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Primitives such as motifs, discords, shapelets, etc., are widely used in time series 

data mining. A versatile approach to find these primitives is through computing similarity 

joins for time series subsequences. The last decade has seen a significant amount of 

research effort on similarity joins in domains such as text and DNA, but not much 

progress has been made on similarity joins for time series subsequences. The lack of 

progress is probably due to the daunting nature of the problem: for even modest sized 

datasets the brute-force algorithm can take months to complete. Typical speed-up 

techniques such as indexing and lower-bounding at best produce only one or two orders 

of magnitude speedup, and their performance can degrade significantly in the face of an 

unfavorable dataset. 

In this dissertation we introduce a suite of algorithms that significantly expand the 

limit of scalability for time series subsequences similarity joins. These algorithms not 
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only provide the fastest exact solution to the discovery of time series motifs, one of the 

most extensively-studied time series data mining primitives in the last decade, but also 

allow the invention of new primitives that the state-of-the-art could not support. 

Specifically, we present a novel batch algorithm which, when combined with the 

GPU framework, can find the full set of exact motifs on a dataset two orders of 

magnitude larger than the literature limit in feasible time. A novel fast-converging 

anytime algorithm further expands this scalability, allowing motif discovery for million-

scale datasets to be performed in interactive sessions with an off-the-shelf desktop. We 

also show how these techniques can be combined with a novel lower bound to allow fast 

motif discovery in the presence of missing data. Furthermore, we introduce time series 

chains, a new time series data mining primitive that can capture the evolution of systems 

and help predict the future. 

We demonstrate the utility of our ideas in domains as diverse as seismology, 

entomology, human activity monitoring, electrical power-demand monitoring and 

medicine. 
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Chapter 1 Introduction 

The explosion of new sensing technology is continuously generating a massive 

amount of time series data in every aspect of our lives, from seismometers monitoring 

earthquake activities to smartwatches measuring our heartbeats. In order to turn such 

massive and diverse time series data into actionable insights, the research community has 

developed primitives such as motifs [15][49][37], discords [13], shapelets [95], etc., to 

extract important features/patterns from the data. These primitives can be used both as 

standalone exploratory tools, and as sub-routines in higher-level data mining tasks. 

A basic requirement for time series data mining primitives is that they must be 

computed very fast. Recent algorithmic advances have largely improved the 

computational efficiency for each of the fore-mentioned primitives [49][37][32][50]. 

However, existing approaches suffer from a lack of generality, as they are highly 

optimized for individual primitives based on their unique characteristics. If an analyst 

would like to obtain a more comprehensive view of the data and compute several 

different primitives, she must run each of the specialized algorithms from scratch, and 

carefully tune their parameters based on the specific dataset she is trying to analyze. 

Is there a way to unify all these useful primitives? The answer is affirmative: we 

can find them through computing the similarity joins for time series subsequences. The 

basic statement for the similarity join problem is this: Given a collection of objects, 

retrieve the nearest neighbor for every object. Time series subsequences similarity joins 
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encode all the information needed to answer both time series motif and time series 

discord queries, and can be used in other tasks such as shapelet discovery and semantic 

segmentation. However, the brute force solution to this problem is intractable for large 

datasets. For example, to obtain the similarity join for a dataset with 500,000 

subsequence objects, the obvious nested loop algorithm requires 250,000,000,000 

pairwise Euclidean distance computations. If each one took 0.0001 second, then the join 

would take 289 days, which is infeasible. 

In this dissertation we introduce the Matrix Profile, a scalable, general and versatile 

time series data mining tool which solves the similarity join problem for time series 

subsequences. We present a suite of highly efficient algorithms to compute the Matrix 

Profile, and demonstrate that our algorithms not only outperform the state-of-the-art 

specialized methods in discovering time series motifs, arguably the most important time 

series data mining primitive, but also allows the invention of time series chains, a useful 

new primitive for time series data mining.  

Specifically, our contributions can be divided into the following four aspects: 

• We propose an efficient batch algorithm to compute the Matrix Profile. As we 

shall demonstrate, our algorithm incidentally provides the fastest exact solution 

for time series motif discovery. When combined with the GPU framework, our 

algorithm can find the full set of exact motifs in hundred-million-scale time 

series in feasible time. This expands the largest size considered in the literature 

by two orders of magnitude. 
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• We propose a fast-converging anytime algorithm to compute the Matrix Profile. 

For the first time, our algorithm allows the possibility of real-time interactive 

discovery of motifs in million-scale time series, using an off-the-shelf consumer 

desktop. 

• Given the ubiquity of missing data in real world applications, we propose the 

first algorithm that can find motifs in the presence of missing data without 

producing false negatives. 

• We introduce time series chains, a new time series data mining primitive built 

on top of the Matrix Profile. Time series chains can capture the evolution/drift 

of systems and help predict the future. 

In the next two sections, we briefly review time series motifs and introduce time 

series chains.  

1.1 Time Series Motifs 

 

Time series motifs are approximately repeating subsequences found within a longer 

time series. Since their formulation in 2002 [56] they have emerged as one of the most 

important primitives in time series data mining. Each year there are at least a dozen new 

research efforts that exploit this primitive. Motif discovery has been used as a sub-routine 

in algorithms as diverse as classification, clustering, complex-event-processing [8], 

visualization [26], and rule-discovery [68]. Moreover, in recent years motif discovery has 

received significant attention beyond the data mining community, and has been applied to 

a wide variety of problems such as understanding the network of genes affecting the 
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locomotion of the C. elegans nematode [10], cataloging speech pathologies in humans 

[6], severe weather prediction [44], robotics, music processing, medicine [78] and 

seismology [101]. Figure 1.1 shows an example of a repeating earthquake sequence pair 

(essentially a time series motif) we discovered from seismic data. 

 
Figure 1.1. A pair of repeating earthquake sequences (motifs) we discovered from seismic data 

recorded at a station near Mammoth Lakes on February 17th, 2016. One occurrence (fine/red) is 

overlaid on top of another occurrence (bold/blue) that happened hours earlier. 

With a little introspection, it is easy to see why time series motifs are so useful and 

widely used. If a pattern is repeated (or conserved), there must be a latent system that 

occasionally produces the conserved behavior. For example, this system may be an 

overcaffeinated heart, sporadically introducing a motif pattern containing an extra beat 

(Atrial Premature Contraction [40]), or the system may be an earthquake fault, 

infrequently producing highly repeated seismograph traces because the local geology 

produces unique wave reflection/refractions (see Figure 1.1/Chapter 3).Time series 

motifs are a commonly used technique to gain insight into such latent systems. In 

essence, they can be best seen as “generalizing the notion of a regulatory motif to operate 

robustly on non-genomic data” [78]. 

5:31:09 @37.58 N 118.86 W Depth:5.13 Magnitude:1.29
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0 10 20
seconds
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Although significant progress has been made in how we score, rank, and visualize 

motifs, discovering them in large datasets remains a computational bottleneck. To date, 

we are unaware of any attempts to mine any dataset larger than one million data points 

[37]. In Chapter 3, we show how we can significantly improve the scalability of exact 

motif discovery both by exploiting a novel batch algorithm and by leveraging GPU 

hardware. 

We further argue that while all data mining algorithms benefit from improvements 

in speed, for the particular case of motif discovery, improvements in speed are game-

changing. Motif discovery benefits from interactivity more than most data mining 

processes. In Chapter 4, we propose an anytime algorithm which, for the first time, 

allows motif discovery for million-scale time series to be performed in an interactive 

session (i.e. real-time) with an off-the-shelf desktop. 

Moreover, despite the well-documented ubiquity of missing data in scientific, 

industrial, and medical datasets, there is still no technique to allow the discovery of 

motifs in the presence of missing data. We address this problem in Chapter 5. Our 

method is admissible, producing no false negatives. 

1.2 Time Series Chains 

 

We expand the notion of time series motifs to the new primitive of time series 

chains (or just chains). Time Series Chains are related to, but distinct from, time series 

motifs. Informally, time series chains are a temporally ordered set of subsequence 

patterns, such that each pattern is similar to the pattern that preceded it, but the first and 
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last patterns can be arbitrarily dissimilar. In the discrete space, this is similar to extracting 

the text chain “data, date, cate, cade, code” from text stream. The first and last words 

have nothing in common, yet they are connected by a chain of words with a small mutual 

difference. Figure 1.2 symbolically illustrates the difference between time series motifs 

and time series chains (we defer formal definitions until Chapter 6). 

Both motifs and chains have the property that each subsequence is relatively close 

to its nearest neighbor. However, the motif set also has a relatively small diameter (the 

maximum distance between any pair in the set). In contrast, the set of points in a chain 

has a diameter that is much larger than the mean of each member’s distance to its nearest 

neighbor. Moreover, the chain has the property of directionality. For example, in Figure 

1.2.left, if a tenth member was added to the motif set, its location will also be somewhere 

near the platonic ideal, but independent of the previous subsequences. In contrast, in 

Figure 1.2.right, the location of the tenth member of the chain would be somewhere just 

North-West of item nine. This potential regularity immediately suggests exploitability; 

we can use chains to (weakly) predict the future. 

 

Figure 1.2. Visualizing time series subsequences as points in high-dimensional space. left) A time 

series motif can be seen as a collection of points that approximate a platonic ideal, represented here 

as the crosshairs. right) In contrast, a time series chain may be seen as an evolving trail of points in 

the space. Here the crosshairs represent the first link in the chain, the anchor. 
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While we can clearly define chains, it may not be obvious that such constructs 

actually exist in the real-world. In fact, as we preview in Figure 1.3, time series chains 

appear to be near ubiquitous in many domains, so long as the data trace is sufficiently 

long. 

 

Figure 1.3. A time series chain discovered in an electrical power demand dataset monitoring 

domestic freezer usage [52]. Note that through the early afternoon, the valley becomes narrower and 

the peak that follows it becomes sharper. 

In Chapter 6, we introduce two robust definitions of time series chains, and scalable 

algorithms that allow us to discover them in massive complex datasets.  

1.3 Organization of the Dissertation 

The rest of the dissertation is organized as follows. In Chapter 2 we introduce the 

Matrix Profile, a general and versatile time series data mining tool which has implications 

for a variety of time series data mining tasks. In Chapter 3 we present an ultra-fast 

algorithm to compute the Matrix Profile, and demonstrate its effectiveness and efficiency 

in exact motif discovery. In Chapter 4 we describe a fast-converging anytime algorithm 

which further expands the scalability limits of the Matrix Profile and allows motifs for 

million-scale time series to be discovered at interactive speeds with a standard desktop. In 

Minutes
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Chapter 5 we consider motif discovery in the presence of missing data. Chapter 6 

introduces time series chains, a new time series data mining primitive built on top of the 

Matrix Profile. Chapter 7 concludes the dissertation and discusses future directions. 
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Chapter 2 The Matrix Profile: Basic 

Concepts and Applications 

In this chapter, we introduce the Matrix Profile, a general and versatile time series 

data mining tool that solves the similarity join problem for time series subsequences. We 

formally define the Matrix Profile, and briefly show its implication for various time series 

data mining tasks. 
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2.1 Notation and Definitions 

We begin by defining the data type of interest, time series: 

Definition 2.1: A time series T is a sequence of real-valued numbers ti: T = t1, t2, 

..., tn , where n is the length of T. 

We are interested in local, not global properties of a time series. A local region of a 

time series is called a subsequence. 

Definition 2.2: A subsequence Ti,m of a time series T is a continuous subset of the 

values from T of length m, which begin at position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, 

where 1 ≤  i ≤  n-m+1. 

We can take a subsequence and compute its distance to all subsequences in the 

same time series. This is called a distance profile. 

Definition 2.3: A distance profile Di of time series T is a vector of the Euclidean 

distances between a given query subsequence Ti,m and each subsequence in time series T. 

Formally, Di = [di,1, di,2,…, di,n-m+1], where di,j (1 ≤ i, j ≤ n-m+1) is the distance between 

Ti,m and Tj,m. 

We assume that the distance is measured by Euclidean distance between z-

normalized subsequences [89]. 

We are interested in finding the nearest neighbors of all subsequences in T, as the 

closest pairs of this are the classic definition of time series motifs [15][49]. Note that by 

definition, the ith location of distance profile Di is zero, and it is close to zero just before 

and after this location. Such matches are defined as trivial matches [49]. We avoid such 

matches by ignoring an “exclusion zone” of length m/4 before and after the location of 
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the query. In practice, we simply set di,j to infinity (i-m/4 ≤ j ≤  i+m/4) while evaluating 

Di. 

We use a vector called matrix profile to represent the distances between all 

subsequences and their nearest neighbors. 

Definition 2.4: A matrix profile P of time series T is a vector of the Euclidean 

distances between each subsequence Ti,m and its nearest neighbor (i.e. the closest match) 

in time series T. Formally, P = [min(D1), min(D2),…, min(Dn-m+1)], where Di (1 ≤ i ≤  n-

m+1) is the distance profile Di of time series T. 

We call this vector a matrix profile, since it could be computed by using the full 

distance matrix of all pairs of subsequences in time series T, and evaluating the minimum 

value of each column (although this method is naïve and space-inefficient). Figure 2.1 

illustrates both a distance profile and a matrix profile created on the same raw time series 

T. 

 

Figure 2.1. top) One distance profile (Definition 2.3) created from a random query subsequence Q of 

T. If we created distance profiles for all possible query subsequences of T, the element-wise minimum 

of this set would be the matrix profile (Definition 2.4) shown at (bottom). Note that the two lowest 

values in P are at the location of the 1st motif [15][49]. 

T, synthetic data

D, a distance profile

Q, query of 

length m

m/4m/40 2,500

Note that |D| = |T|-|Q|+1

0 2,500

Note that |P| = |T|-|Q|+1
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It is important to note that the full distance matrix is symmetric: Di is both the ith 

row and the ith column of the full distance matrix. Figure 2.2 shows this more concretely. 

 

Figure 2.2. An illustration of the relationship between the distance profile, the matrix profile and the 

full distance matrix. For clarity, note that we do not actually create the full distance matrix, as this 

would have untenable memory requirements. 

The ith element in the matrix profile P indicates the Euclidean distance from 

subsequence Ti,m to its nearest neighbor in time series T. However, it does not indicate the 

location of that nearest neighbor. This information is recorded in a companion data 

structure called the matrix profile index. 

Definition 2.5: A matrix profile index I of time series T is a vector of integers: 

I=[I1, I2, … In-m+1], where Ii=j if di,j = min(Di). 

By storing the neighboring information in this manner, we can efficiently retrieve 

the nearest neighbor of query Ti,m by accessing the ith element in the matrix profile index. 

Note that as we presented it, the matrix profile is a self-join [96]: for every 

subsequence in a time series T, it records information about its (non-trivial-match) 

nearest neighbor in the same time series T. However, we can trivially generalize it to be 

an AB-join [96]: given two different time series A and B, for every subsequence in time 

D1 D2 … Dn-m+1

D1 d1,1 d1,2 … d1,n-m+1

D2 d2,1 d2,2 … d2,n-m+1

… … … … …

Dn-m+1 dn-m+1,1 dn-m+1,2 … dn-m+1,n-m+1

P min(D1) min(D2) … min(Dn-m+1)
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series A, record information about its nearest neighbor in time series B. Note that A and B 

can be of different lengths, and that in general, AB-join ≠ BA-join. 

For clarity of presentation, we have confined this work to the single dimensional 

case; however, nothing about our work intrinsically precludes generalizations to 

multidimensional data. 

To briefly summarize this section, we can create two Meta time series, the matrix 

profile and the matrix profile index, to annotate a time series T with the distance and 

location of all its subsequences’ nearest neighbors in itself (in the self-join case), or in 

another time series (in the AB-join case). The reader may already have realized, the 

smallest pair of values in the self-join matrix profile correspond to the best motif pair by 

the classical definition [15][37][49], and the corresponding values in the matrix profile 

index indicate the location of the motif. As Mueen et al. [49] argues, the top-k motifs, 

range motifs, and any other reasonable variant of motifs can also trivially be computed 

from the information encoded in the matrix profile. Moreover, the matrix profile also 

yields the exact solution for time series discords, a popular definition for anomalies in 

time series [13]. In the next section, we use a concrete example to show how we can 

discover motifs and discords with the matrix profile. 

2.2 Discovering Time Series Motifs and Discords with 

the Matrix Profile 

Unlike other motif/discord discovery systems, the matrix profile computes a score 

for every subsequence in the dataset. Here, we use an example to demonstrate the utility 

of this more comprehensive annotation of data. Consider the New York Taxi dataset of 
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Rong and Bailis [63]. As shown in Figure 2.3.top, the data is the normalized number of 

NYC taxi passengers over 10 weeks, October 1st to December 15th 2014. The authors 

show this dataset to demonstrate the versatility of their “Attention Prioritization” 

technique for finding unusual patterns [4][63]. In essence, they transform the data (not 

shown here) in a way to make the discovery of anomalies easier. They note that 

Thanksgiving, on Thursday, November 27th, can be considered an “anomaly” in this 

dataset, since the patterns of travel apparently change during this important US holiday. 

 

Figure 2.3. top) Normalized number of NYC taxi passengers over 10 weeks [4][63]. middle) The 

matrix profile produces high values where the corresponding subsequences are unusual. bottom) The 

top motif corresponds to two consecutive Saturdays. 

We computed the matrix profile for this dataset, with a subsequence length of one 

and a half days. As Figure 2.3.middle shows, the matrix profile peaks at the location that 

indicates Thanksgiving. However, there are additional observations that we can make 

with the matrix profile. There is a secondary anomaly occurring on Sunday, November 

2nd; there appears to be a spike in taxi demand at about 2:00 am. With a little thought, we 
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realize this is exactly the hour in which daylight saving time is observed in the US. 

Setting the clock back one hour gives the appearance of doubling the normal demand for 

taxis at that hour. There is arguably a third anomaly in the dataset, with a more subtle, but 

still significant peak at October 13th. This day corresponds to Columbus Day. This 

holiday is all but ignored in most of the US, but it is still observed in New York, which 

has a strong and patriotic Italian community. 

In Figure 2.3.bottom, we show the top-1 motif from the dataset (corresponding to 

the minimum value of the matrix profile), which is extremely well conserved. In many 

natural datasets, for example the circadian rhythm of an animal, the best motifs are 

typically exactly twenty-four hours apart (a phenomenon known as persistence). 

However, because this motif’s two occurrences are exactly seven days apart, the 

importance of artificial divisions of the calendar on human behaviors becomes apparent. 

It is possible that the regions of lower conservation with the motif are also telling. For 

example, from 24 to 26 (about 10 to 11am), the motif corresponding to the 25th 

(green/bold) is a little higher than the previous week. It was lightly raining (about 0.12 

inches) at the time, which may explain the slightly higher taxi demand in the late 

morning. 

Besides motif discovery and discord discovery, the matrix profile also has 

implications for a host of other time series data mining tasks. In the next section, we 

show how we can use the matrix profile to discover time series shapelets, another useful 

time series data mining primitive. 
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2.3 Discovering Time Series Shapelets with the Matrix 

Profile 

Time series shapelets are time series subsequences that best represent a class [95]. 

Here we use the GunPoint dataset [14] to show how we can use the matrix profile to 

quickly identify good shapelet candidates. This dataset has two classes, Gun and NoGun 

(also known as Point, hence the name GunPoint). As shown in Figure 2.4, we construct 

time series A by concatenating all the instances of the Gun class, and time series B by 

concatenating all the instances of the NoGun class. Between every two concatenated 

exemplars, we insert a NaN value to avoid introducing artificial subsequences that are not 

present in the original data. We compute two matrix profiles PBB and PBA: PBB is the self-

join matrix profile for time series B; PBA is the BA-join matrix profile for time series B 

and time series A. For simplicity, we use a subsequence length of 38, which is the length 

of the best shapelet reported for this dataset [95]. 

We evaluate the difference between PBA and PBB (we denote it as Pdiff = PBA - PBB), 

as shown in Figure 2.4.bottom.left. Intuitively, the peak values in Pdiff are indicators of 

good shapelet candidates, because they suggest patterns that are well conserved in the 

NoGun class but are very different from their closest match in the Gun class. We pick the 

top-10 candidates from time series B (corresponding to the top-10 peaks in Figure 

2.4.bottom), and among them select the one that renders the highest classification 

accuracy on the training data. As shown in Figure 2.4.bottom.left, the selected shapelet 

reflects a distinct characteristic of the NoGun class, as discussed by Ye and Keogh [95]: 

“the NoGun class “has a “dip” where the actor put her hand down by her side, and 
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inertia carries her hand a little too far and she is forced a correct it…a phenomenon 

known as ‘overshoot’”. In contrast, in the opposite Gun class, the actor carries a gun; she 

needs to put the gun back in the holster and then bring her hand to a complete rest 

position, generating a different pattern. 

 
Figure 2.4. top and middle): Two time series A and B formed by concatenating instances of each class 

of GunPoint dataset. bottom.left) The difference between PBA and PBB. The top-10 peak values 

(highlighted with red circles) are suggestive of good shapelet candidates. bottom.right) The best 

shapelet found. 

The selected shapelet achieves the same classification accuracy (93.33%) on the 

test data as the original shapelet algorithm [95]. However, note that while the original 

shapelet algorithm needs to go through a time-consuming process to exhaustively 

evaluate the classification power of every possible shapelet candidate in the dataset, the 

matrix profile readily finds us the most promising shapelet candidates for free. 
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2.4 Conclusions 

We introduced two meta time series, the matrix profile and the matrix profile index, 

to annotate a time series T with the distance and location of all its subsequences’ nearest 

neighbors within T. We briefly showed the implication of the matrix profile on various 

time series data mining tasks without explaining how we computed it. In the next four 

chapters, we introduce a suite of highly scalable algorithms to compute the matrix profile, 

and discuss in detail the effectiveness and efficiency of our ideas in discovering two 

useful time series data mining primitives: time series motifs and time series chains.  
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Chapter 3 Computing the Exact Matrix 

Profile with STOMP 

In this chapter, we introduce STOMP, an ultra-fast exact algorithm to compute the 

Matrix Profile. We demonstrate the scalability and effectiveness of STOMP in 

discovering time series motifs, one of the most studied primitives in time series data 

mining. When combined with a high-performance GPU, STOMP can find the full set of 

exact motifs on a dataset with one hundred and forty-three million subsequences, which 

requires ten quadrillion pairwise comparisons and is by far the largest dataset ever mined 

for time series motifs/joins, in feasible time. 

Though this chapter only considers motif discovery, as introduced in Chapter 2, the 

Matrix Profile is a versatile tool that can also be applied to other time series data mining 

tasks such as discord discovery and shapelet discovery. As a fundamental algorithm to 

compute the Matrix Profile, STOMP can also benefit these tasks. 
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3.1 Background and related work 

3.1.1 Motif Discovery Background 

Motif discovery for time series was introduced in 2003 [15] (although the classic 

paper of Agrawal, Faloutsos and Swami foreshadows motifs by computing all-pair 

similarity for time series [2]). Since then, it increased in research activity. One critical 

direction has been applying motifs to solve problems in a wide variety of domains such 

as bioinformatics [10], speech processing [6], robotics, human activity understanding 

[80][85], severe weather prediction [44], neurology, and entomology [49]. The other key 

research focus has been in the extensions and generalizations of the original work, 

especially in the attempts to improve scalability [37][49]. These attempts to improve the 

scalability of motif discovery fall into two broad classes; approximate and exact motif 

discovery [37][47][49]. 

Clearly approximate motifs can be much faster to compute, and this may be useful 

in some domains. However, there are domains in which the risk of false negatives is 

unacceptable. Consider seismology, which is the domain motivating our work [101]. This 

is a domain in which false negatives could affect public policy, change insurance rates for 

customers, and conceivably cost lives by allowing a dangerous site to be developed for 

dwellings. Given that the task at hand is to find exact motifs, all known methods based on 

hashing [101] and/or data discretization [15][47] can be dismissed from consideration. 

Beyond being exact, the proposed approach has many advantages that are not 

shared by rival methods. 
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• The proposed method is simple and parameter-free: In contrast, other methods 

typically require building and tuning spatial access methods and/or hash 

functions [15][37][41][47][80][85][101].  

• It is space efficient: Our algorithm requires an inconsequential space overhead, 

just linear in the time series length, with a small constant factor. In particular, 

we avoid the need to actually explicitly extract the individual subsequences 

[15][47][49], something that would increase the space complexity by two or 

three orders of magnitude. 

• It is incrementally maintainable: Having computed motifs for a dataset, we 

can incrementally update the best motifs very efficiently if new data arrives. 

• It can leverage hardware: As we show below, our algorithm is embarrassingly 

parallelizable on multicore processors. 

• Our algorithm has time complexity that is constant in subsequence length: 

This is a very unusual and desirable property; virtually all time series 

algorithms scale poorly as the subsequence length grows (the classic curse of 

dimensionality) [15][37][41][47][80][101]. 

• Our algorithm takes deterministic time, dependent on the data’s length, but 

completely independent of the data’s structure / noise level etc. This is also an 

unusual and desirable property for an algorithm in this domain. For example, 

even for a fixed time series length, and a fixed subsequence length, all other 

algorithms we are aware of can take radically different times to finish on two 

(even slightly) different datasets [15][37][41][47][80][101]. In contrast, given 
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only the length of the time series, we can predict precisely how long it will take 

our algorithm to finish in advance. 

Virtually every time series data mining technique has been applied to the motif 

discovery problem, including indexing [37][88], data discretization [15], triangular-

inequality pruning [49], hashing [80][85][101], early abandoning, etc. However, all these 

techniques rely on the assumption that the intrinsic dimensionality of the time series is 

much lower than the recorded dimensionality [15][80][85][89][101]. This is generally 

true for data such as short snippets of heartbeats and gestures, etc.; however, it is not true 

for seismographic data, which is intrinsically high dimensional. To ascertain this, we 

performed a simple experiment. 

We measured the Tightness of Lower Bounds (TLB) for three types of data, using 

the two most commonly used dimensionality reduction representations for time series, 

DFT and PAA. Additionally, PAA is essentially equivalent to the Haar wavelets for this 

purpose [89]. The TLB is defined as: 

TLB = LowerBoundDist(A,B) / TrueEuclideanDist(A,B) 

It is well understood that the TLB is near perfectly (inversely) correlated with wall-

clock time, CPU operations, number of disk access or any other performance metric for 

similarity search, all-pair-joins, motifs discovery, etc. [89]. As the mean TLB decreases, 

we quickly degrade to simple brute-force search. The absolute minimum value of TLB is 

dependent on the data, the search algorithm, and the problem setting (main-memory 

based vs disk based). However as [89] demonstrates, lower bound values less than 0.5 

generally do not “break even.” 
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Figure 3.1 shows unambiguous results. There is some hope that we could avail 

current speed-up techniques when considering (relatively smooth and simple) short 

snippets of ECGs, but there is little hope that the noisy and more complex human activity 

would yield to such optimizations, and there is no hope that anything currently in the 

literature will help with seismological data. This claim is further proven in our detailed 

experiments in Section 3.3. 

 
Figure 3.1. left) Samples from three datasets, ECG, Human Activity, and Seismology (available in 

[59]). right) The tightness of lower bounds, averaged over 10,000 random pairs, using PAA and DFT. 

Even if we ignore this apparent death-knell for indexing/spatial access techniques, 

we could still dismiss them for other reasons, including memory considerations. As 

demonstrated in Section 3.2, a critical property of our algorithm is that it does not need to 

explicitly extract the subsequences, which is unlike the indexing/spatial access methods. 

For example, consider a time series of length 100 million, with eight bytes per value, 

requiring 0.8 GB. Our algorithm requires an overhead of seven other vectors of the same 

size (including the output), for an easily manageable total of 6.4 GB (if memory was a 

bottleneck, we could reduce this by using reduced precision vectors or compression). 

However, any indexing algorithm that needs to extract the subsequences will increase 
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memory requirements by at least O(d), where d is the reduced dimensionality used in the 

index [41]. Given that d may be 20 or greater, this indicates the memory requirements 

grow to at least 16 GB. With such a large memory footprint, we are almost certainly 

condemned to a random-access disk-based algorithm, dashing any hope of any speedup. 

A related advantage of our framework is that we can choose the subsequence length 

just prior to performing the motif discovery. In contrast, any index-based technique must 

commit to a subsequence length before building the index, and it could take hours/days to 

build the data structure before any actual searching could begin [61][89]. If such an index 

is built to support subsequences of say length 200, it cannot be used to join subsequences 

of length 190 or 205, etc. (See Section 1.2.3 of Rakthanmanon et al. [61]). Thus, if we 

change our mind about the length of patterns we are interested in, we are condemned to a 

costly rebuilding of the entire index. It is difficult to overstate the utility of this feature. In 

Section 3.3.8, we will demonstrate how we can use STOMP to explore the behavior of a 

penguin. At the beginning of this case study, we had no idea of what time frame the 

penguin’s behavior might be manifest. However, with no costly index to build, we simply 

tried a few possible lengths until it was obvious that we found a reasonable value. 

In summary, while we obviously are unable to absolutely guarantee that there is no 

other scalable solution to our task-at-hand, we are confident that there is no existing off-

the-shelf technology that can be used or adapted to allow us to get within two orders of 

magnitude of the results we obtain on the largest datasets. 
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3.1.2 Seismology Background 

While our algorithms are completely general and can be applied to any domain, 

seismological data is of particular interest to us, due to its sheer scale and importance in 

human affairs. 

In the early 1980s, it was discovered that in the telemetry of seismic data recorded 

by the same instrument from sources in given region, there will be many similar 

seismograms [22]. Geller and Mueller [22] have suggested that, “The physical basis of 

this clustering is that the earthquakes represent repeated stress release at the same 

asperity, or stress concentration, along the fault surface.” These patterns are called 

“repeating earthquake sequences” in seismology, and correspond to the more general 

term “time series motifs.”  

A more recent paper notes that many fundamental problems in seismology can be 

solved by joining seismometer telemetry in locating these repeating earthquake sequences 

[101], which includes the discovery of foreshocks, aftershocks, triggered earthquakes, 

swarms, volcanic activity, and induced seismicity. However, the paper further notes that 

an exact join with a query length of 200 on a data stream of length 604,781 requires 9.5 

days. Their solution, a transformation of the data to allow LSH based techniques, does 

achieve significant speedup, but at the cost of false negatives and necessary careful 

parameter tuning. For example, Yeh et al. [96] notes that they need to set the threshold to 

precisely 0.818 to achieve decent results. While we defer a full discussion of 

experimental results to Section 3.3, the ideas introduced in this paper can reduce the 

quoted 9.5 days for exact motif discovery from a dataset of size 604,781 to less than one 
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minute, without tuning any parameters and also guaranteeing that false negatives will not 

occur. 

It is vital to note that this kind of speed up really is game changing in this domain. 

It allows seismologists to quickly identify or detect earthquakes that are identical or 

similar in location without needing trilateration, and it can also provide useful 

information on relative timing and location of such events [3][33][34]. 

More controversially, some researchers have suggested that the slow slip on the 

fault accompanying non-volcanic tremors (a sequence of Low Frequency Earthquakes, 

many of which are repeated) may temporarily increase the probability of triggering a 

large earthquake. Therefore, detecting and locating these repeating LFEs allows more 

accurate short-term earthquake forecasting [33]. 

Finally, we note that seismologists have been early adopters of GPU technology 

[46] and other high-performance computing paradigms. However, their use of this 

technology has been limited to similarity search, not motif search. 

3.1.3 A Brief Review of the STAMP Algorithm 

The recently introduced STAMP algorithm can compute the full and exact matrix 

profile and matrix profile index of a time series [96]. The STAMP algorithm essentially 

evaluates the distance profile Di of a query subsequence Ti,m by utilizing the FFT(Fast 

Fourier Transform) to calculate the dot product between Ti,m and all of the subsequences 

of the time series T. The overall time complexity of the algorithm is O(n2logn), and the 

space complexity is O(n), where n is the length of time series T. The STAMP algorithm 

can process a time series with up to a million data points in feasible time. However, to 
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solve the problems in our motivating domain seismology, it is necessary to process even 

larger datasets. It would take STAMP more than 20 years to analyze a seismology time 

series sampled at 20Hz for about 2 months, which is of length 100 million (see Table 

3.2).  In the next section, we will show a new and fast algorithm, which can finish 

processing the same time series in only 4 days when it is built on top of a GPU. 

3.2 Algorithms 

In this section, we begin by demonstrating that we can improve upon the STAMP 

algorithm [96] to create the much faster STOMP algorithm. Then we demonstrate that the 

structure of STOMP lends itself to porting to GPUs. 

3.2.1 The STOMP Algorithm 

As explained below, STOMP is similar to STAMP [96] in that it can be viewed as 

highly optimized nested loop searches with repeating calculations of distance profiles in 

the inner loop. However, while STAMP must evaluate the distance profiles in a random 

order (to allow its anytime behavior), STOMP performs an ordered search. By exploiting 

the locality of these searches, we can reduce the time complexity by a factor of O(logn). 

Before we explain the details of the algorithm, we first introduce a formula to 

calculate the z-normalized Euclidean distance di,j of two time series subsequences Ti,m 

and Tj,m by using their dot product, Qi,j: 

𝑑𝑖,𝑗 = √2𝑚(1 −
𝑄𝑖,𝑗 −𝑚𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗
) 

(3.1) 
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Here m is the subsequence length, μi is the mean of Ti,m, μj is the mean of Tj,m, σi is 

the standard deviation of Ti,m, and σj is the standard deviation of Tj,m. 

The technique introduced in Rakthanmanon et al. [61] allows us to obtain the 

means and standard deviations with O(1) time complexity; thus, the time required to 

compute di,j depends only on the time required to compute Qi,j. Here, we claim that Qi,j 

can also be computed in O(1) time, once Qi-1,j-1 is known. 

Note that Qi-1,j-1 can be decomposed as the following: 

𝑄𝑖−1,𝑗−1 = ∑ 𝑡𝑖−1+𝑘𝑡𝑗−1+𝑘

𝑚−1

𝑘=0

 (3.2) 

And Qi,j  can be decomposed as the following: 

𝑄𝑖,𝑗 = ∑ 𝑡𝑖+𝑘𝑡𝑗+𝑘

𝑚−1

𝑘=0

 (3.3) 

Thus we have: 

𝑄𝑖,𝑗 = 𝑄𝑖−1,𝑗−1 − 𝑡𝑖−1𝑡𝑗−1 + 𝑡𝑖+𝑚−1𝑡𝑗+𝑚−1 (3.4) 

Therefore, our claim is proved. 

Figure 3.2 visualizes the algorithm. Based on (3.1), we can map the distance 

matrix in Figure 2.2 (also shown in Figure 3.2.left) to its corresponding dot product 

matrix (shown in Figure 3.2.right). 

 

Figure 3.2. Mapping the computation of the distance matrix (left) to the computation of its 

correponding dot product matrix (right). 

D1 d1,1 d1,2 d1,3 … d1,n-m+1

D2 d2,1 d2,2 d2,3 … d2,n-m+1

D3 d2,1 d2,2 d3,3 … d2,n-m+1

… … … … … …

Dn-m+1 dn-m+1,1 dn-m+1,2 dn-m+1,3 … dn-m+1,n-m+1

Q1,1 Q1,2 Q1,3 … Q1,n-m+1

Q2,1 Q2,2 Q2,3 … Q2,n-m+1

Q2,1 Q2,2 Q3,3 … Q2,n-m+1

… … … … …

Qn-m+1,1 Qn-m+1,2 Qn-m+1,3 … Qn-m+1,n-m+1
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The arrows in Figure 3.2.right show the data dependency indicated by (3.4): once 

we have Qi-1, j-1, we can compute Qi,j in O(1) time. However, note that (3.4) does not 

apply to the special case when i=1 or j=1 (the first row and the first column of Figure 

3.2.right, shown in red). This problem is easy to solve: we can pre-compute the dot 

product values in these two special cases with FFT, as shown in Algorithm 1. 

Concretely, we use SlidingDotProduct(T1,m, T) to calculate the first dot product vector: 

Q1 = [Q1,1, Q1,2, …, Q1,n-m+1] = [Q1,1, Q2,1, …, Qn-m+1,1]. The dot product vector is stored 

in memory and used as needed. 

Algorithm 1: SlidingDotProduct(S, T) 

 Input: A query subsequence S, and a user provided time series T 

Output: The dot product between S and all subsequences in T 

1 

2 

3 

4 

5 

6 

7 

n ← Length(T), m ← Length(S) 

Ta ← Append T with n zeros   

Sr ← Reverse(S)  

Sra ← Append Sr with 2n-m zeros 

Sraf ← FFT(Sra), Taf ← FFT(Ta) 

Q ← InverseFFT(ElementwiseMultiplication(Sraf, Taf)) 

return Qm:n 

After the first row and the first column in Figure 3.2.right are computed, the rest of 

the dot product matrix is evaluated row after row. 

We are now in the position to introduce our STOMP algorithm (Algorithm 2). 

The algorithm begins in line 1 by computing the matrix profile length l. In line 2, 

the mean and standard deviation of every subsequence in T are pre-calculated. Line 3 

calculates the first dot product vector Q with the algorithm in Algorithm 1. In line 5, we 

initialize the matrix profile P and matrix profile index I. The loop in lines 6-13 calculates 

the distance profile of every subsequence of T in sequential order. Lines 7-9 update Q 

according to (3.4). We update Q1 in line 10 with the pre-computed Q’i in line 3. Line 11 
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calculates distance profile D according to (3.1). Finally, line 12 compares every element 

of P with D: if Dj < Pj, then Pj = Dj, Ij = i. 

Algorithm 2: STOMP(T, m) 

 Input: A time series T and a subsequence length m 

Output: Matrix profile P and the associated matrix profile index I of T 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

n ← Length(T), l ← n – m + 1 

μ, σ ← ComputeMeanStd(T,  m)                                  // see [61] 

Q ← SlidingDotProduct(T1,m, T), Q’ ← Q 

D ← CalculateDistanceProfile(Q, μ, σ, 1)                   // see (3.1) 

P← D, I← ones                                                           // initialization  

for i = 2 to l                                                                 // in-order evaluation 

      for j= l downto 2                                                  // update dot product, see (3.4) 

        Qj ← Qj-1 -Tj-1×Ti-1+Tj+m-1×Ti+m-1 

  end for 

  Q1 ← Q’i 

  D ← CalculateDistanceProfile(Q, μ, σ, i)              // see (3.1) 

  P, I ← ElementWiseMin(P, I, D, i) 

end for 

return P, I 

The time complexity of STOMP is O(n2); thus, we have achieved a O(logn) factor 

speedup over STAMP [96]. Moreover, it is clear that O(n2) is optimal for any exact motif 

algorithm in the general case. The O(logn) speedup makes little difference for small 

datasets and for those with just a few tens of thousands of data points [15].  However, as 

we consider the datasets with millions of data points, this O(logn) factor begins to 

produce a very useful order-of-magnitude speedup. 

To better understand the efficiency of STOMP, it is important to clarify that the 

time complexity of the classic brute force algorithm is O(n2m).  The value of m depends 

on the domain, but in Section 3.3.8, we consider real world applications where it is 2,000. 

Most techniques in the literature gain speedup by slightly reducing the n2 factor; 

however, we gain speedup by reducing the m factor to O(1). Moreover, it is important to 
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remember that the techniques in the literature can only reduce this n2 factor if the data has 

a low intrinsic dimensionality (recall Figure 3.1), and the domain requires a short 

subsequence length. In contrast, the speedup for STOMP is completely independent of 

both the structure of the data and the subsequence length. 

3.2.2 Incrementally Maintaining the Matrix Profile with STOMPI 

Up to this point we have discussed the batch version of STOMP. By batch, we 

mean that the STOMP algorithm needs to see the entire time series T before creating the 

matrix profile. However, in many situations it would be advantageous to build the matrix 

profile incrementally. Given that we have performed a batch construction of matrix 

profile, when a new data point arrives, it would clearly be preferable to incrementally 

adjust the current profile, rather than starting from scratch. 

Because the matrix profile solves both the times series motif and the time series 

discord problems, an incremental version of STOMP would automatically provide the 

first incremental versions of both these algorithms. In this section, we demonstrate that 

we can create such an incremental algorithm. 

We name the incremental algorithm STOMPI (STOMP Incremental, shown in 

Algorithm 3).  

As a new data point t arrives, the size of the original time series T increases by one. 

We denote the new time series as Tnew, and we need to update the matrix profile Pnew and 

its associated matrix profile index Inew corresponding to Tnew. For clarity, note that the 

input variables Q, μ and σ are all vectors, where Qi is the dot product of the ith and the last 



 32 

subsequences of T; μi and σi are, respectively, the mean and standard deviation of the ith 

subsequence of T. 

Algorithm 3: STOMPI(T, t, m, P, I, μ, σ) 

 Input: The original time series T, a new data point t following T, subsequence 

length m, the matrix profile P and its associated matrix profile index I of T, dot 

product vector Q, mean vector μ and standard deviation vector σ 

Output: The updated matrix profile Pnew and its matrix profile index Inew 

corresponding to the new time series Tnew= [T, t], the updated dot product vector 

Qnew, updated mean vector μnew and standard deviation vector σnew 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

n ← Length(T), l ← n-m+1, Tnew = [T, t], S ← 𝑇𝑙+1:𝑛+1
𝑛𝑒𝑤  

tdrop ← Tl                                 // tdrop is the first item of the last subsequence of T 

for j= l+1 downto 2              // update dot products with (3.4) 

      𝑄𝑗
𝑛𝑒𝑤  ← Qj-1 - 𝑇𝑗−1

𝑛𝑒𝑤 × tdrop + 𝑇𝑗+𝑚−1
𝑛𝑒𝑤 × t 

end for 

𝑄1
𝑛𝑒𝑤← 0 

for j= 1 to m                         // calculate the first dot product with simple brute-force 

      𝑄1
𝑛𝑒𝑤  ← 𝑄1

𝑛𝑒𝑤+ 𝑇𝑗
𝑛𝑒𝑤 × Sj      

end for 

μS ← μl +(t - tdrop) / m                                    // update mean of S 

σS ← σl
 2 + μl

 2 + (t2 - tdrop
2) / m - μS

 2            // update standard deviation of S 

μnew ← [μ, μS],  σnew ← [σ, σS]                                            

D ← CalculateDistanceProfile(Qnew, μmew, σnew, l+1)        // see (3.1) 

P, I ← ElementWiseMin(P, I, D1:l, l+1)     // note that we ignore trivial match here 

pnew, inew  ← Min(D)                                     // note that we ignore trivial match here 

Pnew ← [P, pnew],  Inew ← [I, inew] 

return Pnew, Inew 

In line 1, S is a new subsequence generated at the end of Tnew. Lines 2-5 evaluate 

the new dot product vector Qnew according to (3.4), where 𝑄𝑖
𝑛𝑒𝑤 is the dot product of S 

and the ith subsequence of Tnew. Note that the length of Qnew is one item longer than that of 

Q. The first dot product 𝑄1
𝑛𝑒𝑤 is a special case where (3.4) is not applicable, so lines 6-9 

calculate it with simple brute-force. In lines 10-12 we evaluate the mean and standard 

deviation of the new subsequence S, and update the vectors μnew and σnew. After that we 

calculate the distance profile D with regard to S and Tnew in line 13. Then, similar to 

STOMP, line 14 performs a pairwise comparison between every element in D and the 
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corresponding element in P to see if the corresponding element in P needs to be updated. 

Note that we only compare the first l elements of D here, since the length of D is one item 

longer than that of P. Line 15 finds the nearest neighbor of S by evaluating the minimum 

value of D. Finally, in line 16, we obtain the new matrix profile and associated matrix 

profile index by concatenating the results in line 14 and line 15. 

The time complexity of the STOMPI algorithm is O(n) where n is the length of size 

of the current time series T. Note that as we maintain the profile, each incremental call of 

STOMPI deals with a one-item longer time series, thus it gets very slightly slower at each 

time step. Therefore, the best way to measure the performance is to compute the 

Maximum Time Horizon (MTH), in essence the answer to this question: “Given this 

arrival rate, how long can we maintain the profile before we can no longer update fast 

enough?” 

Note that the subsequence length m is not considered in the MTH evaluation, as the 

overall time complexity of the algorithm is O(n), which is independent of m. We have 

computed the MTH for two common scenarios of interest to the community. 

• House Electrical Demand [52]: This dataset is updated every eight seconds. 

By iteratively calling the STOMPI algorithm, we can maintain the profile for at 

least twenty-five years.  

• Oil Refinery:  Most telemetry in oil refineries and chemical plants is sampled 

at once a minute [83].  The relatively low sampling rate reflects the “inertia” of 

massive boilers/condensers. Even if we maintain the profile for 40 years, the 

update time is only around 1.36 seconds. Moreover, the raw data, matrix profile 



 34 

and index would only require 0.5 gigabytes of main memory. Thus the MTH 

here is forty-plus years. 

For both these situations, given projected improvements in hardware, these 

numbers effectively mean we can maintain the matrix profile forever. 

As impressive as these numbers are, they are actually quite pessimistic. For 

simplicity we assume that every value in the matrix profile index will be updated at each 

time step.  However, empirically, much less than 0.1% of them need to be updated. If it is 

possible to prove an upper bound on the number of changes to the matrix profile index 

per update, then we could greatly extend the MTH, or, more usefully, handle much faster 

sampling rates. We leave such considerations for future work. 

3.2.3 Porting STOMP to a GPU Framework 

As we will show in Section 3.3, STOMP is extremely efficient, much faster than 

real time for many motif discovery tasks. Nevertheless, it still takes STOMP 

approximately 5-6 hours to process a time series of length one million. Can we further 

reduce the time? 

It is important to note that the STOMP algorithm is extremely amenable to parallel 

computing frameworks. This is not a coincidence; the algorithm was conceived with 

regards to eventual hardware acceleration. Recall that the space requirement for the 

algorithm is only O(n); there is no data dependency in the main inner loop of the 

algorithm (lines 7-9 of Algorithm 2), so we can update all entries of Q in parallel. The 

evaluation of each entry in vectors D, P, and I in lines 11 and 12 are also independent of 

each other. In the next section, we will introduce a GPU-based version of STOMP, 
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utilizing these observations to further speed up the evaluation of the matrix profile and 

thus motif discovery. 

The Graphic Processor Unit, or GPU, is “especially well-suited to address 

problems that can be expressed as data-parallel computations” [54]. It has its own 

memory, and it can launch multiple threads in parallel. Here, we use the ubiquitous 

Single Instruction Multiple Data (SIMD) NVIDIA CUDA architecture, where we can 

assign multiple threads to process the same set of instructions on multiple data. 

The threads on the GPU are managed in thread blocks. Threads in a thread block 

run simultaneously, and they can cooperate with each other through shared local 

resources. A CUDA function is called a kernel. When we launch a kernel, we can specify 

the number of blocks and the number of threads in each block to run on GPU. For 

example, the NVIDIA Tesla K80 allows launching at most 1024 threads within a block 

and as many as 263 blocks (a total of 273 threads), which is plentiful for processing a time 

series of length 100 million. 

The GPU implementation of the STOMP algorithm in Algorithm 2 can be 

decomposed into four steps: 

• CPU copies the time series to GPU global memory.  

• CPU launches GPU kernels to evaluate μ, σ, the initial Q, D, P and I. 

• CPU iteratively launches GPU kernels to update QT, D, P, and I. 

• CPU copies the final output (P and I) from GPU. 

In the first step, the CPU copies time series T (input vector of Algorithm 2) to the 

global memory of GPU. The time used to copy a time series of length 100 million takes 
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less than a second. Note that in order to run the STOMP algorithm, we need to allocate 

space to store eight vectors in the GPU global memory: T, μ, σ, Q, Q’, D, P and I. A 

double-precision time series of length 100 million is approximately 0.8GB, so the 

algorithm utilizes approximately 6.4GB global memory space. This is feasible for 

NVIDIA Tesla K40 and K80 cards; however, if the device used has less memory space 

available, we can split the time series into small sections and evaluate one section at a 

time with the GPU. 

In the second step, the CPU launches GPU kernels to evaluate the vectors in 

parallel. The mean and standard deviation vectors in line 2 of Algorithm 2 can be 

efficiently evaluated by CUDA Thrust [54]. The first QT vector in line 3 can be evaluated 

in parallel by applying cuFFT, the NVIDIA CUDA Fast Fourier Transform [55] to the 

SlidingDotProduct function in Algorithm 1. We assign a total of n-m+1 threads to 

evaluate Q’, D, P, and I in lines 3-5 in parallel. The jth thread processes the jth entry of 

these vectors one by one. 

Now that we have initialized Q, D, P, and I, we update them iteratively. In the third 

step, the CPU runs the outer loop in lines 6-13 of Algorithm 2 iteratively. In every 

iteration, the CPU launches a GPU kernel with n-m+1 threads, parallelizing the 

evaluation of Q, D, P, and I. As shown in Figure 3.3, the first thread reads Q1 from the 

pre-computed Q’ vector, while the second to the last threads evaluate their corresponding 

entry of Q using (3.4). 

Note that in contrast to the CPU STOMP algorithm, which uses only one vector Q 

to store both Qi-1 and Qi, here we use two vectors to separate them. This is necessary 
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because as the threads evaluate entries in Q in parallel, we need to avoid writing entries 

before they are read. A simple and efficient way to accomplish this is to create two 

vectors, Qodd and Qeven. When the outer loop variable i in line 6 is even, the threads 

read from Qodd and write to Qeven; when i is odd, the threads read data from Qeven and 

write to Qodd. Following this, the threads evaluate D with (3.1), and the jth thread 

updates P and I if Dj < Pj. 

 

Figure 3.3. Division of work among threads in the third step of GPU STOMP. 

When all of the iterations are complete, we have reached the last step of GPU 

STOMP, where the CPU copies P and I back to the system memory. 

3.2.4 Further Parallelizing STOMP with multiple GPUs 

The parallelization scheme above is suitable if we only have one GPU device. Can 

we further reduce the processing time if there are two or more GPUs available? 

Thus far, we have been using CPU to iteratively control the outer loop of the 

STOMP algorithm in Algorithm 2. We start by computing the first distance profile (the 

first row) in Figure 2.2 and its corresponding Q vector. Then in each iteration, we 

compute a new row of the distance matrix in Figure 2.2, and maintain the minimum-so-

P1 P2 P3 … Pn-m+1

di,1 di,2 di,3 … di,n-m+1

Qi,1 Qi,2 Qi,3 … Qi,n-m+1

(4)

(1)

Update
if Smaller

Qi-1,1 Qi-1,2 … Qi-1,n-m Qi-1,n-m+1

…
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far values of each column in vector P. When the iteration is complete, P becomes the 

exact matrix profile. 

This outer loop computation can be further parallelized.  Assume we have k 

independent GPU devices, and we also have (n-m+1)/k = q. We can then divide the 

distance matrix in Figure 2.2 into k sections: device 1 evaluates the 1th to the qth rows, 

device 2 evaluates the (q+1)th to the (2q)th rows, etc. Essentially, device k uses the 

parallelized version of SlidingDotProduct function in Algorithm 1 to calculate Qq(k-1)+1 

and Dq(k-1)+1, then it evaluates the following q-1 rows iteratively. The k devices can run in 

parallel, and after the evaluation completes, we can simply find the minimum among all 

the k matrix profile outputs. In summary, we can achieve a k-times speed up by using k 

identical GPU devices. 

By porting all the introduced techniques to NVIDIA Tesla K80, which contains two 

GPU devices on the same unit, we are able to obtain the matrix profile and matrix profile 

index of a seismology time series of length 100 million within 19 days. Are there any 

further optimizations left? 

3.2.5 A Technique to Further Accelerate GPU-STOMP 

Figure 3.3 showed the process to compute the ith row of the distance matrix in 

Figure 2.2 by n-m+1 parallel threads. Recall that the distance matrix corresponding to a 

self-join matrix profile is symmetric; half of the distance computations can be saved if we 

only evaluate the ith to the last columns. We show this strategy in Figure 3.4.top. 

However, note that it is desirable to maintain the O(n) space complexity of our 

algorithm; if we move on to the (i+1)th row of Figure 2.2 without further processing, 
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then Pi = min(d1,i, d2,i, …, di,i), and it would no longer be updated. To correct this, it is 

necessary to launch another kernel after Figure 3.4.top is completed. The new kernel is 

shown in Figure 3.4.bottom. 

Essentially, we have used an analogous reduction technique as in [27] to obtain dmin 

= min(di,i+1, di,i+2, …, di,m+n-1), which also is equivalent to min(di+1,i, di+2,i, …, dn-m+1,i) as a 

result of symmetry. If dmin < Pi, we set Pi = dmin, so Pi = min(Di). Although it is necessary 

to launch an additional kernel to process each row, which will require extra time, the 

extra time is still less than what is saved when handling large time series. 

 

Figure 3.4. Modifying the third step of GPU-STOMP. top) Launch only n-m-i+2 threads (instead of 

the n-m+1 threads in Figure 3.3) this time at the ith iteration. bottom) Launch another kernel to 

evaluate the final value of Pi. 

For example, this new technique reduced the time to process a time series of length 

100 million from 19 days to approximately 12 days on NVIDIA Tesla K80. This 

indicates that it is possible to finish five quadrillion pairwise comparison of subsequences 

within 12 days. 

Pi

Pi Pi+1 … Pn-m+1

Qi,i Qi,i+1 … Qi,n-m+1

See (4)

di,i di,i+1 … di,n-m+1

Qi-1,i-1 Qi-1,i … Qi-1,n-m Qi-1,n-m+1

…

See (1)

di,i+1 di,i+2 … di,n-m+1

Update if Smaller

Second Kernel Launch: Evaluate Final Value of Pi

min
dmin

Update if Smaller

First Kernel Launch: Update Pi to Pn-m+1
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Note that fewer and fewer threads are being launched in each iteration. To apply 

this new technique to multiple GPUs, it is necessary to ensure that each GPU is loaded 

with similar amount of work, so they will finish in similar time. Here, for NVIDIA Tesla 

K80, we computed the first (n-m+1)(1-1/√2) distance profiles with the first GPU and the 

last (n-m+1)/√2 distance profiles with the second GPU. 

3.2.6 A Final Optimization: Breaking the Ten Quadrillion Pairwise 

Comparison Barrier 

In the last section, we demonstrated a technique to use parallel threads to evaluate 

the rows of the distance matrix in Figure 2.2 iteratively. Note that to compute one row, 

the technique needs to launch two kernels, all threads need to be synchronized following 

the evaluation, and the corresponding Q vector needs to be updated in GPU global 

memory. As there are n-m+1 rows in Figure 2.2, when n becomes large, the time cost for 

kernel launch, and the thread synchronization and memory writing becomes nontrivial. 

As impressive as the results are in the last section, which breaks the 5 quadrillion 

pairwise comparison barrier, there is one more optimization we can perform to further 

speed up the GPU code. We denote this optimized version GPU-STOMPOPT. To help the 

reader better understand how the GPU-STOMPOPT works, we will first show our initial 

optimization scheme in Figure 3.5, then further refine it in Figure 3.6 and Figure 3.7. 
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Figure 3.5. An optimization scheme for the the third step of GPU-STOMP. We only need to launch 

one kernel to evaluate all the rows of the distance matrix in Figure 2.2. 

Figure 3.5 shows our key scheme to save the kernel launch and thread 

synchronization time: instead of launching a kernel for every single row in Figure 2.2, 

we issue only one single kernel to generate the entire matrix profile. Note that based on 

the one-one correspondence between di,j and Qi,j (as shown in (3.1)), we can convert the 

symmetric distance matrix computation into Figure 3.5, where we evaluate the upper-

right half of the dot product matrix. Since the value of Qi,j  is only dependent on Qi-1,j-1 

(according to (3.4)), the computation of each diagonal in Figure 3.5 is independent of 

any other diagonal. Thus, we assign n-m+1 threads to compute these diagonals in 

parallel. 

Once we obtain Qi,j , we can easily evaluate di,j based on (3.1). Then we examine 

two elements of the matrix profile: if di,j < Pi, we set Pi = di,j; and if di,j < Pj, we set Pj = 

di,j. Note that as each thread in Figure 3.5 operates independently, multiple threads may 

attempt to update the same entry of the matrix profile at the same time. We need to use 

CUDA atomic operations to organize this. Essentially, we set a lock for each entry of the 

Q2,2 Q2,3 … Q2,n-m Q2,n-m+1

Q1,1 Q1,2 … Q1,n-m+1 Q1,n-m Q1,n-m+1

…

Q3,3 Q3,4 … Q3,n-m+1

… … …

Qn-m,n-m Qn-m,n-m+1

Qn-m+1,n-m+1
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matrix profile. When multiple threads try to update the same matrix profile entry, they 

line up to get the lock, and perform an atomic Min operation in order. The reader may 

doubt that this can result in a significant cost of time, as it is possible that all threads can 

be lining up to update the same single matrix profile entry. However, in practice, we find 

that a large portion of these atomic operations can be pruned from the calculation. 

Assume we have twenty atomic operations lined up to update a matrix profile 

entry, which has an initial value of 6.81, with the following distance values in order: 

0.6, 4.46, 1.99, 6.98, 2.29, 2.95, 7.05, 1.47, 6.04, 2.72, 2.31, 3.2, 6.25, 9.33, 0.27, 

2.62, 2.00, 2.74, 6.67, 2.34. 

Since the matrix profile entry keeps track of the minimum distance value, only two 

updates would be executed: 0.6 and 0.27. That is only 10% of this short sequence of data. 

Now let us randomly shuffle the data: 

7.05, 2.29, 1.47, 0.27, 2.74, 2.95, 9.33, 2.34, 4.46, 2.00, 6.04, 2.72, 2.31, 3.2, 6.25, 

6.98, 0.6, 2.62, 1.99, 6.67. 

This time three updates would be executed: 2.29, 1.47, 0.27. That is only 15% of 

the data; so again, it is only a small portion. 

Note that our toy example here is a very short data sequence. In practice, for most 

time series only less than 0.1% distance values end up smaller than their corresponding 

matrix profile elements. For example, for a random-walk time series of length one 

million, we executed on average only 39 atomic calls for each matrix profile entry; more 

than 99.996% of the atomic operations are pruned. 
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By implementing the optimization scheme shown in Figure 3.5, we have obtained 

about 3X speedup over GPU-STOMP for medium-size time series (i.e. with less than 4 

million data points). However, as the time series gets even longer, less speedup is 

observed, as the time spent on atomic operations and global memory writes become 

nontrivial. 

To solve this, we use two strategies to refine our optimization scheme in Figure 

3.5. 

The first strategy aims to accelerate each atomic write. As stated previously, 

multiple independent threads can be attempting to update the matrix profile at the same 

time, so we are using CUDA atomic Min operation to organize them. Note that when a 

matrix profile entry (which is a 64-bit double precision value) is updated, the 

corresponding matrix profile index value (a 32-bit integer value) also needs to be 

updated. However, currently CUDA only supports atomic operations on either one single 

32-bit value or one single 64-bit value. To tackle this, we initially set a lock on every 

entry of the matrix profile, and used a critical section to update both the matrix profile 

entry and the matrix profile index value when a thread gets the lock; however, this 

solution is not scalable with longer time series inputs. As a result, we turned to a better 

solution as shown in Figure 3.6. Instead of using a time-consuming critical section, we 

lower the precision of the matrix profile to 32 bits. We then combine the matrix profile 

and the matrix profile index into one double-precision vector in the global memory that 

can be atomically updated. For the ith entry of the double-precision vector, 32 bits are 
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used to store the ith matrix profile value, and another 32 bits are used to store the ith 

matrix profile index. 

This refinement strategy largely accelerated the speed for atomic operations. Note 

that the strategy will not result in large precision loss, as only the precision of the output 

is reduced; we are still using 64 bits to store all the intermediate results during the 

evaluation process. 

 

Figure 3.6. We reduced the matrix profile to 32 bits, then combined each matrix profile entry and its 

corresponding matrix profile index entry into a double-precision value to allow fast atomic updates. 

The second strategy is to utilize the CUDA shared memory to ease the contention 

for global memory writes. The strategy, as shown in Figure 3.7, can be viewed as 2-level 

hierarchy of Figure 3.5. Here we define TPB as the number of threads per block on 

CUDA. 

Different from Figure 3.5, in which each thread evaluates one single diagonal of 

the distance matrix, here we divide the distance matrix into k meta diagonals (as shown in 

Figure 3.7.a, a meta diagonal consists of TPB diagonals of the distance matrix; (k-

1)×TPB<n-m+1≤ k×TPB). Each meta diagonal is evaluated by one CUDA thread block. 

As shown in Figure 3.7.b, the thread block evaluates one parallelogram at a time, 

managing a local copy of the matrix profile in the shared memory. The threads in a block 

(shown in Figure 3.7.c) work very similarly as those in Figure 3.5, except that they 

atomically update the shared memory instead of the global memory. After a 

parallelogram (Figure 3.7.b) is evaluated, all the threads in the block are synchronized. If 
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any value in the shared memory is smaller than its corresponding entry in the global 

memory, the global memory is updated. 

 

Figure 3.7. a) Each thread block evaluates one meta diagonal of the distance matrix. b) The 

parallelograms in a meta diagonal are evaluated iteratively by a thread block.  c) The threads in a 

block evaluate diagonals of a parallogram in parallel. 

With this refinement strategy, the contention of atomic updates in Figure 3.5 is 

largely relieved. The original scheme in Figure 3.5 allowed a global memory location to 

be visited by all active threads in all the thread blocks (which can be as many as (n-m+1) 

threads) simultaneously. In contrast, with the refined scheme in Figure 3.7, the number 

of threads racing for a shared memory location cannot be larger than TPB, and a global 

memory location cannot receive more than k atomic update requests at the same time. 

This brings about a large performance gain. 

…

Qi,j Qi,j+1 … Qi,j+TPB-1

Qi+1,j+1 Qi+1,j+2 … Qi+1,j+TPB
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Qi+TPB,j+TPB Qi+TPB,j+TPB+1 … Qi+TPB,j+2*TPB-1
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Similar to GPU-STOMP, GPU-STOMPOPT can easily be adapted to multiple GPUs 

as well. For example, to evenly divide the work for an NVIDIA Tesla K80, we compute 

the odd (1st. 3rd, 5th, etc. from the left) meta diagonals in Figure 3.7.a with the first GPU, 

and the even (2nd, 4th, 6th, etc. from the left) meta diagonals in Figure 3.7.a with the 

second GPU. 

With all the optimization strategies, GPU-STOMPOPT achieved more than 2X 

speedup over GPU-STOMP for large datasets. Concretely, it further reduces the time to 

process a time series of length 100 million from 12 days to about 4 days on NVIDIA 

Tesla K80. Furthermore, for the first time in the literature, we are able to process a time 

series of length 143 million, which is slightly more than ten quadrillion pairwise 

comparison of subsequences, within just 9 days. 

3.3 Empirical Evaluation 

Although some parts of our experiments require access to a GPU, we have 

designed them so they can be reproduced easily. To allow for the reproduction of our 

experiments, we have constructed a webpage [59], which contains all datasets and code 

used in this work. We begin with a careful comparison to STAMP [96], which is 

obviously the closest competitor, and we consider more general rival methods later. 

Unless otherwise noted, we used an Intel i7@4GHz PC with 4 cores to evaluate all 

the CPU-based algorithms; we used a server with two Intel Xeon E5-2620@2.4GHz 

cores and an NVIDIA Tesla K80 GPU to evaluate GPU-STOMP. 
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3.3.1 STAMP vs STOMP 

We begin by demonstrating that STOMP is faster than STAMP, and also that this 

difference grows as we consider increasingly large datasets. Furthermore, we measure the 

gains made by using GPU-STOMP. In Table 3.1, we measure the performance of the 

three algorithms on increasingly long random walk time series with a fixed subsequence 

length 256. 

Table 3.1.  Time required for motif discovery with m = 256, varying n, for the three 

algorithms under consideration 

Algorithm          Value of n 217 218 219 220 221 

STAMP 15.1 min 1.17 hours 5.4 hours 24.4 hours 4.2 days 

STOMP 4.21 min 0.3 hours 1.26 hours 5.22 hours 0.87 days 

GPU-STOMP 10 sec 18 sec 46 sec 2.5 min 9.25 min 

Note that we choose m’s length as a power-of-two only to offer the best case for 

(the FFT-based) STAMP; our algorithm is agnostic to such issues. 

A recent paper on finding motifs in seismograph datasets also considers a dataset of 

about 219 in length and reports taking 1.6 hours, which is approximately the same time it 

takes STOMP [101]. However, their method is probabilistic and allows false negatives 

(twelve of which were actually observed, after checking against the results of a 9.5 day 

brute-force search [101]). Moreover, it requires careful tuning of several parameters, and 

it does not lend itself to GPU implementation. 

We wish to consider the scalability of even larger datasets with GPU-STOMP. 

However, in order to do so, we must estimate the time it takes the other two other 

algorithms. Fortunately, both of the other algorithms allow for an approximate prediction 

of the time needed, given the data length n. To obtain the estimated time, we evaluated 
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only the first 100 distance profiles of both STAMP and STOMP and multiplied the time 

used by (n-m+1)/100. In Table 3.2, we consider even larger datasets, one of which 

reflects the data used in a case study in Section 3.3.4. 

Table 3.2. Time required for motif discovery with various m and various n, for the 

three algorithms under consideration 

Algorithm                               m | n 2000 | 17,279,800 400 | 100,000,000 

STAMP (estimated) 36.5 weeks 25.5 years 

STOMP (estimated) 8.4 weeks 5.4 years 

GPU-STOMP (actual) 9.27 hours 12.13 days 

Note that the 100-million-length dataset is one hundred times larger than the largest 

motif search in the literature [37]. 

In all three algorithms under consideration, the time required is independent of the 

subsequence length m, which is desirable.  This is demonstrated in Table 3.3, where we 

measure the time required with n fixed to 217, for increasing m. 

Table 3.3. Time required for motif discovery with n = 217, varying m, for the three 

algorithms under consideration 

Algorithm             Value of m 64 128 256 512 1,024 

STAMP 15.1 min 15.1 min 15.1 min 15.0 min 14.5 min 

STOMP 4.23 min 4.33 min 4.21 min 4.23 min 2.92 min 

GPU-STOMP 10 sec 10 sec  10 sec 10 sec 10 sec 

Note that the time required for the longer subsequences is slightly shorter. This is 

true since the number of pairs that must be considered for a time series join [96] is (n-

m+1)2, so as m becomes larger, the number of comparisons becomes slightly smaller. 
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3.3.2 GPU-STOMPOPT Breaks the Ten Quadrillion Pairwise 

Comparison Barrier 

In Table 3.4, we measure the performance of STAMP, STOMP, GPU-STOMP, 

and GPU-STOMPOPT on increasingly long random walk time series with a fixed 

subsequence length 256. The shaded cells are duplicated from Table 3.1, but they are 

included for comparison. Note that while some numbers are estimated, as explained in 

the next section, we can predict the time and memory requirement of STAMP and 

STOMP very precisely (with less than 5% error) for large datasets. 

Table 3.4.  Time required for motif discovery with m = 256, varying n, for the three 

algorithms under consideration 

Algorithm            Value of n 217 218 219 220 221 17,279,800 100,000,000 143,000,000 

STAMP 15.1 min 1.17 hours 5.4 hours 24.4 hours 4.2 days 
36.5 weeks 

(estimated) 

25.5 years 

(estimated) 

51.2 years 

(estimated) 

STOMP 4.21 min 0.3 hours 1.26 hours 5.22 hours 0.87 days 
8.4 weeks 

(estimated) 

5.4 years 

(estimated) 

10.9 years 

(estimated) 

GPU-STOMP 10 sec 18 sec 46 sec 2.5 min 9.25 min 9.27 hours 12.13 days 
24.5 days 

(estimated) 

GPU-STOMPopt 8 sec 9 sec 17 sec 49 sec 2.93 min 3.29 hours 4.51 days 9.33 days 

We note in passing that this experiment on a time series of length 143 million is the 

largest time series ever searched for exact motifs. Moreover, we are confident that this is 

the first time ten quadrillion pairwise comparisons have been made on a single dataset, in 

any context. 

The time required for GPU-based algorithms can be divided into two parts. The 

first part includes the data reading time and computation time; the second part includes 

the time needed for kernel launch, data synchronization and memory writes. GPU-

STOMP and GPU-STOMPOPT spent the same time in the first part. To further compare 
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the effectiveness of the two methods, in Table 3.5 we measure their run time in the 

second part. 

Table 3.5. Time required for kernel launch, data synchronization and memory 

writes with m = 256, varying n, for the two GPU-based algorithms 

Algorithm         Value of n 218 219 220 221 17,279,800 100,000,000 

GPU-STOMP 17 sec 41 sec 2.2 min 8.17 min 8.04 hours 10.39 days 

GPU-STOMPopt 8 sec 12 sec 32 sec 1.85 min 2.06 hours 2.77 days 

We can wee that GPU-STOMPOPT achieved more than 4X speedup over GPU-

STOMP in the second part for large datasets. 

3.3.3 STOMP vs State-of-the-Art Motif Discovery Algorithms 

Beyond the independence of the subsequence length demonstrated in Table 3.3, all 

three matrix profile-based algorithms are also independent of the intrinsic dimensionality 

of the data, which is also desirable. To demonstrate this, we will compare to the recently 

introduced Quick-Motif framework [37] and the more widely known MK algorithm [49]. 

The Quick-Motif method was the first technique to perform an exact motif search on one 

million subsequences. 

To level the playing field, we do not avail of GPU acceleration, but instead, we use 

the identical hardware (a PC with Intel i7-2600@3.40GHz) and programming languages 

for all algorithms. Note that for a fair comparison with STAMP [96], which is written in 

Matlab, in Section 3.3.1, we measured the performance of STOMP based on its Matlab 

implementation. However, because the two rival methods in this section (Quick-Motif 

and MK) are written in C/C++, here we measure the runtime of (the CPU version of) 

STOMP based on its C++ implementation. 
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We use the original author’s executables [60] to evaluate the runtime of both MK 

and Quick-Motif. The reader may wonder why the experiments here are less ambitious 

than in the previous sections. The reason is that beyond time considerations, the rival 

methods have severe memory requirements. For example, for a seismology data with m = 

200, n = 218, we measured the Quick-Motif memory footprint as large as 1.42 GB. In 

contrast, STOMP requires only 14MB memory for the same data, which is less than 

1/100 of this. If this ratio linearly interpolates, Quick-Motif would need more than ½ 

terabyte of main memory to tackle the one hundred million benchmark, which is 

infeasible. Moreover, for Quick-Motif, it is possible that a different dataset of the same 

size could require a larger or smaller footprint. In contrast, the space required for STOMP 

is independent of both the structure of data and the subsequence length. 

This severe memory requirement makes it impossible to compare the STOMP 

algorithm with Quick-Motif on the seismology data, since Quick-Motif often crashed 

with an out-of-memory error as we varied the value of m. However, we noticed that the 

memory footprint for Quick-Motif tends to be much smaller with smooth data. Therefore, 

instead of comparing performance of the algorithms on seismology data, in Table 3.6, we 

utilized the much smoother ECG dataset (used in Rakthanmanon et al. [61]), which is an 

ideal dataset for both MK and Quick-Motif to achieve their best performance. 

Table 3.6. Time required for motif discovery with n = 218, varying m, for various 

algorithms 

Algorithm                 m            512 1,024 2,048 4,096 

STOMP 501s (14MB) 506s (14MB) 490s (14MB) 490s (14MB) 

Quick-Motif 27s (65MB) 151s (90MB) 630s (295MB) 695s (101MB) 

MK 2040s (1.1GB) N/A (>2GB) N/A (>2GB) N/A (>2GB) 
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Clearly, both the runtime and memory requirement for STOMP are independent of 

the subsequence length. In contrast, Quick-Motif and MK both poorly scale in 

subsequence length in both runtime and memory usage. Note that the memory 

requirement of Quick-Motif is not monotonic in m, as reducing m from 4,096 to 2,048 

requires three times as much memory. This is not a flaw in implementation (we used the 

author’s own code), but a property of the algorithm itself. 

As indicated in Figure 3.1, the Quick-Motif algorithm [37], the MK algorithm 

[49], and the original motif discovery by projection algorithm [15] can all be fast in the 

best case. For example, if there happens to be a perfect (zero Euclidean distance) motif in 

the dataset, they will all discover it with O(n) work (with high constants), and all 

algorithms can use this zero-valued best-so-far to prune all other possibilities for motif 

pairs. While we generally do not expect to have a zero-distance motif in real-valued data, 

a very close motif pair in a dataset with low intrinsic dimensionality (recall Figure 3.1) 

can offer similar speed ups. However, that describes the best case for all three algorithms. 

Consider instead the worst case (for example, the input signal is white noise, and all 

subsequences are effectively equidistant from each other), all three rival algorithms 

degenerate to O(mn2) (again, with high constants). In contrast, STOMP is unique in that 

its best case and worse case are identical, just O(n2). Because m can be as large as 2,000 

(see Figure 3.8), this can produce a significant speedup. Moreover, as we will show in 

the next two sections, STOMP computes much more useful information than the two 

rival methods. 
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Before demonstrating this, we show that the experiments in the previous table were 

spurious for STOMP. We do not need to measure its time or memory footprint, because 

we can predict it precisely. To the best of our knowledge, this property is unique among 

all motif discovery algorithms proposed in the literature [15][37][49]. 

For STOMP (assuming only that m ≪ n), given only n, we can predict how long 

the algorithm will take to terminate and how much memory it will consume, which is 

completely independent of the value of m and the data. 

To do this, we need to do a single calibration run on the machine in question. With 

a time series of length n, we measure T, the time taken to compute the matrix profile, and 

M, the (maximum) amount of memory consumed. Then, for any new length nnew, we can 

compute Trequired, the time needed as the following: 

𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 
𝑇

𝑛2 
×  𝑛𝑛𝑒𝑤

2  (3.5) 

and we can compute Mrequired, the memory needed as the following: 

𝑀𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 
𝑀

𝑛 
× 𝑛𝑛𝑒𝑤 (3.6) 

As long as we avoid trivial cases, such as m ~ n, nnew is very small or n is very 

small, this formula will predict the resources needed with an error of less than 5%. To 

demonstrate this, we performed the following experiment. On our machine (a PC with 

Intel i7-2600@3.40GHz) we ran STOMP (Matlab version) on a random walk dataset of 

size 218, measuring the resources consumed. Then, as shown in Table 3.7, we use the 

formulas above to predict the resources needed to compute the Matrix Profile for datasets 

of size {218, 219, 220, 221}. Then we measured these values with actual experiments on 
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random walk data. From Table 3.7, the agreement between our predictions and the 

observed values is clear. 

Table 3.7. Time and memory required for STOMP, with m = 256, varying n 

Resources                              n            218 219 220 221 

STOMP time (memory) 

measured 
19.0 min (30MB) 75.6 min (60MB) 313 min (121MB) 1253 min (242MB) 

STOMP time (memory) 

predicted 
19.0 min (30MB) 76.0 min (60MB) 304 min (120MB) 1216 min (240MB) 

Relative Error 0% (0%) 0.5 % (0%) 3% (0.8%) 3% (0.8%) 

This property has several desirable implications: we can carefully plan resources 

when performing analytics on large data archives; we can easily divide the work to 

parallel computing resources to finish our task in time; and we can show a perfectly 

accurate “progress bar” to a user who is using STOMP interactively. 

3.3.4 Case Studies in Seismology: Infrequent Earthquake Case 

To allow confirmation of the correctness and utility of STOMP, we begin by 

considering a dataset for which we know the result from external sources. On April 30th 

1996, there was an earthquake of magnitude 2.12 in Sonoma County, California1. Then 

on December 29th 2009, about 13.6 years later, there was another earthquake with a 

similar magnitude. We concatenated the two full days in question to create a single time 

series of length 17,279,800 (see Table 3.2 for timing results) and examined the top 

motifs with m = 2,000 (twenty seconds). Note that we are using the raw data as provided 

                                                 

 
1 A small earthquake of that magnitude would only be felt by attentive humans in the immediate vicinity of the 

epicenter. 
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to us by the seismologists, we are not preprocessing it in anyway. As Figure 3.8.top 

illustrates, the top motif here is not an earthquake but an unusual sensor artifact [28]. 

 

Figure 3.8. Motifs (colored) shown in context (gray). top) The top motif discovered in the Sonoma 

County dataset is a sensor artifact, as are the next three motifs (not shown). bottom) The fifth motif is 

two true occurrences of an earthquake that happen 4,992 days apart. 

There are a handful of other such artifacts; however, as shown in Figure 

3.8.bottom, the fifth best motif is the two occurrences of the earthquake. These 

misleading sensor artifacts are common, but they could be eliminated easily [28]. For 

example, the sensors could have a zero crossing rate that is an order of magnitude lower 

than true earthquakes. 

This example allows us to demonstrate yet another advantage of STOMP over rival 

methods. All the existing rival techniques can be expanded from top-1 motif discovery to 

top-k motif discovery; however, increasing k by a modest amount will significantly 

degrade their speed. 

Furthermore, consider again the example in Figure 3.8. It is not possible to have 

known the “magic” value of k = 5 beforehand. If k was set to a large value to “be on the 
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safe side,” say k = 10, then all existing techniques would slow down because the best-so-

far lower bound that prunes unnecessary computations would be much looser. If we set k 

as a more conservative value, say k = 3, then we would miss the most valuable 

information in this seismology dataset. You might imagine that the rival methods could 

slowly increase from k to k+1 based on the user’s lack of satisfaction with the k motifs 

she has examined thus far; however, each adjustment of k will require all existing 

techniques to perform significant extra computation, even if they have cached the results 

of every calculation they have performed. 

In contrast, the time needed for STOMP is completely independent of k. We only 

need to run STOMP once; as the matrix profile obtained already contains all necessary 

information, and it takes minimal additional effort to find the top k motif, no matter how 

large k is. 

3.3.5 Parameter Settings 

As we have previously noted, STOMP (together with STAMP) is unique among 

motif discovery algorithms because it is parameter-free. In contrast, Random Projection 

[15] has four parameters, Quick-Motif [37] has three parameters, Tree-Motif has four 

parameters [88], MK [49] has one parameter, and FAST has three parameters [101]. 

That being said, the reader may wonder about the only input value besides the time 

series of interest: the subsequence length m. Note that this is also a required input for all 

the other existing techniques. However, we do not consider m to be a true parameter, as it 

is a user choice, reflecting her prior knowledge of the domain. Nevertheless, it is 
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interesting to ask how sensitive motif discovery is to this choice; at least in the 

seismology domain that motivates us. 

To test this, we edited the data above such that the two earthquakes in Figure 

3.8.bottom happen exactly 13 minutes 20 seconds apart. We reran motif discovery with 

m=2,000 (twenty seconds), with double that length (m=4,000), and with half that length 

(m=1,000).  Figure 3.9 shows the result. 

 

Figure 3.9. top) Thirty minutes of seismograph data that has the two earthquakes from Figure 

3.8.bottom occur at 6min-40s and 20min. bottom) The matrix profile computed if we use the suggested 

subsequence length 2,000 (blue), or if we use twice the length (red), or half that length (green). 

The results are reassuring. At least for earthquakes, motif discovery is not sensitive 

to the user input. Even a poor guess as to the best value for m, it will likely give accurate 

results. 

3.3.6 Case Studies in Seismology: Earthquake Swarm Case 

In the previous section, we discovered a repeating earthquake source that has a 

frequency of about once per 13.6 years. Here, we consider earthquakes that are tens of 

millions of times more frequent. 

Forecasting volcanic eruptions is of critical importance in many parts of the world 

[74]. For example, on May 18th, 1980, Mount St. Helens had a paroxysmal eruption that 

raw seismograph data

matrix profiles

0min 30min
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killed 57 people [34]. It is conjectured that explosive eruptions are commonly preceded 

by elevated or accelerated gas emissions and seismicity; thus, seismology is a major tool 

for both monitoring and predicting such events. 

In Figure 3.10, we illustrate a short section of the matrix profile of a seismograph 

recording at Mount St Helens. It is important to restate that this is not the raw 

seismograph data, but it is the matrix profile that STOMP computed from it. 

 

Figure 3.10. The matrix profile of a seven-minute snippet from a seismograph recording at Mount St 

Helens. 

The image demonstrates a stunning regularity. Repeated earthquakes are occurring 

approximately once every thirty-eight seconds. This is consistent with the findings of a 

team from the US Geological Survey who reported that the earthquakes, which 

accompanied a dome-building eruption, appeared “... so regularly that we dubbed them 

‘drumbeats’. The period between successive drumbeats shifted slowly with time, but was 

30–300 seconds” [34]. 

This example shows a significant advantage of our approach that we share with 

STAMP but no other motif discovery algorithm. Instead of computing only O(1) distance 

values for the top k motifs, STOMP is computing all O(n) distances from every 

subsequence to their nearest neighbors. By plotting the entire matrix profile, we gain 

unexpected insights by viewing the motifs in context. For example, in the example above, 

1:45am 1:52am

38 seconds

1st February  2006
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we can see both the surprising periodicity of the earthquakes, and by comparing the 

smallest values in the matrix profile with the mean or maximum values, we can get a 

sense of how well the motifs are conserved relative to “chance” occurrences. It could also 

potentially indicate whether there were changes to the earthquake source, reflecting 

changes in eruptive behavior over time. 

A recent paper performed a similar analysis on the Mount Rainier volcano, making 

the interesting and unexpected discovery that the frequency of earthquakes is correlated 

with snowfall [3]. However, the paper bemoans at the number of ad-hoc “hacks” that 

needed to make such an exploration tenable. For example, “In order to save on 

computing time, we cut out detections that are unlikely to contain a repeating earthquake 

event by excluding events with a signal width,” and “To save on computing time, we 

define that in order to be detected…” etc. [3]. However, the results in Table 3.4 indicate 

that we could bypass these issues by spending a few hours computing the full exact 

answers. This would eliminate the risk that some speedup “trick” erases an interesting 

and unexpected pattern. 

3.3.7 Case Studies in Seismology: Detection of Repeated Low 

Frequency Earthquakes 

In the previous sections, we showed how STOMP could help us detect repeating 

earthquake sources by evaluating the matrix profile of a single seismograph recording 

time series. Here we show that by providing the matrix profiles of multiple seismograph 

recording time series, STOMP allows us to detect low frequency earthquakes (LFEs). 

LFEs are of great importance to the seismology community, as they could “potentially 
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contribute to seismic hazard forecasting by providing a new means to slow slip at depth” 

[66]. LFEs recur episodically, often during bursts of tectonic ‘tremor’, which are 

considered superpositions of many LFEs in a short period of elevated seismic activity 

[65]. One traditional approach, known as ‘matched filtering’ identifies repeated LFEs by 

evaluating the cross-correlation between continuous waveform data (time series) and a 

template waveform (subsequence) (e.g. [67]). However, this requires a suitable, carefully 

recorded template waveform of an LFE (an LFE subsequence) to have been identified in 

advance, which is very difficult or even impossible in many cases. In the face of this, 

similarity-join search through autocorrelation (e.g. [11]) has been used to detect LFEs in 

several studies. However, the traditional similarity-join search approach is 

computationally intensive (typically only one hour or less of continuously waveform data 

can be searched in feasible time), severely limiting the number and range of LFEs that 

can be detected. 

Consider an example of LFE detection along the central San Andreas fault near 

Parkfield, CA. We search for LFEs in waveform data from a tremor burst that occurred 

on October, 6, 2007, in which many LFEs were detected by matched filtering [67]. As 

before, note that we are using the raw data as provided to us by the seismologists, we are 

not preprocessing it in anyway. The LFE template (subsequence) in Shelly et al. [67] was 

found by careful visual examination of seismic recording from multiple temporary 

seismic stations located close to the source (the green triangles in Figure 3.11; temporary 

stations were set up near a well-known earthquake source in this area), and subsequently 

also identified on more distant, permanent High Resolution Seismic Network (HRSN, the 
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red triangles). Note that our task here is to detect all the LFEs automatically, and the only 

data available are those from the HRSN stations (the red triangles in Figure 3.11), since 

in most applications we do not know the earthquake source location (thus the data from 

the temporary stations) until well after the event. 

 

Figure 3.11. LFEs can be detected from the seismograph recording of HRSN stations. 

Apart from the lack of the temporary station data, what makes our task even more 

difficult is that the data from HRSN stations are noisy and many contain a lot of false 

positives. For example, the top 15 motifs (repeating templates) found from the data of an 

HRSN station near central San Andreas fault are either sensor artifacts (similar to Figure 

3.8) or instrument noise in the station itself. However, in spite of all these difficulties, we 

will demonstrate that STOMP allows us to detect LFEs from long seismic recordings. 

We ran GPU-STOMPOPT on the seismic recording time series from three HRSN 

stations for a 24-hour period spanning the tremor burst. The three HRSN stations are 

located close to each other. The data was sampled at 20Hz, for a total of ~1.7 million 

samples per station time series. Figure 3.12 shows the sum of the three matrix profiles 

obtained. 

Earthquake source

Station 1 Station 2 Station 3Temporary Stations

Only data from HRSN stations are 
available. When an LFE occurs, it 
should be detected by the three 
stations at similar time.

Data from these stations 
are not available
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Figure 3.12. The sum of three matrix profiles of the 24-hour seismograph recording at three HRSN 

stations near the central San Andreas fault. 

The reader may wonder why we are summing the three matrix profiles here. This 

simple step greatly reduces the false positives in the data. As the three HRSN stations are 

located close to each other, when an LFE occurs, the stations should detect it at a similar 

time. As a result, the matrix profile values of the three stations should all be low at the 

occurrence of the LFE. The sum of the matrix profiles shows low values at such time 

instants, which strengthens the LFE signal and thus weakens the false positives, which 

are local to each sensor. We discovered that the top seven motifs identified in this way 

were either glitches in the waveform data (sensor artifacts, again, recall Figure 3.8), or 

signals that could not be separated into individual LFEs; however, as shown in Figure 

3.13, the 8th best motif showed strong characteristics, in terms of frequency content, 

waveform shape and duration, of an LFE, and the origin time of this LFE is consistent 

with the results in Shelly et al. [67], which may be regarded as the ground truth. 

0 24 hrs
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Figure 3.13. The 40-second LFE snippet detected from the three HRSN station time series. 

In contrast to Shelly et al. [67], which detects the LFE pattern with weeks of 

enormous human effort, we are able to complete the same task automatically in 

approximately 3 minutes with GPU-STOMPOPT on NVIDIA Tesla K80. 

3.3.8 A Case Study in Animal Behavior 

While seismology is the primary motivator for this work, nothing about our 

algorithm assumes anything about the data’s structure, or precludes us from considering 

other datasets. To demonstrate this, in this section, we briefly consider telemetry 

collected from Magellanic penguins (Spheniscus magellanicus). Adult Magellanic 

penguins can regularly dive to depths of between 20m to 50m deep in order to forage for 

prey, and may spend as long as fifteen minutes under water. The data was collected by 

attaching a small multi-channel data-logging device to the bird. The device recorded tri-

axial acceleration, tri-axial magnetometry, pressure, etc. As shown in Figure 3.14, for 

simplicity we consider only Y-axis magnetometry. Note that, as with the seismology, we 

are not preprocessing this data source in anyway, no smoothing, not down sampling, etc. 

0 40s
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Figure 3.14. left) The Magellanic penguin is a strong swimmer. right) A four-minute snippet of the 

full dataset reveals high levels of noise and no obvious structure. 

An observer with binoculars labels the data; thus, we have a coarse ground truth for 

the animal’s behavior. The full data consists of 1,048,575 data points recorded at 40 Hz 

(about 7.5 hours). We ran GPU-STOMPOPT on this dataset, using a subsequence length of 

2,000. This took our algorithm just 49 seconds to compute. As shown in Figure 3.15, the 

top motif is a surprisingly well conserved “shark fin” like pattern. 

 

Figure 3.15. The top motif of length 2,000 discovered in the penguin dataset. Only three examples are 

shown for visual clarity, there are eight such patterns. This behavior may be part of a ‘porpoise’ 

maneuver. 

What (if anything) does this pattern indicate? Suggestively, we observed this 

pattern does not occur in any of the regions labeled as nesting, walking, washing, etc., but 

only during regions labeled foraging. Could this motif be related to a diving (for food) 

behavior? 

Fortunately, diving is the one behavior we can unambiguously determine from the 

data, as the pressure sensor reading increases by orders of magnitude when the penguin is 

under water. We discovered that the motif occurs moments before each dive and nowhere 

else. This pattern appears to be part of a ritual behavior made by the bird before diving. It 
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has been reported that “The only time penguins are airborne is when they leap out of the 

water.  Penguins will often do this to get a gulp of air before diving back down for fish.” 

Thus, we suspect this pattern is part of a ‘porpoise’ behavior [71]. 

Generally speaking, we see this example as typical of the interactions that motif 

discovery supports. In most cases, motif discovery is not the end of analyses, but only the 

beginning. By correlating the observed motifs with other (internal or external) data, we 

can form hypotheses and open avenues for further research. Recall the previous section; 

this is rather similar to the team studying Mount Rainier’s seismology discovered that its 

earthquakes are correlated with snowfall [3]. We believe that the STOMP algorithm may 

enable many such unexpected discoveries in a vast array of domains. 

3.3.9 Incrementally Maintaining Motifs 

In the previous sections, we have demonstrated the ability and efficiency to detect 

time series motifs using the matrix profile. However, we assumed that the entire time 

series was available beforehand. Here we remove this assumption and show how 

STOMPI allows us to incrementally maintain time series motifs in an online fashion. 

There are many attempts of this task in the literature [7][82], but they are all approximate 

and allow false dismissals. 

In Section 3.2.2, we introduced the STOMPI algorithm. The ability to 

incrementally maintain the matrix profile implies the ability to exactly maintain the time 

series motif [49] in streaming data. We simply need to keep track of the minimum value 

of the incrementally-growing matrix profile, and report a new pair of motifs when a new 

minimum value is detected. 
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We demonstrate the utility of this idea on the AMPds dataset [42]. While this is a 

real dataset, it lacks ground truth annotation so we slightly contrived it such that we can 

check the plausibility of the outcomes. For simplicity, we assume that the kitchen fridge 

and the heat pump are both plugged into a single metered power supply. For the first 

week, only the refrigerator is running. At the end of the week, the weather gets cold and 

the heat pump is turned on. The sampling rate is one sample/minute, and the subsequence 

length is 100 (i.e. one hour and forty minutes). We apply the STOMP algorithm to the 

first three days of data, then invoke the STOMPI algorithm to handle newly arriving data. 

Whenever we detect a new minimum value, we report a new motif. 

As shown in Figure 3.16, a new minimum value is detected at the 9,864th minute (6 

day 20 hour 24 minute), which indicates a new time series motif. The just-arrived 100-

minute-long pattern looks very similar to another pattern that occurred five hours earlier. 

While there is a lot of regularity in the fridge data in general, the exceptional similarity 

observed here suggested some underlying physical mechanism that caused such a 

perfectly-conserved pattern, perhaps a mechanical ice-making “subroutine.” 

 
Figure 3.16. top) The matrix profile of the first 9,864 minutes of data. bottom) The minimum value of 

the matrix profile corresponds to a pair of time series motifs in the power usage data. right) The time 

series motif detected. 

The maximum time needed to process a single data point with STOMPI in this 

dataset is 0.0003 seconds, which is less than 0.004% of the data sampling rate. Thus, on 
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this dataset we could continue monitoring with the STOMPI algorithm for several 

decades before running out of time or memory. 

STOMPI may have implications for real-time earthquake warning systems, which 

will reduce the probability of false alarms by quickly searching dictionaries of previously 

confirmed events [101]. We leave such consideration for future work. 

3.4 Conslusions 

In this chapter we introduced STOMP, a new algorithm for time series motif 

discovery, and showed that it is theoretically and empirically faster than its strongest 

rivals in the literature, STAMP [96], Quick-Motif [37] and MK [49]. In the limited 

domain of seismology, we showed that STOMP is at least as fast as the recently 

introduced FAST algorithm [101], but STOMP does not allow false negatives and does 

not need careful parameter tuning. Moreover, for datasets and subsequences lengths 

encountered in the real world, STOMP requires one to three orders of magnitude less 

memory than rival methods. Thus, even if we are willing to wait a longer period of time 

for the rival methods to search a large (ten million-plus) dataset, we will almost certainly 

run out of main memory. Given that these algorithms require random access to the data, 

disk-based implementations are infeasible. This is not a gap that is likely to be closed by 

a new implementation of these algorithms, because STOMP is unique among motif 

discovery algorithms in not extracting subsequences, but performing all the computations 

in-situ. 
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We also introduced STOMPI, the incremental version of STOMP that allows us to 

maintain time series motifs in an online fashion, and demonstrated its utility in electricity 

power monitoring. 

We further demonstrated optimizations that allow STOMP to take advantage of 

GPU architecture, opening an even greater performance gap and allowing the first exact 

motif search in a time series of length one hundred and forty-three-million. 

In future work, we plan to investigate the multidimensional version of our 

algorithms. 
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Chapter 4 SCRIMP++: An Anytime 

Algorithm to Compute the Matrix 

Profile 

In previous chapters, we have shown that the Matrix Profile is a flexible and 

generic data tool to solve a host of time series data mining problems, including motif 

discovery. There are two algorithms to compute the Matrix Profile, STOMP (Chapter 3), 

which requires O(n2) time, and STAMP [96], which is an O(logn) factor slower. In spite 

of being slower, STAMP is actually the preferred solution for some applications, as it is a 

fast converging anytime algorithm. In favorable scenarios STAMP needs only to be run 

to a small fraction of completion to provide a very accurate approximation of the top-k 

motifs. In this chapter we introduce SCRIMP++, an O(n2) time algorithm that is also an 

anytime algorithm, combining the best features of STOMP and STAMP. As we shall 

show, SCRIMP++ maintains all the desirable properties of the original algorithms, but 

converges much faster, in almost all scenarios producing the correct output after spending 

a tiny fraction of the full computation time. SCRIMP++ further expands the purview of 

the Matrix Profile and allows us to consider even larger datasets. More critically, 

SCRIMP++ allows us to perform motif discovery interactively, rather than the typical 

offline batch processing that is the norm. 
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4.1 Motif Analytics: An Insatiable Need for Speed 

While all data mining algorithms benefit from improvements in speed, here we 

argue that for the particular case of motif discovery, improvements in speed are game-

changing. Motif discovery benefits from interactivity more than most data mining 

processes. To see this, consider the following analytics session scenario, which while 

slightly fictionalized, is based on an ongoing project supporting data-intensive 

entomology [92]. 

An entomologist wants to examine a five-hour, 1,080,000-point time series (as 

shown in Figure 4.1) she recorded overnight. From her previous experience, she suspects 

that a motif length of 100, corresponding to one-second, is about the right scale for this 

insect’s behavior to be manifest.  However, because she notices the motifs discovered are 

so well conserved at this scale, she decides to consider two-second long motifs. When she 

sees these new motifs, she realizes that they correspond to snippets from the setup time, 

when her assistant was adjusting the conductive glue on the insect’s back. She therefore 

crops off the first few minutes and runs motif discovery again. She then… 

 

Figure 4.1. A five-hour sample of Electrical Penetration Graph (EPG) data hints at the difficulty of 

motif search. See also Figure 4.14/Figure 4.15. 

If the entomologist was to use STOMP (Chapter 3), the state-of-the-art exact motif 

discovery algorithm, then on a modern desktop each run would take about 0.7 hours.  

This is an important data resource, and a diligent entomologist may find it worth the 

effort to visit her machine every hour or so, but clearly such long cycle time dashes any 
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hope of interactively. As [84] notes “In interactive data analysis processes, the dialogue 

between the human and the computer is the enabling mechanism that can lead to 

actionable observations. It is of paramount importance that this dialogue is not 

interrupted by slow computation”. 

As we will show in this work, SCRIMP++ allows us to perform the above analytic 

workflow interactively; in the above scenario, we can reduce the cycle time to just a few 

seconds. 

Beyond the above anecdote that reflects our research interests, the literature is 

replete with examples that suggest the need for faster motif discovery. A recent paper 

considering several fundamental questions in neuroscience notes that some such 

questions reduce to determining if neural activity “repeats” happen more than expected 

by chance [35]. As Figure 4.2 suggests, these repeats are simply time series motifs. 

 

Figure 4.2. Adapted from [35]. “Repeats” in the neuroscience literature are simply time series motifs. 

To find such motifs in even a minute’s worth of data, the authors resorted to 

various approximations to “increase processing speed.” For example, they downsampled 

their data by 1 in 10, and rather than use a sliding window, they use a “jumping” window 

to reduce the number of comparisons. Even then, the authors noted that to obtain timely 
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answers their “repeat-finding algorithm was parallelized and performed on a high-

performance computing (HPC) cluster.” [35]. 

However, consider their 2-kHz data, and further assume that we search for their 

longest motif length of 2.7 seconds (5,400 datapoints), and test all possible subsequences 

(not just “jumping” overlaps) in their largest dataset, which is 8,258,064 data points 

corresponding to 68.8 minutes of wall clock time. 

With an off-the-shelf desktop we can run SCRIMP++ to 1%, in 27.4 minutes, and 

reproduce their quality of results (cf. [75]). Note that even here, with the original authors’ 

most challenging task, we can still process the data faster than they can collect it [35]. 

The authors go on to bemoan the fact that even with their approximations and use of 

HPC, that their findings “represent a lower limit on the duration and prevalence of motifs 

which might be observed if longer segments of intracellular dynamics could be 

analyzed”. The algorithm presented in this paper will trivially allow this possibility to be 

explored, not with batch processing on an HPC, but in real-time interactive sessions on a 

laptop. 

Before moving on, we note that the Matrix Profile has implication for other time 

series tasks, including discord discovery (Chapter 2), chain discovery (Chapter 6), 

semantic segmentation [23], etc. While SCRIMP++ can benefit these tasks, for simplicity 

and concreteness we only consider motif discovery in this chapter. 
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4.2 Related Work and Background 

4.2.1 Definitions 

In this chapter, we inherit all the definitions and notations for time series 

(Definition 2.1), time series subsequence (Definition 2.2), distance profile (Definition 

2.3), matrix profile (Definition 2.4) and matrix profile index (Definition 2.5) from 

Chapter 2. 

4.2.2 Matrix Profile Background 

It has been shown in [96] that one can trivially compute all top-k motifs (for any k), 

range motifs (for arbitrary ranges), and a host of other useful time series primitives, if one 

has access to the matrix profile. Thus, fast motif discovery simply reduces to fast 

computation of the matrix profile. 

To date there are two algorithms to compute the matrix profile, STAMP [96] and 

STOMP (Chapter 3). 

The STAMP algorithm [96] evaluates the distance profiles (Definition 2.3; the 

columns/rows in Figure 2.2) in random order. Each distance profile Di is evaluated by 

the MASS algorithm [51], which exploits Fast Fourier Transform (FFT) to calculate the 

dot product between Ti,m and every subsequence in T. The evaluation of a distance profile 

thus takes O(nlogn) time where n is the length of time series T, and the overall process 

takes O(n2logn) time. 

In contrast to STAMP, the STOMP algorithm introduced in Chapter 3 evaluates the 

distance profiles in Figure 2.2 in-order by exploiting the computation dependency 
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between consecutive distance profiles. The algorithm only costs O(n2) time, an O(logn) 

factor faster than STAMP. STOMP algorithm was forcefully demonstrated as more 

efficient than the previous state-of-the-art motif discovery algorithms, the Quick-Motif 

algorithm [37] and the MK algorithm [49] in both time and space (see Section 3.3.3 and 

Section 3.3.4). 

Both STAMP and STOMP maintain the element-wise minimum-so-far values of 

the evaluated distance profiles in a running matrix profile. Note that although STAMP is 

an O(logn) factor slower than STOMP, it shows better interactivity. As shown in Figure 

4.3, STAMP is able to locate the highlighted motifs in the time series T when it is only 

10% completed, as the running matrix profile already contains two deep valleys in the 

vicinity of the motifs. In contrast, STOMP cannot locate the motifs even when it is 50% 

completed (no deep valleys show up), because the running matrix profile converges to the 

oracle from left to right in order. 

 

Figure 4.3. STAMP is able to detect the motifs located towards the right side of a time series when it 

is only 10% completed due to its random computation order. In contrast, STOMP’s left-to-right 

sequential computation means it cannot detect them even when 50% completed. 

However, when the time series is very long and motifs are rare, the probability of 

STAMP finding the top-k motifs within 10% of its computation greatly decreases. 
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Furthermore, as STOMP is a factor of O(logn) faster, by the time STAMP has completed 

10% of its computation, STOMP may already converge to the exact solution. These 

conflicting strengths of the two algorithms require careful reasoning by the analyst, based 

on her goals and her tentative knowledge of the data. SCRIMP++ eliminates any 

dilemma, by combining the speed of STOMP with the anytime convergence property of 

STAMP. 

4.2.3 General Motif Search 

It is important to make the distinction between approximate algorithms (of which 

there are many, see [81] for a survey) and anytime algorithms for motif discovery [96]. 

Suppose a user runs a fast, but approximate algorithm on a large dataset. It is possible 

that when the motifs are returned, she is satisfied. However, suppose that the motifs are 

not as well conserved as she expected, given her domain knowledge and her intuitions for 

the data. She is now in a quandary, are the expected motifs simply not there, or did the 

algorithm fail to find them? The problem is compounded by the fact that no approximate 

motif discovery algorithm we are aware of come with any kind of probabilistic 

guarantees, and all require at least three unintuitive parameters to be set [81]. What can 

our user do? If the approximate algorithm was stochastic, she can run it again, and/or 

change the parameters, but she may repeatedly face the same problem. Otherwise, she is 

condemned to run the fastest exact algorithm she has access to (which is STOMP). 

If the approximate algorithms took a tiny fraction of the time of the best exact 

algorithm, this issue would require some careful reasoning about trade-offs. However, as 
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we will show in Section 4.4.3, all approximate algorithms take a large fraction of the time 

needed by SCRIMP++, especially for longer motifs. 

For this reason, we argue that an anytime algorithm is necessary. In most cases, in a 

few seconds the user has acceptable results. If she has any doubts, she can simply let the 

algorithm run a little longer. There is no need to start the fastest exact algorithm, because 

it is already running! 

Finally, we need to qualify the claim that STOMP is the fastest exact algorithm for 

motif discovery. On “cooperative data” (relatively smooth data, motifs highly conserved 

relative to the rest of the data, short motif lengths etc.), other exact algorithms such as 

Quick-Motif [37], IMD [24], or MK [49] can be fast. But in less-than-cooperative data 

(e.g., the seismology data in Chapter 3) these algorithms degenerate to O(n2m), with very 

high constant factors. The authors of [24] are to be commended for stating this explicitly 

“…in the worst case, the algorithm still has a time complexity of O(n2m)”. 

As we show in our case studies (see Figure 4.14), m can be as large as 15,000 or 

greater for real-world problems. In contrast STOMP (and SCRIMP++) takes O(n2) time, 

completely independent of the data and the value of m. Thus, for realistic problems with 

high dimensionality, STOMP can be thousands of times faster than Quick-Motif [37], 

IMD [24], or MK [49]. 

4.3 Algorithms 

The SCRIMP++ Algorithm consists of two parts: PreSCRIMP and SCRIMP (as 

shown in Figure 4.4). In this section, we will first introduce the SCRIMP algorithm, 
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which is an O(n2) anytime algorithm with better convergence characteristics than 

STOMP (Chapter 3). We will then further extend SCRIMP to SCRIMP++, a robust 

anytime algorithm which, thanks to the addition of an ultra-fast preprocessing algorithm 

PreSCRIMP, is capable of detecting essentially all the motifs within a time series at an 

early stage, even when the motifs are subtle and/or extremely rare. For simplicity we only 

consider self-join here; however, all the algorithms introduced can be easily extended to 

AB-join [96]. 

 

Figure 4.4. The SCRIMP++ algorithm consists of an ultra-fast preprocessing algorithm, 

PreSCRIMP, and an O(n2) anytime algorithm, SCRIMP. PreSCRIMP provides a very accurate 

approximation of the matrix profile at an early stage; SCRIMP further refines the approximate 

matrix profile until it becomes the exact/final solution. The user can interupt the algorithm at any 

time (during either PreSCRIMP or SCRIMP) to inspect the current approximate solution. Thus 

overall, SCRIMP++ is also an anytime algorithm. 

4.3.1 Our Initial Solution: The SCRIMP Algorithm 

Before we introduce the SCRIMP algorithm, let us first briefly review the STOMP 

algorithm (Chapter 3). Based on (3.1) and (3.4), the STOMP algorithm evaluates the 

distance matrix in Figure 2.2 row-by-row in-order and updates the matrix profile 

accordingly, rendering an O(n2) time complexity. However, as indicated in Figure 4.3, 

this in-order computation prevents motifs at the end of a time series from being 

discovered at an early stage. Can we fix this undesirable property? 

PreSCRIMP SCRIMP

SCRIMP++
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approximate Matrix Profile



 78 

Note that (3.4) also implies that we can evaluate the diagonals of the distance 

matrix in Figure 2.2 in random order. The SCRIMP algorithm (Algorithm 4) exploits 

this, evaluating the matrix profile in an anytime fashion while keeping the same O(n2) 

time complexity. 

Algorithm 4: SCRIMP(T, m) 

 Input: A time series T and a subsequence length m 

Output: Matrix profile P and the associated matrix profile index I of T 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

n ← Length(T) 

μ, σ ← ComputeMeanStd(T, m)                        // see [61] 

P ← infs, I ← ones                                           // initialization 

Orders← RandPerm(m/4+1 : n-m+1)             // randomize evaluation order 

for k in Orders           //evaluating diagonals in random order 

    for i ← 1 to n-m+2-k 

        if i=1 do q ← DotProduct(T1,m, Tk,m) 

   else q ← q - ti-1 ti+k-2 + ti+m-1 ti+k+m-2                                    // see (3.4) 

  end if 

  d ← CalculateDistance(q, μi, σi , μi+k-1, σi+k-1)      // see (3.1) 

  if d < Pi do Pi ← d, Ii ← i+k-1 end if 

  if d < Pi+k-1 do Pi+k-1 ← d, Ii+k-1 ← i end if 

    end for 

end for 

return P, I 

Line 2 precomputes the means and standard deviations of all subsequences in T. 

The matrix profile P and matrix profile index I are initialized in line 3. In lines 5-14, we 

iteratively evaluate the diagonals of the distance matrix in Figure 2.2 in random order. 

Figure 4.5 visualizes this. The distance values d1,k, d2,k, …, dn-m+2-k,n-m+1 are calculated 

one by one; if di,i+k-1 (denoted as d in line 10, 1 ≤ i ≤ n-m+2-k) is smaller than Pi (line 11) 

or Pi+k-1 (line 12), we update the corresponding matrix profile (and index) values. At any 

time, the user can interrupt the algorithm to inspect the current P and I. 
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Figure 4.5. A single iteration of SCRIMP evaluates a randomly selected diagonal in Figure 2.2, thus 

updating the matrix profile in an anytime fashion. 

4.3.2 Limitations of the SCRIMP Algorithm 

As motifs in the time series correspond to the minimum points of the oracle (or 

exact) matrix profile (indicated in Figure 4.6.top), we hope that SCRIMP could “focus” 

on these minimum points rather than at other locations. This has an element of a chicken-

and-egg paradox to it, we want the algorithm to focus on where the motifs are, but we are 

using the algorithm to discover where the motifs are. 

Recall that in each iteration of SCRIMP (as shown in Figure 4.5), we evaluate a 

random diagonal of the distance matrix. To locate the motifs of time series T in Figure 

4.6.top, we need to evaluate the diagonal starting from d1,126 (126-1=137-12) as early as 

possible. As shown in Figure 4.6.middle, if SCRIMP evaluates that diagonal in its first 

iteration, the running matrix profile already overlaps perfectly with the oracle at the 

minimum points. However, if SCRIMP does not evaluate that diagonal until its very last 

iteration (Figure 4.6.bottom shows the running matrix profile before the last iteration), 

we need to wait until the algorithm is 100% completed to locate the motifs. In fact, the 

probability to evaluate the diagonal of d1,126 before the kth iteration is k/(n-m+1). While 
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SCRIMP has a chance to find the motif early no matter where they are located (which is 

its advantage over STOMP), that probability is not high. 

 

Figure 4.6. top) Motifs (highlighted, located at 12 and 137) correspond to the minimum values of the 

matrix profile. middle) Ideally, SCRIMP can locate the motifs after its first iteration. bottom) In the 

pathological worst case, SCRIMP cannot locate the motifs until fully completed. 

However, note that Figure 4.6.top shows the hardest possible scenario for motif 

discovery; there is only a single pair of motifs in the time series. When the data contain 

more motifs, SCRIMP will perform much better. This is much like how the famous 

birthday paradox has an unexpectedly fast converge to probability 1 as we consider more 

individuals. The chance of SCRIMP making an early discovery of some pair from a motif 

set, increases dramatically if there are more members in that motif set. In the next section, 

we will introduce SCRIMP++, an extended version of SCRIMP which has a much higher 

probability of discovering not some, but all the true motifs at an early stage, even when 

the motifs are very rare. 
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4.3.3 Our Ultimate Solution: The SCRIMP++ Algorithm 

The SCRIMP++ Algorithm is simply the SCRIMP algorithm (Algorithm 4) 

augmented by an additional preprocessing stage called PreSCRIMP (recall Figure 4.4). 

We begin by introducing the Consecutive Neighborhood Preserving Property of time 

series subsequences, upon which PreSCRIMP is based. 

Let us examine the matrix profile index of the example time series T in Figure 

4.6.top. Figure 4.7 shows its first 25 entries. 

 

Figure 4.7. The matrix profile index of time series T in Figure 4.6.top. 

Here Index = [1, 2, 3, …, n-m+1] is the locations of all the subsequences in T, I is 

the matrix profile index (Definition 2.5) of T. We can see that the matrix profile index 

can be divided into multiple sections of consecutive values: within each section, a set of 

consecutive subsequences find another set of consecutive subsequences as their nearest 

neighbors. We call this the Consecutive Neighborhood Preserving (CNP) Property of 

time series subsequences. 

With a little introspection, one can see that the CNP property should exist: since 

consecutive subsequences overlap by a large portion, if the ith subsequence is very similar 

to the jth subsequence, then there is a very high probability that the (i+1)th subsequence is 

also very similar to the (j+1)th subsequence. In Figure 4.8, we can see that the 11th, 12th, 

13th, and 14th subsequences find the 136th, 137th, 138th and 139th subsequences as their 

Index 1 2 3 4 … 7 8 9 … 24 25 …
I 56 57 112 113 … 116 133 134 … 149 150 …
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nearest neighbors, respectively; the subsequence-neighbor pairs remain a constant 

location difference of 125. 

 

Figure 4.8. Visualizing the CNP property of time series subsequences in the vicinity of the 1st motif 

pattern. 

Exploiting the CNP property, we propose a preprocessing algorithm PreSCRIMP, 

that produces a very close approximation of the oracle matrix profile while costing only a 

tiny fraction of its O(n2) computation time. Essentially, we sample subsequences from the 

time series with a fixed interval s (Figure 4.9.top shows the starting location of these 

sampled subsequences). For each sampled subsequence, we find its exact nearest 

neighbor. Assume that Ti,m is a sampled subsequence, and its nearest neighbor is Tj,m, 

then according to the CNP property, there is a high probability that the nearest neighbor 

of Ti+k,m is Tj+k,m (k=-s+1, -s+2, …, -2, -1, 1, 2, …, s-2, s-1). We compute the distances 

between these pairs of subsequences and update the matrix profile if a smaller distance 

value shows up. 

time series T
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Figure 4.9. top) Subsequences are sampled from time series T with a fixed interval s. bottom) After 

running PreSCRIMP, the running matrix profile becomes very similar to the oracle matrix profile, 

especially at the low values we care about. 

The overall algorithm is outlined in Algorithm 5. Line 2 precomputes the means 

and standard deviations of all subsequences in T. In line 3, we sample subsequences from 

time series T with a fixed interval s (Figure 4.9.top shows their starting position), then 

process these subsequences in random order. Each sample subsequence is processed with 

two stages (lines 4-22). 

In the first stage (lines 4-7), we evaluate the distance profile corresponding to the 

current sample subsequence Ti,m with the MASS algorithm [51], then update the running 

matrix profile (and index) if we find a smaller distance value. Note that after this stage, 

we already know the nearest neighbor of Ti,m (assume it is Tj,m), and the matrix profile 

and matrix profile index are exact at the ith entry. As a result, we can see from Figure 

4.9.bottom that the running matrix profile aligns perfectly with the oracle matrix profile 

at the sampled locations. 

In the second stage (lines 8-22), we refine the running matrix profile (and index) 

near the ith entry by exploiting the CNP property. Starting from the current sample 

subsequence Ti,m and its nearest neighbor Tj,m, we move forward to evaluate the pairwise 

distances between (Ti+1,m, Tj+1,m), (Ti+2,m, Tj+2,m), …, until we reach the next sampled 

time series T
s
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location or the end of the time series (lines 10-15). After that, we traverse backward from 

Ti,m  and Tj,m to evaluate the pairwise distance between (Ti-1,m, Tj-1,m), (Ti-2,m, Tj-2,m), …, 

until we reach an earlier sampled location or the beginning of the time series (lines 17-

22). The corresponding running matrix profile (and index) entries are updated once we 

find a smaller distance value. 

Algorithm 5: PreSCRIMP(T, m, s) 

 Input: A time series T, a subsequence length m and a sampling interval s 

Output: The running matrix profile P and matrix profile index I of T 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

n ← Length(T), P← infs, I← ones // initialization 

μ, σ ← ComputeMeanStd(T, m)   // precomputation, see [61] 

for i ← RandPerm(1 : s : (n-m+1)) do   //sampling with interval s 

    seq ← Ti,m       //obtain a sample subsequence 

    D ← MASS(T, seq)   // evaluate a distance profile, see [51]  

    P, I ← ElementWiseMin(D, P, i) 

    Pi , Ii ← min(D) 

     j ← Ii       // the nearest neighbor of the sample subsequence  

    q ← CalculateDotProduct(Pi, μi, σi, μj, σj), q’ ← q  // see (3.1) 

    for k ← 1 to min(s-1, n-m+1- max(i,j)) do 

            q ← q - ti+k-1 tj+k-1 + ti+k+m-1 tj+k+m-1      // see (3.4) 

        d ← CalculateDistance(q, μi+k, σi+k , μj+k, σj+k) // see (3.1) 

        if d < Pi+k do Pi+k ← d, Ii+k ← j+k end if 

        if d < Pj+k do Pj+k ← d, Ij+k ← i+k end if 

    end for 

    q ← q’ 

    for k ← 1 to min(s-1, i-1, j-1) do 

          q ← q - ti-k+m tj-k+m + ti-k tj-k      // see (3.4) 

        d ← CalculateDistance(q, μi-k, σi-k , μj-k, σj-k) // see (3.1) 

        if d < Pi-k do Pi-k ← d, Ii-k ← j-k end if 

        if d < Pj-k do Pj-k ← d, Ij-k ← i-k end if 

    end for 

end for 

return P, I 

The overall time complexity of the algorithm is O(n2logn/s), where n is the length 

of the time series and s is the sampling interval. The space complexity is O(n). From 

Figure 4.9.bottom, we can see that after running PreSCRIMP, the running matrix profile 
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aligns very well with the oracle matrix profile, especially at the minimum points, which 

for motif discovery, are all we care about. 

The reader may wonder how we determine the sampling interval s. Note that any 

unsampled subsequence must overlap with one of the sampled subsequences by at least 

1-s/(2m). Therefore, the smaller s is, the more accurate is our running matrix profile (and 

the longer PreSCRIMP takes to compute it). As a practical matter (as we will 

demonstrate later in Section 4.4), we set s=m/4, which guarantees that all the 

subsequences overlap with at least one sampled subsequence by at least 87.5%. This 

setting renders PreSCRIMP an O(n2logn/m) time complexity. As the subsequence length 

m is normally much larger than logn, the time needed for PreSCRIMP is a tiny fraction 

required for SCRIMP/STOMP. 

After running PreSCRIMP, we continue to refine the matrix profile with SCRIMP, 

until it converges to the exact solution. We call the augmentation of SCRIMP with 

PreSCRIMP, SCRIMP++ (recall Figure 4.4). Note that SCRIMP++ can be interrupted at 

any stage (including during the PreSCRIMP stage), to produce an approximate solution. 

4.4 Empirical Evaluation 

To ensure that our experiments are reproducible, we have built a website which 

contains all data/code/raw spreadsheets for the results, in addition to many experiments 

that are omitted here for brevity [75]. All experiments were run on a Dell XPS 8920, with 

Intel Core i7-7700 CPU @ 3.6GHz and 64GB RAM. 



 86 

4.4.1 Comparing Convergence Behaviors 

We begin by comparing the convergence behavior of STAMP [96], STOMP 

(Chapter 3) and SCRIMP++. Note that STOMP is not regarded as a true anytime 

algorithm but is included for completeness. 

To stress-test these algorithms with different circumstances (different numbers and 

locations of motifs, different data type, etc.), we created four different synthetic datasets. 

Figure 4.10 shows one example from each of the four datasets. 

 

Figure 4.10. a) Random-walk data with one pair of embedded random-walk motif patterns. b) 

Random-walk data with 10 embedded random-walk motif pairs. c) Seismology data with two 

repeated earthquake signals. d) Random noise without any embedded motif patterns. 

Each dataset includes 100 time series of length 40,000. Within each time series we 

embed various numbers of motif patterns of length m=400 at random locations. The first 

dataset (Figure 4.10.a) is a set of random-walk time series; within each of these time 

series we embed a single pair of random-walk motif patterns (they are similar, but not 

identical). The second dataset (Figure 4.10.b) is also random-walk data, but contains 10 

pairs of different random-walk motif patterns. The third dataset (Figure 4.10.c) is 

adapted from Section 3.3.4, where we have a continuous recording of seismograph 
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background noise, and embed in it one pair of repeated earthquake signals (similar but 

not identical) at random locations. The fourth dataset (Figure 4.10.d) is random noise 

time series; we embed no motifs in it, but regard its natural top-1 motif pattern of length 

400 as target. 

As the algorithms evaluate the matrix profile of a time series, we constantly 

interrupt it, mark the current runtime t, then extract the top-k motif patterns (we set k = 

10 for Figure 4.10.b; k = 1 for Figure 4.10.a, Figure 4.10.c and Figure 4.10.d) from the 

running matrix profile and check to see if the embedded motif patterns have been 

discovered. We regard an embedded motif pattern as discovered if it overlaps with one of 

the k extracted motif patterns by at least 95%. We use a value p to represent the 

percentage of embedded motif pairs discovered at each time instant t. 

We first consider Figure 4.10.b, where the random-walk time series includes 10 

pairs of embedded motifs. Figure 4.11 shows the average value of p as the three 

algorithms search for motifs. 

We can see that SCRIMP++ shows much faster convergence characteristics than 

STAMP or STOMP in locating the top 10 motif pairs. After the PreSCRIMP phase 

(requiring only 0.26 seconds) finishes, all the 10 embedded motifs randomly located in 

all 100 random-walk time series are successfully discovered. In contrast, to be just 99% 

sure that we have discovered all the true motifs, STAMP takes about 8 times longer and 

STOMP needs to almost run to completion (about 9 times longer). 
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Figure 4.11. The average percentage of embedded motif pairs discovered at each time instant for the 

dataset shown in Figure 4.10.b. Note that the time for STAMP’s convergence is truncated. 

Now let us consider the harder scenarios in Figure 4.10.a, Figure 4.10.c and 

Figure 4.10.d, where there are only one pair of motif patterns in the data. We 

experimented in these scenarios because: 1) The top-1 motif in these datasets are hard to 

locate as they are rare. 2) The seismology data in Figure 4.10.c is a typical example of 

“less-than-cooperative” data discussed in Section 4.2.3, which would degenerate rival 

motif discovery methods such as Quick-Motif [37] or MK [49] to their worst case time 

complexity (recall Figure 3.1). 3) The random-noise data in Figure 4.10.d shows an 

extremely hard case for motif discovery, as essentially all pairs of time series 

subsequences are approximately equidistant. Nevertheless, as shown in Figure 4.12, 

SCRIMP++ shows a very fast convergence characteristic in all these datasets. After the 

PreSCRIMP phase is completed (0.26 seconds), all the top-1 motifs in all the time series 

within all three datasets are already successfully discovered, costing only a tiny fraction 

of time needed by STOMP or STAMP. Note that here STAMP does not perform as well 

as in Figure 4.11, as the motifs are very rare. 
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Figure 4.12. left-to-right) The observed probability for the top-1 motif discovered at each time instant 

for the dataset shown in Figure 4.10.a, Figure 4.10.c and Figure 4.10.d. Note that the full time for 

STAMP’s convergence is truncated. 

As we show in the next section, SCRIMP++ maintains this advantage over different 

lengths of time series and motif lengths. We chose to consider 40,000 data points here, 

because based on our informal survey of practitioners that use motif discovery, this is 

about the median size of datasets2 considered [10][79]. Here we can find such motifs in 

just ¼ of a second, truly interactive time [84]. 

4.4.2 Runtime Comparison of SCRIMP++ and STOMP 

In this section, we compare the run time of SCRIMP++ with the state-of-the-art 

exact motif discovery algorithm, STOMP (Chapter 3). The time measurements are based 

on the C++ implementation of both algorithms. Note that the runtime for both algorithms 

is invariant to the type of time series data we are using. Table 4.1 shows the time 

required by both algorithms with a fixed subsequence length m, on random noise time 

series with increasing length n. 

                                                 

 
2 To be clear, many biologists produce terabytes of data, but often each “run” or “treatment” is only of the order of tens to hundreds of 

thousands in length.  
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Table 4.1.  Time Needed for Motif Discovery with m = 4096, varying n 

Algorithm                             n 217 218 219 220 221 

STOMP 22.5 sec 1.78 min 7.37 min 37.1 min 2.22 hours 

SCRIMP++ 
PreSCRIMP 0.51 sec 2.33 sec 17.2 sec 1.52 min 6.83 min 

SCRIMP 23.9 sec 1.94 min 7.96 min 40.9 min 2.46 hours 

We can see that the runtime of the SCRIMP Algorithm is similar to the STOMP 

algorithm, as they vary only in evaluation order. The PreSCRIMP algorithm consumes 

only a very small fraction (less than 6%) of their time3. 

In Table 4.2, we fixed the time series length n and vary subsequence length m. We 

can see that the runtime of STOMP and SCRIMP are essentially invariant to the 

subsequence length m. PreSCRIMP, with a time complexity O(n2logn/m), costs less and 

less time while we increase m. As m can be in the thousands for real-world problems (cf. 

Sections 4.4.4-4.4.6), this is a desirable feature. 

Table 4.2.  Time Needed for Motif Discovery with n = 218, varying m 

Algorithm                            m 1024 2048 4096 8192 16384 

STOMP 1.83 min 1.78 min 1.78 min 1.8 min 1.67 min 

SCRIMP++ 
PreSCRIMP 9.22 sec 4.81 sec 2.33 sec 1.23 sec 0.58 sec 

SCRIMP 2.17 min 2.12 min 1,94 min 2.05 min 1.96 min 

Furthermore, as PreSCRIMP is based on iterative vector operations, the 

computation process is highly parallelizable. Implementing PreSCRIMP with high-

performance computing platforms such as GPU is trivial, and we make the GPU version 

freely available at [75]. 

                                                 

 
3 Note that though we could further speed up PreSCRIMP with multi-threading or piece-wise FFT, we reported its run time here 

without any of these optimizations.  
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4.4.3 Comparison to Rival Methods 

We have argued that there is a critical difference between approximate algorithms 

and anytime algorithms for motif discovery. By definition, anytime algorithms are also 

approximate algorithms (if stopped early), but the converse is not true. If the motifs 

returned by an approximate algorithm are not satisfactory, the user has no recourse but to 

adjust parameters and try again, or resort to the fastest exact algorithm STOMP (Chapter 

3). 

Nevertheless, it may be instructive to compare our proposed algorithm to the state-

of-the-art approximate algorithm.  But which algorithm is state-of-the-art for this task? A 

recent survey reviews more than a dozen algorithms without explicitly answering that 

question [81]. Fortunately, we can bypass this issue, and effectively compare to all of 

them. All such algorithms, whether they use hashing, grammars, Markov models, suffix 

trees etc. [81], must first convert the data into a symbolic representation. The time taken 

to do this is clearly a lower bound on the time to produce any motifs. Note that we cannot 

bypass this time requirement with any precomputation/indexing, as this is only possible if 

one knows the length of motifs, but as we have shown, this can be changed in an ad-hoc 

manner during the user’s interactive session. 

We used the code written by L. Wei [91]  (which is the code used by the majority 

of papers reviewed in [81]), to discretize increasingly long time series, while keeping m 

fixed to 4,096 and a dimensionality of 8 and cardinality of 5 (typical values for most 

research efforts [81]). As Figure 4.13 shows, we compare the runtime of this 

preprocessing discretization step of the rival algorithms to that of PreSCRIMP. 
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Figure 4.13. The time needed to discretize data and the time needed to perform PreSCRIMP for 

increasingly long data. 

We can see that when the time series length is smaller than 219, SCRIMP++ has 

already reported a very high-quality solution with PreSCRIMP, before any approximate 

algorithm is even in a position to finally start the hashing or suffix tree construction that 

they hope will yield an approximate answer. 

Note that this experiment offers an extremely weak lower bound for the cost of the 

rival approximate algorithms. In practice, the searching such algorithms take is 3 to 20 

times longer than this preprocessing [81]. Finally, all these methods are reporting motifs 

found in a lossy data representation with the inherent error that produces, whereas 

SCRIMP++ is searching the original data. 

4.4.4 Case Study: Multiscale-Motifs 

We believe that the extraordinary speed of PreSCRIMP will allow the community 

to invent novel time series primitives. To give an example, we consider a question 

suggested by an entomologist collaborator: are there any multiscale-motifs in the EPG 

datasets [92] previously discussed in Section 4.1? We informally define a multiscale-

motif as a pair of patterns that are very similar to each other but differ by at least a factor 

of two in length. 
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Clearly finding multiscale-motifs is computationally challenging, because beyond 

comparing all pairs of subsequences, we must now compare all pairs of subsequences, 

and at all possible combinations of scales. It may be possible to create a scalable novel 

algorithm to find multiscale motifs, but the speed of PreSCRIMP suggests a very easy 

“fast-enough” method that we can implement in a handful of lines of code, given 

PreSCRIMP as a primitive. 

Recall we can use PreSCRIMP to do self-joins or AB-joins. Suppose we set B = 

rescale(A,300%) and compute an AB-join. The resulting motifs discovered will reflect a 

short pattern in A that matches a much longer pattern in B, after the patterns are scaled to 

a common length. In this case, we do not know what the “right” rescaling length is, but 

PreSCRIMP is fast enough to allow us to run it fifty times and simply test all possible 

scalings from 200% to 300%, in 2% increments. We have done this for a 1.8 hour 

(650,000 datapoints) long trace of Asian citrus psyllid (Diaphorina citri) feeding on 

Citrangor, a subspecies of orange. Figure 4.14 shows that the best multiscale-motif 

occurs for a rescaling of 218%. 

 

Figure 4.14. top.left) An Asian citrus psyllid feeding on a citrango leaf. top.right) The top-1 

multiscale-motif discovered. bottom) the two motif occurrences in context. 
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Note that one may wish to normalize the Euclidian distance for length when 

comparing multiscale-motifs (it happens to make no difference in this case). Further note 

that we are not claiming any particular entomological significance here, although it is 

interesting that this insect has behaviors that manifest themselves at such different scales. 

Our point is simply to show that PreSCRIMP is fast enough to be considered as a 

primitive we can call multiple times for higher-level analytics. The time taken for this 

entire experiment was just 84 seconds (m=15,000). 

This ability to handle motifs that occur at different lengths may also be of interest 

to the neuroscience/neuroinformatics community, which has recently adopted time series 

motifs as one of their most used analytic tools [10][79]. However, some of these authors 

have criticized current motif discovery algorithms because they “considers only exactly 

equal duration sequences as potential matches” [79]. The authors of [79] note that motifs 

of “turning maneuvers” of Drosophila larval have a variable length scale, with µ = 0.83s 

and σ = 0.27s. Using the simple algorithm described above, we can find multiscale motifs 

in the range of µ ±2σ in a dataset of 40,000 points, searching all rescalings in 5% 

increments ([35%, 40%, … ,160%, 165%]) in just 17 seconds. 

4.4.5 Case Study: Motif Joins 

The EPG domain considered in the previous section is a rich source of fundamental 

problems that can be addressed with motif discovery, below we consider another such 

problem. 

As shown in Figure 4.15.top, we consider three datasets, each of length 7,560,000, 

representing 21-hours of insect behavior. One of them, in which the insect was feeding on 
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Valencia (a type of orange), we designated as reference sample, ValenciaRef. We are 

interested to know if any elements of this reference behavior are to be found in the two 

other datasets, in one of which an insect was feeding on a Yamaguchi (a different type of 

citrus), and the other in which a different insect is feeding on a Valencia. We hope to 

understand what elements of the Asian citrus psyllid may be attributed to the type of 

plant it is feeding on, and what may be attributed to simple differences between 

individuals. Such studies have implications for breeding resistant strains and hybrids. 

 

Figure 4.15. top) The three EPG time series under investigation. bottom-left to right) There is little 

evidence of conserved patterns when the insects are feeding on different citrus plants, but there are 

strongly conserved patterns when feeding on a single plant type. 

It is instructive to think of the cost of a brute-force-search here. The motifs are of 

length 4,000, requiring (at least) 4,000 real-valued operations. Each AB-join requires 

about 5.71 * 1013 pairwise comparisons of subsequences, requiring 2.28 * 1017 real-

valued operations. Even at one hundred gigaFLOPS, this would require 26.4 days. In 

contrast, PreSCRIMP took just 2 hours. 
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4.4.6 Case Study: Electrical Power Demand 

As a final example of the scalability of SCRIMP++, and the potential actionability 

of motif discovery, we examined the electrical power demand dataset of [62]. Each trace 

corresponds to two calendar years or 8,198,756 datapoints, sampled once every 8 

seconds. As shown in Figure 4.16, a pair of motifs from trace 3 of House-5 caught our 

attention. 

 

Figure 4.16. The top two motifs in an electrical power data set. 

The first motif is the (near) binary switching on-and-off of a freezer compressor at 

very regular intervals. This unusually “perfect” motif has dozens of occurrences, almost 

all at night when there is no kitchen actively that would cause the compressor to “kick-

in” after the freezer was opened and disrupt the perfect spacing. The second motif is more 

interesting. It suggests that the compressor was running continuously for at least three 

hours. Two common causes of a freezer motor running for a long time are a faulty 

thermostat, or the more prosaic explanation, the homeowner not fully closing the door. In 

either case this is clearly a low-hanging fruit for energy conservation. 

SCRIMP++ allows us to find such patterns in real-time interactive sessions, 

something that no other tool allows [81]. 

1 1800 1 1800
4 hours 4 hours
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4.4.7 When can PreSCRIMP fail? 

The previous sections have shown the extraordinary alacrity and effectiveness of 

PreSCRIMP. To explore the limits of PreSCRIMP, in Section 4.4.1, we considered all the 

possible worst-case scenarios: when the motifs are very rare, when the dataset is of very 

high intrinsic dimensionality, when all the subsequence pairs are equidistant, etc. 

Nevertheless, PreSCRIMP succeeded in quickly locating all the true motifs in all these 

scenarios. It is natural to ask, can PreSCRIMP ever fail? Do we ever need to resort to 

running the SCRIMP phase of the SCRIMP++ algorithm, to refine the PreSCRIMP 

answer? 

In spite of a diligent search of over 100 diverse datasets, we could not find any real 

dataset that prevents PreSCRIMP from quickly discovering motifs. However, with 

careful introspection, we can create a pathological example that is difficult for 

PreSCRIMP. As shown in Figure 4.17.top, we created a synthetic random walk time 

series of length 40,000, with a pair of motifs embedded at fixed locations (T21842,400 and 

T24871,400, shown in red and yellow respectively).  We edited the first/red motif pattern 

such that just before and after the pattern, the level of the time series dramatically 

changed. In this scenario, the CNP property no longer hold at locations around the motif 

patterns. Though T21842,400 is very similar to T24871,400, T21842+k,400 is very different from 

T24871+k,400 (k=-3, -2, -1, 1, 2, 3) because of the dramatic level change. As a result, 

PreSCRIMP cannot discover the motif pair unless either T21842,400 or T24871,400 is sampled. 
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Figure 4.17. top) A pathological random walk time series with a pair of embedded motifs. The level of 

the data dramatically changes just before and after the first motif pattern, which invalidates the CNP 

property. bottom) the observed probability for the top-1 motif discovered at each time instant. Note 

that the probability for STOMP is binary, and flips to 100% as soon as it encounters the first motif. 

That could happen arbitrarily late (i.e. to the far right) in the worse case. 

However, as Figure 4.17.bottom shows, the overall SCRIMP++ algorithm still 

converges much faster than STAMP [96] and STOMP (Chapter 3) at the early stage. 

Here the result is averaged over 100 runs, and the value p represents the probability that 

the embedded motif pair is discovered at each time instant t. Although SCRIMP++ fails 

to discover the motif at the PreSCRIMP phase, p quickly increases as the algorithm turns 

into the SCRIMP phase thanks to its random computation ordering. In contrast, STOMP 

shows a 0% probability in locating the motifs until after 1.2 seconds (recall that STOMP 

is deterministic, and reports the same result over the 100 runs); STAMP shows a very low 

probability in finding the motifs even when SCRIMP++ finishes. This example 

demonstrates the robustness of SCRIMP++, even in the most pathological and contrived 

cases that defeat PreSCRIMP. 

0 1 2 3

PreSCRIMP
finished

STAMP finishes at 26.2 
sec (truncated)

STOMP finishes

STOMP

t (sec)

0%

50%

100%

p

0 40000

Embedded Motif

T21842,400
T24871,400

This “step-up” for  STOMP occurs 
when it encounters the first motif

SCRIMP++
finishes



 99 

4.5 Conclusions 

In many domains, including neuroscience [10][35], entomology [79], medicine and 

consumer-level energy conservation [62], etc., analysts routinely deal with datasets that 

are in the range of a few million data points long. For the first time, SCRIMP++ allows 

the possibility of real-time interactive discovery of motifs in such datasets, using off-the-

shelf consumer desktops. We believe that this ability will allow novel discoveries to be 

made in the relevant domains, and even new types of analytics to be invented. We have 

made all code and data freely available in perpetuity to allow the community to confirm 

and extend our findings [75]. 
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Chapter 5 Lower-bounding the Matrix 

Profile: Admissible Time Series 

Motif Discovery with Missing 

Data 

The discovery of time series motifs has emerged as one of the most useful 

primitives in time series data mining.  Researchers have shown its utility for exploratory 

data mining, summarization, visualization, segmentation, classification, clustering, and 

rule discovery. Although there has been more than a decade of extensive research, there 

is still no technique to allow the discovery of time series motifs in the presence of 

missing data, despite the well-documented ubiquity of missing data in scientific, 

industrial, and medical datasets. In this chapter, we introduce a technique for motif 

discovery in the presence of missing data. We formally prove that our method is 

admissible, producing no false negatives. We also show that our method can “piggy-

back” off the fastest known motif discovery algorithm STOMP with a small constant 

factor time/space overhead. We will demonstrate our approach on diverse datasets with 

varying amounts of missing data. 
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5.1 Related Work and Background 

Time Series motifs are short approximately repeated patterns within a longer time 

series dataset. The fact that such patterns are conserved often suggests underlying 

structure and regularities that can be exploited in many ways. Some examples include: 

rule discovery [68][57], forecasting [44], or building better classifiers [12]. However, 

despite over a decade of active research [15][49][101], there is no known method to 

allow the discovery of motifs in the presence of missing data. 

Paradoxically, in spite of improvements in sensor technology, missing data is 

becoming more prevalent. This is because sensors are now so cheap that we are willing to 

deploy them in hostile environments with intermittent and unreliable bandwidth [73].  In 

many cases, sensors have become “throwable” and disposable [21]. 

Figure 5.1 shows an example of a motif in a music processing domain [53]. Note 

that both occurrences of the motif contain sections of missing data. 

 

Figure 5.1. A four-second long motif that appears in the pitch contour time series of a Cypriot folk 

song, Kotsini Trantafillia (Red Rose-tree). Note that both occurrences have multiple instances of 

missing data [53]. 

Here the data could be missing for one of two reasons. It might be meaningful, i.e., 

the vocalist may not have produced a sound at these times. It is also possible that the 

missing data reflects poor audio quality, loose wires, etc. We are agnostic to such issues 
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in this work. We simply note that in either case, there is no motif discovery algorithm 

defined in the literature for such data. 

More generally, in time series data mining, missing data is often handled by filling 

in the missing values with some interpolation or imputation method [31] and running the 

analysis unaltered. There are hundreds of imputation algorithms in the literature (see [90] 

and the references therein) to choose from, but no matter which one we use, we may 

obtain false negatives with respect to the oracle data (the true underlying data, without 

missing values). 

To see this let us consider a simple example. Suppose we have a dataset that is 

composed of just three (sub)sequences: 

A={0,2,0,2}, B={0,2,0,2}, C={0,-1,0,2} 

Clearly the pair A|B is a perfect motif. Now suppose that the second value in A is 

missing. The most obvious imputation technique is interpolation from the two neighbors 

of the missing data point, giving us Amiss = {0,0,0,2}. As we can see in Figure 5.2, this 

one change means that we no longer discover the pair A|B as a perfect motif, but instead 

we are led to believe that the pair A|C is the best motif in the dataset. 

 

Figure 5.2. left) A contrived dataset in which the pair A|B is a perfect motif. right) If A had its second 

value replaced by the most common imputation algorithm, we would fail to discover A|B as the motif. 
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While this is a trivial example, it is easy to see that no matter what imputation 

algorithm is used, using a simple adversarial augment we can always construct datasets 

for which the classic motif algorithms would produce false negatives. This problem is 

even more severe with complex datasets that contain a lot of high-frequency patterns and 

noise, for example seismology datasets. 

In Figure 3.8 we showed two repeating earthquake patterns that appeared 

approximately 14 years apart. We have found that if there were just a handful of missing 

data points in one of the earthquake samples, we would be unable to detect a match 

between them with any common imputation method, as such high-frequency and noisy 

data defies the assumptions that most imputation techniques assume. 

Figure 5.2 showed that imputation methods can produce possible false negatives 

even if we have a random single value missing in the data. Moreover, another 

disadvantage of current imputation methods is that they cannot predict block-missing 

data well [100]. In some circumstances, due to malfunction of the sensor or other 

anomaly factors, we may lose reading from a sensor at consecutive timestamps (instead 

of sparse, single missing timestamps at random locations of the data). This is often called 

block-missing data. In [100] the authors proposed a state-of-the-art spatial-temporal 

imputation method to predict the block-missing data by learning from not only the real-

valued reading of the same sensor, but also from the reading of several geographically 

nearby sensors. The information from other sensors greatly improved their imputation 

accuracy. However, this method does not apply when we only have access to one single 
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sensor, or when all the sensors contain block-missing data at the same timestamps due to 

regional power outage or communication errors. 

Finally, note that our problem is not artificial or contrived in anyway. The literature 

is replete with examples of data analysts frustrated by the inability to perform motif 

discovery in the presence of missing data. For example, a recent paper studies recurrent 

water consumption behavior by Australian consumers [87]. The authors observe “A small 

proportion of all hourly readings are missing…, probably due to server failure or 

maintenance”. The authors realize that any imputation method used here has a risk of 

producing false negatives by noting that “…hourly water consumption is highly 

unpredictable, we ignored the points of missing hours for the routine discovery, rather 

than approximating missing readings.” However, their solution of ignoring some data 

runs the risk of missing interesting patterns. 

5.1.1 Dismissing Apparent Solutions 

In this section, we continue the discussion of related work, while explicitly 

dismissing some proposed solutions to the task at hand. 

The last decade has seen several distance measures for handling uncertain time 

series, including PROUD [99], DUST [64], PBRQ [1], PRRQ [1], etc. One might believe 

that these measures could be used to replace the Euclidean Distance subroutine in an 

existing motif discovery algorithm. However, we believe this is not possible for the 

following reasons: 
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• These methods assume not missing data, but uncertain data. For example, they 

can address the situation where an observation is not known precisely but 

comes from some known distribution. In [64] for example, they explicitly 

model the normal, exponential, and uniform error distributions. However, for 

generality, we do not wish to make such strong assumptions. 

• Even if we assume that we could somehow avail of an existing uncertain 

distance measure, none of them are metrics (only measures). However, all 

speedup techniques for exact motif discovery that we are aware of require and 

exploit metric properties [15][49]. This suggests we must resort to a O(n2m) 

brute force search (n is the length of the time series, m the motif length). 

However, our proposed method is O(n2). As m may be in the thousands (see 

Section 5.3), this suggests a three orders of magnitude time difference. 

• Finally, we want to be able to guarantee that our search produces no false 

negatives in the face of missing data. To the best of our knowledge, no existing 

uncertain time series similarity measures can support this requirement. 

The reader may not appreciate why our task-at-hand is hard, because the analogue 

problem with strings is trivial. Suppose we are asked to compare the following text 

strings “Norwegian blue” and “Norwegian wood” under the Hamming Distance, and we 

encounter missing values, represented here by “*”. 

Norwe*ian blu* 

N*rwe*ian wood 
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We can easily compute both the lower and upper bound of the Hamming Distance. 

In the former case, we would assume that all the missing values in one word are the same 

as their counterparts in the other word. Given that the only letters we can be sure are 

differing are “woo” vs “blu,” and we have a lower bound of three. In the latter case, we 

would assume that all the missing values in one word are different than their counterparts 

in the other word. These three pessimistic differences combined with the three observed 

differences give us an upper bound of six. 

However, consider the time series version of this problem. Suppose we have the 

following two time series: 

[ 0.5, 0.1, ***, ***, -0.6, -0.7, 0.0 ] 

[ 0.3, 0.1, 1.1, ***, -0.6,  ***, 0.1 ] 

One might consider applying similar logic here. For example, accumulating 0.2 

error (i.e. |0.5 - 0.3|) from the first pair of numbers, then 0.0 error (i.e. |0.1 - 0.1|) from the 

second pair, etc. However, the critical difference is that the time series must be 

normalized before comparison. This is because, aside from the rare and well understood 

exceptions [18], it is meaningless to compare time series without normalizing them first. 

This presents a problem as z-normalization (the most common normalization technique 

[17]) requires us to know the exact mean and standard deviation of the data, which are 

undefined when we have a single missing data point. 

Thus, for any pair of corresponding known points (for example the 0.5 and the 0.3 

in the above), it is possible that the true (had we known the mean and standard deviation 

of the data to allow the correct normalization) difference between them could stay the 
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same, increase, or decrease by arbitrary amounts. This suggests that producing tight 

upper or lower bounds will be nontrivial. 

5.1.2 Pseudo Missing Data 

Before introducing our solution to the missing data problem, we take the time to 

point out that the problem is more general than one may assume when we consider the 

generalization of the Pseudo Missing Data (PMD). Informally, we define PMD as data 

that technically is not missing, but effectively is. Figure 5.3 illustrates three kinds of 

PMD frequently encountered. 

 

Figure 5.3. A snippet of an Electrooculogram (EOG) exhibits three kinds of pseudo missing data. 

In Figure 5.3.A, we see a “spike.” Given what we know about this domain, it is 

inconceivable that the human eye could move fast enough to produce this data, so it is 

clearly an artifact. Likewise, in Figure 5.3.B, the dramatic increase in variance suggests 

that this section of data is not likely to faithfully represent the underlying physical 

process. Finally, in Figure 5.3.C the perfectly flat plateau is not reflective of reality, but 

is simply a region where the physical process exceeds the 8-bit precision available to 

record it. 

In all three cases, the best thing to do would be to treat the data as missing. Note 

that this decision is domain-dependent; there are clearly domains where a short spike 
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represents some physical event, or where a perfectly flat plateau represents a physical 

limitation, which is not a quirk of the hardware/software use. 

5.1.3 Definitions and Notations 

In this section, we introduce all the notations and definitions needed to explain our 

solution.  

We first generalize the definition of time series and subsequence in Section 2.1 to 

allow for the possibly that at least one value is missing. For clarity, we differentiate such 

time series (including subsequences) with a “bar.” To keep both in a common notation 

and for implementation purposes (i.e. Matlab, etc.), we use NaNs as a placeholder for 

missing values. 

Definition 4.1: A missing value time series 𝑇 is a sequence of values that are either 

real-valued numbers or NaNs, 𝑡̅i: 𝑇  = 𝑡1̅, 𝑡2̅, ..., 𝑡𝑛̅, where n is the length of 𝑇. 

In the rest of the paper, we assume that T is the actual time series of 𝑇 before the 

missing values were created by some process. That is to say, we would have obtained T 

instead of 𝑇 if the sensors were functioning properly. We do not know T precisely, but we 

have 𝑡̅i= ti (1 ≤  i ≤  n) if 𝑡̅i ≠NaN. 

For motif discovery, we are not interested in the global properties of the missing 

value time series, but in the local regions, known as subsequences: 

Definition 4.2: A subsequence 𝑇𝑖,𝑚 of a missing value time series 𝑇 is a continuous 

subset of the values from 𝑇 of length m starting from position i. Formally, 𝑇𝑖,𝑚 = 𝑡𝑖̅, 𝑡𝑖̅+1, 

..., 𝑡𝑖̅+𝑚−1, where 1 ≤  i ≤  n-m+1. 



 109 

Note that subsequence 𝑇𝑖,𝑚 may or may not contain missing values (NaNs). 

Recall that in Section 2.1, we have introduced two meta time series, the matrix 

profile and the matrix profile index, to annotate a time series T with the distance and 

location of all its subsequences’ nearest neighbors within itself. For a time series T of 

length n, the STOMP algorithm introduced in Chapter 3 is able to compute the two meta 

files with a mere O(n2) time complexity and O(n) space complexity, which enables a fast 

motif discovery in a massive time series. However, the STOMP algorithm is not 

applicable to any time series 𝑇 with missing values (NaNs). To solve this problem, we 

introduce a novel algorithm that does not allow false negatives. The method may allow 

occasional false positives, but since the discovered motifs are typically examined by the 

human eye [49][57][101], or some subsequent analysis, the false positives (if any) can be 

filtered out at a later stage. 

We call our algorithm Motif Discovery with Missing Data, MDMS. Our MDMS 

algorithm is built on top of the Matrix Profile data structure, and here we claim our 

MDMS algorithm can solve the missing data problem with the same time and space 

complexity as STOMP. We leave the detailed discussion of the algorithm to Section 5.2. 

5.2 Algorithms 

5.2.1 An Intuitive Preview 

We begin by previewing our solution. As shown in Chapter 2, if T is used to 

compute a matrix profile then finding the motifs is trivial. The location of the smallest 

pair of values in the matrix profile is also the location in T of the optimal motif pair. 
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Moreover, other definitions of motifs, such as the top-K motifs or range motifs [49][96], 

can also be easily extracted from the matrix profile. Given this, our solution to the 

missing data problem is to build a special matrix profile using 𝑇. This special matrix 

profile will be very similar to the true matrix profile, and be a (in general, very tight) 

lower bound for it. If we use the existing motif extraction algorithms [96] to pull out 

motifs from this matrix profile, we may have false positives, but we will have no false 

negatives [18]. Thus most of our contribution outlined below is to show how we can 

build this special matrix profile. 

5.2.2 The Lower Bound Matrix Profile 

To create the special matrix profile data structure, our MDMS algorithm evaluates 

the z-normalized Euclidean distance between every pair of subsequences within a 

missing value time series 𝑇. Depending on whether or not the subsequences have missing 

values, we may encounter three different situations. Assume that the pair of subsequences 

under consideration is 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚. 

• Case 1: Neither 𝑇𝑖,𝑚 nor 𝑇𝑗,𝑚 contains any missing value (NaN). Normally, this 

applies to most subsequence pairs within time series 𝑇 if 𝑇 contains more real-

valued numbers than NaNs. The traditional exact z-normalized Euclidean 

distance between 𝑇𝑖,𝑚 or 𝑇𝑗,𝑚 can be evaluated in this case. 

• Case 2: 𝑇𝑖,𝑚 contains missing values (NaNs) while 𝑇𝑗,𝑚 does not, or vice versa. 

• Case 3: Both 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 have missing values (NaNs). 
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In cases 2 and 3, the exact z-normalized Euclidean distance 𝑑𝑖,𝑗  between 𝑇𝑖,𝑚 or 

𝑇𝑗,𝑚  cannot be evaluated. However, we can evaluate a lower bound of the distance 

between 𝑇𝑖,𝑚and 𝑇𝑗,𝑚, 𝑑𝑖,𝑗
𝐿𝐵, such that 𝑑𝑖,𝑗

𝐿𝐵 ≤ min (𝑑𝑖,𝑗). That is to say, no matter what the 

missing values in 𝑇𝑖,𝑚  or 𝑇𝑗,𝑚  are, we guarantee that 𝑑𝑖,𝑗 , the actual distance between 

𝑇𝑖,𝑚 and 𝑇𝑗,𝑚, is no less than 𝑑𝑖,𝑗
𝐿𝐵. 

Now we are ready to redefine the distance profile (Definition 2.3 in Section 2.1) in 

the context of missing values. We keep those 𝑑𝑖,𝑗  values corresponding to Case 1 

unchanged, and use 𝑑𝑖,𝑗
𝐿𝐵 to replace the 𝑑𝑖,𝑗 values corresponding to Cases 2 and 3. We 

will then obtain a lower bound distance profile: 

Definition 4.3: A lower bound distance profile 𝐷𝑖
𝐿𝐵of a missing value time series 𝑇 

is a vector 𝐷𝑖
𝐿𝐵=[ 𝑑̅𝑖,1, 𝑑̅𝑖,2,…, 𝑑̅𝑖,𝑛−𝑚+1,], where 𝑑̅𝑖,𝑗=𝑑𝑖,𝑗  (1 ≤ i, j ≤ n-m+1) if neither 

𝑇𝑖,𝑚 nor 𝑇𝑗,𝑚 contains NaNs (Case 1), and 𝑑̅𝑖,𝑗=𝑑𝑖,𝑗
𝐿𝐵 (1 ≤ i, j ≤ n-m+1) otherwise. 

Similarly, we can redefine the matrix profile and the matrix profile index 

(Definition 2.4 and Definition 2.5 in Section 2.1) in the context of missing values. 

Definition 4.4: A lower bound matrix profile 𝑃𝐿𝐵 of a missing value time series 𝑇̅ 

is a vector of the lower bound Euclidean distances between each subsequence 𝑇̅𝑖,𝑚 and its 

nearest possible neighbor (closest possible match) in 𝑇̅ . Formally, 𝑃𝐿𝐵  = [min(𝐷1
𝐿𝐵 ), 

min(𝐷2
𝐿𝐵),…, min(𝐷𝑛−𝑚+1

𝐿𝐵 )], where 𝐷𝑖
𝐿𝐵  (1 ≤ i ≤ n-m+1) is the lower bound distance 

profile 𝐷𝑖
𝐿𝐵 of the time series T. 

Definition 4.5: A lower bound matrix profile index 𝐼𝐿𝐵 of 𝑇̅ is a vector of integers: 

𝐼𝐿𝐵=[𝐼1
𝐿𝐵, 𝐼2

𝐿𝐵, … 𝐼𝑛−𝑚+1
𝐿𝐵 ], where 𝐼𝑖

𝐿𝐵=j if 𝑑̅𝑖,𝑗= min(𝐷𝑖
𝐿𝐵). 
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The lower bound matrix profile gives us an optimistic approximation of the 

distance between every subsequence and its nearest possible neighbor in 𝑇̅ . This 

approximation may produce false positives, but it will not allow false negatives. 

We believe this is the best approach for the task at hand: as Section 3.3.4 shows, 

the cost to filter out false positive motifs is very low once we have the matrix profile, but 

we cannot afford the occurrence of any false negatives, since they may include the most 

important patterns in the time series. In the following sections, we will introduce the 

lower bound Euclidean distances corresponding to Cases 2 and 3 respectively; then we 

will introduce our MDMS algorithm, which evaluates a lower bound of the matrix 

profile. 

5.2.3 The Lower Bound Euclidean Distance 

3.2.3.1 Case 2 

Let us first consider Case 2, where 𝑇𝑖,𝑚 contains missing values (NaNs) while 𝑇𝑗,𝑚 

does not, or vice versa. Without loss of generality, for now we assume 𝑇𝑖,𝑚  is the 

subsequence that contains missing values, and 𝑇𝑗,𝑚 is the subsequence without missing 

values. Figure 5.4 shows a visual example of this case. 

 

Figure 5.4. top) A subsequence with missing values. bottom) A subsequence without missing values. 
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Here 𝑀 = {𝑘 | 1 ≤ 𝑘 ≤ 𝑚 and 𝑡𝑖+𝑘−1 = 𝑁𝑎𝑁 } is a set of the locations of missing 

values within 𝑇𝑖,𝑚 , and  = {𝑘 | 1 ≤ 𝑘 ≤ 𝑚 and 𝑡𝑖+𝑘−1 ≠ 𝑁𝑎𝑁 and 𝑡𝑗+𝑘−1 ≠ 𝑁𝑎𝑁 } is 

the intersection of the real-valued locations within 𝑇𝑖,𝑚  and those within 𝑇𝑗,𝑚 . To 

evaluate the lower bound distance of the two subsequences, first we need to z-normalize 

them [17][49][96]. 

We assume that 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of 𝑇𝑖,𝑚, 𝜇𝑗 and 𝜎𝑗 are 

the mean and standard deviation of 𝑇𝑗,𝑚. Note that because 𝑇𝑖,𝑚 has missing values, we 

cannot evaluate 𝜇𝑖 and 𝜎𝑖; however, we can treat them as variables. Assume 𝑑𝑖,𝑗  is the 

distance between 𝑇𝑗,𝑚  and the oracle subsequence of 𝑇𝑖,𝑚, we can easily obtain a lower 

bound distance of 𝑑𝑖,𝑗 by ignoring the missing part 𝑀 in Figure 5.4: 

𝑑𝑖,𝑗
𝐿𝐵 = √min

𝜇𝑖,𝜎𝑖
∑(

𝑡𝑖+𝑘−1 − 𝜇𝑖
𝜎𝑖

−
𝑡𝑗+𝑘−1 − 𝜇𝑗

𝜎𝑗
)

2

𝑘∈𝑅

 
(5.1) 

Assume 𝑓1 = 𝑑𝑖,𝑗
𝐿𝐵2. We can linearly transform 𝑓1 as: 

𝑓1 =  𝑑𝑖,𝑗
𝐿𝐵2 = (

𝜎𝑗
𝑅

𝜎𝑗
)

2

𝑚𝑖𝑛
𝜇,𝜎

∑(
𝑡𝑖+𝑘−1 − 𝜇

𝜎
−
𝑡𝑗+𝑘−1 − 𝜇𝑗

𝑅

𝜎𝑗
𝑅 )2

𝑘∈𝑅

 
(5.2) 

We assume 𝑇𝑖,𝑚
𝑅  is the real-valued part of 𝑇𝑖,𝑚 , 𝑇𝑗,𝑚

𝑅  is the subset of 𝑇𝑗,𝑚 

corresponding to   (as indicated in Figure 5.4), 𝜇𝑖
𝑅and 𝜎𝑖

𝑅  are the mean and standard 

deviation of 𝑇𝑖,𝑚
𝑅 , 𝜇𝑗

𝑅and 𝜎𝑗
𝑅 are the mean and standard deviation of 𝑇𝑗,𝑚

𝑅 . 

Figure 5.5 visualizes (5.2). Note that 𝑇𝑗,𝑚
𝑅  is z-normalized in (5.2), so its offset 

and scale are fixed in Figure 5.5; to obtain 𝑑𝑖,𝑗
𝐿𝐵, we would like to adjust 𝜇 (corresponding 
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to the offset of 𝑇𝑖,𝑚
𝑅 ) and 𝜎 (corresponding to the scale of 𝑇𝑖,𝑚

𝑅 ), such that the Euclidean 

distance between 𝑇𝑖,𝑚
𝑅  and 𝑇𝑗,𝑚

𝑅  is minimized. 

 

Figure 5.5. Different setting of 𝝁 and 𝝈 changes the offset and the scale of 𝑻𝒊,𝒎
𝑹 . Note that the offset 

and scale of 𝑻𝒋,𝒎
𝑹  are fixed. 

By solving 
𝜕𝑓1

𝜕𝜇
= 0 and 

𝜕𝑓1

𝜕𝜎
= 0, and substituting 𝜎 and 𝜇 back into (5.2), we have: 

 𝑑𝑖,𝑗
𝐿𝐵 =

{
 
 

 
 

𝜎𝑗
𝑅

𝜎𝑗
√| | 𝑖𝑓 𝑞𝑖,𝑗 ≤ 0

𝜎𝑗
𝑅

𝜎𝑗
√| |(1 − 𝑞𝑖,𝑗

2 ) 𝑖𝑓 𝑞𝑖,𝑗 > 0

 
(5.3) 

Here   is the intersection of the real-valued locations within 𝑇𝑖,𝑚 and those within 

𝑇𝑗,𝑚, 𝑞𝑖,𝑗 is the Pearson Correlation Coefficient between 𝑇𝑖,𝑚
𝑅  and 𝑇𝑗,𝑚

𝑅 : 

𝑞𝑖,𝑗 =
∑ 𝑡𝑗+𝑘−1𝑡𝑖+𝑘−1𝑘∈𝑅 − | |𝜇𝑖

𝑅𝜇𝑗
𝑅

| |𝜎𝑖
𝑅𝜎𝑗

𝑅  
(5.4) 

The analysis of Case 2 is now complete. Let us turn to Case 3, where both 𝑇𝑖,𝑚 and 

𝑇𝑗,𝑚 contain missing values. 

3.2.3.2 Case 3 

Figure 5.6 shows an example of Case 3. 

0 40 80

𝑇𝑖,𝑚
𝑅

𝑇𝑗,𝑚
𝑅

 

offset

scale
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Figure 5.6. Two subsequences with missing values. 

As both  𝑇𝑖,𝑚  and 𝑇𝑗,𝑚  have missing values, their means (𝜇𝑖 , 𝜇𝑗 ) and standard 

deviations (𝜎𝑖, 𝜎𝑗) can be arbitrary values. We have: 

𝑑𝑖,𝑗 ≥ 𝑚𝑖𝑛
𝜇𝑗,𝜎𝑗

√𝑚𝑖𝑛
𝜇𝑖,𝜎𝑖

∑(
𝑡𝑖+𝑘−1 − 𝜇𝑖

𝜎𝑖
−
𝑡𝑗+𝑘−1 − 𝜇𝑗

𝜎𝑗
)

2

𝑘∈𝑅

= 𝑑𝑖,𝑗
𝐿𝐵 (5.5) 

Here  = {𝑘 | 1 ≤ 𝑘 ≤ 𝑚, 𝑡𝑖+𝑘−1 ≠ 𝑁𝑎𝑁, 𝑡𝑗+𝑘−1 ≠ 𝑁𝑎𝑁} is the intersection of the 

real-valued locations within 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 (see Figure 5.6). A diligent reader may have 

noticed that the lower bound expression 𝑑𝑖,𝑗
𝐿𝐵 in (5.5) subsumes (5.1), the lower bound 

expression in Case 2. We can visualize this in Figure 5.6: if we remove 𝑀𝑗, the problem 

is transformed to Case 2. Therefore, we can directly substitute (5.3), the result of Case 2, 

into (5.5): 

 𝑑𝑖,𝑗
𝐿𝐵 =

{
 
 

 
 𝜎𝑗

𝑅√| |min
𝜎𝑗

1

𝜎𝑗
𝑖𝑓 𝑞𝑖,𝑗 ≤ 0

𝜎𝑗
𝑅√| |(1 − 𝑞𝑖,𝑗

2 )min
𝜎𝑗

1

𝜎𝑗
𝑖𝑓 𝑞𝑖,𝑗 > 0

 
(5.6) 

We can see from (5.6) that  𝑑𝑖,𝑗
𝐿𝐵  is dependent on 𝜎𝑗  (which is controlled by the 

missing part of 𝑇𝑗,𝑚 in Figure 5.6): the larger 𝜎𝑗, the smaller  𝑑𝑖,𝑗
𝐿𝐵. Note that 𝜎𝑗 can be as 

𝑇𝑖,𝑚

𝑇𝑗,𝑚

0 40 80

 

 𝑗𝑀𝑗
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large as +∞; in that case  𝑑𝑖,𝑗
𝐿𝐵 becomes zero. This is a very undesirable lower bound, as 

any pair of missing value subsequences can be reported as a motif, even if they look very 

different from each other. Figure 5.7 shows an example of this. 

 

Figure 5.7. Two subsequences with missing values. The real-valued parts of the subsequences look 

very different from each other, but if we fill the missing parts with infinitely large numbers, the z-

normalized Euclidean distance of the two subsequences will become zero. 

Fortunately, sensor readings normally have physical limits. The accelerometer 

values on an iPhone 7 are limited to ± 8g (± 78.48 m/s2); virtually all medical sensors 

come with carefully specified limits to meet regulations (i.e., EU directive 93/42/EEC 

mandates that a pediatric lung ventilator monitor produces values in the range of 0 to 

125cmH20), etc. Therefore, we can assume that the missing values in 𝑇𝑗,𝑚 are bounded by 

[𝑉𝑚𝑖𝑛,𝑗, 𝑉𝑚𝑎𝑥,𝑗]. With this bound, we can derive the following inequality for 𝜎𝑗
2 (we 

refer the interested readers to [77] for details): 

𝜎𝑗
2 ≤

𝐶𝑗
2

4
+
∑ 𝑡𝑗+𝑘−1

2
𝑘∈𝑅𝑗

+ | 𝑗| (𝐵𝑗 − 𝜇
𝑗

𝑅𝑗𝐴𝑗)

𝑚
 (5.7) 

Here  𝑗 is a set of the locations of all the real values within 𝑇𝑗,𝑚 (see Figure 5.6), 

𝜇
𝑗

𝑅𝑗
 is the mean of the real-valued part of 𝑇𝑗,𝑚, 𝐶𝑗 = 𝑉𝑚𝑎𝑥,𝑗 − 𝑉𝑚𝑖𝑛,𝑗, 𝐵𝑗 = 𝑉𝑚𝑎𝑥,𝑗𝑉𝑚𝑖𝑛,𝑗, 

0 40 80

𝑇𝑖,𝑚

𝑇𝑗,𝑚
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𝐴𝑗 = 𝑉𝑚𝑎𝑥,𝑗 + 𝑉𝑚𝑖𝑛,𝑗 . In practice, we set  𝑉𝑚𝑖𝑛,𝑗  and 𝑉𝑚𝑎𝑥,𝑗  as the minimum and 

maximum value of the real-valued part of 𝑇𝑗,𝑚. 

We can now evaluate 𝑑𝑖,𝑗
𝐿𝐵 by substituting (5.7) back into (5.6): 

𝑑𝑖,𝑗
𝐿𝐵 = {

√| |𝑓𝐿𝐵(𝑗) 𝑖𝑓 𝑞𝑖,𝑗 ≤ 0

√| |(1 − 𝑞𝑖,𝑗
2 )𝑓𝐿𝐵(𝑗) 𝑖𝑓 𝑞𝑖,𝑗 > 0

 
(5.8) 

Here 𝑓𝐿𝐵(𝑗) = 𝜎𝑗
𝑅2 [

𝐶𝑗
2

4
+

∑ 𝑡𝑗+𝑘−1
2

𝑘∈𝑅𝑗
+|𝑅𝑗|(𝐵𝑗−𝜇𝑗

𝑅𝑗
𝐴𝑗)

𝑚
]⁄ . 

Note that 𝑓𝐿𝐵(𝑗) is based on  𝑗 , the real-valued part of 𝑇𝑗,𝑚  (recall Figure 5.6). 

However, as in Case 3 both 𝑇𝑖,𝑚  and 𝑇𝑗,𝑚  have missing values, we can analogously 

derive a lower bound expression similar as (5.8) based on 𝑇𝑖,𝑚 , and set the larger 

expression as 𝑑𝑖,𝑗
𝐿𝐵: 

 𝑑𝑖,𝑗
𝐿𝐵  = {

√| |𝑚𝑎𝑥(𝑓𝐿𝐵(𝑖), 𝑓𝐿𝐵(𝑗)) 𝑖𝑓 𝑞𝑖,𝑗 ≤ 0

√| |(1 − 𝑞𝑖,𝑗
2 )𝑚𝑎𝑥(𝑓𝐿𝐵(𝑖), 𝑓𝐿𝐵(𝑗)) 𝑖𝑓 𝑞𝑖,𝑗 > 0

 
(5.9) 

Here 𝑓𝐿𝐵(𝑝) = 𝜎𝑝
𝑅2 [

𝐶𝑝
2

4
+

∑ 𝑡𝑝+𝑘−1
2

𝑘∈𝑅𝑝 +|𝑅𝑝|(𝐵𝑝−𝜇𝑝
𝑅𝑝
𝐴𝑝)

𝑚
]⁄ . 

The analysis of Case 3 is now complete. Finally, for completeness, let us briefly 

discuss Case 1. 

3.2.3.3 Case 1 

As neither 𝑇𝑖,𝑚 nor 𝑇𝑗,𝑚 contains any missing value in Case 1, we set 𝑑𝑖,𝑗
𝐿𝐵 as the 

exact z-normalized Euclidean distance between 𝑇𝑖,𝑚  and 𝑇𝑗,𝑚 , using the following 

equation (recall (3.1) in Chapter 3):  
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𝑑𝑖,𝑗
𝐿𝐵 = √2𝑚(1 − 𝑞𝑖,𝑗) 

(5.10) 

Note that all three cases use the same expression of  𝑞𝑖,𝑗 in (5.4). 

Now that we have the lower bound distance for any subsequence pair in 𝑇, we can 

also evaluate the lower bound matrix profile. 

5.2.4 The MDMS Algorithm 

3.2.3.1 Case 2 

The STOMP algorithm introduced in Chapter 3 can obtain the matrix profile of a 

time series that is free of missing values, in O(n2) time with only O(n) space; as we will 

now show, in the face of missing data, our MDMS algorithm (Algorithm 6) can obtain 

the lower-bound matrix profile with the same time and space complexity. 

Before discussing the algorithm in detail, we first need to introduce three important 

auxiliary time series (shown in line 3 of Algorithm 6), 𝑍, 𝑋 and 𝐵. 

• We define 𝑍 = 𝑧1, 𝑧2, … 𝑧𝑛 , such that 𝑧𝑖 = 𝑡𝑖  if 𝑡𝑖 ≠ 𝑁𝑎𝑁 , and 𝑧𝑖 = 0  if 𝑡𝑖 =

𝑁𝑎𝑁. We can simply obtain 𝑍 by filling zeros in the locations of 𝑇 where the 

data is missing. 

• We define 𝑋 = 𝑥1, 𝑥2, … 𝑥𝑛 = 𝑧1
2, 𝑧2

2, … 𝑧𝑛
2. 

• We define 𝐵 = 𝑏1, 𝑏2, … 𝑏𝑛 , such that 𝑏𝑖 = 1 if 𝑡𝑖 ≠ 𝑁𝑎𝑁, and 𝑏𝑖 = 0 if 𝑡𝑖 =

𝑁𝑎𝑁. We can see that 𝐵 indicates the locations of the real-valued numbers and 

missing values in  𝑇. 
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With these three auxiliary time series and the techniques introduced in [61] and 

Algorithm 2, we can evaluate any lower bound distance introduced in the last section in 

O(1) time with O(n) space. 

Algorithm 6: MDMS(T,m) 

 Input: A missing value time series T, subsequence length m 

Output: Lower bound matrix profile P and the associated lower bound matrix profile index 

I of T 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

n ← Length(T), len ← n-m+1 

vmax ← SlidingMax(T), vmin ← SlidingMin(T) 

Z ← PadZero(T), B ← OneZero(T), X← ElementWiseSquare(Z)    

μz, σz ← ComputeMeanStd(Z, m)                           // see [61]  

μb, σb ← ComputeMeanStd(B,  m)                         // see [61] 

QZ ← SlidingDotProduct(Z1:m, Z), QZ’ ← QZ       //see Algorithm 1 

QB ← SlidingDotProduct(B1:m, B), QB’ ← QB      //see Algorithm 1 

BZ ← SlidingDotProduct(B1:m, Z), BZ’  ← BZ       //see Algorithm 1 

ZB ← SlidingDotProduct(Z1:m, B), ZB’  ← ZB       //see Algorithm 1 

BX ← SlidingDotProduct(B1:m, X), BX’  ← BX      //see Algorithm 1 

XB ← SlidingDotProduct(X1:m, B), XB’ ← XB       //see Algorithm 1 

P ← CalculateLBDistance(n, m, vmax, vmin, QZ, QB, BZ, ZB, BX, XB, μz, σz, μb, σb, i) 

I← ones                                  // initialization 

for i = 2 to len                       // in-order evaluation 

      for j= len downto 2        // update dot product, see Algorithm 2 

            QZj ← QZj-1-Zi-1×Zj-1+Zi+m-1×Zj+m-1 

      QBj ← QBj-1-Bi-1×Bj-1+Bi+m-1×Bj+m-1 

      BZj ← BZj-1-Bi-1×Zj-1+Bi+m-1×Zj+m-1 

      ZBj ← ZBj-1-Zi-1×Bj-1+Zi+m-1×Bj+m-1 

      BXj ← BXj-1-Bi-1×Xj-1+Bi+m-1×Xj+m-1 

      XBj ← XBj-1-Xi-1×Bj-1+Xi+m-1×Bj+m-1 

  end for 

  QZ1←QZ’i, QB1←QB’i, BZ1←ZB’i 

  ZB1←BZ’i, BX1←XB’i, XB1←BX’i 

  D ← CalculateLBDistance(n, m, vmax, vmin, QZ, QB, BZ, ZB, BX, XB, μz, σz, μb, σb, i)  

  P, I ← ElementWiseMin(P, I, D, i) 

end for 

return P, I 

The MDMS algorithm is very similar to the STOMP framework introduced in 

Chapter 3. In line 2 we evaluate the maximum and minimum values of the real-value part 

of every subsequence in T. Lines 4-5 evaluate the mean and standard deviation of every 

subsequence in 𝑍 and 𝐵. In lines 6-11, SlidingDotProduct(x, y) computes a vector of dot 
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products between a query subsequence x and every subsequence in time series y 

(Algorithm 1). We call this the sliding dot product as we can extract all the subsequences 

in time series y by sliding a window of length m across y. Note that μz, σz, μb and σb and 

the sliding dot product vectors QZ, QB, BZ, ZB, BX, XB are sufficient statistics to 

compute the lower bound matrix profile. We initialize the lower bound matrix profile P 

and matrix profile index I in lines 12-13. Lines 14-27 iteratively evaluate the lower bound 

distance profile D, and update P and I if necessary. The CalculateLBDistance algorithm 

in lines 12 and 25 is shown in Algorithm 7. 

Algorithm 7: CalculateLBDistance(n, m, vmax, vmin, QZ, QB, BZ, ZB, BX, XB, μz, 

σz, μb, σb, i) 

 Input: the length n of time series T, the subsequence length m, the 

maximum/minimum possible value vector vmax/vmin, sliding dot product vectors 

QZ, QB, BZ, ZB, BX, XB, means and standard deviations μz, σz, μb, σb of time 

series Z and B, current subsequence index i. 

Output: Lower bound distance profile D 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

for j= 1 to n-m+1 

      ui ← ZBj / QBj, uj ← BZj  / QBj                           //𝜇𝑖
𝑅and 𝜇𝑗

𝑅 

  vi ← XBj / QBj - ui ^2, vj ← BXj / QBj - uj ^2      //𝜎𝑖
𝑅and 𝜎𝑗

𝑅 

  q ← (QZj / QBj - ui × uj) / sqrt(vi × vj)               // (5.4) 

  if QBj == m then                                                 // Case 1, | | = 𝑚 

        Dj ←2×m×(1-q)                                            // (5.10) 

  else 

        if max(μbi, μbj)==1  then                              // Case 2 

                  if μbi >μbj then vo ← vi, v ← σzi ^2 

            else vo ← vj, v ← σzj ^2 

            end if               

            if q <=0 then Dj ← QBj × vo / v             // (5.3) 

            else Dj ← QBj × vo / v × (1 - q^2)    

            end if 

            else                                                                 // Case 3 

                  v1 ← vmaxi, v2 ← vmini, C ← v1 – v2, B ← v1 × v2, A ← v1 + v2  

            ur ← μzi /μbi, vr ← (σzi ^2 + μzi ^2) / μbi  – ur^2 

             f1 = vi / (ubi × (vr + B + ur × (ur – A)) + C^2 / 4)        // 𝑓𝐿𝐵(𝑖) in (5.9) 

            v1 ← vmaxj, v2 ← vminj, C ← v1 – v2, B ← v1 × v2, A ← v1 + v2 

            ur ← μzj  / μbj, vr ← (σzj ^2+μzj ^2) / μbj -ur ^2 

             f2 = vj / (ubj × (vr + B + ur × (ur – A)) + C^2 / 4)       // 𝑓𝐿𝐵(𝑗) in (5.9) 

                  if q <=0 then Dj ← QBj × max(f1, f2)                           // (5.9) 

            else Dj ← QBj × max(f1, f2) × (1 - q^2)                        // (5.9) 



 121 

24 

25 

26 

27 

28 

            end if 

            end if 

      end if  

end for 

return D 

The CalculateLBDistance algorithm evaluates all n-m+1 lower bound distance 

values in D with equations (5.3), (5.9) and (5.10). Line 4 evaluates (5.4). Case 1 is 

handled in lines 5-6. Lines 8-14 handle Case 2, and Case 3 is evaluated in lines 15-24. 

We can see that each loop of the CalculateLBDistance algorithm in lines 2-26 can 

be evaluated in O(1) time, so the time complexity of CalculateLBDistance is O(n). The 

space needed to store all the vectors in the MDMS algorithm is O(n), and each loop in 

lines 14-25 of MDMS takes O(n) time. Therefore, the time complexity of MDMS 

algorithm is O(n2) and the space complexity is O(n), the same as STOMP (Chapter 3). 

Furthermore, we can see that unlike most imputation algorithms [90], our MDMS 

algorithm is extremely model-free and parameter-free. The only inputs to the algorithm 

are the time series and the subsequence length. In the next section, we will use two case 

studies to demonstrate the robustness and efficacy of our ultra-fast, parameter-free motif 

discovery algorithm in the face of missing data. 

5.3 Experimental Evaluation 

We begin by noting that all the code and data used in this work are archived in 

perpetuity at [77]. In the following two case studies, we consider both random-missing 

data (data with sparsely located, random missing timestamps) and block-missing data 

(data with consecutive missing timestamps). 
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For each case study, we compare our method with the commonly used strawman in 

the literature to handle missing data: linear imputation, as shown in Figure 5.8. 

 

Figure 5.8. To evaluate our method, we compare our result with that of linear imputation. 

5.3.1 Case Study: Seismological Data 

Repeated pattern (i.e. motif) discovery is a fundamental tool in seismology, which 

allows for the discovery of foreshocks, triggered earthquakes, swarms, volcanic activity, 

and induced seismicity [101]. However, this domain is replete with missing data. 

For example, a classic paper notes “A frequent dilemma in spectral analysis (in 

seismology) is the incompleteness of the data record, either in the form of occasional 

missing data or as larger gaps” (our emphasis) [5]. In this experiment, we demonstrate 

that we can handle both cases. 

We consider a dataset for which we know the answer from external sources. On 

April 30th, 1996, there was an earthquake of magnitude 2.12 in Sonoma County, 

California. Then, on December 29th, 2009, about 13.6 years later, there was another 

earthquake with a similar magnitude. To allow the results to be visualized in a single plot, 

we edited this data such that the two earthquakes happen just 15 seconds apart. We set 

the subsequence length as 2,000, which corresponds to one second of data. As shown in 

imputation
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Figure 5.9 (red curve), when there is no missing data the matrix profile correctly 

discovers the locations of the two earthquakes. 

 
Figure 5.9. A raw seismograph contrived such that two earthquakes from the same region happen 15 

seconds apart. The matrix profile computed with no missing data (red curve) finds the true event, as 

does MDMS even in the presence of missing points (green curve) or missing blocks (orange curve). 

To test our algorithm for the “occasional missing data” case, we randomly deleted 

50 data points. As Figure 5.9 (green curve) shows, the matrix profile is still minimized at 

the correct location, and there are no false positives (no other small values in the matrix 

profile besides the two deep valleys). This shows the robustness of our algorithm in the 

face of random missing data. 

Next, we consider the “larger gaps” (or the block-missing data) case. Here, instead 

of removing individual data points, we removed two blocks of length 25. As shown in 

Figure 5.9 (orange curve), the shape of the lower bound matrix profile still looks very 

similar to that of the oracle matrix profile (red curve). We see only two deep valleys in 

the vicinity of the motifs, so no false positive patterns are discovered. 

The result demonstrates that our lower bound matrix profile is robust against 

producing false positives. 

0 25s

Oracle Matrix Profile

Matrix Profile
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Matrix Profile
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To test the robustness of our algorithm against false negatives, we removed a block 

of missing data at the center of the second earthquake pattern. The length of the missing 

block is 400, which is 20% of the subsequence length. In Figure 5.10, we compared our 

lower-bound matrix profile result with the matrix profile generated by linear imputation. 

 

Figure 5.10. We removed 400 consecutive data points at the center of the second earthquake pattern. 

The oracle matrix profile computed with no missing data (black curve) finds the true event, as does 

MDMS (red curve) even in the presence of a large missing block. The Matrix Profile generated after 

linear imputation (green curve) fails to capture the minimum points within the oracle matrix profile. 

We can see that the lower-bound matrix profile generated by our MDMS algorithm 

(red curve) agrees closely with the oracle matrix profile (black curve) in the vicinity of 

the two earthquake patterns, while the matrix profile generated after linear imputation 

(green curve) shows a high value at these locations. 

 

Figure 5.11. The first motif found by the MDMS algorithm (right) in the presences of a large missing 

block is identical with the first motif found in the oracle data (left). 
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400 data points here
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As a result, the MDMS algorithm successfully captures the 1st motif (as shown in 

Figure 5.11) even in the presence of a large missing block within one earthquake pattern, 

while the imputation method misses the 1st motif within the oracle data. This illustrates 

two major strength of our algorithm over imputation methods. Firstly, our algorithm does 

not allow false negatives. Secondly, our algorithm is more robust to large missing blocks 

as it does not change the data, while imputation method can change the data a lot. In the 

next case study, we will further demonstrate the robustness of MDMS in the presence of 

missing blocks. 

5.3.2 Case Study: Activity Data from Video 

Time series extracted from video often has missing data reflecting “frame drops” 

due to bandwidth congestion [20]. To test our algorithm in this context, we examine the 

activity dataset of [86]. This dataset consists of a 13.3 minute 10-fps video sequence of 

an actor performing various activities. From this data, the original authors extracted 721 

channels of the optical flow time series, and the length of each time series is 8,000. We 

consider the time series corresponding to the 533th channel, which is suggestive of the 

structure in places but is noisy. The data is shown in Figure 5.12.top, the subsequence 

length is 120. From the oracle matrix profile in Figure 5.12 (black curve), we can extract 

the 1st motif in the oracle data. To test the performance of the MDMS algorithm, here we 

remove 12 consecutive data points in the center of one of the 1st motif patterns. In Figure 

5.12, we compare our lower-bound matrix profile result (red curve) with the matrix 

profile generated by linear imputation (green curve). 
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Figure 5.12. A raw activity time series. We removed 12 consecutive data points in one of the 1st motif 

patterns in the time series. The oracle matrix profile computed with no missing data (black curve) 

finds the true motif starting at the 540th and the 622nd data points. With the presence of 12 missing 

data points, the MDMS algorithm finds the same motif as the oracle result (red curve), starting at 

520th and 602nd data points. The Matrix Profile generated after linear imputation (green curve) fails 

to capture the two deep valleys within the oracle matrix profile and thus misses the 1st motif. 

We can see that the oracle matrix profile (black curve) shows two apparent valleys 

at the locations of the 1st motif, as does the lower bound matrix profile generated by 

MDMS (red curve). The 1st motif discovered by the MDMS algorithm (shown in Figure 

5.13.right) is identical to the oracle motif (shown in Figure 5.13.left). In contrast, the 

matrix profile generated by imputation (green curve) does not have these valleys, and 

thus misses the 1st motif of the oracle data. 

 

Figure 5.13. The first motif found by the MDMS algorithm (right) is identical to the first motif within 

the oracle data (left), despite a small phase shift. 
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We can see from Figure 5.13 that though a large portion of the blue pattern is 

missing, our MDMS algorithm still finds it very similar with the red pattern. This 

example further demonstrates that our algorithm is robust against missing true motif 

patterns. 

5.3.3 Quantifying the Robustness of MDMS 

As MDMS evaluates the lower bound matrix profile, it naturally does not allow 

false negatives, but it can produce false positives. Here we perform two “stress tests” to 

evaluate the robustness and limitations of our MDMS algorithm against false positives. 

We use the seismograph data in Figure 5.9 again for the stress test. The 

subsequence length in this dataset is m=2,000. 

We first test the sensitivity of MDMS over the length of missing blocks. Here we 

remove two missing blocks of length p, located at 7.5s and 15s respectively, from the 

data. In Figure 5.14, we show how the lower bound matrix profile varies as we increase 

p. 

Note that the removed blocks are not within the two repeated earthquake patterns. 

As a result, the lower bound matrix profiles are the same as the oracle matrix profile in 

the vicinity of the two repeated patterns, while lower at other locations. In other words, it 

is easier to detect false positives with such setting. 
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Figure 5.14. Lower bound matrix profiles corresponding to different missing block lengths. We 

removed 2 blocks of length p from the seismograph. The oracle matrix profile (black curve) finds the 

true motif. For p=100, p=400 and p=700, MDMS is able to find the true event as the 1st motif. When 

p=800, MDMS finds a false positive as the 1st motif. 

We can see that when p=100 (5% of the subsequence length m), the side valleys in 

the oracle Matrix Profile become deeper, and two more side valleys show up in the 

vicinity of the removed blocks. As p increases, all the side valleys become deeper and 

deeper. For p=100, p=400 and p=700, we are able to find the true event as the 1st motif 

with MDMS. However, when p=800 (40% of m), the 1st motif (corresponding to the 

minimum point of the lower bound matrix profile) is no longer the true event. We show 

this false positive motif pair in Figure 5.15. 

 

Figure 5.15. The 1st motif found by the MDMS algorithm when p=800. 
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The two subsequences are both in the vicinity of the second missing block in 

Figure 5.14. With a close inspection we can see why this pair is reported as the 1st motif 

by MDMS. If we fill in the missing part of each subsequence with their counterpart in the 

other subsequence (shown by the arrows in Figure 5.15), the two can be very similar to 

each other. Since MDMS does not allow false negatives, it will capture and report this 

possible matching pair. 

Furthermore, Figure 5.15 implies that p cannot be larger than 50% of the 

subsequence length, otherwise MDMS will be able to find a perfect match (with one 

subsequence missing the first 50% and the other missing the second 50%). When p > 700 

(35% of the subsequence length), we are already very close to this limit. Therefore, in 

Figure 5.15 we can see very deep side valleys in the vicinity of the missing blocks, and 

we are prone to detect false positives. When p ≤ 400 (20% of the subsequence length), 

the two main valleys corresponding to the true events dominate, so we will not detect 

false positives. 

We have demonstrated that MDMS is robust against discovering false positives 

when there are two missing blocks, and when the length of the two blocks are within a 

reasonable range. Next, we “stress test” the sensitivity of MDMS over the total number of 

missing values in the data. We again use the seismograph dataset in Figure 5.9, which 

consists of 50,000 data points. The lower bound matrix profile results are shown in 

Figure 5.16. 
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Figure 5.16. Lower bound matrix profiles corresponding to various percentage of data missing. left) 

random-missing data right) block-missing data. 

In the first run, we randomly selected 5,000, 10,000, 15,000 and 20,000 points to 

remove from the data. From Figure 5.16.left, we can see that the scale of the matrix 

profile decreased as more points are missing. However, even when 40% of the data is 

missing, the two valleys corresponding to the true events (recall Figure 5.9) still 

dominate. In the second run, we removed blocks of length 200 from the data. The missing 

blocks were uniformly distributed, and the number of missing blocks increased from 25 

to 100. Figure 5.16.right shows that even when 30% of the data is missing, the two main 

valleys still dominate. When 40% of the data is missing, the two main valleys are no 

longer apparent, but we can still find the true events as the 1st motif. The experiment 

demonstrates that MDMS is robust against detecting false positives even if a large 

percentage of data is missing. 

5.4 Conclusions 

We introduced what we believe to be the first time series motif discovery algorithm 

that can find motifs in the presence of missing data. The algorithm has the same time and 

space complexity as the fastest known algorithm for motif discovery, the STOMP 
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algorithm (Chapter 3). We formally proved the admissibility of our algorithm, it does not 

produce any false negatives. Experimental results show that our algorithm is also robust 

against false positives even when a large portion of the data is missing. Because our 

algorithm is based on creating a special version of the matrix profile, our work may have 

implications for other algorithms that can exploit the matrix profile, including discord 

discovery and time series joins. The lower bounds introduced can also be used to 

accelerate various length motif discovery. We leave such considerations to future work. 
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Chapter 6 Time Series Chains: A New 

Primitive for Time Series Data 

Mining 

Time series motifs were introduced in 2002, and have since become a fundamental 

tool for time series analytics, finding diverse uses in dozens of domains. In this chapter 

we introduce Time Series Chains, which are related to, but distinct from, time series 

motifs. Informally, time series chains are a temporally ordered set of subsequence 

patterns, such that each pattern is similar to the pattern that preceded it, but the first and 

last patterns can be arbitrarily dissimilar. In the discrete space, this is similar to extracting 

the text chain “data, date, cate, cade, code” from text stream. The first and last words 

have nothing in common, yet they are connected by a chain of words with a small mutual 

difference. Time series chains can capture the evolution of systems, and help predict the 

future. As such, they potentially have implications for prognostics. We introduce two 

robust definitions of time series chains, and scalable algorithms that allow us to discover 

them in massive complex datasets. 
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6.1 On the Ubiquity of Time Series Chains 

We have briefly and informally introduced time series chains in Section 1.2 (recall 

Figure 1.2 and Figure 1.3). With a little introspection, it is easy to see that time series 

chains should exist in a host of diverse systems. Consider the following: 

• Human Heart: An overcaffeinated heart can sporadically produce a pattern 

containing an extra beat, but over time the caffeine leaves the blood stream, and 

the pattern fades [40]. 

• Distillation Process: A distillation column is a ubiquitous industrial tool used to 

separate a mixture into its component parts. Ideally, most telemetry monitoring a 

distillation column should reflect a repeating process, over production cycles. 

However, most large distillation columns are open to the atmosphere, and the 

patterns observed may drift as the seasons change. In addition, a slowly clogging 

feed pipe can throttle the feed rate and force the patterns to drift until they become 

unacceptable and force maintenance. 

• Aggregate Human Behavior: Human behavior is often unpredictable for 

individuals, but more structured in aggregate. For example, online shopping 

behaviors often shows conserved motifs, but these motifs may drift over time in 

response to advertising campaigns or cultural shifts. This has been noted in recent 

studies. For example, Krumme et al. [36] note that their attempts to model 

consumer e-commerce visitation patterns “suggest the existence of a slow rate of 

environmental change or exploration that would slowly undermine the model's 

accuracy.” 
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• Machines: In general, most mechanical and electrical systems such as cars, 

motors, elevators, air conditioners, etc., are subject to gradual deterioration over 

time. This deterioration can be manifested in shorter or longer duty cycles, 

increased vibration, or some other gradually changing pattern. In the field of 

prognostics, the degree of deterioration is often called the State of Health (SoH) 

of the system. SoH is rarely directly measurable, and its estimation typically 

involves advanced modeling and estimation algorithms. Because a time series 

chain defines an implicit curve in some high-dimensional space, as shown in 

Figure 1.2, the natural coordinate along this curve can serve as a surrogate SoH 

measure. If high probability of failure can be associated reliably with a certain 

level of SoH, the discovered time series chain can be used successfully for 

prognostics and condition-based maintenance of machines. 

As we will show in Section 6.4, once given the computational ability to find time 

series chains, we begin to find them everywhere, in datasets from ten seconds, to ten 

years in length. 

6.2 Related Work and Background 

Our review of related work is brief. To the best of our knowledge, there are simply 

no closely related ideas in the time series domain. However, there are very similar ideas 

in the text domain, even to the point of using similar language [102][9][94]. For example, 

Zhu and Oates discuss “Finding Story Chains in Newswire Articles” (analogous to our 

emphasis, [102]). Likewise, Bögel and Gertz argue for the need to go beyond finding 
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repeated variants of news articles (like motifs), to allowing “Temporal Linking of News 

Stories” (like chains, [9]). Beyond the difference in data type considered, this work is 

much more supervised. The user typically selects a particular news article, and asks 

“what leads up to this?” or “what happened next?”. In contrast, because we are often 

exploring domains for which we have limited intuitions, we want to tell the algorithms 

nothing (except the desired length of patterns to consider) and have the algorithm find the 

natural chains in the data (if any). 

There is a huge body of work in finding periodicity in time series [38]; however, 

this work is orthogonal to the task-at-hand. A time series can have perfect periodicity, but 

no chains (i.e. a pure sine wave), and a time series can have chains, but no appreciable 

periodicity (it is easy to construct artificial examples, for example by embedding 

increasing damped sine waves in random walk). 

The notion of chains invokes the familiar idea of concept drift in [19], however, we 

are not starting with an explicit model to drift away from. Our starting point is a 

completely unannotated dataset. 

Finally, time series chains are clearly related to time series motifs [56][96]. 

However, chains are neither a specialization nor a generalization of motifs. It is possible 

to have a rich set of motifs in a dataset, without having any chains (Our tilt-table example 

later in Section 6.4.1 illustrates that fact). Time series motifs have a rich and growing 

literature, we refer the reader to [96] and the references therein. 
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6.2.1 Developing Intuition for Time Series Chains 

To help the reader understand the task at hand, and our contributions to it, we begin 

by considering a similar problem in a domain that better lends itself to discussion. In 

particular, it will be helpful to sharpen our intuitions on strings, the discrete analog to 

time series, and using the Hamming distance, the discrete analog to the Euclidean 

distance. 

A word ladder is a classic puzzle used to challenge children to build their 

vocabulary [45]. The challenge is as follows: given two related words, such as “cat” and 

“dog”, find a path between the words that consists of legal English words that differ only 

in one letter. For example, this instance is solved by {cat, cot, dot, dog}. By definition, 

each word is exactly a Hamming distance of 1 from both its neighbors. Let us consider 

variants of this problem. Suppose our words are subwords of length m in a longer, 

unpunctuated string S, of length n: 

thecatsleepinginthecotwasawokenbydothedogwh… 

Further suppose that we are challenged to find the longest ladder (or chain) of 

words in this string. We are told only that the words are of length 3, and that each word is 

at most a Hamming distance of 1 from both its neighbors. The problem is still tenable by 

eye, at least for this short string. However, the problem becomes significantly harder if 

the words are no longer constrained to be English words: 

uifdbutmffqjohjouifdpuxbtbxplfoczepuifephxi… 

This string is actually just the previous string Cesar-shifted by one letter, but 

without the intuition of meaningful words, the problem becomes much harder for the 
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human eye. Solving the problem with computers is also somewhat daunting. The obvious 

solution is depth-first-search, which only requires O(n2) space, but requires O(nn) time. If 

we constrain the subwords in a chain to have no overlap, the time complexity is slightly 

reduced to O(nn/m). 

Our consideration of strings allows further intuitive explanation of issues for the 

task at hand. Consider the following: 

catauygfbatiuvheiucathoeircatiajesathfwecat… 

Under the definition that each word is at most a Hamming distance of 1 from both 

its neighbors, this string has a chain of length six. However, this chain lacks 

directionality: the pattern is not drifting or evolving. Indeed, this “chain” might better be 

explained as multiple occurrences of a single prototypical pattern “cat”, with some 

spelling errors. In the time series space, we already have a technique to find such 

patterns, time series motifs [56][96]. Thus, any definition we wish to formalize should 

guard against such pathological solutions. 

Another important property that any definition of chains should have is robustness. 

Consider the following list of words that we will embed into a string {sad, had, ham, hag, 

rag}: 

iwassadthatIhadahamsandwichwiththehaginrags… 

Here we easily find the five-word chain. However, suppose we had a single letter 

misspelling in the string, for example: 

iwassadthatIhadajamsandwichwiththehaginrags… 
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Because of this trivial single letter difference, we can only find two chains of length 

two, something that might easily have happened by chance. This brittleness of chains has 

been understood for centuries. Alexander Pope noted in 1733 “From Nature’s chain 

whatever link you strike, tenth or ten thousandth, breaks the chain alike”. Thus, when 

designing the definition of chains for the time series space, we want to make sure that our 

definition is robust to one or two links being missing in an otherwise long chain. This is 

especially important in the time series domain where we often encounter noisy/missing 

data. 

In summary, considering a simpler but related problem, we can see that when 

designing a formal definition for our task at hand, we must strive (at a minimum) to make 

it efficiently computable, directional, and robust. In the next section, we will introduce a 

definition of time series chains that satisfy these requirements. 

Finally, this is a good place to introduce some nomenclature. We plan to support 

two types of time series chains (here we show their analogs in a string): 

• Unanchored: In this case we are interested in finding the unconditionally 

longest chain in the string. For example, considering S, the first string we 

introduced, FindChain(S, m, default) would find the longest chain (with m = 3) 

of length 4: {cat, cot, dot, dog}. 

• Anchored: In this case we want to start the chain with a particular 

subsequence. For example, FindChain(S, m, 20) would find the longest chain 

(with m = 3) starting with the subword at index 20, which is {cot, dot, dog}. 
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Note that if we have discovered all the anchored chains, the unanchored chain is 

simply the longest one among them. 

6.2.2 Time Series Notation 

Before we formally define time series chains, we need to review some related time 

series definitions and notations, and create some new ones. Here we inherit the 

definitions and notations for time series (Definition 2.1), time series subsequence 

(Definition 2.2), distance profile (Definition 2.3), matrix profile (Definition 2.4) and 

matrix profile index (Definition 2.5) from Chapter 2. 

Recall that the matrix profile is a data structure that stores nearest neighbor 

information for every subsequence in a time series, offering the solutions to many 

problems in time series data mining, including motif discovery and discord discovery 

[96]. We propose to leverage these ideas. However, it is useful for us to “re-factor” the 

computation into two halves, independently considering the nearest neighbor to the left, 

and the nearest neighbor to the right. Note that the total amount of computation we need 

to do is the same. Figure 6.1 previews the two data structures: left matrix profile and 

right matrix profile. We could create the original matrix profile (Definition 2.4) by 

simply taking the minimum of the two. 
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Figure 6.1. The left matrix profile, right matrix profile and matrix profile of a toy time series. The 

deep valleys within the (left/right) matrix profiles indicate that the corresponding subsequence has 

close (left/right) nearest neighbors. The matrix profile shows general nearest neighbor information. 

Before introducing the left matrix profile and right matrix profile, we begin by 

showing that we can divide a distance profile ((Definition 2.3) into a left distance profile 

and a right distance profile. 

Definition 5.1: A left distance profile DLi of time series T is a vector of the 

Euclidean distances between a given query subsequence Ti,m and each subsequence that 

appears before Ti,m in time series T. Formally, DLi = [di,1, di,2,…, di,i-m/4] 

Definition 5.2: A right distance profile DRi of time series T is a vector of the 

Euclidean distances between a given query subsequence Ti,m and each subsequence that 

appears after Ti,m in time series T. Formally, DRi = [di, i+m/4, di, i+m/4+1,…, di,n-m+1]. 

We can easily find the left nearest neighbor of a subsequence Ti,m from the left 

distance profile, and the right nearest neighbor of Ti,m from the right distance profile. 

Definition 5.3: A left nearest neighbor of Ti,m, LNN(Ti,m) is a subsequence that 

appears before Ti,m in time series T, and is most similar to Ti,m. Formally, LNN(Ti,m)= Tj,m 

if di,j  = min(DLi). 

time series

left matrix profile

right matrix profile

matrix profile
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Definition 5.4: A right nearest neighbor of Ti,m, RNN(Ti,m) is a subsequence that 

appears after Ti,m in time series T, and is most similar to Ti,m. Formally, RNN(Ti,m)= Tj,m if 

di,j  = min(DRi). 

As shown in Figure 6.1, we use a vector called left matrix profile to represent the 

z-normalized Euclidean distances between all subsequences and their left nearest 

neighbors: 

Definition 5.5: A left matrix profile PL of time series T is a vector of the z-

normalized Euclidean distance between each subsequence Ti,m and its left nearest 

neighbor in time series T. Formally, PL = [min(DL1), min(DL2),…, min(DLn-m+1)], where 

DLi (1 ≤ i ≤  n-m+1) is a left distance profile of time series T. 

The ith element in PL tells us the distance from subsequence Ti,m to its left nearest 

neighbor in time series T. However, it does not tell where that left neighbor is located. 

This information is stored in a companion vector called the left matrix profile index. 

Definition 5.6: A left matrix profile index IL of time series T is a vector of integers: 

IL=[IL1, IL2, … ILn-m+1], where ILi=j if LNN(Ti,m)= Tj,m. 

By storing the neighboring information this way, we can efficiently retrieve the left 

nearest neighbor of query Ti,m by accessing the ith element in the left matrix profile index. 

Analogously, we define the right matrix profile (as shown in Figure 6.1) and the 

right matrix profile index as follows: 

Definition 5.7: A right matrix profile PR of time series T is a vector of the 

Euclidean distances between each subsequence Ti,m and its right nearest neighbor in time 
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series T. Formally, PR = [min(DR1), min(DR2),…, min(DRn-m+1)], where DRi (1 ≤ i ≤  n-

m+1) is a right distance profile of time series T. 

Definition 5.8: A right matrix profile index IR of time series T is a vector of 

integers: IR=[IR1, IR2, … IRn-m+1], where IRi=j if RNN(Ti,m)= Tj,m. 

6.2.3 Formal Definitions of Time Series Chains 

We are finally in the position to define time series chains. Before we do so, recall 

our guiding principle. We want something very like the definition of time series motifs 

[56][96], but with the additional property of directionality. For example, given a choice 

between the following: 

{ ape → abe → ape → ape → abe → ape } 

{ ape → apt → opt → oat → mat → man } 

The latter is strongly preferred because the pattern is in some sense “evolving” or 

“drifting”. We can now see this intuition in the real-valued space of interest. The 

definition below captures this spirit in the continuous case. 

Definition 5.9: A time series chain of time series T is an ordered set of 

subsequences: TSC={TC1,m, TC2,m, … TCk,m} (C1≤ C2≤...≤Ck), such that for any 1 ≤ i ≤ 

k-1, we have RNN(TCi,m) = TC(i+1),m, and LNN(TC(i+1),m) = TCi,m. We denote k the length of 

the time series chain. 

To help the reader better understand this definition, let us consider the following 

time series: 

47, 32, 1, 22, 2, 58, 3, 36, 4, -5, 5, 40 
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Assume that the subsequence length is 1, and the distance between two 

subsequences is simply the absolute difference between them (to be clear, we are making 

these simple and pathological assumptions here just for the purposes of elucidation; we 

are actually targeting much longer subsequence lengths and using z-normalized 

Euclidean distance in our applications). According to Definition 5.6 and Definition 5.8, 

we can store the left and right nearest neighbor information into the left and right matrix 

profile indices, as shown in Figure 6.2. 

Index 1 2 3 4 5 6 7 8 9 10 11 12 

Value 47 32 1 22 2 58 3 36 4 -5 5 40 

IR 12 8 5 8 7 12 9 12 11 11 12 - 

IL - 1 2 2 3 1 5 2 7 3 9 8 

 
Figure 6.2. The left nearest neighbor index and right nearest neighbor index of the toy example. 

Here the Index vector shows the location of every subsequence in the time series, 

IR is the right matrix profile index and IL is the left matrix profile index. For example, 

IR[2] = 8 means the right nearest neighbor of 32 is 36; IL[3] = 2 means the left nearest 

neighbor of 1 is 32. 

To better visualize the left/right matrix profile index, in Figure 6.3 we use arrows 

to link every subsequence in the time series with its left and right nearest neighbors. 
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Figure 6.3. Visualizing left matrix profile index and right matrix profile index: every arrow above the 

time series points from a number to its right nearest neighbor; every arrow below the time series 

points from a number to its left nearest neighbor. 

We call an arrow pointing from a number to its right nearest neighbor (arrows 

shown above the time series) a forward arrow (i.e. x→y means RNN(x)=y), and an arrow 

pointing from a number to its left nearest neighbor (arrows shown below the time series) 

a backward arrow (i.e. x←y means LNN(y)=x). Definition 5.9 indicates that every pair of 

consecutive subsequences in a chain must be connected by both a forward arrow and a 

backward arrow. The diligent reader may quickly discover the longest time series chain 

in our toy example: 

47, 32, 1, 22, 2, 58, 3, 36, 4, -5, 5, 40           (Raw data) 

1   ⇌  2   ⇌  3  ⇌   4  ⇌  5       (Extracted chain) 

We can see that this chain shows a gradual increasing trend of the data. Note that in 

this one-dimensional example, the elements of the chain can only drift by increasing or 

decreasing. In the more general case, the elements can drift in arbitrarily complex ways. 

Our claim is that our definition is also capable of discovering complex drifting patterns in 

high-dimensional space. For example, the reader can easily verify that the two-

dimensional chain in Figure 1.2.right, a curvy evolving pattern, is captured by our 

47  32  1  22  2  58  3  36  4  -5  5  40
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definition. The definition also works for a sin-wave drifting pattern, a zigzag, spirals, etc. 

We defer real-world examples in much higher dimensional spaces to Section 6.4. 

However, to be clear, we are not claiming that we can discover all kinds of drifting; 

we are only targeting chains with directionality (the last item should be very different 

from the first item, as suggested previously). Therefore, full closed circles (i.e. {1, 3, 4, 5, 

1}) are not captured by our definition. However, if needed, we can still potentially 

capture such topologies if we consider combining multiple chains. For example, in {1, 3, 

4, 5, 1}, our definition captures two chains: {1, 1} and {3, 4, 5}. The circle is a 

combination of the two. 

Beyond satisfyingly the directionality requirement, here we provide a simple sanity 

check of the robustness of our definition by removing a link from the chain. Imagine that 

in Figure 6.3, the number “3” is missing. In this case, RNN(2)=4, LNN(4)=2; we can still 

find the chain 1 ⇌ 2 ⇌ 4 ⇌ 5. We defer a more “stressed” and quantified robustness test 

to Section 6.4.7. 

The reader may wonder why we use a bidirectional chain definition here (i.e., using 

both RNN and LNN) instead of a unidirectional one (i.e., using only RNN or LNN). 

Consider the following example: 

47, 11, 57, 12, 101, 13, 46, 14, 54, 15, 32, 1, 122, 2, 58, 3, 36, 4, -5, 5, 40 

If we modify our chain definition such that every pair of consecutive subsequences 

are connected by only a forward arrow, then 11 → 12 → 13 → 14 → 15 → 5 would be 

valid. However, this sequence does not satisfy the directionality requirement of chains. 

Analogously, a chain definition based on only backward arrows would not work either: 
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11 ← 1 ← 2 ← 3 ← 4 ← 5 conforms to the definition, but violates directionality. In 

contrast, our bidirectional definition finds two chains: 11   ⇌  12   ⇌  13  ⇌   14  ⇌  15 

and 1   ⇌  2   ⇌  3  ⇌   4  ⇌  5, both satisfying directionality. 

Note that our bidirectional chain definition can find motifs that show no 

directionality, for example 1   ⇌  1  ⇌  1  ⇌   1  ⇌  1. However, note that time series data 

normally contain some level of random noise, and motifs, though very similar to each 

other, are typically not exactly the same (especially in the high-dimensional space, see 

Section 6.4). Our bidirectional definition prevents motifs like 1.02, 1.01, 1.03, 0.98, 0.99 

from being discovered as a chain. 

As suggested in Section 6.2.1, we are especially interested in supporting two types 

of time series chains: anchored and unanchored chains. We formally define them as 

follows. 

Definition 5.10: An anchored time series chain of time series T starting from 

subsequence Tj,m is an ordered set of subsequences: TSCj,m ={TC1,m, TC2,m, … TCk,m} 

(C1≤C2≤...≤Ck, C1=j), such that for any 1≤ i ≤ k-1, we have RNN(TCi,m)=TC(i+1),m, and 

LNN(TC(i+1),m)=TCi,m; for TCk,m, we have either TCk,m is the last subsequence in T, or 

LNN(RNN (TCk,m))≠TCk,m. 

We can “grow” an anchored chain step-by-step as follows. Consider Figure 6.3 as 

an example. If we start from 1, we find RNN(1)=2 and LNN(2)=1, so 2 can be added to 

the chain; since RNN(2)=3 and LNN(3)=2, 3 can also be added; this process continues 

until we reach 5. As RNN(5)=40 and LNN(40) ≠5, the chain terminates, and finally we 

find the chain 1⇌2⇌3⇌4⇌5 as the longest chain starting from 1. 
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Note that our definition produces one and only one anchored time series chain 

starting from any user-supplied subsequence Tj,m (1≤ j≤n-m+1), as there is only one right 

(and also left) nearest neighbor for every subsequence in T. Based on this observation, we 

can find all the time series chains within T. 

Definition 5.11: An all-chain set STSC of time series T is a set of all anchored time 

series chains within T that are not subsumed by another chain. 

Here we are not simply finding all the anchored chains starting from all 

subsequences of T; STSC excludes those that are subsumed by another chain. For example, 

the all-chain set corresponding to Figure 6.3 is STSC = {47, 32⇌36⇌40, 1⇌2⇌3⇌4⇌5, 

22, 58, -5}. STSC does not contain the anchored chain 36⇌40, or 2⇌3⇌4⇌5, as they are 

both subsumed by longer chains. 

Note that the all-chain set STSC has an important property: every subsequence of T 

appears exactly once in STSC. The all-chain set shows all possible evolving trends within 

the data. 

We believe that of all the chains in STSC, the longest one should reflect the most 

general trend within the data. We call this chain the unanchored time series chain. 

Definition 5.12: An unanchored time series chain of time series T is the longest 

time series chain within T. 

Note that there can be more than one unanchored time series chain of time series T 

with the same maximum length. In case of such ties, we report the chain with minimum 

average distance between consecutive components. However, one might imagine other 
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tie-breaking criteria, such as choosing the chain with smaller variance of consecutive 

pairwise distances. 

One can imagine in some situations that the chain of interest may not be the longest 

one. In the next section, we provide an algorithm to compute the all-chain set, which we 

use to easily find any anchored or unanchored chain, from the set. 

6.3 Discovering Time Series Chains 

To compute the time series chains, according to Definition 12, we first need to find 

the left/right nearest neighbor of every subsequence in the time series. Such information 

can be found from two vectors: left matrix profile index and right matrix profile index 

(Definition 5.5 and Definition 5.7). The LRSTOMP algorithm is an (optimal) algorithm 

to efficiently compute these vectors. 

6.3.1 LRSTOMP Algorithm 

The STOMP algorithm introduced in Chapter 3 can efficiently compute matrix 

profile and matrix profile index in O(n2) time and O(n) space. Here we briefly review 

how STOMP keeps track of the nearest neighbor of every subsequence: the algorithm 

computes distance profiles D1, D2, …, Dn-m+1 (see Definition 2.3) in order. The matrix 

profile P is initialized as D1 and the matrix profile index I is initialized as a vector of 

ones. As shown in Figure 6.4, once the computation of Di is completed, we compare 

every element of Di with its corresponding element in P: if di,j < Pj, we set Pj = di,j and Ij 

=i. In this way, the matrix profile P and matrix profile index I keep track of the nearest 

neighbors of every subsequence in the time series. 
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Figure 6.4. STOMP keeps track of the general nearest neighbor of every subsequence in the time 

series. 

Instead of finding the general nearest neighbor information as in STOMP, to 

support chain discovery, we need to separately find the left and right nearest neighbors of 

each subsequence in the time series. 

Leveraging off the insights of STOMP (Chapter 3), we call our algorithm 

LRSTOMP (Left-Right-STOMP). To initialize our four output vectors, we begin by 

setting both the left and right matrix profiles PL and PR as Infs, and both the left and 

right matrix profile indices IL and IR as zeros. Then, using the technique in Section 3.2.1, 

we compute the distance profiles D1, D2, …, Dn-m+1 (see Definition 2.3) in order. Note 

that the ith subsequence can only be the right nearest neighbor of the 1st to the (i-m/4)th 

subsequence in the time series, and the left nearest neighbor of the (i+m/4)th to the last 

subsequence in the time series. Therefore, as shown in Figure 6.5, after the ith distance 

profile Di is computed, we need to divide Di into two halves. For ∀ j∈[1, i-m/4], if di,j< 

PRj, we set PRj = di,j and IRj =i. For ∀ j∈[i+m/4, n-m+1], if di,j< PLj, we set PLj = di,j and 

ILj =i. 

P1 P2 P3 … Pn-m+1

di,1 di,2 di,3 … di,n-m+1

Update if Smaller

Di

P
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Figure 6.5. LRSTOMP keeps track of both the left and right nearest neighbors of every subsequence 

in the time series. 

After evaluating all the distance profiles, we can obtain the final left and right 

matrix profiles (and matrix profile indices). 

Note that switching the updating process from Figure 6.4 to Figure 6.5 does not 

affect the overall complexity of the algorithm. Therefore, the time complexity of 

LRSTOMP is O(n2) and the space complexity is O(n), the same as STOMP (see Chapter 

3). 

6.3.2 Computing the Time Series Chains 

Now we are in the position to compute the time series chains. We begin with the 

simpler variant, the algorithm (Algorithm 8) to compute the anchored time series chains 

(ATSC). 

The algorithm is straight-forward. We begin growing the chain from its user-

specified anchor, the jth subsequence. If the right nearest neighbor exists (if it does not 

exist, then IR[j] = 0; this indicates that we have reached the end of the time series) and 

PR1 PR2 PR3 … PRi-m/4

di,1 di,2 di,3 … di,i-m/4

Update if Smaller

Di [1:i-m/4]

PR

PLi+m/4 PLi+m/4+1 PLi+m/4+2 … PLn-m+1

di,i+m/4 di,i+m/4+1 di,i+m/4+2 … di,n-m+1

Update if Smaller

PL

Di [i+m/4:n-m+1]
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LNN(RNN(Tj,m)) = Tj,m, then we set j as RNN(Tj,m) and add it to the back of the chain. The 

process iterates until nothing more can be added to the chain. 

Algorithm 8: ATSC(IL, IR, j) 

 Input: The left matrix profile index IL and right matrix profile index IR generated 

by LRSTOMP(T, m), where T is the time series and m is the subsequence length; 

and j, location of the anchor subsequence 

Output: anchored time series chain C, where C[i] = j means the ith element of the 

chain is the jth subsequence in the time series 

1 

2 

3 

4 

5 

6 

C ← [j]        // initialization 

while IR[j]≠0 and IL[IR[j]] ==j do 

     j ← IR[j] 

    C ← [C, j] 

end while 

return C 

The time and space overhead of the ATSC algorithm are both O(n). 

Given that we can efficiently compute the anchored time series chain starting from 

any subsequence, the all-chain set (ALLC) can also be computed. The (unanchored) time 

series chain is simply the longest chain in the all-chain set. 

A simple approach to compute the all-chain set is enumerating all anchored chains 

starting from all subsequences, and removing those that are subsumed by longer chains. 

However, this brute-force approach would result in an undesirable O(n2) time 

complexity. Fortunately, as shown in Algorithm 9, by exploiting several properties of 

our definition of time series chains, we can reduce the time complexity of the ALLC 

algorithm to O(n). 

The vector L in line 1 is a vector of length n-m+1, the same length as the four meta 

time series. We use L[i] to store the length of the anchored time series chain starting from 

L[i], and initialize L with all ones (as the length of an anchored chain is at least 1). In 

lines 2 to 10, we iterate through all possible anchor points, and store in L[i] the length of 
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the anchored chain starting from the ith subsequence. We store all the chains found in S. 

In line 11, we find the unanchored time series chain corresponding to the maximum value 

in L.  

Algorithm 9: ALLC(IL, IR) 

 Input: The left matrix profile index IL and right matrix profile index IR generated 

by LRSTOMP(T, m), where T is the time series and m is the subsequence length. 

Output: The all-chain set S and the unanchored chain C 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

L ← ones, S ← ∅                 //initialization 

for i ← 1 to Length(IR) do 

  if L[i] ==1 do 

             j ← i, C ← [j] 

        while IR[j]≠0 and IL[IR[j]] ==j do 

                   j ← IR[j], L[j] ← -1, L[i] ← L[i] + 1, C ← [C, j] 

        end while 

        S ← S ∪ C 

  end if 

end for 

C ← ATSC(IL, IR, MaxIndex(L)) 

return S, C 

Note that in lines 5-7, as we grow an anchored chain from the ith subsequence, we 

set L[j] to -1 for every subsequence j visited except the anchor subsequence. This helps us 

prune unnecessary computations, as there is only one anchored time series chain starting 

from any subsequence. Consider again the toy example in Figure 6.3: when i=3, we 

discover the chain 1 ⇌ 2 ⇌ 3 ⇌ 4 ⇌ 5. By marking out the length of the anchored chain 

starting from 2, 3, 4 and 5 as -1s, we can avoid spending time on growing a chain like 2 

⇌ 3 ⇌ 4 ⇌ 5, which is subsumed by 1 ⇌ 2 ⇌ 3 ⇌ 4 ⇌ 5. With this technique, every 

subsequence in the time series is visited exactly once; therefore, the time complexity of 

the algorithm is O(n), which is inconsequential compared to the O(n2) time (already 

demonstrated as ultra-fast in Chapter 3) to compute the left/right matrix profiles and 

matrix profile indices. This O(n)-complexity algorithm is the optimal algorithm to 
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compute the all-chain set under our definitions and assumptions, as we need to at least 

scan through the entire time series once. 

Although we will mainly be showing the applications of the unanchored (or 

longest) time series chain, sometimes the chain of interest may not be the longest one. 

Based on domain knowledge, one may be interested in looking at the top-k chains, a 

chain starting from a specific location, a chain with less difference between the links, etc. 

All these tasks are trivial given the all-chain set S. Therefore, the ALLC algorithm can 

potentially help us discover any possible evolving trend within the time series. We 

reserve such considerations for future work. 

6.3.3 Uniform Scaling Time Series Chains 

In the previous sections, we have introduced the definitions and algorithms for 

chains with a fixed subsequence length. That is, we assumed that all the patterns (links) 

in a chain are of the same length, and that they evolve by changing the values of the 

patterns. The reader may have already speculated that there may exist other forms of 

chains which do not evolve by changing the values of patterns, but by changing their 

length, with the patterns either getting longer or shorter over time. Figure 6.6 shows one 

such example. This idea is familiar in many human endeavors; in music the general term 

is called tempo rubato, with ritardando indicating a slowing down, and accelerando 

meaning a speed up. Changing tempo is also a key element of many types of dance, 

including the Sama (the “Whirling Dervish” dance). 
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Many other domains may see uniform scaling time series chains. For example, 

electrical power demand for a house may show a seasonal effect as the occupants turn on 

the air conditioning earlier and earlier each day as the warmer summer looms. 

 

Figure 6.6. A uniform scaling time series chain we discovered in a household electrical demand time 

series [25]. Over twenty months the dishwasher cycle became progressively longer, perhaps as an 

inlet valve became progressively more clogged. 

Note that our previous chain definition and algorithms do not apply to uniform 

scaling time series chains. To show this, in Figure 6.7.top we created a synthetic time 

series containing an embedded uniform scaling time series chain (the three patterns 

within the embedded chain are highlighted in red, located at 100, 200 and 300, with 

lengths 50, 25 and 18 respectively). We set a fixed subsequence length 50 and run the 

ALLC algorithm (Algorithm 9) to find the unanchored chain. From the results in Figure 

6.7.bottom (highlighted in green) we can see the algorithm found another chain with 

evolving values instead of the embedded uniform scaling chain. The reason is that the 

embedded patterns are unable to locate each other as their left/right nearest neighbors 
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with a fixed subsequence length. For example, the first embedded pattern (located at 100) 

finds its right nearest neighbor at 299 instead of at 200; the second embedded pattern 

(located at 200) finds its left nearest neighbor at 43 instead of at 100, etc. Therefore, we 

need another approach to discover this special form of time series chains. 

 

Figure 6.7. top) A time series containing a uniform scaling chain. bottom) the chain discovered with a 

fixed subsequence length 50. 

Our approach is visualized in Figure 6.8. Note that the first embedded pattern 

(shown in red at Figure 6.8.top) is of length 50, twice the length of the second pattern 

(shown in pink at Figure 6.8.top). If we rescale the length of the original time series T by 

200%, we can obtain a new time series T’ (Figure 6.8.bottom): The red pattern in T will 

find the pink pattern as its nearest neighbor in T’, and vice versa. Similarly, if we create 

another time series T’’ by stretching the original time series to 300%, then the first 

pattern in T will find the third pattern (purple) as its nearest neighbor in T’’, and vice 

versa. 

0 100 200 300 400
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Figure 6.8. top) The original time series. bottom) Rescaling the original time series by 200%. The first 

(red) pattern in the original time series matches very well with the second (pink) pattern in the 

rescaled time series. 

Based on this observation, we have created the UniformScaleChain Algorithm to 

discover the uniform scaling time series chains, as shown in Algorithm 10. 

The algorithm requires the user to input the time series of interest T, a base 

subsequence length m and a number of Scales to explore. For the time series in Figure 

6.8, m can be 50, and Scales can be [100%, 120%, 140%, …, 300%]. The step size 

between the scales can be larger or smaller. Lines 3-11 iterate through these scales. In 

line 4, we create a new time series 𝑇’ by rescaling the original time series T. Line 5 

evaluates the matrix profiles and matrix profile indices corresponding to the join of T and 

T’ with the AB-join version of the STOMP algorithm (Chapter 3). PI[j] is the location of 

the nearest neighbor of Tj,m in  T’ and  PI’[j] is the location of the nearest neighbor of 

0 200 400 600 800

original time series T
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T’j,m in T. Line 7 verifies whether the two arrows in Figure 6.8 form a loop: if the red 

pattern and the pink pattern are links of a uniform scaling chain, then the pink pattern in 

T’ must be the nearest neighbor of the red pattern in T and vice versa. In line 8, if Tj,m 

finds such a match in T’, then IValid[j][i] stores the original location of the match in T; 

otherwise IValid[j][i] is zero. 

Algorithm 10: UniformScaleChain(T, m, Scales) 

 Input: time series T, subsequence length m, a set of possible scales Scales. 

Output: uniform scaling time series chain C and a companion length vector S, 

where C[i]=j means the ith element of the chain is the jth subsequence in the time 

series and S[i]=k means the ith element of the chain is of length k × m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

L ← |T|- m + 1 

IValid ← Zeros(L,|Scales|)                  //initialization 

for i ← 1 to |Scales| do    

      T’ ← T[1 : 1 / Scales[i] : end]      // rescale T 

      [P, PI, P’, PI’] ← STOMP(T, T’, m)       //  Chapter 3 

      for j ← 1 to L do 

            if PI’[PI[j]] == j do 

                  IValid[j][i] ← PI[j] / Scales[i] 

            end 

      end 

end 

ALLC ← ∅, ALLS ← ∅                   // initialize all-chain set 

for j ← 1 to L do 

      C ← j, S ← 1 

      [Val, Loc] ← NonzeroElements(IValid[j]) 

      if Exist(Val) do 

            i ←1, C ← C ∪ Val[1], S ← S ∪ Scales[Loc[1]] 

            if Val[1] > j do                    //chain scale increasing 

                  while i < |Val| and Val[i+1] > Val[i] do 

                        i ← i+1, C ← C  ∪ Val[i], S ← S ∪ Scales[Loc[i]] 

                  end 

            elseif Val[1]<j do               //chain scale decreasing 

                  while i < |Val| and Val[i+1] < Val[i] do 

                        i ← i+1, C ← C  ∪ Val[i], S ← S ∪ Scales[Loc[i]] 

                  end 

            end 

      end 

      ALLC ← ALLC ∪ C, ALLS ← ALLS ∪ S 

end 

C, S ← Longest(ALLC, ALLS) 

return C, S 
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In lines 13-29, we attempt to “grow” a uniform scaling chain from every possible 

anchor in the original time series T. In line 15, the non-zero elements in IValid[j] indicate 

all the possible links that can be included in a chain anchored at j. Note that the length of 

each link in the uniform scaling chain can be either increasing over time, or decreasing 

over time; We handle the former case in lines 18-21, and the latter case in lines 22-25. In 

lines 18-21, we find the longest chain with increasing link lengths starting from j; in lines 

22-25, we find the longest chain with decreasing link lengths ending in j. After finding all 

the uniform scaling chains starting from all anchors, we return the longest one and the 

corresponding scales of its links in line 30. 

Finally, it is clearly possible that there may be chains that exhibit both shape and 

length evolution at the same time. Such patterns may best be discovered by a fusion 

algorithm. We leave such considerations to future work. 

6.4 Empirical evaluation 

 “You reasoned it out beautifully, it is so long a chain, and yet every link rings true.” 

Sir Arthur Conan Doyle: Adventures of Sherlock Holmes, 1892. 

We note in passing that all the experimental results in this paper are reproducible. 

To ensure this, we have created a website to archive all the datasets and code in 

perpetuity [76]. 

After an extensive literature search, we are convinced that there is no strawman 

algorithm to compare to. Moreover, unlike clustering or motif discovery, there is no 

formal metric to measure the quality of chains. In a sense, we are not the ideal group that 

should invent such a metric, as we could define one that tautologically rewards the 
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properties we have defined. However, in Section 6.4.7, we provide a pseudo measure of 

quality as the gold standard. We measure the length of a chain in a data set, then ask how 

robust would our chain discovery algorithm be if we distorted the data in various ways. 

Clearly a chain discovery algorithm would engender little confidence if minor changes to 

the data could prevent the discovery of the (same basic) chain. 

Before this robustness test, we provide four case studies in which we applied our 

algorithm to various datasets. These case studies will help the reader gain an appreciation 

for the utility of chain discovery. These datasets are designed to span the diverse types of 

data encountered in time series data mining, some are stationary, some have trends, some 

are smooth, some are noisy, the shortest is ten seconds long, the longest is ten years, etc. 

While we can obtain the all-chain set with the ALLC algorithm, in this section, we 

are mainly showing the application of the unanchored time series chain. Unless otherwise 

stated, in the rest of this section, we use the term “time series chain” to represent 

unanchored time series chain in Definition 5.12, rather than Definition 5.9. 

6.4.1 Case Study: Hemodynamics 

In November 2016, we briefed Dr. John Michael Criley, Professor Emeritus at the 

David Geffen School of Medicine at UCLA, and Dr. Gregory Mason of UCLA Medical 

Center, a noted expert on cardiac hemodynamics, on the capabilities of time series chain 

discovery. They suggested more than a dozen possible uses for it in various clinical and 

research scenarios in medicine. Here we consider one example they are interested in. 
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Syncope is the loss of consciousness caused by a fall in blood pressure. The tilt-

table test (see Figure 6.9.top.left) is a simple, noninvasive, and informative test first 

described in 1986 as a diagnostic tool for patients with syncope of unknown origin [29]. 

 

Figure 6.9. left-to-right, top-to-bottom) A patient lying on a medical tilt table has his arterial blood 

pressure monitored. Nomenclature for a standard beat. The chain discovered in this dataset shows a 

decreasing height for the dicrotic notch. 

Beyond diagnosing the condition, the test may reveal the cause, neurological 

disorder, metabolic disorder, mechanical heart disease, cardiac arrhythmias, etc. [48]. 

In brief, the clinician will want to contrast any evolving patterns in the patient’s 

arterial blood pressure (ABP) that are a response to changes in positon induced by a tilt 

table, with evolving patterns that are not associated with changes of posture. As hinted at 

in Figure 6.9, time series chains are an ideal way to find and summarize such patterns. 

Here we set m=200, as this is the typical length of an ABP signal (Figure 

6.9.bottom.left). 

Figure 6.9 shows just a snippet of the time series searched. We encourage the 

reader to see the full dataset/results at [76]. Nevertheless, even this snippet is visually 
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compelling. It shows that as the table is tilted, the height of the dicrotic notch steadily 

decreases. Per Dr. Mason, the change in orientation “dramatically increases central 

venous filling and subsequent left ventricular end-diastolic volume, for several heart 

beats.  Left ventricular stroke volume and effective cardiac output increase 

transiently, (likely due to) relative hyperemia, which is well-described during recovery 

from transient vascular occlusion”. 

As noted above, Figure 6.9 only shows a small section of the data we searched. In 

addition to finding meaningful chains, a good algorithm should avoid finding spurious 

chains, even if there are dense motifs (recall the distinction visualized in Figure 1.2). In 

Figure 6.10 we show the prefix of the data we searched, but truncated out of Figure 6.9, 

gratifyingly, the chain we discovered has no element here, even though there are clearly 

dense motifs [96]. 

 

Figure 6.10. The prefix of the ABP data shown in Figure 6.9. There are no chain elements discovered 

in this region, although it is compressed of dense motifs. 

6.4.2 Backtracing 

We have shown in Figure 6.9 that the unanchored chain reveals the gradual drifting 

process of a system. Sometimes it may be interesting to explore the data “backwards”. 

That is to say, if we inspect an abnormal signal at the end of the drifting process, can we 

go backward to find when the system started to drift and possibly glean some insight as to 

what caused the drifting? 

tilt begins

-23000 -18000 -13000 -8000 -3000 2000

20

60

m
m

H
g

0



 162 

In contrast to the anchored chain definition in Section 6.2.3 which discovers a chain 

forward from an anchor, here we try to “grow” a chain backward from the end of a chain 

to find its origin. Note that our chain definition is symmetric: as shown in Figure 6.3, 

every pair of consecutive subsequences in a chain must be connected by both a forward 

arrow and a backward arrow. That is, if Ti,m and Tj,m are two consecutive subsequences in 

a chain, then RNN(Ti,m)= Tj,m and LNN(Tj,m)= Ti,m. Therefore, if we grow a chain from its 

last link backward, we will find exactly the same chain as the one grown from its first 

link forward. 

We call this process backtracing. The algorithm to discover a backtracing chain is 

just a simple modification of the ATSC algorithm (Algorithm 8): we begin growing the 

chain backward from the user-specified anchor (the last link), the jth subsequence. If the 

left nearest neighbor of Tj,m exists, and RNN(LNN(Tj,m))=Tj,m, then we set j as LNN(Tj,m) 

and add it to the front of the chain. The process iterates until nothing more can be added 

to the front of the chain. 

We apply the backtracing algorithm to the ABP data from the last section. Figure 

6.11.top shows an expanded view of the signal. At the end of the data, we find an 

abnormal signal (shown in red), indicating the system has drifted, and we would like to 

trace back to discover what causes the drifting. Figure 6.11.middle shows the backtracing 

chain discovered backward from the abnormal signal. The discovered chain indicates that 

the system starts drifting at around the 15,000th data point, which aligns very well with 

the ground truth when the bed starts to tilt. 
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Figure 6.11. top) An expanded view of the ABP data shown in Figure 6.9. We trace back from an 

abnormal pattern located at the end of the data. middle) The chain discovered. bottom) The length of 

chains starting from every anchor. 

In addition, we have also investigated the relationship between the all-chain set and 

the ground truth: Figure 6.11.bottom shows the length of chains starting from every 

anchor in the all-chain set, and we can see that the length of the chains becomes 

exceptionally large near the drifting point 15,000. 

The results suggest that time series chains can automatically identify when the 

system starts to drift. This piece of information may be very helpful in prognostics 

applications, i.e., locating what causes the system to deteriorate, so that corresponding 

maintenance can be scheduled in time. 
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6.4.3 Case Study: Penguin Behavior 

In this case study, we decided to explore a dataset for which we have no expertise, 

to see if we could find time series chains, which we could then show to an expert for 

independent evaluation of meaning and significance (if any). 

To this end, we consider telemetry collected from a Magellanic penguin 

(Spheniscus magellanicus). The dataset was collected by attaching a small multi-channel 

data-logging device to the bird. The full data consist of 1,048,575 data points recorded at 

40 Hz (about 7.2 hours). While a suite of measurements was recorded, for simplicity we 

focus on the X-axis acceleration (the direction of travel for a swimming bird). In Figure 

6.12 we show the snippet of the data in which we found a chain, with m = 28. This is 

about 0.7 seconds, and the approximate period of the data. 

 

Figure 6.12. top) A random three-minute snippet of X-Axis acceleration of a Magellanic penguin 

(from a total of 7.2 hours). bottom) An eighteen-second long section containing the time series chain. 

In the background, the red time series records the depth, starting at sea-level and leveling off at 6.1 

meters. 

In fact, this chain does have a simple interpretation. Adult Magellanic penguins 

regularly dive to depths of up to 50 m to hunt prey, and may spend as long as fifteen 

minutes under water. One of our sensors measures pressure, which we showed in Figure 

6.12.bottom as a fine/red line. This shows that the chain begins just after the bird begins 

its dive, and ends as it reached its maximum depth of 6.1 m. Magellanic penguins have 

0 18 seconds
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typical body densities for a bird at sea-level, but just before diving they take a very deep 

breath that makes them exceptionally buoyant [58]. This positive buoyancy is difficult to 

overcome near the surface, but at depth, the compression of water pressure cancels it, 

giving them a comfortable neutral buoyancy [58][93]. To get down to their hunting 

ground below sea level, it is clear that “(for penguins) locomotory muscle workload, 

varies significantly at the beginning of dives” [93]. The snippet of time series shown in 

Figure 6.12 does not suggest much of a change in stroke-rate, however penguins are able 

to vary the thrust of their flapping by twisting their wings [93]. The chain we discovered 

shows this dramatic sprint downwards leveling off to a comfortable cruise. Fortunately, 

our data contain about a dozen major dives, allowing us to confirm our hypothesis about 

the meaning of this chain on more data. 

Note that our chain does not include every stroke in the dive. Our data are 

undersampled (only 40Hz for a bird that can swim at 36kph) and these data are recorded 

in the wild, the bird may have changed directions to avoid flotsam or fellow penguins. 

However, this is a great strength of our algorithm: we do not need “perfect” data to find 

chains; we can find chains in real-world datasets. Also, from Figure 6.12.bottom we can 

see that m=28 is longer than the actual period of the data; our algorithm is not sensitive to 

this and still discovered a meaningful chain. 

6.4.4 Case Study: Human Gait 

In the experiments in the previous section we could be sure of the validity of the 

discovered chains, because we had access to some ground truth. In this section and the 

next, we show examples of chains we discovered in datasets for which we do not have an 
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obvious way to empirically verify. This demonstrates one use for chains, finding patterns 

that are interesting but speculative, and may warrant further investigation. 

We first consider a snippet of a gait dataset recorded to test a hypothesis about 

biometric identification [30]. The dataset is shown in Figure 6.13.top. We set m = 50 

here, as this is the approximate length of a period of the data. 

 

Figure 6.13. top) A 30-second snippet of data from an accelerometer on a mobile phone. The phone 

was placed in the user’s front pocket (inset). bottom) The extracted chain shows an evolution to a 

stable and symmetric gait. 

As hinted at in Figure 6.13.inset (taken from the original paper), the authors of the 

study were interested in “the instability of the mobile in terms of its orientation and 

position when it is put freely in the pocket” [30]. Given the experimental setup, we 

suspected that the gait pattern might start out as being unpredictable as the phone jostled 

about in the user’s pocket, eventually settling down as the phone settled into place. This 

is exactly what we see in Figure 6.13.top. Note that the first few links are far apart and 

asymmetric, but the last few links are close together, and almost perfectly symmetric. 

6.4.5 Case Study: Web Query Volume 

In contrast to the smooth, stationary, oversampled accelerometer data considered in 

the last section, we next consider a dataset that is noisy, undersampled and has a growing 

trend. We examined a decade-long GoogleTrend query volume for the keyword Kohl’s, 
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an American retail chain (data courtesy of [43]). As shown in Figure 6.14, the time series 

features a significant “bump” around the end-of-years holidays, unsurprising for a store 

known as a destination for gift buyers. Here we set m = 76 (the approximate length of a 

“bump”). 

 

Figure 6.14. top) Ten years of query volume for the keyword Kohl’s. bottom) The z-normalized links 

of the time series chain discovered in the data hints at the growing importance of “Cyber Monday”. 

The discovered chain shows that over the decade, the bump transitions from a 

smooth bump covering the period between Thanksgiving and Xmas, to a more sharply 

focused bump centered on Thanksgiving. This seems to reflect the growing importance of 

Cyber Monday, a marketing term for the Monday after Thanksgiving. The phrase was 

created by marketing companies to persuade people to shop online. The term made its 

debut on November 28th, 2005 in a press release entitled “Cyber Monday Quickly 

Becoming One of the Biggest Online Shopping Days of the Year” [72]. Note that this date 

coincides with the first glimpse of the sharping peak in our chain. 

Here we seem to “miss” a few links in the chain. However, note that the data is 

noisy and coarsely sampled, and the “missed” bumps are too distorted to conform with 

the general evolving trend. This noisy example again illustrates the robustness of our 
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technique. As before, we note that we do not need “perfect” data to find meaningful 

chains. Even if some links are badly distorted, the discovered chain will still be able to 

include all the other evolving patterns. 

Furthermore, consider the potential of using chains to predict the future. Assume 

that we are now at mid-2012 (the location of the blue line in Figure 6.14.top. We would 

like to forecast the shape S of the fist “bump” after the blue line, given the data before it. 

In the data prior to mid-2012, we discovered a chain that consists of the first five 

links in Figure 6.14.bottom (call them S1, S2, S3, S4, S5). Our assumption is that the 

difference between S4 and S5 is the same as the difference between S5 and S. We compare 

our prediction result with a popular strawman in the literature, persistence prediction (i.e. 

which assumes S = S5) [70], in Figure 6.15. Our simple, chain-based prediction method 

is more accurate (especially in the center part), as it captures the trend of the data. 

 

Figure 6.15. left) Our predicted shape (blue) is very similar to gound truth (red), with a Root Mean 

Squared Error (RMSE) of 0.17. right) Persistence prediction result (blue) is less similar to the ground 

truth (red), with a RMSE of 0.18. 

6.4.6 Parameter Setting 

We have demonstrated the efficacy of our discovery algorithm, given a time series 

of interest and an appropriate subsequence length m to use. We do not consider m as a 

true parameter, as this is a user choice, and it is a required input for all existing motif 
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discovery algorithms (see [56][96] and the references therein). Nevertheless, the reader 

may still wonder how sensitive our chain discovery algorithm is to m. 

To explore this, we again consider the Kohl’s data in Figure 6.14 (the original 

subsequence length is 76). Here we set m as 57 (25% shorter than the original 

subsequence length), 85 (25% longer than original), and 152 (100% longer than original), 

respectively, and compare the results of the chain discovery algorithm with that in Figure 

6.14. 

The result is shown in Figure 6.16. We can see that the discovered chain is 

basically the same as m varies (though the length of the links is different, and the total 

number of links can vary by +/- 1). The result indicates that m does not need to be 

precisely set; we can discover meaningful chains as long as m is in a reasonable range. 

 

Figure 6.16. The chains discovered from the Kohl’s data in Figure 6.14 as we vary the subsequence 

length m. 

6.4.7 Quantifying the Robustness of Chains 

In the previous sections, we showed the broad applicability of time series chains 

and implicitly showed the robustness of our algorithm/definitions; given that it can find 

meaningful chains even in real-world “non-perfect” datasets. To further demonstrate this 
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robustness, we need to provide a measure of the quality of time series chains that does 

not tautologically reward the properties we have defined, and can serve as a “gold 

standard” to compare the quality of chains before and after we have added some 

confounding factors. 

To test the quality of our chain-discovery algorithm, we should consider two 

different scenarios: If the data include a long intrinsic chain, then a good algorithm 

should be able to discover (or “recover”) a large portion of it. On the other hand, if the 

time series does not have any intrinsic evolving trend (for example, the data merely 

contain k repeated patterns), then we expect the length of the longest chain to be much 

shorter than k. We will test our algorithm in both scenarios. 

Suppose we have a time series with an intrinsic chain of length k (that is to say, we 

know, possibly from external knowledge, that there should be exactly k evolving 

subsequences of length m in the time series, and we have a set Lknown: |Lknown|  = k × m 

that shows the locations of all the data points within the embedded chain). Further 

suppose that, without knowing this, an algorithm discovers a time series chain of length 

kdiscovered, and the locations of the kdiscovered × m data points within the discovered chain is 

stored in the set Ldiscovered. Then we can define the recall of the chain as  =

|𝐿𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑∩𝐿𝑘𝑛𝑜𝑤𝑛|

|𝐿𝑘𝑛𝑜𝑤𝑛|
 and the precision as 𝑃 =

|𝐿𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑∩𝐿𝑘𝑛𝑜𝑤𝑛|

|𝐿𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑|
. For a robust chain, we 

expect 𝑃 ≈ 1. However, note that   does not necessarily need to be as large. Recall the 

example in Figure 6.14; although the discovered chain only covers around 60% of the 

“bumps”, it still reflects the general trend of the data. 
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Therefore, once Lknown is given, R and P are excellent measures of quality for the 

discovered chain. We propose to exploit this idea by building synthetic time series for 

which we know true chains (both length and locations), and distorting the data to “stress-

test” the chain discovery algorithm. 

Figure 6.17 shows an example of such a time series, with an embedded chain with 

k=5. Here the subsequences evolve gradually from a sine wave to a random-walk pattern, 

and in between the chain elements we inserted snippets of random noise. 

 

Figure 6.17. Synthetic time series embedded with a chain of five subsequences. The subsequences 

evolve from a sine-wave to a random-walk pattern. 

We used 100 different random-walk patterns like the one in Figure 6.17 to generate 

our benchmark time series. Each time series includes 20 subsequences of length 50 

(k=20, m=50), evolving gradually from a sine wave to a random-walk pattern. Figure 

6.18.top shows how the average results of R and P vary, over the 100 runs as we increase 

the noise level. 

For a large amount of noise (1%~10% of the signal amplitude), we can successfully 

recover most of the embedded chain elements (more than 14 out of 20), with R > 70% 

and P > 95%. This demonstrates the robustness of our algorithm: though we missed a 

small number of embedded patterns, most of them are still recovered. 

random noise is added to distort the patterns

0 400
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Figure 6.18. top) Recall (R) and Precision (P) both decrease as the noise amplitude increases. bottom) 

A snippet of a “perfect” time series versus the same snippet with 20% noise added. 

However, when the noise amplitude gets over 20%, R becomes smaller than 50%. 

This is because the noise level becomes large enough to hide the evolving characteristics 

within some part of the data. To see this, in Figure 6.18.bottom we compared a snippet 

from a “perfect” benchmark time series without noise to the same snippet with 20% 

noise. The evolving trend is originally clear in the “perfect” time series; when the noise 

amplitude increases to 20%, the second and fourth patterns are heavily distorted, so they 

can no longer be included in the chain. According to Figure 6.18.top, though with 20% 

noise only about half of the embedded patterns (10 out of 20, with  ≈ 50% ) are 

discovered, the precision 𝑃 is still over 90%. Thus, the discovered chain can still reflect 

the general trend of the data. Moreover, note that in many cases we could “undo” much 

of the ill-effect of noise by simply smoothing the data, but that is orthogonal to the 

purpose of our demonstration. 

We have demonstrated that our algorithm is robust in the face of (a reasonable 

amount of) noise, with a synthetic dataset that contains an intrinsic chain. Conversely, we 
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need to test if kdiscovered is small compared to k, when there is no intrinsic chain within the 

data, that is to say, are we robust to false positives? 

To test this, as shown in Figure 6.19, we constructed a synthetic time series with k 

= 100 repeated random-walk patterns. 

 

Figure 6.19. A snippet of a synthetic time series with 100 repeated patterns. 

As before, we added random noise to all the repeated patterns, so they look slightly 

different from each other. Unlike the data in Figure 6.17, here the k patterns do not have 

an evolving trend. We constructed 100 such synthetic time series, and found that the 

average length of the discovered time series chain kdiscovered is 5.04, which is much smaller 

than k = 100. This result suggests that our algorithm is robust to discovering spurious 

chains, even in the face of frequent and dense motifs. 

6.4.8 Finding Uniform Scaling Time Series Chains 

The previous sections showed the efficacy and robustness of our algorithms in 

finding chains with a fixed subsequence m. Having demonstrated the existence of 

uniform scaling chains in Figure 6.6, here we content ourselves with demonstrating our 

ability to recover synthetically embedded chains in complex datasets. In Figure 6.20, we 

show a chain we discovered from a synthetic dataset with the UniformScaleChain 

Algorithm (Algorithm 10), which aligns perfectly with the embedded chain. Note that 

while the change of length appears gradual and subtle to human inspection, it is enough 

to confound simple motif discovery. 
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Figure 6.20. top) A random walk dataset into which we embedded a uniform scaling chain 

(highlighted). The UniformScaleChain algorithm recovers exactly the same chain. bottom.left) the 

four elements of the chain. Note that we used the any element of the chain to do similarity search on 

the full time series, we find that it is not particularly similar to any other element under classic 

Euclidean distance. bottom.right) However, rescaling the shorter links of the chain reveals the 

conserved structure. 

6.5 Conclusions and Future Work 

We introduced time series chains, a new primitive for time series data mining. We 

have shown that chains can be efficiently and robustly discovered from noisy and 

complex datasets, to provide useful insights. We have placed all code and data online, to 

allow the community to confirm and extend our work. In future work, we plan to 

consider applications to several problems, especially problems in prognostics, where a 

chain may indicate a system devolving towards failure. 
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Chapter 7 Conclusions 

In this dissertation we introduced the Matrix Profile, a general and versatile time 

series data mining tool which has implications for many time series data mining tasks, 

including motif discovery, discord discovery, shapelet discovery, etc. We presented a 

suite of algorithms that empower the Matrix Profile with computational efficiency, and 

introduced useful new primitives that can be extracted from it. 

Our core contributions are as follows: 

• We introduced a simple, ultra-fast, highly parallelizable and parameter-free 

batch algorithm to compute the Matrix Profile, and demonstrated that the 

algorithm incidentally provided the fastest known solution to the discovery of 

time series motifs, one of the most important time series primitives. When 

combined with the GPU framework, our algorithm can find the full set of exact 

motifs on a dataset with one hundred and forty-three million data points in just 

nine days. This is 143 times larger than the largest dataset ever mined for motifs 

and joins. 

• We further expanded this scalability by introducing a novel fast-converging 

anytime algorithm to compute the Matrix Profile. For the first time, our 

algorithm allows the possibility of real-time interactive discovery of motifs in 

datasets of a few million data points long, using off-the-shelf consumer 

desktops. 
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• We introduced a novel lower-bound for the Matrix Profile, and proposed what 

we believe to be the first time series motif discovery algorithm that can find 

motifs in the presence of missing data without producing false negatives. The 

lower bound is later adopted and expanded in [39] to allow variable-length 

motif discovery. 

• We introduced time series chains, a new primitive for time series data mining. 

Time series chains are built on top of the Matrix Profile; they can capture the 

evolution of systems, helping to predict the future. We demonstrated that time 

series chains can be efficiently and robustly discovered from noisy and complex 

datasets, to provide useful insights.  

To date our published articles have been cited more than 50 times, and there have 

been numerous downloads of our software packages. A flurry of follow-up works 

adopted our algorithms and further applied the Matrix Profile on problems as diverse as 

guided motif search [16], multi-dimensional motif discovery [98], variable-length motif 

discovery [39], semantic segmentation [23], weakly labeled data analysis [97], music 

similarity search [69], etc. The research on the Matrix Profile is still ongoing. Future 

directions include, but are not limited to: 

• Further improving the efficiency of existing algorithms. This includes pushing 

the computation into the cloud, or developing new lower-bounding techniques 

to accelerate the computation. 

• Expanding the Matrix Profile to support Manhattan distance, dynamic time 

warping (DTW) distance, or other distance measure. 
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• Automatic discovery of a suitable subsequence length. This will eliminate the 

only parameter for our algorithms. 

• Applying the Matrix Profile in higher-level time series data mining tasks, such 

as classification and clustering. 

• Inventing new useful primitives for time series data mining. 

We envision that the Matrix Profile will continue to play an important role in time 

series data mining research, and the highly scalable algorithms we have introduced will 

allow the community to find many uses of, or properties of, the Matrix Profile that did 

not occur to us.  
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