

[56] Patel P, Keogh E, Lin J et al (2002) Mining motifs in massive time series databases. In: ICDM, pp

370–377

[57] Patnaik D, Manish M, Sharma RK, Ramakrishnan N (2009) Sustainable operation and management of

data center chillers using temporal data mining. In: SIGKDD, pp 1305–1314

[58] Ponganis PJ, St Leger J, Scadeng M (2015) Penguin lungs and air sacs: implications for

baroprotection, oxygen stores and buoyancy. Journal of Experimental Biology: 720–730

[59] Project Website for Matrix Profile (2017) http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

[60] Quick Motif (2015) http://degroup.cis.umac.mo/quickmotifs/

[61] Rakthanmanon T, Campana B, Mueen A et al (2013) Addressing big data time series: mining trillions

of time series subsequences under dynamic time warping. TKDD 7(3):10

 181

[62] REFIT: Smart Homes and Energy Demand Reduction. URL:

www.refitsmarthomes.org/index.php/data. Accessed 01/21/2018

[63] Rong K, Bailis P (2017) ASAP: prioritizing attention via time series smoothing. VLDB Endowment

10(11):1358–1369

[64] Sarangi SR, Murthy K (2010) DUST: a generalized notion of similarity between uncertain time series.

In: SIGKDD, pp 383–392

[65] Shelly DR, Beroza GC, Ide S (2017) Non-volcanic tremor and low-frequency earthquake swarms.

Nature, 446(7133):305–307

[66] Shelly DR, Beroza GC, Ide S et al (2006) Low-frequency earthquakes in Shikoku, Japan, and their

relationship to episodic tremor and slip. Nature 442(7099):188–191

[67] Shelly DR, Ellsworth WL, Ryberg T et al (2009) Precise location of San Andreas Fault tremors near

Cholame, California using seismometer clusters: Slip on the deep extension of the fault? Geophys Res

Lett 36, L01303. https://doi.org/10.1029/2008GL036367

[68] Shokoohi-Yekta M, Chen Y, Campana B et al (2015) Discovery of meaningful rules in time series. In:

ACM SIGKDD, pp 1085-1094

[69] Silva D, Yeh CCM, Batista G et al (2016) SiMPle: Assessing Music Similarity Using

Subsequences. In: ISMIR.

[70] Silver N (2012) The signal and the noise: the art and science of prediction. Penguin, London

[71] Simeone A, Wilson RP (2003) In-depth studies of Magellanic penguin (Spheniscus magellanicus)

foraging: can we estimate prey consumption by perturbations in the dive profile? Marine Biology

143(4):825–831

[72] Smith J (2010) The accidentally-on-purpose history of cyber monday. www.esquire.com/news-

politics/news/a23870/cyber-monday-online-shopping-4021548/. Retrieved 5 Feb 2017

[73] Song WZ, Huang R, Xu M et al (2009) Air-dropped sensor network for real-time high-fidelity volcano

monitoring. In: Proceedings of the 7th international conference on Mobile systems, applications, and

services, ACM, pp 305–318

[74] Sparks RSJ (2003) Forecasting volcanic eruptions. Earth and Planetary Science Letters 210(1):1–15

[75] Supporting Webpage for SCRIMP++ (2018): https://sites.google.com/site/scrimpplusplus/

[76] Supporting Webpage for Time Series Chains (2017) https://sites.google.com/site/timeserieschain/

[77] Supporting Webpage for Missing Data Motifs (2018) https://sites.google.com/site/motifmissingdata/.

[78] Syed Z, Stultz C, Kellis M et al (2010) Motif discovery in physiological datasets: a methodology for

inferring predictive elements. TKDD 4(1): 2

[79] Szigeti B, Deogade A, Webb B (2015) Searching for motifs in the behaviour of larval Drosophila

melanogaster and Caenorhabditis elegans reveals continuity between behavioural states. Journal of the

Royal Society Interface 12(113): 20150899

[80] Tanaka Y, Iwamoto K, Uehara K (2005) Discovery of timeseries motif from multi-dimensional data

based on MDL principle. Machine Learning, 58(2):269–300

[81] Torkamani S, Lohweg V (2017) Survey on time series motif discovery. Wiley Interdisciplinary

Reviews: Data Min. Knowl. Discov. 7.2

[82] Truong CD and Anh DT (2015) An efficient method for motif and anomaly detection in time series

based on clustering. International Journal of Business Intelligence and Data Mining, 10(4):356–377

[83] Tucker A, Liu X (2004) A bayesian network approach to explaining time series with changing

structure. Intelligent Data Analysis 8(5):469–480

http://www.esquire.com/news-politics/news/a23870/cyber-monday-online-shopping-4021548/
http://www.esquire.com/news-politics/news/a23870/cyber-monday-online-shopping-4021548/
https://sites.google.com/site/scrimpplusplus/
https://sites.google.com/site/timeserieschain/
https://sites.google.com/site/motifmissingdata/

 182

[84] Turkay C, Kaya E, Balcisoy S, Hauser H (2017) Designing progressive and interactive analytics

processes for high-dimensional data analysis. IEEE Trans. Vis. Comput. Graph. 23(1): 131–140

[85] Vahdatpour A, Amini N, Sarrafzadeh M (2009) Toward unsupervised activity discovery using multi-

dimensional motif detection in time series. In: IJCAI, Vol. 9, pp 1261–1266.

[86] Veeraraghavan A, Chellappa R, Roy-Chowdhury A (2006) The function space of an activity.

Computer Vision and Pattern Recognition 1: 959-968

[87] Wang J, Cardell-Oliver R, Liu W (2016) An incremental algorithm for discovering routine behaviours

from smart meter data. Knowledge-Based Systems 113: 61–74

[88] Wang L, Chng ES, Li H (2010) A tree-construction search approach for multivariate time series motifs

discovery. Pattern Recognition Letters 31(9):869–875

[89] Wang X, Mueen A, Ding H et al (2013) Experimental comparison of representation methods and

distance measures for time series data. Data Min. Knowl. Discov. 26(2): 275–309

[90] Weber M, Denk M (2010) Imputation of cross-country time series: techniques and evaluation. In:

European Conference on Quality in Official Statistics

[91] Wei L (2006) SAX code for the N/n not equal an integer case. URL:

www.cs.ucr.edu/~eamonn/SAX.htm. Accessed 01/21/2018

[92] Willett D, George J, Willett N et al (2016) Machine learning for characterization of insect vector

feeding. PLoS computational biology, 12(11): e1005158

[93] Williams CL, Sato K, Shiomi K et al (2011) Muscle energy stores and stroke rates of emperor

penguins: implications for muscle metabolism and dive performance. Physiological and Biochemical

Zoology 85(2):120–133

[94] Yan R, Wan X, Otterbacher J et al (2011) Evolutionary timeline summarization: a balanced

optimization framework via iterative substitution. In: Proc’ of the 34th ACM SIGIR, pp 745–754

[95] Ye L, Keogh E (2009). Time series shapelets: a new primitive for data mining. In: ACM SIGKDD, pp

947–956.

[96] Yeh CCM, Zhu Y, Ulanova L et al (2016) Matrix profile I: all pairs similarity joins for rime series: a

unifying view that includes motifs, discords and shapelets. In: IEEE ICDM, pp 1317–1322

[97] Yeh CCM, Kavantzas N, Keogh E (2017) Matrix profile IV: using weakly labeled time series to

predict outcomes. VLDB Endowment 10(12): 1802–1812.

[98] Yeh CCM, Kavantzas N, Keogh E (2017) Matrix profile VI: meaningful multidimensional motif

discovery. In: ICDM, pp 565–574.

[99] Yeh MY, Wu KL, Yu PS, and Chen MS (2009) PROUD: a probabilistic approach to processing

similarity queries over uncertain data streams. In: EDBT, pp 684–695

[100] Yi X, Zheng Y, Zhang J, Li T (2016) ST-MVL: Filling missing values in geo-sensory time series data.

In: IJCAI, pp 2704–2710

[101] Yoon CE, O’Reilly O, Bergen KJ et al (2015) Earthquake detection through computationally efficient

similarity search. Science Advances 1(11):e1501057

[102] Zhu X, Oates T (2012) Finding story chains in newswire articles. In: IEEE IRI, pp 93–100

